2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
4 * (C) Copyright 2008 Armadeus Systems nc
5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 * SPDX-License-Identifier: GPL-2.0+
19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h>
23 #include <linux/errno.h>
24 #include <linux/compiler.h>
26 DECLARE_GLOBAL_DATA_PTR;
29 * Timeout the transfer after 5 mS. This is usually a bit more, since
30 * the code in the tightloops this timeout is used in adds some overhead.
32 #define FEC_XFER_TIMEOUT 5000
35 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
36 * 64-byte alignment in the DMA RX FEC buffer.
37 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
38 * satisfies the alignment on other SoCs (32-bytes)
40 #define FEC_DMA_RX_MINALIGN 64
43 #error "CONFIG_MII has to be defined!"
46 #ifndef CONFIG_FEC_XCV_TYPE
47 #define CONFIG_FEC_XCV_TYPE MII100
51 * The i.MX28 operates with packets in big endian. We need to swap them before
52 * sending and after receiving.
55 #define CONFIG_FEC_MXC_SWAP_PACKET
58 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
60 /* Check various alignment issues at compile time */
61 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
62 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
65 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
66 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
67 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
72 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
73 static void swap_packet(uint32_t *packet, int length)
77 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
78 packet[i] = __swab32(packet[i]);
83 * MII-interface related functions
85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
88 uint32_t reg; /* convenient holder for the PHY register */
89 uint32_t phy; /* convenient holder for the PHY */
94 * reading from any PHY's register is done by properly
95 * programming the FEC's MII data register.
97 writel(FEC_IEVENT_MII, ð->ievent);
98 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
99 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
102 phy | reg, ð->mii_data);
105 * wait for the related interrupt
107 start = get_timer(0);
108 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
109 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
110 printf("Read MDIO failed...\n");
116 * clear mii interrupt bit
118 writel(FEC_IEVENT_MII, ð->ievent);
121 * it's now safe to read the PHY's register
123 val = (unsigned short)readl(ð->mii_data);
124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
129 static void fec_mii_setspeed(struct ethernet_regs *eth)
132 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
133 * and do not drop the Preamble.
135 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
136 * MII_SPEED) register that defines the MDIO output hold time. Earlier
137 * versions are RAZ there, so just ignore the difference and write the
139 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
140 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
142 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
143 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
144 * holdtime cannot result in a value greater than 3.
146 u32 pclk = imx_get_fecclk();
147 u32 speed = DIV_ROUND_UP(pclk, 5000000);
148 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
149 #ifdef FEC_QUIRK_ENET_MAC
152 writel(speed << 1 | hold << 8, ð->mii_speed);
153 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
156 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
157 uint8_t regAddr, uint16_t data)
159 uint32_t reg; /* convenient holder for the PHY register */
160 uint32_t phy; /* convenient holder for the PHY */
163 reg = regAddr << FEC_MII_DATA_RA_SHIFT;
164 phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
166 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
167 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
170 * wait for the MII interrupt
172 start = get_timer(0);
173 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
174 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
175 printf("Write MDIO failed...\n");
181 * clear MII interrupt bit
183 writel(FEC_IEVENT_MII, ð->ievent);
184 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
190 static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
193 return fec_mdio_read(bus->priv, phyAddr, regAddr);
196 static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
197 int regAddr, u16 data)
199 return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
202 #ifndef CONFIG_PHYLIB
203 static int miiphy_restart_aneg(struct eth_device *dev)
206 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
207 struct fec_priv *fec = (struct fec_priv *)dev->priv;
208 struct ethernet_regs *eth = fec->bus->priv;
211 * Wake up from sleep if necessary
212 * Reset PHY, then delay 300ns
215 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
217 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
221 * Set the auto-negotiation advertisement register bits
223 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
224 LPA_100FULL | LPA_100HALF | LPA_10FULL |
225 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
226 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
227 BMCR_ANENABLE | BMCR_ANRESTART);
229 if (fec->mii_postcall)
230 ret = fec->mii_postcall(fec->phy_id);
236 #ifndef CONFIG_FEC_FIXED_SPEED
237 static int miiphy_wait_aneg(struct eth_device *dev)
241 struct fec_priv *fec = (struct fec_priv *)dev->priv;
242 struct ethernet_regs *eth = fec->bus->priv;
245 * Wait for AN completion
247 start = get_timer(0);
249 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
250 printf("%s: Autonegotiation timeout\n", dev->name);
254 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
256 printf("%s: Autonegotiation failed. status: %d\n",
260 } while (!(status & BMSR_LSTATUS));
264 #endif /* CONFIG_FEC_FIXED_SPEED */
267 static int fec_rx_task_enable(struct fec_priv *fec)
269 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
273 static int fec_rx_task_disable(struct fec_priv *fec)
278 static int fec_tx_task_enable(struct fec_priv *fec)
280 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
284 static int fec_tx_task_disable(struct fec_priv *fec)
290 * Initialize receive task's buffer descriptors
291 * @param[in] fec all we know about the device yet
292 * @param[in] count receive buffer count to be allocated
293 * @param[in] dsize desired size of each receive buffer
294 * @return 0 on success
296 * Init all RX descriptors to default values.
298 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
305 * Reload the RX descriptors with default values and wipe
308 size = roundup(dsize, ARCH_DMA_MINALIGN);
309 for (i = 0; i < count; i++) {
310 data = (uint8_t *)fec->rbd_base[i].data_pointer;
311 memset(data, 0, dsize);
312 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
314 fec->rbd_base[i].status = FEC_RBD_EMPTY;
315 fec->rbd_base[i].data_length = 0;
318 /* Mark the last RBD to close the ring. */
319 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
322 flush_dcache_range((unsigned)fec->rbd_base,
323 (unsigned)fec->rbd_base + size);
327 * Initialize transmit task's buffer descriptors
328 * @param[in] fec all we know about the device yet
330 * Transmit buffers are created externally. We only have to init the BDs here.\n
331 * Note: There is a race condition in the hardware. When only one BD is in
332 * use it must be marked with the WRAP bit to use it for every transmitt.
333 * This bit in combination with the READY bit results into double transmit
334 * of each data buffer. It seems the state machine checks READY earlier then
335 * resetting it after the first transfer.
336 * Using two BDs solves this issue.
338 static void fec_tbd_init(struct fec_priv *fec)
340 unsigned addr = (unsigned)fec->tbd_base;
341 unsigned size = roundup(2 * sizeof(struct fec_bd),
344 memset(fec->tbd_base, 0, size);
345 fec->tbd_base[0].status = 0;
346 fec->tbd_base[1].status = FEC_TBD_WRAP;
348 flush_dcache_range(addr, addr + size);
352 * Mark the given read buffer descriptor as free
353 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
354 * @param[in] pRbd buffer descriptor to mark free again
356 static void fec_rbd_clean(int last, struct fec_bd *pRbd)
358 unsigned short flags = FEC_RBD_EMPTY;
360 flags |= FEC_RBD_WRAP;
361 writew(flags, &pRbd->status);
362 writew(0, &pRbd->data_length);
365 static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
368 imx_get_mac_from_fuse(dev_id, mac);
369 return !is_valid_ethaddr(mac);
372 static int fec_set_hwaddr(struct eth_device *dev)
374 uchar *mac = dev->enetaddr;
375 struct fec_priv *fec = (struct fec_priv *)dev->priv;
377 writel(0, &fec->eth->iaddr1);
378 writel(0, &fec->eth->iaddr2);
379 writel(0, &fec->eth->gaddr1);
380 writel(0, &fec->eth->gaddr2);
383 * Set physical address
385 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
387 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
393 * Do initial configuration of the FEC registers
395 static void fec_reg_setup(struct fec_priv *fec)
400 * Set interrupt mask register
402 writel(0x00000000, &fec->eth->imask);
405 * Clear FEC-Lite interrupt event register(IEVENT)
407 writel(0xffffffff, &fec->eth->ievent);
411 * Set FEC-Lite receive control register(R_CNTRL):
414 /* Start with frame length = 1518, common for all modes. */
415 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
416 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
417 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
418 if (fec->xcv_type == RGMII)
419 rcntrl |= FEC_RCNTRL_RGMII;
420 else if (fec->xcv_type == RMII)
421 rcntrl |= FEC_RCNTRL_RMII;
423 writel(rcntrl, &fec->eth->r_cntrl);
427 * Start the FEC engine
428 * @param[in] dev Our device to handle
430 static int fec_open(struct eth_device *edev)
432 struct fec_priv *fec = (struct fec_priv *)edev->priv;
437 debug("fec_open: fec_open(dev)\n");
438 /* full-duplex, heartbeat disabled */
439 writel(1 << 2, &fec->eth->x_cntrl);
442 /* Invalidate all descriptors */
443 for (i = 0; i < FEC_RBD_NUM - 1; i++)
444 fec_rbd_clean(0, &fec->rbd_base[i]);
445 fec_rbd_clean(1, &fec->rbd_base[i]);
447 /* Flush the descriptors into RAM */
448 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
450 addr = (uint32_t)fec->rbd_base;
451 flush_dcache_range(addr, addr + size);
453 #ifdef FEC_QUIRK_ENET_MAC
454 /* Enable ENET HW endian SWAP */
455 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
457 /* Enable ENET store and forward mode */
458 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
462 * Enable FEC-Lite controller
464 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
466 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
469 * setup the MII gasket for RMII mode
472 /* disable the gasket */
473 writew(0, &fec->eth->miigsk_enr);
475 /* wait for the gasket to be disabled */
476 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
479 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
480 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
482 /* re-enable the gasket */
483 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
485 /* wait until MII gasket is ready */
487 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
488 if (--max_loops <= 0) {
489 printf("WAIT for MII Gasket ready timed out\n");
497 /* Start up the PHY */
498 int ret = phy_startup(fec->phydev);
501 printf("Could not initialize PHY %s\n",
502 fec->phydev->dev->name);
505 speed = fec->phydev->speed;
507 #elif CONFIG_FEC_FIXED_SPEED
508 speed = CONFIG_FEC_FIXED_SPEED;
510 miiphy_wait_aneg(edev);
511 speed = miiphy_speed(edev->name, fec->phy_id);
512 miiphy_duplex(edev->name, fec->phy_id);
515 #ifdef FEC_QUIRK_ENET_MAC
517 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
518 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
519 if (speed == _1000BASET)
520 ecr |= FEC_ECNTRL_SPEED;
521 else if (speed != _100BASET)
522 rcr |= FEC_RCNTRL_RMII_10T;
523 writel(ecr, &fec->eth->ecntrl);
524 writel(rcr, &fec->eth->r_cntrl);
527 debug("%s:Speed=%i\n", __func__, speed);
530 * Enable SmartDMA receive task
532 fec_rx_task_enable(fec);
538 static int fec_init(struct eth_device *dev, bd_t* bd)
540 struct fec_priv *fec = (struct fec_priv *)dev->priv;
541 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
544 /* Initialize MAC address */
548 * Setup transmit descriptors, there are two in total.
552 /* Setup receive descriptors. */
553 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
557 if (fec->xcv_type != SEVENWIRE)
558 fec_mii_setspeed(fec->bus->priv);
561 * Set Opcode/Pause Duration Register
563 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
564 writel(0x2, &fec->eth->x_wmrk);
566 * Set multicast address filter
568 writel(0x00000000, &fec->eth->gaddr1);
569 writel(0x00000000, &fec->eth->gaddr2);
572 /* Do not access reserved register for i.MX6UL */
575 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
578 /* FIFO receive start register */
579 writel(0x520, &fec->eth->r_fstart);
582 /* size and address of each buffer */
583 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
584 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
585 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
587 #ifndef CONFIG_PHYLIB
588 if (fec->xcv_type != SEVENWIRE)
589 miiphy_restart_aneg(dev);
596 * Halt the FEC engine
597 * @param[in] dev Our device to handle
599 static void fec_halt(struct eth_device *dev)
601 struct fec_priv *fec = (struct fec_priv *)dev->priv;
602 int counter = 0xffff;
605 * issue graceful stop command to the FEC transmitter if necessary
607 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
610 debug("eth_halt: wait for stop regs\n");
612 * wait for graceful stop to register
614 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
618 * Disable SmartDMA tasks
620 fec_tx_task_disable(fec);
621 fec_rx_task_disable(fec);
624 * Disable the Ethernet Controller
625 * Note: this will also reset the BD index counter!
627 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
631 debug("eth_halt: done\n");
636 * @param[in] dev Our ethernet device to handle
637 * @param[in] packet Pointer to the data to be transmitted
638 * @param[in] length Data count in bytes
639 * @return 0 on success
641 static int fec_send(struct eth_device *dev, void *packet, int length)
646 int timeout = FEC_XFER_TIMEOUT;
650 * This routine transmits one frame. This routine only accepts
651 * 6-byte Ethernet addresses.
653 struct fec_priv *fec = (struct fec_priv *)dev->priv;
656 * Check for valid length of data.
658 if ((length > 1500) || (length <= 0)) {
659 printf("Payload (%d) too large\n", length);
664 * Setup the transmit buffer. We are always using the first buffer for
665 * transmission, the second will be empty and only used to stop the DMA
666 * engine. We also flush the packet to RAM here to avoid cache trouble.
668 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
669 swap_packet((uint32_t *)packet, length);
672 addr = (uint32_t)packet;
673 end = roundup(addr + length, ARCH_DMA_MINALIGN);
674 addr &= ~(ARCH_DMA_MINALIGN - 1);
675 flush_dcache_range(addr, end);
677 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
678 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
681 * update BD's status now
683 * - is always the last in a chain (means no chain)
684 * - should transmitt the CRC
685 * - might be the last BD in the list, so the address counter should
686 * wrap (-> keep the WRAP flag)
688 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
689 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
690 writew(status, &fec->tbd_base[fec->tbd_index].status);
693 * Flush data cache. This code flushes both TX descriptors to RAM.
694 * After this code, the descriptors will be safely in RAM and we
697 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
698 addr = (uint32_t)fec->tbd_base;
699 flush_dcache_range(addr, addr + size);
702 * Below we read the DMA descriptor's last four bytes back from the
703 * DRAM. This is important in order to make sure that all WRITE
704 * operations on the bus that were triggered by previous cache FLUSH
707 * Otherwise, on MX28, it is possible to observe a corruption of the
708 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
709 * for the bus structure of MX28. The scenario is as follows:
711 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
712 * to DRAM due to flush_dcache_range()
713 * 2) ARM core writes the FEC registers via AHB_ARB2
714 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
716 * Note that 2) does sometimes finish before 1) due to reordering of
717 * WRITE accesses on the AHB bus, therefore triggering 3) before the
718 * DMA descriptor is fully written into DRAM. This results in occasional
719 * corruption of the DMA descriptor.
721 readl(addr + size - 4);
724 * Enable SmartDMA transmit task
726 fec_tx_task_enable(fec);
729 * Wait until frame is sent. On each turn of the wait cycle, we must
730 * invalidate data cache to see what's really in RAM. Also, we need
734 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
744 * The TDAR bit is cleared when the descriptors are all out from TX
745 * but on mx6solox we noticed that the READY bit is still not cleared
747 * These are two distinct signals, and in IC simulation, we found that
748 * TDAR always gets cleared prior than the READY bit of last BD becomes
750 * In mx6solox, we use a later version of FEC IP. It looks like that
751 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
754 * Fix this by polling the READY bit of BD after the TDAR polling,
755 * which covers the mx6solox case and does not harm the other SoCs.
757 timeout = FEC_XFER_TIMEOUT;
759 invalidate_dcache_range(addr, addr + size);
760 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
769 debug("fec_send: status 0x%x index %d ret %i\n",
770 readw(&fec->tbd_base[fec->tbd_index].status),
771 fec->tbd_index, ret);
772 /* for next transmission use the other buffer */
782 * Pull one frame from the card
783 * @param[in] dev Our ethernet device to handle
784 * @return Length of packet read
786 static int fec_recv(struct eth_device *dev)
788 struct fec_priv *fec = (struct fec_priv *)dev->priv;
789 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
790 unsigned long ievent;
791 int frame_length, len = 0;
793 uint32_t addr, size, end;
795 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
798 * Check if any critical events have happened
800 ievent = readl(&fec->eth->ievent);
801 writel(ievent, &fec->eth->ievent);
802 debug("fec_recv: ievent 0x%lx\n", ievent);
803 if (ievent & FEC_IEVENT_BABR) {
805 fec_init(dev, fec->bd);
806 printf("some error: 0x%08lx\n", ievent);
809 if (ievent & FEC_IEVENT_HBERR) {
810 /* Heartbeat error */
811 writel(0x00000001 | readl(&fec->eth->x_cntrl),
814 if (ievent & FEC_IEVENT_GRA) {
815 /* Graceful stop complete */
816 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
818 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
820 fec_init(dev, fec->bd);
825 * Read the buffer status. Before the status can be read, the data cache
826 * must be invalidated, because the data in RAM might have been changed
827 * by DMA. The descriptors are properly aligned to cachelines so there's
828 * no need to worry they'd overlap.
830 * WARNING: By invalidating the descriptor here, we also invalidate
831 * the descriptors surrounding this one. Therefore we can NOT change the
832 * contents of this descriptor nor the surrounding ones. The problem is
833 * that in order to mark the descriptor as processed, we need to change
834 * the descriptor. The solution is to mark the whole cache line when all
835 * descriptors in the cache line are processed.
837 addr = (uint32_t)rbd;
838 addr &= ~(ARCH_DMA_MINALIGN - 1);
839 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
840 invalidate_dcache_range(addr, addr + size);
842 bd_status = readw(&rbd->status);
843 debug("fec_recv: status 0x%x\n", bd_status);
845 if (!(bd_status & FEC_RBD_EMPTY)) {
846 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
847 ((readw(&rbd->data_length) - 4) > 14)) {
849 * Get buffer address and size
851 addr = readl(&rbd->data_pointer);
852 frame_length = readw(&rbd->data_length) - 4;
854 * Invalidate data cache over the buffer
856 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
857 addr &= ~(ARCH_DMA_MINALIGN - 1);
858 invalidate_dcache_range(addr, end);
861 * Fill the buffer and pass it to upper layers
863 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
864 swap_packet((uint32_t *)addr, frame_length);
866 memcpy(buff, (char *)addr, frame_length);
867 net_process_received_packet(buff, frame_length);
870 if (bd_status & FEC_RBD_ERR)
871 printf("error frame: 0x%08x 0x%08x\n",
876 * Free the current buffer, restart the engine and move forward
877 * to the next buffer. Here we check if the whole cacheline of
878 * descriptors was already processed and if so, we mark it free
881 size = RXDESC_PER_CACHELINE - 1;
882 if ((fec->rbd_index & size) == size) {
883 i = fec->rbd_index - size;
884 addr = (uint32_t)&fec->rbd_base[i];
885 for (; i <= fec->rbd_index ; i++) {
886 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
889 flush_dcache_range(addr,
890 addr + ARCH_DMA_MINALIGN);
893 fec_rx_task_enable(fec);
894 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
896 debug("fec_recv: stop\n");
901 static void fec_set_dev_name(char *dest, int dev_id)
903 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
906 static int fec_alloc_descs(struct fec_priv *fec)
912 /* Allocate TX descriptors. */
913 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
914 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
918 /* Allocate RX descriptors. */
919 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
920 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
924 memset(fec->rbd_base, 0, size);
926 /* Allocate RX buffers. */
928 /* Maximum RX buffer size. */
929 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
930 for (i = 0; i < FEC_RBD_NUM; i++) {
931 data = memalign(FEC_DMA_RX_MINALIGN, size);
933 printf("%s: error allocating rxbuf %d\n", __func__, i);
937 memset(data, 0, size);
939 fec->rbd_base[i].data_pointer = (uint32_t)data;
940 fec->rbd_base[i].status = FEC_RBD_EMPTY;
941 fec->rbd_base[i].data_length = 0;
942 /* Flush the buffer to memory. */
943 flush_dcache_range((uint32_t)data, (uint32_t)data + size);
946 /* Mark the last RBD to close the ring. */
947 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
956 free((void *)fec->rbd_base[i].data_pointer);
964 static void fec_free_descs(struct fec_priv *fec)
968 for (i = 0; i < FEC_RBD_NUM; i++)
969 free((void *)fec->rbd_base[i].data_pointer);
975 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
976 struct mii_dev *bus, struct phy_device *phydev)
978 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
979 struct mii_dev *bus, int phy_id)
982 struct eth_device *edev;
983 struct fec_priv *fec;
984 unsigned char ethaddr[6];
988 /* create and fill edev struct */
989 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
991 puts("fec_mxc: not enough malloc memory for eth_device\n");
996 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
998 puts("fec_mxc: not enough malloc memory for fec_priv\n");
1003 memset(edev, 0, sizeof(*edev));
1004 memset(fec, 0, sizeof(*fec));
1006 ret = fec_alloc_descs(fec);
1011 edev->init = fec_init;
1012 edev->send = fec_send;
1013 edev->recv = fec_recv;
1014 edev->halt = fec_halt;
1015 edev->write_hwaddr = fec_set_hwaddr;
1017 fec->eth = (struct ethernet_regs *)base_addr;
1020 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1023 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1024 start = get_timer(0);
1025 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1026 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1027 printf("FEC MXC: Timeout resetting chip\n");
1034 fec_set_dev_name(edev->name, dev_id);
1035 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1037 fec_mii_setspeed(bus->priv);
1038 #ifdef CONFIG_PHYLIB
1039 fec->phydev = phydev;
1040 phy_connect_dev(phydev, edev);
1044 fec->phy_id = phy_id;
1048 if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
1049 debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
1050 memcpy(edev->enetaddr, ethaddr, 6);
1051 if (!getenv("ethaddr"))
1052 eth_setenv_enetaddr("ethaddr", ethaddr);
1056 fec_free_descs(fec);
1065 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
1067 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1068 struct mii_dev *bus;
1073 printf("mdio_alloc failed\n");
1076 bus->read = fec_phy_read;
1077 bus->write = fec_phy_write;
1079 fec_set_dev_name(bus->name, dev_id);
1081 ret = mdio_register(bus);
1083 printf("mdio_register failed\n");
1087 fec_mii_setspeed(eth);
1091 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1094 struct mii_dev *bus = NULL;
1095 #ifdef CONFIG_PHYLIB
1096 struct phy_device *phydev = NULL;
1102 * The i.MX28 has two ethernet interfaces, but they are not equal.
1103 * Only the first one can access the MDIO bus.
1105 base_mii = MXS_ENET0_BASE;
1109 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1110 bus = fec_get_miibus(base_mii, dev_id);
1113 #ifdef CONFIG_PHYLIB
1114 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1116 mdio_unregister(bus);
1120 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1122 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1125 #ifdef CONFIG_PHYLIB
1128 mdio_unregister(bus);
1134 #ifdef CONFIG_FEC_MXC_PHYADDR
1135 int fecmxc_initialize(bd_t *bd)
1137 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1142 #ifndef CONFIG_PHYLIB
1143 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1145 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1146 fec->mii_postcall = cb;