Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / fddi / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  */
200
201 /* Include files */
202 #include <linux/bitops.h>
203 #include <linux/compiler.h>
204 #include <linux/delay.h>
205 #include <linux/dma-mapping.h>
206 #include <linux/eisa.h>
207 #include <linux/errno.h>
208 #include <linux/fddidevice.h>
209 #include <linux/interrupt.h>
210 #include <linux/ioport.h>
211 #include <linux/kernel.h>
212 #include <linux/module.h>
213 #include <linux/netdevice.h>
214 #include <linux/pci.h>
215 #include <linux/skbuff.h>
216 #include <linux/slab.h>
217 #include <linux/string.h>
218 #include <linux/tc.h>
219
220 #include <asm/byteorder.h>
221 #include <asm/io.h>
222
223 #include "defxx.h"
224
225 /* Version information string should be updated prior to each new release!  */
226 #define DRV_NAME "defxx"
227 #define DRV_VERSION "v1.10"
228 #define DRV_RELDATE "2006/12/14"
229
230 static char version[] =
231         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
232         "  Lawrence V. Stefani and others\n";
233
234 #define DYNAMIC_BUFFERS 1
235
236 #define SKBUFF_RX_COPYBREAK 200
237 /*
238  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
239  * alignment for compatibility with old EISA boards.
240  */
241 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
242
243 #ifdef CONFIG_EISA
244 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
245 #else
246 #define DFX_BUS_EISA(dev) 0
247 #endif
248
249 #ifdef CONFIG_TC
250 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
251 #else
252 #define DFX_BUS_TC(dev) 0
253 #endif
254
255 #ifdef CONFIG_DEFXX_MMIO
256 #define DFX_MMIO 1
257 #else
258 #define DFX_MMIO 0
259 #endif
260
261 /* Define module-wide (static) routines */
262
263 static void             dfx_bus_init(struct net_device *dev);
264 static void             dfx_bus_uninit(struct net_device *dev);
265 static void             dfx_bus_config_check(DFX_board_t *bp);
266
267 static int              dfx_driver_init(struct net_device *dev,
268                                         const char *print_name,
269                                         resource_size_t bar_start);
270 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
271
272 static int              dfx_open(struct net_device *dev);
273 static int              dfx_close(struct net_device *dev);
274
275 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
276 static void             dfx_int_type_0_process(DFX_board_t *bp);
277 static void             dfx_int_common(struct net_device *dev);
278 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
279
280 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
281 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
282 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
283 static int              dfx_ctl_update_cam(DFX_board_t *bp);
284 static int              dfx_ctl_update_filters(DFX_board_t *bp);
285
286 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
287 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
288 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
289 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
290 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
291
292 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
293 static void             dfx_rcv_queue_process(DFX_board_t *bp);
294 static void             dfx_rcv_flush(DFX_board_t *bp);
295
296 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
297                                      struct net_device *dev);
298 static int              dfx_xmt_done(DFX_board_t *bp);
299 static void             dfx_xmt_flush(DFX_board_t *bp);
300
301 /* Define module-wide (static) variables */
302
303 static struct pci_driver dfx_pci_driver;
304 static struct eisa_driver dfx_eisa_driver;
305 static struct tc_driver dfx_tc_driver;
306
307
308 /*
309  * =======================
310  * = dfx_port_write_long =
311  * = dfx_port_read_long  =
312  * =======================
313  *
314  * Overview:
315  *   Routines for reading and writing values from/to adapter
316  *
317  * Returns:
318  *   None
319  *
320  * Arguments:
321  *   bp         - pointer to board information
322  *   offset     - register offset from base I/O address
323  *   data       - for dfx_port_write_long, this is a value to write;
324  *                for dfx_port_read_long, this is a pointer to store
325  *                the read value
326  *
327  * Functional Description:
328  *   These routines perform the correct operation to read or write
329  *   the adapter register.
330  *
331  *   EISA port block base addresses are based on the slot number in which the
332  *   controller is installed.  For example, if the EISA controller is installed
333  *   in slot 4, the port block base address is 0x4000.  If the controller is
334  *   installed in slot 2, the port block base address is 0x2000, and so on.
335  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
336  *   registers using the register offsets defined in DEFXX.H.
337  *
338  *   PCI port block base addresses are assigned by the PCI BIOS or system
339  *   firmware.  There is one 128 byte port block which can be accessed.  It
340  *   allows for I/O mapping of both PDQ and PFI registers using the register
341  *   offsets defined in DEFXX.H.
342  *
343  * Return Codes:
344  *   None
345  *
346  * Assumptions:
347  *   bp->base is a valid base I/O address for this adapter.
348  *   offset is a valid register offset for this adapter.
349  *
350  * Side Effects:
351  *   Rather than produce macros for these functions, these routines
352  *   are defined using "inline" to ensure that the compiler will
353  *   generate inline code and not waste a procedure call and return.
354  *   This provides all the benefits of macros, but with the
355  *   advantage of strict data type checking.
356  */
357
358 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
359 {
360         writel(data, bp->base.mem + offset);
361         mb();
362 }
363
364 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
365 {
366         outl(data, bp->base.port + offset);
367 }
368
369 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
370 {
371         struct device __maybe_unused *bdev = bp->bus_dev;
372         int dfx_bus_tc = DFX_BUS_TC(bdev);
373         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
374
375         if (dfx_use_mmio)
376                 dfx_writel(bp, offset, data);
377         else
378                 dfx_outl(bp, offset, data);
379 }
380
381
382 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
383 {
384         mb();
385         *data = readl(bp->base.mem + offset);
386 }
387
388 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
389 {
390         *data = inl(bp->base.port + offset);
391 }
392
393 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
394 {
395         struct device __maybe_unused *bdev = bp->bus_dev;
396         int dfx_bus_tc = DFX_BUS_TC(bdev);
397         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
398
399         if (dfx_use_mmio)
400                 dfx_readl(bp, offset, data);
401         else
402                 dfx_inl(bp, offset, data);
403 }
404
405
406 /*
407  * ================
408  * = dfx_get_bars =
409  * ================
410  *
411  * Overview:
412  *   Retrieves the address range used to access control and status
413  *   registers.
414  *
415  * Returns:
416  *   None
417  *
418  * Arguments:
419  *   bdev       - pointer to device information
420  *   bar_start  - pointer to store the start address
421  *   bar_len    - pointer to store the length of the area
422  *
423  * Assumptions:
424  *   I am sure there are some.
425  *
426  * Side Effects:
427  *   None
428  */
429 static void dfx_get_bars(struct device *bdev,
430                          resource_size_t *bar_start, resource_size_t *bar_len)
431 {
432         int dfx_bus_pci = dev_is_pci(bdev);
433         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
434         int dfx_bus_tc = DFX_BUS_TC(bdev);
435         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
436
437         if (dfx_bus_pci) {
438                 int num = dfx_use_mmio ? 0 : 1;
439
440                 *bar_start = pci_resource_start(to_pci_dev(bdev), num);
441                 *bar_len = pci_resource_len(to_pci_dev(bdev), num);
442         }
443         if (dfx_bus_eisa) {
444                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
445                 resource_size_t bar;
446
447                 if (dfx_use_mmio) {
448                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2);
449                         bar <<= 8;
450                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1);
451                         bar <<= 8;
452                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0);
453                         bar <<= 16;
454                         *bar_start = bar;
455                         bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2);
456                         bar <<= 8;
457                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1);
458                         bar <<= 8;
459                         bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0);
460                         bar <<= 16;
461                         *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1;
462                 } else {
463                         *bar_start = base_addr;
464                         *bar_len = PI_ESIC_K_CSR_IO_LEN;
465                 }
466         }
467         if (dfx_bus_tc) {
468                 *bar_start = to_tc_dev(bdev)->resource.start +
469                              PI_TC_K_CSR_OFFSET;
470                 *bar_len = PI_TC_K_CSR_LEN;
471         }
472 }
473
474 static const struct net_device_ops dfx_netdev_ops = {
475         .ndo_open               = dfx_open,
476         .ndo_stop               = dfx_close,
477         .ndo_start_xmit         = dfx_xmt_queue_pkt,
478         .ndo_get_stats          = dfx_ctl_get_stats,
479         .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
480         .ndo_set_mac_address    = dfx_ctl_set_mac_address,
481 };
482
483 /*
484  * ================
485  * = dfx_register =
486  * ================
487  *
488  * Overview:
489  *   Initializes a supported FDDI controller
490  *
491  * Returns:
492  *   Condition code
493  *
494  * Arguments:
495  *   bdev - pointer to device information
496  *
497  * Functional Description:
498  *
499  * Return Codes:
500  *   0           - This device (fddi0, fddi1, etc) configured successfully
501  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
502  *
503  * Assumptions:
504  *   It compiles so it should work :-( (PCI cards do :-)
505  *
506  * Side Effects:
507  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
508  *   initialized and the board resources are read and stored in
509  *   the device structure.
510  */
511 static int dfx_register(struct device *bdev)
512 {
513         static int version_disp;
514         int dfx_bus_pci = dev_is_pci(bdev);
515         int dfx_bus_tc = DFX_BUS_TC(bdev);
516         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
517         const char *print_name = dev_name(bdev);
518         struct net_device *dev;
519         DFX_board_t       *bp;                  /* board pointer */
520         resource_size_t bar_start = 0;          /* pointer to port */
521         resource_size_t bar_len = 0;            /* resource length */
522         int alloc_size;                         /* total buffer size used */
523         struct resource *region;
524         int err = 0;
525
526         if (!version_disp) {    /* display version info if adapter is found */
527                 version_disp = 1;       /* set display flag to TRUE so that */
528                 printk(version);        /* we only display this string ONCE */
529         }
530
531         dev = alloc_fddidev(sizeof(*bp));
532         if (!dev) {
533                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
534                        print_name);
535                 return -ENOMEM;
536         }
537
538         /* Enable PCI device. */
539         if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) {
540                 printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n",
541                        print_name);
542                 goto err_out;
543         }
544
545         SET_NETDEV_DEV(dev, bdev);
546
547         bp = netdev_priv(dev);
548         bp->bus_dev = bdev;
549         dev_set_drvdata(bdev, dev);
550
551         dfx_get_bars(bdev, &bar_start, &bar_len);
552
553         if (dfx_use_mmio)
554                 region = request_mem_region(bar_start, bar_len, print_name);
555         else
556                 region = request_region(bar_start, bar_len, print_name);
557         if (!region) {
558                 printk(KERN_ERR "%s: Cannot reserve I/O resource "
559                        "0x%lx @ 0x%lx, aborting\n",
560                        print_name, (long)bar_len, (long)bar_start);
561                 err = -EBUSY;
562                 goto err_out_disable;
563         }
564
565         /* Set up I/O base address. */
566         if (dfx_use_mmio) {
567                 bp->base.mem = ioremap_nocache(bar_start, bar_len);
568                 if (!bp->base.mem) {
569                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
570                         err = -ENOMEM;
571                         goto err_out_region;
572                 }
573         } else {
574                 bp->base.port = bar_start;
575                 dev->base_addr = bar_start;
576         }
577
578         /* Initialize new device structure */
579         dev->netdev_ops                 = &dfx_netdev_ops;
580
581         if (dfx_bus_pci)
582                 pci_set_master(to_pci_dev(bdev));
583
584         if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) {
585                 err = -ENODEV;
586                 goto err_out_unmap;
587         }
588
589         err = register_netdev(dev);
590         if (err)
591                 goto err_out_kfree;
592
593         printk("%s: registered as %s\n", print_name, dev->name);
594         return 0;
595
596 err_out_kfree:
597         alloc_size = sizeof(PI_DESCR_BLOCK) +
598                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
599 #ifndef DYNAMIC_BUFFERS
600                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
601 #endif
602                      sizeof(PI_CONSUMER_BLOCK) +
603                      (PI_ALIGN_K_DESC_BLK - 1);
604         if (bp->kmalloced)
605                 dma_free_coherent(bdev, alloc_size,
606                                   bp->kmalloced, bp->kmalloced_dma);
607
608 err_out_unmap:
609         if (dfx_use_mmio)
610                 iounmap(bp->base.mem);
611
612 err_out_region:
613         if (dfx_use_mmio)
614                 release_mem_region(bar_start, bar_len);
615         else
616                 release_region(bar_start, bar_len);
617
618 err_out_disable:
619         if (dfx_bus_pci)
620                 pci_disable_device(to_pci_dev(bdev));
621
622 err_out:
623         free_netdev(dev);
624         return err;
625 }
626
627
628 /*
629  * ================
630  * = dfx_bus_init =
631  * ================
632  *
633  * Overview:
634  *   Initializes the bus-specific controller logic.
635  *
636  * Returns:
637  *   None
638  *
639  * Arguments:
640  *   dev - pointer to device information
641  *
642  * Functional Description:
643  *   Determine and save adapter IRQ in device table,
644  *   then perform bus-specific logic initialization.
645  *
646  * Return Codes:
647  *   None
648  *
649  * Assumptions:
650  *   bp->base has already been set with the proper
651  *       base I/O address for this device.
652  *
653  * Side Effects:
654  *   Interrupts are enabled at the adapter bus-specific logic.
655  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
656  *   enabled yet.
657  */
658
659 static void dfx_bus_init(struct net_device *dev)
660 {
661         DFX_board_t *bp = netdev_priv(dev);
662         struct device *bdev = bp->bus_dev;
663         int dfx_bus_pci = dev_is_pci(bdev);
664         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
665         int dfx_bus_tc = DFX_BUS_TC(bdev);
666         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
667         u8 val;
668
669         DBG_printk("In dfx_bus_init...\n");
670
671         /* Initialize a pointer back to the net_device struct */
672         bp->dev = dev;
673
674         /* Initialize adapter based on bus type */
675
676         if (dfx_bus_tc)
677                 dev->irq = to_tc_dev(bdev)->interrupt;
678         if (dfx_bus_eisa) {
679                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
680
681                 /* Get the interrupt level from the ESIC chip.  */
682                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
683                 val &= PI_CONFIG_STAT_0_M_IRQ;
684                 val >>= PI_CONFIG_STAT_0_V_IRQ;
685
686                 switch (val) {
687                 case PI_CONFIG_STAT_0_IRQ_K_9:
688                         dev->irq = 9;
689                         break;
690
691                 case PI_CONFIG_STAT_0_IRQ_K_10:
692                         dev->irq = 10;
693                         break;
694
695                 case PI_CONFIG_STAT_0_IRQ_K_11:
696                         dev->irq = 11;
697                         break;
698
699                 case PI_CONFIG_STAT_0_IRQ_K_15:
700                         dev->irq = 15;
701                         break;
702                 }
703
704                 /*
705                  * Enable memory decoding (MEMCS0) and/or port decoding
706                  * (IOCS1/IOCS0) as appropriate in Function Control
707                  * Register.  One of the port chip selects seems to be
708                  * used for the Burst Holdoff register, but this bit of
709                  * documentation is missing and as yet it has not been
710                  * determined which of the two.  This is also the reason
711                  * the size of the decoded port range is twice as large
712                  * as one required by the PDQ.
713                  */
714
715                 /* Set the decode range of the board.  */
716                 val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT);
717                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val);
718                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0);
719                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val);
720                 outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0);
721                 val = PI_ESIC_K_CSR_IO_LEN - 1;
722                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff);
723                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff);
724                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff);
725                 outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff);
726
727                 /* Enable the decoders.  */
728                 val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0;
729                 if (dfx_use_mmio)
730                         val |= PI_FUNCTION_CNTRL_M_MEMCS0;
731                 outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val);
732
733                 /*
734                  * Enable access to the rest of the module
735                  * (including PDQ and packet memory).
736                  */
737                 val = PI_SLOT_CNTRL_M_ENB;
738                 outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val);
739
740                 /*
741                  * Map PDQ registers into memory or port space.  This is
742                  * done with a bit in the Burst Holdoff register.
743                  */
744                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
745                 if (dfx_use_mmio)
746                         val |= PI_BURST_HOLDOFF_V_MEM_MAP;
747                 else
748                         val &= ~PI_BURST_HOLDOFF_V_MEM_MAP;
749                 outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val);
750
751                 /* Enable interrupts at EISA bus interface chip (ESIC) */
752                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
753                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
754                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
755         }
756         if (dfx_bus_pci) {
757                 struct pci_dev *pdev = to_pci_dev(bdev);
758
759                 /* Get the interrupt level from the PCI Configuration Table */
760
761                 dev->irq = pdev->irq;
762
763                 /* Check Latency Timer and set if less than minimal */
764
765                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
766                 if (val < PFI_K_LAT_TIMER_MIN) {
767                         val = PFI_K_LAT_TIMER_DEF;
768                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
769                 }
770
771                 /* Enable interrupts at PCI bus interface chip (PFI) */
772                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
773                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
774         }
775 }
776
777 /*
778  * ==================
779  * = dfx_bus_uninit =
780  * ==================
781  *
782  * Overview:
783  *   Uninitializes the bus-specific controller logic.
784  *
785  * Returns:
786  *   None
787  *
788  * Arguments:
789  *   dev - pointer to device information
790  *
791  * Functional Description:
792  *   Perform bus-specific logic uninitialization.
793  *
794  * Return Codes:
795  *   None
796  *
797  * Assumptions:
798  *   bp->base has already been set with the proper
799  *       base I/O address for this device.
800  *
801  * Side Effects:
802  *   Interrupts are disabled at the adapter bus-specific logic.
803  */
804
805 static void dfx_bus_uninit(struct net_device *dev)
806 {
807         DFX_board_t *bp = netdev_priv(dev);
808         struct device *bdev = bp->bus_dev;
809         int dfx_bus_pci = dev_is_pci(bdev);
810         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
811         u8 val;
812
813         DBG_printk("In dfx_bus_uninit...\n");
814
815         /* Uninitialize adapter based on bus type */
816
817         if (dfx_bus_eisa) {
818                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
819
820                 /* Disable interrupts at EISA bus interface chip (ESIC) */
821                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
822                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
823                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val);
824         }
825         if (dfx_bus_pci) {
826                 /* Disable interrupts at PCI bus interface chip (PFI) */
827                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
828         }
829 }
830
831
832 /*
833  * ========================
834  * = dfx_bus_config_check =
835  * ========================
836  *
837  * Overview:
838  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
839  *   are illegal, then this routine will set new defaults.
840  *
841  * Returns:
842  *   None
843  *
844  * Arguments:
845  *   bp - pointer to board information
846  *
847  * Functional Description:
848  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
849  *   PDQ, and all FDDI PCI controllers, all values are legal.
850  *
851  * Return Codes:
852  *   None
853  *
854  * Assumptions:
855  *   dfx_adap_init has NOT been called yet so burst size and other items have
856  *   not been set.
857  *
858  * Side Effects:
859  *   None
860  */
861
862 static void dfx_bus_config_check(DFX_board_t *bp)
863 {
864         struct device __maybe_unused *bdev = bp->bus_dev;
865         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
866         int     status;                         /* return code from adapter port control call */
867         u32     host_data;                      /* LW data returned from port control call */
868
869         DBG_printk("In dfx_bus_config_check...\n");
870
871         /* Configuration check only valid for EISA adapter */
872
873         if (dfx_bus_eisa) {
874                 /*
875                  * First check if revision 2 EISA controller.  Rev. 1 cards used
876                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
877                  * cards used PDQ revision E, so no workaround needed in this
878                  * case, either.  Only Rev. 2 cards used either Rev. D or E
879                  * chips, so we must verify the chip revision on Rev. 2 cards.
880                  */
881                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
882                         /*
883                          * Revision 2 FDDI EISA controller found,
884                          * so let's check PDQ revision of adapter.
885                          */
886                         status = dfx_hw_port_ctrl_req(bp,
887                                                                                         PI_PCTRL_M_SUB_CMD,
888                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
889                                                                                         0,
890                                                                                         &host_data);
891                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
892                                 {
893                                 /*
894                                  * Either we couldn't determine the PDQ revision, or
895                                  * we determined that it is at revision D.  In either case,
896                                  * we need to implement the workaround.
897                                  */
898
899                                 /* Ensure that the burst size is set to 8 longwords or less */
900
901                                 switch (bp->burst_size)
902                                         {
903                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
904                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
905                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
906                                                 break;
907
908                                         default:
909                                                 break;
910                                         }
911
912                                 /* Ensure that full-duplex mode is not enabled */
913
914                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
915                                 }
916                         }
917                 }
918         }
919
920
921 /*
922  * ===================
923  * = dfx_driver_init =
924  * ===================
925  *
926  * Overview:
927  *   Initializes remaining adapter board structure information
928  *   and makes sure adapter is in a safe state prior to dfx_open().
929  *
930  * Returns:
931  *   Condition code
932  *
933  * Arguments:
934  *   dev - pointer to device information
935  *   print_name - printable device name
936  *
937  * Functional Description:
938  *   This function allocates additional resources such as the host memory
939  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
940  *       Remaining bus initialization steps are also completed.  The adapter
941  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
942  *   must call dfx_open() to open the adapter and bring it on-line.
943  *
944  * Return Codes:
945  *   DFX_K_SUCCESS      - initialization succeeded
946  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
947  *                                              or read adapter MAC address
948  *
949  * Assumptions:
950  *   Memory allocated from pci_alloc_consistent() call is physically
951  *   contiguous, locked memory.
952  *
953  * Side Effects:
954  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
955  *   returning from this routine.
956  */
957
958 static int dfx_driver_init(struct net_device *dev, const char *print_name,
959                            resource_size_t bar_start)
960 {
961         DFX_board_t *bp = netdev_priv(dev);
962         struct device *bdev = bp->bus_dev;
963         int dfx_bus_pci = dev_is_pci(bdev);
964         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
965         int dfx_bus_tc = DFX_BUS_TC(bdev);
966         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
967         int alloc_size;                 /* total buffer size needed */
968         char *top_v, *curr_v;           /* virtual addrs into memory block */
969         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
970         u32 data;                       /* host data register value */
971         __le32 le32;
972         char *board_name = NULL;
973
974         DBG_printk("In dfx_driver_init...\n");
975
976         /* Initialize bus-specific hardware registers */
977
978         dfx_bus_init(dev);
979
980         /*
981          * Initialize default values for configurable parameters
982          *
983          * Note: All of these parameters are ones that a user may
984          *       want to customize.  It'd be nice to break these
985          *               out into Space.c or someplace else that's more
986          *               accessible/understandable than this file.
987          */
988
989         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
990         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
991         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
992         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
993
994         /*
995          * Ensure that HW configuration is OK
996          *
997          * Note: Depending on the hardware revision, we may need to modify
998          *       some of the configurable parameters to workaround hardware
999          *       limitations.  We'll perform this configuration check AFTER
1000          *       setting the parameters to their default values.
1001          */
1002
1003         dfx_bus_config_check(bp);
1004
1005         /* Disable PDQ interrupts first */
1006
1007         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1008
1009         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1010
1011         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1012
1013         /*  Read the factory MAC address from the adapter then save it */
1014
1015         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1016                                  &data) != DFX_K_SUCCESS) {
1017                 printk("%s: Could not read adapter factory MAC address!\n",
1018                        print_name);
1019                 return DFX_K_FAILURE;
1020         }
1021         le32 = cpu_to_le32(data);
1022         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1023
1024         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1025                                  &data) != DFX_K_SUCCESS) {
1026                 printk("%s: Could not read adapter factory MAC address!\n",
1027                        print_name);
1028                 return DFX_K_FAILURE;
1029         }
1030         le32 = cpu_to_le32(data);
1031         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1032
1033         /*
1034          * Set current address to factory address
1035          *
1036          * Note: Node address override support is handled through
1037          *       dfx_ctl_set_mac_address.
1038          */
1039
1040         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1041         if (dfx_bus_tc)
1042                 board_name = "DEFTA";
1043         if (dfx_bus_eisa)
1044                 board_name = "DEFEA";
1045         if (dfx_bus_pci)
1046                 board_name = "DEFPA";
1047         pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1048                 print_name, board_name, dfx_use_mmio ? "" : "I/O ",
1049                 (long long)bar_start, dev->irq, dev->dev_addr);
1050
1051         /*
1052          * Get memory for descriptor block, consumer block, and other buffers
1053          * that need to be DMA read or written to by the adapter.
1054          */
1055
1056         alloc_size = sizeof(PI_DESCR_BLOCK) +
1057                                         PI_CMD_REQ_K_SIZE_MAX +
1058                                         PI_CMD_RSP_K_SIZE_MAX +
1059 #ifndef DYNAMIC_BUFFERS
1060                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1061 #endif
1062                                         sizeof(PI_CONSUMER_BLOCK) +
1063                                         (PI_ALIGN_K_DESC_BLK - 1);
1064         bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1065                                                     &bp->kmalloced_dma,
1066                                                     GFP_ATOMIC);
1067         if (top_v == NULL)
1068                 return DFX_K_FAILURE;
1069
1070         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1071
1072         /*
1073          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1074          *  plus the amount of memory needed was allocated.  The physical address
1075          *      is now 8K aligned.  By carving up the memory in a specific order,
1076          *  we'll guarantee the alignment requirements for all other structures.
1077          *
1078          *  Note: If the assumptions change regarding the non-paged, non-cached,
1079          *                physically contiguous nature of the memory block or the address
1080          *                alignments, then we'll need to implement a different algorithm
1081          *                for allocating the needed memory.
1082          */
1083
1084         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1085         curr_v = top_v + (curr_p - top_p);
1086
1087         /* Reserve space for descriptor block */
1088
1089         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1090         bp->descr_block_phys = curr_p;
1091         curr_v += sizeof(PI_DESCR_BLOCK);
1092         curr_p += sizeof(PI_DESCR_BLOCK);
1093
1094         /* Reserve space for command request buffer */
1095
1096         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1097         bp->cmd_req_phys = curr_p;
1098         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1099         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1100
1101         /* Reserve space for command response buffer */
1102
1103         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1104         bp->cmd_rsp_phys = curr_p;
1105         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1106         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1107
1108         /* Reserve space for the LLC host receive queue buffers */
1109
1110         bp->rcv_block_virt = curr_v;
1111         bp->rcv_block_phys = curr_p;
1112
1113 #ifndef DYNAMIC_BUFFERS
1114         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1115         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1116 #endif
1117
1118         /* Reserve space for the consumer block */
1119
1120         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1121         bp->cons_block_phys = curr_p;
1122
1123         /* Display virtual and physical addresses if debug driver */
1124
1125         DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n",
1126                    print_name,
1127                    (long)bp->descr_block_virt, bp->descr_block_phys);
1128         DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n",
1129                    print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
1130         DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n",
1131                    print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
1132         DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n",
1133                    print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
1134         DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n",
1135                    print_name, (long)bp->cons_block_virt, bp->cons_block_phys);
1136
1137         return DFX_K_SUCCESS;
1138 }
1139
1140
1141 /*
1142  * =================
1143  * = dfx_adap_init =
1144  * =================
1145  *
1146  * Overview:
1147  *   Brings the adapter to the link avail/link unavailable state.
1148  *
1149  * Returns:
1150  *   Condition code
1151  *
1152  * Arguments:
1153  *   bp - pointer to board information
1154  *   get_buffers - non-zero if buffers to be allocated
1155  *
1156  * Functional Description:
1157  *   Issues the low-level firmware/hardware calls necessary to bring
1158  *   the adapter up, or to properly reset and restore adapter during
1159  *   run-time.
1160  *
1161  * Return Codes:
1162  *   DFX_K_SUCCESS - Adapter brought up successfully
1163  *   DFX_K_FAILURE - Adapter initialization failed
1164  *
1165  * Assumptions:
1166  *   bp->reset_type should be set to a valid reset type value before
1167  *   calling this routine.
1168  *
1169  * Side Effects:
1170  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1171  *   upon a successful return of this routine.
1172  */
1173
1174 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1175         {
1176         DBG_printk("In dfx_adap_init...\n");
1177
1178         /* Disable PDQ interrupts first */
1179
1180         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1181
1182         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1183
1184         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1185                 {
1186                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1187                 return DFX_K_FAILURE;
1188                 }
1189
1190         /*
1191          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1192          * so we'll acknowledge all Type 0 interrupts now before continuing.
1193          */
1194
1195         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1196
1197         /*
1198          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1199          *
1200          * Note: We only need to clear host copies of these registers.  The PDQ reset
1201          *       takes care of the on-board register values.
1202          */
1203
1204         bp->cmd_req_reg.lword   = 0;
1205         bp->cmd_rsp_reg.lword   = 0;
1206         bp->rcv_xmt_reg.lword   = 0;
1207
1208         /* Clear consumer block before going to DMA_AVAILABLE state */
1209
1210         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1211
1212         /* Initialize the DMA Burst Size */
1213
1214         if (dfx_hw_port_ctrl_req(bp,
1215                                                         PI_PCTRL_M_SUB_CMD,
1216                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1217                                                         bp->burst_size,
1218                                                         NULL) != DFX_K_SUCCESS)
1219                 {
1220                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1221                 return DFX_K_FAILURE;
1222                 }
1223
1224         /*
1225          * Set base address of Consumer Block
1226          *
1227          * Assumption: 32-bit physical address of consumer block is 64 byte
1228          *                         aligned.  That is, bits 0-5 of the address must be zero.
1229          */
1230
1231         if (dfx_hw_port_ctrl_req(bp,
1232                                                         PI_PCTRL_M_CONS_BLOCK,
1233                                                         bp->cons_block_phys,
1234                                                         0,
1235                                                         NULL) != DFX_K_SUCCESS)
1236                 {
1237                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1238                 return DFX_K_FAILURE;
1239                 }
1240
1241         /*
1242          * Set the base address of Descriptor Block and bring adapter
1243          * to DMA_AVAILABLE state.
1244          *
1245          * Note: We also set the literal and data swapping requirements
1246          *       in this command.
1247          *
1248          * Assumption: 32-bit physical address of descriptor block
1249          *       is 8Kbyte aligned.
1250          */
1251         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1252                                  (u32)(bp->descr_block_phys |
1253                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1254                                  0, NULL) != DFX_K_SUCCESS) {
1255                 printk("%s: Could not set descriptor block address!\n",
1256                        bp->dev->name);
1257                 return DFX_K_FAILURE;
1258         }
1259
1260         /* Set transmit flush timeout value */
1261
1262         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1263         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1264         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1265         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1266         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1267         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1268                 {
1269                 printk("%s: DMA command request failed!\n", bp->dev->name);
1270                 return DFX_K_FAILURE;
1271                 }
1272
1273         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1274
1275         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1276         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1277         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1278         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1279         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1280         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1281         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1282         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1283         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1284                 {
1285                 printk("%s: DMA command request failed!\n", bp->dev->name);
1286                 return DFX_K_FAILURE;
1287                 }
1288
1289         /* Initialize adapter CAM */
1290
1291         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1292                 {
1293                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1294                 return DFX_K_FAILURE;
1295                 }
1296
1297         /* Initialize adapter filters */
1298
1299         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1300                 {
1301                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1302                 return DFX_K_FAILURE;
1303                 }
1304
1305         /*
1306          * Remove any existing dynamic buffers (i.e. if the adapter is being
1307          * reinitialized)
1308          */
1309
1310         if (get_buffers)
1311                 dfx_rcv_flush(bp);
1312
1313         /* Initialize receive descriptor block and produce buffers */
1314
1315         if (dfx_rcv_init(bp, get_buffers))
1316                 {
1317                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1318                 if (get_buffers)
1319                         dfx_rcv_flush(bp);
1320                 return DFX_K_FAILURE;
1321                 }
1322
1323         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1324
1325         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1326         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1327                 {
1328                 printk("%s: Start command failed\n", bp->dev->name);
1329                 if (get_buffers)
1330                         dfx_rcv_flush(bp);
1331                 return DFX_K_FAILURE;
1332                 }
1333
1334         /* Initialization succeeded, reenable PDQ interrupts */
1335
1336         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1337         return DFX_K_SUCCESS;
1338         }
1339
1340
1341 /*
1342  * ============
1343  * = dfx_open =
1344  * ============
1345  *
1346  * Overview:
1347  *   Opens the adapter
1348  *
1349  * Returns:
1350  *   Condition code
1351  *
1352  * Arguments:
1353  *   dev - pointer to device information
1354  *
1355  * Functional Description:
1356  *   This function brings the adapter to an operational state.
1357  *
1358  * Return Codes:
1359  *   0           - Adapter was successfully opened
1360  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1361  *
1362  * Assumptions:
1363  *   This routine should only be called for a device that was
1364  *   initialized successfully.
1365  *
1366  * Side Effects:
1367  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1368  *   if the open is successful.
1369  */
1370
1371 static int dfx_open(struct net_device *dev)
1372 {
1373         DFX_board_t *bp = netdev_priv(dev);
1374         int ret;
1375
1376         DBG_printk("In dfx_open...\n");
1377
1378         /* Register IRQ - support shared interrupts by passing device ptr */
1379
1380         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1381                           dev);
1382         if (ret) {
1383                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1384                 return ret;
1385         }
1386
1387         /*
1388          * Set current address to factory MAC address
1389          *
1390          * Note: We've already done this step in dfx_driver_init.
1391          *       However, it's possible that a user has set a node
1392          *               address override, then closed and reopened the
1393          *               adapter.  Unless we reset the device address field
1394          *               now, we'll continue to use the existing modified
1395          *               address.
1396          */
1397
1398         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1399
1400         /* Clear local unicast/multicast address tables and counts */
1401
1402         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1403         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1404         bp->uc_count = 0;
1405         bp->mc_count = 0;
1406
1407         /* Disable promiscuous filter settings */
1408
1409         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1410         bp->group_prom          = PI_FSTATE_K_BLOCK;
1411
1412         spin_lock_init(&bp->lock);
1413
1414         /* Reset and initialize adapter */
1415
1416         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1417         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1418         {
1419                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1420                 free_irq(dev->irq, dev);
1421                 return -EAGAIN;
1422         }
1423
1424         /* Set device structure info */
1425         netif_start_queue(dev);
1426         return 0;
1427 }
1428
1429
1430 /*
1431  * =============
1432  * = dfx_close =
1433  * =============
1434  *
1435  * Overview:
1436  *   Closes the device/module.
1437  *
1438  * Returns:
1439  *   Condition code
1440  *
1441  * Arguments:
1442  *   dev - pointer to device information
1443  *
1444  * Functional Description:
1445  *   This routine closes the adapter and brings it to a safe state.
1446  *   The interrupt service routine is deregistered with the OS.
1447  *   The adapter can be opened again with another call to dfx_open().
1448  *
1449  * Return Codes:
1450  *   Always return 0.
1451  *
1452  * Assumptions:
1453  *   No further requests for this adapter are made after this routine is
1454  *   called.  dfx_open() can be called to reset and reinitialize the
1455  *   adapter.
1456  *
1457  * Side Effects:
1458  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1459  *   routine.
1460  */
1461
1462 static int dfx_close(struct net_device *dev)
1463 {
1464         DFX_board_t *bp = netdev_priv(dev);
1465
1466         DBG_printk("In dfx_close...\n");
1467
1468         /* Disable PDQ interrupts first */
1469
1470         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1471
1472         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1473
1474         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1475
1476         /*
1477          * Flush any pending transmit buffers
1478          *
1479          * Note: It's important that we flush the transmit buffers
1480          *               BEFORE we clear our copy of the Type 2 register.
1481          *               Otherwise, we'll have no idea how many buffers
1482          *               we need to free.
1483          */
1484
1485         dfx_xmt_flush(bp);
1486
1487         /*
1488          * Clear Type 1 and Type 2 registers after adapter reset
1489          *
1490          * Note: Even though we're closing the adapter, it's
1491          *       possible that an interrupt will occur after
1492          *               dfx_close is called.  Without some assurance to
1493          *               the contrary we want to make sure that we don't
1494          *               process receive and transmit LLC frames and update
1495          *               the Type 2 register with bad information.
1496          */
1497
1498         bp->cmd_req_reg.lword   = 0;
1499         bp->cmd_rsp_reg.lword   = 0;
1500         bp->rcv_xmt_reg.lword   = 0;
1501
1502         /* Clear consumer block for the same reason given above */
1503
1504         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1505
1506         /* Release all dynamically allocate skb in the receive ring. */
1507
1508         dfx_rcv_flush(bp);
1509
1510         /* Clear device structure flags */
1511
1512         netif_stop_queue(dev);
1513
1514         /* Deregister (free) IRQ */
1515
1516         free_irq(dev->irq, dev);
1517
1518         return 0;
1519 }
1520
1521
1522 /*
1523  * ======================
1524  * = dfx_int_pr_halt_id =
1525  * ======================
1526  *
1527  * Overview:
1528  *   Displays halt id's in string form.
1529  *
1530  * Returns:
1531  *   None
1532  *
1533  * Arguments:
1534  *   bp - pointer to board information
1535  *
1536  * Functional Description:
1537  *   Determine current halt id and display appropriate string.
1538  *
1539  * Return Codes:
1540  *   None
1541  *
1542  * Assumptions:
1543  *   None
1544  *
1545  * Side Effects:
1546  *   None
1547  */
1548
1549 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1550         {
1551         PI_UINT32       port_status;                    /* PDQ port status register value */
1552         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1553
1554         /* Read the latest port status */
1555
1556         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1557
1558         /* Display halt state transition information */
1559
1560         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1561         switch (halt_id)
1562                 {
1563                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1564                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1565                         break;
1566
1567                 case PI_HALT_ID_K_PARITY_ERROR:
1568                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1569                         break;
1570
1571                 case PI_HALT_ID_K_HOST_DIR_HALT:
1572                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1573                         break;
1574
1575                 case PI_HALT_ID_K_SW_FAULT:
1576                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1577                         break;
1578
1579                 case PI_HALT_ID_K_HW_FAULT:
1580                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1581                         break;
1582
1583                 case PI_HALT_ID_K_PC_TRACE:
1584                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1585                         break;
1586
1587                 case PI_HALT_ID_K_DMA_ERROR:
1588                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1589                         break;
1590
1591                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1592                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1593                         break;
1594
1595                 case PI_HALT_ID_K_BUS_EXCEPTION:
1596                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1597                         break;
1598
1599                 default:
1600                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1601                         break;
1602                 }
1603         }
1604
1605
1606 /*
1607  * ==========================
1608  * = dfx_int_type_0_process =
1609  * ==========================
1610  *
1611  * Overview:
1612  *   Processes Type 0 interrupts.
1613  *
1614  * Returns:
1615  *   None
1616  *
1617  * Arguments:
1618  *   bp - pointer to board information
1619  *
1620  * Functional Description:
1621  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1622  *   is a serious fault on the adapter, then an error message is displayed
1623  *   and the adapter is reset.
1624  *
1625  *   One tricky potential timing window is the rapid succession of "link avail"
1626  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1627  *   interrupt must be done before reading the state from the Port Status
1628  *   register.  This is true because a state change could occur after reading
1629  *   the data, but before acknowledging the interrupt.  If this state change
1630  *   does happen, it would be lost because the driver is using the old state,
1631  *   and it will never know about the new state because it subsequently
1632  *   acknowledges the state change interrupt.
1633  *
1634  *          INCORRECT                                      CORRECT
1635  *      read type 0 int reasons                   read type 0 int reasons
1636  *      read adapter state                        ack type 0 interrupts
1637  *      ack type 0 interrupts                     read adapter state
1638  *      ... process interrupt ...                 ... process interrupt ...
1639  *
1640  * Return Codes:
1641  *   None
1642  *
1643  * Assumptions:
1644  *   None
1645  *
1646  * Side Effects:
1647  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1648  *   or if the port status indicates that the adapter is halted.  The driver
1649  *   is responsible for reinitializing the adapter with the current CAM
1650  *   contents and adapter filter settings.
1651  */
1652
1653 static void dfx_int_type_0_process(DFX_board_t  *bp)
1654
1655         {
1656         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1657         PI_UINT32       state;                          /* current adap state (from port status) */
1658
1659         /*
1660          * Read host interrupt Type 0 register to determine which Type 0
1661          * interrupts are pending.  Immediately write it back out to clear
1662          * those interrupts.
1663          */
1664
1665         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1666         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1667
1668         /* Check for Type 0 error interrupts */
1669
1670         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1671                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1672                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1673                 {
1674                 /* Check for Non-Existent Memory error */
1675
1676                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1677                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1678
1679                 /* Check for Packet Memory Parity error */
1680
1681                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1682                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1683
1684                 /* Check for Host Bus Parity error */
1685
1686                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1687                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1688
1689                 /* Reset adapter and bring it back on-line */
1690
1691                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1692                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1693                 printk("%s: Resetting adapter...\n", bp->dev->name);
1694                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1695                         {
1696                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1697                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1698                         return;
1699                         }
1700                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1701                 return;
1702                 }
1703
1704         /* Check for transmit flush interrupt */
1705
1706         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1707                 {
1708                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1709
1710                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1711                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1712                 (void) dfx_hw_port_ctrl_req(bp,
1713                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1714                                                                         0,
1715                                                                         0,
1716                                                                         NULL);
1717                 }
1718
1719         /* Check for adapter state change */
1720
1721         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1722                 {
1723                 /* Get latest adapter state */
1724
1725                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1726                 if (state == PI_STATE_K_HALTED)
1727                         {
1728                         /*
1729                          * Adapter has transitioned to HALTED state, try to reset
1730                          * adapter to bring it back on-line.  If reset fails,
1731                          * leave the adapter in the broken state.
1732                          */
1733
1734                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1735                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1736
1737                         /* Reset adapter and bring it back on-line */
1738
1739                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1740                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1741                         printk("%s: Resetting adapter...\n", bp->dev->name);
1742                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1743                                 {
1744                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1745                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1746                                 return;
1747                                 }
1748                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1749                         }
1750                 else if (state == PI_STATE_K_LINK_AVAIL)
1751                         {
1752                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1753                         }
1754                 }
1755         }
1756
1757
1758 /*
1759  * ==================
1760  * = dfx_int_common =
1761  * ==================
1762  *
1763  * Overview:
1764  *   Interrupt service routine (ISR)
1765  *
1766  * Returns:
1767  *   None
1768  *
1769  * Arguments:
1770  *   bp - pointer to board information
1771  *
1772  * Functional Description:
1773  *   This is the ISR which processes incoming adapter interrupts.
1774  *
1775  * Return Codes:
1776  *   None
1777  *
1778  * Assumptions:
1779  *   This routine assumes PDQ interrupts have not been disabled.
1780  *   When interrupts are disabled at the PDQ, the Port Status register
1781  *   is automatically cleared.  This routine uses the Port Status
1782  *   register value to determine whether a Type 0 interrupt occurred,
1783  *   so it's important that adapter interrupts are not normally
1784  *   enabled/disabled at the PDQ.
1785  *
1786  *   It's vital that this routine is NOT reentered for the
1787  *   same board and that the OS is not in another section of
1788  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1789  *   different thread.
1790  *
1791  * Side Effects:
1792  *   Pending interrupts are serviced.  Depending on the type of
1793  *   interrupt, acknowledging and clearing the interrupt at the
1794  *   PDQ involves writing a register to clear the interrupt bit
1795  *   or updating completion indices.
1796  */
1797
1798 static void dfx_int_common(struct net_device *dev)
1799 {
1800         DFX_board_t *bp = netdev_priv(dev);
1801         PI_UINT32       port_status;            /* Port Status register */
1802
1803         /* Process xmt interrupts - frequent case, so always call this routine */
1804
1805         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1806                 netif_wake_queue(dev);
1807
1808         /* Process rcv interrupts - frequent case, so always call this routine */
1809
1810         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1811
1812         /*
1813          * Transmit and receive producer and completion indices are updated on the
1814          * adapter by writing to the Type 2 Producer register.  Since the frequent
1815          * case is that we'll be processing either LLC transmit or receive buffers,
1816          * we'll optimize I/O writes by doing a single register write here.
1817          */
1818
1819         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1820
1821         /* Read PDQ Port Status register to find out which interrupts need processing */
1822
1823         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1824
1825         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1826
1827         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1828                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1829         }
1830
1831
1832 /*
1833  * =================
1834  * = dfx_interrupt =
1835  * =================
1836  *
1837  * Overview:
1838  *   Interrupt processing routine
1839  *
1840  * Returns:
1841  *   Whether a valid interrupt was seen.
1842  *
1843  * Arguments:
1844  *   irq        - interrupt vector
1845  *   dev_id     - pointer to device information
1846  *
1847  * Functional Description:
1848  *   This routine calls the interrupt processing routine for this adapter.  It
1849  *   disables and reenables adapter interrupts, as appropriate.  We can support
1850  *   shared interrupts since the incoming dev_id pointer provides our device
1851  *   structure context.
1852  *
1853  * Return Codes:
1854  *   IRQ_HANDLED - an IRQ was handled.
1855  *   IRQ_NONE    - no IRQ was handled.
1856  *
1857  * Assumptions:
1858  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1859  *   on Intel-based systems) is done by the operating system outside this
1860  *   routine.
1861  *
1862  *       System interrupts are enabled through this call.
1863  *
1864  * Side Effects:
1865  *   Interrupts are disabled, then reenabled at the adapter.
1866  */
1867
1868 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1869 {
1870         struct net_device *dev = dev_id;
1871         DFX_board_t *bp = netdev_priv(dev);
1872         struct device *bdev = bp->bus_dev;
1873         int dfx_bus_pci = dev_is_pci(bdev);
1874         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1875         int dfx_bus_tc = DFX_BUS_TC(bdev);
1876
1877         /* Service adapter interrupts */
1878
1879         if (dfx_bus_pci) {
1880                 u32 status;
1881
1882                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1883                 if (!(status & PFI_STATUS_M_PDQ_INT))
1884                         return IRQ_NONE;
1885
1886                 spin_lock(&bp->lock);
1887
1888                 /* Disable PDQ-PFI interrupts at PFI */
1889                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1890                                     PFI_MODE_M_DMA_ENB);
1891
1892                 /* Call interrupt service routine for this adapter */
1893                 dfx_int_common(dev);
1894
1895                 /* Clear PDQ interrupt status bit and reenable interrupts */
1896                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1897                                     PFI_STATUS_M_PDQ_INT);
1898                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1899                                     (PFI_MODE_M_PDQ_INT_ENB |
1900                                      PFI_MODE_M_DMA_ENB));
1901
1902                 spin_unlock(&bp->lock);
1903         }
1904         if (dfx_bus_eisa) {
1905                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1906                 u8 status;
1907
1908                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1909                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1910                         return IRQ_NONE;
1911
1912                 spin_lock(&bp->lock);
1913
1914                 /* Disable interrupts at the ESIC */
1915                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1916                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1917
1918                 /* Call interrupt service routine for this adapter */
1919                 dfx_int_common(dev);
1920
1921                 /* Reenable interrupts at the ESIC */
1922                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1923                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
1924                 outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status);
1925
1926                 spin_unlock(&bp->lock);
1927         }
1928         if (dfx_bus_tc) {
1929                 u32 status;
1930
1931                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
1932                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
1933                                 PI_PSTATUS_M_XMT_DATA_PENDING |
1934                                 PI_PSTATUS_M_SMT_HOST_PENDING |
1935                                 PI_PSTATUS_M_UNSOL_PENDING |
1936                                 PI_PSTATUS_M_CMD_RSP_PENDING |
1937                                 PI_PSTATUS_M_CMD_REQ_PENDING |
1938                                 PI_PSTATUS_M_TYPE_0_PENDING)))
1939                         return IRQ_NONE;
1940
1941                 spin_lock(&bp->lock);
1942
1943                 /* Call interrupt service routine for this adapter */
1944                 dfx_int_common(dev);
1945
1946                 spin_unlock(&bp->lock);
1947         }
1948
1949         return IRQ_HANDLED;
1950 }
1951
1952
1953 /*
1954  * =====================
1955  * = dfx_ctl_get_stats =
1956  * =====================
1957  *
1958  * Overview:
1959  *   Get statistics for FDDI adapter
1960  *
1961  * Returns:
1962  *   Pointer to FDDI statistics structure
1963  *
1964  * Arguments:
1965  *   dev - pointer to device information
1966  *
1967  * Functional Description:
1968  *   Gets current MIB objects from adapter, then
1969  *   returns FDDI statistics structure as defined
1970  *   in if_fddi.h.
1971  *
1972  *   Note: Since the FDDI statistics structure is
1973  *   still new and the device structure doesn't
1974  *   have an FDDI-specific get statistics handler,
1975  *   we'll return the FDDI statistics structure as
1976  *   a pointer to an Ethernet statistics structure.
1977  *   That way, at least the first part of the statistics
1978  *   structure can be decoded properly, and it allows
1979  *   "smart" applications to perform a second cast to
1980  *   decode the FDDI-specific statistics.
1981  *
1982  *   We'll have to pay attention to this routine as the
1983  *   device structure becomes more mature and LAN media
1984  *   independent.
1985  *
1986  * Return Codes:
1987  *   None
1988  *
1989  * Assumptions:
1990  *   None
1991  *
1992  * Side Effects:
1993  *   None
1994  */
1995
1996 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1997         {
1998         DFX_board_t *bp = netdev_priv(dev);
1999
2000         /* Fill the bp->stats structure with driver-maintained counters */
2001
2002         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2003         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2004         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2005         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2006         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2007                                    bp->rcv_frame_status_errors +
2008                                    bp->rcv_length_errors;
2009         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2010         bp->stats.gen.rx_dropped = bp->rcv_discards;
2011         bp->stats.gen.tx_dropped = bp->xmt_discards;
2012         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2013         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2014
2015         /* Get FDDI SMT MIB objects */
2016
2017         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2018         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2019                 return (struct net_device_stats *)&bp->stats;
2020
2021         /* Fill the bp->stats structure with the SMT MIB object values */
2022
2023         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2024         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2025         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2026         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2027         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2028         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2029         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2030         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2031         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2032         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2033         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2034         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2035         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2036         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2037         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2038         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2039         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2040         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2041         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2042         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2043         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2044         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2045         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2046         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2047         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2048         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2049         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2050         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2051         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2052         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2053         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2054         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2055         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2056         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2057         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2058         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2059         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2060         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2061         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2062         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2063         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2064         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2065         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2066         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2067         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2068         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2069         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2070         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2071         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2072         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2073         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2074         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2075         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2076         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2077         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2078         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2079         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2080         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2081         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2082         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2083         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2084         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2085         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2086         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2087         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2088         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2089         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2090         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2091         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2092         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2093         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2094         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2095         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2096         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2097         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2098         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2099         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2100         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2101         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2102         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2103         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2104         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2105         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2106         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2107         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2108         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2109         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2110         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2111         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2112         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2113         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2114         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2115
2116         /* Get FDDI counters */
2117
2118         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2119         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2120                 return (struct net_device_stats *)&bp->stats;
2121
2122         /* Fill the bp->stats structure with the FDDI counter values */
2123
2124         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2125         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2126         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2127         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2128         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2129         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2130         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2131         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2132         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2133         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2134         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2135
2136         return (struct net_device_stats *)&bp->stats;
2137         }
2138
2139
2140 /*
2141  * ==============================
2142  * = dfx_ctl_set_multicast_list =
2143  * ==============================
2144  *
2145  * Overview:
2146  *   Enable/Disable LLC frame promiscuous mode reception
2147  *   on the adapter and/or update multicast address table.
2148  *
2149  * Returns:
2150  *   None
2151  *
2152  * Arguments:
2153  *   dev - pointer to device information
2154  *
2155  * Functional Description:
2156  *   This routine follows a fairly simple algorithm for setting the
2157  *   adapter filters and CAM:
2158  *
2159  *              if IFF_PROMISC flag is set
2160  *                      enable LLC individual/group promiscuous mode
2161  *              else
2162  *                      disable LLC individual/group promiscuous mode
2163  *                      if number of incoming multicast addresses >
2164  *                                      (CAM max size - number of unicast addresses in CAM)
2165  *                              enable LLC group promiscuous mode
2166  *                              set driver-maintained multicast address count to zero
2167  *                      else
2168  *                              disable LLC group promiscuous mode
2169  *                              set driver-maintained multicast address count to incoming count
2170  *                      update adapter CAM
2171  *              update adapter filters
2172  *
2173  * Return Codes:
2174  *   None
2175  *
2176  * Assumptions:
2177  *   Multicast addresses are presented in canonical (LSB) format.
2178  *
2179  * Side Effects:
2180  *   On-board adapter CAM and filters are updated.
2181  */
2182
2183 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2184 {
2185         DFX_board_t *bp = netdev_priv(dev);
2186         int                                     i;                      /* used as index in for loop */
2187         struct netdev_hw_addr *ha;
2188
2189         /* Enable LLC frame promiscuous mode, if necessary */
2190
2191         if (dev->flags & IFF_PROMISC)
2192                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2193
2194         /* Else, update multicast address table */
2195
2196         else
2197                 {
2198                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2199                 /*
2200                  * Check whether incoming multicast address count exceeds table size
2201                  *
2202                  * Note: The adapters utilize an on-board 64 entry CAM for
2203                  *       supporting perfect filtering of multicast packets
2204                  *               and bridge functions when adding unicast addresses.
2205                  *               There is no hash function available.  To support
2206                  *               additional multicast addresses, the all multicast
2207                  *               filter (LLC group promiscuous mode) must be enabled.
2208                  *
2209                  *               The firmware reserves two CAM entries for SMT-related
2210                  *               multicast addresses, which leaves 62 entries available.
2211                  *               The following code ensures that we're not being asked
2212                  *               to add more than 62 addresses to the CAM.  If we are,
2213                  *               the driver will enable the all multicast filter.
2214                  *               Should the number of multicast addresses drop below
2215                  *               the high water mark, the filter will be disabled and
2216                  *               perfect filtering will be used.
2217                  */
2218
2219                 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2220                         {
2221                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2222                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2223                         }
2224                 else
2225                         {
2226                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2227                         bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2228                         }
2229
2230                 /* Copy addresses to multicast address table, then update adapter CAM */
2231
2232                 i = 0;
2233                 netdev_for_each_mc_addr(ha, dev)
2234                         memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2235                                ha->addr, FDDI_K_ALEN);
2236
2237                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2238                         {
2239                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2240                         }
2241                 else
2242                         {
2243                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2244                         }
2245                 }
2246
2247         /* Update adapter filters */
2248
2249         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2250                 {
2251                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2252                 }
2253         else
2254                 {
2255                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2256                 }
2257         }
2258
2259
2260 /*
2261  * ===========================
2262  * = dfx_ctl_set_mac_address =
2263  * ===========================
2264  *
2265  * Overview:
2266  *   Add node address override (unicast address) to adapter
2267  *   CAM and update dev_addr field in device table.
2268  *
2269  * Returns:
2270  *   None
2271  *
2272  * Arguments:
2273  *   dev  - pointer to device information
2274  *   addr - pointer to sockaddr structure containing unicast address to add
2275  *
2276  * Functional Description:
2277  *   The adapter supports node address overrides by adding one or more
2278  *   unicast addresses to the adapter CAM.  This is similar to adding
2279  *   multicast addresses.  In this routine we'll update the driver and
2280  *   device structures with the new address, then update the adapter CAM
2281  *   to ensure that the adapter will copy and strip frames destined and
2282  *   sourced by that address.
2283  *
2284  * Return Codes:
2285  *   Always returns zero.
2286  *
2287  * Assumptions:
2288  *   The address pointed to by addr->sa_data is a valid unicast
2289  *   address and is presented in canonical (LSB) format.
2290  *
2291  * Side Effects:
2292  *   On-board adapter CAM is updated.  On-board adapter filters
2293  *   may be updated.
2294  */
2295
2296 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2297         {
2298         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2299         DFX_board_t *bp = netdev_priv(dev);
2300
2301         /* Copy unicast address to driver-maintained structs and update count */
2302
2303         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2304         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2305         bp->uc_count = 1;
2306
2307         /*
2308          * Verify we're not exceeding the CAM size by adding unicast address
2309          *
2310          * Note: It's possible that before entering this routine we've
2311          *       already filled the CAM with 62 multicast addresses.
2312          *               Since we need to place the node address override into
2313          *               the CAM, we have to check to see that we're not
2314          *               exceeding the CAM size.  If we are, we have to enable
2315          *               the LLC group (multicast) promiscuous mode filter as
2316          *               in dfx_ctl_set_multicast_list.
2317          */
2318
2319         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2320                 {
2321                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2322                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2323
2324                 /* Update adapter filters */
2325
2326                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327                         {
2328                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329                         }
2330                 else
2331                         {
2332                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333                         }
2334                 }
2335
2336         /* Update adapter CAM with new unicast address */
2337
2338         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2339                 {
2340                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2341                 }
2342         else
2343                 {
2344                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2345                 }
2346         return 0;                       /* always return zero */
2347         }
2348
2349
2350 /*
2351  * ======================
2352  * = dfx_ctl_update_cam =
2353  * ======================
2354  *
2355  * Overview:
2356  *   Procedure to update adapter CAM (Content Addressable Memory)
2357  *   with desired unicast and multicast address entries.
2358  *
2359  * Returns:
2360  *   Condition code
2361  *
2362  * Arguments:
2363  *   bp - pointer to board information
2364  *
2365  * Functional Description:
2366  *   Updates adapter CAM with current contents of board structure
2367  *   unicast and multicast address tables.  Since there are only 62
2368  *   free entries in CAM, this routine ensures that the command
2369  *   request buffer is not overrun.
2370  *
2371  * Return Codes:
2372  *   DFX_K_SUCCESS - Request succeeded
2373  *   DFX_K_FAILURE - Request failed
2374  *
2375  * Assumptions:
2376  *   All addresses being added (unicast and multicast) are in canonical
2377  *   order.
2378  *
2379  * Side Effects:
2380  *   On-board adapter CAM is updated.
2381  */
2382
2383 static int dfx_ctl_update_cam(DFX_board_t *bp)
2384         {
2385         int                     i;                              /* used as index */
2386         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2387
2388         /*
2389          * Fill in command request information
2390          *
2391          * Note: Even though both the unicast and multicast address
2392          *       table entries are stored as contiguous 6 byte entries,
2393          *               the firmware address filter set command expects each
2394          *               entry to be two longwords (8 bytes total).  We must be
2395          *               careful to only copy the six bytes of each unicast and
2396          *               multicast table entry into each command entry.  This
2397          *               is also why we must first clear the entire command
2398          *               request buffer.
2399          */
2400
2401         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2402         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2403         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2404
2405         /* Now add unicast addresses to command request buffer, if any */
2406
2407         for (i=0; i < (int)bp->uc_count; i++)
2408                 {
2409                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2410                         {
2411                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2412                         p_addr++;                       /* point to next command entry */
2413                         }
2414                 }
2415
2416         /* Now add multicast addresses to command request buffer, if any */
2417
2418         for (i=0; i < (int)bp->mc_count; i++)
2419                 {
2420                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2421                         {
2422                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2423                         p_addr++;                       /* point to next command entry */
2424                         }
2425                 }
2426
2427         /* Issue command to update adapter CAM, then return */
2428
2429         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2430                 return DFX_K_FAILURE;
2431         return DFX_K_SUCCESS;
2432         }
2433
2434
2435 /*
2436  * ==========================
2437  * = dfx_ctl_update_filters =
2438  * ==========================
2439  *
2440  * Overview:
2441  *   Procedure to update adapter filters with desired
2442  *   filter settings.
2443  *
2444  * Returns:
2445  *   Condition code
2446  *
2447  * Arguments:
2448  *   bp - pointer to board information
2449  *
2450  * Functional Description:
2451  *   Enables or disables filter using current filter settings.
2452  *
2453  * Return Codes:
2454  *   DFX_K_SUCCESS - Request succeeded.
2455  *   DFX_K_FAILURE - Request failed.
2456  *
2457  * Assumptions:
2458  *   We must always pass up packets destined to the broadcast
2459  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2460  *   broadcast filter enabled.
2461  *
2462  * Side Effects:
2463  *   On-board adapter filters are updated.
2464  */
2465
2466 static int dfx_ctl_update_filters(DFX_board_t *bp)
2467         {
2468         int     i = 0;                                  /* used as index */
2469
2470         /* Fill in command request information */
2471
2472         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2473
2474         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2475
2476         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2477         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2478
2479         /* Initialize LLC Individual/Group Promiscuous filter */
2480
2481         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2482         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2483
2484         /* Initialize LLC Group Promiscuous filter */
2485
2486         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2487         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2488
2489         /* Terminate the item code list */
2490
2491         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2492
2493         /* Issue command to update adapter filters, then return */
2494
2495         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2496                 return DFX_K_FAILURE;
2497         return DFX_K_SUCCESS;
2498         }
2499
2500
2501 /*
2502  * ======================
2503  * = dfx_hw_dma_cmd_req =
2504  * ======================
2505  *
2506  * Overview:
2507  *   Sends PDQ DMA command to adapter firmware
2508  *
2509  * Returns:
2510  *   Condition code
2511  *
2512  * Arguments:
2513  *   bp - pointer to board information
2514  *
2515  * Functional Description:
2516  *   The command request and response buffers are posted to the adapter in the manner
2517  *   described in the PDQ Port Specification:
2518  *
2519  *              1. Command Response Buffer is posted to adapter.
2520  *              2. Command Request Buffer is posted to adapter.
2521  *              3. Command Request consumer index is polled until it indicates that request
2522  *         buffer has been DMA'd to adapter.
2523  *              4. Command Response consumer index is polled until it indicates that response
2524  *         buffer has been DMA'd from adapter.
2525  *
2526  *   This ordering ensures that a response buffer is already available for the firmware
2527  *   to use once it's done processing the request buffer.
2528  *
2529  * Return Codes:
2530  *   DFX_K_SUCCESS        - DMA command succeeded
2531  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2532  *   DFX_K_HW_TIMEOUT - DMA command timed out
2533  *
2534  * Assumptions:
2535  *   Command request buffer has already been filled with desired DMA command.
2536  *
2537  * Side Effects:
2538  *   None
2539  */
2540
2541 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2542         {
2543         int status;                     /* adapter status */
2544         int timeout_cnt;        /* used in for loops */
2545
2546         /* Make sure the adapter is in a state that we can issue the DMA command in */
2547
2548         status = dfx_hw_adap_state_rd(bp);
2549         if ((status == PI_STATE_K_RESET)                ||
2550                 (status == PI_STATE_K_HALTED)           ||
2551                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2552                 (status == PI_STATE_K_UPGRADE))
2553                 return DFX_K_OUTSTATE;
2554
2555         /* Put response buffer on the command response queue */
2556
2557         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2558                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2559         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2560
2561         /* Bump (and wrap) the producer index and write out to register */
2562
2563         bp->cmd_rsp_reg.index.prod += 1;
2564         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2565         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2566
2567         /* Put request buffer on the command request queue */
2568
2569         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2570                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2571         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2572
2573         /* Bump (and wrap) the producer index and write out to register */
2574
2575         bp->cmd_req_reg.index.prod += 1;
2576         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2577         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2578
2579         /*
2580          * Here we wait for the command request consumer index to be equal
2581          * to the producer, indicating that the adapter has DMAed the request.
2582          */
2583
2584         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2585                 {
2586                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2587                         break;
2588                 udelay(100);                    /* wait for 100 microseconds */
2589                 }
2590         if (timeout_cnt == 0)
2591                 return DFX_K_HW_TIMEOUT;
2592
2593         /* Bump (and wrap) the completion index and write out to register */
2594
2595         bp->cmd_req_reg.index.comp += 1;
2596         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2597         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2598
2599         /*
2600          * Here we wait for the command response consumer index to be equal
2601          * to the producer, indicating that the adapter has DMAed the response.
2602          */
2603
2604         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2605                 {
2606                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2607                         break;
2608                 udelay(100);                    /* wait for 100 microseconds */
2609                 }
2610         if (timeout_cnt == 0)
2611                 return DFX_K_HW_TIMEOUT;
2612
2613         /* Bump (and wrap) the completion index and write out to register */
2614
2615         bp->cmd_rsp_reg.index.comp += 1;
2616         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2617         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2618         return DFX_K_SUCCESS;
2619         }
2620
2621
2622 /*
2623  * ========================
2624  * = dfx_hw_port_ctrl_req =
2625  * ========================
2626  *
2627  * Overview:
2628  *   Sends PDQ port control command to adapter firmware
2629  *
2630  * Returns:
2631  *   Host data register value in host_data if ptr is not NULL
2632  *
2633  * Arguments:
2634  *   bp                 - pointer to board information
2635  *       command        - port control command
2636  *       data_a         - port data A register value
2637  *       data_b         - port data B register value
2638  *       host_data      - ptr to host data register value
2639  *
2640  * Functional Description:
2641  *   Send generic port control command to adapter by writing
2642  *   to various PDQ port registers, then polling for completion.
2643  *
2644  * Return Codes:
2645  *   DFX_K_SUCCESS        - port control command succeeded
2646  *   DFX_K_HW_TIMEOUT - port control command timed out
2647  *
2648  * Assumptions:
2649  *   None
2650  *
2651  * Side Effects:
2652  *   None
2653  */
2654
2655 static int dfx_hw_port_ctrl_req(
2656         DFX_board_t     *bp,
2657         PI_UINT32       command,
2658         PI_UINT32       data_a,
2659         PI_UINT32       data_b,
2660         PI_UINT32       *host_data
2661         )
2662
2663         {
2664         PI_UINT32       port_cmd;               /* Port Control command register value */
2665         int                     timeout_cnt;    /* used in for loops */
2666
2667         /* Set Command Error bit in command longword */
2668
2669         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2670
2671         /* Issue port command to the adapter */
2672
2673         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2674         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2675         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2676
2677         /* Now wait for command to complete */
2678
2679         if (command == PI_PCTRL_M_BLAST_FLASH)
2680                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2681         else
2682                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2683
2684         for (; timeout_cnt > 0; timeout_cnt--)
2685                 {
2686                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2687                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2688                         break;
2689                 udelay(100);                    /* wait for 100 microseconds */
2690                 }
2691         if (timeout_cnt == 0)
2692                 return DFX_K_HW_TIMEOUT;
2693
2694         /*
2695          * If the address of host_data is non-zero, assume caller has supplied a
2696          * non NULL pointer, and return the contents of the HOST_DATA register in
2697          * it.
2698          */
2699
2700         if (host_data != NULL)
2701                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2702         return DFX_K_SUCCESS;
2703         }
2704
2705
2706 /*
2707  * =====================
2708  * = dfx_hw_adap_reset =
2709  * =====================
2710  *
2711  * Overview:
2712  *   Resets adapter
2713  *
2714  * Returns:
2715  *   None
2716  *
2717  * Arguments:
2718  *   bp   - pointer to board information
2719  *   type - type of reset to perform
2720  *
2721  * Functional Description:
2722  *   Issue soft reset to adapter by writing to PDQ Port Reset
2723  *   register.  Use incoming reset type to tell adapter what
2724  *   kind of reset operation to perform.
2725  *
2726  * Return Codes:
2727  *   None
2728  *
2729  * Assumptions:
2730  *   This routine merely issues a soft reset to the adapter.
2731  *   It is expected that after this routine returns, the caller
2732  *   will appropriately poll the Port Status register for the
2733  *   adapter to enter the proper state.
2734  *
2735  * Side Effects:
2736  *   Internal adapter registers are cleared.
2737  */
2738
2739 static void dfx_hw_adap_reset(
2740         DFX_board_t     *bp,
2741         PI_UINT32       type
2742         )
2743
2744         {
2745         /* Set Reset type and assert reset */
2746
2747         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2748         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2749
2750         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2751
2752         udelay(20);
2753
2754         /* Deassert reset */
2755
2756         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2757         }
2758
2759
2760 /*
2761  * ========================
2762  * = dfx_hw_adap_state_rd =
2763  * ========================
2764  *
2765  * Overview:
2766  *   Returns current adapter state
2767  *
2768  * Returns:
2769  *   Adapter state per PDQ Port Specification
2770  *
2771  * Arguments:
2772  *   bp - pointer to board information
2773  *
2774  * Functional Description:
2775  *   Reads PDQ Port Status register and returns adapter state.
2776  *
2777  * Return Codes:
2778  *   None
2779  *
2780  * Assumptions:
2781  *   None
2782  *
2783  * Side Effects:
2784  *   None
2785  */
2786
2787 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2788         {
2789         PI_UINT32 port_status;          /* Port Status register value */
2790
2791         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2792         return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2793         }
2794
2795
2796 /*
2797  * =====================
2798  * = dfx_hw_dma_uninit =
2799  * =====================
2800  *
2801  * Overview:
2802  *   Brings adapter to DMA_UNAVAILABLE state
2803  *
2804  * Returns:
2805  *   Condition code
2806  *
2807  * Arguments:
2808  *   bp   - pointer to board information
2809  *   type - type of reset to perform
2810  *
2811  * Functional Description:
2812  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2813  *              1. Set reset type bit in Port Data A Register then reset adapter.
2814  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2815  *
2816  * Return Codes:
2817  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2818  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2819  *
2820  * Assumptions:
2821  *   None
2822  *
2823  * Side Effects:
2824  *   Internal adapter registers are cleared.
2825  */
2826
2827 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2828         {
2829         int timeout_cnt;        /* used in for loops */
2830
2831         /* Set reset type bit and reset adapter */
2832
2833         dfx_hw_adap_reset(bp, type);
2834
2835         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2836
2837         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2838                 {
2839                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2840                         break;
2841                 udelay(100);                                    /* wait for 100 microseconds */
2842                 }
2843         if (timeout_cnt == 0)
2844                 return DFX_K_HW_TIMEOUT;
2845         return DFX_K_SUCCESS;
2846         }
2847
2848 /*
2849  *      Align an sk_buff to a boundary power of 2
2850  *
2851  */
2852
2853 static void my_skb_align(struct sk_buff *skb, int n)
2854 {
2855         unsigned long x = (unsigned long)skb->data;
2856         unsigned long v;
2857
2858         v = ALIGN(x, n);        /* Where we want to be */
2859
2860         skb_reserve(skb, v - x);
2861 }
2862
2863
2864 /*
2865  * ================
2866  * = dfx_rcv_init =
2867  * ================
2868  *
2869  * Overview:
2870  *   Produces buffers to adapter LLC Host receive descriptor block
2871  *
2872  * Returns:
2873  *   None
2874  *
2875  * Arguments:
2876  *   bp - pointer to board information
2877  *   get_buffers - non-zero if buffers to be allocated
2878  *
2879  * Functional Description:
2880  *   This routine can be called during dfx_adap_init() or during an adapter
2881  *       reset.  It initializes the descriptor block and produces all allocated
2882  *   LLC Host queue receive buffers.
2883  *
2884  * Return Codes:
2885  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2886  *   dynamic buffer allocation). If the buffer allocation failed, the
2887  *   already allocated buffers will not be released and the caller should do
2888  *   this.
2889  *
2890  * Assumptions:
2891  *   The PDQ has been reset and the adapter and driver maintained Type 2
2892  *   register indices are cleared.
2893  *
2894  * Side Effects:
2895  *   Receive buffers are posted to the adapter LLC queue and the adapter
2896  *   is notified.
2897  */
2898
2899 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2900         {
2901         int     i, j;                                   /* used in for loop */
2902
2903         /*
2904          *  Since each receive buffer is a single fragment of same length, initialize
2905          *  first longword in each receive descriptor for entire LLC Host descriptor
2906          *  block.  Also initialize second longword in each receive descriptor with
2907          *  physical address of receive buffer.  We'll always allocate receive
2908          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2909          *  block and produce new receive buffers by simply updating the receive
2910          *  producer index.
2911          *
2912          *      Assumptions:
2913          *              To support all shipping versions of PDQ, the receive buffer size
2914          *              must be mod 128 in length and the physical address must be 128 byte
2915          *              aligned.  In other words, bits 0-6 of the length and address must
2916          *              be zero for the following descriptor field entries to be correct on
2917          *              all PDQ-based boards.  We guaranteed both requirements during
2918          *              driver initialization when we allocated memory for the receive buffers.
2919          */
2920
2921         if (get_buffers) {
2922 #ifdef DYNAMIC_BUFFERS
2923         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2924                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2925                 {
2926                         struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO);
2927                         if (!newskb)
2928                                 return -ENOMEM;
2929                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2930                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2931                         /*
2932                          * align to 128 bytes for compatibility with
2933                          * the old EISA boards.
2934                          */
2935
2936                         my_skb_align(newskb, 128);
2937                         bp->descr_block_virt->rcv_data[i + j].long_1 =
2938                                 (u32)dma_map_single(bp->bus_dev, newskb->data,
2939                                                     NEW_SKB_SIZE,
2940                                                     DMA_FROM_DEVICE);
2941                         /*
2942                          * p_rcv_buff_va is only used inside the
2943                          * kernel so we put the skb pointer here.
2944                          */
2945                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
2946                 }
2947 #else
2948         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2949                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2950                         {
2951                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2952                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2953                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2954                         bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2955                         }
2956 #endif
2957         }
2958
2959         /* Update receive producer and Type 2 register */
2960
2961         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2962         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2963         return 0;
2964         }
2965
2966
2967 /*
2968  * =========================
2969  * = dfx_rcv_queue_process =
2970  * =========================
2971  *
2972  * Overview:
2973  *   Process received LLC frames.
2974  *
2975  * Returns:
2976  *   None
2977  *
2978  * Arguments:
2979  *   bp - pointer to board information
2980  *
2981  * Functional Description:
2982  *   Received LLC frames are processed until there are no more consumed frames.
2983  *   Once all frames are processed, the receive buffers are returned to the
2984  *   adapter.  Note that this algorithm fixes the length of time that can be spent
2985  *   in this routine, because there are a fixed number of receive buffers to
2986  *   process and buffers are not produced until this routine exits and returns
2987  *   to the ISR.
2988  *
2989  * Return Codes:
2990  *   None
2991  *
2992  * Assumptions:
2993  *   None
2994  *
2995  * Side Effects:
2996  *   None
2997  */
2998
2999 static void dfx_rcv_queue_process(
3000         DFX_board_t *bp
3001         )
3002
3003         {
3004         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3005         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3006         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3007         struct sk_buff          *skb;                           /* pointer to a sk_buff to hold incoming packet data */
3008
3009         /* Service all consumed LLC receive frames */
3010
3011         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3012         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3013                 {
3014                 /* Process any errors */
3015
3016                 int entry;
3017
3018                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3019 #ifdef DYNAMIC_BUFFERS
3020                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3021 #else
3022                 p_buff = bp->p_rcv_buff_va[entry];
3023 #endif
3024                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3025
3026                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3027                         {
3028                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3029                                 bp->rcv_crc_errors++;
3030                         else
3031                                 bp->rcv_frame_status_errors++;
3032                         }
3033                 else
3034                 {
3035                         int rx_in_place = 0;
3036
3037                         /* The frame was received without errors - verify packet length */
3038
3039                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3040                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3041                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3042                                 bp->rcv_length_errors++;
3043                         else{
3044 #ifdef DYNAMIC_BUFFERS
3045                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3046                                         struct sk_buff *newskb;
3047
3048                                         newskb = dev_alloc_skb(NEW_SKB_SIZE);
3049                                         if (newskb){
3050                                                 rx_in_place = 1;
3051
3052                                                 my_skb_align(newskb, 128);
3053                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3054                                                 dma_unmap_single(bp->bus_dev,
3055                                                         bp->descr_block_virt->rcv_data[entry].long_1,
3056                                                         NEW_SKB_SIZE,
3057                                                         DMA_FROM_DEVICE);
3058                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3059                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3060                                                 bp->descr_block_virt->rcv_data[entry].long_1 =
3061                                                         (u32)dma_map_single(bp->bus_dev,
3062                                                                 newskb->data,
3063                                                                 NEW_SKB_SIZE,
3064                                                                 DMA_FROM_DEVICE);
3065                                         } else
3066                                                 skb = NULL;
3067                                 } else
3068 #endif
3069                                         skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
3070                                 if (skb == NULL)
3071                                         {
3072                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3073                                         bp->rcv_discards++;
3074                                         break;
3075                                         }
3076                                 else {
3077 #ifndef DYNAMIC_BUFFERS
3078                                         if (! rx_in_place)
3079 #endif
3080                                         {
3081                                                 /* Receive buffer allocated, pass receive packet up */
3082
3083                                                 skb_copy_to_linear_data(skb,
3084                                                                p_buff + RCV_BUFF_K_PADDING,
3085                                                                pkt_len + 3);
3086                                         }
3087
3088                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3089                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3090                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3091                                         bp->rcv_total_bytes += skb->len;
3092                                         netif_rx(skb);
3093
3094                                         /* Update the rcv counters */
3095                                         bp->rcv_total_frames++;
3096                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3097                                                 bp->rcv_multicast_frames++;
3098                                 }
3099                         }
3100                         }
3101
3102                 /*
3103                  * Advance the producer (for recycling) and advance the completion
3104                  * (for servicing received frames).  Note that it is okay to
3105                  * advance the producer without checking that it passes the
3106                  * completion index because they are both advanced at the same
3107                  * rate.
3108                  */
3109
3110                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3111                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3112                 }
3113         }
3114
3115
3116 /*
3117  * =====================
3118  * = dfx_xmt_queue_pkt =
3119  * =====================
3120  *
3121  * Overview:
3122  *   Queues packets for transmission
3123  *
3124  * Returns:
3125  *   Condition code
3126  *
3127  * Arguments:
3128  *   skb - pointer to sk_buff to queue for transmission
3129  *   dev - pointer to device information
3130  *
3131  * Functional Description:
3132  *   Here we assume that an incoming skb transmit request
3133  *   is contained in a single physically contiguous buffer
3134  *   in which the virtual address of the start of packet
3135  *   (skb->data) can be converted to a physical address
3136  *   by using pci_map_single().
3137  *
3138  *   Since the adapter architecture requires a three byte
3139  *   packet request header to prepend the start of packet,
3140  *   we'll write the three byte field immediately prior to
3141  *   the FC byte.  This assumption is valid because we've
3142  *   ensured that dev->hard_header_len includes three pad
3143  *   bytes.  By posting a single fragment to the adapter,
3144  *   we'll reduce the number of descriptor fetches and
3145  *   bus traffic needed to send the request.
3146  *
3147  *   Also, we can't free the skb until after it's been DMA'd
3148  *   out by the adapter, so we'll queue it in the driver and
3149  *   return it in dfx_xmt_done.
3150  *
3151  * Return Codes:
3152  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3153  *       1 - caller should requeue the sk_buff for later transmission
3154  *
3155  * Assumptions:
3156  *       First and foremost, we assume the incoming skb pointer
3157  *   is NOT NULL and is pointing to a valid sk_buff structure.
3158  *
3159  *   The outgoing packet is complete, starting with the
3160  *   frame control byte including the last byte of data,
3161  *   but NOT including the 4 byte CRC.  We'll let the
3162  *   adapter hardware generate and append the CRC.
3163  *
3164  *   The entire packet is stored in one physically
3165  *   contiguous buffer which is not cached and whose
3166  *   32-bit physical address can be determined.
3167  *
3168  *   It's vital that this routine is NOT reentered for the
3169  *   same board and that the OS is not in another section of
3170  *   code (eg. dfx_int_common) for the same board on a
3171  *   different thread.
3172  *
3173  * Side Effects:
3174  *   None
3175  */
3176
3177 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3178                                      struct net_device *dev)
3179         {
3180         DFX_board_t             *bp = netdev_priv(dev);
3181         u8                      prod;                           /* local transmit producer index */
3182         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3183         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3184         unsigned long           flags;
3185
3186         netif_stop_queue(dev);
3187
3188         /*
3189          * Verify that incoming transmit request is OK
3190          *
3191          * Note: The packet size check is consistent with other
3192          *               Linux device drivers, although the correct packet
3193          *               size should be verified before calling the
3194          *               transmit routine.
3195          */
3196
3197         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3198         {
3199                 printk("%s: Invalid packet length - %u bytes\n",
3200                         dev->name, skb->len);
3201                 bp->xmt_length_errors++;                /* bump error counter */
3202                 netif_wake_queue(dev);
3203                 dev_kfree_skb(skb);
3204                 return NETDEV_TX_OK;                    /* return "success" */
3205         }
3206         /*
3207          * See if adapter link is available, if not, free buffer
3208          *
3209          * Note: If the link isn't available, free buffer and return 0
3210          *               rather than tell the upper layer to requeue the packet.
3211          *               The methodology here is that by the time the link
3212          *               becomes available, the packet to be sent will be
3213          *               fairly stale.  By simply dropping the packet, the
3214          *               higher layer protocols will eventually time out
3215          *               waiting for response packets which it won't receive.
3216          */
3217
3218         if (bp->link_available == PI_K_FALSE)
3219                 {
3220                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3221                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3222                 else
3223                         {
3224                         bp->xmt_discards++;                                     /* bump error counter */
3225                         dev_kfree_skb(skb);             /* free sk_buff now */
3226                         netif_wake_queue(dev);
3227                         return NETDEV_TX_OK;            /* return "success" */
3228                         }
3229                 }
3230
3231         spin_lock_irqsave(&bp->lock, flags);
3232
3233         /* Get the current producer and the next free xmt data descriptor */
3234
3235         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3236         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3237
3238         /*
3239          * Get pointer to auxiliary queue entry to contain information
3240          * for this packet.
3241          *
3242          * Note: The current xmt producer index will become the
3243          *       current xmt completion index when we complete this
3244          *       packet later on.  So, we'll get the pointer to the
3245          *       next auxiliary queue entry now before we bump the
3246          *       producer index.
3247          */
3248
3249         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3250
3251         /* Write the three PRH bytes immediately before the FC byte */
3252
3253         skb_push(skb,3);
3254         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3255         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3256         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3257
3258         /*
3259          * Write the descriptor with buffer info and bump producer
3260          *
3261          * Note: Since we need to start DMA from the packet request
3262          *               header, we'll add 3 bytes to the DMA buffer length,
3263          *               and we'll determine the physical address of the
3264          *               buffer from the PRH, not skb->data.
3265          *
3266          * Assumptions:
3267          *               1. Packet starts with the frame control (FC) byte
3268          *                  at skb->data.
3269          *               2. The 4-byte CRC is not appended to the buffer or
3270          *                      included in the length.
3271          *               3. Packet length (skb->len) is from FC to end of
3272          *                      data, inclusive.
3273          *               4. The packet length does not exceed the maximum
3274          *                      FDDI LLC frame length of 4491 bytes.
3275          *               5. The entire packet is contained in a physically
3276          *                      contiguous, non-cached, locked memory space
3277          *                      comprised of a single buffer pointed to by
3278          *                      skb->data.
3279          *               6. The physical address of the start of packet
3280          *                      can be determined from the virtual address
3281          *                      by using pci_map_single() and is only 32-bits
3282          *                      wide.
3283          */
3284
3285         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3286         p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data,
3287                                                   skb->len, DMA_TO_DEVICE);
3288
3289         /*
3290          * Verify that descriptor is actually available
3291          *
3292          * Note: If descriptor isn't available, return 1 which tells
3293          *       the upper layer to requeue the packet for later
3294          *       transmission.
3295          *
3296          *       We need to ensure that the producer never reaches the
3297          *       completion, except to indicate that the queue is empty.
3298          */
3299
3300         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3301         {
3302                 skb_pull(skb,3);
3303                 spin_unlock_irqrestore(&bp->lock, flags);
3304                 return NETDEV_TX_BUSY;  /* requeue packet for later */
3305         }
3306
3307         /*
3308          * Save info for this packet for xmt done indication routine
3309          *
3310          * Normally, we'd save the producer index in the p_xmt_drv_descr
3311          * structure so that we'd have it handy when we complete this
3312          * packet later (in dfx_xmt_done).  However, since the current
3313          * transmit architecture guarantees a single fragment for the
3314          * entire packet, we can simply bump the completion index by
3315          * one (1) for each completed packet.
3316          *
3317          * Note: If this assumption changes and we're presented with
3318          *       an inconsistent number of transmit fragments for packet
3319          *       data, we'll need to modify this code to save the current
3320          *       transmit producer index.
3321          */
3322
3323         p_xmt_drv_descr->p_skb = skb;
3324
3325         /* Update Type 2 register */
3326
3327         bp->rcv_xmt_reg.index.xmt_prod = prod;
3328         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3329         spin_unlock_irqrestore(&bp->lock, flags);
3330         netif_wake_queue(dev);
3331         return NETDEV_TX_OK;    /* packet queued to adapter */
3332         }
3333
3334
3335 /*
3336  * ================
3337  * = dfx_xmt_done =
3338  * ================
3339  *
3340  * Overview:
3341  *   Processes all frames that have been transmitted.
3342  *
3343  * Returns:
3344  *   None
3345  *
3346  * Arguments:
3347  *   bp - pointer to board information
3348  *
3349  * Functional Description:
3350  *   For all consumed transmit descriptors that have not
3351  *   yet been completed, we'll free the skb we were holding
3352  *   onto using dev_kfree_skb and bump the appropriate
3353  *   counters.
3354  *
3355  * Return Codes:
3356  *   None
3357  *
3358  * Assumptions:
3359  *   The Type 2 register is not updated in this routine.  It is
3360  *   assumed that it will be updated in the ISR when dfx_xmt_done
3361  *   returns.
3362  *
3363  * Side Effects:
3364  *   None
3365  */
3366
3367 static int dfx_xmt_done(DFX_board_t *bp)
3368         {
3369         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3370         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3371         u8                      comp;                   /* local transmit completion index */
3372         int                     freed = 0;              /* buffers freed */
3373
3374         /* Service all consumed transmit frames */
3375
3376         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3377         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3378                 {
3379                 /* Get pointer to the transmit driver descriptor block information */
3380
3381                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3382
3383                 /* Increment transmit counters */
3384
3385                 bp->xmt_total_frames++;
3386                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3387
3388                 /* Return skb to operating system */
3389                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3390                 dma_unmap_single(bp->bus_dev,
3391                                  bp->descr_block_virt->xmt_data[comp].long_1,
3392                                  p_xmt_drv_descr->p_skb->len,
3393                                  DMA_TO_DEVICE);
3394                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3395
3396                 /*
3397                  * Move to start of next packet by updating completion index
3398                  *
3399                  * Here we assume that a transmit packet request is always
3400                  * serviced by posting one fragment.  We can therefore
3401                  * simplify the completion code by incrementing the
3402                  * completion index by one.  This code will need to be
3403                  * modified if this assumption changes.  See comments
3404                  * in dfx_xmt_queue_pkt for more details.
3405                  */
3406
3407                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3408                 freed++;
3409                 }
3410         return freed;
3411         }
3412
3413
3414 /*
3415  * =================
3416  * = dfx_rcv_flush =
3417  * =================
3418  *
3419  * Overview:
3420  *   Remove all skb's in the receive ring.
3421  *
3422  * Returns:
3423  *   None
3424  *
3425  * Arguments:
3426  *   bp - pointer to board information
3427  *
3428  * Functional Description:
3429  *   Free's all the dynamically allocated skb's that are
3430  *   currently attached to the device receive ring. This
3431  *   function is typically only used when the device is
3432  *   initialized or reinitialized.
3433  *
3434  * Return Codes:
3435  *   None
3436  *
3437  * Side Effects:
3438  *   None
3439  */
3440 #ifdef DYNAMIC_BUFFERS
3441 static void dfx_rcv_flush( DFX_board_t *bp )
3442         {
3443         int i, j;
3444
3445         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3446                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3447                 {
3448                         struct sk_buff *skb;
3449                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3450                         if (skb)
3451                                 dev_kfree_skb(skb);
3452                         bp->p_rcv_buff_va[i+j] = NULL;
3453                 }
3454
3455         }
3456 #else
3457 static inline void dfx_rcv_flush( DFX_board_t *bp )
3458 {
3459 }
3460 #endif /* DYNAMIC_BUFFERS */
3461
3462 /*
3463  * =================
3464  * = dfx_xmt_flush =
3465  * =================
3466  *
3467  * Overview:
3468  *   Processes all frames whether they've been transmitted
3469  *   or not.
3470  *
3471  * Returns:
3472  *   None
3473  *
3474  * Arguments:
3475  *   bp - pointer to board information
3476  *
3477  * Functional Description:
3478  *   For all produced transmit descriptors that have not
3479  *   yet been completed, we'll free the skb we were holding
3480  *   onto using dev_kfree_skb and bump the appropriate
3481  *   counters.  Of course, it's possible that some of
3482  *   these transmit requests actually did go out, but we
3483  *   won't make that distinction here.  Finally, we'll
3484  *   update the consumer index to match the producer.
3485  *
3486  * Return Codes:
3487  *   None
3488  *
3489  * Assumptions:
3490  *   This routine does NOT update the Type 2 register.  It
3491  *   is assumed that this routine is being called during a
3492  *   transmit flush interrupt, or a shutdown or close routine.
3493  *
3494  * Side Effects:
3495  *   None
3496  */
3497
3498 static void dfx_xmt_flush( DFX_board_t *bp )
3499         {
3500         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3501         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3502         u8                      comp;                   /* local transmit completion index */
3503
3504         /* Flush all outstanding transmit frames */
3505
3506         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3507                 {
3508                 /* Get pointer to the transmit driver descriptor block information */
3509
3510                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3511
3512                 /* Return skb to operating system */
3513                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3514                 dma_unmap_single(bp->bus_dev,
3515                                  bp->descr_block_virt->xmt_data[comp].long_1,
3516                                  p_xmt_drv_descr->p_skb->len,
3517                                  DMA_TO_DEVICE);
3518                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3519
3520                 /* Increment transmit error counter */
3521
3522                 bp->xmt_discards++;
3523
3524                 /*
3525                  * Move to start of next packet by updating completion index
3526                  *
3527                  * Here we assume that a transmit packet request is always
3528                  * serviced by posting one fragment.  We can therefore
3529                  * simplify the completion code by incrementing the
3530                  * completion index by one.  This code will need to be
3531                  * modified if this assumption changes.  See comments
3532                  * in dfx_xmt_queue_pkt for more details.
3533                  */
3534
3535                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3536                 }
3537
3538         /* Update the transmit consumer index in the consumer block */
3539
3540         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3541         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3542         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3543         }
3544
3545 /*
3546  * ==================
3547  * = dfx_unregister =
3548  * ==================
3549  *
3550  * Overview:
3551  *   Shuts down an FDDI controller
3552  *
3553  * Returns:
3554  *   Condition code
3555  *
3556  * Arguments:
3557  *   bdev - pointer to device information
3558  *
3559  * Functional Description:
3560  *
3561  * Return Codes:
3562  *   None
3563  *
3564  * Assumptions:
3565  *   It compiles so it should work :-( (PCI cards do :-)
3566  *
3567  * Side Effects:
3568  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3569  *   freed.
3570  */
3571 static void dfx_unregister(struct device *bdev)
3572 {
3573         struct net_device *dev = dev_get_drvdata(bdev);
3574         DFX_board_t *bp = netdev_priv(dev);
3575         int dfx_bus_pci = dev_is_pci(bdev);
3576         int dfx_bus_tc = DFX_BUS_TC(bdev);
3577         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3578         resource_size_t bar_start = 0;          /* pointer to port */
3579         resource_size_t bar_len = 0;            /* resource length */
3580         int             alloc_size;             /* total buffer size used */
3581
3582         unregister_netdev(dev);
3583
3584         alloc_size = sizeof(PI_DESCR_BLOCK) +
3585                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3586 #ifndef DYNAMIC_BUFFERS
3587                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3588 #endif
3589                      sizeof(PI_CONSUMER_BLOCK) +
3590                      (PI_ALIGN_K_DESC_BLK - 1);
3591         if (bp->kmalloced)
3592                 dma_free_coherent(bdev, alloc_size,
3593                                   bp->kmalloced, bp->kmalloced_dma);
3594
3595         dfx_bus_uninit(dev);
3596
3597         dfx_get_bars(bdev, &bar_start, &bar_len);
3598         if (dfx_use_mmio) {
3599                 iounmap(bp->base.mem);
3600                 release_mem_region(bar_start, bar_len);
3601         } else
3602                 release_region(bar_start, bar_len);
3603
3604         if (dfx_bus_pci)
3605                 pci_disable_device(to_pci_dev(bdev));
3606
3607         free_netdev(dev);
3608 }
3609
3610
3611 static int __maybe_unused dfx_dev_register(struct device *);
3612 static int __maybe_unused dfx_dev_unregister(struct device *);
3613
3614 #ifdef CONFIG_PCI
3615 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3616 static void dfx_pci_unregister(struct pci_dev *);
3617
3618 static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = {
3619         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3620         { }
3621 };
3622 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3623
3624 static struct pci_driver dfx_pci_driver = {
3625         .name           = "defxx",
3626         .id_table       = dfx_pci_table,
3627         .probe          = dfx_pci_register,
3628         .remove         = dfx_pci_unregister,
3629 };
3630
3631 static int dfx_pci_register(struct pci_dev *pdev,
3632                             const struct pci_device_id *ent)
3633 {
3634         return dfx_register(&pdev->dev);
3635 }
3636
3637 static void dfx_pci_unregister(struct pci_dev *pdev)
3638 {
3639         dfx_unregister(&pdev->dev);
3640 }
3641 #endif /* CONFIG_PCI */
3642
3643 #ifdef CONFIG_EISA
3644 static struct eisa_device_id dfx_eisa_table[] = {
3645         { "DEC3001", DEFEA_PROD_ID_1 },
3646         { "DEC3002", DEFEA_PROD_ID_2 },
3647         { "DEC3003", DEFEA_PROD_ID_3 },
3648         { "DEC3004", DEFEA_PROD_ID_4 },
3649         { }
3650 };
3651 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3652
3653 static struct eisa_driver dfx_eisa_driver = {
3654         .id_table       = dfx_eisa_table,
3655         .driver         = {
3656                 .name   = "defxx",
3657                 .bus    = &eisa_bus_type,
3658                 .probe  = dfx_dev_register,
3659                 .remove = dfx_dev_unregister,
3660         },
3661 };
3662 #endif /* CONFIG_EISA */
3663
3664 #ifdef CONFIG_TC
3665 static struct tc_device_id const dfx_tc_table[] = {
3666         { "DEC     ", "PMAF-FA " },
3667         { "DEC     ", "PMAF-FD " },
3668         { "DEC     ", "PMAF-FS " },
3669         { "DEC     ", "PMAF-FU " },
3670         { }
3671 };
3672 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3673
3674 static struct tc_driver dfx_tc_driver = {
3675         .id_table       = dfx_tc_table,
3676         .driver         = {
3677                 .name   = "defxx",
3678                 .bus    = &tc_bus_type,
3679                 .probe  = dfx_dev_register,
3680                 .remove = dfx_dev_unregister,
3681         },
3682 };
3683 #endif /* CONFIG_TC */
3684
3685 static int __maybe_unused dfx_dev_register(struct device *dev)
3686 {
3687         int status;
3688
3689         status = dfx_register(dev);
3690         if (!status)
3691                 get_device(dev);
3692         return status;
3693 }
3694
3695 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3696 {
3697         put_device(dev);
3698         dfx_unregister(dev);
3699         return 0;
3700 }
3701
3702
3703 static int dfx_init(void)
3704 {
3705         int status;
3706
3707         status = pci_register_driver(&dfx_pci_driver);
3708         if (!status)
3709                 status = eisa_driver_register(&dfx_eisa_driver);
3710         if (!status)
3711                 status = tc_register_driver(&dfx_tc_driver);
3712         return status;
3713 }
3714
3715 static void dfx_cleanup(void)
3716 {
3717         tc_unregister_driver(&dfx_tc_driver);
3718         eisa_driver_unregister(&dfx_eisa_driver);
3719         pci_unregister_driver(&dfx_pci_driver);
3720 }
3721
3722 module_init(dfx_init);
3723 module_exit(dfx_cleanup);
3724 MODULE_AUTHOR("Lawrence V. Stefani");
3725 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3726                    DRV_VERSION " " DRV_RELDATE);
3727 MODULE_LICENSE("GPL");