1 // SPDX-License-Identifier: GPL-2.0-only
3 * Xilinx Axi Ethernet device driver
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/math64.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
41 #include "xilinx_axienet.h"
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT 128
45 #define RX_BD_NUM_DEFAULT 1024
46 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1)
47 #define TX_BD_NUM_MAX 4096
48 #define RX_BD_NUM_MAX 4096
50 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51 #define DRIVER_NAME "xaxienet"
52 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
53 #define DRIVER_VERSION "1.00a"
55 #define AXIENET_REGS_N 40
57 /* Match table for of_platform binding */
58 static const struct of_device_id axienet_of_match[] = {
59 { .compatible = "xlnx,axi-ethernet-1.00.a", },
60 { .compatible = "xlnx,axi-ethernet-1.01.a", },
61 { .compatible = "xlnx,axi-ethernet-2.01.a", },
65 MODULE_DEVICE_TABLE(of, axienet_of_match);
67 /* Option table for setting up Axi Ethernet hardware options */
68 static struct axienet_option axienet_options[] = {
69 /* Turn on jumbo packet support for both Rx and Tx */
71 .opt = XAE_OPTION_JUMBO,
73 .m_or = XAE_TC_JUM_MASK,
75 .opt = XAE_OPTION_JUMBO,
76 .reg = XAE_RCW1_OFFSET,
77 .m_or = XAE_RCW1_JUM_MASK,
78 }, { /* Turn on VLAN packet support for both Rx and Tx */
79 .opt = XAE_OPTION_VLAN,
81 .m_or = XAE_TC_VLAN_MASK,
83 .opt = XAE_OPTION_VLAN,
84 .reg = XAE_RCW1_OFFSET,
85 .m_or = XAE_RCW1_VLAN_MASK,
86 }, { /* Turn on FCS stripping on receive packets */
87 .opt = XAE_OPTION_FCS_STRIP,
88 .reg = XAE_RCW1_OFFSET,
89 .m_or = XAE_RCW1_FCS_MASK,
90 }, { /* Turn on FCS insertion on transmit packets */
91 .opt = XAE_OPTION_FCS_INSERT,
93 .m_or = XAE_TC_FCS_MASK,
94 }, { /* Turn off length/type field checking on receive packets */
95 .opt = XAE_OPTION_LENTYPE_ERR,
96 .reg = XAE_RCW1_OFFSET,
97 .m_or = XAE_RCW1_LT_DIS_MASK,
98 }, { /* Turn on Rx flow control */
99 .opt = XAE_OPTION_FLOW_CONTROL,
100 .reg = XAE_FCC_OFFSET,
101 .m_or = XAE_FCC_FCRX_MASK,
102 }, { /* Turn on Tx flow control */
103 .opt = XAE_OPTION_FLOW_CONTROL,
104 .reg = XAE_FCC_OFFSET,
105 .m_or = XAE_FCC_FCTX_MASK,
106 }, { /* Turn on promiscuous frame filtering */
107 .opt = XAE_OPTION_PROMISC,
108 .reg = XAE_FMI_OFFSET,
109 .m_or = XAE_FMI_PM_MASK,
110 }, { /* Enable transmitter */
111 .opt = XAE_OPTION_TXEN,
112 .reg = XAE_TC_OFFSET,
113 .m_or = XAE_TC_TX_MASK,
114 }, { /* Enable receiver */
115 .opt = XAE_OPTION_RXEN,
116 .reg = XAE_RCW1_OFFSET,
117 .m_or = XAE_RCW1_RX_MASK,
123 * axienet_dma_in32 - Memory mapped Axi DMA register read
124 * @lp: Pointer to axienet local structure
125 * @reg: Address offset from the base address of the Axi DMA core
127 * Return: The contents of the Axi DMA register
129 * This function returns the contents of the corresponding Axi DMA register.
131 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
133 return ioread32(lp->dma_regs + reg);
136 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
137 struct axidma_bd *desc)
139 desc->phys = lower_32_bits(addr);
140 if (lp->features & XAE_FEATURE_DMA_64BIT)
141 desc->phys_msb = upper_32_bits(addr);
144 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
145 struct axidma_bd *desc)
147 dma_addr_t ret = desc->phys;
149 if (lp->features & XAE_FEATURE_DMA_64BIT)
150 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
156 * axienet_dma_bd_release - Release buffer descriptor rings
157 * @ndev: Pointer to the net_device structure
159 * This function is used to release the descriptors allocated in
160 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
161 * driver stop api is called.
163 static void axienet_dma_bd_release(struct net_device *ndev)
166 struct axienet_local *lp = netdev_priv(ndev);
168 /* If we end up here, tx_bd_v must have been DMA allocated. */
169 dma_free_coherent(lp->dev,
170 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
177 for (i = 0; i < lp->rx_bd_num; i++) {
180 /* A NULL skb means this descriptor has not been initialised
183 if (!lp->rx_bd_v[i].skb)
186 dev_kfree_skb(lp->rx_bd_v[i].skb);
188 /* For each descriptor, we programmed cntrl with the (non-zero)
189 * descriptor size, after it had been successfully allocated.
190 * So a non-zero value in there means we need to unmap it.
192 if (lp->rx_bd_v[i].cntrl) {
193 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
194 dma_unmap_single(lp->dev, phys,
195 lp->max_frm_size, DMA_FROM_DEVICE);
199 dma_free_coherent(lp->dev,
200 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
206 * axienet_usec_to_timer - Calculate IRQ delay timer value
207 * @lp: Pointer to the axienet_local structure
208 * @coalesce_usec: Microseconds to convert into timer value
210 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
213 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
216 clk_rate = clk_get_rate(lp->axi_clk);
218 /* 1 Timeout Interval = 125 * (clock period of SG clock) */
219 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
228 * axienet_dma_start - Set up DMA registers and start DMA operation
229 * @lp: Pointer to the axienet_local structure
231 static void axienet_dma_start(struct axienet_local *lp)
233 /* Start updating the Rx channel control register */
234 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
235 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
236 /* Only set interrupt delay timer if not generating an interrupt on
237 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
239 if (lp->coalesce_count_rx > 1)
240 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
241 << XAXIDMA_DELAY_SHIFT) |
242 XAXIDMA_IRQ_DELAY_MASK;
243 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
245 /* Start updating the Tx channel control register */
246 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
247 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
248 /* Only set interrupt delay timer if not generating an interrupt on
249 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
251 if (lp->coalesce_count_tx > 1)
252 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
253 << XAXIDMA_DELAY_SHIFT) |
254 XAXIDMA_IRQ_DELAY_MASK;
255 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
257 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
258 * halted state. This will make the Rx side ready for reception.
260 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
261 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
262 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
263 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
264 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
266 /* Write to the RS (Run-stop) bit in the Tx channel control register.
267 * Tx channel is now ready to run. But only after we write to the
268 * tail pointer register that the Tx channel will start transmitting.
270 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
271 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
272 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
276 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
277 * @ndev: Pointer to the net_device structure
279 * Return: 0, on success -ENOMEM, on failure
281 * This function is called to initialize the Rx and Tx DMA descriptor
282 * rings. This initializes the descriptors with required default values
283 * and is called when Axi Ethernet driver reset is called.
285 static int axienet_dma_bd_init(struct net_device *ndev)
289 struct axienet_local *lp = netdev_priv(ndev);
291 /* Reset the indexes which are used for accessing the BDs */
296 /* Allocate the Tx and Rx buffer descriptors. */
297 lp->tx_bd_v = dma_alloc_coherent(lp->dev,
298 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
299 &lp->tx_bd_p, GFP_KERNEL);
303 lp->rx_bd_v = dma_alloc_coherent(lp->dev,
304 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
305 &lp->rx_bd_p, GFP_KERNEL);
309 for (i = 0; i < lp->tx_bd_num; i++) {
310 dma_addr_t addr = lp->tx_bd_p +
311 sizeof(*lp->tx_bd_v) *
312 ((i + 1) % lp->tx_bd_num);
314 lp->tx_bd_v[i].next = lower_32_bits(addr);
315 if (lp->features & XAE_FEATURE_DMA_64BIT)
316 lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
319 for (i = 0; i < lp->rx_bd_num; i++) {
322 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
323 ((i + 1) % lp->rx_bd_num);
324 lp->rx_bd_v[i].next = lower_32_bits(addr);
325 if (lp->features & XAE_FEATURE_DMA_64BIT)
326 lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
328 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
332 lp->rx_bd_v[i].skb = skb;
333 addr = dma_map_single(lp->dev, skb->data,
334 lp->max_frm_size, DMA_FROM_DEVICE);
335 if (dma_mapping_error(lp->dev, addr)) {
336 netdev_err(ndev, "DMA mapping error\n");
339 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
341 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
344 axienet_dma_start(lp);
348 axienet_dma_bd_release(ndev);
353 * axienet_set_mac_address - Write the MAC address
354 * @ndev: Pointer to the net_device structure
355 * @address: 6 byte Address to be written as MAC address
357 * This function is called to initialize the MAC address of the Axi Ethernet
358 * core. It writes to the UAW0 and UAW1 registers of the core.
360 static void axienet_set_mac_address(struct net_device *ndev,
363 struct axienet_local *lp = netdev_priv(ndev);
366 eth_hw_addr_set(ndev, address);
367 if (!is_valid_ether_addr(ndev->dev_addr))
368 eth_hw_addr_random(ndev);
370 /* Set up unicast MAC address filter set its mac address */
371 axienet_iow(lp, XAE_UAW0_OFFSET,
372 (ndev->dev_addr[0]) |
373 (ndev->dev_addr[1] << 8) |
374 (ndev->dev_addr[2] << 16) |
375 (ndev->dev_addr[3] << 24));
376 axienet_iow(lp, XAE_UAW1_OFFSET,
377 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
378 ~XAE_UAW1_UNICASTADDR_MASK) |
380 (ndev->dev_addr[5] << 8))));
384 * netdev_set_mac_address - Write the MAC address (from outside the driver)
385 * @ndev: Pointer to the net_device structure
386 * @p: 6 byte Address to be written as MAC address
388 * Return: 0 for all conditions. Presently, there is no failure case.
390 * This function is called to initialize the MAC address of the Axi Ethernet
391 * core. It calls the core specific axienet_set_mac_address. This is the
392 * function that goes into net_device_ops structure entry ndo_set_mac_address.
394 static int netdev_set_mac_address(struct net_device *ndev, void *p)
396 struct sockaddr *addr = p;
397 axienet_set_mac_address(ndev, addr->sa_data);
402 * axienet_set_multicast_list - Prepare the multicast table
403 * @ndev: Pointer to the net_device structure
405 * This function is called to initialize the multicast table during
406 * initialization. The Axi Ethernet basic multicast support has a four-entry
407 * multicast table which is initialized here. Additionally this function
408 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
409 * means whenever the multicast table entries need to be updated this
410 * function gets called.
412 static void axienet_set_multicast_list(struct net_device *ndev)
415 u32 reg, af0reg, af1reg;
416 struct axienet_local *lp = netdev_priv(ndev);
418 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
419 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
420 /* We must make the kernel realize we had to move into
421 * promiscuous mode. If it was a promiscuous mode request
422 * the flag is already set. If not we set it.
424 ndev->flags |= IFF_PROMISC;
425 reg = axienet_ior(lp, XAE_FMI_OFFSET);
426 reg |= XAE_FMI_PM_MASK;
427 axienet_iow(lp, XAE_FMI_OFFSET, reg);
428 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
429 } else if (!netdev_mc_empty(ndev)) {
430 struct netdev_hw_addr *ha;
433 netdev_for_each_mc_addr(ha, ndev) {
434 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
437 af0reg = (ha->addr[0]);
438 af0reg |= (ha->addr[1] << 8);
439 af0reg |= (ha->addr[2] << 16);
440 af0reg |= (ha->addr[3] << 24);
442 af1reg = (ha->addr[4]);
443 af1reg |= (ha->addr[5] << 8);
445 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
448 axienet_iow(lp, XAE_FMI_OFFSET, reg);
449 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
450 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
454 reg = axienet_ior(lp, XAE_FMI_OFFSET);
455 reg &= ~XAE_FMI_PM_MASK;
457 axienet_iow(lp, XAE_FMI_OFFSET, reg);
459 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
460 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
463 axienet_iow(lp, XAE_FMI_OFFSET, reg);
464 axienet_iow(lp, XAE_AF0_OFFSET, 0);
465 axienet_iow(lp, XAE_AF1_OFFSET, 0);
468 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
473 * axienet_setoptions - Set an Axi Ethernet option
474 * @ndev: Pointer to the net_device structure
475 * @options: Option to be enabled/disabled
477 * The Axi Ethernet core has multiple features which can be selectively turned
478 * on or off. The typical options could be jumbo frame option, basic VLAN
479 * option, promiscuous mode option etc. This function is used to set or clear
480 * these options in the Axi Ethernet hardware. This is done through
481 * axienet_option structure .
483 static void axienet_setoptions(struct net_device *ndev, u32 options)
486 struct axienet_local *lp = netdev_priv(ndev);
487 struct axienet_option *tp = &axienet_options[0];
490 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
491 if (options & tp->opt)
493 axienet_iow(lp, tp->reg, reg);
497 lp->options |= options;
500 static int __axienet_device_reset(struct axienet_local *lp)
505 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
506 * process of Axi DMA takes a while to complete as all pending
507 * commands/transfers will be flushed or completed during this
509 * Note that even though both TX and RX have their own reset register,
510 * they both reset the entire DMA core, so only one needs to be used.
512 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
513 ret = read_poll_timeout(axienet_dma_in32, value,
514 !(value & XAXIDMA_CR_RESET_MASK),
515 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
516 XAXIDMA_TX_CR_OFFSET);
518 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
522 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
523 ret = read_poll_timeout(axienet_ior, value,
524 value & XAE_INT_PHYRSTCMPLT_MASK,
525 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
528 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
536 * axienet_dma_stop - Stop DMA operation
537 * @lp: Pointer to the axienet_local structure
539 static void axienet_dma_stop(struct axienet_local *lp)
544 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
545 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
546 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
547 synchronize_irq(lp->rx_irq);
549 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
550 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
551 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
552 synchronize_irq(lp->tx_irq);
554 /* Give DMAs a chance to halt gracefully */
555 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
556 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
558 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
561 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
562 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
564 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
567 /* Do a reset to ensure DMA is really stopped */
568 axienet_lock_mii(lp);
569 __axienet_device_reset(lp);
570 axienet_unlock_mii(lp);
574 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
575 * @ndev: Pointer to the net_device structure
577 * This function is called to reset and initialize the Axi Ethernet core. This
578 * is typically called during initialization. It does a reset of the Axi DMA
579 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
580 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
581 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
583 * Returns 0 on success or a negative error number otherwise.
585 static int axienet_device_reset(struct net_device *ndev)
588 struct axienet_local *lp = netdev_priv(ndev);
591 ret = __axienet_device_reset(lp);
595 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
596 lp->options |= XAE_OPTION_VLAN;
597 lp->options &= (~XAE_OPTION_JUMBO);
599 if ((ndev->mtu > XAE_MTU) &&
600 (ndev->mtu <= XAE_JUMBO_MTU)) {
601 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
604 if (lp->max_frm_size <= lp->rxmem)
605 lp->options |= XAE_OPTION_JUMBO;
608 ret = axienet_dma_bd_init(ndev);
610 netdev_err(ndev, "%s: descriptor allocation failed\n",
615 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
616 axienet_status &= ~XAE_RCW1_RX_MASK;
617 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
619 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
620 if (axienet_status & XAE_INT_RXRJECT_MASK)
621 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
622 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
623 XAE_INT_RECV_ERROR_MASK : 0);
625 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
627 /* Sync default options with HW but leave receiver and
628 * transmitter disabled.
630 axienet_setoptions(ndev, lp->options &
631 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
632 axienet_set_mac_address(ndev, NULL);
633 axienet_set_multicast_list(ndev);
634 axienet_setoptions(ndev, lp->options);
636 netif_trans_update(ndev);
642 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
643 * @lp: Pointer to the axienet_local structure
644 * @first_bd: Index of first descriptor to clean up
645 * @nr_bds: Max number of descriptors to clean up
646 * @force: Whether to clean descriptors even if not complete
647 * @sizep: Pointer to a u32 filled with the total sum of all bytes
648 * in all cleaned-up descriptors. Ignored if NULL.
649 * @budget: NAPI budget (use 0 when not called from NAPI poll)
651 * Would either be called after a successful transmit operation, or after
652 * there was an error when setting up the chain.
653 * Returns the number of descriptors handled.
655 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
656 int nr_bds, bool force, u32 *sizep, int budget)
658 struct axidma_bd *cur_p;
663 for (i = 0; i < nr_bds; i++) {
664 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
665 status = cur_p->status;
667 /* If force is not specified, clean up only descriptors
668 * that have been completed by the MAC.
670 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
673 /* Ensure we see complete descriptor update */
675 phys = desc_get_phys_addr(lp, cur_p);
676 dma_unmap_single(lp->dev, phys,
677 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
680 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
681 napi_consume_skb(cur_p->skb, budget);
688 /* ensure our transmit path and device don't prematurely see status cleared */
694 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
701 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
702 * @lp: Pointer to the axienet_local structure
703 * @num_frag: The number of BDs to check for
705 * Return: 0, on success
706 * NETDEV_TX_BUSY, if any of the descriptors are not free
708 * This function is invoked before BDs are allocated and transmission starts.
709 * This function returns 0 if a BD or group of BDs can be allocated for
710 * transmission. If the BD or any of the BDs are not free the function
711 * returns a busy status.
713 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
716 struct axidma_bd *cur_p;
718 /* Ensure we see all descriptor updates from device or TX polling */
720 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
723 return NETDEV_TX_BUSY;
728 * axienet_tx_poll - Invoked once a transmit is completed by the
729 * Axi DMA Tx channel.
730 * @napi: Pointer to NAPI structure.
731 * @budget: Max number of TX packets to process.
733 * Return: Number of TX packets processed.
735 * This function is invoked from the NAPI processing to notify the completion
736 * of transmit operation. It clears fields in the corresponding Tx BDs and
737 * unmaps the corresponding buffer so that CPU can regain ownership of the
738 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
741 static int axienet_tx_poll(struct napi_struct *napi, int budget)
743 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
744 struct net_device *ndev = lp->ndev;
748 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
751 lp->tx_bd_ci += packets;
752 if (lp->tx_bd_ci >= lp->tx_bd_num)
753 lp->tx_bd_ci %= lp->tx_bd_num;
755 ndev->stats.tx_packets += packets;
756 ndev->stats.tx_bytes += size;
758 /* Matches barrier in axienet_start_xmit */
761 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
762 netif_wake_queue(ndev);
765 if (packets < budget && napi_complete_done(napi, packets)) {
766 /* Re-enable TX completion interrupts. This should
767 * cause an immediate interrupt if any TX packets are
770 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
776 * axienet_start_xmit - Starts the transmission.
777 * @skb: sk_buff pointer that contains data to be Txed.
778 * @ndev: Pointer to net_device structure.
780 * Return: NETDEV_TX_OK, on success
781 * NETDEV_TX_BUSY, if any of the descriptors are not free
783 * This function is invoked from upper layers to initiate transmission. The
784 * function uses the next available free BDs and populates their fields to
785 * start the transmission. Additionally if checksum offloading is supported,
786 * it populates AXI Stream Control fields with appropriate values.
789 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
796 dma_addr_t tail_p, phys;
797 u32 orig_tail_ptr, new_tail_ptr;
798 struct axienet_local *lp = netdev_priv(ndev);
799 struct axidma_bd *cur_p;
801 orig_tail_ptr = lp->tx_bd_tail;
802 new_tail_ptr = orig_tail_ptr;
804 num_frag = skb_shinfo(skb)->nr_frags;
805 cur_p = &lp->tx_bd_v[orig_tail_ptr];
807 if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
808 /* Should not happen as last start_xmit call should have
809 * checked for sufficient space and queue should only be
810 * woken when sufficient space is available.
812 netif_stop_queue(ndev);
814 netdev_warn(ndev, "TX ring unexpectedly full\n");
815 return NETDEV_TX_BUSY;
818 if (skb->ip_summed == CHECKSUM_PARTIAL) {
819 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
820 /* Tx Full Checksum Offload Enabled */
822 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
823 csum_start_off = skb_transport_offset(skb);
824 csum_index_off = csum_start_off + skb->csum_offset;
825 /* Tx Partial Checksum Offload Enabled */
827 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
829 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
830 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
833 phys = dma_map_single(lp->dev, skb->data,
834 skb_headlen(skb), DMA_TO_DEVICE);
835 if (unlikely(dma_mapping_error(lp->dev, phys))) {
837 netdev_err(ndev, "TX DMA mapping error\n");
838 ndev->stats.tx_dropped++;
841 desc_set_phys_addr(lp, phys, cur_p);
842 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
844 for (ii = 0; ii < num_frag; ii++) {
845 if (++new_tail_ptr >= lp->tx_bd_num)
847 cur_p = &lp->tx_bd_v[new_tail_ptr];
848 frag = &skb_shinfo(skb)->frags[ii];
849 phys = dma_map_single(lp->dev,
850 skb_frag_address(frag),
853 if (unlikely(dma_mapping_error(lp->dev, phys))) {
855 netdev_err(ndev, "TX DMA mapping error\n");
856 ndev->stats.tx_dropped++;
857 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
861 desc_set_phys_addr(lp, phys, cur_p);
862 cur_p->cntrl = skb_frag_size(frag);
865 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
868 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
869 if (++new_tail_ptr >= lp->tx_bd_num)
871 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
873 /* Start the transfer */
874 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
876 /* Stop queue if next transmit may not have space */
877 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
878 netif_stop_queue(ndev);
880 /* Matches barrier in axienet_tx_poll */
883 /* Space might have just been freed - check again */
884 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
885 netif_wake_queue(ndev);
892 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
893 * @napi: Pointer to NAPI structure.
894 * @budget: Max number of RX packets to process.
896 * Return: Number of RX packets processed.
898 static int axienet_rx_poll(struct napi_struct *napi, int budget)
904 dma_addr_t tail_p = 0;
905 struct axidma_bd *cur_p;
906 struct sk_buff *skb, *new_skb;
907 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
909 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
911 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
914 /* Ensure we see complete descriptor update */
920 /* skb could be NULL if a previous pass already received the
921 * packet for this slot in the ring, but failed to refill it
922 * with a newly allocated buffer. In this case, don't try to
926 length = cur_p->app4 & 0x0000FFFF;
928 phys = desc_get_phys_addr(lp, cur_p);
929 dma_unmap_single(lp->dev, phys, lp->max_frm_size,
932 skb_put(skb, length);
933 skb->protocol = eth_type_trans(skb, lp->ndev);
934 /*skb_checksum_none_assert(skb);*/
935 skb->ip_summed = CHECKSUM_NONE;
937 /* if we're doing Rx csum offload, set it up */
938 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
939 csumstatus = (cur_p->app2 &
940 XAE_FULL_CSUM_STATUS_MASK) >> 3;
941 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
942 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
943 skb->ip_summed = CHECKSUM_UNNECESSARY;
945 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
946 skb->protocol == htons(ETH_P_IP) &&
948 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
949 skb->ip_summed = CHECKSUM_COMPLETE;
952 napi_gro_receive(napi, skb);
958 new_skb = napi_alloc_skb(napi, lp->max_frm_size);
962 phys = dma_map_single(lp->dev, new_skb->data,
965 if (unlikely(dma_mapping_error(lp->dev, phys))) {
967 netdev_err(lp->ndev, "RX DMA mapping error\n");
968 dev_kfree_skb(new_skb);
971 desc_set_phys_addr(lp, phys, cur_p);
973 cur_p->cntrl = lp->max_frm_size;
975 cur_p->skb = new_skb;
977 /* Only update tail_p to mark this slot as usable after it has
978 * been successfully refilled.
980 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
982 if (++lp->rx_bd_ci >= lp->rx_bd_num)
984 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
987 lp->ndev->stats.rx_packets += packets;
988 lp->ndev->stats.rx_bytes += size;
991 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
993 if (packets < budget && napi_complete_done(napi, packets)) {
994 /* Re-enable RX completion interrupts. This should
995 * cause an immediate interrupt if any RX packets are
998 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1004 * axienet_tx_irq - Tx Done Isr.
1006 * @_ndev: net_device pointer
1008 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1010 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1013 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1015 unsigned int status;
1016 struct net_device *ndev = _ndev;
1017 struct axienet_local *lp = netdev_priv(ndev);
1019 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1021 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1024 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1026 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1027 netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1028 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1029 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1030 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1031 schedule_work(&lp->dma_err_task);
1033 /* Disable further TX completion interrupts and schedule
1034 * NAPI to handle the completions.
1036 u32 cr = lp->tx_dma_cr;
1038 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1039 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1041 napi_schedule(&lp->napi_tx);
1048 * axienet_rx_irq - Rx Isr.
1050 * @_ndev: net_device pointer
1052 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1054 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1057 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1059 unsigned int status;
1060 struct net_device *ndev = _ndev;
1061 struct axienet_local *lp = netdev_priv(ndev);
1063 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1065 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1068 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1070 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1071 netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1072 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1073 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1074 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1075 schedule_work(&lp->dma_err_task);
1077 /* Disable further RX completion interrupts and schedule
1080 u32 cr = lp->rx_dma_cr;
1082 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1083 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1085 napi_schedule(&lp->napi_rx);
1092 * axienet_eth_irq - Ethernet core Isr.
1094 * @_ndev: net_device pointer
1096 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1098 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1100 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1102 struct net_device *ndev = _ndev;
1103 struct axienet_local *lp = netdev_priv(ndev);
1104 unsigned int pending;
1106 pending = axienet_ior(lp, XAE_IP_OFFSET);
1110 if (pending & XAE_INT_RXFIFOOVR_MASK)
1111 ndev->stats.rx_missed_errors++;
1113 if (pending & XAE_INT_RXRJECT_MASK)
1114 ndev->stats.rx_frame_errors++;
1116 axienet_iow(lp, XAE_IS_OFFSET, pending);
1120 static void axienet_dma_err_handler(struct work_struct *work);
1123 * axienet_open - Driver open routine.
1124 * @ndev: Pointer to net_device structure
1126 * Return: 0, on success.
1127 * non-zero error value on failure
1129 * This is the driver open routine. It calls phylink_start to start the
1131 * It also allocates interrupt service routines, enables the interrupt lines
1132 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1133 * descriptors are initialized.
1135 static int axienet_open(struct net_device *ndev)
1138 struct axienet_local *lp = netdev_priv(ndev);
1140 dev_dbg(&ndev->dev, "axienet_open()\n");
1142 /* When we do an Axi Ethernet reset, it resets the complete core
1143 * including the MDIO. MDIO must be disabled before resetting.
1144 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1146 axienet_lock_mii(lp);
1147 ret = axienet_device_reset(ndev);
1148 axienet_unlock_mii(lp);
1150 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1152 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1156 phylink_start(lp->phylink);
1158 /* Enable worker thread for Axi DMA error handling */
1159 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1161 napi_enable(&lp->napi_rx);
1162 napi_enable(&lp->napi_tx);
1164 /* Enable interrupts for Axi DMA Tx */
1165 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1169 /* Enable interrupts for Axi DMA Rx */
1170 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1174 /* Enable interrupts for Axi Ethernet core (if defined) */
1175 if (lp->eth_irq > 0) {
1176 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1185 free_irq(lp->rx_irq, ndev);
1187 free_irq(lp->tx_irq, ndev);
1189 napi_disable(&lp->napi_tx);
1190 napi_disable(&lp->napi_rx);
1191 phylink_stop(lp->phylink);
1192 phylink_disconnect_phy(lp->phylink);
1193 cancel_work_sync(&lp->dma_err_task);
1194 dev_err(lp->dev, "request_irq() failed\n");
1199 * axienet_stop - Driver stop routine.
1200 * @ndev: Pointer to net_device structure
1202 * Return: 0, on success.
1204 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1205 * device. It also removes the interrupt handlers and disables the interrupts.
1206 * The Axi DMA Tx/Rx BDs are released.
1208 static int axienet_stop(struct net_device *ndev)
1210 struct axienet_local *lp = netdev_priv(ndev);
1212 dev_dbg(&ndev->dev, "axienet_close()\n");
1214 napi_disable(&lp->napi_tx);
1215 napi_disable(&lp->napi_rx);
1217 phylink_stop(lp->phylink);
1218 phylink_disconnect_phy(lp->phylink);
1220 axienet_setoptions(ndev, lp->options &
1221 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1223 axienet_dma_stop(lp);
1225 axienet_iow(lp, XAE_IE_OFFSET, 0);
1227 cancel_work_sync(&lp->dma_err_task);
1229 if (lp->eth_irq > 0)
1230 free_irq(lp->eth_irq, ndev);
1231 free_irq(lp->tx_irq, ndev);
1232 free_irq(lp->rx_irq, ndev);
1234 axienet_dma_bd_release(ndev);
1239 * axienet_change_mtu - Driver change mtu routine.
1240 * @ndev: Pointer to net_device structure
1241 * @new_mtu: New mtu value to be applied
1243 * Return: Always returns 0 (success).
1245 * This is the change mtu driver routine. It checks if the Axi Ethernet
1246 * hardware supports jumbo frames before changing the mtu. This can be
1247 * called only when the device is not up.
1249 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1251 struct axienet_local *lp = netdev_priv(ndev);
1253 if (netif_running(ndev))
1256 if ((new_mtu + VLAN_ETH_HLEN +
1257 XAE_TRL_SIZE) > lp->rxmem)
1260 ndev->mtu = new_mtu;
1265 #ifdef CONFIG_NET_POLL_CONTROLLER
1267 * axienet_poll_controller - Axi Ethernet poll mechanism.
1268 * @ndev: Pointer to net_device structure
1270 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1271 * to polling the ISRs and are enabled back after the polling is done.
1273 static void axienet_poll_controller(struct net_device *ndev)
1275 struct axienet_local *lp = netdev_priv(ndev);
1276 disable_irq(lp->tx_irq);
1277 disable_irq(lp->rx_irq);
1278 axienet_rx_irq(lp->tx_irq, ndev);
1279 axienet_tx_irq(lp->rx_irq, ndev);
1280 enable_irq(lp->tx_irq);
1281 enable_irq(lp->rx_irq);
1285 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1287 struct axienet_local *lp = netdev_priv(dev);
1289 if (!netif_running(dev))
1292 return phylink_mii_ioctl(lp->phylink, rq, cmd);
1295 static const struct net_device_ops axienet_netdev_ops = {
1296 .ndo_open = axienet_open,
1297 .ndo_stop = axienet_stop,
1298 .ndo_start_xmit = axienet_start_xmit,
1299 .ndo_change_mtu = axienet_change_mtu,
1300 .ndo_set_mac_address = netdev_set_mac_address,
1301 .ndo_validate_addr = eth_validate_addr,
1302 .ndo_eth_ioctl = axienet_ioctl,
1303 .ndo_set_rx_mode = axienet_set_multicast_list,
1304 #ifdef CONFIG_NET_POLL_CONTROLLER
1305 .ndo_poll_controller = axienet_poll_controller,
1310 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1311 * @ndev: Pointer to net_device structure
1312 * @ed: Pointer to ethtool_drvinfo structure
1314 * This implements ethtool command for getting the driver information.
1315 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1317 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1318 struct ethtool_drvinfo *ed)
1320 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1321 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1325 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1327 * @ndev: Pointer to net_device structure
1329 * This implements ethtool command for getting the total register length
1332 * Return: the total regs length
1334 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1336 return sizeof(u32) * AXIENET_REGS_N;
1340 * axienet_ethtools_get_regs - Dump the contents of all registers present
1341 * in AxiEthernet core.
1342 * @ndev: Pointer to net_device structure
1343 * @regs: Pointer to ethtool_regs structure
1344 * @ret: Void pointer used to return the contents of the registers.
1346 * This implements ethtool command for getting the Axi Ethernet register dump.
1347 * Issue "ethtool -d ethX" to execute this function.
1349 static void axienet_ethtools_get_regs(struct net_device *ndev,
1350 struct ethtool_regs *regs, void *ret)
1352 u32 *data = (u32 *) ret;
1353 size_t len = sizeof(u32) * AXIENET_REGS_N;
1354 struct axienet_local *lp = netdev_priv(ndev);
1359 memset(data, 0, len);
1360 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1361 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1362 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1363 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1364 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1365 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1366 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1367 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1368 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1369 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1370 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1371 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1372 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1373 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1374 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1375 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1376 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1377 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1378 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1379 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1380 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1381 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1382 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1383 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1384 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1385 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1386 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1387 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1388 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1389 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1390 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1391 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1392 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1393 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1394 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1395 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1399 axienet_ethtools_get_ringparam(struct net_device *ndev,
1400 struct ethtool_ringparam *ering,
1401 struct kernel_ethtool_ringparam *kernel_ering,
1402 struct netlink_ext_ack *extack)
1404 struct axienet_local *lp = netdev_priv(ndev);
1406 ering->rx_max_pending = RX_BD_NUM_MAX;
1407 ering->rx_mini_max_pending = 0;
1408 ering->rx_jumbo_max_pending = 0;
1409 ering->tx_max_pending = TX_BD_NUM_MAX;
1410 ering->rx_pending = lp->rx_bd_num;
1411 ering->rx_mini_pending = 0;
1412 ering->rx_jumbo_pending = 0;
1413 ering->tx_pending = lp->tx_bd_num;
1417 axienet_ethtools_set_ringparam(struct net_device *ndev,
1418 struct ethtool_ringparam *ering,
1419 struct kernel_ethtool_ringparam *kernel_ering,
1420 struct netlink_ext_ack *extack)
1422 struct axienet_local *lp = netdev_priv(ndev);
1424 if (ering->rx_pending > RX_BD_NUM_MAX ||
1425 ering->rx_mini_pending ||
1426 ering->rx_jumbo_pending ||
1427 ering->tx_pending < TX_BD_NUM_MIN ||
1428 ering->tx_pending > TX_BD_NUM_MAX)
1431 if (netif_running(ndev))
1434 lp->rx_bd_num = ering->rx_pending;
1435 lp->tx_bd_num = ering->tx_pending;
1440 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1442 * @ndev: Pointer to net_device structure
1443 * @epauseparm: Pointer to ethtool_pauseparam structure.
1445 * This implements ethtool command for getting axi ethernet pause frame
1446 * setting. Issue "ethtool -a ethX" to execute this function.
1449 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1450 struct ethtool_pauseparam *epauseparm)
1452 struct axienet_local *lp = netdev_priv(ndev);
1454 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1458 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1460 * @ndev: Pointer to net_device structure
1461 * @epauseparm:Pointer to ethtool_pauseparam structure
1463 * This implements ethtool command for enabling flow control on Rx and Tx
1464 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1467 * Return: 0 on success, -EFAULT if device is running
1470 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1471 struct ethtool_pauseparam *epauseparm)
1473 struct axienet_local *lp = netdev_priv(ndev);
1475 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1479 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1480 * @ndev: Pointer to net_device structure
1481 * @ecoalesce: Pointer to ethtool_coalesce structure
1482 * @kernel_coal: ethtool CQE mode setting structure
1483 * @extack: extack for reporting error messages
1485 * This implements ethtool command for getting the DMA interrupt coalescing
1486 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1487 * execute this function.
1492 axienet_ethtools_get_coalesce(struct net_device *ndev,
1493 struct ethtool_coalesce *ecoalesce,
1494 struct kernel_ethtool_coalesce *kernel_coal,
1495 struct netlink_ext_ack *extack)
1497 struct axienet_local *lp = netdev_priv(ndev);
1499 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1500 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1501 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1502 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1507 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1508 * @ndev: Pointer to net_device structure
1509 * @ecoalesce: Pointer to ethtool_coalesce structure
1510 * @kernel_coal: ethtool CQE mode setting structure
1511 * @extack: extack for reporting error messages
1513 * This implements ethtool command for setting the DMA interrupt coalescing
1514 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1515 * prompt to execute this function.
1517 * Return: 0, on success, Non-zero error value on failure.
1520 axienet_ethtools_set_coalesce(struct net_device *ndev,
1521 struct ethtool_coalesce *ecoalesce,
1522 struct kernel_ethtool_coalesce *kernel_coal,
1523 struct netlink_ext_ack *extack)
1525 struct axienet_local *lp = netdev_priv(ndev);
1527 if (netif_running(ndev)) {
1529 "Please stop netif before applying configuration\n");
1533 if (ecoalesce->rx_max_coalesced_frames)
1534 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1535 if (ecoalesce->rx_coalesce_usecs)
1536 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1537 if (ecoalesce->tx_max_coalesced_frames)
1538 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1539 if (ecoalesce->tx_coalesce_usecs)
1540 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1546 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1547 struct ethtool_link_ksettings *cmd)
1549 struct axienet_local *lp = netdev_priv(ndev);
1551 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1555 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1556 const struct ethtool_link_ksettings *cmd)
1558 struct axienet_local *lp = netdev_priv(ndev);
1560 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1563 static int axienet_ethtools_nway_reset(struct net_device *dev)
1565 struct axienet_local *lp = netdev_priv(dev);
1567 return phylink_ethtool_nway_reset(lp->phylink);
1570 static const struct ethtool_ops axienet_ethtool_ops = {
1571 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1572 ETHTOOL_COALESCE_USECS,
1573 .get_drvinfo = axienet_ethtools_get_drvinfo,
1574 .get_regs_len = axienet_ethtools_get_regs_len,
1575 .get_regs = axienet_ethtools_get_regs,
1576 .get_link = ethtool_op_get_link,
1577 .get_ringparam = axienet_ethtools_get_ringparam,
1578 .set_ringparam = axienet_ethtools_set_ringparam,
1579 .get_pauseparam = axienet_ethtools_get_pauseparam,
1580 .set_pauseparam = axienet_ethtools_set_pauseparam,
1581 .get_coalesce = axienet_ethtools_get_coalesce,
1582 .set_coalesce = axienet_ethtools_set_coalesce,
1583 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1584 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1585 .nway_reset = axienet_ethtools_nway_reset,
1588 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1590 return container_of(pcs, struct axienet_local, pcs);
1593 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1594 struct phylink_link_state *state)
1596 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1598 phylink_mii_c22_pcs_get_state(pcs_phy, state);
1601 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1603 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1605 phylink_mii_c22_pcs_an_restart(pcs_phy);
1608 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
1609 phy_interface_t interface,
1610 const unsigned long *advertising,
1611 bool permit_pause_to_mac)
1613 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1614 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1615 struct axienet_local *lp = netdev_priv(ndev);
1618 if (lp->switch_x_sgmii) {
1619 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1620 interface == PHY_INTERFACE_MODE_SGMII ?
1621 XLNX_MII_STD_SELECT_SGMII : 0);
1624 "Failed to switch PHY interface: %d\n",
1630 ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
1632 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1637 static const struct phylink_pcs_ops axienet_pcs_ops = {
1638 .pcs_get_state = axienet_pcs_get_state,
1639 .pcs_config = axienet_pcs_config,
1640 .pcs_an_restart = axienet_pcs_an_restart,
1643 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1644 phy_interface_t interface)
1646 struct net_device *ndev = to_net_dev(config->dev);
1647 struct axienet_local *lp = netdev_priv(ndev);
1649 if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1650 interface == PHY_INTERFACE_MODE_SGMII)
1656 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1657 const struct phylink_link_state *state)
1659 /* nothing meaningful to do */
1662 static void axienet_mac_link_down(struct phylink_config *config,
1664 phy_interface_t interface)
1666 /* nothing meaningful to do */
1669 static void axienet_mac_link_up(struct phylink_config *config,
1670 struct phy_device *phy,
1671 unsigned int mode, phy_interface_t interface,
1672 int speed, int duplex,
1673 bool tx_pause, bool rx_pause)
1675 struct net_device *ndev = to_net_dev(config->dev);
1676 struct axienet_local *lp = netdev_priv(ndev);
1677 u32 emmc_reg, fcc_reg;
1679 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1680 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1684 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1687 emmc_reg |= XAE_EMMC_LINKSPD_100;
1690 emmc_reg |= XAE_EMMC_LINKSPD_10;
1694 "Speed other than 10, 100 or 1Gbps is not supported\n");
1698 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1700 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1702 fcc_reg |= XAE_FCC_FCTX_MASK;
1704 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1706 fcc_reg |= XAE_FCC_FCRX_MASK;
1708 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1709 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1712 static const struct phylink_mac_ops axienet_phylink_ops = {
1713 .validate = phylink_generic_validate,
1714 .mac_select_pcs = axienet_mac_select_pcs,
1715 .mac_config = axienet_mac_config,
1716 .mac_link_down = axienet_mac_link_down,
1717 .mac_link_up = axienet_mac_link_up,
1721 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1722 * @work: pointer to work_struct
1724 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1727 static void axienet_dma_err_handler(struct work_struct *work)
1731 struct axidma_bd *cur_p;
1732 struct axienet_local *lp = container_of(work, struct axienet_local,
1734 struct net_device *ndev = lp->ndev;
1736 napi_disable(&lp->napi_tx);
1737 napi_disable(&lp->napi_rx);
1739 axienet_setoptions(ndev, lp->options &
1740 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1742 axienet_dma_stop(lp);
1744 for (i = 0; i < lp->tx_bd_num; i++) {
1745 cur_p = &lp->tx_bd_v[i];
1747 dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1749 dma_unmap_single(lp->dev, addr,
1751 XAXIDMA_BD_CTRL_LENGTH_MASK),
1755 dev_kfree_skb_irq(cur_p->skb);
1757 cur_p->phys_msb = 0;
1768 for (i = 0; i < lp->rx_bd_num; i++) {
1769 cur_p = &lp->rx_bd_v[i];
1782 axienet_dma_start(lp);
1784 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1785 axienet_status &= ~XAE_RCW1_RX_MASK;
1786 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1788 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1789 if (axienet_status & XAE_INT_RXRJECT_MASK)
1790 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1791 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1792 XAE_INT_RECV_ERROR_MASK : 0);
1793 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1795 /* Sync default options with HW but leave receiver and
1796 * transmitter disabled.
1798 axienet_setoptions(ndev, lp->options &
1799 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1800 axienet_set_mac_address(ndev, NULL);
1801 axienet_set_multicast_list(ndev);
1802 axienet_setoptions(ndev, lp->options);
1803 napi_enable(&lp->napi_rx);
1804 napi_enable(&lp->napi_tx);
1808 * axienet_probe - Axi Ethernet probe function.
1809 * @pdev: Pointer to platform device structure.
1811 * Return: 0, on success
1812 * Non-zero error value on failure.
1814 * This is the probe routine for Axi Ethernet driver. This is called before
1815 * any other driver routines are invoked. It allocates and sets up the Ethernet
1816 * device. Parses through device tree and populates fields of
1817 * axienet_local. It registers the Ethernet device.
1819 static int axienet_probe(struct platform_device *pdev)
1822 struct device_node *np;
1823 struct axienet_local *lp;
1824 struct net_device *ndev;
1825 struct resource *ethres;
1826 u8 mac_addr[ETH_ALEN];
1827 int addr_width = 32;
1830 ndev = alloc_etherdev(sizeof(*lp));
1834 platform_set_drvdata(pdev, ndev);
1836 SET_NETDEV_DEV(ndev, &pdev->dev);
1837 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1838 ndev->features = NETIF_F_SG;
1839 ndev->netdev_ops = &axienet_netdev_ops;
1840 ndev->ethtool_ops = &axienet_ethtool_ops;
1842 /* MTU range: 64 - 9000 */
1844 ndev->max_mtu = XAE_JUMBO_MTU;
1846 lp = netdev_priv(ndev);
1848 lp->dev = &pdev->dev;
1849 lp->options = XAE_OPTION_DEFAULTS;
1850 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1851 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1853 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll, NAPI_POLL_WEIGHT);
1854 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll, NAPI_POLL_WEIGHT);
1856 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1858 /* For backward compatibility, if named AXI clock is not present,
1859 * treat the first clock specified as the AXI clock.
1861 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1863 if (IS_ERR(lp->axi_clk)) {
1864 ret = PTR_ERR(lp->axi_clk);
1867 ret = clk_prepare_enable(lp->axi_clk);
1869 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1873 lp->misc_clks[0].id = "axis_clk";
1874 lp->misc_clks[1].id = "ref_clk";
1875 lp->misc_clks[2].id = "mgt_clk";
1877 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1881 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1885 /* Map device registers */
1886 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres);
1887 if (IS_ERR(lp->regs)) {
1888 ret = PTR_ERR(lp->regs);
1891 lp->regs_start = ethres->start;
1893 /* Setup checksum offload, but default to off if not specified */
1896 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1900 lp->csum_offload_on_tx_path =
1901 XAE_FEATURE_PARTIAL_TX_CSUM;
1902 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1903 /* Can checksum TCP/UDP over IPv4. */
1904 ndev->features |= NETIF_F_IP_CSUM;
1907 lp->csum_offload_on_tx_path =
1908 XAE_FEATURE_FULL_TX_CSUM;
1909 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1910 /* Can checksum TCP/UDP over IPv4. */
1911 ndev->features |= NETIF_F_IP_CSUM;
1914 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1917 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1921 lp->csum_offload_on_rx_path =
1922 XAE_FEATURE_PARTIAL_RX_CSUM;
1923 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1926 lp->csum_offload_on_rx_path =
1927 XAE_FEATURE_FULL_RX_CSUM;
1928 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1931 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1934 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1935 * a larger Rx/Tx Memory. Typically, the size must be large so that
1936 * we can enable jumbo option and start supporting jumbo frames.
1937 * Here we check for memory allocated for Rx/Tx in the hardware from
1938 * the device-tree and accordingly set flags.
1940 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1942 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1943 "xlnx,switch-x-sgmii");
1945 /* Start with the proprietary, and broken phy_type */
1946 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1948 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1950 case XAE_PHY_TYPE_MII:
1951 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1953 case XAE_PHY_TYPE_GMII:
1954 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1956 case XAE_PHY_TYPE_RGMII_2_0:
1957 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1959 case XAE_PHY_TYPE_SGMII:
1960 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1962 case XAE_PHY_TYPE_1000BASE_X:
1963 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1970 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1974 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
1975 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
1976 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
1981 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1982 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1984 struct resource dmares;
1986 ret = of_address_to_resource(np, 0, &dmares);
1989 "unable to get DMA resource\n");
1993 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1995 lp->rx_irq = irq_of_parse_and_map(np, 1);
1996 lp->tx_irq = irq_of_parse_and_map(np, 0);
1998 lp->eth_irq = platform_get_irq_optional(pdev, 0);
2000 /* Check for these resources directly on the Ethernet node. */
2001 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2002 lp->rx_irq = platform_get_irq(pdev, 1);
2003 lp->tx_irq = platform_get_irq(pdev, 0);
2004 lp->eth_irq = platform_get_irq_optional(pdev, 2);
2006 if (IS_ERR(lp->dma_regs)) {
2007 dev_err(&pdev->dev, "could not map DMA regs\n");
2008 ret = PTR_ERR(lp->dma_regs);
2011 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2012 dev_err(&pdev->dev, "could not determine irqs\n");
2017 /* Autodetect the need for 64-bit DMA pointers.
2018 * When the IP is configured for a bus width bigger than 32 bits,
2019 * writing the MSB registers is mandatory, even if they are all 0.
2020 * We can detect this case by writing all 1's to one such register
2021 * and see if that sticks: when the IP is configured for 32 bits
2022 * only, those registers are RES0.
2023 * Those MSB registers were introduced in IP v7.1, which we check first.
2025 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2026 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2028 iowrite32(0x0, desc);
2029 if (ioread32(desc) == 0) { /* sanity check */
2030 iowrite32(0xffffffff, desc);
2031 if (ioread32(desc) > 0) {
2032 lp->features |= XAE_FEATURE_DMA_64BIT;
2034 dev_info(&pdev->dev,
2035 "autodetected 64-bit DMA range\n");
2037 iowrite32(0x0, desc);
2040 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2041 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2046 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2048 dev_err(&pdev->dev, "No suitable DMA available\n");
2052 /* Check for Ethernet core IRQ (optional) */
2053 if (lp->eth_irq <= 0)
2054 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2056 /* Retrieve the MAC address */
2057 ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2059 axienet_set_mac_address(ndev, mac_addr);
2061 dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2063 axienet_set_mac_address(ndev, NULL);
2066 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2067 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2068 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2069 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2071 /* Reset core now that clocks are enabled, prior to accessing MDIO */
2072 ret = __axienet_device_reset(lp);
2076 ret = axienet_mdio_setup(lp);
2078 dev_warn(&pdev->dev,
2079 "error registering MDIO bus: %d\n", ret);
2081 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2082 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2083 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2085 /* Deprecated: Always use "pcs-handle" for pcs_phy.
2086 * Falling back to "phy-handle" here is only for
2087 * backward compatibility with old device trees.
2089 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2092 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2096 lp->pcs_phy = of_mdio_find_device(np);
2098 ret = -EPROBE_DEFER;
2103 lp->pcs.ops = &axienet_pcs_ops;
2104 lp->pcs.poll = true;
2107 lp->phylink_config.dev = &ndev->dev;
2108 lp->phylink_config.type = PHYLINK_NETDEV;
2109 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2110 MAC_10FD | MAC_100FD | MAC_1000FD;
2112 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2113 if (lp->switch_x_sgmii) {
2114 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2115 lp->phylink_config.supported_interfaces);
2116 __set_bit(PHY_INTERFACE_MODE_SGMII,
2117 lp->phylink_config.supported_interfaces);
2120 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2122 &axienet_phylink_ops);
2123 if (IS_ERR(lp->phylink)) {
2124 ret = PTR_ERR(lp->phylink);
2125 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2129 ret = register_netdev(lp->ndev);
2131 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2132 goto cleanup_phylink;
2138 phylink_destroy(lp->phylink);
2142 put_device(&lp->pcs_phy->dev);
2144 axienet_mdio_teardown(lp);
2146 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2147 clk_disable_unprepare(lp->axi_clk);
2155 static int axienet_remove(struct platform_device *pdev)
2157 struct net_device *ndev = platform_get_drvdata(pdev);
2158 struct axienet_local *lp = netdev_priv(ndev);
2160 unregister_netdev(ndev);
2163 phylink_destroy(lp->phylink);
2166 put_device(&lp->pcs_phy->dev);
2168 axienet_mdio_teardown(lp);
2170 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2171 clk_disable_unprepare(lp->axi_clk);
2178 static void axienet_shutdown(struct platform_device *pdev)
2180 struct net_device *ndev = platform_get_drvdata(pdev);
2183 netif_device_detach(ndev);
2185 if (netif_running(ndev))
2191 static struct platform_driver axienet_driver = {
2192 .probe = axienet_probe,
2193 .remove = axienet_remove,
2194 .shutdown = axienet_shutdown,
2196 .name = "xilinx_axienet",
2197 .of_match_table = axienet_of_match,
2201 module_platform_driver(axienet_driver);
2203 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2204 MODULE_AUTHOR("Xilinx");
2205 MODULE_LICENSE("GPL");