Merge tag '6.6-rc4-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / ti / icssg / icssg_prueth.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Texas Instruments ICSSG Ethernet Driver
4  *
5  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dma/ti-cppi5.h>
14 #include <linux/etherdevice.h>
15 #include <linux/genalloc.h>
16 #include <linux/if_vlan.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/of_platform.h>
26 #include <linux/phy.h>
27 #include <linux/remoteproc/pruss.h>
28 #include <linux/regmap.h>
29 #include <linux/remoteproc.h>
30
31 #include "icssg_prueth.h"
32 #include "icssg_mii_rt.h"
33 #include "../k3-cppi-desc-pool.h"
34
35 #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG Ethernet driver"
36
37 /* Netif debug messages possible */
38 #define PRUETH_EMAC_DEBUG       (NETIF_MSG_DRV | \
39                                  NETIF_MSG_PROBE | \
40                                  NETIF_MSG_LINK | \
41                                  NETIF_MSG_TIMER | \
42                                  NETIF_MSG_IFDOWN | \
43                                  NETIF_MSG_IFUP | \
44                                  NETIF_MSG_RX_ERR | \
45                                  NETIF_MSG_TX_ERR | \
46                                  NETIF_MSG_TX_QUEUED | \
47                                  NETIF_MSG_INTR | \
48                                  NETIF_MSG_TX_DONE | \
49                                  NETIF_MSG_RX_STATUS | \
50                                  NETIF_MSG_PKTDATA | \
51                                  NETIF_MSG_HW | \
52                                  NETIF_MSG_WOL)
53
54 #define prueth_napi_to_emac(napi) container_of(napi, struct prueth_emac, napi_rx)
55
56 /* CTRLMMR_ICSSG_RGMII_CTRL register bits */
57 #define ICSSG_CTRL_RGMII_ID_MODE                BIT(24)
58
59 #define IEP_DEFAULT_CYCLE_TIME_NS       1000000 /* 1 ms */
60
61 static void prueth_cleanup_rx_chns(struct prueth_emac *emac,
62                                    struct prueth_rx_chn *rx_chn,
63                                    int max_rflows)
64 {
65         if (rx_chn->desc_pool)
66                 k3_cppi_desc_pool_destroy(rx_chn->desc_pool);
67
68         if (rx_chn->rx_chn)
69                 k3_udma_glue_release_rx_chn(rx_chn->rx_chn);
70 }
71
72 static void prueth_cleanup_tx_chns(struct prueth_emac *emac)
73 {
74         int i;
75
76         for (i = 0; i < emac->tx_ch_num; i++) {
77                 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
78
79                 if (tx_chn->desc_pool)
80                         k3_cppi_desc_pool_destroy(tx_chn->desc_pool);
81
82                 if (tx_chn->tx_chn)
83                         k3_udma_glue_release_tx_chn(tx_chn->tx_chn);
84
85                 /* Assume prueth_cleanup_tx_chns() is called at the
86                  * end after all channel resources are freed
87                  */
88                 memset(tx_chn, 0, sizeof(*tx_chn));
89         }
90 }
91
92 static void prueth_ndev_del_tx_napi(struct prueth_emac *emac, int num)
93 {
94         int i;
95
96         for (i = 0; i < num; i++) {
97                 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
98
99                 if (tx_chn->irq)
100                         free_irq(tx_chn->irq, tx_chn);
101                 netif_napi_del(&tx_chn->napi_tx);
102         }
103 }
104
105 static void prueth_xmit_free(struct prueth_tx_chn *tx_chn,
106                              struct cppi5_host_desc_t *desc)
107 {
108         struct cppi5_host_desc_t *first_desc, *next_desc;
109         dma_addr_t buf_dma, next_desc_dma;
110         u32 buf_dma_len;
111
112         first_desc = desc;
113         next_desc = first_desc;
114
115         cppi5_hdesc_get_obuf(first_desc, &buf_dma, &buf_dma_len);
116         k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
117
118         dma_unmap_single(tx_chn->dma_dev, buf_dma, buf_dma_len,
119                          DMA_TO_DEVICE);
120
121         next_desc_dma = cppi5_hdesc_get_next_hbdesc(first_desc);
122         k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
123         while (next_desc_dma) {
124                 next_desc = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
125                                                        next_desc_dma);
126                 cppi5_hdesc_get_obuf(next_desc, &buf_dma, &buf_dma_len);
127                 k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &buf_dma);
128
129                 dma_unmap_page(tx_chn->dma_dev, buf_dma, buf_dma_len,
130                                DMA_TO_DEVICE);
131
132                 next_desc_dma = cppi5_hdesc_get_next_hbdesc(next_desc);
133                 k3_udma_glue_tx_cppi5_to_dma_addr(tx_chn->tx_chn, &next_desc_dma);
134
135                 k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
136         }
137
138         k3_cppi_desc_pool_free(tx_chn->desc_pool, first_desc);
139 }
140
141 static int emac_tx_complete_packets(struct prueth_emac *emac, int chn,
142                                     int budget)
143 {
144         struct net_device *ndev = emac->ndev;
145         struct cppi5_host_desc_t *desc_tx;
146         struct netdev_queue *netif_txq;
147         struct prueth_tx_chn *tx_chn;
148         unsigned int total_bytes = 0;
149         struct sk_buff *skb;
150         dma_addr_t desc_dma;
151         int res, num_tx = 0;
152         void **swdata;
153
154         tx_chn = &emac->tx_chns[chn];
155
156         while (true) {
157                 res = k3_udma_glue_pop_tx_chn(tx_chn->tx_chn, &desc_dma);
158                 if (res == -ENODATA)
159                         break;
160
161                 /* teardown completion */
162                 if (cppi5_desc_is_tdcm(desc_dma)) {
163                         if (atomic_dec_and_test(&emac->tdown_cnt))
164                                 complete(&emac->tdown_complete);
165                         break;
166                 }
167
168                 desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool,
169                                                      desc_dma);
170                 swdata = cppi5_hdesc_get_swdata(desc_tx);
171
172                 skb = *(swdata);
173                 prueth_xmit_free(tx_chn, desc_tx);
174
175                 ndev = skb->dev;
176                 ndev->stats.tx_packets++;
177                 ndev->stats.tx_bytes += skb->len;
178                 total_bytes += skb->len;
179                 napi_consume_skb(skb, budget);
180                 num_tx++;
181         }
182
183         if (!num_tx)
184                 return 0;
185
186         netif_txq = netdev_get_tx_queue(ndev, chn);
187         netdev_tx_completed_queue(netif_txq, num_tx, total_bytes);
188
189         if (netif_tx_queue_stopped(netif_txq)) {
190                 /* If the TX queue was stopped, wake it now
191                  * if we have enough room.
192                  */
193                 __netif_tx_lock(netif_txq, smp_processor_id());
194                 if (netif_running(ndev) &&
195                     (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
196                      MAX_SKB_FRAGS))
197                         netif_tx_wake_queue(netif_txq);
198                 __netif_tx_unlock(netif_txq);
199         }
200
201         return num_tx;
202 }
203
204 static int emac_napi_tx_poll(struct napi_struct *napi_tx, int budget)
205 {
206         struct prueth_tx_chn *tx_chn = prueth_napi_to_tx_chn(napi_tx);
207         struct prueth_emac *emac = tx_chn->emac;
208         int num_tx_packets;
209
210         num_tx_packets = emac_tx_complete_packets(emac, tx_chn->id, budget);
211
212         if (num_tx_packets >= budget)
213                 return budget;
214
215         if (napi_complete_done(napi_tx, num_tx_packets))
216                 enable_irq(tx_chn->irq);
217
218         return num_tx_packets;
219 }
220
221 static irqreturn_t prueth_tx_irq(int irq, void *dev_id)
222 {
223         struct prueth_tx_chn *tx_chn = dev_id;
224
225         disable_irq_nosync(irq);
226         napi_schedule(&tx_chn->napi_tx);
227
228         return IRQ_HANDLED;
229 }
230
231 static int prueth_ndev_add_tx_napi(struct prueth_emac *emac)
232 {
233         struct prueth *prueth = emac->prueth;
234         int i, ret;
235
236         for (i = 0; i < emac->tx_ch_num; i++) {
237                 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
238
239                 netif_napi_add_tx(emac->ndev, &tx_chn->napi_tx, emac_napi_tx_poll);
240                 ret = request_irq(tx_chn->irq, prueth_tx_irq,
241                                   IRQF_TRIGGER_HIGH, tx_chn->name,
242                                   tx_chn);
243                 if (ret) {
244                         netif_napi_del(&tx_chn->napi_tx);
245                         dev_err(prueth->dev, "unable to request TX IRQ %d\n",
246                                 tx_chn->irq);
247                         goto fail;
248                 }
249         }
250
251         return 0;
252 fail:
253         prueth_ndev_del_tx_napi(emac, i);
254         return ret;
255 }
256
257 static int prueth_init_tx_chns(struct prueth_emac *emac)
258 {
259         static const struct k3_ring_cfg ring_cfg = {
260                 .elm_size = K3_RINGACC_RING_ELSIZE_8,
261                 .mode = K3_RINGACC_RING_MODE_RING,
262                 .flags = 0,
263                 .size = PRUETH_MAX_TX_DESC,
264         };
265         struct k3_udma_glue_tx_channel_cfg tx_cfg;
266         struct device *dev = emac->prueth->dev;
267         struct net_device *ndev = emac->ndev;
268         int ret, slice, i;
269         u32 hdesc_size;
270
271         slice = prueth_emac_slice(emac);
272         if (slice < 0)
273                 return slice;
274
275         init_completion(&emac->tdown_complete);
276
277         hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
278                                            PRUETH_NAV_SW_DATA_SIZE);
279         memset(&tx_cfg, 0, sizeof(tx_cfg));
280         tx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
281         tx_cfg.tx_cfg = ring_cfg;
282         tx_cfg.txcq_cfg = ring_cfg;
283
284         for (i = 0; i < emac->tx_ch_num; i++) {
285                 struct prueth_tx_chn *tx_chn = &emac->tx_chns[i];
286
287                 /* To differentiate channels for SLICE0 vs SLICE1 */
288                 snprintf(tx_chn->name, sizeof(tx_chn->name),
289                          "tx%d-%d", slice, i);
290
291                 tx_chn->emac = emac;
292                 tx_chn->id = i;
293                 tx_chn->descs_num = PRUETH_MAX_TX_DESC;
294
295                 tx_chn->tx_chn =
296                         k3_udma_glue_request_tx_chn(dev, tx_chn->name,
297                                                     &tx_cfg);
298                 if (IS_ERR(tx_chn->tx_chn)) {
299                         ret = PTR_ERR(tx_chn->tx_chn);
300                         tx_chn->tx_chn = NULL;
301                         netdev_err(ndev,
302                                    "Failed to request tx dma ch: %d\n", ret);
303                         goto fail;
304                 }
305
306                 tx_chn->dma_dev = k3_udma_glue_tx_get_dma_device(tx_chn->tx_chn);
307                 tx_chn->desc_pool =
308                         k3_cppi_desc_pool_create_name(tx_chn->dma_dev,
309                                                       tx_chn->descs_num,
310                                                       hdesc_size,
311                                                       tx_chn->name);
312                 if (IS_ERR(tx_chn->desc_pool)) {
313                         ret = PTR_ERR(tx_chn->desc_pool);
314                         tx_chn->desc_pool = NULL;
315                         netdev_err(ndev, "Failed to create tx pool: %d\n", ret);
316                         goto fail;
317                 }
318
319                 ret = k3_udma_glue_tx_get_irq(tx_chn->tx_chn);
320                 if (ret < 0) {
321                         netdev_err(ndev, "failed to get tx irq\n");
322                         goto fail;
323                 }
324                 tx_chn->irq = ret;
325
326                 snprintf(tx_chn->name, sizeof(tx_chn->name), "%s-tx%d",
327                          dev_name(dev), tx_chn->id);
328         }
329
330         return 0;
331
332 fail:
333         prueth_cleanup_tx_chns(emac);
334         return ret;
335 }
336
337 static int prueth_init_rx_chns(struct prueth_emac *emac,
338                                struct prueth_rx_chn *rx_chn,
339                                char *name, u32 max_rflows,
340                                u32 max_desc_num)
341 {
342         struct k3_udma_glue_rx_channel_cfg rx_cfg;
343         struct device *dev = emac->prueth->dev;
344         struct net_device *ndev = emac->ndev;
345         u32 fdqring_id, hdesc_size;
346         int i, ret = 0, slice;
347
348         slice = prueth_emac_slice(emac);
349         if (slice < 0)
350                 return slice;
351
352         /* To differentiate channels for SLICE0 vs SLICE1 */
353         snprintf(rx_chn->name, sizeof(rx_chn->name), "%s%d", name, slice);
354
355         hdesc_size = cppi5_hdesc_calc_size(true, PRUETH_NAV_PS_DATA_SIZE,
356                                            PRUETH_NAV_SW_DATA_SIZE);
357         memset(&rx_cfg, 0, sizeof(rx_cfg));
358         rx_cfg.swdata_size = PRUETH_NAV_SW_DATA_SIZE;
359         rx_cfg.flow_id_num = max_rflows;
360         rx_cfg.flow_id_base = -1; /* udmax will auto select flow id base */
361
362         /* init all flows */
363         rx_chn->dev = dev;
364         rx_chn->descs_num = max_desc_num;
365
366         rx_chn->rx_chn = k3_udma_glue_request_rx_chn(dev, rx_chn->name,
367                                                      &rx_cfg);
368         if (IS_ERR(rx_chn->rx_chn)) {
369                 ret = PTR_ERR(rx_chn->rx_chn);
370                 rx_chn->rx_chn = NULL;
371                 netdev_err(ndev, "Failed to request rx dma ch: %d\n", ret);
372                 goto fail;
373         }
374
375         rx_chn->dma_dev = k3_udma_glue_rx_get_dma_device(rx_chn->rx_chn);
376         rx_chn->desc_pool = k3_cppi_desc_pool_create_name(rx_chn->dma_dev,
377                                                           rx_chn->descs_num,
378                                                           hdesc_size,
379                                                           rx_chn->name);
380         if (IS_ERR(rx_chn->desc_pool)) {
381                 ret = PTR_ERR(rx_chn->desc_pool);
382                 rx_chn->desc_pool = NULL;
383                 netdev_err(ndev, "Failed to create rx pool: %d\n", ret);
384                 goto fail;
385         }
386
387         emac->rx_flow_id_base = k3_udma_glue_rx_get_flow_id_base(rx_chn->rx_chn);
388         netdev_dbg(ndev, "flow id base = %d\n", emac->rx_flow_id_base);
389
390         fdqring_id = K3_RINGACC_RING_ID_ANY;
391         for (i = 0; i < rx_cfg.flow_id_num; i++) {
392                 struct k3_ring_cfg rxring_cfg = {
393                         .elm_size = K3_RINGACC_RING_ELSIZE_8,
394                         .mode = K3_RINGACC_RING_MODE_RING,
395                         .flags = 0,
396                 };
397                 struct k3_ring_cfg fdqring_cfg = {
398                         .elm_size = K3_RINGACC_RING_ELSIZE_8,
399                         .flags = K3_RINGACC_RING_SHARED,
400                 };
401                 struct k3_udma_glue_rx_flow_cfg rx_flow_cfg = {
402                         .rx_cfg = rxring_cfg,
403                         .rxfdq_cfg = fdqring_cfg,
404                         .ring_rxq_id = K3_RINGACC_RING_ID_ANY,
405                         .src_tag_lo_sel =
406                                 K3_UDMA_GLUE_SRC_TAG_LO_USE_REMOTE_SRC_TAG,
407                 };
408
409                 rx_flow_cfg.ring_rxfdq0_id = fdqring_id;
410                 rx_flow_cfg.rx_cfg.size = max_desc_num;
411                 rx_flow_cfg.rxfdq_cfg.size = max_desc_num;
412                 rx_flow_cfg.rxfdq_cfg.mode = emac->prueth->pdata.fdqring_mode;
413
414                 ret = k3_udma_glue_rx_flow_init(rx_chn->rx_chn,
415                                                 i, &rx_flow_cfg);
416                 if (ret) {
417                         netdev_err(ndev, "Failed to init rx flow%d %d\n",
418                                    i, ret);
419                         goto fail;
420                 }
421                 if (!i)
422                         fdqring_id = k3_udma_glue_rx_flow_get_fdq_id(rx_chn->rx_chn,
423                                                                      i);
424                 rx_chn->irq[i] = k3_udma_glue_rx_get_irq(rx_chn->rx_chn, i);
425                 if (rx_chn->irq[i] <= 0) {
426                         ret = rx_chn->irq[i];
427                         netdev_err(ndev, "Failed to get rx dma irq");
428                         goto fail;
429                 }
430         }
431
432         return 0;
433
434 fail:
435         prueth_cleanup_rx_chns(emac, rx_chn, max_rflows);
436         return ret;
437 }
438
439 static int prueth_dma_rx_push(struct prueth_emac *emac,
440                               struct sk_buff *skb,
441                               struct prueth_rx_chn *rx_chn)
442 {
443         struct net_device *ndev = emac->ndev;
444         struct cppi5_host_desc_t *desc_rx;
445         u32 pkt_len = skb_tailroom(skb);
446         dma_addr_t desc_dma;
447         dma_addr_t buf_dma;
448         void **swdata;
449
450         desc_rx = k3_cppi_desc_pool_alloc(rx_chn->desc_pool);
451         if (!desc_rx) {
452                 netdev_err(ndev, "rx push: failed to allocate descriptor\n");
453                 return -ENOMEM;
454         }
455         desc_dma = k3_cppi_desc_pool_virt2dma(rx_chn->desc_pool, desc_rx);
456
457         buf_dma = dma_map_single(rx_chn->dma_dev, skb->data, pkt_len, DMA_FROM_DEVICE);
458         if (unlikely(dma_mapping_error(rx_chn->dma_dev, buf_dma))) {
459                 k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
460                 netdev_err(ndev, "rx push: failed to map rx pkt buffer\n");
461                 return -EINVAL;
462         }
463
464         cppi5_hdesc_init(desc_rx, CPPI5_INFO0_HDESC_EPIB_PRESENT,
465                          PRUETH_NAV_PS_DATA_SIZE);
466         k3_udma_glue_rx_dma_to_cppi5_addr(rx_chn->rx_chn, &buf_dma);
467         cppi5_hdesc_attach_buf(desc_rx, buf_dma, skb_tailroom(skb), buf_dma, skb_tailroom(skb));
468
469         swdata = cppi5_hdesc_get_swdata(desc_rx);
470         *swdata = skb;
471
472         return k3_udma_glue_push_rx_chn(rx_chn->rx_chn, 0,
473                                         desc_rx, desc_dma);
474 }
475
476 static u64 icssg_ts_to_ns(u32 hi_sw, u32 hi, u32 lo, u32 cycle_time_ns)
477 {
478         u32 iepcount_lo, iepcount_hi, hi_rollover_count;
479         u64 ns;
480
481         iepcount_lo = lo & GENMASK(19, 0);
482         iepcount_hi = (hi & GENMASK(11, 0)) << 12 | lo >> 20;
483         hi_rollover_count = hi >> 11;
484
485         ns = ((u64)hi_rollover_count) << 23 | (iepcount_hi + hi_sw);
486         ns = ns * cycle_time_ns + iepcount_lo;
487
488         return ns;
489 }
490
491 static void emac_rx_timestamp(struct prueth_emac *emac,
492                               struct sk_buff *skb, u32 *psdata)
493 {
494         struct skb_shared_hwtstamps *ssh;
495         u64 ns;
496
497         u32 hi_sw = readl(emac->prueth->shram.va +
498                           TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
499         ns = icssg_ts_to_ns(hi_sw, psdata[1], psdata[0],
500                             IEP_DEFAULT_CYCLE_TIME_NS);
501
502         ssh = skb_hwtstamps(skb);
503         memset(ssh, 0, sizeof(*ssh));
504         ssh->hwtstamp = ns_to_ktime(ns);
505 }
506
507 static int emac_rx_packet(struct prueth_emac *emac, u32 flow_id)
508 {
509         struct prueth_rx_chn *rx_chn = &emac->rx_chns;
510         u32 buf_dma_len, pkt_len, port_id = 0;
511         struct net_device *ndev = emac->ndev;
512         struct cppi5_host_desc_t *desc_rx;
513         struct sk_buff *skb, *new_skb;
514         dma_addr_t desc_dma, buf_dma;
515         void **swdata;
516         u32 *psdata;
517         int ret;
518
519         ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
520         if (ret) {
521                 if (ret != -ENODATA)
522                         netdev_err(ndev, "rx pop: failed: %d\n", ret);
523                 return ret;
524         }
525
526         if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown ? */
527                 return 0;
528
529         desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
530
531         swdata = cppi5_hdesc_get_swdata(desc_rx);
532         skb = *swdata;
533
534         psdata = cppi5_hdesc_get_psdata(desc_rx);
535         /* RX HW timestamp */
536         if (emac->rx_ts_enabled)
537                 emac_rx_timestamp(emac, skb, psdata);
538
539         cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
540         k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
541         pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
542         /* firmware adds 4 CRC bytes, strip them */
543         pkt_len -= 4;
544         cppi5_desc_get_tags_ids(&desc_rx->hdr, &port_id, NULL);
545
546         dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
547         k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
548
549         skb->dev = ndev;
550         new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
551         /* if allocation fails we drop the packet but push the
552          * descriptor back to the ring with old skb to prevent a stall
553          */
554         if (!new_skb) {
555                 ndev->stats.rx_dropped++;
556                 new_skb = skb;
557         } else {
558                 /* send the filled skb up the n/w stack */
559                 skb_put(skb, pkt_len);
560                 skb->protocol = eth_type_trans(skb, ndev);
561                 napi_gro_receive(&emac->napi_rx, skb);
562                 ndev->stats.rx_bytes += pkt_len;
563                 ndev->stats.rx_packets++;
564         }
565
566         /* queue another RX DMA */
567         ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_chns);
568         if (WARN_ON(ret < 0)) {
569                 dev_kfree_skb_any(new_skb);
570                 ndev->stats.rx_errors++;
571                 ndev->stats.rx_dropped++;
572         }
573
574         return ret;
575 }
576
577 static void prueth_rx_cleanup(void *data, dma_addr_t desc_dma)
578 {
579         struct prueth_rx_chn *rx_chn = data;
580         struct cppi5_host_desc_t *desc_rx;
581         struct sk_buff *skb;
582         dma_addr_t buf_dma;
583         u32 buf_dma_len;
584         void **swdata;
585
586         desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
587         swdata = cppi5_hdesc_get_swdata(desc_rx);
588         skb = *swdata;
589         cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
590         k3_udma_glue_rx_cppi5_to_dma_addr(rx_chn->rx_chn, &buf_dma);
591
592         dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len,
593                          DMA_FROM_DEVICE);
594         k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
595
596         dev_kfree_skb_any(skb);
597 }
598
599 static int emac_get_tx_ts(struct prueth_emac *emac,
600                           struct emac_tx_ts_response *rsp)
601 {
602         struct prueth *prueth = emac->prueth;
603         int slice = prueth_emac_slice(emac);
604         int addr;
605
606         addr = icssg_queue_pop(prueth, slice == 0 ?
607                                ICSSG_TS_POP_SLICE0 : ICSSG_TS_POP_SLICE1);
608         if (addr < 0)
609                 return addr;
610
611         memcpy_fromio(rsp, prueth->shram.va + addr, sizeof(*rsp));
612         /* return buffer back for to pool */
613         icssg_queue_push(prueth, slice == 0 ?
614                          ICSSG_TS_PUSH_SLICE0 : ICSSG_TS_PUSH_SLICE1, addr);
615
616         return 0;
617 }
618
619 static void tx_ts_work(struct prueth_emac *emac)
620 {
621         struct skb_shared_hwtstamps ssh;
622         struct emac_tx_ts_response tsr;
623         struct sk_buff *skb;
624         int ret = 0;
625         u32 hi_sw;
626         u64 ns;
627
628         /* There may be more than one pending requests */
629         while (1) {
630                 ret = emac_get_tx_ts(emac, &tsr);
631                 if (ret) /* nothing more */
632                         break;
633
634                 if (tsr.cookie >= PRUETH_MAX_TX_TS_REQUESTS ||
635                     !emac->tx_ts_skb[tsr.cookie]) {
636                         netdev_err(emac->ndev, "Invalid TX TS cookie 0x%x\n",
637                                    tsr.cookie);
638                         break;
639                 }
640
641                 skb = emac->tx_ts_skb[tsr.cookie];
642                 emac->tx_ts_skb[tsr.cookie] = NULL;     /* free slot */
643                 if (!skb) {
644                         netdev_err(emac->ndev, "Driver Bug! got NULL skb\n");
645                         break;
646                 }
647
648                 hi_sw = readl(emac->prueth->shram.va +
649                               TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET);
650                 ns = icssg_ts_to_ns(hi_sw, tsr.hi_ts, tsr.lo_ts,
651                                     IEP_DEFAULT_CYCLE_TIME_NS);
652
653                 memset(&ssh, 0, sizeof(ssh));
654                 ssh.hwtstamp = ns_to_ktime(ns);
655
656                 skb_tstamp_tx(skb, &ssh);
657                 dev_consume_skb_any(skb);
658
659                 if (atomic_dec_and_test(&emac->tx_ts_pending))  /* no more? */
660                         break;
661         }
662 }
663
664 static int prueth_tx_ts_cookie_get(struct prueth_emac *emac)
665 {
666         int i;
667
668         /* search and get the next free slot */
669         for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
670                 if (!emac->tx_ts_skb[i]) {
671                         emac->tx_ts_skb[i] = ERR_PTR(-EBUSY); /* reserve slot */
672                         return i;
673                 }
674         }
675
676         return -EBUSY;
677 }
678
679 /**
680  * emac_ndo_start_xmit - EMAC Transmit function
681  * @skb: SKB pointer
682  * @ndev: EMAC network adapter
683  *
684  * Called by the system to transmit a packet  - we queue the packet in
685  * EMAC hardware transmit queue
686  * Doesn't wait for completion we'll check for TX completion in
687  * emac_tx_complete_packets().
688  *
689  * Return: enum netdev_tx
690  */
691 static enum netdev_tx emac_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
692 {
693         struct cppi5_host_desc_t *first_desc, *next_desc, *cur_desc;
694         struct prueth_emac *emac = netdev_priv(ndev);
695         struct netdev_queue *netif_txq;
696         struct prueth_tx_chn *tx_chn;
697         dma_addr_t desc_dma, buf_dma;
698         int i, ret = 0, q_idx;
699         bool in_tx_ts = 0;
700         int tx_ts_cookie;
701         void **swdata;
702         u32 pkt_len;
703         u32 *epib;
704
705         pkt_len = skb_headlen(skb);
706         q_idx = skb_get_queue_mapping(skb);
707
708         tx_chn = &emac->tx_chns[q_idx];
709         netif_txq = netdev_get_tx_queue(ndev, q_idx);
710
711         /* Map the linear buffer */
712         buf_dma = dma_map_single(tx_chn->dma_dev, skb->data, pkt_len, DMA_TO_DEVICE);
713         if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
714                 netdev_err(ndev, "tx: failed to map skb buffer\n");
715                 ret = NETDEV_TX_OK;
716                 goto drop_free_skb;
717         }
718
719         first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
720         if (!first_desc) {
721                 netdev_dbg(ndev, "tx: failed to allocate descriptor\n");
722                 dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
723                 goto drop_stop_q_busy;
724         }
725
726         cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
727                          PRUETH_NAV_PS_DATA_SIZE);
728         cppi5_hdesc_set_pkttype(first_desc, 0);
729         epib = first_desc->epib;
730         epib[0] = 0;
731         epib[1] = 0;
732         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
733             emac->tx_ts_enabled) {
734                 tx_ts_cookie = prueth_tx_ts_cookie_get(emac);
735                 if (tx_ts_cookie >= 0) {
736                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
737                         /* Request TX timestamp */
738                         epib[0] = (u32)tx_ts_cookie;
739                         epib[1] = 0x80000000;   /* TX TS request */
740                         emac->tx_ts_skb[tx_ts_cookie] = skb_get(skb);
741                         in_tx_ts = 1;
742                 }
743         }
744
745         /* set dst tag to indicate internal qid at the firmware which is at
746          * bit8..bit15. bit0..bit7 indicates port num for directed
747          * packets in case of switch mode operation
748          */
749         cppi5_desc_set_tags_ids(&first_desc->hdr, 0, (emac->port_id | (q_idx << 8)));
750         k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
751         cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
752         swdata = cppi5_hdesc_get_swdata(first_desc);
753         *swdata = skb;
754
755         /* Handle the case where skb is fragmented in pages */
756         cur_desc = first_desc;
757         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
758                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
759                 u32 frag_size = skb_frag_size(frag);
760
761                 next_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
762                 if (!next_desc) {
763                         netdev_err(ndev,
764                                    "tx: failed to allocate frag. descriptor\n");
765                         goto free_desc_stop_q_busy_cleanup_tx_ts;
766                 }
767
768                 buf_dma = skb_frag_dma_map(tx_chn->dma_dev, frag, 0, frag_size,
769                                            DMA_TO_DEVICE);
770                 if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
771                         netdev_err(ndev, "tx: Failed to map skb page\n");
772                         k3_cppi_desc_pool_free(tx_chn->desc_pool, next_desc);
773                         ret = NETDEV_TX_OK;
774                         goto cleanup_tx_ts;
775                 }
776
777                 cppi5_hdesc_reset_hbdesc(next_desc);
778                 k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &buf_dma);
779                 cppi5_hdesc_attach_buf(next_desc,
780                                        buf_dma, frag_size, buf_dma, frag_size);
781
782                 desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool,
783                                                       next_desc);
784                 k3_udma_glue_tx_dma_to_cppi5_addr(tx_chn->tx_chn, &desc_dma);
785                 cppi5_hdesc_link_hbdesc(cur_desc, desc_dma);
786
787                 pkt_len += frag_size;
788                 cur_desc = next_desc;
789         }
790         WARN_ON_ONCE(pkt_len != skb->len);
791
792         /* report bql before sending packet */
793         netdev_tx_sent_queue(netif_txq, pkt_len);
794
795         cppi5_hdesc_set_pktlen(first_desc, pkt_len);
796         desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
797         /* cppi5_desc_dump(first_desc, 64); */
798
799         skb_tx_timestamp(skb);  /* SW timestamp if SKBTX_IN_PROGRESS not set */
800         ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
801         if (ret) {
802                 netdev_err(ndev, "tx: push failed: %d\n", ret);
803                 goto drop_free_descs;
804         }
805
806         if (in_tx_ts)
807                 atomic_inc(&emac->tx_ts_pending);
808
809         if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) < MAX_SKB_FRAGS) {
810                 netif_tx_stop_queue(netif_txq);
811                 /* Barrier, so that stop_queue visible to other cpus */
812                 smp_mb__after_atomic();
813
814                 if (k3_cppi_desc_pool_avail(tx_chn->desc_pool) >=
815                     MAX_SKB_FRAGS)
816                         netif_tx_wake_queue(netif_txq);
817         }
818
819         return NETDEV_TX_OK;
820
821 cleanup_tx_ts:
822         if (in_tx_ts) {
823                 dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
824                 emac->tx_ts_skb[tx_ts_cookie] = NULL;
825         }
826
827 drop_free_descs:
828         prueth_xmit_free(tx_chn, first_desc);
829
830 drop_free_skb:
831         dev_kfree_skb_any(skb);
832
833         /* error */
834         ndev->stats.tx_dropped++;
835         netdev_err(ndev, "tx: error: %d\n", ret);
836
837         return ret;
838
839 free_desc_stop_q_busy_cleanup_tx_ts:
840         if (in_tx_ts) {
841                 dev_kfree_skb_any(emac->tx_ts_skb[tx_ts_cookie]);
842                 emac->tx_ts_skb[tx_ts_cookie] = NULL;
843         }
844         prueth_xmit_free(tx_chn, first_desc);
845
846 drop_stop_q_busy:
847         netif_tx_stop_queue(netif_txq);
848         return NETDEV_TX_BUSY;
849 }
850
851 static void prueth_tx_cleanup(void *data, dma_addr_t desc_dma)
852 {
853         struct prueth_tx_chn *tx_chn = data;
854         struct cppi5_host_desc_t *desc_tx;
855         struct sk_buff *skb;
856         void **swdata;
857
858         desc_tx = k3_cppi_desc_pool_dma2virt(tx_chn->desc_pool, desc_dma);
859         swdata = cppi5_hdesc_get_swdata(desc_tx);
860         skb = *(swdata);
861         prueth_xmit_free(tx_chn, desc_tx);
862
863         dev_kfree_skb_any(skb);
864 }
865
866 static irqreturn_t prueth_tx_ts_irq(int irq, void *dev_id)
867 {
868         struct prueth_emac *emac = dev_id;
869
870         /* currently only TX timestamp is being returned */
871         tx_ts_work(emac);
872
873         return IRQ_HANDLED;
874 }
875
876 static irqreturn_t prueth_rx_irq(int irq, void *dev_id)
877 {
878         struct prueth_emac *emac = dev_id;
879
880         disable_irq_nosync(irq);
881         napi_schedule(&emac->napi_rx);
882
883         return IRQ_HANDLED;
884 }
885
886 struct icssg_firmwares {
887         char *pru;
888         char *rtu;
889         char *txpru;
890 };
891
892 static struct icssg_firmwares icssg_emac_firmwares[] = {
893         {
894                 .pru = "ti-pruss/am65x-sr2-pru0-prueth-fw.elf",
895                 .rtu = "ti-pruss/am65x-sr2-rtu0-prueth-fw.elf",
896                 .txpru = "ti-pruss/am65x-sr2-txpru0-prueth-fw.elf",
897         },
898         {
899                 .pru = "ti-pruss/am65x-sr2-pru1-prueth-fw.elf",
900                 .rtu = "ti-pruss/am65x-sr2-rtu1-prueth-fw.elf",
901                 .txpru = "ti-pruss/am65x-sr2-txpru1-prueth-fw.elf",
902         }
903 };
904
905 static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
906 {
907         struct icssg_firmwares *firmwares;
908         struct device *dev = prueth->dev;
909         int slice, ret;
910
911         firmwares = icssg_emac_firmwares;
912
913         slice = prueth_emac_slice(emac);
914         if (slice < 0) {
915                 netdev_err(emac->ndev, "invalid port\n");
916                 return -EINVAL;
917         }
918
919         ret = icssg_config(prueth, emac, slice);
920         if (ret)
921                 return ret;
922
923         ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
924         ret = rproc_boot(prueth->pru[slice]);
925         if (ret) {
926                 dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
927                 return -EINVAL;
928         }
929
930         ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
931         ret = rproc_boot(prueth->rtu[slice]);
932         if (ret) {
933                 dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
934                 goto halt_pru;
935         }
936
937         ret = rproc_set_firmware(prueth->txpru[slice], firmwares[slice].txpru);
938         ret = rproc_boot(prueth->txpru[slice]);
939         if (ret) {
940                 dev_err(dev, "failed to boot TX_PRU%d: %d\n", slice, ret);
941                 goto halt_rtu;
942         }
943
944         emac->fw_running = 1;
945         return 0;
946
947 halt_rtu:
948         rproc_shutdown(prueth->rtu[slice]);
949
950 halt_pru:
951         rproc_shutdown(prueth->pru[slice]);
952
953         return ret;
954 }
955
956 static void prueth_emac_stop(struct prueth_emac *emac)
957 {
958         struct prueth *prueth = emac->prueth;
959         int slice;
960
961         switch (emac->port_id) {
962         case PRUETH_PORT_MII0:
963                 slice = ICSS_SLICE0;
964                 break;
965         case PRUETH_PORT_MII1:
966                 slice = ICSS_SLICE1;
967                 break;
968         default:
969                 netdev_err(emac->ndev, "invalid port\n");
970                 return;
971         }
972
973         emac->fw_running = 0;
974         rproc_shutdown(prueth->txpru[slice]);
975         rproc_shutdown(prueth->rtu[slice]);
976         rproc_shutdown(prueth->pru[slice]);
977 }
978
979 static void prueth_cleanup_tx_ts(struct prueth_emac *emac)
980 {
981         int i;
982
983         for (i = 0; i < PRUETH_MAX_TX_TS_REQUESTS; i++) {
984                 if (emac->tx_ts_skb[i]) {
985                         dev_kfree_skb_any(emac->tx_ts_skb[i]);
986                         emac->tx_ts_skb[i] = NULL;
987                 }
988         }
989 }
990
991 /* called back by PHY layer if there is change in link state of hw port*/
992 static void emac_adjust_link(struct net_device *ndev)
993 {
994         struct prueth_emac *emac = netdev_priv(ndev);
995         struct phy_device *phydev = ndev->phydev;
996         struct prueth *prueth = emac->prueth;
997         bool new_state = false;
998         unsigned long flags;
999
1000         if (phydev->link) {
1001                 /* check the mode of operation - full/half duplex */
1002                 if (phydev->duplex != emac->duplex) {
1003                         new_state = true;
1004                         emac->duplex = phydev->duplex;
1005                 }
1006                 if (phydev->speed != emac->speed) {
1007                         new_state = true;
1008                         emac->speed = phydev->speed;
1009                 }
1010                 if (!emac->link) {
1011                         new_state = true;
1012                         emac->link = 1;
1013                 }
1014         } else if (emac->link) {
1015                 new_state = true;
1016                 emac->link = 0;
1017
1018                 /* f/w should support 100 & 1000 */
1019                 emac->speed = SPEED_1000;
1020
1021                 /* half duplex may not be supported by f/w */
1022                 emac->duplex = DUPLEX_FULL;
1023         }
1024
1025         if (new_state) {
1026                 phy_print_status(phydev);
1027
1028                 /* update RGMII and MII configuration based on PHY negotiated
1029                  * values
1030                  */
1031                 if (emac->link) {
1032                         /* Set the RGMII cfg for gig en and full duplex */
1033                         icssg_update_rgmii_cfg(prueth->miig_rt, emac);
1034
1035                         /* update the Tx IPG based on 100M/1G speed */
1036                         spin_lock_irqsave(&emac->lock, flags);
1037                         icssg_config_ipg(emac);
1038                         spin_unlock_irqrestore(&emac->lock, flags);
1039                         icssg_config_set_speed(emac);
1040                         emac_set_port_state(emac, ICSSG_EMAC_PORT_FORWARD);
1041
1042                 } else {
1043                         emac_set_port_state(emac, ICSSG_EMAC_PORT_DISABLE);
1044                 }
1045         }
1046
1047         if (emac->link) {
1048                 /* reactivate the transmit queue */
1049                 netif_tx_wake_all_queues(ndev);
1050         } else {
1051                 netif_tx_stop_all_queues(ndev);
1052                 prueth_cleanup_tx_ts(emac);
1053         }
1054 }
1055
1056 static int emac_napi_rx_poll(struct napi_struct *napi_rx, int budget)
1057 {
1058         struct prueth_emac *emac = prueth_napi_to_emac(napi_rx);
1059         int rx_flow = PRUETH_RX_FLOW_DATA;
1060         int flow = PRUETH_MAX_RX_FLOWS;
1061         int num_rx = 0;
1062         int cur_budget;
1063         int ret;
1064
1065         while (flow--) {
1066                 cur_budget = budget - num_rx;
1067
1068                 while (cur_budget--) {
1069                         ret = emac_rx_packet(emac, flow);
1070                         if (ret)
1071                                 break;
1072                         num_rx++;
1073                 }
1074
1075                 if (num_rx >= budget)
1076                         break;
1077         }
1078
1079         if (num_rx < budget && napi_complete_done(napi_rx, num_rx))
1080                 enable_irq(emac->rx_chns.irq[rx_flow]);
1081
1082         return num_rx;
1083 }
1084
1085 static int prueth_prepare_rx_chan(struct prueth_emac *emac,
1086                                   struct prueth_rx_chn *chn,
1087                                   int buf_size)
1088 {
1089         struct sk_buff *skb;
1090         int i, ret;
1091
1092         for (i = 0; i < chn->descs_num; i++) {
1093                 skb = __netdev_alloc_skb_ip_align(NULL, buf_size, GFP_KERNEL);
1094                 if (!skb)
1095                         return -ENOMEM;
1096
1097                 ret = prueth_dma_rx_push(emac, skb, chn);
1098                 if (ret < 0) {
1099                         netdev_err(emac->ndev,
1100                                    "cannot submit skb for rx chan %s ret %d\n",
1101                                    chn->name, ret);
1102                         kfree_skb(skb);
1103                         return ret;
1104                 }
1105         }
1106
1107         return 0;
1108 }
1109
1110 static void prueth_reset_tx_chan(struct prueth_emac *emac, int ch_num,
1111                                  bool free_skb)
1112 {
1113         int i;
1114
1115         for (i = 0; i < ch_num; i++) {
1116                 if (free_skb)
1117                         k3_udma_glue_reset_tx_chn(emac->tx_chns[i].tx_chn,
1118                                                   &emac->tx_chns[i],
1119                                                   prueth_tx_cleanup);
1120                 k3_udma_glue_disable_tx_chn(emac->tx_chns[i].tx_chn);
1121         }
1122 }
1123
1124 static void prueth_reset_rx_chan(struct prueth_rx_chn *chn,
1125                                  int num_flows, bool disable)
1126 {
1127         int i;
1128
1129         for (i = 0; i < num_flows; i++)
1130                 k3_udma_glue_reset_rx_chn(chn->rx_chn, i, chn,
1131                                           prueth_rx_cleanup, !!i);
1132         if (disable)
1133                 k3_udma_glue_disable_rx_chn(chn->rx_chn);
1134 }
1135
1136 static int emac_phy_connect(struct prueth_emac *emac)
1137 {
1138         struct prueth *prueth = emac->prueth;
1139         struct net_device *ndev = emac->ndev;
1140         /* connect PHY */
1141         ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
1142                                       &emac_adjust_link, 0,
1143                                       emac->phy_if);
1144         if (!ndev->phydev) {
1145                 dev_err(prueth->dev, "couldn't connect to phy %s\n",
1146                         emac->phy_node->full_name);
1147                 return -ENODEV;
1148         }
1149
1150         /* remove unsupported modes */
1151         phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1152         phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1153         phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1154         phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1155         phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1156
1157         if (emac->phy_if == PHY_INTERFACE_MODE_MII)
1158                 phy_set_max_speed(ndev->phydev, SPEED_100);
1159
1160         return 0;
1161 }
1162
1163 static u64 prueth_iep_gettime(void *clockops_data, struct ptp_system_timestamp *sts)
1164 {
1165         u32 hi_rollover_count, hi_rollover_count_r;
1166         struct prueth_emac *emac = clockops_data;
1167         struct prueth *prueth = emac->prueth;
1168         void __iomem *fw_hi_r_count_addr;
1169         void __iomem *fw_count_hi_addr;
1170         u32 iepcount_hi, iepcount_hi_r;
1171         unsigned long flags;
1172         u32 iepcount_lo;
1173         u64 ts = 0;
1174
1175         fw_count_hi_addr = prueth->shram.va + TIMESYNC_FW_WC_COUNT_HI_SW_OFFSET_OFFSET;
1176         fw_hi_r_count_addr = prueth->shram.va + TIMESYNC_FW_WC_HI_ROLLOVER_COUNT_OFFSET;
1177
1178         local_irq_save(flags);
1179         do {
1180                 iepcount_hi = icss_iep_get_count_hi(emac->iep);
1181                 iepcount_hi += readl(fw_count_hi_addr);
1182                 hi_rollover_count = readl(fw_hi_r_count_addr);
1183                 ptp_read_system_prets(sts);
1184                 iepcount_lo = icss_iep_get_count_low(emac->iep);
1185                 ptp_read_system_postts(sts);
1186
1187                 iepcount_hi_r = icss_iep_get_count_hi(emac->iep);
1188                 iepcount_hi_r += readl(fw_count_hi_addr);
1189                 hi_rollover_count_r = readl(fw_hi_r_count_addr);
1190         } while ((iepcount_hi_r != iepcount_hi) ||
1191                  (hi_rollover_count != hi_rollover_count_r));
1192         local_irq_restore(flags);
1193
1194         ts = ((u64)hi_rollover_count) << 23 | iepcount_hi;
1195         ts = ts * (u64)IEP_DEFAULT_CYCLE_TIME_NS + iepcount_lo;
1196
1197         return ts;
1198 }
1199
1200 static void prueth_iep_settime(void *clockops_data, u64 ns)
1201 {
1202         struct icssg_setclock_desc __iomem *sc_descp;
1203         struct prueth_emac *emac = clockops_data;
1204         struct icssg_setclock_desc sc_desc;
1205         u64 cyclecount;
1206         u32 cycletime;
1207         int timeout;
1208
1209         if (!emac->fw_running)
1210                 return;
1211
1212         sc_descp = emac->prueth->shram.va + TIMESYNC_FW_WC_SETCLOCK_DESC_OFFSET;
1213
1214         cycletime = IEP_DEFAULT_CYCLE_TIME_NS;
1215         cyclecount = ns / cycletime;
1216
1217         memset(&sc_desc, 0, sizeof(sc_desc));
1218         sc_desc.margin = cycletime - 1000;
1219         sc_desc.cyclecounter0_set = cyclecount & GENMASK(31, 0);
1220         sc_desc.cyclecounter1_set = (cyclecount & GENMASK(63, 32)) >> 32;
1221         sc_desc.iepcount_set = ns % cycletime;
1222         sc_desc.CMP0_current = cycletime - 4; //Count from 0 to (cycle time)-4
1223
1224         memcpy_toio(sc_descp, &sc_desc, sizeof(sc_desc));
1225
1226         writeb(1, &sc_descp->request);
1227
1228         timeout = 5;    /* fw should take 2-3 ms */
1229         while (timeout--) {
1230                 if (readb(&sc_descp->acknowledgment))
1231                         return;
1232
1233                 usleep_range(500, 1000);
1234         }
1235
1236         dev_err(emac->prueth->dev, "settime timeout\n");
1237 }
1238
1239 static int prueth_perout_enable(void *clockops_data,
1240                                 struct ptp_perout_request *req, int on,
1241                                 u64 *cmp)
1242 {
1243         struct prueth_emac *emac = clockops_data;
1244         u32 reduction_factor = 0, offset = 0;
1245         struct timespec64 ts;
1246         u64 ns_period;
1247
1248         if (!on)
1249                 return 0;
1250
1251         /* Any firmware specific stuff for PPS/PEROUT handling */
1252         ts.tv_sec = req->period.sec;
1253         ts.tv_nsec = req->period.nsec;
1254         ns_period = timespec64_to_ns(&ts);
1255
1256         /* f/w doesn't support period less than cycle time */
1257         if (ns_period < IEP_DEFAULT_CYCLE_TIME_NS)
1258                 return -ENXIO;
1259
1260         reduction_factor = ns_period / IEP_DEFAULT_CYCLE_TIME_NS;
1261         offset = ns_period % IEP_DEFAULT_CYCLE_TIME_NS;
1262
1263         /* f/w requires at least 1uS within a cycle so CMP
1264          * can trigger after SYNC is enabled
1265          */
1266         if (offset < 5 * NSEC_PER_USEC)
1267                 offset = 5 * NSEC_PER_USEC;
1268
1269         /* if offset is close to cycle time then we will miss
1270          * the CMP event for last tick when IEP rolls over.
1271          * In normal mode, IEP tick is 4ns.
1272          * In slow compensation it could be 0ns or 8ns at
1273          * every slow compensation cycle.
1274          */
1275         if (offset > IEP_DEFAULT_CYCLE_TIME_NS - 8)
1276                 offset = IEP_DEFAULT_CYCLE_TIME_NS - 8;
1277
1278         /* we're in shadow mode so need to set upper 32-bits */
1279         *cmp = (u64)offset << 32;
1280
1281         writel(reduction_factor, emac->prueth->shram.va +
1282                 TIMESYNC_FW_WC_SYNCOUT_REDUCTION_FACTOR_OFFSET);
1283
1284         writel(0, emac->prueth->shram.va +
1285                 TIMESYNC_FW_WC_SYNCOUT_START_TIME_CYCLECOUNT_OFFSET);
1286
1287         return 0;
1288 }
1289
1290 const struct icss_iep_clockops prueth_iep_clockops = {
1291         .settime = prueth_iep_settime,
1292         .gettime = prueth_iep_gettime,
1293         .perout_enable = prueth_perout_enable,
1294 };
1295
1296 /**
1297  * emac_ndo_open - EMAC device open
1298  * @ndev: network adapter device
1299  *
1300  * Called when system wants to start the interface.
1301  *
1302  * Return: 0 for a successful open, or appropriate error code
1303  */
1304 static int emac_ndo_open(struct net_device *ndev)
1305 {
1306         struct prueth_emac *emac = netdev_priv(ndev);
1307         int ret, i, num_data_chn = emac->tx_ch_num;
1308         struct prueth *prueth = emac->prueth;
1309         int slice = prueth_emac_slice(emac);
1310         struct device *dev = prueth->dev;
1311         int max_rx_flows;
1312         int rx_flow;
1313
1314         /* clear SMEM and MSMC settings for all slices */
1315         if (!prueth->emacs_initialized) {
1316                 memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
1317                 memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
1318         }
1319
1320         /* set h/w MAC as user might have re-configured */
1321         ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1322
1323         icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1324         icssg_ft1_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
1325
1326         icssg_class_default(prueth->miig_rt, slice, 0);
1327
1328         /* Notify the stack of the actual queue counts. */
1329         ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
1330         if (ret) {
1331                 dev_err(dev, "cannot set real number of tx queues\n");
1332                 return ret;
1333         }
1334
1335         init_completion(&emac->cmd_complete);
1336         ret = prueth_init_tx_chns(emac);
1337         if (ret) {
1338                 dev_err(dev, "failed to init tx channel: %d\n", ret);
1339                 return ret;
1340         }
1341
1342         max_rx_flows = PRUETH_MAX_RX_FLOWS;
1343         ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
1344                                   max_rx_flows, PRUETH_MAX_RX_DESC);
1345         if (ret) {
1346                 dev_err(dev, "failed to init rx channel: %d\n", ret);
1347                 goto cleanup_tx;
1348         }
1349
1350         ret = prueth_ndev_add_tx_napi(emac);
1351         if (ret)
1352                 goto cleanup_rx;
1353
1354         /* we use only the highest priority flow for now i.e. @irq[3] */
1355         rx_flow = PRUETH_RX_FLOW_DATA;
1356         ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
1357                           IRQF_TRIGGER_HIGH, dev_name(dev), emac);
1358         if (ret) {
1359                 dev_err(dev, "unable to request RX IRQ\n");
1360                 goto cleanup_napi;
1361         }
1362
1363         /* reset and start PRU firmware */
1364         ret = prueth_emac_start(prueth, emac);
1365         if (ret)
1366                 goto free_rx_irq;
1367
1368         icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
1369
1370         if (!prueth->emacs_initialized) {
1371                 ret = icss_iep_init(emac->iep, &prueth_iep_clockops,
1372                                     emac, IEP_DEFAULT_CYCLE_TIME_NS);
1373         }
1374
1375         ret = request_threaded_irq(emac->tx_ts_irq, NULL, prueth_tx_ts_irq,
1376                                    IRQF_ONESHOT, dev_name(dev), emac);
1377         if (ret)
1378                 goto stop;
1379
1380         /* Prepare RX */
1381         ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
1382         if (ret)
1383                 goto free_tx_ts_irq;
1384
1385         ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
1386         if (ret)
1387                 goto reset_rx_chn;
1388
1389         for (i = 0; i < emac->tx_ch_num; i++) {
1390                 ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
1391                 if (ret)
1392                         goto reset_tx_chan;
1393         }
1394
1395         /* Enable NAPI in Tx and Rx direction */
1396         for (i = 0; i < emac->tx_ch_num; i++)
1397                 napi_enable(&emac->tx_chns[i].napi_tx);
1398         napi_enable(&emac->napi_rx);
1399
1400         /* start PHY */
1401         phy_start(ndev->phydev);
1402
1403         prueth->emacs_initialized++;
1404
1405         queue_work(system_long_wq, &emac->stats_work.work);
1406
1407         return 0;
1408
1409 reset_tx_chan:
1410         /* Since interface is not yet up, there is wouldn't be
1411          * any SKB for completion. So set false to free_skb
1412          */
1413         prueth_reset_tx_chan(emac, i, false);
1414 reset_rx_chn:
1415         prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
1416 free_tx_ts_irq:
1417         free_irq(emac->tx_ts_irq, emac);
1418 stop:
1419         prueth_emac_stop(emac);
1420 free_rx_irq:
1421         free_irq(emac->rx_chns.irq[rx_flow], emac);
1422 cleanup_napi:
1423         prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1424 cleanup_rx:
1425         prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1426 cleanup_tx:
1427         prueth_cleanup_tx_chns(emac);
1428
1429         return ret;
1430 }
1431
1432 /**
1433  * emac_ndo_stop - EMAC device stop
1434  * @ndev: network adapter device
1435  *
1436  * Called when system wants to stop or down the interface.
1437  *
1438  * Return: Always 0 (Success)
1439  */
1440 static int emac_ndo_stop(struct net_device *ndev)
1441 {
1442         struct prueth_emac *emac = netdev_priv(ndev);
1443         struct prueth *prueth = emac->prueth;
1444         int rx_flow = PRUETH_RX_FLOW_DATA;
1445         int max_rx_flows;
1446         int ret, i;
1447
1448         /* inform the upper layers. */
1449         netif_tx_stop_all_queues(ndev);
1450
1451         /* block packets from wire */
1452         if (ndev->phydev)
1453                 phy_stop(ndev->phydev);
1454
1455         icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
1456
1457         atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
1458         /* ensure new tdown_cnt value is visible */
1459         smp_mb__after_atomic();
1460         /* tear down and disable UDMA channels */
1461         reinit_completion(&emac->tdown_complete);
1462         for (i = 0; i < emac->tx_ch_num; i++)
1463                 k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
1464
1465         ret = wait_for_completion_timeout(&emac->tdown_complete,
1466                                           msecs_to_jiffies(1000));
1467         if (!ret)
1468                 netdev_err(ndev, "tx teardown timeout\n");
1469
1470         prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
1471         for (i = 0; i < emac->tx_ch_num; i++)
1472                 napi_disable(&emac->tx_chns[i].napi_tx);
1473
1474         max_rx_flows = PRUETH_MAX_RX_FLOWS;
1475         k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
1476
1477         prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
1478
1479         napi_disable(&emac->napi_rx);
1480
1481         cancel_work_sync(&emac->rx_mode_work);
1482
1483         /* Destroying the queued work in ndo_stop() */
1484         cancel_delayed_work_sync(&emac->stats_work);
1485
1486         /* stop PRUs */
1487         prueth_emac_stop(emac);
1488
1489         if (prueth->emacs_initialized == 1)
1490                 icss_iep_exit(emac->iep);
1491
1492         /* stop PRUs */
1493         prueth_emac_stop(emac);
1494
1495         free_irq(emac->tx_ts_irq, emac);
1496
1497         free_irq(emac->rx_chns.irq[rx_flow], emac);
1498         prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
1499         prueth_cleanup_tx_chns(emac);
1500
1501         prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
1502         prueth_cleanup_tx_chns(emac);
1503
1504         prueth->emacs_initialized--;
1505
1506         return 0;
1507 }
1508
1509 static void emac_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1510 {
1511         ndev->stats.tx_errors++;
1512 }
1513
1514 static void emac_ndo_set_rx_mode_work(struct work_struct *work)
1515 {
1516         struct prueth_emac *emac = container_of(work, struct prueth_emac, rx_mode_work);
1517         struct net_device *ndev = emac->ndev;
1518         bool promisc, allmulti;
1519
1520         if (!netif_running(ndev))
1521                 return;
1522
1523         promisc = ndev->flags & IFF_PROMISC;
1524         allmulti = ndev->flags & IFF_ALLMULTI;
1525         emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_DISABLE);
1526         emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_DISABLE);
1527
1528         if (promisc) {
1529                 emac_set_port_state(emac, ICSSG_EMAC_PORT_UC_FLOODING_ENABLE);
1530                 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1531                 return;
1532         }
1533
1534         if (allmulti) {
1535                 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1536                 return;
1537         }
1538
1539         if (!netdev_mc_empty(ndev)) {
1540                 emac_set_port_state(emac, ICSSG_EMAC_PORT_MC_FLOODING_ENABLE);
1541                 return;
1542         }
1543 }
1544
1545 /**
1546  * emac_ndo_set_rx_mode - EMAC set receive mode function
1547  * @ndev: The EMAC network adapter
1548  *
1549  * Called when system wants to set the receive mode of the device.
1550  *
1551  */
1552 static void emac_ndo_set_rx_mode(struct net_device *ndev)
1553 {
1554         struct prueth_emac *emac = netdev_priv(ndev);
1555
1556         queue_work(emac->cmd_wq, &emac->rx_mode_work);
1557 }
1558
1559 static int emac_set_ts_config(struct net_device *ndev, struct ifreq *ifr)
1560 {
1561         struct prueth_emac *emac = netdev_priv(ndev);
1562         struct hwtstamp_config config;
1563
1564         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1565                 return -EFAULT;
1566
1567         switch (config.tx_type) {
1568         case HWTSTAMP_TX_OFF:
1569                 emac->tx_ts_enabled = 0;
1570                 break;
1571         case HWTSTAMP_TX_ON:
1572                 emac->tx_ts_enabled = 1;
1573                 break;
1574         default:
1575                 return -ERANGE;
1576         }
1577
1578         switch (config.rx_filter) {
1579         case HWTSTAMP_FILTER_NONE:
1580                 emac->rx_ts_enabled = 0;
1581                 break;
1582         case HWTSTAMP_FILTER_ALL:
1583         case HWTSTAMP_FILTER_SOME:
1584         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1585         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1586         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1587         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1588         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1589         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1590         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1591         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1592         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1593         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1594         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1595         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1596         case HWTSTAMP_FILTER_NTP_ALL:
1597                 emac->rx_ts_enabled = 1;
1598                 config.rx_filter = HWTSTAMP_FILTER_ALL;
1599                 break;
1600         default:
1601                 return -ERANGE;
1602         }
1603
1604         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1605                 -EFAULT : 0;
1606 }
1607
1608 static int emac_get_ts_config(struct net_device *ndev, struct ifreq *ifr)
1609 {
1610         struct prueth_emac *emac = netdev_priv(ndev);
1611         struct hwtstamp_config config;
1612
1613         config.flags = 0;
1614         config.tx_type = emac->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1615         config.rx_filter = emac->rx_ts_enabled ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1616
1617         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1618                             -EFAULT : 0;
1619 }
1620
1621 static int emac_ndo_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
1622 {
1623         switch (cmd) {
1624         case SIOCGHWTSTAMP:
1625                 return emac_get_ts_config(ndev, ifr);
1626         case SIOCSHWTSTAMP:
1627                 return emac_set_ts_config(ndev, ifr);
1628         default:
1629                 break;
1630         }
1631
1632         return phy_do_ioctl(ndev, ifr, cmd);
1633 }
1634
1635 static void emac_ndo_get_stats64(struct net_device *ndev,
1636                                  struct rtnl_link_stats64 *stats)
1637 {
1638         struct prueth_emac *emac = netdev_priv(ndev);
1639
1640         emac_update_hardware_stats(emac);
1641
1642         stats->rx_packets     = emac_get_stat_by_name(emac, "rx_packets");
1643         stats->rx_bytes       = emac_get_stat_by_name(emac, "rx_bytes");
1644         stats->tx_packets     = emac_get_stat_by_name(emac, "tx_packets");
1645         stats->tx_bytes       = emac_get_stat_by_name(emac, "tx_bytes");
1646         stats->rx_crc_errors  = emac_get_stat_by_name(emac, "rx_crc_errors");
1647         stats->rx_over_errors = emac_get_stat_by_name(emac, "rx_over_errors");
1648         stats->multicast      = emac_get_stat_by_name(emac, "rx_multicast_frames");
1649
1650         stats->rx_errors  = ndev->stats.rx_errors;
1651         stats->rx_dropped = ndev->stats.rx_dropped;
1652         stats->tx_errors  = ndev->stats.tx_errors;
1653         stats->tx_dropped = ndev->stats.tx_dropped;
1654 }
1655
1656 static const struct net_device_ops emac_netdev_ops = {
1657         .ndo_open = emac_ndo_open,
1658         .ndo_stop = emac_ndo_stop,
1659         .ndo_start_xmit = emac_ndo_start_xmit,
1660         .ndo_set_mac_address = eth_mac_addr,
1661         .ndo_validate_addr = eth_validate_addr,
1662         .ndo_tx_timeout = emac_ndo_tx_timeout,
1663         .ndo_set_rx_mode = emac_ndo_set_rx_mode,
1664         .ndo_eth_ioctl = emac_ndo_ioctl,
1665         .ndo_get_stats64 = emac_ndo_get_stats64,
1666 };
1667
1668 /* get emac_port corresponding to eth_node name */
1669 static int prueth_node_port(struct device_node *eth_node)
1670 {
1671         u32 port_id;
1672         int ret;
1673
1674         ret = of_property_read_u32(eth_node, "reg", &port_id);
1675         if (ret)
1676                 return ret;
1677
1678         if (port_id == 0)
1679                 return PRUETH_PORT_MII0;
1680         else if (port_id == 1)
1681                 return PRUETH_PORT_MII1;
1682         else
1683                 return PRUETH_PORT_INVALID;
1684 }
1685
1686 /* get MAC instance corresponding to eth_node name */
1687 static int prueth_node_mac(struct device_node *eth_node)
1688 {
1689         u32 port_id;
1690         int ret;
1691
1692         ret = of_property_read_u32(eth_node, "reg", &port_id);
1693         if (ret)
1694                 return ret;
1695
1696         if (port_id == 0)
1697                 return PRUETH_MAC0;
1698         else if (port_id == 1)
1699                 return PRUETH_MAC1;
1700         else
1701                 return PRUETH_MAC_INVALID;
1702 }
1703
1704 static int prueth_netdev_init(struct prueth *prueth,
1705                               struct device_node *eth_node)
1706 {
1707         int ret, num_tx_chn = PRUETH_MAX_TX_QUEUES;
1708         struct prueth_emac *emac;
1709         struct net_device *ndev;
1710         enum prueth_port port;
1711         const char *irq_name;
1712         enum prueth_mac mac;
1713
1714         port = prueth_node_port(eth_node);
1715         if (port == PRUETH_PORT_INVALID)
1716                 return -EINVAL;
1717
1718         mac = prueth_node_mac(eth_node);
1719         if (mac == PRUETH_MAC_INVALID)
1720                 return -EINVAL;
1721
1722         ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
1723         if (!ndev)
1724                 return -ENOMEM;
1725
1726         emac = netdev_priv(ndev);
1727         emac->prueth = prueth;
1728         emac->ndev = ndev;
1729         emac->port_id = port;
1730         emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
1731         if (!emac->cmd_wq) {
1732                 ret = -ENOMEM;
1733                 goto free_ndev;
1734         }
1735         INIT_WORK(&emac->rx_mode_work, emac_ndo_set_rx_mode_work);
1736
1737         INIT_DELAYED_WORK(&emac->stats_work, emac_stats_work_handler);
1738
1739         ret = pruss_request_mem_region(prueth->pruss,
1740                                        port == PRUETH_PORT_MII0 ?
1741                                        PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
1742                                        &emac->dram);
1743         if (ret) {
1744                 dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
1745                 ret = -ENOMEM;
1746                 goto free_wq;
1747         }
1748
1749         emac->tx_ch_num = 1;
1750
1751         irq_name = "tx_ts0";
1752         if (emac->port_id == PRUETH_PORT_MII1)
1753                 irq_name = "tx_ts1";
1754         emac->tx_ts_irq = platform_get_irq_byname_optional(prueth->pdev, irq_name);
1755         if (emac->tx_ts_irq < 0) {
1756                 ret = dev_err_probe(prueth->dev, emac->tx_ts_irq, "could not get tx_ts_irq\n");
1757                 goto free;
1758         }
1759
1760         SET_NETDEV_DEV(ndev, prueth->dev);
1761         spin_lock_init(&emac->lock);
1762         mutex_init(&emac->cmd_lock);
1763
1764         emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
1765         if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
1766                 dev_err(prueth->dev, "couldn't find phy-handle\n");
1767                 ret = -ENODEV;
1768                 goto free;
1769         } else if (of_phy_is_fixed_link(eth_node)) {
1770                 ret = of_phy_register_fixed_link(eth_node);
1771                 if (ret) {
1772                         ret = dev_err_probe(prueth->dev, ret,
1773                                             "failed to register fixed-link phy\n");
1774                         goto free;
1775                 }
1776
1777                 emac->phy_node = eth_node;
1778         }
1779
1780         ret = of_get_phy_mode(eth_node, &emac->phy_if);
1781         if (ret) {
1782                 dev_err(prueth->dev, "could not get phy-mode property\n");
1783                 goto free;
1784         }
1785
1786         if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
1787             !phy_interface_mode_is_rgmii(emac->phy_if)) {
1788                 dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
1789                 ret = -EINVAL;
1790                 goto free;
1791         }
1792
1793         /* AM65 SR2.0 has TX Internal delay always enabled by hardware
1794          * and it is not possible to disable TX Internal delay. The below
1795          * switch case block describes how we handle different phy modes
1796          * based on hardware restriction.
1797          */
1798         switch (emac->phy_if) {
1799         case PHY_INTERFACE_MODE_RGMII_ID:
1800                 emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
1801                 break;
1802         case PHY_INTERFACE_MODE_RGMII_TXID:
1803                 emac->phy_if = PHY_INTERFACE_MODE_RGMII;
1804                 break;
1805         case PHY_INTERFACE_MODE_RGMII:
1806         case PHY_INTERFACE_MODE_RGMII_RXID:
1807                 dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
1808                 ret = -EINVAL;
1809                 goto free;
1810         default:
1811                 break;
1812         }
1813
1814         /* get mac address from DT and set private and netdev addr */
1815         ret = of_get_ethdev_address(eth_node, ndev);
1816         if (!is_valid_ether_addr(ndev->dev_addr)) {
1817                 eth_hw_addr_random(ndev);
1818                 dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
1819                          port, ndev->dev_addr);
1820         }
1821         ether_addr_copy(emac->mac_addr, ndev->dev_addr);
1822
1823         ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
1824         ndev->max_mtu = PRUETH_MAX_MTU;
1825         ndev->netdev_ops = &emac_netdev_ops;
1826         ndev->ethtool_ops = &icssg_ethtool_ops;
1827         ndev->hw_features = NETIF_F_SG;
1828         ndev->features = ndev->hw_features;
1829
1830         netif_napi_add(ndev, &emac->napi_rx, emac_napi_rx_poll);
1831         prueth->emac[mac] = emac;
1832
1833         return 0;
1834
1835 free:
1836         pruss_release_mem_region(prueth->pruss, &emac->dram);
1837 free_wq:
1838         destroy_workqueue(emac->cmd_wq);
1839 free_ndev:
1840         emac->ndev = NULL;
1841         prueth->emac[mac] = NULL;
1842         free_netdev(ndev);
1843
1844         return ret;
1845 }
1846
1847 static void prueth_netdev_exit(struct prueth *prueth,
1848                                struct device_node *eth_node)
1849 {
1850         struct prueth_emac *emac;
1851         enum prueth_mac mac;
1852
1853         mac = prueth_node_mac(eth_node);
1854         if (mac == PRUETH_MAC_INVALID)
1855                 return;
1856
1857         emac = prueth->emac[mac];
1858         if (!emac)
1859                 return;
1860
1861         if (of_phy_is_fixed_link(emac->phy_node))
1862                 of_phy_deregister_fixed_link(emac->phy_node);
1863
1864         netif_napi_del(&emac->napi_rx);
1865
1866         pruss_release_mem_region(prueth->pruss, &emac->dram);
1867         destroy_workqueue(emac->cmd_wq);
1868         free_netdev(emac->ndev);
1869         prueth->emac[mac] = NULL;
1870 }
1871
1872 static int prueth_get_cores(struct prueth *prueth, int slice)
1873 {
1874         struct device *dev = prueth->dev;
1875         enum pruss_pru_id pruss_id;
1876         struct device_node *np;
1877         int idx = -1, ret;
1878
1879         np = dev->of_node;
1880
1881         switch (slice) {
1882         case ICSS_SLICE0:
1883                 idx = 0;
1884                 break;
1885         case ICSS_SLICE1:
1886                 idx = 3;
1887                 break;
1888         default:
1889                 return -EINVAL;
1890         }
1891
1892         prueth->pru[slice] = pru_rproc_get(np, idx, &pruss_id);
1893         if (IS_ERR(prueth->pru[slice])) {
1894                 ret = PTR_ERR(prueth->pru[slice]);
1895                 prueth->pru[slice] = NULL;
1896                 return dev_err_probe(dev, ret, "unable to get PRU%d\n", slice);
1897         }
1898         prueth->pru_id[slice] = pruss_id;
1899
1900         idx++;
1901         prueth->rtu[slice] = pru_rproc_get(np, idx, NULL);
1902         if (IS_ERR(prueth->rtu[slice])) {
1903                 ret = PTR_ERR(prueth->rtu[slice]);
1904                 prueth->rtu[slice] = NULL;
1905                 return dev_err_probe(dev, ret, "unable to get RTU%d\n", slice);
1906         }
1907
1908         idx++;
1909         prueth->txpru[slice] = pru_rproc_get(np, idx, NULL);
1910         if (IS_ERR(prueth->txpru[slice])) {
1911                 ret = PTR_ERR(prueth->txpru[slice]);
1912                 prueth->txpru[slice] = NULL;
1913                 return dev_err_probe(dev, ret, "unable to get TX_PRU%d\n", slice);
1914         }
1915
1916         return 0;
1917 }
1918
1919 static void prueth_put_cores(struct prueth *prueth, int slice)
1920 {
1921         if (prueth->txpru[slice])
1922                 pru_rproc_put(prueth->txpru[slice]);
1923
1924         if (prueth->rtu[slice])
1925                 pru_rproc_put(prueth->rtu[slice]);
1926
1927         if (prueth->pru[slice])
1928                 pru_rproc_put(prueth->pru[slice]);
1929 }
1930
1931 static const struct of_device_id prueth_dt_match[];
1932
1933 static int prueth_probe(struct platform_device *pdev)
1934 {
1935         struct device_node *eth_node, *eth_ports_node;
1936         struct device_node  *eth0_node = NULL;
1937         struct device_node  *eth1_node = NULL;
1938         struct genpool_data_align gp_data = {
1939                 .align = SZ_64K,
1940         };
1941         const struct of_device_id *match;
1942         struct device *dev = &pdev->dev;
1943         struct device_node *np;
1944         struct prueth *prueth;
1945         struct pruss *pruss;
1946         u32 msmc_ram_size;
1947         int i, ret;
1948
1949         np = dev->of_node;
1950
1951         match = of_match_device(prueth_dt_match, dev);
1952         if (!match)
1953                 return -ENODEV;
1954
1955         prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
1956         if (!prueth)
1957                 return -ENOMEM;
1958
1959         dev_set_drvdata(dev, prueth);
1960         prueth->pdev = pdev;
1961         prueth->pdata = *(const struct prueth_pdata *)match->data;
1962
1963         prueth->dev = dev;
1964         eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
1965         if (!eth_ports_node)
1966                 return -ENOENT;
1967
1968         for_each_child_of_node(eth_ports_node, eth_node) {
1969                 u32 reg;
1970
1971                 if (strcmp(eth_node->name, "port"))
1972                         continue;
1973                 ret = of_property_read_u32(eth_node, "reg", &reg);
1974                 if (ret < 0) {
1975                         dev_err(dev, "%pOF error reading port_id %d\n",
1976                                 eth_node, ret);
1977                 }
1978
1979                 of_node_get(eth_node);
1980
1981                 if (reg == 0) {
1982                         eth0_node = eth_node;
1983                         if (!of_device_is_available(eth0_node)) {
1984                                 of_node_put(eth0_node);
1985                                 eth0_node = NULL;
1986                         }
1987                 } else if (reg == 1) {
1988                         eth1_node = eth_node;
1989                         if (!of_device_is_available(eth1_node)) {
1990                                 of_node_put(eth1_node);
1991                                 eth1_node = NULL;
1992                         }
1993                 } else {
1994                         dev_err(dev, "port reg should be 0 or 1\n");
1995                 }
1996         }
1997
1998         of_node_put(eth_ports_node);
1999
2000         /* At least one node must be present and available else we fail */
2001         if (!eth0_node && !eth1_node) {
2002                 dev_err(dev, "neither port0 nor port1 node available\n");
2003                 return -ENODEV;
2004         }
2005
2006         if (eth0_node == eth1_node) {
2007                 dev_err(dev, "port0 and port1 can't have same reg\n");
2008                 of_node_put(eth0_node);
2009                 return -ENODEV;
2010         }
2011
2012         prueth->eth_node[PRUETH_MAC0] = eth0_node;
2013         prueth->eth_node[PRUETH_MAC1] = eth1_node;
2014
2015         prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
2016         if (IS_ERR(prueth->miig_rt)) {
2017                 dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
2018                 return -ENODEV;
2019         }
2020
2021         prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
2022         if (IS_ERR(prueth->mii_rt)) {
2023                 dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
2024                 return -ENODEV;
2025         }
2026
2027         if (eth0_node) {
2028                 ret = prueth_get_cores(prueth, ICSS_SLICE0);
2029                 if (ret)
2030                         goto put_cores;
2031         }
2032
2033         if (eth1_node) {
2034                 ret = prueth_get_cores(prueth, ICSS_SLICE1);
2035                 if (ret)
2036                         goto put_cores;
2037         }
2038
2039         pruss = pruss_get(eth0_node ?
2040                           prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
2041         if (IS_ERR(pruss)) {
2042                 ret = PTR_ERR(pruss);
2043                 dev_err(dev, "unable to get pruss handle\n");
2044                 goto put_cores;
2045         }
2046
2047         prueth->pruss = pruss;
2048
2049         ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
2050                                        &prueth->shram);
2051         if (ret) {
2052                 dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
2053                 pruss_put(prueth->pruss);
2054         }
2055
2056         prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
2057         if (!prueth->sram_pool) {
2058                 dev_err(dev, "unable to get SRAM pool\n");
2059                 ret = -ENODEV;
2060
2061                 goto put_mem;
2062         }
2063
2064         msmc_ram_size = MSMC_RAM_SIZE;
2065
2066         /* NOTE: FW bug needs buffer base to be 64KB aligned */
2067         prueth->msmcram.va =
2068                 (void __iomem *)gen_pool_alloc_algo(prueth->sram_pool,
2069                                                     msmc_ram_size,
2070                                                     gen_pool_first_fit_align,
2071                                                     &gp_data);
2072
2073         if (!prueth->msmcram.va) {
2074                 ret = -ENOMEM;
2075                 dev_err(dev, "unable to allocate MSMC resource\n");
2076                 goto put_mem;
2077         }
2078         prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
2079                                                    (unsigned long)prueth->msmcram.va);
2080         prueth->msmcram.size = msmc_ram_size;
2081         memset_io(prueth->msmcram.va, 0, msmc_ram_size);
2082         dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
2083                 prueth->msmcram.va, prueth->msmcram.size);
2084
2085         prueth->iep0 = icss_iep_get_idx(np, 0);
2086         if (IS_ERR(prueth->iep0)) {
2087                 ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n");
2088                 prueth->iep0 = NULL;
2089                 goto free_pool;
2090         }
2091
2092         prueth->iep1 = icss_iep_get_idx(np, 1);
2093         if (IS_ERR(prueth->iep1)) {
2094                 ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n");
2095                 icss_iep_put(prueth->iep0);
2096                 prueth->iep0 = NULL;
2097                 prueth->iep1 = NULL;
2098                 goto free_pool;
2099         }
2100
2101         if (prueth->pdata.quirk_10m_link_issue) {
2102                 /* Enable IEP1 for FW in 64bit mode as W/A for 10M FD link detect issue under TX
2103                  * traffic.
2104                  */
2105                 icss_iep_init_fw(prueth->iep1);
2106         }
2107
2108         /* setup netdev interfaces */
2109         if (eth0_node) {
2110                 ret = prueth_netdev_init(prueth, eth0_node);
2111                 if (ret) {
2112                         dev_err_probe(dev, ret, "netdev init %s failed\n",
2113                                       eth0_node->name);
2114                         goto exit_iep;
2115                 }
2116                 prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
2117         }
2118
2119         if (eth1_node) {
2120                 ret = prueth_netdev_init(prueth, eth1_node);
2121                 if (ret) {
2122                         dev_err_probe(dev, ret, "netdev init %s failed\n",
2123                                       eth1_node->name);
2124                         goto netdev_exit;
2125                 }
2126
2127                 prueth->emac[PRUETH_MAC1]->iep = prueth->iep0;
2128         }
2129
2130         /* register the network devices */
2131         if (eth0_node) {
2132                 ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
2133                 if (ret) {
2134                         dev_err(dev, "can't register netdev for port MII0");
2135                         goto netdev_exit;
2136                 }
2137
2138                 prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
2139
2140                 emac_phy_connect(prueth->emac[PRUETH_MAC0]);
2141                 phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
2142         }
2143
2144         if (eth1_node) {
2145                 ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
2146                 if (ret) {
2147                         dev_err(dev, "can't register netdev for port MII1");
2148                         goto netdev_unregister;
2149                 }
2150
2151                 prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
2152                 emac_phy_connect(prueth->emac[PRUETH_MAC1]);
2153                 phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
2154         }
2155
2156         dev_info(dev, "TI PRU ethernet driver initialized: %s EMAC mode\n",
2157                  (!eth0_node || !eth1_node) ? "single" : "dual");
2158
2159         if (eth1_node)
2160                 of_node_put(eth1_node);
2161         if (eth0_node)
2162                 of_node_put(eth0_node);
2163         return 0;
2164
2165 netdev_unregister:
2166         for (i = 0; i < PRUETH_NUM_MACS; i++) {
2167                 if (!prueth->registered_netdevs[i])
2168                         continue;
2169                 if (prueth->emac[i]->ndev->phydev) {
2170                         phy_disconnect(prueth->emac[i]->ndev->phydev);
2171                         prueth->emac[i]->ndev->phydev = NULL;
2172                 }
2173                 unregister_netdev(prueth->registered_netdevs[i]);
2174         }
2175
2176 netdev_exit:
2177         for (i = 0; i < PRUETH_NUM_MACS; i++) {
2178                 eth_node = prueth->eth_node[i];
2179                 if (!eth_node)
2180                         continue;
2181
2182                 prueth_netdev_exit(prueth, eth_node);
2183         }
2184
2185 exit_iep:
2186         if (prueth->pdata.quirk_10m_link_issue)
2187                 icss_iep_exit_fw(prueth->iep1);
2188
2189 free_pool:
2190         gen_pool_free(prueth->sram_pool,
2191                       (unsigned long)prueth->msmcram.va, msmc_ram_size);
2192
2193 put_mem:
2194         pruss_release_mem_region(prueth->pruss, &prueth->shram);
2195         pruss_put(prueth->pruss);
2196
2197 put_cores:
2198         if (eth1_node) {
2199                 prueth_put_cores(prueth, ICSS_SLICE1);
2200                 of_node_put(eth1_node);
2201         }
2202
2203         if (eth0_node) {
2204                 prueth_put_cores(prueth, ICSS_SLICE0);
2205                 of_node_put(eth0_node);
2206         }
2207
2208         return ret;
2209 }
2210
2211 static void prueth_remove(struct platform_device *pdev)
2212 {
2213         struct prueth *prueth = platform_get_drvdata(pdev);
2214         struct device_node *eth_node;
2215         int i;
2216
2217         for (i = 0; i < PRUETH_NUM_MACS; i++) {
2218                 if (!prueth->registered_netdevs[i])
2219                         continue;
2220                 phy_stop(prueth->emac[i]->ndev->phydev);
2221                 phy_disconnect(prueth->emac[i]->ndev->phydev);
2222                 prueth->emac[i]->ndev->phydev = NULL;
2223                 unregister_netdev(prueth->registered_netdevs[i]);
2224         }
2225
2226         for (i = 0; i < PRUETH_NUM_MACS; i++) {
2227                 eth_node = prueth->eth_node[i];
2228                 if (!eth_node)
2229                         continue;
2230
2231                 prueth_netdev_exit(prueth, eth_node);
2232         }
2233
2234         if (prueth->pdata.quirk_10m_link_issue)
2235                 icss_iep_exit_fw(prueth->iep1);
2236
2237         icss_iep_put(prueth->iep1);
2238         icss_iep_put(prueth->iep0);
2239
2240         gen_pool_free(prueth->sram_pool,
2241                       (unsigned long)prueth->msmcram.va,
2242                       MSMC_RAM_SIZE);
2243
2244         pruss_release_mem_region(prueth->pruss, &prueth->shram);
2245
2246         pruss_put(prueth->pruss);
2247
2248         if (prueth->eth_node[PRUETH_MAC1])
2249                 prueth_put_cores(prueth, ICSS_SLICE1);
2250
2251         if (prueth->eth_node[PRUETH_MAC0])
2252                 prueth_put_cores(prueth, ICSS_SLICE0);
2253 }
2254
2255 #ifdef CONFIG_PM_SLEEP
2256 static int prueth_suspend(struct device *dev)
2257 {
2258         struct prueth *prueth = dev_get_drvdata(dev);
2259         struct net_device *ndev;
2260         int i, ret;
2261
2262         for (i = 0; i < PRUETH_NUM_MACS; i++) {
2263                 ndev = prueth->registered_netdevs[i];
2264
2265                 if (!ndev)
2266                         continue;
2267
2268                 if (netif_running(ndev)) {
2269                         netif_device_detach(ndev);
2270                         ret = emac_ndo_stop(ndev);
2271                         if (ret < 0) {
2272                                 netdev_err(ndev, "failed to stop: %d", ret);
2273                                 return ret;
2274                         }
2275                 }
2276         }
2277
2278         return 0;
2279 }
2280
2281 static int prueth_resume(struct device *dev)
2282 {
2283         struct prueth *prueth = dev_get_drvdata(dev);
2284         struct net_device *ndev;
2285         int i, ret;
2286
2287         for (i = 0; i < PRUETH_NUM_MACS; i++) {
2288                 ndev = prueth->registered_netdevs[i];
2289
2290                 if (!ndev)
2291                         continue;
2292
2293                 if (netif_running(ndev)) {
2294                         ret = emac_ndo_open(ndev);
2295                         if (ret < 0) {
2296                                 netdev_err(ndev, "failed to start: %d", ret);
2297                                 return ret;
2298                         }
2299                         netif_device_attach(ndev);
2300                 }
2301         }
2302
2303         return 0;
2304 }
2305 #endif /* CONFIG_PM_SLEEP */
2306
2307 static const struct dev_pm_ops prueth_dev_pm_ops = {
2308         SET_SYSTEM_SLEEP_PM_OPS(prueth_suspend, prueth_resume)
2309 };
2310
2311 static const struct prueth_pdata am654_icssg_pdata = {
2312         .fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
2313         .quirk_10m_link_issue = 1,
2314 };
2315
2316 static const struct of_device_id prueth_dt_match[] = {
2317         { .compatible = "ti,am654-icssg-prueth", .data = &am654_icssg_pdata },
2318         { /* sentinel */ }
2319 };
2320 MODULE_DEVICE_TABLE(of, prueth_dt_match);
2321
2322 static struct platform_driver prueth_driver = {
2323         .probe = prueth_probe,
2324         .remove_new = prueth_remove,
2325         .driver = {
2326                 .name = "icssg-prueth",
2327                 .of_match_table = prueth_dt_match,
2328                 .pm = &prueth_dev_pm_ops,
2329         },
2330 };
2331 module_platform_driver(prueth_driver);
2332
2333 MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
2334 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
2335 MODULE_DESCRIPTION("PRUSS ICSSG Ethernet Driver");
2336 MODULE_LICENSE("GPL");