net: add skb_[inner_]tcp_all_headers helpers
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE      (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58                                  PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO        5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x)     ((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)     ((x)->dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX        256
82 #define STMMAC_TX_XSK_AVAIL             16
83 #define STMMAC_RX_FILL_BATCH            16
84
85 #define STMMAC_XDP_PASS         0
86 #define STMMAC_XDP_CONSUMED     BIT(0)
87 #define STMMAC_XDP_TX           BIT(1)
88 #define STMMAC_XDP_REDIRECT     BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK     256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
112                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER        1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136                                           u32 rxmode, u32 chan);
137
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145
146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148         int ret = 0;
149
150         if (enabled) {
151                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
152                 if (ret)
153                         return ret;
154                 ret = clk_prepare_enable(priv->plat->pclk);
155                 if (ret) {
156                         clk_disable_unprepare(priv->plat->stmmac_clk);
157                         return ret;
158                 }
159                 if (priv->plat->clks_config) {
160                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161                         if (ret) {
162                                 clk_disable_unprepare(priv->plat->stmmac_clk);
163                                 clk_disable_unprepare(priv->plat->pclk);
164                                 return ret;
165                         }
166                 }
167         } else {
168                 clk_disable_unprepare(priv->plat->stmmac_clk);
169                 clk_disable_unprepare(priv->plat->pclk);
170                 if (priv->plat->clks_config)
171                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172         }
173
174         return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177
178 /**
179  * stmmac_verify_args - verify the driver parameters.
180  * Description: it checks the driver parameters and set a default in case of
181  * errors.
182  */
183 static void stmmac_verify_args(void)
184 {
185         if (unlikely(watchdog < 0))
186                 watchdog = TX_TIMEO;
187         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188                 buf_sz = DEFAULT_BUFSIZE;
189         if (unlikely(flow_ctrl > 1))
190                 flow_ctrl = FLOW_AUTO;
191         else if (likely(flow_ctrl < 0))
192                 flow_ctrl = FLOW_OFF;
193         if (unlikely((pause < 0) || (pause > 0xffff)))
194                 pause = PAUSE_TIME;
195         if (eee_timer < 0)
196                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198
199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204         u32 queue;
205
206         for (queue = 0; queue < maxq; queue++) {
207                 struct stmmac_channel *ch = &priv->channel[queue];
208
209                 if (stmmac_xdp_is_enabled(priv) &&
210                     test_bit(queue, priv->af_xdp_zc_qps)) {
211                         napi_disable(&ch->rxtx_napi);
212                         continue;
213                 }
214
215                 if (queue < rx_queues_cnt)
216                         napi_disable(&ch->rx_napi);
217                 if (queue < tx_queues_cnt)
218                         napi_disable(&ch->tx_napi);
219         }
220 }
221
222 /**
223  * stmmac_disable_all_queues - Disable all queues
224  * @priv: driver private structure
225  */
226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229         struct stmmac_rx_queue *rx_q;
230         u32 queue;
231
232         /* synchronize_rcu() needed for pending XDP buffers to drain */
233         for (queue = 0; queue < rx_queues_cnt; queue++) {
234                 rx_q = &priv->rx_queue[queue];
235                 if (rx_q->xsk_pool) {
236                         synchronize_rcu();
237                         break;
238                 }
239         }
240
241         __stmmac_disable_all_queues(priv);
242 }
243
244 /**
245  * stmmac_enable_all_queues - Enable all queues
246  * @priv: driver private structure
247  */
248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253         u32 queue;
254
255         for (queue = 0; queue < maxq; queue++) {
256                 struct stmmac_channel *ch = &priv->channel[queue];
257
258                 if (stmmac_xdp_is_enabled(priv) &&
259                     test_bit(queue, priv->af_xdp_zc_qps)) {
260                         napi_enable(&ch->rxtx_napi);
261                         continue;
262                 }
263
264                 if (queue < rx_queues_cnt)
265                         napi_enable(&ch->rx_napi);
266                 if (queue < tx_queues_cnt)
267                         napi_enable(&ch->tx_napi);
268         }
269 }
270
271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273         if (!test_bit(STMMAC_DOWN, &priv->state) &&
274             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275                 queue_work(priv->wq, &priv->service_task);
276 }
277
278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280         netif_carrier_off(priv->dev);
281         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282         stmmac_service_event_schedule(priv);
283 }
284
285 /**
286  * stmmac_clk_csr_set - dynamically set the MDC clock
287  * @priv: driver private structure
288  * Description: this is to dynamically set the MDC clock according to the csr
289  * clock input.
290  * Note:
291  *      If a specific clk_csr value is passed from the platform
292  *      this means that the CSR Clock Range selection cannot be
293  *      changed at run-time and it is fixed (as reported in the driver
294  *      documentation). Viceversa the driver will try to set the MDC
295  *      clock dynamically according to the actual clock input.
296  */
297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299         u32 clk_rate;
300
301         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302
303         /* Platform provided default clk_csr would be assumed valid
304          * for all other cases except for the below mentioned ones.
305          * For values higher than the IEEE 802.3 specified frequency
306          * we can not estimate the proper divider as it is not known
307          * the frequency of clk_csr_i. So we do not change the default
308          * divider.
309          */
310         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311                 if (clk_rate < CSR_F_35M)
312                         priv->clk_csr = STMMAC_CSR_20_35M;
313                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314                         priv->clk_csr = STMMAC_CSR_35_60M;
315                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316                         priv->clk_csr = STMMAC_CSR_60_100M;
317                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318                         priv->clk_csr = STMMAC_CSR_100_150M;
319                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320                         priv->clk_csr = STMMAC_CSR_150_250M;
321                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322                         priv->clk_csr = STMMAC_CSR_250_300M;
323         }
324
325         if (priv->plat->has_sun8i) {
326                 if (clk_rate > 160000000)
327                         priv->clk_csr = 0x03;
328                 else if (clk_rate > 80000000)
329                         priv->clk_csr = 0x02;
330                 else if (clk_rate > 40000000)
331                         priv->clk_csr = 0x01;
332                 else
333                         priv->clk_csr = 0;
334         }
335
336         if (priv->plat->has_xgmac) {
337                 if (clk_rate > 400000000)
338                         priv->clk_csr = 0x5;
339                 else if (clk_rate > 350000000)
340                         priv->clk_csr = 0x4;
341                 else if (clk_rate > 300000000)
342                         priv->clk_csr = 0x3;
343                 else if (clk_rate > 250000000)
344                         priv->clk_csr = 0x2;
345                 else if (clk_rate > 150000000)
346                         priv->clk_csr = 0x1;
347                 else
348                         priv->clk_csr = 0x0;
349         }
350 }
351
352 static void print_pkt(unsigned char *buf, int len)
353 {
354         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357
358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361         u32 avail;
362
363         if (tx_q->dirty_tx > tx_q->cur_tx)
364                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365         else
366                 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367
368         return avail;
369 }
370
371 /**
372  * stmmac_rx_dirty - Get RX queue dirty
373  * @priv: driver private structure
374  * @queue: RX queue index
375  */
376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379         u32 dirty;
380
381         if (rx_q->dirty_rx <= rx_q->cur_rx)
382                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
383         else
384                 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385
386         return dirty;
387 }
388
389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391         int tx_lpi_timer;
392
393         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
394         priv->eee_sw_timer_en = en ? 0 : 1;
395         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
396         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398
399 /**
400  * stmmac_enable_eee_mode - check and enter in LPI mode
401  * @priv: driver private structure
402  * Description: this function is to verify and enter in LPI mode in case of
403  * EEE.
404  */
405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407         u32 tx_cnt = priv->plat->tx_queues_to_use;
408         u32 queue;
409
410         /* check if all TX queues have the work finished */
411         for (queue = 0; queue < tx_cnt; queue++) {
412                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413
414                 if (tx_q->dirty_tx != tx_q->cur_tx)
415                         return -EBUSY; /* still unfinished work */
416         }
417
418         /* Check and enter in LPI mode */
419         if (!priv->tx_path_in_lpi_mode)
420                 stmmac_set_eee_mode(priv, priv->hw,
421                                 priv->plat->en_tx_lpi_clockgating);
422         return 0;
423 }
424
425 /**
426  * stmmac_disable_eee_mode - disable and exit from LPI mode
427  * @priv: driver private structure
428  * Description: this function is to exit and disable EEE in case of
429  * LPI state is true. This is called by the xmit.
430  */
431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433         if (!priv->eee_sw_timer_en) {
434                 stmmac_lpi_entry_timer_config(priv, 0);
435                 return;
436         }
437
438         stmmac_reset_eee_mode(priv, priv->hw);
439         del_timer_sync(&priv->eee_ctrl_timer);
440         priv->tx_path_in_lpi_mode = false;
441 }
442
443 /**
444  * stmmac_eee_ctrl_timer - EEE TX SW timer.
445  * @t:  timer_list struct containing private info
446  * Description:
447  *  if there is no data transfer and if we are not in LPI state,
448  *  then MAC Transmitter can be moved to LPI state.
449  */
450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453
454         if (stmmac_enable_eee_mode(priv))
455                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457
458 /**
459  * stmmac_eee_init - init EEE
460  * @priv: driver private structure
461  * Description:
462  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
463  *  can also manage EEE, this function enable the LPI state and start related
464  *  timer.
465  */
466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468         int eee_tw_timer = priv->eee_tw_timer;
469
470         /* Using PCS we cannot dial with the phy registers at this stage
471          * so we do not support extra feature like EEE.
472          */
473         if (priv->hw->pcs == STMMAC_PCS_TBI ||
474             priv->hw->pcs == STMMAC_PCS_RTBI)
475                 return false;
476
477         /* Check if MAC core supports the EEE feature. */
478         if (!priv->dma_cap.eee)
479                 return false;
480
481         mutex_lock(&priv->lock);
482
483         /* Check if it needs to be deactivated */
484         if (!priv->eee_active) {
485                 if (priv->eee_enabled) {
486                         netdev_dbg(priv->dev, "disable EEE\n");
487                         stmmac_lpi_entry_timer_config(priv, 0);
488                         del_timer_sync(&priv->eee_ctrl_timer);
489                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490                         if (priv->hw->xpcs)
491                                 xpcs_config_eee(priv->hw->xpcs,
492                                                 priv->plat->mult_fact_100ns,
493                                                 false);
494                 }
495                 mutex_unlock(&priv->lock);
496                 return false;
497         }
498
499         if (priv->eee_active && !priv->eee_enabled) {
500                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502                                      eee_tw_timer);
503                 if (priv->hw->xpcs)
504                         xpcs_config_eee(priv->hw->xpcs,
505                                         priv->plat->mult_fact_100ns,
506                                         true);
507         }
508
509         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510                 del_timer_sync(&priv->eee_ctrl_timer);
511                 priv->tx_path_in_lpi_mode = false;
512                 stmmac_lpi_entry_timer_config(priv, 1);
513         } else {
514                 stmmac_lpi_entry_timer_config(priv, 0);
515                 mod_timer(&priv->eee_ctrl_timer,
516                           STMMAC_LPI_T(priv->tx_lpi_timer));
517         }
518
519         mutex_unlock(&priv->lock);
520         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521         return true;
522 }
523
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525  * @priv: driver private structure
526  * @p : descriptor pointer
527  * @skb : the socket buffer
528  * Description :
529  * This function will read timestamp from the descriptor & pass it to stack.
530  * and also perform some sanity checks.
531  */
532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533                                    struct dma_desc *p, struct sk_buff *skb)
534 {
535         struct skb_shared_hwtstamps shhwtstamp;
536         bool found = false;
537         u64 ns = 0;
538
539         if (!priv->hwts_tx_en)
540                 return;
541
542         /* exit if skb doesn't support hw tstamp */
543         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544                 return;
545
546         /* check tx tstamp status */
547         if (stmmac_get_tx_timestamp_status(priv, p)) {
548                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549                 found = true;
550         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551                 found = true;
552         }
553
554         if (found) {
555                 ns -= priv->plat->cdc_error_adj;
556
557                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
559
560                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561                 /* pass tstamp to stack */
562                 skb_tstamp_tx(skb, &shhwtstamp);
563         }
564 }
565
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567  * @priv: driver private structure
568  * @p : descriptor pointer
569  * @np : next descriptor pointer
570  * @skb : the socket buffer
571  * Description :
572  * This function will read received packet's timestamp from the descriptor
573  * and pass it to stack. It also perform some sanity checks.
574  */
575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576                                    struct dma_desc *np, struct sk_buff *skb)
577 {
578         struct skb_shared_hwtstamps *shhwtstamp = NULL;
579         struct dma_desc *desc = p;
580         u64 ns = 0;
581
582         if (!priv->hwts_rx_en)
583                 return;
584         /* For GMAC4, the valid timestamp is from CTX next desc. */
585         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586                 desc = np;
587
588         /* Check if timestamp is available */
589         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591
592                 ns -= priv->plat->cdc_error_adj;
593
594                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595                 shhwtstamp = skb_hwtstamps(skb);
596                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
598         } else  {
599                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600         }
601 }
602
603 /**
604  *  stmmac_hwtstamp_set - control hardware timestamping.
605  *  @dev: device pointer.
606  *  @ifr: An IOCTL specific structure, that can contain a pointer to
607  *  a proprietary structure used to pass information to the driver.
608  *  Description:
609  *  This function configures the MAC to enable/disable both outgoing(TX)
610  *  and incoming(RX) packets time stamping based on user input.
611  *  Return Value:
612  *  0 on success and an appropriate -ve integer on failure.
613  */
614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616         struct stmmac_priv *priv = netdev_priv(dev);
617         struct hwtstamp_config config;
618         u32 ptp_v2 = 0;
619         u32 tstamp_all = 0;
620         u32 ptp_over_ipv4_udp = 0;
621         u32 ptp_over_ipv6_udp = 0;
622         u32 ptp_over_ethernet = 0;
623         u32 snap_type_sel = 0;
624         u32 ts_master_en = 0;
625         u32 ts_event_en = 0;
626
627         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628                 netdev_alert(priv->dev, "No support for HW time stamping\n");
629                 priv->hwts_tx_en = 0;
630                 priv->hwts_rx_en = 0;
631
632                 return -EOPNOTSUPP;
633         }
634
635         if (copy_from_user(&config, ifr->ifr_data,
636                            sizeof(config)))
637                 return -EFAULT;
638
639         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640                    __func__, config.flags, config.tx_type, config.rx_filter);
641
642         if (config.tx_type != HWTSTAMP_TX_OFF &&
643             config.tx_type != HWTSTAMP_TX_ON)
644                 return -ERANGE;
645
646         if (priv->adv_ts) {
647                 switch (config.rx_filter) {
648                 case HWTSTAMP_FILTER_NONE:
649                         /* time stamp no incoming packet at all */
650                         config.rx_filter = HWTSTAMP_FILTER_NONE;
651                         break;
652
653                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654                         /* PTP v1, UDP, any kind of event packet */
655                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656                         /* 'xmac' hardware can support Sync, Pdelay_Req and
657                          * Pdelay_resp by setting bit14 and bits17/16 to 01
658                          * This leaves Delay_Req timestamps out.
659                          * Enable all events *and* general purpose message
660                          * timestamping
661                          */
662                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665                         break;
666
667                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668                         /* PTP v1, UDP, Sync packet */
669                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670                         /* take time stamp for SYNC messages only */
671                         ts_event_en = PTP_TCR_TSEVNTENA;
672
673                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675                         break;
676
677                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678                         /* PTP v1, UDP, Delay_req packet */
679                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680                         /* take time stamp for Delay_Req messages only */
681                         ts_master_en = PTP_TCR_TSMSTRENA;
682                         ts_event_en = PTP_TCR_TSEVNTENA;
683
684                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686                         break;
687
688                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689                         /* PTP v2, UDP, any kind of event packet */
690                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691                         ptp_v2 = PTP_TCR_TSVER2ENA;
692                         /* take time stamp for all event messages */
693                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694
695                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697                         break;
698
699                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700                         /* PTP v2, UDP, Sync packet */
701                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702                         ptp_v2 = PTP_TCR_TSVER2ENA;
703                         /* take time stamp for SYNC messages only */
704                         ts_event_en = PTP_TCR_TSEVNTENA;
705
706                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708                         break;
709
710                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711                         /* PTP v2, UDP, Delay_req packet */
712                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713                         ptp_v2 = PTP_TCR_TSVER2ENA;
714                         /* take time stamp for Delay_Req messages only */
715                         ts_master_en = PTP_TCR_TSMSTRENA;
716                         ts_event_en = PTP_TCR_TSEVNTENA;
717
718                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720                         break;
721
722                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
723                         /* PTP v2/802.AS1 any layer, any kind of event packet */
724                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725                         ptp_v2 = PTP_TCR_TSVER2ENA;
726                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727                         if (priv->synopsys_id < DWMAC_CORE_4_10)
728                                 ts_event_en = PTP_TCR_TSEVNTENA;
729                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731                         ptp_over_ethernet = PTP_TCR_TSIPENA;
732                         break;
733
734                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
735                         /* PTP v2/802.AS1, any layer, Sync packet */
736                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737                         ptp_v2 = PTP_TCR_TSVER2ENA;
738                         /* take time stamp for SYNC messages only */
739                         ts_event_en = PTP_TCR_TSEVNTENA;
740
741                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743                         ptp_over_ethernet = PTP_TCR_TSIPENA;
744                         break;
745
746                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747                         /* PTP v2/802.AS1, any layer, Delay_req packet */
748                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749                         ptp_v2 = PTP_TCR_TSVER2ENA;
750                         /* take time stamp for Delay_Req messages only */
751                         ts_master_en = PTP_TCR_TSMSTRENA;
752                         ts_event_en = PTP_TCR_TSEVNTENA;
753
754                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756                         ptp_over_ethernet = PTP_TCR_TSIPENA;
757                         break;
758
759                 case HWTSTAMP_FILTER_NTP_ALL:
760                 case HWTSTAMP_FILTER_ALL:
761                         /* time stamp any incoming packet */
762                         config.rx_filter = HWTSTAMP_FILTER_ALL;
763                         tstamp_all = PTP_TCR_TSENALL;
764                         break;
765
766                 default:
767                         return -ERANGE;
768                 }
769         } else {
770                 switch (config.rx_filter) {
771                 case HWTSTAMP_FILTER_NONE:
772                         config.rx_filter = HWTSTAMP_FILTER_NONE;
773                         break;
774                 default:
775                         /* PTP v1, UDP, any kind of event packet */
776                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777                         break;
778                 }
779         }
780         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782
783         priv->systime_flags = STMMAC_HWTS_ACTIVE;
784
785         if (priv->hwts_tx_en || priv->hwts_rx_en) {
786                 priv->systime_flags |= tstamp_all | ptp_v2 |
787                                        ptp_over_ethernet | ptp_over_ipv6_udp |
788                                        ptp_over_ipv4_udp | ts_event_en |
789                                        ts_master_en | snap_type_sel;
790         }
791
792         stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793
794         memcpy(&priv->tstamp_config, &config, sizeof(config));
795
796         return copy_to_user(ifr->ifr_data, &config,
797                             sizeof(config)) ? -EFAULT : 0;
798 }
799
800 /**
801  *  stmmac_hwtstamp_get - read hardware timestamping.
802  *  @dev: device pointer.
803  *  @ifr: An IOCTL specific structure, that can contain a pointer to
804  *  a proprietary structure used to pass information to the driver.
805  *  Description:
806  *  This function obtain the current hardware timestamping settings
807  *  as requested.
808  */
809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811         struct stmmac_priv *priv = netdev_priv(dev);
812         struct hwtstamp_config *config = &priv->tstamp_config;
813
814         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815                 return -EOPNOTSUPP;
816
817         return copy_to_user(ifr->ifr_data, config,
818                             sizeof(*config)) ? -EFAULT : 0;
819 }
820
821 /**
822  * stmmac_init_tstamp_counter - init hardware timestamping counter
823  * @priv: driver private structure
824  * @systime_flags: timestamping flags
825  * Description:
826  * Initialize hardware counter for packet timestamping.
827  * This is valid as long as the interface is open and not suspended.
828  * Will be rerun after resuming from suspend, case in which the timestamping
829  * flags updated by stmmac_hwtstamp_set() also need to be restored.
830  */
831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834         struct timespec64 now;
835         u32 sec_inc = 0;
836         u64 temp = 0;
837         int ret;
838
839         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
840                 return -EOPNOTSUPP;
841
842         ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
843         if (ret < 0) {
844                 netdev_warn(priv->dev,
845                             "failed to enable PTP reference clock: %pe\n",
846                             ERR_PTR(ret));
847                 return ret;
848         }
849
850         stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
851         priv->systime_flags = systime_flags;
852
853         /* program Sub Second Increment reg */
854         stmmac_config_sub_second_increment(priv, priv->ptpaddr,
855                                            priv->plat->clk_ptp_rate,
856                                            xmac, &sec_inc);
857         temp = div_u64(1000000000ULL, sec_inc);
858
859         /* Store sub second increment for later use */
860         priv->sub_second_inc = sec_inc;
861
862         /* calculate default added value:
863          * formula is :
864          * addend = (2^32)/freq_div_ratio;
865          * where, freq_div_ratio = 1e9ns/sec_inc
866          */
867         temp = (u64)(temp << 32);
868         priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
869         stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
870
871         /* initialize system time */
872         ktime_get_real_ts64(&now);
873
874         /* lower 32 bits of tv_sec are safe until y2106 */
875         stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
876
877         return 0;
878 }
879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
880
881 /**
882  * stmmac_init_ptp - init PTP
883  * @priv: driver private structure
884  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
885  * This is done by looking at the HW cap. register.
886  * This function also registers the ptp driver.
887  */
888 static int stmmac_init_ptp(struct stmmac_priv *priv)
889 {
890         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
891         int ret;
892
893         if (priv->plat->ptp_clk_freq_config)
894                 priv->plat->ptp_clk_freq_config(priv);
895
896         ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
897         if (ret)
898                 return ret;
899
900         priv->adv_ts = 0;
901         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
902         if (xmac && priv->dma_cap.atime_stamp)
903                 priv->adv_ts = 1;
904         /* Dwmac 3.x core with extend_desc can support adv_ts */
905         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
906                 priv->adv_ts = 1;
907
908         if (priv->dma_cap.time_stamp)
909                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
910
911         if (priv->adv_ts)
912                 netdev_info(priv->dev,
913                             "IEEE 1588-2008 Advanced Timestamp supported\n");
914
915         priv->hwts_tx_en = 0;
916         priv->hwts_rx_en = 0;
917
918         return 0;
919 }
920
921 static void stmmac_release_ptp(struct stmmac_priv *priv)
922 {
923         clk_disable_unprepare(priv->plat->clk_ptp_ref);
924         stmmac_ptp_unregister(priv);
925 }
926
927 /**
928  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
929  *  @priv: driver private structure
930  *  @duplex: duplex passed to the next function
931  *  Description: It is used for configuring the flow control in all queues
932  */
933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
934 {
935         u32 tx_cnt = priv->plat->tx_queues_to_use;
936
937         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
938                         priv->pause, tx_cnt);
939 }
940
941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
942                                                  phy_interface_t interface)
943 {
944         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945
946         if (!priv->hw->xpcs)
947                 return NULL;
948
949         return &priv->hw->xpcs->pcs;
950 }
951
952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
953                               const struct phylink_link_state *state)
954 {
955         /* Nothing to do, xpcs_config() handles everything */
956 }
957
958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
959 {
960         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
961         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
962         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
963         bool *hs_enable = &fpe_cfg->hs_enable;
964
965         if (is_up && *hs_enable) {
966                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
967         } else {
968                 *lo_state = FPE_STATE_OFF;
969                 *lp_state = FPE_STATE_OFF;
970         }
971 }
972
973 static void stmmac_mac_link_down(struct phylink_config *config,
974                                  unsigned int mode, phy_interface_t interface)
975 {
976         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
977
978         stmmac_mac_set(priv, priv->ioaddr, false);
979         priv->eee_active = false;
980         priv->tx_lpi_enabled = false;
981         priv->eee_enabled = stmmac_eee_init(priv);
982         stmmac_set_eee_pls(priv, priv->hw, false);
983
984         if (priv->dma_cap.fpesel)
985                 stmmac_fpe_link_state_handle(priv, false);
986 }
987
988 static void stmmac_mac_link_up(struct phylink_config *config,
989                                struct phy_device *phy,
990                                unsigned int mode, phy_interface_t interface,
991                                int speed, int duplex,
992                                bool tx_pause, bool rx_pause)
993 {
994         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
995         u32 ctrl;
996
997         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
998         ctrl &= ~priv->hw->link.speed_mask;
999
1000         if (interface == PHY_INTERFACE_MODE_USXGMII) {
1001                 switch (speed) {
1002                 case SPEED_10000:
1003                         ctrl |= priv->hw->link.xgmii.speed10000;
1004                         break;
1005                 case SPEED_5000:
1006                         ctrl |= priv->hw->link.xgmii.speed5000;
1007                         break;
1008                 case SPEED_2500:
1009                         ctrl |= priv->hw->link.xgmii.speed2500;
1010                         break;
1011                 default:
1012                         return;
1013                 }
1014         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1015                 switch (speed) {
1016                 case SPEED_100000:
1017                         ctrl |= priv->hw->link.xlgmii.speed100000;
1018                         break;
1019                 case SPEED_50000:
1020                         ctrl |= priv->hw->link.xlgmii.speed50000;
1021                         break;
1022                 case SPEED_40000:
1023                         ctrl |= priv->hw->link.xlgmii.speed40000;
1024                         break;
1025                 case SPEED_25000:
1026                         ctrl |= priv->hw->link.xlgmii.speed25000;
1027                         break;
1028                 case SPEED_10000:
1029                         ctrl |= priv->hw->link.xgmii.speed10000;
1030                         break;
1031                 case SPEED_2500:
1032                         ctrl |= priv->hw->link.speed2500;
1033                         break;
1034                 case SPEED_1000:
1035                         ctrl |= priv->hw->link.speed1000;
1036                         break;
1037                 default:
1038                         return;
1039                 }
1040         } else {
1041                 switch (speed) {
1042                 case SPEED_2500:
1043                         ctrl |= priv->hw->link.speed2500;
1044                         break;
1045                 case SPEED_1000:
1046                         ctrl |= priv->hw->link.speed1000;
1047                         break;
1048                 case SPEED_100:
1049                         ctrl |= priv->hw->link.speed100;
1050                         break;
1051                 case SPEED_10:
1052                         ctrl |= priv->hw->link.speed10;
1053                         break;
1054                 default:
1055                         return;
1056                 }
1057         }
1058
1059         priv->speed = speed;
1060
1061         if (priv->plat->fix_mac_speed)
1062                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1063
1064         if (!duplex)
1065                 ctrl &= ~priv->hw->link.duplex;
1066         else
1067                 ctrl |= priv->hw->link.duplex;
1068
1069         /* Flow Control operation */
1070         if (tx_pause && rx_pause)
1071                 stmmac_mac_flow_ctrl(priv, duplex);
1072
1073         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1074
1075         stmmac_mac_set(priv, priv->ioaddr, true);
1076         if (phy && priv->dma_cap.eee) {
1077                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1078                 priv->eee_enabled = stmmac_eee_init(priv);
1079                 priv->tx_lpi_enabled = priv->eee_enabled;
1080                 stmmac_set_eee_pls(priv, priv->hw, true);
1081         }
1082
1083         if (priv->dma_cap.fpesel)
1084                 stmmac_fpe_link_state_handle(priv, true);
1085 }
1086
1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1088         .validate = phylink_generic_validate,
1089         .mac_select_pcs = stmmac_mac_select_pcs,
1090         .mac_config = stmmac_mac_config,
1091         .mac_link_down = stmmac_mac_link_down,
1092         .mac_link_up = stmmac_mac_link_up,
1093 };
1094
1095 /**
1096  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1097  * @priv: driver private structure
1098  * Description: this is to verify if the HW supports the PCS.
1099  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1100  * configured for the TBI, RTBI, or SGMII PHY interface.
1101  */
1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1103 {
1104         int interface = priv->plat->interface;
1105
1106         if (priv->dma_cap.pcs) {
1107                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1108                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1109                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1110                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1111                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1112                         priv->hw->pcs = STMMAC_PCS_RGMII;
1113                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1114                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1115                         priv->hw->pcs = STMMAC_PCS_SGMII;
1116                 }
1117         }
1118 }
1119
1120 /**
1121  * stmmac_init_phy - PHY initialization
1122  * @dev: net device structure
1123  * Description: it initializes the driver's PHY state, and attaches the PHY
1124  * to the mac driver.
1125  *  Return value:
1126  *  0 on success
1127  */
1128 static int stmmac_init_phy(struct net_device *dev)
1129 {
1130         struct stmmac_priv *priv = netdev_priv(dev);
1131         struct fwnode_handle *fwnode;
1132         int ret;
1133
1134         fwnode = of_fwnode_handle(priv->plat->phylink_node);
1135         if (!fwnode)
1136                 fwnode = dev_fwnode(priv->device);
1137
1138         if (fwnode)
1139                 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1140
1141         /* Some DT bindings do not set-up the PHY handle. Let's try to
1142          * manually parse it
1143          */
1144         if (!fwnode || ret) {
1145                 int addr = priv->plat->phy_addr;
1146                 struct phy_device *phydev;
1147
1148                 phydev = mdiobus_get_phy(priv->mii, addr);
1149                 if (!phydev) {
1150                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1151                         return -ENODEV;
1152                 }
1153
1154                 ret = phylink_connect_phy(priv->phylink, phydev);
1155         }
1156
1157         if (!priv->plat->pmt) {
1158                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1159
1160                 phylink_ethtool_get_wol(priv->phylink, &wol);
1161                 device_set_wakeup_capable(priv->device, !!wol.supported);
1162         }
1163
1164         return ret;
1165 }
1166
1167 static int stmmac_phy_setup(struct stmmac_priv *priv)
1168 {
1169         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1170         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1171         int max_speed = priv->plat->max_speed;
1172         int mode = priv->plat->phy_interface;
1173         struct phylink *phylink;
1174
1175         priv->phylink_config.dev = &priv->dev->dev;
1176         priv->phylink_config.type = PHYLINK_NETDEV;
1177         if (priv->plat->mdio_bus_data)
1178                 priv->phylink_config.ovr_an_inband =
1179                         mdio_bus_data->xpcs_an_inband;
1180
1181         if (!fwnode)
1182                 fwnode = dev_fwnode(priv->device);
1183
1184         /* Set the platform/firmware specified interface mode */
1185         __set_bit(mode, priv->phylink_config.supported_interfaces);
1186
1187         /* If we have an xpcs, it defines which PHY interfaces are supported. */
1188         if (priv->hw->xpcs)
1189                 xpcs_get_interfaces(priv->hw->xpcs,
1190                                     priv->phylink_config.supported_interfaces);
1191
1192         priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1193                 MAC_10 | MAC_100;
1194
1195         if (!max_speed || max_speed >= 1000)
1196                 priv->phylink_config.mac_capabilities |= MAC_1000;
1197
1198         if (priv->plat->has_gmac4) {
1199                 if (!max_speed || max_speed >= 2500)
1200                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1201         } else if (priv->plat->has_xgmac) {
1202                 if (!max_speed || max_speed >= 2500)
1203                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1204                 if (!max_speed || max_speed >= 5000)
1205                         priv->phylink_config.mac_capabilities |= MAC_5000FD;
1206                 if (!max_speed || max_speed >= 10000)
1207                         priv->phylink_config.mac_capabilities |= MAC_10000FD;
1208                 if (!max_speed || max_speed >= 25000)
1209                         priv->phylink_config.mac_capabilities |= MAC_25000FD;
1210                 if (!max_speed || max_speed >= 40000)
1211                         priv->phylink_config.mac_capabilities |= MAC_40000FD;
1212                 if (!max_speed || max_speed >= 50000)
1213                         priv->phylink_config.mac_capabilities |= MAC_50000FD;
1214                 if (!max_speed || max_speed >= 100000)
1215                         priv->phylink_config.mac_capabilities |= MAC_100000FD;
1216         }
1217
1218         /* Half-Duplex can only work with single queue */
1219         if (priv->plat->tx_queues_to_use > 1)
1220                 priv->phylink_config.mac_capabilities &=
1221                         ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1222
1223         phylink = phylink_create(&priv->phylink_config, fwnode,
1224                                  mode, &stmmac_phylink_mac_ops);
1225         if (IS_ERR(phylink))
1226                 return PTR_ERR(phylink);
1227
1228         priv->phylink = phylink;
1229         return 0;
1230 }
1231
1232 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1233 {
1234         u32 rx_cnt = priv->plat->rx_queues_to_use;
1235         unsigned int desc_size;
1236         void *head_rx;
1237         u32 queue;
1238
1239         /* Display RX rings */
1240         for (queue = 0; queue < rx_cnt; queue++) {
1241                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1242
1243                 pr_info("\tRX Queue %u rings\n", queue);
1244
1245                 if (priv->extend_desc) {
1246                         head_rx = (void *)rx_q->dma_erx;
1247                         desc_size = sizeof(struct dma_extended_desc);
1248                 } else {
1249                         head_rx = (void *)rx_q->dma_rx;
1250                         desc_size = sizeof(struct dma_desc);
1251                 }
1252
1253                 /* Display RX ring */
1254                 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1255                                     rx_q->dma_rx_phy, desc_size);
1256         }
1257 }
1258
1259 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1260 {
1261         u32 tx_cnt = priv->plat->tx_queues_to_use;
1262         unsigned int desc_size;
1263         void *head_tx;
1264         u32 queue;
1265
1266         /* Display TX rings */
1267         for (queue = 0; queue < tx_cnt; queue++) {
1268                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1269
1270                 pr_info("\tTX Queue %d rings\n", queue);
1271
1272                 if (priv->extend_desc) {
1273                         head_tx = (void *)tx_q->dma_etx;
1274                         desc_size = sizeof(struct dma_extended_desc);
1275                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1276                         head_tx = (void *)tx_q->dma_entx;
1277                         desc_size = sizeof(struct dma_edesc);
1278                 } else {
1279                         head_tx = (void *)tx_q->dma_tx;
1280                         desc_size = sizeof(struct dma_desc);
1281                 }
1282
1283                 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1284                                     tx_q->dma_tx_phy, desc_size);
1285         }
1286 }
1287
1288 static void stmmac_display_rings(struct stmmac_priv *priv)
1289 {
1290         /* Display RX ring */
1291         stmmac_display_rx_rings(priv);
1292
1293         /* Display TX ring */
1294         stmmac_display_tx_rings(priv);
1295 }
1296
1297 static int stmmac_set_bfsize(int mtu, int bufsize)
1298 {
1299         int ret = bufsize;
1300
1301         if (mtu >= BUF_SIZE_8KiB)
1302                 ret = BUF_SIZE_16KiB;
1303         else if (mtu >= BUF_SIZE_4KiB)
1304                 ret = BUF_SIZE_8KiB;
1305         else if (mtu >= BUF_SIZE_2KiB)
1306                 ret = BUF_SIZE_4KiB;
1307         else if (mtu > DEFAULT_BUFSIZE)
1308                 ret = BUF_SIZE_2KiB;
1309         else
1310                 ret = DEFAULT_BUFSIZE;
1311
1312         return ret;
1313 }
1314
1315 /**
1316  * stmmac_clear_rx_descriptors - clear RX descriptors
1317  * @priv: driver private structure
1318  * @queue: RX queue index
1319  * Description: this function is called to clear the RX descriptors
1320  * in case of both basic and extended descriptors are used.
1321  */
1322 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1323 {
1324         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1325         int i;
1326
1327         /* Clear the RX descriptors */
1328         for (i = 0; i < priv->dma_rx_size; i++)
1329                 if (priv->extend_desc)
1330                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1331                                         priv->use_riwt, priv->mode,
1332                                         (i == priv->dma_rx_size - 1),
1333                                         priv->dma_buf_sz);
1334                 else
1335                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1336                                         priv->use_riwt, priv->mode,
1337                                         (i == priv->dma_rx_size - 1),
1338                                         priv->dma_buf_sz);
1339 }
1340
1341 /**
1342  * stmmac_clear_tx_descriptors - clear tx descriptors
1343  * @priv: driver private structure
1344  * @queue: TX queue index.
1345  * Description: this function is called to clear the TX descriptors
1346  * in case of both basic and extended descriptors are used.
1347  */
1348 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1349 {
1350         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1351         int i;
1352
1353         /* Clear the TX descriptors */
1354         for (i = 0; i < priv->dma_tx_size; i++) {
1355                 int last = (i == (priv->dma_tx_size - 1));
1356                 struct dma_desc *p;
1357
1358                 if (priv->extend_desc)
1359                         p = &tx_q->dma_etx[i].basic;
1360                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1361                         p = &tx_q->dma_entx[i].basic;
1362                 else
1363                         p = &tx_q->dma_tx[i];
1364
1365                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1366         }
1367 }
1368
1369 /**
1370  * stmmac_clear_descriptors - clear descriptors
1371  * @priv: driver private structure
1372  * Description: this function is called to clear the TX and RX descriptors
1373  * in case of both basic and extended descriptors are used.
1374  */
1375 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1376 {
1377         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1378         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1379         u32 queue;
1380
1381         /* Clear the RX descriptors */
1382         for (queue = 0; queue < rx_queue_cnt; queue++)
1383                 stmmac_clear_rx_descriptors(priv, queue);
1384
1385         /* Clear the TX descriptors */
1386         for (queue = 0; queue < tx_queue_cnt; queue++)
1387                 stmmac_clear_tx_descriptors(priv, queue);
1388 }
1389
1390 /**
1391  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1392  * @priv: driver private structure
1393  * @p: descriptor pointer
1394  * @i: descriptor index
1395  * @flags: gfp flag
1396  * @queue: RX queue index
1397  * Description: this function is called to allocate a receive buffer, perform
1398  * the DMA mapping and init the descriptor.
1399  */
1400 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1401                                   int i, gfp_t flags, u32 queue)
1402 {
1403         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1404         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1405         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1406
1407         if (priv->dma_cap.addr64 <= 32)
1408                 gfp |= GFP_DMA32;
1409
1410         if (!buf->page) {
1411                 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1412                 if (!buf->page)
1413                         return -ENOMEM;
1414                 buf->page_offset = stmmac_rx_offset(priv);
1415         }
1416
1417         if (priv->sph && !buf->sec_page) {
1418                 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1419                 if (!buf->sec_page)
1420                         return -ENOMEM;
1421
1422                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1423                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1424         } else {
1425                 buf->sec_page = NULL;
1426                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1427         }
1428
1429         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1430
1431         stmmac_set_desc_addr(priv, p, buf->addr);
1432         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1433                 stmmac_init_desc3(priv, p);
1434
1435         return 0;
1436 }
1437
1438 /**
1439  * stmmac_free_rx_buffer - free RX dma buffers
1440  * @priv: private structure
1441  * @queue: RX queue index
1442  * @i: buffer index.
1443  */
1444 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1445 {
1446         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1447         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1448
1449         if (buf->page)
1450                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1451         buf->page = NULL;
1452
1453         if (buf->sec_page)
1454                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1455         buf->sec_page = NULL;
1456 }
1457
1458 /**
1459  * stmmac_free_tx_buffer - free RX dma buffers
1460  * @priv: private structure
1461  * @queue: RX queue index
1462  * @i: buffer index.
1463  */
1464 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1465 {
1466         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1467
1468         if (tx_q->tx_skbuff_dma[i].buf &&
1469             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1470                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1471                         dma_unmap_page(priv->device,
1472                                        tx_q->tx_skbuff_dma[i].buf,
1473                                        tx_q->tx_skbuff_dma[i].len,
1474                                        DMA_TO_DEVICE);
1475                 else
1476                         dma_unmap_single(priv->device,
1477                                          tx_q->tx_skbuff_dma[i].buf,
1478                                          tx_q->tx_skbuff_dma[i].len,
1479                                          DMA_TO_DEVICE);
1480         }
1481
1482         if (tx_q->xdpf[i] &&
1483             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1484              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1485                 xdp_return_frame(tx_q->xdpf[i]);
1486                 tx_q->xdpf[i] = NULL;
1487         }
1488
1489         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1490                 tx_q->xsk_frames_done++;
1491
1492         if (tx_q->tx_skbuff[i] &&
1493             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1494                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1495                 tx_q->tx_skbuff[i] = NULL;
1496         }
1497
1498         tx_q->tx_skbuff_dma[i].buf = 0;
1499         tx_q->tx_skbuff_dma[i].map_as_page = false;
1500 }
1501
1502 /**
1503  * dma_free_rx_skbufs - free RX dma buffers
1504  * @priv: private structure
1505  * @queue: RX queue index
1506  */
1507 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1508 {
1509         int i;
1510
1511         for (i = 0; i < priv->dma_rx_size; i++)
1512                 stmmac_free_rx_buffer(priv, queue, i);
1513 }
1514
1515 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1516                                    gfp_t flags)
1517 {
1518         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1519         int i;
1520
1521         for (i = 0; i < priv->dma_rx_size; i++) {
1522                 struct dma_desc *p;
1523                 int ret;
1524
1525                 if (priv->extend_desc)
1526                         p = &((rx_q->dma_erx + i)->basic);
1527                 else
1528                         p = rx_q->dma_rx + i;
1529
1530                 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1531                                              queue);
1532                 if (ret)
1533                         return ret;
1534
1535                 rx_q->buf_alloc_num++;
1536         }
1537
1538         return 0;
1539 }
1540
1541 /**
1542  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1543  * @priv: private structure
1544  * @queue: RX queue index
1545  */
1546 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1547 {
1548         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1549         int i;
1550
1551         for (i = 0; i < priv->dma_rx_size; i++) {
1552                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1553
1554                 if (!buf->xdp)
1555                         continue;
1556
1557                 xsk_buff_free(buf->xdp);
1558                 buf->xdp = NULL;
1559         }
1560 }
1561
1562 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1563 {
1564         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1565         int i;
1566
1567         for (i = 0; i < priv->dma_rx_size; i++) {
1568                 struct stmmac_rx_buffer *buf;
1569                 dma_addr_t dma_addr;
1570                 struct dma_desc *p;
1571
1572                 if (priv->extend_desc)
1573                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1574                 else
1575                         p = rx_q->dma_rx + i;
1576
1577                 buf = &rx_q->buf_pool[i];
1578
1579                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1580                 if (!buf->xdp)
1581                         return -ENOMEM;
1582
1583                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1584                 stmmac_set_desc_addr(priv, p, dma_addr);
1585                 rx_q->buf_alloc_num++;
1586         }
1587
1588         return 0;
1589 }
1590
1591 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1592 {
1593         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1594                 return NULL;
1595
1596         return xsk_get_pool_from_qid(priv->dev, queue);
1597 }
1598
1599 /**
1600  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1601  * @priv: driver private structure
1602  * @queue: RX queue index
1603  * @flags: gfp flag.
1604  * Description: this function initializes the DMA RX descriptors
1605  * and allocates the socket buffers. It supports the chained and ring
1606  * modes.
1607  */
1608 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1609 {
1610         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1611         int ret;
1612
1613         netif_dbg(priv, probe, priv->dev,
1614                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1615                   (u32)rx_q->dma_rx_phy);
1616
1617         stmmac_clear_rx_descriptors(priv, queue);
1618
1619         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1620
1621         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1622
1623         if (rx_q->xsk_pool) {
1624                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1625                                                    MEM_TYPE_XSK_BUFF_POOL,
1626                                                    NULL));
1627                 netdev_info(priv->dev,
1628                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1629                             rx_q->queue_index);
1630                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1631         } else {
1632                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1633                                                    MEM_TYPE_PAGE_POOL,
1634                                                    rx_q->page_pool));
1635                 netdev_info(priv->dev,
1636                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1637                             rx_q->queue_index);
1638         }
1639
1640         if (rx_q->xsk_pool) {
1641                 /* RX XDP ZC buffer pool may not be populated, e.g.
1642                  * xdpsock TX-only.
1643                  */
1644                 stmmac_alloc_rx_buffers_zc(priv, queue);
1645         } else {
1646                 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1647                 if (ret < 0)
1648                         return -ENOMEM;
1649         }
1650
1651         rx_q->cur_rx = 0;
1652         rx_q->dirty_rx = 0;
1653
1654         /* Setup the chained descriptor addresses */
1655         if (priv->mode == STMMAC_CHAIN_MODE) {
1656                 if (priv->extend_desc)
1657                         stmmac_mode_init(priv, rx_q->dma_erx,
1658                                          rx_q->dma_rx_phy,
1659                                          priv->dma_rx_size, 1);
1660                 else
1661                         stmmac_mode_init(priv, rx_q->dma_rx,
1662                                          rx_q->dma_rx_phy,
1663                                          priv->dma_rx_size, 0);
1664         }
1665
1666         return 0;
1667 }
1668
1669 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1670 {
1671         struct stmmac_priv *priv = netdev_priv(dev);
1672         u32 rx_count = priv->plat->rx_queues_to_use;
1673         int queue;
1674         int ret;
1675
1676         /* RX INITIALIZATION */
1677         netif_dbg(priv, probe, priv->dev,
1678                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1679
1680         for (queue = 0; queue < rx_count; queue++) {
1681                 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1682                 if (ret)
1683                         goto err_init_rx_buffers;
1684         }
1685
1686         return 0;
1687
1688 err_init_rx_buffers:
1689         while (queue >= 0) {
1690                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1691
1692                 if (rx_q->xsk_pool)
1693                         dma_free_rx_xskbufs(priv, queue);
1694                 else
1695                         dma_free_rx_skbufs(priv, queue);
1696
1697                 rx_q->buf_alloc_num = 0;
1698                 rx_q->xsk_pool = NULL;
1699
1700                 queue--;
1701         }
1702
1703         return ret;
1704 }
1705
1706 /**
1707  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1708  * @priv: driver private structure
1709  * @queue : TX queue index
1710  * Description: this function initializes the DMA TX descriptors
1711  * and allocates the socket buffers. It supports the chained and ring
1712  * modes.
1713  */
1714 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1715 {
1716         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1717         int i;
1718
1719         netif_dbg(priv, probe, priv->dev,
1720                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1721                   (u32)tx_q->dma_tx_phy);
1722
1723         /* Setup the chained descriptor addresses */
1724         if (priv->mode == STMMAC_CHAIN_MODE) {
1725                 if (priv->extend_desc)
1726                         stmmac_mode_init(priv, tx_q->dma_etx,
1727                                          tx_q->dma_tx_phy,
1728                                          priv->dma_tx_size, 1);
1729                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1730                         stmmac_mode_init(priv, tx_q->dma_tx,
1731                                          tx_q->dma_tx_phy,
1732                                          priv->dma_tx_size, 0);
1733         }
1734
1735         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1736
1737         for (i = 0; i < priv->dma_tx_size; i++) {
1738                 struct dma_desc *p;
1739
1740                 if (priv->extend_desc)
1741                         p = &((tx_q->dma_etx + i)->basic);
1742                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1743                         p = &((tx_q->dma_entx + i)->basic);
1744                 else
1745                         p = tx_q->dma_tx + i;
1746
1747                 stmmac_clear_desc(priv, p);
1748
1749                 tx_q->tx_skbuff_dma[i].buf = 0;
1750                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1751                 tx_q->tx_skbuff_dma[i].len = 0;
1752                 tx_q->tx_skbuff_dma[i].last_segment = false;
1753                 tx_q->tx_skbuff[i] = NULL;
1754         }
1755
1756         tx_q->dirty_tx = 0;
1757         tx_q->cur_tx = 0;
1758         tx_q->mss = 0;
1759
1760         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1761
1762         return 0;
1763 }
1764
1765 static int init_dma_tx_desc_rings(struct net_device *dev)
1766 {
1767         struct stmmac_priv *priv = netdev_priv(dev);
1768         u32 tx_queue_cnt;
1769         u32 queue;
1770
1771         tx_queue_cnt = priv->plat->tx_queues_to_use;
1772
1773         for (queue = 0; queue < tx_queue_cnt; queue++)
1774                 __init_dma_tx_desc_rings(priv, queue);
1775
1776         return 0;
1777 }
1778
1779 /**
1780  * init_dma_desc_rings - init the RX/TX descriptor rings
1781  * @dev: net device structure
1782  * @flags: gfp flag.
1783  * Description: this function initializes the DMA RX/TX descriptors
1784  * and allocates the socket buffers. It supports the chained and ring
1785  * modes.
1786  */
1787 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1788 {
1789         struct stmmac_priv *priv = netdev_priv(dev);
1790         int ret;
1791
1792         ret = init_dma_rx_desc_rings(dev, flags);
1793         if (ret)
1794                 return ret;
1795
1796         ret = init_dma_tx_desc_rings(dev);
1797
1798         stmmac_clear_descriptors(priv);
1799
1800         if (netif_msg_hw(priv))
1801                 stmmac_display_rings(priv);
1802
1803         return ret;
1804 }
1805
1806 /**
1807  * dma_free_tx_skbufs - free TX dma buffers
1808  * @priv: private structure
1809  * @queue: TX queue index
1810  */
1811 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1812 {
1813         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1814         int i;
1815
1816         tx_q->xsk_frames_done = 0;
1817
1818         for (i = 0; i < priv->dma_tx_size; i++)
1819                 stmmac_free_tx_buffer(priv, queue, i);
1820
1821         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1822                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1823                 tx_q->xsk_frames_done = 0;
1824                 tx_q->xsk_pool = NULL;
1825         }
1826 }
1827
1828 /**
1829  * stmmac_free_tx_skbufs - free TX skb buffers
1830  * @priv: private structure
1831  */
1832 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1833 {
1834         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1835         u32 queue;
1836
1837         for (queue = 0; queue < tx_queue_cnt; queue++)
1838                 dma_free_tx_skbufs(priv, queue);
1839 }
1840
1841 /**
1842  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1843  * @priv: private structure
1844  * @queue: RX queue index
1845  */
1846 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1847 {
1848         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1849
1850         /* Release the DMA RX socket buffers */
1851         if (rx_q->xsk_pool)
1852                 dma_free_rx_xskbufs(priv, queue);
1853         else
1854                 dma_free_rx_skbufs(priv, queue);
1855
1856         rx_q->buf_alloc_num = 0;
1857         rx_q->xsk_pool = NULL;
1858
1859         /* Free DMA regions of consistent memory previously allocated */
1860         if (!priv->extend_desc)
1861                 dma_free_coherent(priv->device, priv->dma_rx_size *
1862                                   sizeof(struct dma_desc),
1863                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1864         else
1865                 dma_free_coherent(priv->device, priv->dma_rx_size *
1866                                   sizeof(struct dma_extended_desc),
1867                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1868
1869         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1870                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1871
1872         kfree(rx_q->buf_pool);
1873         if (rx_q->page_pool)
1874                 page_pool_destroy(rx_q->page_pool);
1875 }
1876
1877 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1878 {
1879         u32 rx_count = priv->plat->rx_queues_to_use;
1880         u32 queue;
1881
1882         /* Free RX queue resources */
1883         for (queue = 0; queue < rx_count; queue++)
1884                 __free_dma_rx_desc_resources(priv, queue);
1885 }
1886
1887 /**
1888  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1889  * @priv: private structure
1890  * @queue: TX queue index
1891  */
1892 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1893 {
1894         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1895         size_t size;
1896         void *addr;
1897
1898         /* Release the DMA TX socket buffers */
1899         dma_free_tx_skbufs(priv, queue);
1900
1901         if (priv->extend_desc) {
1902                 size = sizeof(struct dma_extended_desc);
1903                 addr = tx_q->dma_etx;
1904         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1905                 size = sizeof(struct dma_edesc);
1906                 addr = tx_q->dma_entx;
1907         } else {
1908                 size = sizeof(struct dma_desc);
1909                 addr = tx_q->dma_tx;
1910         }
1911
1912         size *= priv->dma_tx_size;
1913
1914         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1915
1916         kfree(tx_q->tx_skbuff_dma);
1917         kfree(tx_q->tx_skbuff);
1918 }
1919
1920 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1921 {
1922         u32 tx_count = priv->plat->tx_queues_to_use;
1923         u32 queue;
1924
1925         /* Free TX queue resources */
1926         for (queue = 0; queue < tx_count; queue++)
1927                 __free_dma_tx_desc_resources(priv, queue);
1928 }
1929
1930 /**
1931  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1932  * @priv: private structure
1933  * @queue: RX queue index
1934  * Description: according to which descriptor can be used (extend or basic)
1935  * this function allocates the resources for TX and RX paths. In case of
1936  * reception, for example, it pre-allocated the RX socket buffer in order to
1937  * allow zero-copy mechanism.
1938  */
1939 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1940 {
1941         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1942         struct stmmac_channel *ch = &priv->channel[queue];
1943         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1944         struct page_pool_params pp_params = { 0 };
1945         unsigned int num_pages;
1946         unsigned int napi_id;
1947         int ret;
1948
1949         rx_q->queue_index = queue;
1950         rx_q->priv_data = priv;
1951
1952         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1953         pp_params.pool_size = priv->dma_rx_size;
1954         num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1955         pp_params.order = ilog2(num_pages);
1956         pp_params.nid = dev_to_node(priv->device);
1957         pp_params.dev = priv->device;
1958         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1959         pp_params.offset = stmmac_rx_offset(priv);
1960         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1961
1962         rx_q->page_pool = page_pool_create(&pp_params);
1963         if (IS_ERR(rx_q->page_pool)) {
1964                 ret = PTR_ERR(rx_q->page_pool);
1965                 rx_q->page_pool = NULL;
1966                 return ret;
1967         }
1968
1969         rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1970                                  sizeof(*rx_q->buf_pool),
1971                                  GFP_KERNEL);
1972         if (!rx_q->buf_pool)
1973                 return -ENOMEM;
1974
1975         if (priv->extend_desc) {
1976                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1977                                                    priv->dma_rx_size *
1978                                                    sizeof(struct dma_extended_desc),
1979                                                    &rx_q->dma_rx_phy,
1980                                                    GFP_KERNEL);
1981                 if (!rx_q->dma_erx)
1982                         return -ENOMEM;
1983
1984         } else {
1985                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1986                                                   priv->dma_rx_size *
1987                                                   sizeof(struct dma_desc),
1988                                                   &rx_q->dma_rx_phy,
1989                                                   GFP_KERNEL);
1990                 if (!rx_q->dma_rx)
1991                         return -ENOMEM;
1992         }
1993
1994         if (stmmac_xdp_is_enabled(priv) &&
1995             test_bit(queue, priv->af_xdp_zc_qps))
1996                 napi_id = ch->rxtx_napi.napi_id;
1997         else
1998                 napi_id = ch->rx_napi.napi_id;
1999
2000         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2001                                rx_q->queue_index,
2002                                napi_id);
2003         if (ret) {
2004                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2005                 return -EINVAL;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2012 {
2013         u32 rx_count = priv->plat->rx_queues_to_use;
2014         u32 queue;
2015         int ret;
2016
2017         /* RX queues buffers and DMA */
2018         for (queue = 0; queue < rx_count; queue++) {
2019                 ret = __alloc_dma_rx_desc_resources(priv, queue);
2020                 if (ret)
2021                         goto err_dma;
2022         }
2023
2024         return 0;
2025
2026 err_dma:
2027         free_dma_rx_desc_resources(priv);
2028
2029         return ret;
2030 }
2031
2032 /**
2033  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2034  * @priv: private structure
2035  * @queue: TX queue index
2036  * Description: according to which descriptor can be used (extend or basic)
2037  * this function allocates the resources for TX and RX paths. In case of
2038  * reception, for example, it pre-allocated the RX socket buffer in order to
2039  * allow zero-copy mechanism.
2040  */
2041 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2042 {
2043         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2044         size_t size;
2045         void *addr;
2046
2047         tx_q->queue_index = queue;
2048         tx_q->priv_data = priv;
2049
2050         tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2051                                       sizeof(*tx_q->tx_skbuff_dma),
2052                                       GFP_KERNEL);
2053         if (!tx_q->tx_skbuff_dma)
2054                 return -ENOMEM;
2055
2056         tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2057                                   sizeof(struct sk_buff *),
2058                                   GFP_KERNEL);
2059         if (!tx_q->tx_skbuff)
2060                 return -ENOMEM;
2061
2062         if (priv->extend_desc)
2063                 size = sizeof(struct dma_extended_desc);
2064         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2065                 size = sizeof(struct dma_edesc);
2066         else
2067                 size = sizeof(struct dma_desc);
2068
2069         size *= priv->dma_tx_size;
2070
2071         addr = dma_alloc_coherent(priv->device, size,
2072                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2073         if (!addr)
2074                 return -ENOMEM;
2075
2076         if (priv->extend_desc)
2077                 tx_q->dma_etx = addr;
2078         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2079                 tx_q->dma_entx = addr;
2080         else
2081                 tx_q->dma_tx = addr;
2082
2083         return 0;
2084 }
2085
2086 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2087 {
2088         u32 tx_count = priv->plat->tx_queues_to_use;
2089         u32 queue;
2090         int ret;
2091
2092         /* TX queues buffers and DMA */
2093         for (queue = 0; queue < tx_count; queue++) {
2094                 ret = __alloc_dma_tx_desc_resources(priv, queue);
2095                 if (ret)
2096                         goto err_dma;
2097         }
2098
2099         return 0;
2100
2101 err_dma:
2102         free_dma_tx_desc_resources(priv);
2103         return ret;
2104 }
2105
2106 /**
2107  * alloc_dma_desc_resources - alloc TX/RX resources.
2108  * @priv: private structure
2109  * Description: according to which descriptor can be used (extend or basic)
2110  * this function allocates the resources for TX and RX paths. In case of
2111  * reception, for example, it pre-allocated the RX socket buffer in order to
2112  * allow zero-copy mechanism.
2113  */
2114 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2115 {
2116         /* RX Allocation */
2117         int ret = alloc_dma_rx_desc_resources(priv);
2118
2119         if (ret)
2120                 return ret;
2121
2122         ret = alloc_dma_tx_desc_resources(priv);
2123
2124         return ret;
2125 }
2126
2127 /**
2128  * free_dma_desc_resources - free dma desc resources
2129  * @priv: private structure
2130  */
2131 static void free_dma_desc_resources(struct stmmac_priv *priv)
2132 {
2133         /* Release the DMA TX socket buffers */
2134         free_dma_tx_desc_resources(priv);
2135
2136         /* Release the DMA RX socket buffers later
2137          * to ensure all pending XDP_TX buffers are returned.
2138          */
2139         free_dma_rx_desc_resources(priv);
2140 }
2141
2142 /**
2143  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2144  *  @priv: driver private structure
2145  *  Description: It is used for enabling the rx queues in the MAC
2146  */
2147 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2148 {
2149         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2150         int queue;
2151         u8 mode;
2152
2153         for (queue = 0; queue < rx_queues_count; queue++) {
2154                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2155                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2156         }
2157 }
2158
2159 /**
2160  * stmmac_start_rx_dma - start RX DMA channel
2161  * @priv: driver private structure
2162  * @chan: RX channel index
2163  * Description:
2164  * This starts a RX DMA channel
2165  */
2166 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2167 {
2168         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2169         stmmac_start_rx(priv, priv->ioaddr, chan);
2170 }
2171
2172 /**
2173  * stmmac_start_tx_dma - start TX DMA channel
2174  * @priv: driver private structure
2175  * @chan: TX channel index
2176  * Description:
2177  * This starts a TX DMA channel
2178  */
2179 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2180 {
2181         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2182         stmmac_start_tx(priv, priv->ioaddr, chan);
2183 }
2184
2185 /**
2186  * stmmac_stop_rx_dma - stop RX DMA channel
2187  * @priv: driver private structure
2188  * @chan: RX channel index
2189  * Description:
2190  * This stops a RX DMA channel
2191  */
2192 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2193 {
2194         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2195         stmmac_stop_rx(priv, priv->ioaddr, chan);
2196 }
2197
2198 /**
2199  * stmmac_stop_tx_dma - stop TX DMA channel
2200  * @priv: driver private structure
2201  * @chan: TX channel index
2202  * Description:
2203  * This stops a TX DMA channel
2204  */
2205 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2206 {
2207         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2208         stmmac_stop_tx(priv, priv->ioaddr, chan);
2209 }
2210
2211 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2212 {
2213         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2214         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2215         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2216         u32 chan;
2217
2218         for (chan = 0; chan < dma_csr_ch; chan++) {
2219                 struct stmmac_channel *ch = &priv->channel[chan];
2220                 unsigned long flags;
2221
2222                 spin_lock_irqsave(&ch->lock, flags);
2223                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2224                 spin_unlock_irqrestore(&ch->lock, flags);
2225         }
2226 }
2227
2228 /**
2229  * stmmac_start_all_dma - start all RX and TX DMA channels
2230  * @priv: driver private structure
2231  * Description:
2232  * This starts all the RX and TX DMA channels
2233  */
2234 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2235 {
2236         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2237         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2238         u32 chan = 0;
2239
2240         for (chan = 0; chan < rx_channels_count; chan++)
2241                 stmmac_start_rx_dma(priv, chan);
2242
2243         for (chan = 0; chan < tx_channels_count; chan++)
2244                 stmmac_start_tx_dma(priv, chan);
2245 }
2246
2247 /**
2248  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2249  * @priv: driver private structure
2250  * Description:
2251  * This stops the RX and TX DMA channels
2252  */
2253 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2254 {
2255         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2256         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2257         u32 chan = 0;
2258
2259         for (chan = 0; chan < rx_channels_count; chan++)
2260                 stmmac_stop_rx_dma(priv, chan);
2261
2262         for (chan = 0; chan < tx_channels_count; chan++)
2263                 stmmac_stop_tx_dma(priv, chan);
2264 }
2265
2266 /**
2267  *  stmmac_dma_operation_mode - HW DMA operation mode
2268  *  @priv: driver private structure
2269  *  Description: it is used for configuring the DMA operation mode register in
2270  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2271  */
2272 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2273 {
2274         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2275         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2276         int rxfifosz = priv->plat->rx_fifo_size;
2277         int txfifosz = priv->plat->tx_fifo_size;
2278         u32 txmode = 0;
2279         u32 rxmode = 0;
2280         u32 chan = 0;
2281         u8 qmode = 0;
2282
2283         if (rxfifosz == 0)
2284                 rxfifosz = priv->dma_cap.rx_fifo_size;
2285         if (txfifosz == 0)
2286                 txfifosz = priv->dma_cap.tx_fifo_size;
2287
2288         /* Adjust for real per queue fifo size */
2289         rxfifosz /= rx_channels_count;
2290         txfifosz /= tx_channels_count;
2291
2292         if (priv->plat->force_thresh_dma_mode) {
2293                 txmode = tc;
2294                 rxmode = tc;
2295         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2296                 /*
2297                  * In case of GMAC, SF mode can be enabled
2298                  * to perform the TX COE in HW. This depends on:
2299                  * 1) TX COE if actually supported
2300                  * 2) There is no bugged Jumbo frame support
2301                  *    that needs to not insert csum in the TDES.
2302                  */
2303                 txmode = SF_DMA_MODE;
2304                 rxmode = SF_DMA_MODE;
2305                 priv->xstats.threshold = SF_DMA_MODE;
2306         } else {
2307                 txmode = tc;
2308                 rxmode = SF_DMA_MODE;
2309         }
2310
2311         /* configure all channels */
2312         for (chan = 0; chan < rx_channels_count; chan++) {
2313                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2314                 u32 buf_size;
2315
2316                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2317
2318                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2319                                 rxfifosz, qmode);
2320
2321                 if (rx_q->xsk_pool) {
2322                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2323                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2324                                               buf_size,
2325                                               chan);
2326                 } else {
2327                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2328                                               priv->dma_buf_sz,
2329                                               chan);
2330                 }
2331         }
2332
2333         for (chan = 0; chan < tx_channels_count; chan++) {
2334                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2335
2336                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2337                                 txfifosz, qmode);
2338         }
2339 }
2340
2341 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2342 {
2343         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2344         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2345         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2346         unsigned int entry = tx_q->cur_tx;
2347         struct dma_desc *tx_desc = NULL;
2348         struct xdp_desc xdp_desc;
2349         bool work_done = true;
2350
2351         /* Avoids TX time-out as we are sharing with slow path */
2352         txq_trans_cond_update(nq);
2353
2354         budget = min(budget, stmmac_tx_avail(priv, queue));
2355
2356         while (budget-- > 0) {
2357                 dma_addr_t dma_addr;
2358                 bool set_ic;
2359
2360                 /* We are sharing with slow path and stop XSK TX desc submission when
2361                  * available TX ring is less than threshold.
2362                  */
2363                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2364                     !netif_carrier_ok(priv->dev)) {
2365                         work_done = false;
2366                         break;
2367                 }
2368
2369                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2370                         break;
2371
2372                 if (likely(priv->extend_desc))
2373                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2374                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2375                         tx_desc = &tx_q->dma_entx[entry].basic;
2376                 else
2377                         tx_desc = tx_q->dma_tx + entry;
2378
2379                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2380                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2381
2382                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2383
2384                 /* To return XDP buffer to XSK pool, we simple call
2385                  * xsk_tx_completed(), so we don't need to fill up
2386                  * 'buf' and 'xdpf'.
2387                  */
2388                 tx_q->tx_skbuff_dma[entry].buf = 0;
2389                 tx_q->xdpf[entry] = NULL;
2390
2391                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2392                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2393                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2394                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2395
2396                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2397
2398                 tx_q->tx_count_frames++;
2399
2400                 if (!priv->tx_coal_frames[queue])
2401                         set_ic = false;
2402                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2403                         set_ic = true;
2404                 else
2405                         set_ic = false;
2406
2407                 if (set_ic) {
2408                         tx_q->tx_count_frames = 0;
2409                         stmmac_set_tx_ic(priv, tx_desc);
2410                         priv->xstats.tx_set_ic_bit++;
2411                 }
2412
2413                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2414                                        true, priv->mode, true, true,
2415                                        xdp_desc.len);
2416
2417                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2418
2419                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2420                 entry = tx_q->cur_tx;
2421         }
2422
2423         if (tx_desc) {
2424                 stmmac_flush_tx_descriptors(priv, queue);
2425                 xsk_tx_release(pool);
2426         }
2427
2428         /* Return true if all of the 3 conditions are met
2429          *  a) TX Budget is still available
2430          *  b) work_done = true when XSK TX desc peek is empty (no more
2431          *     pending XSK TX for transmission)
2432          */
2433         return !!budget && work_done;
2434 }
2435
2436 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2437 {
2438         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2439                 tc += 64;
2440
2441                 if (priv->plat->force_thresh_dma_mode)
2442                         stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2443                 else
2444                         stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2445                                                       chan);
2446
2447                 priv->xstats.threshold = tc;
2448         }
2449 }
2450
2451 /**
2452  * stmmac_tx_clean - to manage the transmission completion
2453  * @priv: driver private structure
2454  * @budget: napi budget limiting this functions packet handling
2455  * @queue: TX queue index
2456  * Description: it reclaims the transmit resources after transmission completes.
2457  */
2458 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2459 {
2460         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2461         unsigned int bytes_compl = 0, pkts_compl = 0;
2462         unsigned int entry, xmits = 0, count = 0;
2463
2464         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2465
2466         priv->xstats.tx_clean++;
2467
2468         tx_q->xsk_frames_done = 0;
2469
2470         entry = tx_q->dirty_tx;
2471
2472         /* Try to clean all TX complete frame in 1 shot */
2473         while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2474                 struct xdp_frame *xdpf;
2475                 struct sk_buff *skb;
2476                 struct dma_desc *p;
2477                 int status;
2478
2479                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2480                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2481                         xdpf = tx_q->xdpf[entry];
2482                         skb = NULL;
2483                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2484                         xdpf = NULL;
2485                         skb = tx_q->tx_skbuff[entry];
2486                 } else {
2487                         xdpf = NULL;
2488                         skb = NULL;
2489                 }
2490
2491                 if (priv->extend_desc)
2492                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2493                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2494                         p = &tx_q->dma_entx[entry].basic;
2495                 else
2496                         p = tx_q->dma_tx + entry;
2497
2498                 status = stmmac_tx_status(priv, &priv->dev->stats,
2499                                 &priv->xstats, p, priv->ioaddr);
2500                 /* Check if the descriptor is owned by the DMA */
2501                 if (unlikely(status & tx_dma_own))
2502                         break;
2503
2504                 count++;
2505
2506                 /* Make sure descriptor fields are read after reading
2507                  * the own bit.
2508                  */
2509                 dma_rmb();
2510
2511                 /* Just consider the last segment and ...*/
2512                 if (likely(!(status & tx_not_ls))) {
2513                         /* ... verify the status error condition */
2514                         if (unlikely(status & tx_err)) {
2515                                 priv->dev->stats.tx_errors++;
2516                                 if (unlikely(status & tx_err_bump_tc))
2517                                         stmmac_bump_dma_threshold(priv, queue);
2518                         } else {
2519                                 priv->dev->stats.tx_packets++;
2520                                 priv->xstats.tx_pkt_n++;
2521                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2522                         }
2523                         if (skb)
2524                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2525                 }
2526
2527                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2528                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2529                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2530                                 dma_unmap_page(priv->device,
2531                                                tx_q->tx_skbuff_dma[entry].buf,
2532                                                tx_q->tx_skbuff_dma[entry].len,
2533                                                DMA_TO_DEVICE);
2534                         else
2535                                 dma_unmap_single(priv->device,
2536                                                  tx_q->tx_skbuff_dma[entry].buf,
2537                                                  tx_q->tx_skbuff_dma[entry].len,
2538                                                  DMA_TO_DEVICE);
2539                         tx_q->tx_skbuff_dma[entry].buf = 0;
2540                         tx_q->tx_skbuff_dma[entry].len = 0;
2541                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2542                 }
2543
2544                 stmmac_clean_desc3(priv, tx_q, p);
2545
2546                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2547                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2548
2549                 if (xdpf &&
2550                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2551                         xdp_return_frame_rx_napi(xdpf);
2552                         tx_q->xdpf[entry] = NULL;
2553                 }
2554
2555                 if (xdpf &&
2556                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2557                         xdp_return_frame(xdpf);
2558                         tx_q->xdpf[entry] = NULL;
2559                 }
2560
2561                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2562                         tx_q->xsk_frames_done++;
2563
2564                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2565                         if (likely(skb)) {
2566                                 pkts_compl++;
2567                                 bytes_compl += skb->len;
2568                                 dev_consume_skb_any(skb);
2569                                 tx_q->tx_skbuff[entry] = NULL;
2570                         }
2571                 }
2572
2573                 stmmac_release_tx_desc(priv, p, priv->mode);
2574
2575                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2576         }
2577         tx_q->dirty_tx = entry;
2578
2579         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2580                                   pkts_compl, bytes_compl);
2581
2582         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2583                                                                 queue))) &&
2584             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2585
2586                 netif_dbg(priv, tx_done, priv->dev,
2587                           "%s: restart transmit\n", __func__);
2588                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2589         }
2590
2591         if (tx_q->xsk_pool) {
2592                 bool work_done;
2593
2594                 if (tx_q->xsk_frames_done)
2595                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2596
2597                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2598                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2599
2600                 /* For XSK TX, we try to send as many as possible.
2601                  * If XSK work done (XSK TX desc empty and budget still
2602                  * available), return "budget - 1" to reenable TX IRQ.
2603                  * Else, return "budget" to make NAPI continue polling.
2604                  */
2605                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2606                                                STMMAC_XSK_TX_BUDGET_MAX);
2607                 if (work_done)
2608                         xmits = budget - 1;
2609                 else
2610                         xmits = budget;
2611         }
2612
2613         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2614             priv->eee_sw_timer_en) {
2615                 if (stmmac_enable_eee_mode(priv))
2616                         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2617         }
2618
2619         /* We still have pending packets, let's call for a new scheduling */
2620         if (tx_q->dirty_tx != tx_q->cur_tx)
2621                 hrtimer_start(&tx_q->txtimer,
2622                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2623                               HRTIMER_MODE_REL);
2624
2625         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2626
2627         /* Combine decisions from TX clean and XSK TX */
2628         return max(count, xmits);
2629 }
2630
2631 /**
2632  * stmmac_tx_err - to manage the tx error
2633  * @priv: driver private structure
2634  * @chan: channel index
2635  * Description: it cleans the descriptors and restarts the transmission
2636  * in case of transmission errors.
2637  */
2638 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2639 {
2640         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2641
2642         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2643
2644         stmmac_stop_tx_dma(priv, chan);
2645         dma_free_tx_skbufs(priv, chan);
2646         stmmac_clear_tx_descriptors(priv, chan);
2647         tx_q->dirty_tx = 0;
2648         tx_q->cur_tx = 0;
2649         tx_q->mss = 0;
2650         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2651         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2652                             tx_q->dma_tx_phy, chan);
2653         stmmac_start_tx_dma(priv, chan);
2654
2655         priv->dev->stats.tx_errors++;
2656         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2657 }
2658
2659 /**
2660  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2661  *  @priv: driver private structure
2662  *  @txmode: TX operating mode
2663  *  @rxmode: RX operating mode
2664  *  @chan: channel index
2665  *  Description: it is used for configuring of the DMA operation mode in
2666  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2667  *  mode.
2668  */
2669 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2670                                           u32 rxmode, u32 chan)
2671 {
2672         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2673         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2674         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2675         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2676         int rxfifosz = priv->plat->rx_fifo_size;
2677         int txfifosz = priv->plat->tx_fifo_size;
2678
2679         if (rxfifosz == 0)
2680                 rxfifosz = priv->dma_cap.rx_fifo_size;
2681         if (txfifosz == 0)
2682                 txfifosz = priv->dma_cap.tx_fifo_size;
2683
2684         /* Adjust for real per queue fifo size */
2685         rxfifosz /= rx_channels_count;
2686         txfifosz /= tx_channels_count;
2687
2688         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2689         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2690 }
2691
2692 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2693 {
2694         int ret;
2695
2696         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2697                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2698         if (ret && (ret != -EINVAL)) {
2699                 stmmac_global_err(priv);
2700                 return true;
2701         }
2702
2703         return false;
2704 }
2705
2706 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2707 {
2708         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2709                                                  &priv->xstats, chan, dir);
2710         struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2711         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2712         struct stmmac_channel *ch = &priv->channel[chan];
2713         struct napi_struct *rx_napi;
2714         struct napi_struct *tx_napi;
2715         unsigned long flags;
2716
2717         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2718         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2719
2720         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2721                 if (napi_schedule_prep(rx_napi)) {
2722                         spin_lock_irqsave(&ch->lock, flags);
2723                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2724                         spin_unlock_irqrestore(&ch->lock, flags);
2725                         __napi_schedule(rx_napi);
2726                 }
2727         }
2728
2729         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2730                 if (napi_schedule_prep(tx_napi)) {
2731                         spin_lock_irqsave(&ch->lock, flags);
2732                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2733                         spin_unlock_irqrestore(&ch->lock, flags);
2734                         __napi_schedule(tx_napi);
2735                 }
2736         }
2737
2738         return status;
2739 }
2740
2741 /**
2742  * stmmac_dma_interrupt - DMA ISR
2743  * @priv: driver private structure
2744  * Description: this is the DMA ISR. It is called by the main ISR.
2745  * It calls the dwmac dma routine and schedule poll method in case of some
2746  * work can be done.
2747  */
2748 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2749 {
2750         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2751         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2752         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2753                                 tx_channel_count : rx_channel_count;
2754         u32 chan;
2755         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2756
2757         /* Make sure we never check beyond our status buffer. */
2758         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2759                 channels_to_check = ARRAY_SIZE(status);
2760
2761         for (chan = 0; chan < channels_to_check; chan++)
2762                 status[chan] = stmmac_napi_check(priv, chan,
2763                                                  DMA_DIR_RXTX);
2764
2765         for (chan = 0; chan < tx_channel_count; chan++) {
2766                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2767                         /* Try to bump up the dma threshold on this failure */
2768                         stmmac_bump_dma_threshold(priv, chan);
2769                 } else if (unlikely(status[chan] == tx_hard_error)) {
2770                         stmmac_tx_err(priv, chan);
2771                 }
2772         }
2773 }
2774
2775 /**
2776  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2777  * @priv: driver private structure
2778  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2779  */
2780 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2781 {
2782         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2783                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2784
2785         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2786
2787         if (priv->dma_cap.rmon) {
2788                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2789                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2790         } else
2791                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2792 }
2793
2794 /**
2795  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2796  * @priv: driver private structure
2797  * Description:
2798  *  new GMAC chip generations have a new register to indicate the
2799  *  presence of the optional feature/functions.
2800  *  This can be also used to override the value passed through the
2801  *  platform and necessary for old MAC10/100 and GMAC chips.
2802  */
2803 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2804 {
2805         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2806 }
2807
2808 /**
2809  * stmmac_check_ether_addr - check if the MAC addr is valid
2810  * @priv: driver private structure
2811  * Description:
2812  * it is to verify if the MAC address is valid, in case of failures it
2813  * generates a random MAC address
2814  */
2815 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2816 {
2817         u8 addr[ETH_ALEN];
2818
2819         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2820                 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2821                 if (is_valid_ether_addr(addr))
2822                         eth_hw_addr_set(priv->dev, addr);
2823                 else
2824                         eth_hw_addr_random(priv->dev);
2825                 dev_info(priv->device, "device MAC address %pM\n",
2826                          priv->dev->dev_addr);
2827         }
2828 }
2829
2830 /**
2831  * stmmac_init_dma_engine - DMA init.
2832  * @priv: driver private structure
2833  * Description:
2834  * It inits the DMA invoking the specific MAC/GMAC callback.
2835  * Some DMA parameters can be passed from the platform;
2836  * in case of these are not passed a default is kept for the MAC or GMAC.
2837  */
2838 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2839 {
2840         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2841         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843         struct stmmac_rx_queue *rx_q;
2844         struct stmmac_tx_queue *tx_q;
2845         u32 chan = 0;
2846         int atds = 0;
2847         int ret = 0;
2848
2849         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2850                 dev_err(priv->device, "Invalid DMA configuration\n");
2851                 return -EINVAL;
2852         }
2853
2854         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2855                 atds = 1;
2856
2857         ret = stmmac_reset(priv, priv->ioaddr);
2858         if (ret) {
2859                 dev_err(priv->device, "Failed to reset the dma\n");
2860                 return ret;
2861         }
2862
2863         /* DMA Configuration */
2864         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2865
2866         if (priv->plat->axi)
2867                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2868
2869         /* DMA CSR Channel configuration */
2870         for (chan = 0; chan < dma_csr_ch; chan++) {
2871                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2872                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2873         }
2874
2875         /* DMA RX Channel Configuration */
2876         for (chan = 0; chan < rx_channels_count; chan++) {
2877                 rx_q = &priv->rx_queue[chan];
2878
2879                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2880                                     rx_q->dma_rx_phy, chan);
2881
2882                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2883                                      (rx_q->buf_alloc_num *
2884                                       sizeof(struct dma_desc));
2885                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2886                                        rx_q->rx_tail_addr, chan);
2887         }
2888
2889         /* DMA TX Channel Configuration */
2890         for (chan = 0; chan < tx_channels_count; chan++) {
2891                 tx_q = &priv->tx_queue[chan];
2892
2893                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2894                                     tx_q->dma_tx_phy, chan);
2895
2896                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2897                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2898                                        tx_q->tx_tail_addr, chan);
2899         }
2900
2901         return ret;
2902 }
2903
2904 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2905 {
2906         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2907
2908         hrtimer_start(&tx_q->txtimer,
2909                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2910                       HRTIMER_MODE_REL);
2911 }
2912
2913 /**
2914  * stmmac_tx_timer - mitigation sw timer for tx.
2915  * @t: data pointer
2916  * Description:
2917  * This is the timer handler to directly invoke the stmmac_tx_clean.
2918  */
2919 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2920 {
2921         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2922         struct stmmac_priv *priv = tx_q->priv_data;
2923         struct stmmac_channel *ch;
2924         struct napi_struct *napi;
2925
2926         ch = &priv->channel[tx_q->queue_index];
2927         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2928
2929         if (likely(napi_schedule_prep(napi))) {
2930                 unsigned long flags;
2931
2932                 spin_lock_irqsave(&ch->lock, flags);
2933                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2934                 spin_unlock_irqrestore(&ch->lock, flags);
2935                 __napi_schedule(napi);
2936         }
2937
2938         return HRTIMER_NORESTART;
2939 }
2940
2941 /**
2942  * stmmac_init_coalesce - init mitigation options.
2943  * @priv: driver private structure
2944  * Description:
2945  * This inits the coalesce parameters: i.e. timer rate,
2946  * timer handler and default threshold used for enabling the
2947  * interrupt on completion bit.
2948  */
2949 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2950 {
2951         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2952         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2953         u32 chan;
2954
2955         for (chan = 0; chan < tx_channel_count; chan++) {
2956                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2957
2958                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2959                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2960
2961                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2962                 tx_q->txtimer.function = stmmac_tx_timer;
2963         }
2964
2965         for (chan = 0; chan < rx_channel_count; chan++)
2966                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2967 }
2968
2969 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2970 {
2971         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2972         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2973         u32 chan;
2974
2975         /* set TX ring length */
2976         for (chan = 0; chan < tx_channels_count; chan++)
2977                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2978                                        (priv->dma_tx_size - 1), chan);
2979
2980         /* set RX ring length */
2981         for (chan = 0; chan < rx_channels_count; chan++)
2982                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2983                                        (priv->dma_rx_size - 1), chan);
2984 }
2985
2986 /**
2987  *  stmmac_set_tx_queue_weight - Set TX queue weight
2988  *  @priv: driver private structure
2989  *  Description: It is used for setting TX queues weight
2990  */
2991 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2992 {
2993         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2994         u32 weight;
2995         u32 queue;
2996
2997         for (queue = 0; queue < tx_queues_count; queue++) {
2998                 weight = priv->plat->tx_queues_cfg[queue].weight;
2999                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3000         }
3001 }
3002
3003 /**
3004  *  stmmac_configure_cbs - Configure CBS in TX queue
3005  *  @priv: driver private structure
3006  *  Description: It is used for configuring CBS in AVB TX queues
3007  */
3008 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3009 {
3010         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3011         u32 mode_to_use;
3012         u32 queue;
3013
3014         /* queue 0 is reserved for legacy traffic */
3015         for (queue = 1; queue < tx_queues_count; queue++) {
3016                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3017                 if (mode_to_use == MTL_QUEUE_DCB)
3018                         continue;
3019
3020                 stmmac_config_cbs(priv, priv->hw,
3021                                 priv->plat->tx_queues_cfg[queue].send_slope,
3022                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3023                                 priv->plat->tx_queues_cfg[queue].high_credit,
3024                                 priv->plat->tx_queues_cfg[queue].low_credit,
3025                                 queue);
3026         }
3027 }
3028
3029 /**
3030  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3031  *  @priv: driver private structure
3032  *  Description: It is used for mapping RX queues to RX dma channels
3033  */
3034 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3035 {
3036         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3037         u32 queue;
3038         u32 chan;
3039
3040         for (queue = 0; queue < rx_queues_count; queue++) {
3041                 chan = priv->plat->rx_queues_cfg[queue].chan;
3042                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3043         }
3044 }
3045
3046 /**
3047  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3048  *  @priv: driver private structure
3049  *  Description: It is used for configuring the RX Queue Priority
3050  */
3051 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3052 {
3053         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3054         u32 queue;
3055         u32 prio;
3056
3057         for (queue = 0; queue < rx_queues_count; queue++) {
3058                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3059                         continue;
3060
3061                 prio = priv->plat->rx_queues_cfg[queue].prio;
3062                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3063         }
3064 }
3065
3066 /**
3067  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3068  *  @priv: driver private structure
3069  *  Description: It is used for configuring the TX Queue Priority
3070  */
3071 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3072 {
3073         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3074         u32 queue;
3075         u32 prio;
3076
3077         for (queue = 0; queue < tx_queues_count; queue++) {
3078                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3079                         continue;
3080
3081                 prio = priv->plat->tx_queues_cfg[queue].prio;
3082                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3083         }
3084 }
3085
3086 /**
3087  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3088  *  @priv: driver private structure
3089  *  Description: It is used for configuring the RX queue routing
3090  */
3091 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3092 {
3093         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3094         u32 queue;
3095         u8 packet;
3096
3097         for (queue = 0; queue < rx_queues_count; queue++) {
3098                 /* no specific packet type routing specified for the queue */
3099                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3100                         continue;
3101
3102                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3103                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3104         }
3105 }
3106
3107 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3108 {
3109         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3110                 priv->rss.enable = false;
3111                 return;
3112         }
3113
3114         if (priv->dev->features & NETIF_F_RXHASH)
3115                 priv->rss.enable = true;
3116         else
3117                 priv->rss.enable = false;
3118
3119         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3120                              priv->plat->rx_queues_to_use);
3121 }
3122
3123 /**
3124  *  stmmac_mtl_configuration - Configure MTL
3125  *  @priv: driver private structure
3126  *  Description: It is used for configurring MTL
3127  */
3128 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3129 {
3130         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3131         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3132
3133         if (tx_queues_count > 1)
3134                 stmmac_set_tx_queue_weight(priv);
3135
3136         /* Configure MTL RX algorithms */
3137         if (rx_queues_count > 1)
3138                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3139                                 priv->plat->rx_sched_algorithm);
3140
3141         /* Configure MTL TX algorithms */
3142         if (tx_queues_count > 1)
3143                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3144                                 priv->plat->tx_sched_algorithm);
3145
3146         /* Configure CBS in AVB TX queues */
3147         if (tx_queues_count > 1)
3148                 stmmac_configure_cbs(priv);
3149
3150         /* Map RX MTL to DMA channels */
3151         stmmac_rx_queue_dma_chan_map(priv);
3152
3153         /* Enable MAC RX Queues */
3154         stmmac_mac_enable_rx_queues(priv);
3155
3156         /* Set RX priorities */
3157         if (rx_queues_count > 1)
3158                 stmmac_mac_config_rx_queues_prio(priv);
3159
3160         /* Set TX priorities */
3161         if (tx_queues_count > 1)
3162                 stmmac_mac_config_tx_queues_prio(priv);
3163
3164         /* Set RX routing */
3165         if (rx_queues_count > 1)
3166                 stmmac_mac_config_rx_queues_routing(priv);
3167
3168         /* Receive Side Scaling */
3169         if (rx_queues_count > 1)
3170                 stmmac_mac_config_rss(priv);
3171 }
3172
3173 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3174 {
3175         if (priv->dma_cap.asp) {
3176                 netdev_info(priv->dev, "Enabling Safety Features\n");
3177                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3178                                           priv->plat->safety_feat_cfg);
3179         } else {
3180                 netdev_info(priv->dev, "No Safety Features support found\n");
3181         }
3182 }
3183
3184 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3185 {
3186         char *name;
3187
3188         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3189         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3190
3191         name = priv->wq_name;
3192         sprintf(name, "%s-fpe", priv->dev->name);
3193
3194         priv->fpe_wq = create_singlethread_workqueue(name);
3195         if (!priv->fpe_wq) {
3196                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3197
3198                 return -ENOMEM;
3199         }
3200         netdev_info(priv->dev, "FPE workqueue start");
3201
3202         return 0;
3203 }
3204
3205 /**
3206  * stmmac_hw_setup - setup mac in a usable state.
3207  *  @dev : pointer to the device structure.
3208  *  @ptp_register: register PTP if set
3209  *  Description:
3210  *  this is the main function to setup the HW in a usable state because the
3211  *  dma engine is reset, the core registers are configured (e.g. AXI,
3212  *  Checksum features, timers). The DMA is ready to start receiving and
3213  *  transmitting.
3214  *  Return value:
3215  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3216  *  file on failure.
3217  */
3218 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3219 {
3220         struct stmmac_priv *priv = netdev_priv(dev);
3221         u32 rx_cnt = priv->plat->rx_queues_to_use;
3222         u32 tx_cnt = priv->plat->tx_queues_to_use;
3223         bool sph_en;
3224         u32 chan;
3225         int ret;
3226
3227         /* DMA initialization and SW reset */
3228         ret = stmmac_init_dma_engine(priv);
3229         if (ret < 0) {
3230                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3231                            __func__);
3232                 return ret;
3233         }
3234
3235         /* Copy the MAC addr into the HW  */
3236         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3237
3238         /* PS and related bits will be programmed according to the speed */
3239         if (priv->hw->pcs) {
3240                 int speed = priv->plat->mac_port_sel_speed;
3241
3242                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3243                     (speed == SPEED_1000)) {
3244                         priv->hw->ps = speed;
3245                 } else {
3246                         dev_warn(priv->device, "invalid port speed\n");
3247                         priv->hw->ps = 0;
3248                 }
3249         }
3250
3251         /* Initialize the MAC Core */
3252         stmmac_core_init(priv, priv->hw, dev);
3253
3254         /* Initialize MTL*/
3255         stmmac_mtl_configuration(priv);
3256
3257         /* Initialize Safety Features */
3258         stmmac_safety_feat_configuration(priv);
3259
3260         ret = stmmac_rx_ipc(priv, priv->hw);
3261         if (!ret) {
3262                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3263                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3264                 priv->hw->rx_csum = 0;
3265         }
3266
3267         /* Enable the MAC Rx/Tx */
3268         stmmac_mac_set(priv, priv->ioaddr, true);
3269
3270         /* Set the HW DMA mode and the COE */
3271         stmmac_dma_operation_mode(priv);
3272
3273         stmmac_mmc_setup(priv);
3274
3275         ret = stmmac_init_ptp(priv);
3276         if (ret == -EOPNOTSUPP)
3277                 netdev_info(priv->dev, "PTP not supported by HW\n");
3278         else if (ret)
3279                 netdev_warn(priv->dev, "PTP init failed\n");
3280         else if (ptp_register)
3281                 stmmac_ptp_register(priv);
3282
3283         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3284
3285         /* Convert the timer from msec to usec */
3286         if (!priv->tx_lpi_timer)
3287                 priv->tx_lpi_timer = eee_timer * 1000;
3288
3289         if (priv->use_riwt) {
3290                 u32 queue;
3291
3292                 for (queue = 0; queue < rx_cnt; queue++) {
3293                         if (!priv->rx_riwt[queue])
3294                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3295
3296                         stmmac_rx_watchdog(priv, priv->ioaddr,
3297                                            priv->rx_riwt[queue], queue);
3298                 }
3299         }
3300
3301         if (priv->hw->pcs)
3302                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3303
3304         /* set TX and RX rings length */
3305         stmmac_set_rings_length(priv);
3306
3307         /* Enable TSO */
3308         if (priv->tso) {
3309                 for (chan = 0; chan < tx_cnt; chan++) {
3310                         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3311
3312                         /* TSO and TBS cannot co-exist */
3313                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3314                                 continue;
3315
3316                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3317                 }
3318         }
3319
3320         /* Enable Split Header */
3321         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3322         for (chan = 0; chan < rx_cnt; chan++)
3323                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3324
3325
3326         /* VLAN Tag Insertion */
3327         if (priv->dma_cap.vlins)
3328                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3329
3330         /* TBS */
3331         for (chan = 0; chan < tx_cnt; chan++) {
3332                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3333                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3334
3335                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3336         }
3337
3338         /* Configure real RX and TX queues */
3339         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3340         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3341
3342         /* Start the ball rolling... */
3343         stmmac_start_all_dma(priv);
3344
3345         if (priv->dma_cap.fpesel) {
3346                 stmmac_fpe_start_wq(priv);
3347
3348                 if (priv->plat->fpe_cfg->enable)
3349                         stmmac_fpe_handshake(priv, true);
3350         }
3351
3352         return 0;
3353 }
3354
3355 static void stmmac_hw_teardown(struct net_device *dev)
3356 {
3357         struct stmmac_priv *priv = netdev_priv(dev);
3358
3359         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3360 }
3361
3362 static void stmmac_free_irq(struct net_device *dev,
3363                             enum request_irq_err irq_err, int irq_idx)
3364 {
3365         struct stmmac_priv *priv = netdev_priv(dev);
3366         int j;
3367
3368         switch (irq_err) {
3369         case REQ_IRQ_ERR_ALL:
3370                 irq_idx = priv->plat->tx_queues_to_use;
3371                 fallthrough;
3372         case REQ_IRQ_ERR_TX:
3373                 for (j = irq_idx - 1; j >= 0; j--) {
3374                         if (priv->tx_irq[j] > 0) {
3375                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3376                                 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3377                         }
3378                 }
3379                 irq_idx = priv->plat->rx_queues_to_use;
3380                 fallthrough;
3381         case REQ_IRQ_ERR_RX:
3382                 for (j = irq_idx - 1; j >= 0; j--) {
3383                         if (priv->rx_irq[j] > 0) {
3384                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3385                                 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3386                         }
3387                 }
3388
3389                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3390                         free_irq(priv->sfty_ue_irq, dev);
3391                 fallthrough;
3392         case REQ_IRQ_ERR_SFTY_UE:
3393                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3394                         free_irq(priv->sfty_ce_irq, dev);
3395                 fallthrough;
3396         case REQ_IRQ_ERR_SFTY_CE:
3397                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3398                         free_irq(priv->lpi_irq, dev);
3399                 fallthrough;
3400         case REQ_IRQ_ERR_LPI:
3401                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3402                         free_irq(priv->wol_irq, dev);
3403                 fallthrough;
3404         case REQ_IRQ_ERR_WOL:
3405                 free_irq(dev->irq, dev);
3406                 fallthrough;
3407         case REQ_IRQ_ERR_MAC:
3408         case REQ_IRQ_ERR_NO:
3409                 /* If MAC IRQ request error, no more IRQ to free */
3410                 break;
3411         }
3412 }
3413
3414 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3415 {
3416         struct stmmac_priv *priv = netdev_priv(dev);
3417         enum request_irq_err irq_err;
3418         cpumask_t cpu_mask;
3419         int irq_idx = 0;
3420         char *int_name;
3421         int ret;
3422         int i;
3423
3424         /* For common interrupt */
3425         int_name = priv->int_name_mac;
3426         sprintf(int_name, "%s:%s", dev->name, "mac");
3427         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3428                           0, int_name, dev);
3429         if (unlikely(ret < 0)) {
3430                 netdev_err(priv->dev,
3431                            "%s: alloc mac MSI %d (error: %d)\n",
3432                            __func__, dev->irq, ret);
3433                 irq_err = REQ_IRQ_ERR_MAC;
3434                 goto irq_error;
3435         }
3436
3437         /* Request the Wake IRQ in case of another line
3438          * is used for WoL
3439          */
3440         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3441                 int_name = priv->int_name_wol;
3442                 sprintf(int_name, "%s:%s", dev->name, "wol");
3443                 ret = request_irq(priv->wol_irq,
3444                                   stmmac_mac_interrupt,
3445                                   0, int_name, dev);
3446                 if (unlikely(ret < 0)) {
3447                         netdev_err(priv->dev,
3448                                    "%s: alloc wol MSI %d (error: %d)\n",
3449                                    __func__, priv->wol_irq, ret);
3450                         irq_err = REQ_IRQ_ERR_WOL;
3451                         goto irq_error;
3452                 }
3453         }
3454
3455         /* Request the LPI IRQ in case of another line
3456          * is used for LPI
3457          */
3458         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3459                 int_name = priv->int_name_lpi;
3460                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3461                 ret = request_irq(priv->lpi_irq,
3462                                   stmmac_mac_interrupt,
3463                                   0, int_name, dev);
3464                 if (unlikely(ret < 0)) {
3465                         netdev_err(priv->dev,
3466                                    "%s: alloc lpi MSI %d (error: %d)\n",
3467                                    __func__, priv->lpi_irq, ret);
3468                         irq_err = REQ_IRQ_ERR_LPI;
3469                         goto irq_error;
3470                 }
3471         }
3472
3473         /* Request the Safety Feature Correctible Error line in
3474          * case of another line is used
3475          */
3476         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3477                 int_name = priv->int_name_sfty_ce;
3478                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3479                 ret = request_irq(priv->sfty_ce_irq,
3480                                   stmmac_safety_interrupt,
3481                                   0, int_name, dev);
3482                 if (unlikely(ret < 0)) {
3483                         netdev_err(priv->dev,
3484                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3485                                    __func__, priv->sfty_ce_irq, ret);
3486                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3487                         goto irq_error;
3488                 }
3489         }
3490
3491         /* Request the Safety Feature Uncorrectible Error line in
3492          * case of another line is used
3493          */
3494         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3495                 int_name = priv->int_name_sfty_ue;
3496                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3497                 ret = request_irq(priv->sfty_ue_irq,
3498                                   stmmac_safety_interrupt,
3499                                   0, int_name, dev);
3500                 if (unlikely(ret < 0)) {
3501                         netdev_err(priv->dev,
3502                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3503                                    __func__, priv->sfty_ue_irq, ret);
3504                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3505                         goto irq_error;
3506                 }
3507         }
3508
3509         /* Request Rx MSI irq */
3510         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3511                 if (i >= MTL_MAX_RX_QUEUES)
3512                         break;
3513                 if (priv->rx_irq[i] == 0)
3514                         continue;
3515
3516                 int_name = priv->int_name_rx_irq[i];
3517                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3518                 ret = request_irq(priv->rx_irq[i],
3519                                   stmmac_msi_intr_rx,
3520                                   0, int_name, &priv->rx_queue[i]);
3521                 if (unlikely(ret < 0)) {
3522                         netdev_err(priv->dev,
3523                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3524                                    __func__, i, priv->rx_irq[i], ret);
3525                         irq_err = REQ_IRQ_ERR_RX;
3526                         irq_idx = i;
3527                         goto irq_error;
3528                 }
3529                 cpumask_clear(&cpu_mask);
3530                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3531                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3532         }
3533
3534         /* Request Tx MSI irq */
3535         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3536                 if (i >= MTL_MAX_TX_QUEUES)
3537                         break;
3538                 if (priv->tx_irq[i] == 0)
3539                         continue;
3540
3541                 int_name = priv->int_name_tx_irq[i];
3542                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3543                 ret = request_irq(priv->tx_irq[i],
3544                                   stmmac_msi_intr_tx,
3545                                   0, int_name, &priv->tx_queue[i]);
3546                 if (unlikely(ret < 0)) {
3547                         netdev_err(priv->dev,
3548                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3549                                    __func__, i, priv->tx_irq[i], ret);
3550                         irq_err = REQ_IRQ_ERR_TX;
3551                         irq_idx = i;
3552                         goto irq_error;
3553                 }
3554                 cpumask_clear(&cpu_mask);
3555                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3556                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3557         }
3558
3559         return 0;
3560
3561 irq_error:
3562         stmmac_free_irq(dev, irq_err, irq_idx);
3563         return ret;
3564 }
3565
3566 static int stmmac_request_irq_single(struct net_device *dev)
3567 {
3568         struct stmmac_priv *priv = netdev_priv(dev);
3569         enum request_irq_err irq_err;
3570         int ret;
3571
3572         ret = request_irq(dev->irq, stmmac_interrupt,
3573                           IRQF_SHARED, dev->name, dev);
3574         if (unlikely(ret < 0)) {
3575                 netdev_err(priv->dev,
3576                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3577                            __func__, dev->irq, ret);
3578                 irq_err = REQ_IRQ_ERR_MAC;
3579                 goto irq_error;
3580         }
3581
3582         /* Request the Wake IRQ in case of another line
3583          * is used for WoL
3584          */
3585         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3586                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3587                                   IRQF_SHARED, dev->name, dev);
3588                 if (unlikely(ret < 0)) {
3589                         netdev_err(priv->dev,
3590                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3591                                    __func__, priv->wol_irq, ret);
3592                         irq_err = REQ_IRQ_ERR_WOL;
3593                         goto irq_error;
3594                 }
3595         }
3596
3597         /* Request the IRQ lines */
3598         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3599                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3600                                   IRQF_SHARED, dev->name, dev);
3601                 if (unlikely(ret < 0)) {
3602                         netdev_err(priv->dev,
3603                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3604                                    __func__, priv->lpi_irq, ret);
3605                         irq_err = REQ_IRQ_ERR_LPI;
3606                         goto irq_error;
3607                 }
3608         }
3609
3610         return 0;
3611
3612 irq_error:
3613         stmmac_free_irq(dev, irq_err, 0);
3614         return ret;
3615 }
3616
3617 static int stmmac_request_irq(struct net_device *dev)
3618 {
3619         struct stmmac_priv *priv = netdev_priv(dev);
3620         int ret;
3621
3622         /* Request the IRQ lines */
3623         if (priv->plat->multi_msi_en)
3624                 ret = stmmac_request_irq_multi_msi(dev);
3625         else
3626                 ret = stmmac_request_irq_single(dev);
3627
3628         return ret;
3629 }
3630
3631 /**
3632  *  stmmac_open - open entry point of the driver
3633  *  @dev : pointer to the device structure.
3634  *  Description:
3635  *  This function is the open entry point of the driver.
3636  *  Return value:
3637  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3638  *  file on failure.
3639  */
3640 static int stmmac_open(struct net_device *dev)
3641 {
3642         struct stmmac_priv *priv = netdev_priv(dev);
3643         int mode = priv->plat->phy_interface;
3644         int bfsize = 0;
3645         u32 chan;
3646         int ret;
3647
3648         ret = pm_runtime_resume_and_get(priv->device);
3649         if (ret < 0)
3650                 return ret;
3651
3652         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3653             priv->hw->pcs != STMMAC_PCS_RTBI &&
3654             (!priv->hw->xpcs ||
3655              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3656                 ret = stmmac_init_phy(dev);
3657                 if (ret) {
3658                         netdev_err(priv->dev,
3659                                    "%s: Cannot attach to PHY (error: %d)\n",
3660                                    __func__, ret);
3661                         goto init_phy_error;
3662                 }
3663         }
3664
3665         /* Extra statistics */
3666         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3667         priv->xstats.threshold = tc;
3668
3669         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3670         if (bfsize < 0)
3671                 bfsize = 0;
3672
3673         if (bfsize < BUF_SIZE_16KiB)
3674                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3675
3676         priv->dma_buf_sz = bfsize;
3677         buf_sz = bfsize;
3678
3679         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3680
3681         if (!priv->dma_tx_size)
3682                 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3683         if (!priv->dma_rx_size)
3684                 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3685
3686         /* Earlier check for TBS */
3687         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3688                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3689                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3690
3691                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3692                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3693         }
3694
3695         ret = alloc_dma_desc_resources(priv);
3696         if (ret < 0) {
3697                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3698                            __func__);
3699                 goto dma_desc_error;
3700         }
3701
3702         ret = init_dma_desc_rings(dev, GFP_KERNEL);
3703         if (ret < 0) {
3704                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3705                            __func__);
3706                 goto init_error;
3707         }
3708
3709         ret = stmmac_hw_setup(dev, true);
3710         if (ret < 0) {
3711                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3712                 goto init_error;
3713         }
3714
3715         stmmac_init_coalesce(priv);
3716
3717         phylink_start(priv->phylink);
3718         /* We may have called phylink_speed_down before */
3719         phylink_speed_up(priv->phylink);
3720
3721         ret = stmmac_request_irq(dev);
3722         if (ret)
3723                 goto irq_error;
3724
3725         stmmac_enable_all_queues(priv);
3726         netif_tx_start_all_queues(priv->dev);
3727         stmmac_enable_all_dma_irq(priv);
3728
3729         return 0;
3730
3731 irq_error:
3732         phylink_stop(priv->phylink);
3733
3734         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3735                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3736
3737         stmmac_hw_teardown(dev);
3738 init_error:
3739         free_dma_desc_resources(priv);
3740 dma_desc_error:
3741         phylink_disconnect_phy(priv->phylink);
3742 init_phy_error:
3743         pm_runtime_put(priv->device);
3744         return ret;
3745 }
3746
3747 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3748 {
3749         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3750
3751         if (priv->fpe_wq)
3752                 destroy_workqueue(priv->fpe_wq);
3753
3754         netdev_info(priv->dev, "FPE workqueue stop");
3755 }
3756
3757 /**
3758  *  stmmac_release - close entry point of the driver
3759  *  @dev : device pointer.
3760  *  Description:
3761  *  This is the stop entry point of the driver.
3762  */
3763 static int stmmac_release(struct net_device *dev)
3764 {
3765         struct stmmac_priv *priv = netdev_priv(dev);
3766         u32 chan;
3767
3768         netif_tx_disable(dev);
3769
3770         if (device_may_wakeup(priv->device))
3771                 phylink_speed_down(priv->phylink, false);
3772         /* Stop and disconnect the PHY */
3773         phylink_stop(priv->phylink);
3774         phylink_disconnect_phy(priv->phylink);
3775
3776         stmmac_disable_all_queues(priv);
3777
3778         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3779                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3780
3781         /* Free the IRQ lines */
3782         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3783
3784         if (priv->eee_enabled) {
3785                 priv->tx_path_in_lpi_mode = false;
3786                 del_timer_sync(&priv->eee_ctrl_timer);
3787         }
3788
3789         /* Stop TX/RX DMA and clear the descriptors */
3790         stmmac_stop_all_dma(priv);
3791
3792         /* Release and free the Rx/Tx resources */
3793         free_dma_desc_resources(priv);
3794
3795         /* Disable the MAC Rx/Tx */
3796         stmmac_mac_set(priv, priv->ioaddr, false);
3797
3798         netif_carrier_off(dev);
3799
3800         stmmac_release_ptp(priv);
3801
3802         pm_runtime_put(priv->device);
3803
3804         if (priv->dma_cap.fpesel)
3805                 stmmac_fpe_stop_wq(priv);
3806
3807         return 0;
3808 }
3809
3810 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3811                                struct stmmac_tx_queue *tx_q)
3812 {
3813         u16 tag = 0x0, inner_tag = 0x0;
3814         u32 inner_type = 0x0;
3815         struct dma_desc *p;
3816
3817         if (!priv->dma_cap.vlins)
3818                 return false;
3819         if (!skb_vlan_tag_present(skb))
3820                 return false;
3821         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3822                 inner_tag = skb_vlan_tag_get(skb);
3823                 inner_type = STMMAC_VLAN_INSERT;
3824         }
3825
3826         tag = skb_vlan_tag_get(skb);
3827
3828         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3829                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3830         else
3831                 p = &tx_q->dma_tx[tx_q->cur_tx];
3832
3833         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3834                 return false;
3835
3836         stmmac_set_tx_owner(priv, p);
3837         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3838         return true;
3839 }
3840
3841 /**
3842  *  stmmac_tso_allocator - close entry point of the driver
3843  *  @priv: driver private structure
3844  *  @des: buffer start address
3845  *  @total_len: total length to fill in descriptors
3846  *  @last_segment: condition for the last descriptor
3847  *  @queue: TX queue index
3848  *  Description:
3849  *  This function fills descriptor and request new descriptors according to
3850  *  buffer length to fill
3851  */
3852 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3853                                  int total_len, bool last_segment, u32 queue)
3854 {
3855         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3856         struct dma_desc *desc;
3857         u32 buff_size;
3858         int tmp_len;
3859
3860         tmp_len = total_len;
3861
3862         while (tmp_len > 0) {
3863                 dma_addr_t curr_addr;
3864
3865                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3866                                                 priv->dma_tx_size);
3867                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3868
3869                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3870                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3871                 else
3872                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3873
3874                 curr_addr = des + (total_len - tmp_len);
3875                 if (priv->dma_cap.addr64 <= 32)
3876                         desc->des0 = cpu_to_le32(curr_addr);
3877                 else
3878                         stmmac_set_desc_addr(priv, desc, curr_addr);
3879
3880                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3881                             TSO_MAX_BUFF_SIZE : tmp_len;
3882
3883                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3884                                 0, 1,
3885                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3886                                 0, 0);
3887
3888                 tmp_len -= TSO_MAX_BUFF_SIZE;
3889         }
3890 }
3891
3892 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3893 {
3894         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3895         int desc_size;
3896
3897         if (likely(priv->extend_desc))
3898                 desc_size = sizeof(struct dma_extended_desc);
3899         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3900                 desc_size = sizeof(struct dma_edesc);
3901         else
3902                 desc_size = sizeof(struct dma_desc);
3903
3904         /* The own bit must be the latest setting done when prepare the
3905          * descriptor and then barrier is needed to make sure that
3906          * all is coherent before granting the DMA engine.
3907          */
3908         wmb();
3909
3910         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3911         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3912 }
3913
3914 /**
3915  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3916  *  @skb : the socket buffer
3917  *  @dev : device pointer
3918  *  Description: this is the transmit function that is called on TSO frames
3919  *  (support available on GMAC4 and newer chips).
3920  *  Diagram below show the ring programming in case of TSO frames:
3921  *
3922  *  First Descriptor
3923  *   --------
3924  *   | DES0 |---> buffer1 = L2/L3/L4 header
3925  *   | DES1 |---> TCP Payload (can continue on next descr...)
3926  *   | DES2 |---> buffer 1 and 2 len
3927  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3928  *   --------
3929  *      |
3930  *     ...
3931  *      |
3932  *   --------
3933  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3934  *   | DES1 | --|
3935  *   | DES2 | --> buffer 1 and 2 len
3936  *   | DES3 |
3937  *   --------
3938  *
3939  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3940  */
3941 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3942 {
3943         struct dma_desc *desc, *first, *mss_desc = NULL;
3944         struct stmmac_priv *priv = netdev_priv(dev);
3945         int nfrags = skb_shinfo(skb)->nr_frags;
3946         u32 queue = skb_get_queue_mapping(skb);
3947         unsigned int first_entry, tx_packets;
3948         int tmp_pay_len = 0, first_tx;
3949         struct stmmac_tx_queue *tx_q;
3950         bool has_vlan, set_ic;
3951         u8 proto_hdr_len, hdr;
3952         u32 pay_len, mss;
3953         dma_addr_t des;
3954         int i;
3955
3956         tx_q = &priv->tx_queue[queue];
3957         first_tx = tx_q->cur_tx;
3958
3959         /* Compute header lengths */
3960         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3961                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3962                 hdr = sizeof(struct udphdr);
3963         } else {
3964                 proto_hdr_len = skb_tcp_all_headers(skb);
3965                 hdr = tcp_hdrlen(skb);
3966         }
3967
3968         /* Desc availability based on threshold should be enough safe */
3969         if (unlikely(stmmac_tx_avail(priv, queue) <
3970                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3971                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3972                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3973                                                                 queue));
3974                         /* This is a hard error, log it. */
3975                         netdev_err(priv->dev,
3976                                    "%s: Tx Ring full when queue awake\n",
3977                                    __func__);
3978                 }
3979                 return NETDEV_TX_BUSY;
3980         }
3981
3982         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3983
3984         mss = skb_shinfo(skb)->gso_size;
3985
3986         /* set new MSS value if needed */
3987         if (mss != tx_q->mss) {
3988                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3989                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3990                 else
3991                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3992
3993                 stmmac_set_mss(priv, mss_desc, mss);
3994                 tx_q->mss = mss;
3995                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3996                                                 priv->dma_tx_size);
3997                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3998         }
3999
4000         if (netif_msg_tx_queued(priv)) {
4001                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4002                         __func__, hdr, proto_hdr_len, pay_len, mss);
4003                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4004                         skb->data_len);
4005         }
4006
4007         /* Check if VLAN can be inserted by HW */
4008         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4009
4010         first_entry = tx_q->cur_tx;
4011         WARN_ON(tx_q->tx_skbuff[first_entry]);
4012
4013         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4014                 desc = &tx_q->dma_entx[first_entry].basic;
4015         else
4016                 desc = &tx_q->dma_tx[first_entry];
4017         first = desc;
4018
4019         if (has_vlan)
4020                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4021
4022         /* first descriptor: fill Headers on Buf1 */
4023         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4024                              DMA_TO_DEVICE);
4025         if (dma_mapping_error(priv->device, des))
4026                 goto dma_map_err;
4027
4028         tx_q->tx_skbuff_dma[first_entry].buf = des;
4029         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4030         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4031         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4032
4033         if (priv->dma_cap.addr64 <= 32) {
4034                 first->des0 = cpu_to_le32(des);
4035
4036                 /* Fill start of payload in buff2 of first descriptor */
4037                 if (pay_len)
4038                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4039
4040                 /* If needed take extra descriptors to fill the remaining payload */
4041                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4042         } else {
4043                 stmmac_set_desc_addr(priv, first, des);
4044                 tmp_pay_len = pay_len;
4045                 des += proto_hdr_len;
4046                 pay_len = 0;
4047         }
4048
4049         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4050
4051         /* Prepare fragments */
4052         for (i = 0; i < nfrags; i++) {
4053                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4054
4055                 des = skb_frag_dma_map(priv->device, frag, 0,
4056                                        skb_frag_size(frag),
4057                                        DMA_TO_DEVICE);
4058                 if (dma_mapping_error(priv->device, des))
4059                         goto dma_map_err;
4060
4061                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4062                                      (i == nfrags - 1), queue);
4063
4064                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4065                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4066                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4067                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4068         }
4069
4070         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4071
4072         /* Only the last descriptor gets to point to the skb. */
4073         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4074         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4075
4076         /* Manage tx mitigation */
4077         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4078         tx_q->tx_count_frames += tx_packets;
4079
4080         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4081                 set_ic = true;
4082         else if (!priv->tx_coal_frames[queue])
4083                 set_ic = false;
4084         else if (tx_packets > priv->tx_coal_frames[queue])
4085                 set_ic = true;
4086         else if ((tx_q->tx_count_frames %
4087                   priv->tx_coal_frames[queue]) < tx_packets)
4088                 set_ic = true;
4089         else
4090                 set_ic = false;
4091
4092         if (set_ic) {
4093                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4094                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4095                 else
4096                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4097
4098                 tx_q->tx_count_frames = 0;
4099                 stmmac_set_tx_ic(priv, desc);
4100                 priv->xstats.tx_set_ic_bit++;
4101         }
4102
4103         /* We've used all descriptors we need for this skb, however,
4104          * advance cur_tx so that it references a fresh descriptor.
4105          * ndo_start_xmit will fill this descriptor the next time it's
4106          * called and stmmac_tx_clean may clean up to this descriptor.
4107          */
4108         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4109
4110         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4111                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4112                           __func__);
4113                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4114         }
4115
4116         dev->stats.tx_bytes += skb->len;
4117         priv->xstats.tx_tso_frames++;
4118         priv->xstats.tx_tso_nfrags += nfrags;
4119
4120         if (priv->sarc_type)
4121                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4122
4123         skb_tx_timestamp(skb);
4124
4125         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4126                      priv->hwts_tx_en)) {
4127                 /* declare that device is doing timestamping */
4128                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4129                 stmmac_enable_tx_timestamp(priv, first);
4130         }
4131
4132         /* Complete the first descriptor before granting the DMA */
4133         stmmac_prepare_tso_tx_desc(priv, first, 1,
4134                         proto_hdr_len,
4135                         pay_len,
4136                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4137                         hdr / 4, (skb->len - proto_hdr_len));
4138
4139         /* If context desc is used to change MSS */
4140         if (mss_desc) {
4141                 /* Make sure that first descriptor has been completely
4142                  * written, including its own bit. This is because MSS is
4143                  * actually before first descriptor, so we need to make
4144                  * sure that MSS's own bit is the last thing written.
4145                  */
4146                 dma_wmb();
4147                 stmmac_set_tx_owner(priv, mss_desc);
4148         }
4149
4150         if (netif_msg_pktdata(priv)) {
4151                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4152                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4153                         tx_q->cur_tx, first, nfrags);
4154                 pr_info(">>> frame to be transmitted: ");
4155                 print_pkt(skb->data, skb_headlen(skb));
4156         }
4157
4158         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4159
4160         stmmac_flush_tx_descriptors(priv, queue);
4161         stmmac_tx_timer_arm(priv, queue);
4162
4163         return NETDEV_TX_OK;
4164
4165 dma_map_err:
4166         dev_err(priv->device, "Tx dma map failed\n");
4167         dev_kfree_skb(skb);
4168         priv->dev->stats.tx_dropped++;
4169         return NETDEV_TX_OK;
4170 }
4171
4172 /**
4173  *  stmmac_xmit - Tx entry point of the driver
4174  *  @skb : the socket buffer
4175  *  @dev : device pointer
4176  *  Description : this is the tx entry point of the driver.
4177  *  It programs the chain or the ring and supports oversized frames
4178  *  and SG feature.
4179  */
4180 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4181 {
4182         unsigned int first_entry, tx_packets, enh_desc;
4183         struct stmmac_priv *priv = netdev_priv(dev);
4184         unsigned int nopaged_len = skb_headlen(skb);
4185         int i, csum_insertion = 0, is_jumbo = 0;
4186         u32 queue = skb_get_queue_mapping(skb);
4187         int nfrags = skb_shinfo(skb)->nr_frags;
4188         int gso = skb_shinfo(skb)->gso_type;
4189         struct dma_edesc *tbs_desc = NULL;
4190         struct dma_desc *desc, *first;
4191         struct stmmac_tx_queue *tx_q;
4192         bool has_vlan, set_ic;
4193         int entry, first_tx;
4194         dma_addr_t des;
4195
4196         tx_q = &priv->tx_queue[queue];
4197         first_tx = tx_q->cur_tx;
4198
4199         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4200                 stmmac_disable_eee_mode(priv);
4201
4202         /* Manage oversized TCP frames for GMAC4 device */
4203         if (skb_is_gso(skb) && priv->tso) {
4204                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4205                         return stmmac_tso_xmit(skb, dev);
4206                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4207                         return stmmac_tso_xmit(skb, dev);
4208         }
4209
4210         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4211                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4212                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4213                                                                 queue));
4214                         /* This is a hard error, log it. */
4215                         netdev_err(priv->dev,
4216                                    "%s: Tx Ring full when queue awake\n",
4217                                    __func__);
4218                 }
4219                 return NETDEV_TX_BUSY;
4220         }
4221
4222         /* Check if VLAN can be inserted by HW */
4223         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4224
4225         entry = tx_q->cur_tx;
4226         first_entry = entry;
4227         WARN_ON(tx_q->tx_skbuff[first_entry]);
4228
4229         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4230
4231         if (likely(priv->extend_desc))
4232                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4233         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4234                 desc = &tx_q->dma_entx[entry].basic;
4235         else
4236                 desc = tx_q->dma_tx + entry;
4237
4238         first = desc;
4239
4240         if (has_vlan)
4241                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4242
4243         enh_desc = priv->plat->enh_desc;
4244         /* To program the descriptors according to the size of the frame */
4245         if (enh_desc)
4246                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4247
4248         if (unlikely(is_jumbo)) {
4249                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4250                 if (unlikely(entry < 0) && (entry != -EINVAL))
4251                         goto dma_map_err;
4252         }
4253
4254         for (i = 0; i < nfrags; i++) {
4255                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4256                 int len = skb_frag_size(frag);
4257                 bool last_segment = (i == (nfrags - 1));
4258
4259                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4260                 WARN_ON(tx_q->tx_skbuff[entry]);
4261
4262                 if (likely(priv->extend_desc))
4263                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4264                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4265                         desc = &tx_q->dma_entx[entry].basic;
4266                 else
4267                         desc = tx_q->dma_tx + entry;
4268
4269                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4270                                        DMA_TO_DEVICE);
4271                 if (dma_mapping_error(priv->device, des))
4272                         goto dma_map_err; /* should reuse desc w/o issues */
4273
4274                 tx_q->tx_skbuff_dma[entry].buf = des;
4275
4276                 stmmac_set_desc_addr(priv, desc, des);
4277
4278                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4279                 tx_q->tx_skbuff_dma[entry].len = len;
4280                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4281                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4282
4283                 /* Prepare the descriptor and set the own bit too */
4284                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4285                                 priv->mode, 1, last_segment, skb->len);
4286         }
4287
4288         /* Only the last descriptor gets to point to the skb. */
4289         tx_q->tx_skbuff[entry] = skb;
4290         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4291
4292         /* According to the coalesce parameter the IC bit for the latest
4293          * segment is reset and the timer re-started to clean the tx status.
4294          * This approach takes care about the fragments: desc is the first
4295          * element in case of no SG.
4296          */
4297         tx_packets = (entry + 1) - first_tx;
4298         tx_q->tx_count_frames += tx_packets;
4299
4300         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4301                 set_ic = true;
4302         else if (!priv->tx_coal_frames[queue])
4303                 set_ic = false;
4304         else if (tx_packets > priv->tx_coal_frames[queue])
4305                 set_ic = true;
4306         else if ((tx_q->tx_count_frames %
4307                   priv->tx_coal_frames[queue]) < tx_packets)
4308                 set_ic = true;
4309         else
4310                 set_ic = false;
4311
4312         if (set_ic) {
4313                 if (likely(priv->extend_desc))
4314                         desc = &tx_q->dma_etx[entry].basic;
4315                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4316                         desc = &tx_q->dma_entx[entry].basic;
4317                 else
4318                         desc = &tx_q->dma_tx[entry];
4319
4320                 tx_q->tx_count_frames = 0;
4321                 stmmac_set_tx_ic(priv, desc);
4322                 priv->xstats.tx_set_ic_bit++;
4323         }
4324
4325         /* We've used all descriptors we need for this skb, however,
4326          * advance cur_tx so that it references a fresh descriptor.
4327          * ndo_start_xmit will fill this descriptor the next time it's
4328          * called and stmmac_tx_clean may clean up to this descriptor.
4329          */
4330         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4331         tx_q->cur_tx = entry;
4332
4333         if (netif_msg_pktdata(priv)) {
4334                 netdev_dbg(priv->dev,
4335                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4336                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4337                            entry, first, nfrags);
4338
4339                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4340                 print_pkt(skb->data, skb->len);
4341         }
4342
4343         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4344                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4345                           __func__);
4346                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4347         }
4348
4349         dev->stats.tx_bytes += skb->len;
4350
4351         if (priv->sarc_type)
4352                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4353
4354         skb_tx_timestamp(skb);
4355
4356         /* Ready to fill the first descriptor and set the OWN bit w/o any
4357          * problems because all the descriptors are actually ready to be
4358          * passed to the DMA engine.
4359          */
4360         if (likely(!is_jumbo)) {
4361                 bool last_segment = (nfrags == 0);
4362
4363                 des = dma_map_single(priv->device, skb->data,
4364                                      nopaged_len, DMA_TO_DEVICE);
4365                 if (dma_mapping_error(priv->device, des))
4366                         goto dma_map_err;
4367
4368                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4369                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4370                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4371
4372                 stmmac_set_desc_addr(priv, first, des);
4373
4374                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4375                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4376
4377                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4378                              priv->hwts_tx_en)) {
4379                         /* declare that device is doing timestamping */
4380                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4381                         stmmac_enable_tx_timestamp(priv, first);
4382                 }
4383
4384                 /* Prepare the first descriptor setting the OWN bit too */
4385                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4386                                 csum_insertion, priv->mode, 0, last_segment,
4387                                 skb->len);
4388         }
4389
4390         if (tx_q->tbs & STMMAC_TBS_EN) {
4391                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4392
4393                 tbs_desc = &tx_q->dma_entx[first_entry];
4394                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4395         }
4396
4397         stmmac_set_tx_owner(priv, first);
4398
4399         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4400
4401         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4402
4403         stmmac_flush_tx_descriptors(priv, queue);
4404         stmmac_tx_timer_arm(priv, queue);
4405
4406         return NETDEV_TX_OK;
4407
4408 dma_map_err:
4409         netdev_err(priv->dev, "Tx DMA map failed\n");
4410         dev_kfree_skb(skb);
4411         priv->dev->stats.tx_dropped++;
4412         return NETDEV_TX_OK;
4413 }
4414
4415 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4416 {
4417         struct vlan_ethhdr *veth;
4418         __be16 vlan_proto;
4419         u16 vlanid;
4420
4421         veth = (struct vlan_ethhdr *)skb->data;
4422         vlan_proto = veth->h_vlan_proto;
4423
4424         if ((vlan_proto == htons(ETH_P_8021Q) &&
4425              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4426             (vlan_proto == htons(ETH_P_8021AD) &&
4427              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4428                 /* pop the vlan tag */
4429                 vlanid = ntohs(veth->h_vlan_TCI);
4430                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4431                 skb_pull(skb, VLAN_HLEN);
4432                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4433         }
4434 }
4435
4436 /**
4437  * stmmac_rx_refill - refill used skb preallocated buffers
4438  * @priv: driver private structure
4439  * @queue: RX queue index
4440  * Description : this is to reallocate the skb for the reception process
4441  * that is based on zero-copy.
4442  */
4443 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4444 {
4445         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4446         int dirty = stmmac_rx_dirty(priv, queue);
4447         unsigned int entry = rx_q->dirty_rx;
4448         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4449
4450         if (priv->dma_cap.addr64 <= 32)
4451                 gfp |= GFP_DMA32;
4452
4453         while (dirty-- > 0) {
4454                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4455                 struct dma_desc *p;
4456                 bool use_rx_wd;
4457
4458                 if (priv->extend_desc)
4459                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4460                 else
4461                         p = rx_q->dma_rx + entry;
4462
4463                 if (!buf->page) {
4464                         buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4465                         if (!buf->page)
4466                                 break;
4467                 }
4468
4469                 if (priv->sph && !buf->sec_page) {
4470                         buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4471                         if (!buf->sec_page)
4472                                 break;
4473
4474                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4475                 }
4476
4477                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4478
4479                 stmmac_set_desc_addr(priv, p, buf->addr);
4480                 if (priv->sph)
4481                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4482                 else
4483                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4484                 stmmac_refill_desc3(priv, rx_q, p);
4485
4486                 rx_q->rx_count_frames++;
4487                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4488                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4489                         rx_q->rx_count_frames = 0;
4490
4491                 use_rx_wd = !priv->rx_coal_frames[queue];
4492                 use_rx_wd |= rx_q->rx_count_frames > 0;
4493                 if (!priv->use_riwt)
4494                         use_rx_wd = false;
4495
4496                 dma_wmb();
4497                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4498
4499                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4500         }
4501         rx_q->dirty_rx = entry;
4502         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4503                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4504         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4505 }
4506
4507 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4508                                        struct dma_desc *p,
4509                                        int status, unsigned int len)
4510 {
4511         unsigned int plen = 0, hlen = 0;
4512         int coe = priv->hw->rx_csum;
4513
4514         /* Not first descriptor, buffer is always zero */
4515         if (priv->sph && len)
4516                 return 0;
4517
4518         /* First descriptor, get split header length */
4519         stmmac_get_rx_header_len(priv, p, &hlen);
4520         if (priv->sph && hlen) {
4521                 priv->xstats.rx_split_hdr_pkt_n++;
4522                 return hlen;
4523         }
4524
4525         /* First descriptor, not last descriptor and not split header */
4526         if (status & rx_not_ls)
4527                 return priv->dma_buf_sz;
4528
4529         plen = stmmac_get_rx_frame_len(priv, p, coe);
4530
4531         /* First descriptor and last descriptor and not split header */
4532         return min_t(unsigned int, priv->dma_buf_sz, plen);
4533 }
4534
4535 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4536                                        struct dma_desc *p,
4537                                        int status, unsigned int len)
4538 {
4539         int coe = priv->hw->rx_csum;
4540         unsigned int plen = 0;
4541
4542         /* Not split header, buffer is not available */
4543         if (!priv->sph)
4544                 return 0;
4545
4546         /* Not last descriptor */
4547         if (status & rx_not_ls)
4548                 return priv->dma_buf_sz;
4549
4550         plen = stmmac_get_rx_frame_len(priv, p, coe);
4551
4552         /* Last descriptor */
4553         return plen - len;
4554 }
4555
4556 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4557                                 struct xdp_frame *xdpf, bool dma_map)
4558 {
4559         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4560         unsigned int entry = tx_q->cur_tx;
4561         struct dma_desc *tx_desc;
4562         dma_addr_t dma_addr;
4563         bool set_ic;
4564
4565         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4566                 return STMMAC_XDP_CONSUMED;
4567
4568         if (likely(priv->extend_desc))
4569                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4570         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4571                 tx_desc = &tx_q->dma_entx[entry].basic;
4572         else
4573                 tx_desc = tx_q->dma_tx + entry;
4574
4575         if (dma_map) {
4576                 dma_addr = dma_map_single(priv->device, xdpf->data,
4577                                           xdpf->len, DMA_TO_DEVICE);
4578                 if (dma_mapping_error(priv->device, dma_addr))
4579                         return STMMAC_XDP_CONSUMED;
4580
4581                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4582         } else {
4583                 struct page *page = virt_to_page(xdpf->data);
4584
4585                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4586                            xdpf->headroom;
4587                 dma_sync_single_for_device(priv->device, dma_addr,
4588                                            xdpf->len, DMA_BIDIRECTIONAL);
4589
4590                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4591         }
4592
4593         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4594         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4595         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4596         tx_q->tx_skbuff_dma[entry].last_segment = true;
4597         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4598
4599         tx_q->xdpf[entry] = xdpf;
4600
4601         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4602
4603         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4604                                true, priv->mode, true, true,
4605                                xdpf->len);
4606
4607         tx_q->tx_count_frames++;
4608
4609         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4610                 set_ic = true;
4611         else
4612                 set_ic = false;
4613
4614         if (set_ic) {
4615                 tx_q->tx_count_frames = 0;
4616                 stmmac_set_tx_ic(priv, tx_desc);
4617                 priv->xstats.tx_set_ic_bit++;
4618         }
4619
4620         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4621
4622         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4623         tx_q->cur_tx = entry;
4624
4625         return STMMAC_XDP_TX;
4626 }
4627
4628 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4629                                    int cpu)
4630 {
4631         int index = cpu;
4632
4633         if (unlikely(index < 0))
4634                 index = 0;
4635
4636         while (index >= priv->plat->tx_queues_to_use)
4637                 index -= priv->plat->tx_queues_to_use;
4638
4639         return index;
4640 }
4641
4642 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4643                                 struct xdp_buff *xdp)
4644 {
4645         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4646         int cpu = smp_processor_id();
4647         struct netdev_queue *nq;
4648         int queue;
4649         int res;
4650
4651         if (unlikely(!xdpf))
4652                 return STMMAC_XDP_CONSUMED;
4653
4654         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4655         nq = netdev_get_tx_queue(priv->dev, queue);
4656
4657         __netif_tx_lock(nq, cpu);
4658         /* Avoids TX time-out as we are sharing with slow path */
4659         txq_trans_cond_update(nq);
4660
4661         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4662         if (res == STMMAC_XDP_TX)
4663                 stmmac_flush_tx_descriptors(priv, queue);
4664
4665         __netif_tx_unlock(nq);
4666
4667         return res;
4668 }
4669
4670 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4671                                  struct bpf_prog *prog,
4672                                  struct xdp_buff *xdp)
4673 {
4674         u32 act;
4675         int res;
4676
4677         act = bpf_prog_run_xdp(prog, xdp);
4678         switch (act) {
4679         case XDP_PASS:
4680                 res = STMMAC_XDP_PASS;
4681                 break;
4682         case XDP_TX:
4683                 res = stmmac_xdp_xmit_back(priv, xdp);
4684                 break;
4685         case XDP_REDIRECT:
4686                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4687                         res = STMMAC_XDP_CONSUMED;
4688                 else
4689                         res = STMMAC_XDP_REDIRECT;
4690                 break;
4691         default:
4692                 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4693                 fallthrough;
4694         case XDP_ABORTED:
4695                 trace_xdp_exception(priv->dev, prog, act);
4696                 fallthrough;
4697         case XDP_DROP:
4698                 res = STMMAC_XDP_CONSUMED;
4699                 break;
4700         }
4701
4702         return res;
4703 }
4704
4705 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4706                                            struct xdp_buff *xdp)
4707 {
4708         struct bpf_prog *prog;
4709         int res;
4710
4711         prog = READ_ONCE(priv->xdp_prog);
4712         if (!prog) {
4713                 res = STMMAC_XDP_PASS;
4714                 goto out;
4715         }
4716
4717         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4718 out:
4719         return ERR_PTR(-res);
4720 }
4721
4722 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4723                                    int xdp_status)
4724 {
4725         int cpu = smp_processor_id();
4726         int queue;
4727
4728         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4729
4730         if (xdp_status & STMMAC_XDP_TX)
4731                 stmmac_tx_timer_arm(priv, queue);
4732
4733         if (xdp_status & STMMAC_XDP_REDIRECT)
4734                 xdp_do_flush();
4735 }
4736
4737 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4738                                                struct xdp_buff *xdp)
4739 {
4740         unsigned int metasize = xdp->data - xdp->data_meta;
4741         unsigned int datasize = xdp->data_end - xdp->data;
4742         struct sk_buff *skb;
4743
4744         skb = __napi_alloc_skb(&ch->rxtx_napi,
4745                                xdp->data_end - xdp->data_hard_start,
4746                                GFP_ATOMIC | __GFP_NOWARN);
4747         if (unlikely(!skb))
4748                 return NULL;
4749
4750         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4751         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4752         if (metasize)
4753                 skb_metadata_set(skb, metasize);
4754
4755         return skb;
4756 }
4757
4758 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4759                                    struct dma_desc *p, struct dma_desc *np,
4760                                    struct xdp_buff *xdp)
4761 {
4762         struct stmmac_channel *ch = &priv->channel[queue];
4763         unsigned int len = xdp->data_end - xdp->data;
4764         enum pkt_hash_types hash_type;
4765         int coe = priv->hw->rx_csum;
4766         struct sk_buff *skb;
4767         u32 hash;
4768
4769         skb = stmmac_construct_skb_zc(ch, xdp);
4770         if (!skb) {
4771                 priv->dev->stats.rx_dropped++;
4772                 return;
4773         }
4774
4775         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4776         stmmac_rx_vlan(priv->dev, skb);
4777         skb->protocol = eth_type_trans(skb, priv->dev);
4778
4779         if (unlikely(!coe))
4780                 skb_checksum_none_assert(skb);
4781         else
4782                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4783
4784         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4785                 skb_set_hash(skb, hash, hash_type);
4786
4787         skb_record_rx_queue(skb, queue);
4788         napi_gro_receive(&ch->rxtx_napi, skb);
4789
4790         priv->dev->stats.rx_packets++;
4791         priv->dev->stats.rx_bytes += len;
4792 }
4793
4794 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4795 {
4796         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4797         unsigned int entry = rx_q->dirty_rx;
4798         struct dma_desc *rx_desc = NULL;
4799         bool ret = true;
4800
4801         budget = min(budget, stmmac_rx_dirty(priv, queue));
4802
4803         while (budget-- > 0 && entry != rx_q->cur_rx) {
4804                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4805                 dma_addr_t dma_addr;
4806                 bool use_rx_wd;
4807
4808                 if (!buf->xdp) {
4809                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4810                         if (!buf->xdp) {
4811                                 ret = false;
4812                                 break;
4813                         }
4814                 }
4815
4816                 if (priv->extend_desc)
4817                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4818                 else
4819                         rx_desc = rx_q->dma_rx + entry;
4820
4821                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4822                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4823                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4824                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4825
4826                 rx_q->rx_count_frames++;
4827                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4828                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4829                         rx_q->rx_count_frames = 0;
4830
4831                 use_rx_wd = !priv->rx_coal_frames[queue];
4832                 use_rx_wd |= rx_q->rx_count_frames > 0;
4833                 if (!priv->use_riwt)
4834                         use_rx_wd = false;
4835
4836                 dma_wmb();
4837                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4838
4839                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4840         }
4841
4842         if (rx_desc) {
4843                 rx_q->dirty_rx = entry;
4844                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4845                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4846                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4847         }
4848
4849         return ret;
4850 }
4851
4852 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4853 {
4854         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4855         unsigned int count = 0, error = 0, len = 0;
4856         int dirty = stmmac_rx_dirty(priv, queue);
4857         unsigned int next_entry = rx_q->cur_rx;
4858         unsigned int desc_size;
4859         struct bpf_prog *prog;
4860         bool failure = false;
4861         int xdp_status = 0;
4862         int status = 0;
4863
4864         if (netif_msg_rx_status(priv)) {
4865                 void *rx_head;
4866
4867                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4868                 if (priv->extend_desc) {
4869                         rx_head = (void *)rx_q->dma_erx;
4870                         desc_size = sizeof(struct dma_extended_desc);
4871                 } else {
4872                         rx_head = (void *)rx_q->dma_rx;
4873                         desc_size = sizeof(struct dma_desc);
4874                 }
4875
4876                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4877                                     rx_q->dma_rx_phy, desc_size);
4878         }
4879         while (count < limit) {
4880                 struct stmmac_rx_buffer *buf;
4881                 unsigned int buf1_len = 0;
4882                 struct dma_desc *np, *p;
4883                 int entry;
4884                 int res;
4885
4886                 if (!count && rx_q->state_saved) {
4887                         error = rx_q->state.error;
4888                         len = rx_q->state.len;
4889                 } else {
4890                         rx_q->state_saved = false;
4891                         error = 0;
4892                         len = 0;
4893                 }
4894
4895                 if (count >= limit)
4896                         break;
4897
4898 read_again:
4899                 buf1_len = 0;
4900                 entry = next_entry;
4901                 buf = &rx_q->buf_pool[entry];
4902
4903                 if (dirty >= STMMAC_RX_FILL_BATCH) {
4904                         failure = failure ||
4905                                   !stmmac_rx_refill_zc(priv, queue, dirty);
4906                         dirty = 0;
4907                 }
4908
4909                 if (priv->extend_desc)
4910                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4911                 else
4912                         p = rx_q->dma_rx + entry;
4913
4914                 /* read the status of the incoming frame */
4915                 status = stmmac_rx_status(priv, &priv->dev->stats,
4916                                           &priv->xstats, p);
4917                 /* check if managed by the DMA otherwise go ahead */
4918                 if (unlikely(status & dma_own))
4919                         break;
4920
4921                 /* Prefetch the next RX descriptor */
4922                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4923                                                 priv->dma_rx_size);
4924                 next_entry = rx_q->cur_rx;
4925
4926                 if (priv->extend_desc)
4927                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4928                 else
4929                         np = rx_q->dma_rx + next_entry;
4930
4931                 prefetch(np);
4932
4933                 /* Ensure a valid XSK buffer before proceed */
4934                 if (!buf->xdp)
4935                         break;
4936
4937                 if (priv->extend_desc)
4938                         stmmac_rx_extended_status(priv, &priv->dev->stats,
4939                                                   &priv->xstats,
4940                                                   rx_q->dma_erx + entry);
4941                 if (unlikely(status == discard_frame)) {
4942                         xsk_buff_free(buf->xdp);
4943                         buf->xdp = NULL;
4944                         dirty++;
4945                         error = 1;
4946                         if (!priv->hwts_rx_en)
4947                                 priv->dev->stats.rx_errors++;
4948                 }
4949
4950                 if (unlikely(error && (status & rx_not_ls)))
4951                         goto read_again;
4952                 if (unlikely(error)) {
4953                         count++;
4954                         continue;
4955                 }
4956
4957                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4958                 if (likely(status & rx_not_ls)) {
4959                         xsk_buff_free(buf->xdp);
4960                         buf->xdp = NULL;
4961                         dirty++;
4962                         count++;
4963                         goto read_again;
4964                 }
4965
4966                 /* XDP ZC Frame only support primary buffers for now */
4967                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4968                 len += buf1_len;
4969
4970                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4971                  * Type frames (LLC/LLC-SNAP)
4972                  *
4973                  * llc_snap is never checked in GMAC >= 4, so this ACS
4974                  * feature is always disabled and packets need to be
4975                  * stripped manually.
4976                  */
4977                 if (likely(!(status & rx_not_ls)) &&
4978                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4979                      unlikely(status != llc_snap))) {
4980                         buf1_len -= ETH_FCS_LEN;
4981                         len -= ETH_FCS_LEN;
4982                 }
4983
4984                 /* RX buffer is good and fit into a XSK pool buffer */
4985                 buf->xdp->data_end = buf->xdp->data + buf1_len;
4986                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4987
4988                 prog = READ_ONCE(priv->xdp_prog);
4989                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4990
4991                 switch (res) {
4992                 case STMMAC_XDP_PASS:
4993                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4994                         xsk_buff_free(buf->xdp);
4995                         break;
4996                 case STMMAC_XDP_CONSUMED:
4997                         xsk_buff_free(buf->xdp);
4998                         priv->dev->stats.rx_dropped++;
4999                         break;
5000                 case STMMAC_XDP_TX:
5001                 case STMMAC_XDP_REDIRECT:
5002                         xdp_status |= res;
5003                         break;
5004                 }
5005
5006                 buf->xdp = NULL;
5007                 dirty++;
5008                 count++;
5009         }
5010
5011         if (status & rx_not_ls) {
5012                 rx_q->state_saved = true;
5013                 rx_q->state.error = error;
5014                 rx_q->state.len = len;
5015         }
5016
5017         stmmac_finalize_xdp_rx(priv, xdp_status);
5018
5019         priv->xstats.rx_pkt_n += count;
5020         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5021
5022         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5023                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5024                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5025                 else
5026                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5027
5028                 return (int)count;
5029         }
5030
5031         return failure ? limit : (int)count;
5032 }
5033
5034 /**
5035  * stmmac_rx - manage the receive process
5036  * @priv: driver private structure
5037  * @limit: napi bugget
5038  * @queue: RX queue index.
5039  * Description :  this the function called by the napi poll method.
5040  * It gets all the frames inside the ring.
5041  */
5042 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5043 {
5044         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5045         struct stmmac_channel *ch = &priv->channel[queue];
5046         unsigned int count = 0, error = 0, len = 0;
5047         int status = 0, coe = priv->hw->rx_csum;
5048         unsigned int next_entry = rx_q->cur_rx;
5049         enum dma_data_direction dma_dir;
5050         unsigned int desc_size;
5051         struct sk_buff *skb = NULL;
5052         struct xdp_buff xdp;
5053         int xdp_status = 0;
5054         int buf_sz;
5055
5056         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5057         buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5058
5059         if (netif_msg_rx_status(priv)) {
5060                 void *rx_head;
5061
5062                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5063                 if (priv->extend_desc) {
5064                         rx_head = (void *)rx_q->dma_erx;
5065                         desc_size = sizeof(struct dma_extended_desc);
5066                 } else {
5067                         rx_head = (void *)rx_q->dma_rx;
5068                         desc_size = sizeof(struct dma_desc);
5069                 }
5070
5071                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5072                                     rx_q->dma_rx_phy, desc_size);
5073         }
5074         while (count < limit) {
5075                 unsigned int buf1_len = 0, buf2_len = 0;
5076                 enum pkt_hash_types hash_type;
5077                 struct stmmac_rx_buffer *buf;
5078                 struct dma_desc *np, *p;
5079                 int entry;
5080                 u32 hash;
5081
5082                 if (!count && rx_q->state_saved) {
5083                         skb = rx_q->state.skb;
5084                         error = rx_q->state.error;
5085                         len = rx_q->state.len;
5086                 } else {
5087                         rx_q->state_saved = false;
5088                         skb = NULL;
5089                         error = 0;
5090                         len = 0;
5091                 }
5092
5093                 if (count >= limit)
5094                         break;
5095
5096 read_again:
5097                 buf1_len = 0;
5098                 buf2_len = 0;
5099                 entry = next_entry;
5100                 buf = &rx_q->buf_pool[entry];
5101
5102                 if (priv->extend_desc)
5103                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5104                 else
5105                         p = rx_q->dma_rx + entry;
5106
5107                 /* read the status of the incoming frame */
5108                 status = stmmac_rx_status(priv, &priv->dev->stats,
5109                                 &priv->xstats, p);
5110                 /* check if managed by the DMA otherwise go ahead */
5111                 if (unlikely(status & dma_own))
5112                         break;
5113
5114                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5115                                                 priv->dma_rx_size);
5116                 next_entry = rx_q->cur_rx;
5117
5118                 if (priv->extend_desc)
5119                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5120                 else
5121                         np = rx_q->dma_rx + next_entry;
5122
5123                 prefetch(np);
5124
5125                 if (priv->extend_desc)
5126                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5127                                         &priv->xstats, rx_q->dma_erx + entry);
5128                 if (unlikely(status == discard_frame)) {
5129                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5130                         buf->page = NULL;
5131                         error = 1;
5132                         if (!priv->hwts_rx_en)
5133                                 priv->dev->stats.rx_errors++;
5134                 }
5135
5136                 if (unlikely(error && (status & rx_not_ls)))
5137                         goto read_again;
5138                 if (unlikely(error)) {
5139                         dev_kfree_skb(skb);
5140                         skb = NULL;
5141                         count++;
5142                         continue;
5143                 }
5144
5145                 /* Buffer is good. Go on. */
5146
5147                 prefetch(page_address(buf->page) + buf->page_offset);
5148                 if (buf->sec_page)
5149                         prefetch(page_address(buf->sec_page));
5150
5151                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5152                 len += buf1_len;
5153                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5154                 len += buf2_len;
5155
5156                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5157                  * Type frames (LLC/LLC-SNAP)
5158                  *
5159                  * llc_snap is never checked in GMAC >= 4, so this ACS
5160                  * feature is always disabled and packets need to be
5161                  * stripped manually.
5162                  */
5163                 if (likely(!(status & rx_not_ls)) &&
5164                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5165                      unlikely(status != llc_snap))) {
5166                         if (buf2_len) {
5167                                 buf2_len -= ETH_FCS_LEN;
5168                                 len -= ETH_FCS_LEN;
5169                         } else if (buf1_len) {
5170                                 buf1_len -= ETH_FCS_LEN;
5171                                 len -= ETH_FCS_LEN;
5172                         }
5173                 }
5174
5175                 if (!skb) {
5176                         unsigned int pre_len, sync_len;
5177
5178                         dma_sync_single_for_cpu(priv->device, buf->addr,
5179                                                 buf1_len, dma_dir);
5180
5181                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5182                         xdp_prepare_buff(&xdp, page_address(buf->page),
5183                                          buf->page_offset, buf1_len, false);
5184
5185                         pre_len = xdp.data_end - xdp.data_hard_start -
5186                                   buf->page_offset;
5187                         skb = stmmac_xdp_run_prog(priv, &xdp);
5188                         /* Due xdp_adjust_tail: DMA sync for_device
5189                          * cover max len CPU touch
5190                          */
5191                         sync_len = xdp.data_end - xdp.data_hard_start -
5192                                    buf->page_offset;
5193                         sync_len = max(sync_len, pre_len);
5194
5195                         /* For Not XDP_PASS verdict */
5196                         if (IS_ERR(skb)) {
5197                                 unsigned int xdp_res = -PTR_ERR(skb);
5198
5199                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5200                                         page_pool_put_page(rx_q->page_pool,
5201                                                            virt_to_head_page(xdp.data),
5202                                                            sync_len, true);
5203                                         buf->page = NULL;
5204                                         priv->dev->stats.rx_dropped++;
5205
5206                                         /* Clear skb as it was set as
5207                                          * status by XDP program.
5208                                          */
5209                                         skb = NULL;
5210
5211                                         if (unlikely((status & rx_not_ls)))
5212                                                 goto read_again;
5213
5214                                         count++;
5215                                         continue;
5216                                 } else if (xdp_res & (STMMAC_XDP_TX |
5217                                                       STMMAC_XDP_REDIRECT)) {
5218                                         xdp_status |= xdp_res;
5219                                         buf->page = NULL;
5220                                         skb = NULL;
5221                                         count++;
5222                                         continue;
5223                                 }
5224                         }
5225                 }
5226
5227                 if (!skb) {
5228                         /* XDP program may expand or reduce tail */
5229                         buf1_len = xdp.data_end - xdp.data;
5230
5231                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5232                         if (!skb) {
5233                                 priv->dev->stats.rx_dropped++;
5234                                 count++;
5235                                 goto drain_data;
5236                         }
5237
5238                         /* XDP program may adjust header */
5239                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5240                         skb_put(skb, buf1_len);
5241
5242                         /* Data payload copied into SKB, page ready for recycle */
5243                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5244                         buf->page = NULL;
5245                 } else if (buf1_len) {
5246                         dma_sync_single_for_cpu(priv->device, buf->addr,
5247                                                 buf1_len, dma_dir);
5248                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5249                                         buf->page, buf->page_offset, buf1_len,
5250                                         priv->dma_buf_sz);
5251
5252                         /* Data payload appended into SKB */
5253                         page_pool_release_page(rx_q->page_pool, buf->page);
5254                         buf->page = NULL;
5255                 }
5256
5257                 if (buf2_len) {
5258                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5259                                                 buf2_len, dma_dir);
5260                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5261                                         buf->sec_page, 0, buf2_len,
5262                                         priv->dma_buf_sz);
5263
5264                         /* Data payload appended into SKB */
5265                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5266                         buf->sec_page = NULL;
5267                 }
5268
5269 drain_data:
5270                 if (likely(status & rx_not_ls))
5271                         goto read_again;
5272                 if (!skb)
5273                         continue;
5274
5275                 /* Got entire packet into SKB. Finish it. */
5276
5277                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5278                 stmmac_rx_vlan(priv->dev, skb);
5279                 skb->protocol = eth_type_trans(skb, priv->dev);
5280
5281                 if (unlikely(!coe))
5282                         skb_checksum_none_assert(skb);
5283                 else
5284                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5285
5286                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5287                         skb_set_hash(skb, hash, hash_type);
5288
5289                 skb_record_rx_queue(skb, queue);
5290                 napi_gro_receive(&ch->rx_napi, skb);
5291                 skb = NULL;
5292
5293                 priv->dev->stats.rx_packets++;
5294                 priv->dev->stats.rx_bytes += len;
5295                 count++;
5296         }
5297
5298         if (status & rx_not_ls || skb) {
5299                 rx_q->state_saved = true;
5300                 rx_q->state.skb = skb;
5301                 rx_q->state.error = error;
5302                 rx_q->state.len = len;
5303         }
5304
5305         stmmac_finalize_xdp_rx(priv, xdp_status);
5306
5307         stmmac_rx_refill(priv, queue);
5308
5309         priv->xstats.rx_pkt_n += count;
5310         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5311
5312         return count;
5313 }
5314
5315 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5316 {
5317         struct stmmac_channel *ch =
5318                 container_of(napi, struct stmmac_channel, rx_napi);
5319         struct stmmac_priv *priv = ch->priv_data;
5320         u32 chan = ch->index;
5321         int work_done;
5322
5323         priv->xstats.napi_poll++;
5324
5325         work_done = stmmac_rx(priv, budget, chan);
5326         if (work_done < budget && napi_complete_done(napi, work_done)) {
5327                 unsigned long flags;
5328
5329                 spin_lock_irqsave(&ch->lock, flags);
5330                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5331                 spin_unlock_irqrestore(&ch->lock, flags);
5332         }
5333
5334         return work_done;
5335 }
5336
5337 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5338 {
5339         struct stmmac_channel *ch =
5340                 container_of(napi, struct stmmac_channel, tx_napi);
5341         struct stmmac_priv *priv = ch->priv_data;
5342         u32 chan = ch->index;
5343         int work_done;
5344
5345         priv->xstats.napi_poll++;
5346
5347         work_done = stmmac_tx_clean(priv, budget, chan);
5348         work_done = min(work_done, budget);
5349
5350         if (work_done < budget && napi_complete_done(napi, work_done)) {
5351                 unsigned long flags;
5352
5353                 spin_lock_irqsave(&ch->lock, flags);
5354                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5355                 spin_unlock_irqrestore(&ch->lock, flags);
5356         }
5357
5358         return work_done;
5359 }
5360
5361 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5362 {
5363         struct stmmac_channel *ch =
5364                 container_of(napi, struct stmmac_channel, rxtx_napi);
5365         struct stmmac_priv *priv = ch->priv_data;
5366         int rx_done, tx_done, rxtx_done;
5367         u32 chan = ch->index;
5368
5369         priv->xstats.napi_poll++;
5370
5371         tx_done = stmmac_tx_clean(priv, budget, chan);
5372         tx_done = min(tx_done, budget);
5373
5374         rx_done = stmmac_rx_zc(priv, budget, chan);
5375
5376         rxtx_done = max(tx_done, rx_done);
5377
5378         /* If either TX or RX work is not complete, return budget
5379          * and keep pooling
5380          */
5381         if (rxtx_done >= budget)
5382                 return budget;
5383
5384         /* all work done, exit the polling mode */
5385         if (napi_complete_done(napi, rxtx_done)) {
5386                 unsigned long flags;
5387
5388                 spin_lock_irqsave(&ch->lock, flags);
5389                 /* Both RX and TX work done are compelte,
5390                  * so enable both RX & TX IRQs.
5391                  */
5392                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5393                 spin_unlock_irqrestore(&ch->lock, flags);
5394         }
5395
5396         return min(rxtx_done, budget - 1);
5397 }
5398
5399 /**
5400  *  stmmac_tx_timeout
5401  *  @dev : Pointer to net device structure
5402  *  @txqueue: the index of the hanging transmit queue
5403  *  Description: this function is called when a packet transmission fails to
5404  *   complete within a reasonable time. The driver will mark the error in the
5405  *   netdev structure and arrange for the device to be reset to a sane state
5406  *   in order to transmit a new packet.
5407  */
5408 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5409 {
5410         struct stmmac_priv *priv = netdev_priv(dev);
5411
5412         stmmac_global_err(priv);
5413 }
5414
5415 /**
5416  *  stmmac_set_rx_mode - entry point for multicast addressing
5417  *  @dev : pointer to the device structure
5418  *  Description:
5419  *  This function is a driver entry point which gets called by the kernel
5420  *  whenever multicast addresses must be enabled/disabled.
5421  *  Return value:
5422  *  void.
5423  */
5424 static void stmmac_set_rx_mode(struct net_device *dev)
5425 {
5426         struct stmmac_priv *priv = netdev_priv(dev);
5427
5428         stmmac_set_filter(priv, priv->hw, dev);
5429 }
5430
5431 /**
5432  *  stmmac_change_mtu - entry point to change MTU size for the device.
5433  *  @dev : device pointer.
5434  *  @new_mtu : the new MTU size for the device.
5435  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5436  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5437  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5438  *  Return value:
5439  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5440  *  file on failure.
5441  */
5442 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5443 {
5444         struct stmmac_priv *priv = netdev_priv(dev);
5445         int txfifosz = priv->plat->tx_fifo_size;
5446         const int mtu = new_mtu;
5447
5448         if (txfifosz == 0)
5449                 txfifosz = priv->dma_cap.tx_fifo_size;
5450
5451         txfifosz /= priv->plat->tx_queues_to_use;
5452
5453         if (netif_running(dev)) {
5454                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5455                 return -EBUSY;
5456         }
5457
5458         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5459                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5460                 return -EINVAL;
5461         }
5462
5463         new_mtu = STMMAC_ALIGN(new_mtu);
5464
5465         /* If condition true, FIFO is too small or MTU too large */
5466         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5467                 return -EINVAL;
5468
5469         dev->mtu = mtu;
5470
5471         netdev_update_features(dev);
5472
5473         return 0;
5474 }
5475
5476 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5477                                              netdev_features_t features)
5478 {
5479         struct stmmac_priv *priv = netdev_priv(dev);
5480
5481         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5482                 features &= ~NETIF_F_RXCSUM;
5483
5484         if (!priv->plat->tx_coe)
5485                 features &= ~NETIF_F_CSUM_MASK;
5486
5487         /* Some GMAC devices have a bugged Jumbo frame support that
5488          * needs to have the Tx COE disabled for oversized frames
5489          * (due to limited buffer sizes). In this case we disable
5490          * the TX csum insertion in the TDES and not use SF.
5491          */
5492         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5493                 features &= ~NETIF_F_CSUM_MASK;
5494
5495         /* Disable tso if asked by ethtool */
5496         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5497                 if (features & NETIF_F_TSO)
5498                         priv->tso = true;
5499                 else
5500                         priv->tso = false;
5501         }
5502
5503         return features;
5504 }
5505
5506 static int stmmac_set_features(struct net_device *netdev,
5507                                netdev_features_t features)
5508 {
5509         struct stmmac_priv *priv = netdev_priv(netdev);
5510
5511         /* Keep the COE Type in case of csum is supporting */
5512         if (features & NETIF_F_RXCSUM)
5513                 priv->hw->rx_csum = priv->plat->rx_coe;
5514         else
5515                 priv->hw->rx_csum = 0;
5516         /* No check needed because rx_coe has been set before and it will be
5517          * fixed in case of issue.
5518          */
5519         stmmac_rx_ipc(priv, priv->hw);
5520
5521         if (priv->sph_cap) {
5522                 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5523                 u32 chan;
5524
5525                 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5526                         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5527         }
5528
5529         return 0;
5530 }
5531
5532 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5533 {
5534         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5535         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5536         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5537         bool *hs_enable = &fpe_cfg->hs_enable;
5538
5539         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5540                 return;
5541
5542         /* If LP has sent verify mPacket, LP is FPE capable */
5543         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5544                 if (*lp_state < FPE_STATE_CAPABLE)
5545                         *lp_state = FPE_STATE_CAPABLE;
5546
5547                 /* If user has requested FPE enable, quickly response */
5548                 if (*hs_enable)
5549                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5550                                                 MPACKET_RESPONSE);
5551         }
5552
5553         /* If Local has sent verify mPacket, Local is FPE capable */
5554         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5555                 if (*lo_state < FPE_STATE_CAPABLE)
5556                         *lo_state = FPE_STATE_CAPABLE;
5557         }
5558
5559         /* If LP has sent response mPacket, LP is entering FPE ON */
5560         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5561                 *lp_state = FPE_STATE_ENTERING_ON;
5562
5563         /* If Local has sent response mPacket, Local is entering FPE ON */
5564         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5565                 *lo_state = FPE_STATE_ENTERING_ON;
5566
5567         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5568             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5569             priv->fpe_wq) {
5570                 queue_work(priv->fpe_wq, &priv->fpe_task);
5571         }
5572 }
5573
5574 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5575 {
5576         u32 rx_cnt = priv->plat->rx_queues_to_use;
5577         u32 tx_cnt = priv->plat->tx_queues_to_use;
5578         u32 queues_count;
5579         u32 queue;
5580         bool xmac;
5581
5582         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5583         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5584
5585         if (priv->irq_wake)
5586                 pm_wakeup_event(priv->device, 0);
5587
5588         if (priv->dma_cap.estsel)
5589                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5590                                       &priv->xstats, tx_cnt);
5591
5592         if (priv->dma_cap.fpesel) {
5593                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5594                                                    priv->dev);
5595
5596                 stmmac_fpe_event_status(priv, status);
5597         }
5598
5599         /* To handle GMAC own interrupts */
5600         if ((priv->plat->has_gmac) || xmac) {
5601                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5602
5603                 if (unlikely(status)) {
5604                         /* For LPI we need to save the tx status */
5605                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5606                                 priv->tx_path_in_lpi_mode = true;
5607                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5608                                 priv->tx_path_in_lpi_mode = false;
5609                 }
5610
5611                 for (queue = 0; queue < queues_count; queue++) {
5612                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5613                                                             queue);
5614                 }
5615
5616                 /* PCS link status */
5617                 if (priv->hw->pcs) {
5618                         if (priv->xstats.pcs_link)
5619                                 netif_carrier_on(priv->dev);
5620                         else
5621                                 netif_carrier_off(priv->dev);
5622                 }
5623
5624                 stmmac_timestamp_interrupt(priv, priv);
5625         }
5626 }
5627
5628 /**
5629  *  stmmac_interrupt - main ISR
5630  *  @irq: interrupt number.
5631  *  @dev_id: to pass the net device pointer.
5632  *  Description: this is the main driver interrupt service routine.
5633  *  It can call:
5634  *  o DMA service routine (to manage incoming frame reception and transmission
5635  *    status)
5636  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5637  *    interrupts.
5638  */
5639 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5640 {
5641         struct net_device *dev = (struct net_device *)dev_id;
5642         struct stmmac_priv *priv = netdev_priv(dev);
5643
5644         /* Check if adapter is up */
5645         if (test_bit(STMMAC_DOWN, &priv->state))
5646                 return IRQ_HANDLED;
5647
5648         /* Check if a fatal error happened */
5649         if (stmmac_safety_feat_interrupt(priv))
5650                 return IRQ_HANDLED;
5651
5652         /* To handle Common interrupts */
5653         stmmac_common_interrupt(priv);
5654
5655         /* To handle DMA interrupts */
5656         stmmac_dma_interrupt(priv);
5657
5658         return IRQ_HANDLED;
5659 }
5660
5661 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5662 {
5663         struct net_device *dev = (struct net_device *)dev_id;
5664         struct stmmac_priv *priv = netdev_priv(dev);
5665
5666         if (unlikely(!dev)) {
5667                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5668                 return IRQ_NONE;
5669         }
5670
5671         /* Check if adapter is up */
5672         if (test_bit(STMMAC_DOWN, &priv->state))
5673                 return IRQ_HANDLED;
5674
5675         /* To handle Common interrupts */
5676         stmmac_common_interrupt(priv);
5677
5678         return IRQ_HANDLED;
5679 }
5680
5681 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5682 {
5683         struct net_device *dev = (struct net_device *)dev_id;
5684         struct stmmac_priv *priv = netdev_priv(dev);
5685
5686         if (unlikely(!dev)) {
5687                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5688                 return IRQ_NONE;
5689         }
5690
5691         /* Check if adapter is up */
5692         if (test_bit(STMMAC_DOWN, &priv->state))
5693                 return IRQ_HANDLED;
5694
5695         /* Check if a fatal error happened */
5696         stmmac_safety_feat_interrupt(priv);
5697
5698         return IRQ_HANDLED;
5699 }
5700
5701 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5702 {
5703         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5704         int chan = tx_q->queue_index;
5705         struct stmmac_priv *priv;
5706         int status;
5707
5708         priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5709
5710         if (unlikely(!data)) {
5711                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5712                 return IRQ_NONE;
5713         }
5714
5715         /* Check if adapter is up */
5716         if (test_bit(STMMAC_DOWN, &priv->state))
5717                 return IRQ_HANDLED;
5718
5719         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5720
5721         if (unlikely(status & tx_hard_error_bump_tc)) {
5722                 /* Try to bump up the dma threshold on this failure */
5723                 stmmac_bump_dma_threshold(priv, chan);
5724         } else if (unlikely(status == tx_hard_error)) {
5725                 stmmac_tx_err(priv, chan);
5726         }
5727
5728         return IRQ_HANDLED;
5729 }
5730
5731 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5732 {
5733         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5734         int chan = rx_q->queue_index;
5735         struct stmmac_priv *priv;
5736
5737         priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5738
5739         if (unlikely(!data)) {
5740                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5741                 return IRQ_NONE;
5742         }
5743
5744         /* Check if adapter is up */
5745         if (test_bit(STMMAC_DOWN, &priv->state))
5746                 return IRQ_HANDLED;
5747
5748         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5749
5750         return IRQ_HANDLED;
5751 }
5752
5753 #ifdef CONFIG_NET_POLL_CONTROLLER
5754 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5755  * to allow network I/O with interrupts disabled.
5756  */
5757 static void stmmac_poll_controller(struct net_device *dev)
5758 {
5759         struct stmmac_priv *priv = netdev_priv(dev);
5760         int i;
5761
5762         /* If adapter is down, do nothing */
5763         if (test_bit(STMMAC_DOWN, &priv->state))
5764                 return;
5765
5766         if (priv->plat->multi_msi_en) {
5767                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5768                         stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5769
5770                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5771                         stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5772         } else {
5773                 disable_irq(dev->irq);
5774                 stmmac_interrupt(dev->irq, dev);
5775                 enable_irq(dev->irq);
5776         }
5777 }
5778 #endif
5779
5780 /**
5781  *  stmmac_ioctl - Entry point for the Ioctl
5782  *  @dev: Device pointer.
5783  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5784  *  a proprietary structure used to pass information to the driver.
5785  *  @cmd: IOCTL command
5786  *  Description:
5787  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5788  */
5789 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5790 {
5791         struct stmmac_priv *priv = netdev_priv (dev);
5792         int ret = -EOPNOTSUPP;
5793
5794         if (!netif_running(dev))
5795                 return -EINVAL;
5796
5797         switch (cmd) {
5798         case SIOCGMIIPHY:
5799         case SIOCGMIIREG:
5800         case SIOCSMIIREG:
5801                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5802                 break;
5803         case SIOCSHWTSTAMP:
5804                 ret = stmmac_hwtstamp_set(dev, rq);
5805                 break;
5806         case SIOCGHWTSTAMP:
5807                 ret = stmmac_hwtstamp_get(dev, rq);
5808                 break;
5809         default:
5810                 break;
5811         }
5812
5813         return ret;
5814 }
5815
5816 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5817                                     void *cb_priv)
5818 {
5819         struct stmmac_priv *priv = cb_priv;
5820         int ret = -EOPNOTSUPP;
5821
5822         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5823                 return ret;
5824
5825         __stmmac_disable_all_queues(priv);
5826
5827         switch (type) {
5828         case TC_SETUP_CLSU32:
5829                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5830                 break;
5831         case TC_SETUP_CLSFLOWER:
5832                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5833                 break;
5834         default:
5835                 break;
5836         }
5837
5838         stmmac_enable_all_queues(priv);
5839         return ret;
5840 }
5841
5842 static LIST_HEAD(stmmac_block_cb_list);
5843
5844 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5845                            void *type_data)
5846 {
5847         struct stmmac_priv *priv = netdev_priv(ndev);
5848
5849         switch (type) {
5850         case TC_SETUP_BLOCK:
5851                 return flow_block_cb_setup_simple(type_data,
5852                                                   &stmmac_block_cb_list,
5853                                                   stmmac_setup_tc_block_cb,
5854                                                   priv, priv, true);
5855         case TC_SETUP_QDISC_CBS:
5856                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5857         case TC_SETUP_QDISC_TAPRIO:
5858                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5859         case TC_SETUP_QDISC_ETF:
5860                 return stmmac_tc_setup_etf(priv, priv, type_data);
5861         default:
5862                 return -EOPNOTSUPP;
5863         }
5864 }
5865
5866 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5867                                struct net_device *sb_dev)
5868 {
5869         int gso = skb_shinfo(skb)->gso_type;
5870
5871         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5872                 /*
5873                  * There is no way to determine the number of TSO/USO
5874                  * capable Queues. Let's use always the Queue 0
5875                  * because if TSO/USO is supported then at least this
5876                  * one will be capable.
5877                  */
5878                 return 0;
5879         }
5880
5881         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5882 }
5883
5884 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5885 {
5886         struct stmmac_priv *priv = netdev_priv(ndev);
5887         int ret = 0;
5888
5889         ret = pm_runtime_resume_and_get(priv->device);
5890         if (ret < 0)
5891                 return ret;
5892
5893         ret = eth_mac_addr(ndev, addr);
5894         if (ret)
5895                 goto set_mac_error;
5896
5897         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5898
5899 set_mac_error:
5900         pm_runtime_put(priv->device);
5901
5902         return ret;
5903 }
5904
5905 #ifdef CONFIG_DEBUG_FS
5906 static struct dentry *stmmac_fs_dir;
5907
5908 static void sysfs_display_ring(void *head, int size, int extend_desc,
5909                                struct seq_file *seq, dma_addr_t dma_phy_addr)
5910 {
5911         int i;
5912         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5913         struct dma_desc *p = (struct dma_desc *)head;
5914         dma_addr_t dma_addr;
5915
5916         for (i = 0; i < size; i++) {
5917                 if (extend_desc) {
5918                         dma_addr = dma_phy_addr + i * sizeof(*ep);
5919                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5920                                    i, &dma_addr,
5921                                    le32_to_cpu(ep->basic.des0),
5922                                    le32_to_cpu(ep->basic.des1),
5923                                    le32_to_cpu(ep->basic.des2),
5924                                    le32_to_cpu(ep->basic.des3));
5925                         ep++;
5926                 } else {
5927                         dma_addr = dma_phy_addr + i * sizeof(*p);
5928                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5929                                    i, &dma_addr,
5930                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5931                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5932                         p++;
5933                 }
5934                 seq_printf(seq, "\n");
5935         }
5936 }
5937
5938 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5939 {
5940         struct net_device *dev = seq->private;
5941         struct stmmac_priv *priv = netdev_priv(dev);
5942         u32 rx_count = priv->plat->rx_queues_to_use;
5943         u32 tx_count = priv->plat->tx_queues_to_use;
5944         u32 queue;
5945
5946         if ((dev->flags & IFF_UP) == 0)
5947                 return 0;
5948
5949         for (queue = 0; queue < rx_count; queue++) {
5950                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5951
5952                 seq_printf(seq, "RX Queue %d:\n", queue);
5953
5954                 if (priv->extend_desc) {
5955                         seq_printf(seq, "Extended descriptor ring:\n");
5956                         sysfs_display_ring((void *)rx_q->dma_erx,
5957                                            priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5958                 } else {
5959                         seq_printf(seq, "Descriptor ring:\n");
5960                         sysfs_display_ring((void *)rx_q->dma_rx,
5961                                            priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5962                 }
5963         }
5964
5965         for (queue = 0; queue < tx_count; queue++) {
5966                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5967
5968                 seq_printf(seq, "TX Queue %d:\n", queue);
5969
5970                 if (priv->extend_desc) {
5971                         seq_printf(seq, "Extended descriptor ring:\n");
5972                         sysfs_display_ring((void *)tx_q->dma_etx,
5973                                            priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5974                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5975                         seq_printf(seq, "Descriptor ring:\n");
5976                         sysfs_display_ring((void *)tx_q->dma_tx,
5977                                            priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5978                 }
5979         }
5980
5981         return 0;
5982 }
5983 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5984
5985 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5986 {
5987         struct net_device *dev = seq->private;
5988         struct stmmac_priv *priv = netdev_priv(dev);
5989
5990         if (!priv->hw_cap_support) {
5991                 seq_printf(seq, "DMA HW features not supported\n");
5992                 return 0;
5993         }
5994
5995         seq_printf(seq, "==============================\n");
5996         seq_printf(seq, "\tDMA HW features\n");
5997         seq_printf(seq, "==============================\n");
5998
5999         seq_printf(seq, "\t10/100 Mbps: %s\n",
6000                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6001         seq_printf(seq, "\t1000 Mbps: %s\n",
6002                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6003         seq_printf(seq, "\tHalf duplex: %s\n",
6004                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6005         seq_printf(seq, "\tHash Filter: %s\n",
6006                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6007         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6008                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6009         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6010                    (priv->dma_cap.pcs) ? "Y" : "N");
6011         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6012                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6013         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6014                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6015         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6016                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6017         seq_printf(seq, "\tRMON module: %s\n",
6018                    (priv->dma_cap.rmon) ? "Y" : "N");
6019         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6020                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6021         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6022                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6023         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6024                    (priv->dma_cap.eee) ? "Y" : "N");
6025         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6026         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6027                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6028         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6029                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6030                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6031         } else {
6032                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6033                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6034                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6035                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6036         }
6037         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6038                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6039         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6040                    priv->dma_cap.number_rx_channel);
6041         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6042                    priv->dma_cap.number_tx_channel);
6043         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6044                    priv->dma_cap.number_rx_queues);
6045         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6046                    priv->dma_cap.number_tx_queues);
6047         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6048                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6049         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6050         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6051         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6052         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6053         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6054                    priv->dma_cap.pps_out_num);
6055         seq_printf(seq, "\tSafety Features: %s\n",
6056                    priv->dma_cap.asp ? "Y" : "N");
6057         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6058                    priv->dma_cap.frpsel ? "Y" : "N");
6059         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6060                    priv->dma_cap.addr64);
6061         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6062                    priv->dma_cap.rssen ? "Y" : "N");
6063         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6064                    priv->dma_cap.vlhash ? "Y" : "N");
6065         seq_printf(seq, "\tSplit Header: %s\n",
6066                    priv->dma_cap.sphen ? "Y" : "N");
6067         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6068                    priv->dma_cap.vlins ? "Y" : "N");
6069         seq_printf(seq, "\tDouble VLAN: %s\n",
6070                    priv->dma_cap.dvlan ? "Y" : "N");
6071         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6072                    priv->dma_cap.l3l4fnum);
6073         seq_printf(seq, "\tARP Offloading: %s\n",
6074                    priv->dma_cap.arpoffsel ? "Y" : "N");
6075         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6076                    priv->dma_cap.estsel ? "Y" : "N");
6077         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6078                    priv->dma_cap.fpesel ? "Y" : "N");
6079         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6080                    priv->dma_cap.tbssel ? "Y" : "N");
6081         return 0;
6082 }
6083 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6084
6085 /* Use network device events to rename debugfs file entries.
6086  */
6087 static int stmmac_device_event(struct notifier_block *unused,
6088                                unsigned long event, void *ptr)
6089 {
6090         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6091         struct stmmac_priv *priv = netdev_priv(dev);
6092
6093         if (dev->netdev_ops != &stmmac_netdev_ops)
6094                 goto done;
6095
6096         switch (event) {
6097         case NETDEV_CHANGENAME:
6098                 if (priv->dbgfs_dir)
6099                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6100                                                          priv->dbgfs_dir,
6101                                                          stmmac_fs_dir,
6102                                                          dev->name);
6103                 break;
6104         }
6105 done:
6106         return NOTIFY_DONE;
6107 }
6108
6109 static struct notifier_block stmmac_notifier = {
6110         .notifier_call = stmmac_device_event,
6111 };
6112
6113 static void stmmac_init_fs(struct net_device *dev)
6114 {
6115         struct stmmac_priv *priv = netdev_priv(dev);
6116
6117         rtnl_lock();
6118
6119         /* Create per netdev entries */
6120         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6121
6122         /* Entry to report DMA RX/TX rings */
6123         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6124                             &stmmac_rings_status_fops);
6125
6126         /* Entry to report the DMA HW features */
6127         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6128                             &stmmac_dma_cap_fops);
6129
6130         rtnl_unlock();
6131 }
6132
6133 static void stmmac_exit_fs(struct net_device *dev)
6134 {
6135         struct stmmac_priv *priv = netdev_priv(dev);
6136
6137         debugfs_remove_recursive(priv->dbgfs_dir);
6138 }
6139 #endif /* CONFIG_DEBUG_FS */
6140
6141 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6142 {
6143         unsigned char *data = (unsigned char *)&vid_le;
6144         unsigned char data_byte = 0;
6145         u32 crc = ~0x0;
6146         u32 temp = 0;
6147         int i, bits;
6148
6149         bits = get_bitmask_order(VLAN_VID_MASK);
6150         for (i = 0; i < bits; i++) {
6151                 if ((i % 8) == 0)
6152                         data_byte = data[i / 8];
6153
6154                 temp = ((crc & 1) ^ data_byte) & 1;
6155                 crc >>= 1;
6156                 data_byte >>= 1;
6157
6158                 if (temp)
6159                         crc ^= 0xedb88320;
6160         }
6161
6162         return crc;
6163 }
6164
6165 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6166 {
6167         u32 crc, hash = 0;
6168         __le16 pmatch = 0;
6169         int count = 0;
6170         u16 vid = 0;
6171
6172         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6173                 __le16 vid_le = cpu_to_le16(vid);
6174                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6175                 hash |= (1 << crc);
6176                 count++;
6177         }
6178
6179         if (!priv->dma_cap.vlhash) {
6180                 if (count > 2) /* VID = 0 always passes filter */
6181                         return -EOPNOTSUPP;
6182
6183                 pmatch = cpu_to_le16(vid);
6184                 hash = 0;
6185         }
6186
6187         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6188 }
6189
6190 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6191 {
6192         struct stmmac_priv *priv = netdev_priv(ndev);
6193         bool is_double = false;
6194         int ret;
6195
6196         if (be16_to_cpu(proto) == ETH_P_8021AD)
6197                 is_double = true;
6198
6199         set_bit(vid, priv->active_vlans);
6200         ret = stmmac_vlan_update(priv, is_double);
6201         if (ret) {
6202                 clear_bit(vid, priv->active_vlans);
6203                 return ret;
6204         }
6205
6206         if (priv->hw->num_vlan) {
6207                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6208                 if (ret)
6209                         return ret;
6210         }
6211
6212         return 0;
6213 }
6214
6215 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6216 {
6217         struct stmmac_priv *priv = netdev_priv(ndev);
6218         bool is_double = false;
6219         int ret;
6220
6221         ret = pm_runtime_resume_and_get(priv->device);
6222         if (ret < 0)
6223                 return ret;
6224
6225         if (be16_to_cpu(proto) == ETH_P_8021AD)
6226                 is_double = true;
6227
6228         clear_bit(vid, priv->active_vlans);
6229
6230         if (priv->hw->num_vlan) {
6231                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6232                 if (ret)
6233                         goto del_vlan_error;
6234         }
6235
6236         ret = stmmac_vlan_update(priv, is_double);
6237
6238 del_vlan_error:
6239         pm_runtime_put(priv->device);
6240
6241         return ret;
6242 }
6243
6244 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6245 {
6246         struct stmmac_priv *priv = netdev_priv(dev);
6247
6248         switch (bpf->command) {
6249         case XDP_SETUP_PROG:
6250                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6251         case XDP_SETUP_XSK_POOL:
6252                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6253                                              bpf->xsk.queue_id);
6254         default:
6255                 return -EOPNOTSUPP;
6256         }
6257 }
6258
6259 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6260                            struct xdp_frame **frames, u32 flags)
6261 {
6262         struct stmmac_priv *priv = netdev_priv(dev);
6263         int cpu = smp_processor_id();
6264         struct netdev_queue *nq;
6265         int i, nxmit = 0;
6266         int queue;
6267
6268         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6269                 return -ENETDOWN;
6270
6271         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6272                 return -EINVAL;
6273
6274         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6275         nq = netdev_get_tx_queue(priv->dev, queue);
6276
6277         __netif_tx_lock(nq, cpu);
6278         /* Avoids TX time-out as we are sharing with slow path */
6279         txq_trans_cond_update(nq);
6280
6281         for (i = 0; i < num_frames; i++) {
6282                 int res;
6283
6284                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6285                 if (res == STMMAC_XDP_CONSUMED)
6286                         break;
6287
6288                 nxmit++;
6289         }
6290
6291         if (flags & XDP_XMIT_FLUSH) {
6292                 stmmac_flush_tx_descriptors(priv, queue);
6293                 stmmac_tx_timer_arm(priv, queue);
6294         }
6295
6296         __netif_tx_unlock(nq);
6297
6298         return nxmit;
6299 }
6300
6301 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6302 {
6303         struct stmmac_channel *ch = &priv->channel[queue];
6304         unsigned long flags;
6305
6306         spin_lock_irqsave(&ch->lock, flags);
6307         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6308         spin_unlock_irqrestore(&ch->lock, flags);
6309
6310         stmmac_stop_rx_dma(priv, queue);
6311         __free_dma_rx_desc_resources(priv, queue);
6312 }
6313
6314 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6315 {
6316         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6317         struct stmmac_channel *ch = &priv->channel[queue];
6318         unsigned long flags;
6319         u32 buf_size;
6320         int ret;
6321
6322         ret = __alloc_dma_rx_desc_resources(priv, queue);
6323         if (ret) {
6324                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6325                 return;
6326         }
6327
6328         ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6329         if (ret) {
6330                 __free_dma_rx_desc_resources(priv, queue);
6331                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6332                 return;
6333         }
6334
6335         stmmac_clear_rx_descriptors(priv, queue);
6336
6337         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6338                             rx_q->dma_rx_phy, rx_q->queue_index);
6339
6340         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6341                              sizeof(struct dma_desc));
6342         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6343                                rx_q->rx_tail_addr, rx_q->queue_index);
6344
6345         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6346                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6347                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6348                                       buf_size,
6349                                       rx_q->queue_index);
6350         } else {
6351                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6352                                       priv->dma_buf_sz,
6353                                       rx_q->queue_index);
6354         }
6355
6356         stmmac_start_rx_dma(priv, queue);
6357
6358         spin_lock_irqsave(&ch->lock, flags);
6359         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6360         spin_unlock_irqrestore(&ch->lock, flags);
6361 }
6362
6363 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6364 {
6365         struct stmmac_channel *ch = &priv->channel[queue];
6366         unsigned long flags;
6367
6368         spin_lock_irqsave(&ch->lock, flags);
6369         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6370         spin_unlock_irqrestore(&ch->lock, flags);
6371
6372         stmmac_stop_tx_dma(priv, queue);
6373         __free_dma_tx_desc_resources(priv, queue);
6374 }
6375
6376 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6377 {
6378         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6379         struct stmmac_channel *ch = &priv->channel[queue];
6380         unsigned long flags;
6381         int ret;
6382
6383         ret = __alloc_dma_tx_desc_resources(priv, queue);
6384         if (ret) {
6385                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6386                 return;
6387         }
6388
6389         ret = __init_dma_tx_desc_rings(priv, queue);
6390         if (ret) {
6391                 __free_dma_tx_desc_resources(priv, queue);
6392                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6393                 return;
6394         }
6395
6396         stmmac_clear_tx_descriptors(priv, queue);
6397
6398         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6399                             tx_q->dma_tx_phy, tx_q->queue_index);
6400
6401         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6402                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6403
6404         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6405         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6406                                tx_q->tx_tail_addr, tx_q->queue_index);
6407
6408         stmmac_start_tx_dma(priv, queue);
6409
6410         spin_lock_irqsave(&ch->lock, flags);
6411         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6412         spin_unlock_irqrestore(&ch->lock, flags);
6413 }
6414
6415 void stmmac_xdp_release(struct net_device *dev)
6416 {
6417         struct stmmac_priv *priv = netdev_priv(dev);
6418         u32 chan;
6419
6420         /* Disable NAPI process */
6421         stmmac_disable_all_queues(priv);
6422
6423         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6424                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6425
6426         /* Free the IRQ lines */
6427         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6428
6429         /* Stop TX/RX DMA channels */
6430         stmmac_stop_all_dma(priv);
6431
6432         /* Release and free the Rx/Tx resources */
6433         free_dma_desc_resources(priv);
6434
6435         /* Disable the MAC Rx/Tx */
6436         stmmac_mac_set(priv, priv->ioaddr, false);
6437
6438         /* set trans_start so we don't get spurious
6439          * watchdogs during reset
6440          */
6441         netif_trans_update(dev);
6442         netif_carrier_off(dev);
6443 }
6444
6445 int stmmac_xdp_open(struct net_device *dev)
6446 {
6447         struct stmmac_priv *priv = netdev_priv(dev);
6448         u32 rx_cnt = priv->plat->rx_queues_to_use;
6449         u32 tx_cnt = priv->plat->tx_queues_to_use;
6450         u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6451         struct stmmac_rx_queue *rx_q;
6452         struct stmmac_tx_queue *tx_q;
6453         u32 buf_size;
6454         bool sph_en;
6455         u32 chan;
6456         int ret;
6457
6458         ret = alloc_dma_desc_resources(priv);
6459         if (ret < 0) {
6460                 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6461                            __func__);
6462                 goto dma_desc_error;
6463         }
6464
6465         ret = init_dma_desc_rings(dev, GFP_KERNEL);
6466         if (ret < 0) {
6467                 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6468                            __func__);
6469                 goto init_error;
6470         }
6471
6472         /* DMA CSR Channel configuration */
6473         for (chan = 0; chan < dma_csr_ch; chan++) {
6474                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6475                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6476         }
6477
6478         /* Adjust Split header */
6479         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6480
6481         /* DMA RX Channel Configuration */
6482         for (chan = 0; chan < rx_cnt; chan++) {
6483                 rx_q = &priv->rx_queue[chan];
6484
6485                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6486                                     rx_q->dma_rx_phy, chan);
6487
6488                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6489                                      (rx_q->buf_alloc_num *
6490                                       sizeof(struct dma_desc));
6491                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6492                                        rx_q->rx_tail_addr, chan);
6493
6494                 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6495                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6496                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6497                                               buf_size,
6498                                               rx_q->queue_index);
6499                 } else {
6500                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6501                                               priv->dma_buf_sz,
6502                                               rx_q->queue_index);
6503                 }
6504
6505                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6506         }
6507
6508         /* DMA TX Channel Configuration */
6509         for (chan = 0; chan < tx_cnt; chan++) {
6510                 tx_q = &priv->tx_queue[chan];
6511
6512                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6513                                     tx_q->dma_tx_phy, chan);
6514
6515                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6516                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6517                                        tx_q->tx_tail_addr, chan);
6518
6519                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6520                 tx_q->txtimer.function = stmmac_tx_timer;
6521         }
6522
6523         /* Enable the MAC Rx/Tx */
6524         stmmac_mac_set(priv, priv->ioaddr, true);
6525
6526         /* Start Rx & Tx DMA Channels */
6527         stmmac_start_all_dma(priv);
6528
6529         ret = stmmac_request_irq(dev);
6530         if (ret)
6531                 goto irq_error;
6532
6533         /* Enable NAPI process*/
6534         stmmac_enable_all_queues(priv);
6535         netif_carrier_on(dev);
6536         netif_tx_start_all_queues(dev);
6537         stmmac_enable_all_dma_irq(priv);
6538
6539         return 0;
6540
6541 irq_error:
6542         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6543                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6544
6545         stmmac_hw_teardown(dev);
6546 init_error:
6547         free_dma_desc_resources(priv);
6548 dma_desc_error:
6549         return ret;
6550 }
6551
6552 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6553 {
6554         struct stmmac_priv *priv = netdev_priv(dev);
6555         struct stmmac_rx_queue *rx_q;
6556         struct stmmac_tx_queue *tx_q;
6557         struct stmmac_channel *ch;
6558
6559         if (test_bit(STMMAC_DOWN, &priv->state) ||
6560             !netif_carrier_ok(priv->dev))
6561                 return -ENETDOWN;
6562
6563         if (!stmmac_xdp_is_enabled(priv))
6564                 return -EINVAL;
6565
6566         if (queue >= priv->plat->rx_queues_to_use ||
6567             queue >= priv->plat->tx_queues_to_use)
6568                 return -EINVAL;
6569
6570         rx_q = &priv->rx_queue[queue];
6571         tx_q = &priv->tx_queue[queue];
6572         ch = &priv->channel[queue];
6573
6574         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6575                 return -EINVAL;
6576
6577         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6578                 /* EQoS does not have per-DMA channel SW interrupt,
6579                  * so we schedule RX Napi straight-away.
6580                  */
6581                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6582                         __napi_schedule(&ch->rxtx_napi);
6583         }
6584
6585         return 0;
6586 }
6587
6588 static const struct net_device_ops stmmac_netdev_ops = {
6589         .ndo_open = stmmac_open,
6590         .ndo_start_xmit = stmmac_xmit,
6591         .ndo_stop = stmmac_release,
6592         .ndo_change_mtu = stmmac_change_mtu,
6593         .ndo_fix_features = stmmac_fix_features,
6594         .ndo_set_features = stmmac_set_features,
6595         .ndo_set_rx_mode = stmmac_set_rx_mode,
6596         .ndo_tx_timeout = stmmac_tx_timeout,
6597         .ndo_eth_ioctl = stmmac_ioctl,
6598         .ndo_setup_tc = stmmac_setup_tc,
6599         .ndo_select_queue = stmmac_select_queue,
6600 #ifdef CONFIG_NET_POLL_CONTROLLER
6601         .ndo_poll_controller = stmmac_poll_controller,
6602 #endif
6603         .ndo_set_mac_address = stmmac_set_mac_address,
6604         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6605         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6606         .ndo_bpf = stmmac_bpf,
6607         .ndo_xdp_xmit = stmmac_xdp_xmit,
6608         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6609 };
6610
6611 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6612 {
6613         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6614                 return;
6615         if (test_bit(STMMAC_DOWN, &priv->state))
6616                 return;
6617
6618         netdev_err(priv->dev, "Reset adapter.\n");
6619
6620         rtnl_lock();
6621         netif_trans_update(priv->dev);
6622         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6623                 usleep_range(1000, 2000);
6624
6625         set_bit(STMMAC_DOWN, &priv->state);
6626         dev_close(priv->dev);
6627         dev_open(priv->dev, NULL);
6628         clear_bit(STMMAC_DOWN, &priv->state);
6629         clear_bit(STMMAC_RESETING, &priv->state);
6630         rtnl_unlock();
6631 }
6632
6633 static void stmmac_service_task(struct work_struct *work)
6634 {
6635         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6636                         service_task);
6637
6638         stmmac_reset_subtask(priv);
6639         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6640 }
6641
6642 /**
6643  *  stmmac_hw_init - Init the MAC device
6644  *  @priv: driver private structure
6645  *  Description: this function is to configure the MAC device according to
6646  *  some platform parameters or the HW capability register. It prepares the
6647  *  driver to use either ring or chain modes and to setup either enhanced or
6648  *  normal descriptors.
6649  */
6650 static int stmmac_hw_init(struct stmmac_priv *priv)
6651 {
6652         int ret;
6653
6654         /* dwmac-sun8i only work in chain mode */
6655         if (priv->plat->has_sun8i)
6656                 chain_mode = 1;
6657         priv->chain_mode = chain_mode;
6658
6659         /* Initialize HW Interface */
6660         ret = stmmac_hwif_init(priv);
6661         if (ret)
6662                 return ret;
6663
6664         /* Get the HW capability (new GMAC newer than 3.50a) */
6665         priv->hw_cap_support = stmmac_get_hw_features(priv);
6666         if (priv->hw_cap_support) {
6667                 dev_info(priv->device, "DMA HW capability register supported\n");
6668
6669                 /* We can override some gmac/dma configuration fields: e.g.
6670                  * enh_desc, tx_coe (e.g. that are passed through the
6671                  * platform) with the values from the HW capability
6672                  * register (if supported).
6673                  */
6674                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6675                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6676                                 !priv->plat->use_phy_wol;
6677                 priv->hw->pmt = priv->plat->pmt;
6678                 if (priv->dma_cap.hash_tb_sz) {
6679                         priv->hw->multicast_filter_bins =
6680                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6681                         priv->hw->mcast_bits_log2 =
6682                                         ilog2(priv->hw->multicast_filter_bins);
6683                 }
6684
6685                 /* TXCOE doesn't work in thresh DMA mode */
6686                 if (priv->plat->force_thresh_dma_mode)
6687                         priv->plat->tx_coe = 0;
6688                 else
6689                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6690
6691                 /* In case of GMAC4 rx_coe is from HW cap register. */
6692                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6693
6694                 if (priv->dma_cap.rx_coe_type2)
6695                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6696                 else if (priv->dma_cap.rx_coe_type1)
6697                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6698
6699         } else {
6700                 dev_info(priv->device, "No HW DMA feature register supported\n");
6701         }
6702
6703         if (priv->plat->rx_coe) {
6704                 priv->hw->rx_csum = priv->plat->rx_coe;
6705                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6706                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6707                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6708         }
6709         if (priv->plat->tx_coe)
6710                 dev_info(priv->device, "TX Checksum insertion supported\n");
6711
6712         if (priv->plat->pmt) {
6713                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6714                 device_set_wakeup_capable(priv->device, 1);
6715         }
6716
6717         if (priv->dma_cap.tsoen)
6718                 dev_info(priv->device, "TSO supported\n");
6719
6720         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6721         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6722
6723         /* Run HW quirks, if any */
6724         if (priv->hwif_quirks) {
6725                 ret = priv->hwif_quirks(priv);
6726                 if (ret)
6727                         return ret;
6728         }
6729
6730         /* Rx Watchdog is available in the COREs newer than the 3.40.
6731          * In some case, for example on bugged HW this feature
6732          * has to be disable and this can be done by passing the
6733          * riwt_off field from the platform.
6734          */
6735         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6736             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6737                 priv->use_riwt = 1;
6738                 dev_info(priv->device,
6739                          "Enable RX Mitigation via HW Watchdog Timer\n");
6740         }
6741
6742         return 0;
6743 }
6744
6745 static void stmmac_napi_add(struct net_device *dev)
6746 {
6747         struct stmmac_priv *priv = netdev_priv(dev);
6748         u32 queue, maxq;
6749
6750         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6751
6752         for (queue = 0; queue < maxq; queue++) {
6753                 struct stmmac_channel *ch = &priv->channel[queue];
6754
6755                 ch->priv_data = priv;
6756                 ch->index = queue;
6757                 spin_lock_init(&ch->lock);
6758
6759                 if (queue < priv->plat->rx_queues_to_use) {
6760                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6761                                        NAPI_POLL_WEIGHT);
6762                 }
6763                 if (queue < priv->plat->tx_queues_to_use) {
6764                         netif_napi_add_tx(dev, &ch->tx_napi,
6765                                           stmmac_napi_poll_tx);
6766                 }
6767                 if (queue < priv->plat->rx_queues_to_use &&
6768                     queue < priv->plat->tx_queues_to_use) {
6769                         netif_napi_add(dev, &ch->rxtx_napi,
6770                                        stmmac_napi_poll_rxtx,
6771                                        NAPI_POLL_WEIGHT);
6772                 }
6773         }
6774 }
6775
6776 static void stmmac_napi_del(struct net_device *dev)
6777 {
6778         struct stmmac_priv *priv = netdev_priv(dev);
6779         u32 queue, maxq;
6780
6781         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6782
6783         for (queue = 0; queue < maxq; queue++) {
6784                 struct stmmac_channel *ch = &priv->channel[queue];
6785
6786                 if (queue < priv->plat->rx_queues_to_use)
6787                         netif_napi_del(&ch->rx_napi);
6788                 if (queue < priv->plat->tx_queues_to_use)
6789                         netif_napi_del(&ch->tx_napi);
6790                 if (queue < priv->plat->rx_queues_to_use &&
6791                     queue < priv->plat->tx_queues_to_use) {
6792                         netif_napi_del(&ch->rxtx_napi);
6793                 }
6794         }
6795 }
6796
6797 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6798 {
6799         struct stmmac_priv *priv = netdev_priv(dev);
6800         int ret = 0;
6801
6802         if (netif_running(dev))
6803                 stmmac_release(dev);
6804
6805         stmmac_napi_del(dev);
6806
6807         priv->plat->rx_queues_to_use = rx_cnt;
6808         priv->plat->tx_queues_to_use = tx_cnt;
6809
6810         stmmac_napi_add(dev);
6811
6812         if (netif_running(dev))
6813                 ret = stmmac_open(dev);
6814
6815         return ret;
6816 }
6817
6818 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6819 {
6820         struct stmmac_priv *priv = netdev_priv(dev);
6821         int ret = 0;
6822
6823         if (netif_running(dev))
6824                 stmmac_release(dev);
6825
6826         priv->dma_rx_size = rx_size;
6827         priv->dma_tx_size = tx_size;
6828
6829         if (netif_running(dev))
6830                 ret = stmmac_open(dev);
6831
6832         return ret;
6833 }
6834
6835 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6836 static void stmmac_fpe_lp_task(struct work_struct *work)
6837 {
6838         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6839                                                 fpe_task);
6840         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6841         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6842         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6843         bool *hs_enable = &fpe_cfg->hs_enable;
6844         bool *enable = &fpe_cfg->enable;
6845         int retries = 20;
6846
6847         while (retries-- > 0) {
6848                 /* Bail out immediately if FPE handshake is OFF */
6849                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6850                         break;
6851
6852                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6853                     *lp_state == FPE_STATE_ENTERING_ON) {
6854                         stmmac_fpe_configure(priv, priv->ioaddr,
6855                                              priv->plat->tx_queues_to_use,
6856                                              priv->plat->rx_queues_to_use,
6857                                              *enable);
6858
6859                         netdev_info(priv->dev, "configured FPE\n");
6860
6861                         *lo_state = FPE_STATE_ON;
6862                         *lp_state = FPE_STATE_ON;
6863                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6864                         break;
6865                 }
6866
6867                 if ((*lo_state == FPE_STATE_CAPABLE ||
6868                      *lo_state == FPE_STATE_ENTERING_ON) &&
6869                      *lp_state != FPE_STATE_ON) {
6870                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6871                                     *lo_state, *lp_state);
6872                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6873                                                 MPACKET_VERIFY);
6874                 }
6875                 /* Sleep then retry */
6876                 msleep(500);
6877         }
6878
6879         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6880 }
6881
6882 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6883 {
6884         if (priv->plat->fpe_cfg->hs_enable != enable) {
6885                 if (enable) {
6886                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6887                                                 MPACKET_VERIFY);
6888                 } else {
6889                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6890                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6891                 }
6892
6893                 priv->plat->fpe_cfg->hs_enable = enable;
6894         }
6895 }
6896
6897 /**
6898  * stmmac_dvr_probe
6899  * @device: device pointer
6900  * @plat_dat: platform data pointer
6901  * @res: stmmac resource pointer
6902  * Description: this is the main probe function used to
6903  * call the alloc_etherdev, allocate the priv structure.
6904  * Return:
6905  * returns 0 on success, otherwise errno.
6906  */
6907 int stmmac_dvr_probe(struct device *device,
6908                      struct plat_stmmacenet_data *plat_dat,
6909                      struct stmmac_resources *res)
6910 {
6911         struct net_device *ndev = NULL;
6912         struct stmmac_priv *priv;
6913         u32 rxq;
6914         int i, ret = 0;
6915
6916         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6917                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6918         if (!ndev)
6919                 return -ENOMEM;
6920
6921         SET_NETDEV_DEV(ndev, device);
6922
6923         priv = netdev_priv(ndev);
6924         priv->device = device;
6925         priv->dev = ndev;
6926
6927         stmmac_set_ethtool_ops(ndev);
6928         priv->pause = pause;
6929         priv->plat = plat_dat;
6930         priv->ioaddr = res->addr;
6931         priv->dev->base_addr = (unsigned long)res->addr;
6932         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6933
6934         priv->dev->irq = res->irq;
6935         priv->wol_irq = res->wol_irq;
6936         priv->lpi_irq = res->lpi_irq;
6937         priv->sfty_ce_irq = res->sfty_ce_irq;
6938         priv->sfty_ue_irq = res->sfty_ue_irq;
6939         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6940                 priv->rx_irq[i] = res->rx_irq[i];
6941         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6942                 priv->tx_irq[i] = res->tx_irq[i];
6943
6944         if (!is_zero_ether_addr(res->mac))
6945                 eth_hw_addr_set(priv->dev, res->mac);
6946
6947         dev_set_drvdata(device, priv->dev);
6948
6949         /* Verify driver arguments */
6950         stmmac_verify_args();
6951
6952         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6953         if (!priv->af_xdp_zc_qps)
6954                 return -ENOMEM;
6955
6956         /* Allocate workqueue */
6957         priv->wq = create_singlethread_workqueue("stmmac_wq");
6958         if (!priv->wq) {
6959                 dev_err(priv->device, "failed to create workqueue\n");
6960                 return -ENOMEM;
6961         }
6962
6963         INIT_WORK(&priv->service_task, stmmac_service_task);
6964
6965         /* Initialize Link Partner FPE workqueue */
6966         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6967
6968         /* Override with kernel parameters if supplied XXX CRS XXX
6969          * this needs to have multiple instances
6970          */
6971         if ((phyaddr >= 0) && (phyaddr <= 31))
6972                 priv->plat->phy_addr = phyaddr;
6973
6974         if (priv->plat->stmmac_rst) {
6975                 ret = reset_control_assert(priv->plat->stmmac_rst);
6976                 reset_control_deassert(priv->plat->stmmac_rst);
6977                 /* Some reset controllers have only reset callback instead of
6978                  * assert + deassert callbacks pair.
6979                  */
6980                 if (ret == -ENOTSUPP)
6981                         reset_control_reset(priv->plat->stmmac_rst);
6982         }
6983
6984         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6985         if (ret == -ENOTSUPP)
6986                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6987                         ERR_PTR(ret));
6988
6989         /* Init MAC and get the capabilities */
6990         ret = stmmac_hw_init(priv);
6991         if (ret)
6992                 goto error_hw_init;
6993
6994         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6995          */
6996         if (priv->synopsys_id < DWMAC_CORE_5_20)
6997                 priv->plat->dma_cfg->dche = false;
6998
6999         stmmac_check_ether_addr(priv);
7000
7001         ndev->netdev_ops = &stmmac_netdev_ops;
7002
7003         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7004                             NETIF_F_RXCSUM;
7005
7006         ret = stmmac_tc_init(priv, priv);
7007         if (!ret) {
7008                 ndev->hw_features |= NETIF_F_HW_TC;
7009         }
7010
7011         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7012                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7013                 if (priv->plat->has_gmac4)
7014                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7015                 priv->tso = true;
7016                 dev_info(priv->device, "TSO feature enabled\n");
7017         }
7018
7019         if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7020                 ndev->hw_features |= NETIF_F_GRO;
7021                 priv->sph_cap = true;
7022                 priv->sph = priv->sph_cap;
7023                 dev_info(priv->device, "SPH feature enabled\n");
7024         }
7025
7026         /* The current IP register MAC_HW_Feature1[ADDR64] only define
7027          * 32/40/64 bit width, but some SOC support others like i.MX8MP
7028          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7029          * So overwrite dma_cap.addr64 according to HW real design.
7030          */
7031         if (priv->plat->addr64)
7032                 priv->dma_cap.addr64 = priv->plat->addr64;
7033
7034         if (priv->dma_cap.addr64) {
7035                 ret = dma_set_mask_and_coherent(device,
7036                                 DMA_BIT_MASK(priv->dma_cap.addr64));
7037                 if (!ret) {
7038                         dev_info(priv->device, "Using %d bits DMA width\n",
7039                                  priv->dma_cap.addr64);
7040
7041                         /*
7042                          * If more than 32 bits can be addressed, make sure to
7043                          * enable enhanced addressing mode.
7044                          */
7045                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7046                                 priv->plat->dma_cfg->eame = true;
7047                 } else {
7048                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7049                         if (ret) {
7050                                 dev_err(priv->device, "Failed to set DMA Mask\n");
7051                                 goto error_hw_init;
7052                         }
7053
7054                         priv->dma_cap.addr64 = 32;
7055                 }
7056         }
7057
7058         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7059         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7060 #ifdef STMMAC_VLAN_TAG_USED
7061         /* Both mac100 and gmac support receive VLAN tag detection */
7062         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7063         if (priv->dma_cap.vlhash) {
7064                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7065                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7066         }
7067         if (priv->dma_cap.vlins) {
7068                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7069                 if (priv->dma_cap.dvlan)
7070                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7071         }
7072 #endif
7073         priv->msg_enable = netif_msg_init(debug, default_msg_level);
7074
7075         /* Initialize RSS */
7076         rxq = priv->plat->rx_queues_to_use;
7077         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7078         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7079                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7080
7081         if (priv->dma_cap.rssen && priv->plat->rss_en)
7082                 ndev->features |= NETIF_F_RXHASH;
7083
7084         /* MTU range: 46 - hw-specific max */
7085         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7086         if (priv->plat->has_xgmac)
7087                 ndev->max_mtu = XGMAC_JUMBO_LEN;
7088         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7089                 ndev->max_mtu = JUMBO_LEN;
7090         else
7091                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7092         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7093          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7094          */
7095         if ((priv->plat->maxmtu < ndev->max_mtu) &&
7096             (priv->plat->maxmtu >= ndev->min_mtu))
7097                 ndev->max_mtu = priv->plat->maxmtu;
7098         else if (priv->plat->maxmtu < ndev->min_mtu)
7099                 dev_warn(priv->device,
7100                          "%s: warning: maxmtu having invalid value (%d)\n",
7101                          __func__, priv->plat->maxmtu);
7102
7103         if (flow_ctrl)
7104                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
7105
7106         /* Setup channels NAPI */
7107         stmmac_napi_add(ndev);
7108
7109         mutex_init(&priv->lock);
7110
7111         /* If a specific clk_csr value is passed from the platform
7112          * this means that the CSR Clock Range selection cannot be
7113          * changed at run-time and it is fixed. Viceversa the driver'll try to
7114          * set the MDC clock dynamically according to the csr actual
7115          * clock input.
7116          */
7117         if (priv->plat->clk_csr >= 0)
7118                 priv->clk_csr = priv->plat->clk_csr;
7119         else
7120                 stmmac_clk_csr_set(priv);
7121
7122         stmmac_check_pcs_mode(priv);
7123
7124         pm_runtime_get_noresume(device);
7125         pm_runtime_set_active(device);
7126         if (!pm_runtime_enabled(device))
7127                 pm_runtime_enable(device);
7128
7129         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7130             priv->hw->pcs != STMMAC_PCS_RTBI) {
7131                 /* MDIO bus Registration */
7132                 ret = stmmac_mdio_register(ndev);
7133                 if (ret < 0) {
7134                         dev_err_probe(priv->device, ret,
7135                                       "%s: MDIO bus (id: %d) registration failed\n",
7136                                       __func__, priv->plat->bus_id);
7137                         goto error_mdio_register;
7138                 }
7139         }
7140
7141         if (priv->plat->speed_mode_2500)
7142                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7143
7144         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7145                 ret = stmmac_xpcs_setup(priv->mii);
7146                 if (ret)
7147                         goto error_xpcs_setup;
7148         }
7149
7150         ret = stmmac_phy_setup(priv);
7151         if (ret) {
7152                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7153                 goto error_phy_setup;
7154         }
7155
7156         ret = register_netdev(ndev);
7157         if (ret) {
7158                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7159                         __func__, ret);
7160                 goto error_netdev_register;
7161         }
7162
7163         if (priv->plat->serdes_powerup) {
7164                 ret = priv->plat->serdes_powerup(ndev,
7165                                                  priv->plat->bsp_priv);
7166
7167                 if (ret < 0)
7168                         goto error_serdes_powerup;
7169         }
7170
7171 #ifdef CONFIG_DEBUG_FS
7172         stmmac_init_fs(ndev);
7173 #endif
7174
7175         if (priv->plat->dump_debug_regs)
7176                 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7177
7178         /* Let pm_runtime_put() disable the clocks.
7179          * If CONFIG_PM is not enabled, the clocks will stay powered.
7180          */
7181         pm_runtime_put(device);
7182
7183         return ret;
7184
7185 error_serdes_powerup:
7186         unregister_netdev(ndev);
7187 error_netdev_register:
7188         phylink_destroy(priv->phylink);
7189 error_xpcs_setup:
7190 error_phy_setup:
7191         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7192             priv->hw->pcs != STMMAC_PCS_RTBI)
7193                 stmmac_mdio_unregister(ndev);
7194 error_mdio_register:
7195         stmmac_napi_del(ndev);
7196 error_hw_init:
7197         destroy_workqueue(priv->wq);
7198         bitmap_free(priv->af_xdp_zc_qps);
7199
7200         return ret;
7201 }
7202 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7203
7204 /**
7205  * stmmac_dvr_remove
7206  * @dev: device pointer
7207  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7208  * changes the link status, releases the DMA descriptor rings.
7209  */
7210 int stmmac_dvr_remove(struct device *dev)
7211 {
7212         struct net_device *ndev = dev_get_drvdata(dev);
7213         struct stmmac_priv *priv = netdev_priv(ndev);
7214
7215         netdev_info(priv->dev, "%s: removing driver", __func__);
7216
7217         pm_runtime_get_sync(dev);
7218         pm_runtime_disable(dev);
7219         pm_runtime_put_noidle(dev);
7220
7221         stmmac_stop_all_dma(priv);
7222         stmmac_mac_set(priv, priv->ioaddr, false);
7223         netif_carrier_off(ndev);
7224         unregister_netdev(ndev);
7225
7226         /* Serdes power down needs to happen after VLAN filter
7227          * is deleted that is triggered by unregister_netdev().
7228          */
7229         if (priv->plat->serdes_powerdown)
7230                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7231
7232 #ifdef CONFIG_DEBUG_FS
7233         stmmac_exit_fs(ndev);
7234 #endif
7235         phylink_destroy(priv->phylink);
7236         if (priv->plat->stmmac_rst)
7237                 reset_control_assert(priv->plat->stmmac_rst);
7238         reset_control_assert(priv->plat->stmmac_ahb_rst);
7239         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7240             priv->hw->pcs != STMMAC_PCS_RTBI)
7241                 stmmac_mdio_unregister(ndev);
7242         destroy_workqueue(priv->wq);
7243         mutex_destroy(&priv->lock);
7244         bitmap_free(priv->af_xdp_zc_qps);
7245
7246         return 0;
7247 }
7248 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7249
7250 /**
7251  * stmmac_suspend - suspend callback
7252  * @dev: device pointer
7253  * Description: this is the function to suspend the device and it is called
7254  * by the platform driver to stop the network queue, release the resources,
7255  * program the PMT register (for WoL), clean and release driver resources.
7256  */
7257 int stmmac_suspend(struct device *dev)
7258 {
7259         struct net_device *ndev = dev_get_drvdata(dev);
7260         struct stmmac_priv *priv = netdev_priv(ndev);
7261         u32 chan;
7262
7263         if (!ndev || !netif_running(ndev))
7264                 return 0;
7265
7266         mutex_lock(&priv->lock);
7267
7268         netif_device_detach(ndev);
7269
7270         stmmac_disable_all_queues(priv);
7271
7272         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7273                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7274
7275         if (priv->eee_enabled) {
7276                 priv->tx_path_in_lpi_mode = false;
7277                 del_timer_sync(&priv->eee_ctrl_timer);
7278         }
7279
7280         /* Stop TX/RX DMA */
7281         stmmac_stop_all_dma(priv);
7282
7283         if (priv->plat->serdes_powerdown)
7284                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7285
7286         /* Enable Power down mode by programming the PMT regs */
7287         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7288                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7289                 priv->irq_wake = 1;
7290         } else {
7291                 stmmac_mac_set(priv, priv->ioaddr, false);
7292                 pinctrl_pm_select_sleep_state(priv->device);
7293         }
7294
7295         mutex_unlock(&priv->lock);
7296
7297         rtnl_lock();
7298         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7299                 phylink_suspend(priv->phylink, true);
7300         } else {
7301                 if (device_may_wakeup(priv->device))
7302                         phylink_speed_down(priv->phylink, false);
7303                 phylink_suspend(priv->phylink, false);
7304         }
7305         rtnl_unlock();
7306
7307         if (priv->dma_cap.fpesel) {
7308                 /* Disable FPE */
7309                 stmmac_fpe_configure(priv, priv->ioaddr,
7310                                      priv->plat->tx_queues_to_use,
7311                                      priv->plat->rx_queues_to_use, false);
7312
7313                 stmmac_fpe_handshake(priv, false);
7314                 stmmac_fpe_stop_wq(priv);
7315         }
7316
7317         priv->speed = SPEED_UNKNOWN;
7318         return 0;
7319 }
7320 EXPORT_SYMBOL_GPL(stmmac_suspend);
7321
7322 /**
7323  * stmmac_reset_queues_param - reset queue parameters
7324  * @priv: device pointer
7325  */
7326 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7327 {
7328         u32 rx_cnt = priv->plat->rx_queues_to_use;
7329         u32 tx_cnt = priv->plat->tx_queues_to_use;
7330         u32 queue;
7331
7332         for (queue = 0; queue < rx_cnt; queue++) {
7333                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7334
7335                 rx_q->cur_rx = 0;
7336                 rx_q->dirty_rx = 0;
7337         }
7338
7339         for (queue = 0; queue < tx_cnt; queue++) {
7340                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7341
7342                 tx_q->cur_tx = 0;
7343                 tx_q->dirty_tx = 0;
7344                 tx_q->mss = 0;
7345
7346                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7347         }
7348 }
7349
7350 /**
7351  * stmmac_resume - resume callback
7352  * @dev: device pointer
7353  * Description: when resume this function is invoked to setup the DMA and CORE
7354  * in a usable state.
7355  */
7356 int stmmac_resume(struct device *dev)
7357 {
7358         struct net_device *ndev = dev_get_drvdata(dev);
7359         struct stmmac_priv *priv = netdev_priv(ndev);
7360         int ret;
7361
7362         if (!netif_running(ndev))
7363                 return 0;
7364
7365         /* Power Down bit, into the PM register, is cleared
7366          * automatically as soon as a magic packet or a Wake-up frame
7367          * is received. Anyway, it's better to manually clear
7368          * this bit because it can generate problems while resuming
7369          * from another devices (e.g. serial console).
7370          */
7371         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7372                 mutex_lock(&priv->lock);
7373                 stmmac_pmt(priv, priv->hw, 0);
7374                 mutex_unlock(&priv->lock);
7375                 priv->irq_wake = 0;
7376         } else {
7377                 pinctrl_pm_select_default_state(priv->device);
7378                 /* reset the phy so that it's ready */
7379                 if (priv->mii)
7380                         stmmac_mdio_reset(priv->mii);
7381         }
7382
7383         if (priv->plat->serdes_powerup) {
7384                 ret = priv->plat->serdes_powerup(ndev,
7385                                                  priv->plat->bsp_priv);
7386
7387                 if (ret < 0)
7388                         return ret;
7389         }
7390
7391         rtnl_lock();
7392         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7393                 phylink_resume(priv->phylink);
7394         } else {
7395                 phylink_resume(priv->phylink);
7396                 if (device_may_wakeup(priv->device))
7397                         phylink_speed_up(priv->phylink);
7398         }
7399         rtnl_unlock();
7400
7401         rtnl_lock();
7402         mutex_lock(&priv->lock);
7403
7404         stmmac_reset_queues_param(priv);
7405
7406         stmmac_free_tx_skbufs(priv);
7407         stmmac_clear_descriptors(priv);
7408
7409         stmmac_hw_setup(ndev, false);
7410         stmmac_init_coalesce(priv);
7411         stmmac_set_rx_mode(ndev);
7412
7413         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7414
7415         stmmac_enable_all_queues(priv);
7416         stmmac_enable_all_dma_irq(priv);
7417
7418         mutex_unlock(&priv->lock);
7419         rtnl_unlock();
7420
7421         netif_device_attach(ndev);
7422
7423         return 0;
7424 }
7425 EXPORT_SYMBOL_GPL(stmmac_resume);
7426
7427 #ifndef MODULE
7428 static int __init stmmac_cmdline_opt(char *str)
7429 {
7430         char *opt;
7431
7432         if (!str || !*str)
7433                 return 1;
7434         while ((opt = strsep(&str, ",")) != NULL) {
7435                 if (!strncmp(opt, "debug:", 6)) {
7436                         if (kstrtoint(opt + 6, 0, &debug))
7437                                 goto err;
7438                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7439                         if (kstrtoint(opt + 8, 0, &phyaddr))
7440                                 goto err;
7441                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7442                         if (kstrtoint(opt + 7, 0, &buf_sz))
7443                                 goto err;
7444                 } else if (!strncmp(opt, "tc:", 3)) {
7445                         if (kstrtoint(opt + 3, 0, &tc))
7446                                 goto err;
7447                 } else if (!strncmp(opt, "watchdog:", 9)) {
7448                         if (kstrtoint(opt + 9, 0, &watchdog))
7449                                 goto err;
7450                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7451                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7452                                 goto err;
7453                 } else if (!strncmp(opt, "pause:", 6)) {
7454                         if (kstrtoint(opt + 6, 0, &pause))
7455                                 goto err;
7456                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7457                         if (kstrtoint(opt + 10, 0, &eee_timer))
7458                                 goto err;
7459                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7460                         if (kstrtoint(opt + 11, 0, &chain_mode))
7461                                 goto err;
7462                 }
7463         }
7464         return 1;
7465
7466 err:
7467         pr_err("%s: ERROR broken module parameter conversion", __func__);
7468         return 1;
7469 }
7470
7471 __setup("stmmaceth=", stmmac_cmdline_opt);
7472 #endif /* MODULE */
7473
7474 static int __init stmmac_init(void)
7475 {
7476 #ifdef CONFIG_DEBUG_FS
7477         /* Create debugfs main directory if it doesn't exist yet */
7478         if (!stmmac_fs_dir)
7479                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7480         register_netdevice_notifier(&stmmac_notifier);
7481 #endif
7482
7483         return 0;
7484 }
7485
7486 static void __exit stmmac_exit(void)
7487 {
7488 #ifdef CONFIG_DEBUG_FS
7489         unregister_netdevice_notifier(&stmmac_notifier);
7490         debugfs_remove_recursive(stmmac_fs_dir);
7491 #endif
7492 }
7493
7494 module_init(stmmac_init)
7495 module_exit(stmmac_exit)
7496
7497 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7498 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7499 MODULE_LICENSE("GPL");