1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
11 Documentation available at:
12 http://www.stlinux.com
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
53 /* As long as the interface is active, we keep the timestamping counter enabled
54 * with fine resolution and binary rollover. This avoid non-monotonic behavior
55 * (clock jumps) when changing timestamping settings at runtime.
57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
63 /* Module parameters */
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
77 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4)
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX 256
82 #define STMMAC_TX_XSK_AVAIL 16
83 #define STMMAC_RX_FILL_BATCH 16
85 #define STMMAC_XDP_PASS 0
86 #define STMMAC_XDP_CONSUMED BIT(0)
87 #define STMMAC_XDP_TX BIT(1)
88 #define STMMAC_XDP_REDIRECT BIT(2)
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108 #define STMMAC_RX_COPYBREAK 256
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114 #define STMMAC_DEFAULT_LPI_TIMER 1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121 * but allow user to force to use the chain instead of the ring
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 u32 rxmode, u32 chan);
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
154 ret = clk_prepare_enable(priv->plat->stmmac_clk);
157 ret = clk_prepare_enable(priv->plat->pclk);
159 clk_disable_unprepare(priv->plat->stmmac_clk);
162 if (priv->plat->clks_config) {
163 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 clk_disable_unprepare(priv->plat->stmmac_clk);
166 clk_disable_unprepare(priv->plat->pclk);
171 clk_disable_unprepare(priv->plat->stmmac_clk);
172 clk_disable_unprepare(priv->plat->pclk);
173 if (priv->plat->clks_config)
174 priv->plat->clks_config(priv->plat->bsp_priv, enabled);
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
182 * stmmac_verify_args - verify the driver parameters.
183 * Description: it checks the driver parameters and set a default in case of
186 static void stmmac_verify_args(void)
188 if (unlikely(watchdog < 0))
190 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 buf_sz = DEFAULT_BUFSIZE;
192 if (unlikely(flow_ctrl > 1))
193 flow_ctrl = FLOW_AUTO;
194 else if (likely(flow_ctrl < 0))
195 flow_ctrl = FLOW_OFF;
196 if (unlikely((pause < 0) || (pause > 0xffff)))
199 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
209 for (queue = 0; queue < maxq; queue++) {
210 struct stmmac_channel *ch = &priv->channel[queue];
212 if (stmmac_xdp_is_enabled(priv) &&
213 test_bit(queue, priv->af_xdp_zc_qps)) {
214 napi_disable(&ch->rxtx_napi);
218 if (queue < rx_queues_cnt)
219 napi_disable(&ch->rx_napi);
220 if (queue < tx_queues_cnt)
221 napi_disable(&ch->tx_napi);
226 * stmmac_disable_all_queues - Disable all queues
227 * @priv: driver private structure
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 struct stmmac_rx_queue *rx_q;
235 /* synchronize_rcu() needed for pending XDP buffers to drain */
236 for (queue = 0; queue < rx_queues_cnt; queue++) {
237 rx_q = &priv->dma_conf.rx_queue[queue];
238 if (rx_q->xsk_pool) {
244 __stmmac_disable_all_queues(priv);
248 * stmmac_enable_all_queues - Enable all queues
249 * @priv: driver private structure
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
258 for (queue = 0; queue < maxq; queue++) {
259 struct stmmac_channel *ch = &priv->channel[queue];
261 if (stmmac_xdp_is_enabled(priv) &&
262 test_bit(queue, priv->af_xdp_zc_qps)) {
263 napi_enable(&ch->rxtx_napi);
267 if (queue < rx_queues_cnt)
268 napi_enable(&ch->rx_napi);
269 if (queue < tx_queues_cnt)
270 napi_enable(&ch->tx_napi);
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 queue_work(priv->wq, &priv->service_task);
281 static void stmmac_global_err(struct stmmac_priv *priv)
283 netif_carrier_off(priv->dev);
284 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 stmmac_service_event_schedule(priv);
289 * stmmac_clk_csr_set - dynamically set the MDC clock
290 * @priv: driver private structure
291 * Description: this is to dynamically set the MDC clock according to the csr
294 * If a specific clk_csr value is passed from the platform
295 * this means that the CSR Clock Range selection cannot be
296 * changed at run-time and it is fixed (as reported in the driver
297 * documentation). Viceversa the driver will try to set the MDC
298 * clock dynamically according to the actual clock input.
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
304 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306 /* Platform provided default clk_csr would be assumed valid
307 * for all other cases except for the below mentioned ones.
308 * For values higher than the IEEE 802.3 specified frequency
309 * we can not estimate the proper divider as it is not known
310 * the frequency of clk_csr_i. So we do not change the default
313 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 if (clk_rate < CSR_F_35M)
315 priv->clk_csr = STMMAC_CSR_20_35M;
316 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 priv->clk_csr = STMMAC_CSR_35_60M;
318 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 priv->clk_csr = STMMAC_CSR_60_100M;
320 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 priv->clk_csr = STMMAC_CSR_100_150M;
322 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 priv->clk_csr = STMMAC_CSR_150_250M;
324 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 priv->clk_csr = STMMAC_CSR_250_300M;
328 if (priv->plat->has_sun8i) {
329 if (clk_rate > 160000000)
330 priv->clk_csr = 0x03;
331 else if (clk_rate > 80000000)
332 priv->clk_csr = 0x02;
333 else if (clk_rate > 40000000)
334 priv->clk_csr = 0x01;
339 if (priv->plat->has_xgmac) {
340 if (clk_rate > 400000000)
342 else if (clk_rate > 350000000)
344 else if (clk_rate > 300000000)
346 else if (clk_rate > 250000000)
348 else if (clk_rate > 150000000)
355 static void print_pkt(unsigned char *buf, int len)
357 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
366 if (tx_q->dirty_tx > tx_q->cur_tx)
367 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
375 * stmmac_rx_dirty - Get RX queue dirty
376 * @priv: driver private structure
377 * @queue: RX queue index
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
384 if (rx_q->dirty_rx <= rx_q->cur_rx)
385 dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
396 /* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 priv->eee_sw_timer_en = en ? 0 : 1;
398 tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
399 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
403 * stmmac_enable_eee_mode - check and enter in LPI mode
404 * @priv: driver private structure
405 * Description: this function is to verify and enter in LPI mode in case of
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 u32 tx_cnt = priv->plat->tx_queues_to_use;
413 /* check if all TX queues have the work finished */
414 for (queue = 0; queue < tx_cnt; queue++) {
415 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417 if (tx_q->dirty_tx != tx_q->cur_tx)
418 return -EBUSY; /* still unfinished work */
421 /* Check and enter in LPI mode */
422 if (!priv->tx_path_in_lpi_mode)
423 stmmac_set_eee_mode(priv, priv->hw,
424 priv->plat->en_tx_lpi_clockgating);
429 * stmmac_disable_eee_mode - disable and exit from LPI mode
430 * @priv: driver private structure
431 * Description: this function is to exit and disable EEE in case of
432 * LPI state is true. This is called by the xmit.
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 if (!priv->eee_sw_timer_en) {
437 stmmac_lpi_entry_timer_config(priv, 0);
441 stmmac_reset_eee_mode(priv, priv->hw);
442 del_timer_sync(&priv->eee_ctrl_timer);
443 priv->tx_path_in_lpi_mode = false;
447 * stmmac_eee_ctrl_timer - EEE TX SW timer.
448 * @t: timer_list struct containing private info
450 * if there is no data transfer and if we are not in LPI state,
451 * then MAC Transmitter can be moved to LPI state.
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457 if (stmmac_enable_eee_mode(priv))
458 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
462 * stmmac_eee_init - init EEE
463 * @priv: driver private structure
465 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
466 * can also manage EEE, this function enable the LPI state and start related
469 bool stmmac_eee_init(struct stmmac_priv *priv)
471 int eee_tw_timer = priv->eee_tw_timer;
473 /* Using PCS we cannot dial with the phy registers at this stage
474 * so we do not support extra feature like EEE.
476 if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 priv->hw->pcs == STMMAC_PCS_RTBI)
480 /* Check if MAC core supports the EEE feature. */
481 if (!priv->dma_cap.eee)
484 mutex_lock(&priv->lock);
486 /* Check if it needs to be deactivated */
487 if (!priv->eee_active) {
488 if (priv->eee_enabled) {
489 netdev_dbg(priv->dev, "disable EEE\n");
490 stmmac_lpi_entry_timer_config(priv, 0);
491 del_timer_sync(&priv->eee_ctrl_timer);
492 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 xpcs_config_eee(priv->hw->xpcs,
495 priv->plat->mult_fact_100ns,
498 mutex_unlock(&priv->lock);
502 if (priv->eee_active && !priv->eee_enabled) {
503 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
507 xpcs_config_eee(priv->hw->xpcs,
508 priv->plat->mult_fact_100ns,
512 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 del_timer_sync(&priv->eee_ctrl_timer);
514 priv->tx_path_in_lpi_mode = false;
515 stmmac_lpi_entry_timer_config(priv, 1);
517 stmmac_lpi_entry_timer_config(priv, 0);
518 mod_timer(&priv->eee_ctrl_timer,
519 STMMAC_LPI_T(priv->tx_lpi_timer));
522 mutex_unlock(&priv->lock);
523 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528 * @priv: driver private structure
529 * @p : descriptor pointer
530 * @skb : the socket buffer
532 * This function will read timestamp from the descriptor & pass it to stack.
533 * and also perform some sanity checks.
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 struct dma_desc *p, struct sk_buff *skb)
538 struct skb_shared_hwtstamps shhwtstamp;
542 if (!priv->hwts_tx_en)
545 /* exit if skb doesn't support hw tstamp */
546 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
549 /* check tx tstamp status */
550 if (stmmac_get_tx_timestamp_status(priv, p)) {
551 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
558 ns -= priv->plat->cdc_error_adj;
560 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 shhwtstamp.hwtstamp = ns_to_ktime(ns);
563 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 /* pass tstamp to stack */
565 skb_tstamp_tx(skb, &shhwtstamp);
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570 * @priv: driver private structure
571 * @p : descriptor pointer
572 * @np : next descriptor pointer
573 * @skb : the socket buffer
575 * This function will read received packet's timestamp from the descriptor
576 * and pass it to stack. It also perform some sanity checks.
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 struct dma_desc *np, struct sk_buff *skb)
581 struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 struct dma_desc *desc = p;
585 if (!priv->hwts_rx_en)
587 /* For GMAC4, the valid timestamp is from CTX next desc. */
588 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
591 /* Check if timestamp is available */
592 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595 ns -= priv->plat->cdc_error_adj;
597 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 shhwtstamp = skb_hwtstamps(skb);
599 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
607 * stmmac_hwtstamp_set - control hardware timestamping.
608 * @dev: device pointer.
609 * @ifr: An IOCTL specific structure, that can contain a pointer to
610 * a proprietary structure used to pass information to the driver.
612 * This function configures the MAC to enable/disable both outgoing(TX)
613 * and incoming(RX) packets time stamping based on user input.
615 * 0 on success and an appropriate -ve integer on failure.
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 struct stmmac_priv *priv = netdev_priv(dev);
620 struct hwtstamp_config config;
623 u32 ptp_over_ipv4_udp = 0;
624 u32 ptp_over_ipv6_udp = 0;
625 u32 ptp_over_ethernet = 0;
626 u32 snap_type_sel = 0;
627 u32 ts_master_en = 0;
630 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 netdev_alert(priv->dev, "No support for HW time stamping\n");
632 priv->hwts_tx_en = 0;
633 priv->hwts_rx_en = 0;
638 if (copy_from_user(&config, ifr->ifr_data,
642 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 __func__, config.flags, config.tx_type, config.rx_filter);
645 if (config.tx_type != HWTSTAMP_TX_OFF &&
646 config.tx_type != HWTSTAMP_TX_ON)
650 switch (config.rx_filter) {
651 case HWTSTAMP_FILTER_NONE:
652 /* time stamp no incoming packet at all */
653 config.rx_filter = HWTSTAMP_FILTER_NONE;
656 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 /* PTP v1, UDP, any kind of event packet */
658 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 /* 'xmac' hardware can support Sync, Pdelay_Req and
660 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 * This leaves Delay_Req timestamps out.
662 * Enable all events *and* general purpose message
665 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
670 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 /* PTP v1, UDP, Sync packet */
672 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 /* take time stamp for SYNC messages only */
674 ts_event_en = PTP_TCR_TSEVNTENA;
676 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 /* PTP v1, UDP, Delay_req packet */
682 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 /* take time stamp for Delay_Req messages only */
684 ts_master_en = PTP_TCR_TSMSTRENA;
685 ts_event_en = PTP_TCR_TSEVNTENA;
687 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
691 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 /* PTP v2, UDP, any kind of event packet */
693 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 ptp_v2 = PTP_TCR_TSVER2ENA;
695 /* take time stamp for all event messages */
696 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
702 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 /* PTP v2, UDP, Sync packet */
704 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 ptp_v2 = PTP_TCR_TSVER2ENA;
706 /* take time stamp for SYNC messages only */
707 ts_event_en = PTP_TCR_TSEVNTENA;
709 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
713 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 /* PTP v2, UDP, Delay_req packet */
715 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 ptp_v2 = PTP_TCR_TSVER2ENA;
717 /* take time stamp for Delay_Req messages only */
718 ts_master_en = PTP_TCR_TSMSTRENA;
719 ts_event_en = PTP_TCR_TSEVNTENA;
721 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
725 case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 /* PTP v2/802.AS1 any layer, any kind of event packet */
727 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 ptp_v2 = PTP_TCR_TSVER2ENA;
729 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 if (priv->synopsys_id < DWMAC_CORE_4_10)
731 ts_event_en = PTP_TCR_TSEVNTENA;
732 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 ptp_over_ethernet = PTP_TCR_TSIPENA;
737 case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 /* PTP v2/802.AS1, any layer, Sync packet */
739 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 ptp_v2 = PTP_TCR_TSVER2ENA;
741 /* take time stamp for SYNC messages only */
742 ts_event_en = PTP_TCR_TSEVNTENA;
744 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 ptp_over_ethernet = PTP_TCR_TSIPENA;
749 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 /* PTP v2/802.AS1, any layer, Delay_req packet */
751 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 ptp_v2 = PTP_TCR_TSVER2ENA;
753 /* take time stamp for Delay_Req messages only */
754 ts_master_en = PTP_TCR_TSMSTRENA;
755 ts_event_en = PTP_TCR_TSEVNTENA;
757 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 ptp_over_ethernet = PTP_TCR_TSIPENA;
762 case HWTSTAMP_FILTER_NTP_ALL:
763 case HWTSTAMP_FILTER_ALL:
764 /* time stamp any incoming packet */
765 config.rx_filter = HWTSTAMP_FILTER_ALL;
766 tstamp_all = PTP_TCR_TSENALL;
773 switch (config.rx_filter) {
774 case HWTSTAMP_FILTER_NONE:
775 config.rx_filter = HWTSTAMP_FILTER_NONE;
778 /* PTP v1, UDP, any kind of event packet */
779 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
783 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 priv->systime_flags = STMMAC_HWTS_ACTIVE;
788 if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 priv->systime_flags |= tstamp_all | ptp_v2 |
790 ptp_over_ethernet | ptp_over_ipv6_udp |
791 ptp_over_ipv4_udp | ts_event_en |
792 ts_master_en | snap_type_sel;
795 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797 memcpy(&priv->tstamp_config, &config, sizeof(config));
799 return copy_to_user(ifr->ifr_data, &config,
800 sizeof(config)) ? -EFAULT : 0;
804 * stmmac_hwtstamp_get - read hardware timestamping.
805 * @dev: device pointer.
806 * @ifr: An IOCTL specific structure, that can contain a pointer to
807 * a proprietary structure used to pass information to the driver.
809 * This function obtain the current hardware timestamping settings
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 struct stmmac_priv *priv = netdev_priv(dev);
815 struct hwtstamp_config *config = &priv->tstamp_config;
817 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
820 return copy_to_user(ifr->ifr_data, config,
821 sizeof(*config)) ? -EFAULT : 0;
825 * stmmac_init_tstamp_counter - init hardware timestamping counter
826 * @priv: driver private structure
827 * @systime_flags: timestamping flags
829 * Initialize hardware counter for packet timestamping.
830 * This is valid as long as the interface is open and not suspended.
831 * Will be rerun after resuming from suspend, case in which the timestamping
832 * flags updated by stmmac_hwtstamp_set() also need to be restored.
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 struct timespec64 now;
841 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 priv->systime_flags = systime_flags;
847 /* program Sub Second Increment reg */
848 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 priv->plat->clk_ptp_rate,
851 temp = div_u64(1000000000ULL, sec_inc);
853 /* Store sub second increment for later use */
854 priv->sub_second_inc = sec_inc;
856 /* calculate default added value:
858 * addend = (2^32)/freq_div_ratio;
859 * where, freq_div_ratio = 1e9ns/sec_inc
861 temp = (u64)(temp << 32);
862 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865 /* initialize system time */
866 ktime_get_real_ts64(&now);
868 /* lower 32 bits of tv_sec are safe until y2106 */
869 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
876 * stmmac_init_ptp - init PTP
877 * @priv: driver private structure
878 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879 * This is done by looking at the HW cap. register.
880 * This function also registers the ptp driver.
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
887 if (priv->plat->ptp_clk_freq_config)
888 priv->plat->ptp_clk_freq_config(priv);
890 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
895 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 if (xmac && priv->dma_cap.atime_stamp)
898 /* Dwmac 3.x core with extend_desc can support adv_ts */
899 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
902 if (priv->dma_cap.time_stamp)
903 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
906 netdev_info(priv->dev,
907 "IEEE 1588-2008 Advanced Timestamp supported\n");
909 priv->hwts_tx_en = 0;
910 priv->hwts_rx_en = 0;
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
917 clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 stmmac_ptp_unregister(priv);
922 * stmmac_mac_flow_ctrl - Configure flow control in all queues
923 * @priv: driver private structure
924 * @duplex: duplex passed to the next function
925 * Description: It is used for configuring the flow control in all queues
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
929 u32 tx_cnt = priv->plat->tx_queues_to_use;
931 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 priv->pause, tx_cnt);
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 phy_interface_t interface)
938 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 return &priv->hw->xpcs->pcs;
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 const struct phylink_link_state *state)
949 /* Nothing to do, xpcs_config() handles everything */
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
954 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 bool *hs_enable = &fpe_cfg->hs_enable;
959 if (is_up && *hs_enable) {
960 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
962 *lo_state = FPE_STATE_OFF;
963 *lp_state = FPE_STATE_OFF;
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 unsigned int mode, phy_interface_t interface)
970 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
972 stmmac_mac_set(priv, priv->ioaddr, false);
973 priv->eee_active = false;
974 priv->tx_lpi_enabled = false;
975 priv->eee_enabled = stmmac_eee_init(priv);
976 stmmac_set_eee_pls(priv, priv->hw, false);
978 if (priv->dma_cap.fpesel)
979 stmmac_fpe_link_state_handle(priv, false);
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 struct phy_device *phy,
984 unsigned int mode, phy_interface_t interface,
985 int speed, int duplex,
986 bool tx_pause, bool rx_pause)
988 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
991 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 ctrl = old_ctrl & ~priv->hw->link.speed_mask;
994 if (interface == PHY_INTERFACE_MODE_USXGMII) {
997 ctrl |= priv->hw->link.xgmii.speed10000;
1000 ctrl |= priv->hw->link.xgmii.speed5000;
1003 ctrl |= priv->hw->link.xgmii.speed2500;
1008 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1011 ctrl |= priv->hw->link.xlgmii.speed100000;
1014 ctrl |= priv->hw->link.xlgmii.speed50000;
1017 ctrl |= priv->hw->link.xlgmii.speed40000;
1020 ctrl |= priv->hw->link.xlgmii.speed25000;
1023 ctrl |= priv->hw->link.xgmii.speed10000;
1026 ctrl |= priv->hw->link.speed2500;
1029 ctrl |= priv->hw->link.speed1000;
1037 ctrl |= priv->hw->link.speed2500;
1040 ctrl |= priv->hw->link.speed1000;
1043 ctrl |= priv->hw->link.speed100;
1046 ctrl |= priv->hw->link.speed10;
1053 priv->speed = speed;
1055 if (priv->plat->fix_mac_speed)
1056 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1059 ctrl &= ~priv->hw->link.duplex;
1061 ctrl |= priv->hw->link.duplex;
1063 /* Flow Control operation */
1064 if (tx_pause && rx_pause)
1065 stmmac_mac_flow_ctrl(priv, duplex);
1067 if (ctrl != old_ctrl)
1068 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1070 stmmac_mac_set(priv, priv->ioaddr, true);
1071 if (phy && priv->dma_cap.eee) {
1072 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1073 priv->eee_enabled = stmmac_eee_init(priv);
1074 priv->tx_lpi_enabled = priv->eee_enabled;
1075 stmmac_set_eee_pls(priv, priv->hw, true);
1078 if (priv->dma_cap.fpesel)
1079 stmmac_fpe_link_state_handle(priv, true);
1082 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1083 .validate = phylink_generic_validate,
1084 .mac_select_pcs = stmmac_mac_select_pcs,
1085 .mac_config = stmmac_mac_config,
1086 .mac_link_down = stmmac_mac_link_down,
1087 .mac_link_up = stmmac_mac_link_up,
1091 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1092 * @priv: driver private structure
1093 * Description: this is to verify if the HW supports the PCS.
1094 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1095 * configured for the TBI, RTBI, or SGMII PHY interface.
1097 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1099 int interface = priv->plat->interface;
1101 if (priv->dma_cap.pcs) {
1102 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1103 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1104 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1105 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1106 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1107 priv->hw->pcs = STMMAC_PCS_RGMII;
1108 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1109 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1110 priv->hw->pcs = STMMAC_PCS_SGMII;
1116 * stmmac_init_phy - PHY initialization
1117 * @dev: net device structure
1118 * Description: it initializes the driver's PHY state, and attaches the PHY
1119 * to the mac driver.
1123 static int stmmac_init_phy(struct net_device *dev)
1125 struct stmmac_priv *priv = netdev_priv(dev);
1126 struct fwnode_handle *fwnode;
1129 fwnode = of_fwnode_handle(priv->plat->phylink_node);
1131 fwnode = dev_fwnode(priv->device);
1134 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1136 /* Some DT bindings do not set-up the PHY handle. Let's try to
1139 if (!fwnode || ret) {
1140 int addr = priv->plat->phy_addr;
1141 struct phy_device *phydev;
1143 phydev = mdiobus_get_phy(priv->mii, addr);
1145 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1149 ret = phylink_connect_phy(priv->phylink, phydev);
1152 if (!priv->plat->pmt) {
1153 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1155 phylink_ethtool_get_wol(priv->phylink, &wol);
1156 device_set_wakeup_capable(priv->device, !!wol.supported);
1162 static int stmmac_phy_setup(struct stmmac_priv *priv)
1164 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1165 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1166 int max_speed = priv->plat->max_speed;
1167 int mode = priv->plat->phy_interface;
1168 struct phylink *phylink;
1170 priv->phylink_config.dev = &priv->dev->dev;
1171 priv->phylink_config.type = PHYLINK_NETDEV;
1172 if (priv->plat->mdio_bus_data)
1173 priv->phylink_config.ovr_an_inband =
1174 mdio_bus_data->xpcs_an_inband;
1177 fwnode = dev_fwnode(priv->device);
1179 /* Set the platform/firmware specified interface mode */
1180 __set_bit(mode, priv->phylink_config.supported_interfaces);
1182 /* If we have an xpcs, it defines which PHY interfaces are supported. */
1184 xpcs_get_interfaces(priv->hw->xpcs,
1185 priv->phylink_config.supported_interfaces);
1187 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1190 if (!max_speed || max_speed >= 1000)
1191 priv->phylink_config.mac_capabilities |= MAC_1000;
1193 if (priv->plat->has_gmac4) {
1194 if (!max_speed || max_speed >= 2500)
1195 priv->phylink_config.mac_capabilities |= MAC_2500FD;
1196 } else if (priv->plat->has_xgmac) {
1197 if (!max_speed || max_speed >= 2500)
1198 priv->phylink_config.mac_capabilities |= MAC_2500FD;
1199 if (!max_speed || max_speed >= 5000)
1200 priv->phylink_config.mac_capabilities |= MAC_5000FD;
1201 if (!max_speed || max_speed >= 10000)
1202 priv->phylink_config.mac_capabilities |= MAC_10000FD;
1203 if (!max_speed || max_speed >= 25000)
1204 priv->phylink_config.mac_capabilities |= MAC_25000FD;
1205 if (!max_speed || max_speed >= 40000)
1206 priv->phylink_config.mac_capabilities |= MAC_40000FD;
1207 if (!max_speed || max_speed >= 50000)
1208 priv->phylink_config.mac_capabilities |= MAC_50000FD;
1209 if (!max_speed || max_speed >= 100000)
1210 priv->phylink_config.mac_capabilities |= MAC_100000FD;
1213 /* Half-Duplex can only work with single queue */
1214 if (priv->plat->tx_queues_to_use > 1)
1215 priv->phylink_config.mac_capabilities &=
1216 ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1218 phylink = phylink_create(&priv->phylink_config, fwnode,
1219 mode, &stmmac_phylink_mac_ops);
1220 if (IS_ERR(phylink))
1221 return PTR_ERR(phylink);
1223 priv->phylink = phylink;
1227 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1228 struct stmmac_dma_conf *dma_conf)
1230 u32 rx_cnt = priv->plat->rx_queues_to_use;
1231 unsigned int desc_size;
1235 /* Display RX rings */
1236 for (queue = 0; queue < rx_cnt; queue++) {
1237 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1239 pr_info("\tRX Queue %u rings\n", queue);
1241 if (priv->extend_desc) {
1242 head_rx = (void *)rx_q->dma_erx;
1243 desc_size = sizeof(struct dma_extended_desc);
1245 head_rx = (void *)rx_q->dma_rx;
1246 desc_size = sizeof(struct dma_desc);
1249 /* Display RX ring */
1250 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1251 rx_q->dma_rx_phy, desc_size);
1255 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1256 struct stmmac_dma_conf *dma_conf)
1258 u32 tx_cnt = priv->plat->tx_queues_to_use;
1259 unsigned int desc_size;
1263 /* Display TX rings */
1264 for (queue = 0; queue < tx_cnt; queue++) {
1265 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1267 pr_info("\tTX Queue %d rings\n", queue);
1269 if (priv->extend_desc) {
1270 head_tx = (void *)tx_q->dma_etx;
1271 desc_size = sizeof(struct dma_extended_desc);
1272 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1273 head_tx = (void *)tx_q->dma_entx;
1274 desc_size = sizeof(struct dma_edesc);
1276 head_tx = (void *)tx_q->dma_tx;
1277 desc_size = sizeof(struct dma_desc);
1280 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1281 tx_q->dma_tx_phy, desc_size);
1285 static void stmmac_display_rings(struct stmmac_priv *priv,
1286 struct stmmac_dma_conf *dma_conf)
1288 /* Display RX ring */
1289 stmmac_display_rx_rings(priv, dma_conf);
1291 /* Display TX ring */
1292 stmmac_display_tx_rings(priv, dma_conf);
1295 static int stmmac_set_bfsize(int mtu, int bufsize)
1299 if (mtu >= BUF_SIZE_8KiB)
1300 ret = BUF_SIZE_16KiB;
1301 else if (mtu >= BUF_SIZE_4KiB)
1302 ret = BUF_SIZE_8KiB;
1303 else if (mtu >= BUF_SIZE_2KiB)
1304 ret = BUF_SIZE_4KiB;
1305 else if (mtu > DEFAULT_BUFSIZE)
1306 ret = BUF_SIZE_2KiB;
1308 ret = DEFAULT_BUFSIZE;
1314 * stmmac_clear_rx_descriptors - clear RX descriptors
1315 * @priv: driver private structure
1316 * @dma_conf: structure to take the dma data
1317 * @queue: RX queue index
1318 * Description: this function is called to clear the RX descriptors
1319 * in case of both basic and extended descriptors are used.
1321 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1322 struct stmmac_dma_conf *dma_conf,
1325 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1328 /* Clear the RX descriptors */
1329 for (i = 0; i < dma_conf->dma_rx_size; i++)
1330 if (priv->extend_desc)
1331 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1332 priv->use_riwt, priv->mode,
1333 (i == dma_conf->dma_rx_size - 1),
1334 dma_conf->dma_buf_sz);
1336 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1337 priv->use_riwt, priv->mode,
1338 (i == dma_conf->dma_rx_size - 1),
1339 dma_conf->dma_buf_sz);
1343 * stmmac_clear_tx_descriptors - clear tx descriptors
1344 * @priv: driver private structure
1345 * @dma_conf: structure to take the dma data
1346 * @queue: TX queue index.
1347 * Description: this function is called to clear the TX descriptors
1348 * in case of both basic and extended descriptors are used.
1350 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1351 struct stmmac_dma_conf *dma_conf,
1354 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1357 /* Clear the TX descriptors */
1358 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1359 int last = (i == (dma_conf->dma_tx_size - 1));
1362 if (priv->extend_desc)
1363 p = &tx_q->dma_etx[i].basic;
1364 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1365 p = &tx_q->dma_entx[i].basic;
1367 p = &tx_q->dma_tx[i];
1369 stmmac_init_tx_desc(priv, p, priv->mode, last);
1374 * stmmac_clear_descriptors - clear descriptors
1375 * @priv: driver private structure
1376 * @dma_conf: structure to take the dma data
1377 * Description: this function is called to clear the TX and RX descriptors
1378 * in case of both basic and extended descriptors are used.
1380 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1381 struct stmmac_dma_conf *dma_conf)
1383 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1384 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1387 /* Clear the RX descriptors */
1388 for (queue = 0; queue < rx_queue_cnt; queue++)
1389 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1391 /* Clear the TX descriptors */
1392 for (queue = 0; queue < tx_queue_cnt; queue++)
1393 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1397 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1398 * @priv: driver private structure
1399 * @dma_conf: structure to take the dma data
1400 * @p: descriptor pointer
1401 * @i: descriptor index
1403 * @queue: RX queue index
1404 * Description: this function is called to allocate a receive buffer, perform
1405 * the DMA mapping and init the descriptor.
1407 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1408 struct stmmac_dma_conf *dma_conf,
1410 int i, gfp_t flags, u32 queue)
1412 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1413 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1414 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1416 if (priv->dma_cap.addr64 <= 32)
1420 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1423 buf->page_offset = stmmac_rx_offset(priv);
1426 if (priv->sph && !buf->sec_page) {
1427 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1431 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1432 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1434 buf->sec_page = NULL;
1435 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1438 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1440 stmmac_set_desc_addr(priv, p, buf->addr);
1441 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1442 stmmac_init_desc3(priv, p);
1448 * stmmac_free_rx_buffer - free RX dma buffers
1449 * @priv: private structure
1453 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1454 struct stmmac_rx_queue *rx_q,
1457 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1460 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1464 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1465 buf->sec_page = NULL;
1469 * stmmac_free_tx_buffer - free RX dma buffers
1470 * @priv: private structure
1471 * @dma_conf: structure to take the dma data
1472 * @queue: RX queue index
1475 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1476 struct stmmac_dma_conf *dma_conf,
1479 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1481 if (tx_q->tx_skbuff_dma[i].buf &&
1482 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483 if (tx_q->tx_skbuff_dma[i].map_as_page)
1484 dma_unmap_page(priv->device,
1485 tx_q->tx_skbuff_dma[i].buf,
1486 tx_q->tx_skbuff_dma[i].len,
1489 dma_unmap_single(priv->device,
1490 tx_q->tx_skbuff_dma[i].buf,
1491 tx_q->tx_skbuff_dma[i].len,
1495 if (tx_q->xdpf[i] &&
1496 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498 xdp_return_frame(tx_q->xdpf[i]);
1499 tx_q->xdpf[i] = NULL;
1502 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503 tx_q->xsk_frames_done++;
1505 if (tx_q->tx_skbuff[i] &&
1506 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508 tx_q->tx_skbuff[i] = NULL;
1511 tx_q->tx_skbuff_dma[i].buf = 0;
1512 tx_q->tx_skbuff_dma[i].map_as_page = false;
1516 * dma_free_rx_skbufs - free RX dma buffers
1517 * @priv: private structure
1518 * @dma_conf: structure to take the dma data
1519 * @queue: RX queue index
1521 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1522 struct stmmac_dma_conf *dma_conf,
1525 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1528 for (i = 0; i < dma_conf->dma_rx_size; i++)
1529 stmmac_free_rx_buffer(priv, rx_q, i);
1532 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1533 struct stmmac_dma_conf *dma_conf,
1534 u32 queue, gfp_t flags)
1536 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1539 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1543 if (priv->extend_desc)
1544 p = &((rx_q->dma_erx + i)->basic);
1546 p = rx_q->dma_rx + i;
1548 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1553 rx_q->buf_alloc_num++;
1560 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1561 * @priv: private structure
1562 * @dma_conf: structure to take the dma data
1563 * @queue: RX queue index
1565 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1566 struct stmmac_dma_conf *dma_conf,
1569 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1572 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1573 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1578 xsk_buff_free(buf->xdp);
1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1584 struct stmmac_dma_conf *dma_conf,
1587 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1590 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1591 struct stmmac_rx_buffer *buf;
1592 dma_addr_t dma_addr;
1595 if (priv->extend_desc)
1596 p = (struct dma_desc *)(rx_q->dma_erx + i);
1598 p = rx_q->dma_rx + i;
1600 buf = &rx_q->buf_pool[i];
1602 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1606 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1607 stmmac_set_desc_addr(priv, p, dma_addr);
1608 rx_q->buf_alloc_num++;
1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1616 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1619 return xsk_get_pool_from_qid(priv->dev, queue);
1623 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1624 * @priv: driver private structure
1625 * @dma_conf: structure to take the dma data
1626 * @queue: RX queue index
1628 * Description: this function initializes the DMA RX descriptors
1629 * and allocates the socket buffers. It supports the chained and ring
1632 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1633 struct stmmac_dma_conf *dma_conf,
1634 u32 queue, gfp_t flags)
1636 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1639 netif_dbg(priv, probe, priv->dev,
1640 "(%s) dma_rx_phy=0x%08x\n", __func__,
1641 (u32)rx_q->dma_rx_phy);
1643 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1645 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1647 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1649 if (rx_q->xsk_pool) {
1650 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1651 MEM_TYPE_XSK_BUFF_POOL,
1653 netdev_info(priv->dev,
1654 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1656 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1658 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1661 netdev_info(priv->dev,
1662 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1666 if (rx_q->xsk_pool) {
1667 /* RX XDP ZC buffer pool may not be populated, e.g.
1670 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1672 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1677 /* Setup the chained descriptor addresses */
1678 if (priv->mode == STMMAC_CHAIN_MODE) {
1679 if (priv->extend_desc)
1680 stmmac_mode_init(priv, rx_q->dma_erx,
1682 dma_conf->dma_rx_size, 1);
1684 stmmac_mode_init(priv, rx_q->dma_rx,
1686 dma_conf->dma_rx_size, 0);
1692 static int init_dma_rx_desc_rings(struct net_device *dev,
1693 struct stmmac_dma_conf *dma_conf,
1696 struct stmmac_priv *priv = netdev_priv(dev);
1697 u32 rx_count = priv->plat->rx_queues_to_use;
1701 /* RX INITIALIZATION */
1702 netif_dbg(priv, probe, priv->dev,
1703 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1705 for (queue = 0; queue < rx_count; queue++) {
1706 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1708 goto err_init_rx_buffers;
1713 err_init_rx_buffers:
1714 while (queue >= 0) {
1715 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1718 dma_free_rx_xskbufs(priv, dma_conf, queue);
1720 dma_free_rx_skbufs(priv, dma_conf, queue);
1722 rx_q->buf_alloc_num = 0;
1723 rx_q->xsk_pool = NULL;
1732 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1733 * @priv: driver private structure
1734 * @dma_conf: structure to take the dma data
1735 * @queue: TX queue index
1736 * Description: this function initializes the DMA TX descriptors
1737 * and allocates the socket buffers. It supports the chained and ring
1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1741 struct stmmac_dma_conf *dma_conf,
1744 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1747 netif_dbg(priv, probe, priv->dev,
1748 "(%s) dma_tx_phy=0x%08x\n", __func__,
1749 (u32)tx_q->dma_tx_phy);
1751 /* Setup the chained descriptor addresses */
1752 if (priv->mode == STMMAC_CHAIN_MODE) {
1753 if (priv->extend_desc)
1754 stmmac_mode_init(priv, tx_q->dma_etx,
1756 dma_conf->dma_tx_size, 1);
1757 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1758 stmmac_mode_init(priv, tx_q->dma_tx,
1760 dma_conf->dma_tx_size, 0);
1763 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1765 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1768 if (priv->extend_desc)
1769 p = &((tx_q->dma_etx + i)->basic);
1770 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1771 p = &((tx_q->dma_entx + i)->basic);
1773 p = tx_q->dma_tx + i;
1775 stmmac_clear_desc(priv, p);
1777 tx_q->tx_skbuff_dma[i].buf = 0;
1778 tx_q->tx_skbuff_dma[i].map_as_page = false;
1779 tx_q->tx_skbuff_dma[i].len = 0;
1780 tx_q->tx_skbuff_dma[i].last_segment = false;
1781 tx_q->tx_skbuff[i] = NULL;
1787 static int init_dma_tx_desc_rings(struct net_device *dev,
1788 struct stmmac_dma_conf *dma_conf)
1790 struct stmmac_priv *priv = netdev_priv(dev);
1794 tx_queue_cnt = priv->plat->tx_queues_to_use;
1796 for (queue = 0; queue < tx_queue_cnt; queue++)
1797 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1803 * init_dma_desc_rings - init the RX/TX descriptor rings
1804 * @dev: net device structure
1805 * @dma_conf: structure to take the dma data
1807 * Description: this function initializes the DMA RX/TX descriptors
1808 * and allocates the socket buffers. It supports the chained and ring
1811 static int init_dma_desc_rings(struct net_device *dev,
1812 struct stmmac_dma_conf *dma_conf,
1815 struct stmmac_priv *priv = netdev_priv(dev);
1818 ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1822 ret = init_dma_tx_desc_rings(dev, dma_conf);
1824 stmmac_clear_descriptors(priv, dma_conf);
1826 if (netif_msg_hw(priv))
1827 stmmac_display_rings(priv, dma_conf);
1833 * dma_free_tx_skbufs - free TX dma buffers
1834 * @priv: private structure
1835 * @dma_conf: structure to take the dma data
1836 * @queue: TX queue index
1838 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1839 struct stmmac_dma_conf *dma_conf,
1842 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1845 tx_q->xsk_frames_done = 0;
1847 for (i = 0; i < dma_conf->dma_tx_size; i++)
1848 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1850 if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1851 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1852 tx_q->xsk_frames_done = 0;
1853 tx_q->xsk_pool = NULL;
1858 * stmmac_free_tx_skbufs - free TX skb buffers
1859 * @priv: private structure
1861 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1863 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1866 for (queue = 0; queue < tx_queue_cnt; queue++)
1867 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1871 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1872 * @priv: private structure
1873 * @dma_conf: structure to take the dma data
1874 * @queue: RX queue index
1876 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1877 struct stmmac_dma_conf *dma_conf,
1880 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1882 /* Release the DMA RX socket buffers */
1884 dma_free_rx_xskbufs(priv, dma_conf, queue);
1886 dma_free_rx_skbufs(priv, dma_conf, queue);
1888 rx_q->buf_alloc_num = 0;
1889 rx_q->xsk_pool = NULL;
1891 /* Free DMA regions of consistent memory previously allocated */
1892 if (!priv->extend_desc)
1893 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1894 sizeof(struct dma_desc),
1895 rx_q->dma_rx, rx_q->dma_rx_phy);
1897 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1898 sizeof(struct dma_extended_desc),
1899 rx_q->dma_erx, rx_q->dma_rx_phy);
1901 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1902 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1904 kfree(rx_q->buf_pool);
1905 if (rx_q->page_pool)
1906 page_pool_destroy(rx_q->page_pool);
1909 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1910 struct stmmac_dma_conf *dma_conf)
1912 u32 rx_count = priv->plat->rx_queues_to_use;
1915 /* Free RX queue resources */
1916 for (queue = 0; queue < rx_count; queue++)
1917 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1921 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1922 * @priv: private structure
1923 * @dma_conf: structure to take the dma data
1924 * @queue: TX queue index
1926 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1927 struct stmmac_dma_conf *dma_conf,
1930 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1934 /* Release the DMA TX socket buffers */
1935 dma_free_tx_skbufs(priv, dma_conf, queue);
1937 if (priv->extend_desc) {
1938 size = sizeof(struct dma_extended_desc);
1939 addr = tx_q->dma_etx;
1940 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1941 size = sizeof(struct dma_edesc);
1942 addr = tx_q->dma_entx;
1944 size = sizeof(struct dma_desc);
1945 addr = tx_q->dma_tx;
1948 size *= dma_conf->dma_tx_size;
1950 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1952 kfree(tx_q->tx_skbuff_dma);
1953 kfree(tx_q->tx_skbuff);
1956 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1957 struct stmmac_dma_conf *dma_conf)
1959 u32 tx_count = priv->plat->tx_queues_to_use;
1962 /* Free TX queue resources */
1963 for (queue = 0; queue < tx_count; queue++)
1964 __free_dma_tx_desc_resources(priv, dma_conf, queue);
1968 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1969 * @priv: private structure
1970 * @dma_conf: structure to take the dma data
1971 * @queue: RX queue index
1972 * Description: according to which descriptor can be used (extend or basic)
1973 * this function allocates the resources for TX and RX paths. In case of
1974 * reception, for example, it pre-allocated the RX socket buffer in order to
1975 * allow zero-copy mechanism.
1977 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1978 struct stmmac_dma_conf *dma_conf,
1981 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1982 struct stmmac_channel *ch = &priv->channel[queue];
1983 bool xdp_prog = stmmac_xdp_is_enabled(priv);
1984 struct page_pool_params pp_params = { 0 };
1985 unsigned int num_pages;
1986 unsigned int napi_id;
1989 rx_q->queue_index = queue;
1990 rx_q->priv_data = priv;
1992 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1993 pp_params.pool_size = dma_conf->dma_rx_size;
1994 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
1995 pp_params.order = ilog2(num_pages);
1996 pp_params.nid = dev_to_node(priv->device);
1997 pp_params.dev = priv->device;
1998 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1999 pp_params.offset = stmmac_rx_offset(priv);
2000 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2002 rx_q->page_pool = page_pool_create(&pp_params);
2003 if (IS_ERR(rx_q->page_pool)) {
2004 ret = PTR_ERR(rx_q->page_pool);
2005 rx_q->page_pool = NULL;
2009 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2010 sizeof(*rx_q->buf_pool),
2012 if (!rx_q->buf_pool)
2015 if (priv->extend_desc) {
2016 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2017 dma_conf->dma_rx_size *
2018 sizeof(struct dma_extended_desc),
2025 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2026 dma_conf->dma_rx_size *
2027 sizeof(struct dma_desc),
2034 if (stmmac_xdp_is_enabled(priv) &&
2035 test_bit(queue, priv->af_xdp_zc_qps))
2036 napi_id = ch->rxtx_napi.napi_id;
2038 napi_id = ch->rx_napi.napi_id;
2040 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2044 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2051 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2052 struct stmmac_dma_conf *dma_conf)
2054 u32 rx_count = priv->plat->rx_queues_to_use;
2058 /* RX queues buffers and DMA */
2059 for (queue = 0; queue < rx_count; queue++) {
2060 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2068 free_dma_rx_desc_resources(priv, dma_conf);
2074 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2075 * @priv: private structure
2076 * @dma_conf: structure to take the dma data
2077 * @queue: TX queue index
2078 * Description: according to which descriptor can be used (extend or basic)
2079 * this function allocates the resources for TX and RX paths. In case of
2080 * reception, for example, it pre-allocated the RX socket buffer in order to
2081 * allow zero-copy mechanism.
2083 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2084 struct stmmac_dma_conf *dma_conf,
2087 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2091 tx_q->queue_index = queue;
2092 tx_q->priv_data = priv;
2094 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2095 sizeof(*tx_q->tx_skbuff_dma),
2097 if (!tx_q->tx_skbuff_dma)
2100 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2101 sizeof(struct sk_buff *),
2103 if (!tx_q->tx_skbuff)
2106 if (priv->extend_desc)
2107 size = sizeof(struct dma_extended_desc);
2108 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2109 size = sizeof(struct dma_edesc);
2111 size = sizeof(struct dma_desc);
2113 size *= dma_conf->dma_tx_size;
2115 addr = dma_alloc_coherent(priv->device, size,
2116 &tx_q->dma_tx_phy, GFP_KERNEL);
2120 if (priv->extend_desc)
2121 tx_q->dma_etx = addr;
2122 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2123 tx_q->dma_entx = addr;
2125 tx_q->dma_tx = addr;
2130 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2131 struct stmmac_dma_conf *dma_conf)
2133 u32 tx_count = priv->plat->tx_queues_to_use;
2137 /* TX queues buffers and DMA */
2138 for (queue = 0; queue < tx_count; queue++) {
2139 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2147 free_dma_tx_desc_resources(priv, dma_conf);
2152 * alloc_dma_desc_resources - alloc TX/RX resources.
2153 * @priv: private structure
2154 * @dma_conf: structure to take the dma data
2155 * Description: according to which descriptor can be used (extend or basic)
2156 * this function allocates the resources for TX and RX paths. In case of
2157 * reception, for example, it pre-allocated the RX socket buffer in order to
2158 * allow zero-copy mechanism.
2160 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2161 struct stmmac_dma_conf *dma_conf)
2164 int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2169 ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2175 * free_dma_desc_resources - free dma desc resources
2176 * @priv: private structure
2177 * @dma_conf: structure to take the dma data
2179 static void free_dma_desc_resources(struct stmmac_priv *priv,
2180 struct stmmac_dma_conf *dma_conf)
2182 /* Release the DMA TX socket buffers */
2183 free_dma_tx_desc_resources(priv, dma_conf);
2185 /* Release the DMA RX socket buffers later
2186 * to ensure all pending XDP_TX buffers are returned.
2188 free_dma_rx_desc_resources(priv, dma_conf);
2192 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
2193 * @priv: driver private structure
2194 * Description: It is used for enabling the rx queues in the MAC
2196 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2198 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2202 for (queue = 0; queue < rx_queues_count; queue++) {
2203 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2204 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2209 * stmmac_start_rx_dma - start RX DMA channel
2210 * @priv: driver private structure
2211 * @chan: RX channel index
2213 * This starts a RX DMA channel
2215 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2217 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2218 stmmac_start_rx(priv, priv->ioaddr, chan);
2222 * stmmac_start_tx_dma - start TX DMA channel
2223 * @priv: driver private structure
2224 * @chan: TX channel index
2226 * This starts a TX DMA channel
2228 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2230 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2231 stmmac_start_tx(priv, priv->ioaddr, chan);
2235 * stmmac_stop_rx_dma - stop RX DMA channel
2236 * @priv: driver private structure
2237 * @chan: RX channel index
2239 * This stops a RX DMA channel
2241 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2243 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2244 stmmac_stop_rx(priv, priv->ioaddr, chan);
2248 * stmmac_stop_tx_dma - stop TX DMA channel
2249 * @priv: driver private structure
2250 * @chan: TX channel index
2252 * This stops a TX DMA channel
2254 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2256 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2257 stmmac_stop_tx(priv, priv->ioaddr, chan);
2260 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2262 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2263 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2264 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2267 for (chan = 0; chan < dma_csr_ch; chan++) {
2268 struct stmmac_channel *ch = &priv->channel[chan];
2269 unsigned long flags;
2271 spin_lock_irqsave(&ch->lock, flags);
2272 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2273 spin_unlock_irqrestore(&ch->lock, flags);
2278 * stmmac_start_all_dma - start all RX and TX DMA channels
2279 * @priv: driver private structure
2281 * This starts all the RX and TX DMA channels
2283 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2285 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2286 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2289 for (chan = 0; chan < rx_channels_count; chan++)
2290 stmmac_start_rx_dma(priv, chan);
2292 for (chan = 0; chan < tx_channels_count; chan++)
2293 stmmac_start_tx_dma(priv, chan);
2297 * stmmac_stop_all_dma - stop all RX and TX DMA channels
2298 * @priv: driver private structure
2300 * This stops the RX and TX DMA channels
2302 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2304 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2305 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2308 for (chan = 0; chan < rx_channels_count; chan++)
2309 stmmac_stop_rx_dma(priv, chan);
2311 for (chan = 0; chan < tx_channels_count; chan++)
2312 stmmac_stop_tx_dma(priv, chan);
2316 * stmmac_dma_operation_mode - HW DMA operation mode
2317 * @priv: driver private structure
2318 * Description: it is used for configuring the DMA operation mode register in
2319 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2321 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2323 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2324 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2325 int rxfifosz = priv->plat->rx_fifo_size;
2326 int txfifosz = priv->plat->tx_fifo_size;
2333 rxfifosz = priv->dma_cap.rx_fifo_size;
2335 txfifosz = priv->dma_cap.tx_fifo_size;
2337 /* Adjust for real per queue fifo size */
2338 rxfifosz /= rx_channels_count;
2339 txfifosz /= tx_channels_count;
2341 if (priv->plat->force_thresh_dma_mode) {
2344 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2346 * In case of GMAC, SF mode can be enabled
2347 * to perform the TX COE in HW. This depends on:
2348 * 1) TX COE if actually supported
2349 * 2) There is no bugged Jumbo frame support
2350 * that needs to not insert csum in the TDES.
2352 txmode = SF_DMA_MODE;
2353 rxmode = SF_DMA_MODE;
2354 priv->xstats.threshold = SF_DMA_MODE;
2357 rxmode = SF_DMA_MODE;
2360 /* configure all channels */
2361 for (chan = 0; chan < rx_channels_count; chan++) {
2362 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2365 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2367 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2370 if (rx_q->xsk_pool) {
2371 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2372 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2376 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2377 priv->dma_conf.dma_buf_sz,
2382 for (chan = 0; chan < tx_channels_count; chan++) {
2383 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2385 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2390 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2392 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2393 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2394 struct xsk_buff_pool *pool = tx_q->xsk_pool;
2395 unsigned int entry = tx_q->cur_tx;
2396 struct dma_desc *tx_desc = NULL;
2397 struct xdp_desc xdp_desc;
2398 bool work_done = true;
2400 /* Avoids TX time-out as we are sharing with slow path */
2401 txq_trans_cond_update(nq);
2403 budget = min(budget, stmmac_tx_avail(priv, queue));
2405 while (budget-- > 0) {
2406 dma_addr_t dma_addr;
2409 /* We are sharing with slow path and stop XSK TX desc submission when
2410 * available TX ring is less than threshold.
2412 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2413 !netif_carrier_ok(priv->dev)) {
2418 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2421 if (likely(priv->extend_desc))
2422 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2423 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2424 tx_desc = &tx_q->dma_entx[entry].basic;
2426 tx_desc = tx_q->dma_tx + entry;
2428 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2429 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2431 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2433 /* To return XDP buffer to XSK pool, we simple call
2434 * xsk_tx_completed(), so we don't need to fill up
2437 tx_q->tx_skbuff_dma[entry].buf = 0;
2438 tx_q->xdpf[entry] = NULL;
2440 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2441 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2442 tx_q->tx_skbuff_dma[entry].last_segment = true;
2443 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2445 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2447 tx_q->tx_count_frames++;
2449 if (!priv->tx_coal_frames[queue])
2451 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2457 tx_q->tx_count_frames = 0;
2458 stmmac_set_tx_ic(priv, tx_desc);
2459 priv->xstats.tx_set_ic_bit++;
2462 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2463 true, priv->mode, true, true,
2466 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2468 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2469 entry = tx_q->cur_tx;
2473 stmmac_flush_tx_descriptors(priv, queue);
2474 xsk_tx_release(pool);
2477 /* Return true if all of the 3 conditions are met
2478 * a) TX Budget is still available
2479 * b) work_done = true when XSK TX desc peek is empty (no more
2480 * pending XSK TX for transmission)
2482 return !!budget && work_done;
2485 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2487 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2490 if (priv->plat->force_thresh_dma_mode)
2491 stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2493 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2496 priv->xstats.threshold = tc;
2501 * stmmac_tx_clean - to manage the transmission completion
2502 * @priv: driver private structure
2503 * @budget: napi budget limiting this functions packet handling
2504 * @queue: TX queue index
2505 * Description: it reclaims the transmit resources after transmission completes.
2507 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2509 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2510 unsigned int bytes_compl = 0, pkts_compl = 0;
2511 unsigned int entry, xmits = 0, count = 0;
2513 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2515 priv->xstats.tx_clean++;
2517 tx_q->xsk_frames_done = 0;
2519 entry = tx_q->dirty_tx;
2521 /* Try to clean all TX complete frame in 1 shot */
2522 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2523 struct xdp_frame *xdpf;
2524 struct sk_buff *skb;
2528 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2529 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2530 xdpf = tx_q->xdpf[entry];
2532 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2534 skb = tx_q->tx_skbuff[entry];
2540 if (priv->extend_desc)
2541 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2542 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2543 p = &tx_q->dma_entx[entry].basic;
2545 p = tx_q->dma_tx + entry;
2547 status = stmmac_tx_status(priv, &priv->dev->stats,
2548 &priv->xstats, p, priv->ioaddr);
2549 /* Check if the descriptor is owned by the DMA */
2550 if (unlikely(status & tx_dma_own))
2555 /* Make sure descriptor fields are read after reading
2560 /* Just consider the last segment and ...*/
2561 if (likely(!(status & tx_not_ls))) {
2562 /* ... verify the status error condition */
2563 if (unlikely(status & tx_err)) {
2564 priv->dev->stats.tx_errors++;
2565 if (unlikely(status & tx_err_bump_tc))
2566 stmmac_bump_dma_threshold(priv, queue);
2568 priv->dev->stats.tx_packets++;
2569 priv->xstats.tx_pkt_n++;
2570 priv->xstats.txq_stats[queue].tx_pkt_n++;
2573 stmmac_get_tx_hwtstamp(priv, p, skb);
2576 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2577 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2578 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2579 dma_unmap_page(priv->device,
2580 tx_q->tx_skbuff_dma[entry].buf,
2581 tx_q->tx_skbuff_dma[entry].len,
2584 dma_unmap_single(priv->device,
2585 tx_q->tx_skbuff_dma[entry].buf,
2586 tx_q->tx_skbuff_dma[entry].len,
2588 tx_q->tx_skbuff_dma[entry].buf = 0;
2589 tx_q->tx_skbuff_dma[entry].len = 0;
2590 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2593 stmmac_clean_desc3(priv, tx_q, p);
2595 tx_q->tx_skbuff_dma[entry].last_segment = false;
2596 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2599 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2600 xdp_return_frame_rx_napi(xdpf);
2601 tx_q->xdpf[entry] = NULL;
2605 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2606 xdp_return_frame(xdpf);
2607 tx_q->xdpf[entry] = NULL;
2610 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2611 tx_q->xsk_frames_done++;
2613 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2616 bytes_compl += skb->len;
2617 dev_consume_skb_any(skb);
2618 tx_q->tx_skbuff[entry] = NULL;
2622 stmmac_release_tx_desc(priv, p, priv->mode);
2624 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2626 tx_q->dirty_tx = entry;
2628 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2629 pkts_compl, bytes_compl);
2631 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2633 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2635 netif_dbg(priv, tx_done, priv->dev,
2636 "%s: restart transmit\n", __func__);
2637 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2640 if (tx_q->xsk_pool) {
2643 if (tx_q->xsk_frames_done)
2644 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2646 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2647 xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2649 /* For XSK TX, we try to send as many as possible.
2650 * If XSK work done (XSK TX desc empty and budget still
2651 * available), return "budget - 1" to reenable TX IRQ.
2652 * Else, return "budget" to make NAPI continue polling.
2654 work_done = stmmac_xdp_xmit_zc(priv, queue,
2655 STMMAC_XSK_TX_BUDGET_MAX);
2662 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2663 priv->eee_sw_timer_en) {
2664 if (stmmac_enable_eee_mode(priv))
2665 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2668 /* We still have pending packets, let's call for a new scheduling */
2669 if (tx_q->dirty_tx != tx_q->cur_tx)
2670 hrtimer_start(&tx_q->txtimer,
2671 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2674 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2676 /* Combine decisions from TX clean and XSK TX */
2677 return max(count, xmits);
2681 * stmmac_tx_err - to manage the tx error
2682 * @priv: driver private structure
2683 * @chan: channel index
2684 * Description: it cleans the descriptors and restarts the transmission
2685 * in case of transmission errors.
2687 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2689 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2691 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2693 stmmac_stop_tx_dma(priv, chan);
2694 dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2695 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2696 stmmac_reset_tx_queue(priv, chan);
2697 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2698 tx_q->dma_tx_phy, chan);
2699 stmmac_start_tx_dma(priv, chan);
2701 priv->dev->stats.tx_errors++;
2702 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2706 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2707 * @priv: driver private structure
2708 * @txmode: TX operating mode
2709 * @rxmode: RX operating mode
2710 * @chan: channel index
2711 * Description: it is used for configuring of the DMA operation mode in
2712 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2715 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2716 u32 rxmode, u32 chan)
2718 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2719 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2720 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2721 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2722 int rxfifosz = priv->plat->rx_fifo_size;
2723 int txfifosz = priv->plat->tx_fifo_size;
2726 rxfifosz = priv->dma_cap.rx_fifo_size;
2728 txfifosz = priv->dma_cap.tx_fifo_size;
2730 /* Adjust for real per queue fifo size */
2731 rxfifosz /= rx_channels_count;
2732 txfifosz /= tx_channels_count;
2734 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2735 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2738 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2742 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2743 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2744 if (ret && (ret != -EINVAL)) {
2745 stmmac_global_err(priv);
2752 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2754 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2755 &priv->xstats, chan, dir);
2756 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2757 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2758 struct stmmac_channel *ch = &priv->channel[chan];
2759 struct napi_struct *rx_napi;
2760 struct napi_struct *tx_napi;
2761 unsigned long flags;
2763 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2764 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2766 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2767 if (napi_schedule_prep(rx_napi)) {
2768 spin_lock_irqsave(&ch->lock, flags);
2769 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2770 spin_unlock_irqrestore(&ch->lock, flags);
2771 __napi_schedule(rx_napi);
2775 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2776 if (napi_schedule_prep(tx_napi)) {
2777 spin_lock_irqsave(&ch->lock, flags);
2778 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2779 spin_unlock_irqrestore(&ch->lock, flags);
2780 __napi_schedule(tx_napi);
2788 * stmmac_dma_interrupt - DMA ISR
2789 * @priv: driver private structure
2790 * Description: this is the DMA ISR. It is called by the main ISR.
2791 * It calls the dwmac dma routine and schedule poll method in case of some
2794 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2796 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2797 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2798 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2799 tx_channel_count : rx_channel_count;
2801 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2803 /* Make sure we never check beyond our status buffer. */
2804 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2805 channels_to_check = ARRAY_SIZE(status);
2807 for (chan = 0; chan < channels_to_check; chan++)
2808 status[chan] = stmmac_napi_check(priv, chan,
2811 for (chan = 0; chan < tx_channel_count; chan++) {
2812 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2813 /* Try to bump up the dma threshold on this failure */
2814 stmmac_bump_dma_threshold(priv, chan);
2815 } else if (unlikely(status[chan] == tx_hard_error)) {
2816 stmmac_tx_err(priv, chan);
2822 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2823 * @priv: driver private structure
2824 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2826 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2828 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2829 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2831 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2833 if (priv->dma_cap.rmon) {
2834 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2835 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2837 netdev_info(priv->dev, "No MAC Management Counters available\n");
2841 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2842 * @priv: driver private structure
2844 * new GMAC chip generations have a new register to indicate the
2845 * presence of the optional feature/functions.
2846 * This can be also used to override the value passed through the
2847 * platform and necessary for old MAC10/100 and GMAC chips.
2849 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2851 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2855 * stmmac_check_ether_addr - check if the MAC addr is valid
2856 * @priv: driver private structure
2858 * it is to verify if the MAC address is valid, in case of failures it
2859 * generates a random MAC address
2861 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2865 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2866 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2867 if (is_valid_ether_addr(addr))
2868 eth_hw_addr_set(priv->dev, addr);
2870 eth_hw_addr_random(priv->dev);
2871 dev_info(priv->device, "device MAC address %pM\n",
2872 priv->dev->dev_addr);
2877 * stmmac_init_dma_engine - DMA init.
2878 * @priv: driver private structure
2880 * It inits the DMA invoking the specific MAC/GMAC callback.
2881 * Some DMA parameters can be passed from the platform;
2882 * in case of these are not passed a default is kept for the MAC or GMAC.
2884 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2886 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2887 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2888 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2889 struct stmmac_rx_queue *rx_q;
2890 struct stmmac_tx_queue *tx_q;
2895 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2896 dev_err(priv->device, "Invalid DMA configuration\n");
2900 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2903 ret = stmmac_reset(priv, priv->ioaddr);
2905 dev_err(priv->device, "Failed to reset the dma\n");
2909 /* DMA Configuration */
2910 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2912 if (priv->plat->axi)
2913 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2915 /* DMA CSR Channel configuration */
2916 for (chan = 0; chan < dma_csr_ch; chan++) {
2917 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2918 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2921 /* DMA RX Channel Configuration */
2922 for (chan = 0; chan < rx_channels_count; chan++) {
2923 rx_q = &priv->dma_conf.rx_queue[chan];
2925 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2926 rx_q->dma_rx_phy, chan);
2928 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2929 (rx_q->buf_alloc_num *
2930 sizeof(struct dma_desc));
2931 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2932 rx_q->rx_tail_addr, chan);
2935 /* DMA TX Channel Configuration */
2936 for (chan = 0; chan < tx_channels_count; chan++) {
2937 tx_q = &priv->dma_conf.tx_queue[chan];
2939 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2940 tx_q->dma_tx_phy, chan);
2942 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2943 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2944 tx_q->tx_tail_addr, chan);
2950 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2952 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2954 hrtimer_start(&tx_q->txtimer,
2955 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2960 * stmmac_tx_timer - mitigation sw timer for tx.
2963 * This is the timer handler to directly invoke the stmmac_tx_clean.
2965 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2967 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2968 struct stmmac_priv *priv = tx_q->priv_data;
2969 struct stmmac_channel *ch;
2970 struct napi_struct *napi;
2972 ch = &priv->channel[tx_q->queue_index];
2973 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2975 if (likely(napi_schedule_prep(napi))) {
2976 unsigned long flags;
2978 spin_lock_irqsave(&ch->lock, flags);
2979 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2980 spin_unlock_irqrestore(&ch->lock, flags);
2981 __napi_schedule(napi);
2984 return HRTIMER_NORESTART;
2988 * stmmac_init_coalesce - init mitigation options.
2989 * @priv: driver private structure
2991 * This inits the coalesce parameters: i.e. timer rate,
2992 * timer handler and default threshold used for enabling the
2993 * interrupt on completion bit.
2995 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2997 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2998 u32 rx_channel_count = priv->plat->rx_queues_to_use;
3001 for (chan = 0; chan < tx_channel_count; chan++) {
3002 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3004 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3005 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3007 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3008 tx_q->txtimer.function = stmmac_tx_timer;
3011 for (chan = 0; chan < rx_channel_count; chan++)
3012 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3015 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3017 u32 rx_channels_count = priv->plat->rx_queues_to_use;
3018 u32 tx_channels_count = priv->plat->tx_queues_to_use;
3021 /* set TX ring length */
3022 for (chan = 0; chan < tx_channels_count; chan++)
3023 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3024 (priv->dma_conf.dma_tx_size - 1), chan);
3026 /* set RX ring length */
3027 for (chan = 0; chan < rx_channels_count; chan++)
3028 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3029 (priv->dma_conf.dma_rx_size - 1), chan);
3033 * stmmac_set_tx_queue_weight - Set TX queue weight
3034 * @priv: driver private structure
3035 * Description: It is used for setting TX queues weight
3037 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3039 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3043 for (queue = 0; queue < tx_queues_count; queue++) {
3044 weight = priv->plat->tx_queues_cfg[queue].weight;
3045 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3050 * stmmac_configure_cbs - Configure CBS in TX queue
3051 * @priv: driver private structure
3052 * Description: It is used for configuring CBS in AVB TX queues
3054 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3056 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3060 /* queue 0 is reserved for legacy traffic */
3061 for (queue = 1; queue < tx_queues_count; queue++) {
3062 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3063 if (mode_to_use == MTL_QUEUE_DCB)
3066 stmmac_config_cbs(priv, priv->hw,
3067 priv->plat->tx_queues_cfg[queue].send_slope,
3068 priv->plat->tx_queues_cfg[queue].idle_slope,
3069 priv->plat->tx_queues_cfg[queue].high_credit,
3070 priv->plat->tx_queues_cfg[queue].low_credit,
3076 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3077 * @priv: driver private structure
3078 * Description: It is used for mapping RX queues to RX dma channels
3080 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3082 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3086 for (queue = 0; queue < rx_queues_count; queue++) {
3087 chan = priv->plat->rx_queues_cfg[queue].chan;
3088 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3093 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3094 * @priv: driver private structure
3095 * Description: It is used for configuring the RX Queue Priority
3097 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3099 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3103 for (queue = 0; queue < rx_queues_count; queue++) {
3104 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3107 prio = priv->plat->rx_queues_cfg[queue].prio;
3108 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3113 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3114 * @priv: driver private structure
3115 * Description: It is used for configuring the TX Queue Priority
3117 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3119 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3123 for (queue = 0; queue < tx_queues_count; queue++) {
3124 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3127 prio = priv->plat->tx_queues_cfg[queue].prio;
3128 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3133 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3134 * @priv: driver private structure
3135 * Description: It is used for configuring the RX queue routing
3137 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3139 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3143 for (queue = 0; queue < rx_queues_count; queue++) {
3144 /* no specific packet type routing specified for the queue */
3145 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3148 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3149 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3153 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3155 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3156 priv->rss.enable = false;
3160 if (priv->dev->features & NETIF_F_RXHASH)
3161 priv->rss.enable = true;
3163 priv->rss.enable = false;
3165 stmmac_rss_configure(priv, priv->hw, &priv->rss,
3166 priv->plat->rx_queues_to_use);
3170 * stmmac_mtl_configuration - Configure MTL
3171 * @priv: driver private structure
3172 * Description: It is used for configurring MTL
3174 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3176 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3177 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3179 if (tx_queues_count > 1)
3180 stmmac_set_tx_queue_weight(priv);
3182 /* Configure MTL RX algorithms */
3183 if (rx_queues_count > 1)
3184 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3185 priv->plat->rx_sched_algorithm);
3187 /* Configure MTL TX algorithms */
3188 if (tx_queues_count > 1)
3189 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3190 priv->plat->tx_sched_algorithm);
3192 /* Configure CBS in AVB TX queues */
3193 if (tx_queues_count > 1)
3194 stmmac_configure_cbs(priv);
3196 /* Map RX MTL to DMA channels */
3197 stmmac_rx_queue_dma_chan_map(priv);
3199 /* Enable MAC RX Queues */
3200 stmmac_mac_enable_rx_queues(priv);
3202 /* Set RX priorities */
3203 if (rx_queues_count > 1)
3204 stmmac_mac_config_rx_queues_prio(priv);
3206 /* Set TX priorities */
3207 if (tx_queues_count > 1)
3208 stmmac_mac_config_tx_queues_prio(priv);
3210 /* Set RX routing */
3211 if (rx_queues_count > 1)
3212 stmmac_mac_config_rx_queues_routing(priv);
3214 /* Receive Side Scaling */
3215 if (rx_queues_count > 1)
3216 stmmac_mac_config_rss(priv);
3219 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3221 if (priv->dma_cap.asp) {
3222 netdev_info(priv->dev, "Enabling Safety Features\n");
3223 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3224 priv->plat->safety_feat_cfg);
3226 netdev_info(priv->dev, "No Safety Features support found\n");
3230 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3234 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3235 clear_bit(__FPE_REMOVING, &priv->fpe_task_state);
3237 name = priv->wq_name;
3238 sprintf(name, "%s-fpe", priv->dev->name);
3240 priv->fpe_wq = create_singlethread_workqueue(name);
3241 if (!priv->fpe_wq) {
3242 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3246 netdev_info(priv->dev, "FPE workqueue start");
3252 * stmmac_hw_setup - setup mac in a usable state.
3253 * @dev : pointer to the device structure.
3254 * @ptp_register: register PTP if set
3256 * this is the main function to setup the HW in a usable state because the
3257 * dma engine is reset, the core registers are configured (e.g. AXI,
3258 * Checksum features, timers). The DMA is ready to start receiving and
3261 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3264 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3266 struct stmmac_priv *priv = netdev_priv(dev);
3267 u32 rx_cnt = priv->plat->rx_queues_to_use;
3268 u32 tx_cnt = priv->plat->tx_queues_to_use;
3273 /* DMA initialization and SW reset */
3274 ret = stmmac_init_dma_engine(priv);
3276 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3281 /* Copy the MAC addr into the HW */
3282 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3284 /* PS and related bits will be programmed according to the speed */
3285 if (priv->hw->pcs) {
3286 int speed = priv->plat->mac_port_sel_speed;
3288 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3289 (speed == SPEED_1000)) {
3290 priv->hw->ps = speed;
3292 dev_warn(priv->device, "invalid port speed\n");
3297 /* Initialize the MAC Core */
3298 stmmac_core_init(priv, priv->hw, dev);
3301 stmmac_mtl_configuration(priv);
3303 /* Initialize Safety Features */
3304 stmmac_safety_feat_configuration(priv);
3306 ret = stmmac_rx_ipc(priv, priv->hw);
3308 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3309 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3310 priv->hw->rx_csum = 0;
3313 /* Enable the MAC Rx/Tx */
3314 stmmac_mac_set(priv, priv->ioaddr, true);
3316 /* Set the HW DMA mode and the COE */
3317 stmmac_dma_operation_mode(priv);
3319 stmmac_mmc_setup(priv);
3322 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3324 netdev_warn(priv->dev,
3325 "failed to enable PTP reference clock: %pe\n",
3329 ret = stmmac_init_ptp(priv);
3330 if (ret == -EOPNOTSUPP)
3331 netdev_info(priv->dev, "PTP not supported by HW\n");
3333 netdev_warn(priv->dev, "PTP init failed\n");
3334 else if (ptp_register)
3335 stmmac_ptp_register(priv);
3337 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3339 /* Convert the timer from msec to usec */
3340 if (!priv->tx_lpi_timer)
3341 priv->tx_lpi_timer = eee_timer * 1000;
3343 if (priv->use_riwt) {
3346 for (queue = 0; queue < rx_cnt; queue++) {
3347 if (!priv->rx_riwt[queue])
3348 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3350 stmmac_rx_watchdog(priv, priv->ioaddr,
3351 priv->rx_riwt[queue], queue);
3356 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3358 /* set TX and RX rings length */
3359 stmmac_set_rings_length(priv);
3363 for (chan = 0; chan < tx_cnt; chan++) {
3364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3366 /* TSO and TBS cannot co-exist */
3367 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3370 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3374 /* Enable Split Header */
3375 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3376 for (chan = 0; chan < rx_cnt; chan++)
3377 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3380 /* VLAN Tag Insertion */
3381 if (priv->dma_cap.vlins)
3382 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3385 for (chan = 0; chan < tx_cnt; chan++) {
3386 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3387 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3389 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3392 /* Configure real RX and TX queues */
3393 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3394 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3396 /* Start the ball rolling... */
3397 stmmac_start_all_dma(priv);
3399 if (priv->dma_cap.fpesel) {
3400 stmmac_fpe_start_wq(priv);
3402 if (priv->plat->fpe_cfg->enable)
3403 stmmac_fpe_handshake(priv, true);
3409 static void stmmac_hw_teardown(struct net_device *dev)
3411 struct stmmac_priv *priv = netdev_priv(dev);
3413 clk_disable_unprepare(priv->plat->clk_ptp_ref);
3416 static void stmmac_free_irq(struct net_device *dev,
3417 enum request_irq_err irq_err, int irq_idx)
3419 struct stmmac_priv *priv = netdev_priv(dev);
3423 case REQ_IRQ_ERR_ALL:
3424 irq_idx = priv->plat->tx_queues_to_use;
3426 case REQ_IRQ_ERR_TX:
3427 for (j = irq_idx - 1; j >= 0; j--) {
3428 if (priv->tx_irq[j] > 0) {
3429 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3430 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3433 irq_idx = priv->plat->rx_queues_to_use;
3435 case REQ_IRQ_ERR_RX:
3436 for (j = irq_idx - 1; j >= 0; j--) {
3437 if (priv->rx_irq[j] > 0) {
3438 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3439 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3443 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3444 free_irq(priv->sfty_ue_irq, dev);
3446 case REQ_IRQ_ERR_SFTY_UE:
3447 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3448 free_irq(priv->sfty_ce_irq, dev);
3450 case REQ_IRQ_ERR_SFTY_CE:
3451 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3452 free_irq(priv->lpi_irq, dev);
3454 case REQ_IRQ_ERR_LPI:
3455 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3456 free_irq(priv->wol_irq, dev);
3458 case REQ_IRQ_ERR_WOL:
3459 free_irq(dev->irq, dev);
3461 case REQ_IRQ_ERR_MAC:
3462 case REQ_IRQ_ERR_NO:
3463 /* If MAC IRQ request error, no more IRQ to free */
3468 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3470 struct stmmac_priv *priv = netdev_priv(dev);
3471 enum request_irq_err irq_err;
3478 /* For common interrupt */
3479 int_name = priv->int_name_mac;
3480 sprintf(int_name, "%s:%s", dev->name, "mac");
3481 ret = request_irq(dev->irq, stmmac_mac_interrupt,
3483 if (unlikely(ret < 0)) {
3484 netdev_err(priv->dev,
3485 "%s: alloc mac MSI %d (error: %d)\n",
3486 __func__, dev->irq, ret);
3487 irq_err = REQ_IRQ_ERR_MAC;
3491 /* Request the Wake IRQ in case of another line
3494 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3495 int_name = priv->int_name_wol;
3496 sprintf(int_name, "%s:%s", dev->name, "wol");
3497 ret = request_irq(priv->wol_irq,
3498 stmmac_mac_interrupt,
3500 if (unlikely(ret < 0)) {
3501 netdev_err(priv->dev,
3502 "%s: alloc wol MSI %d (error: %d)\n",
3503 __func__, priv->wol_irq, ret);
3504 irq_err = REQ_IRQ_ERR_WOL;
3509 /* Request the LPI IRQ in case of another line
3512 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3513 int_name = priv->int_name_lpi;
3514 sprintf(int_name, "%s:%s", dev->name, "lpi");
3515 ret = request_irq(priv->lpi_irq,
3516 stmmac_mac_interrupt,
3518 if (unlikely(ret < 0)) {
3519 netdev_err(priv->dev,
3520 "%s: alloc lpi MSI %d (error: %d)\n",
3521 __func__, priv->lpi_irq, ret);
3522 irq_err = REQ_IRQ_ERR_LPI;
3527 /* Request the Safety Feature Correctible Error line in
3528 * case of another line is used
3530 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3531 int_name = priv->int_name_sfty_ce;
3532 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3533 ret = request_irq(priv->sfty_ce_irq,
3534 stmmac_safety_interrupt,
3536 if (unlikely(ret < 0)) {
3537 netdev_err(priv->dev,
3538 "%s: alloc sfty ce MSI %d (error: %d)\n",
3539 __func__, priv->sfty_ce_irq, ret);
3540 irq_err = REQ_IRQ_ERR_SFTY_CE;
3545 /* Request the Safety Feature Uncorrectible Error line in
3546 * case of another line is used
3548 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3549 int_name = priv->int_name_sfty_ue;
3550 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3551 ret = request_irq(priv->sfty_ue_irq,
3552 stmmac_safety_interrupt,
3554 if (unlikely(ret < 0)) {
3555 netdev_err(priv->dev,
3556 "%s: alloc sfty ue MSI %d (error: %d)\n",
3557 __func__, priv->sfty_ue_irq, ret);
3558 irq_err = REQ_IRQ_ERR_SFTY_UE;
3563 /* Request Rx MSI irq */
3564 for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3565 if (i >= MTL_MAX_RX_QUEUES)
3567 if (priv->rx_irq[i] == 0)
3570 int_name = priv->int_name_rx_irq[i];
3571 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3572 ret = request_irq(priv->rx_irq[i],
3574 0, int_name, &priv->dma_conf.rx_queue[i]);
3575 if (unlikely(ret < 0)) {
3576 netdev_err(priv->dev,
3577 "%s: alloc rx-%d MSI %d (error: %d)\n",
3578 __func__, i, priv->rx_irq[i], ret);
3579 irq_err = REQ_IRQ_ERR_RX;
3583 cpumask_clear(&cpu_mask);
3584 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3585 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3588 /* Request Tx MSI irq */
3589 for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3590 if (i >= MTL_MAX_TX_QUEUES)
3592 if (priv->tx_irq[i] == 0)
3595 int_name = priv->int_name_tx_irq[i];
3596 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3597 ret = request_irq(priv->tx_irq[i],
3599 0, int_name, &priv->dma_conf.tx_queue[i]);
3600 if (unlikely(ret < 0)) {
3601 netdev_err(priv->dev,
3602 "%s: alloc tx-%d MSI %d (error: %d)\n",
3603 __func__, i, priv->tx_irq[i], ret);
3604 irq_err = REQ_IRQ_ERR_TX;
3608 cpumask_clear(&cpu_mask);
3609 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3610 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3616 stmmac_free_irq(dev, irq_err, irq_idx);
3620 static int stmmac_request_irq_single(struct net_device *dev)
3622 struct stmmac_priv *priv = netdev_priv(dev);
3623 enum request_irq_err irq_err;
3626 ret = request_irq(dev->irq, stmmac_interrupt,
3627 IRQF_SHARED, dev->name, dev);
3628 if (unlikely(ret < 0)) {
3629 netdev_err(priv->dev,
3630 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3631 __func__, dev->irq, ret);
3632 irq_err = REQ_IRQ_ERR_MAC;
3636 /* Request the Wake IRQ in case of another line
3639 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3640 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3641 IRQF_SHARED, dev->name, dev);
3642 if (unlikely(ret < 0)) {
3643 netdev_err(priv->dev,
3644 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3645 __func__, priv->wol_irq, ret);
3646 irq_err = REQ_IRQ_ERR_WOL;
3651 /* Request the IRQ lines */
3652 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3653 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3654 IRQF_SHARED, dev->name, dev);
3655 if (unlikely(ret < 0)) {
3656 netdev_err(priv->dev,
3657 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3658 __func__, priv->lpi_irq, ret);
3659 irq_err = REQ_IRQ_ERR_LPI;
3667 stmmac_free_irq(dev, irq_err, 0);
3671 static int stmmac_request_irq(struct net_device *dev)
3673 struct stmmac_priv *priv = netdev_priv(dev);
3676 /* Request the IRQ lines */
3677 if (priv->plat->multi_msi_en)
3678 ret = stmmac_request_irq_multi_msi(dev);
3680 ret = stmmac_request_irq_single(dev);
3686 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3687 * @priv: driver private structure
3688 * @mtu: MTU to setup the dma queue and buf with
3689 * Description: Allocate and generate a dma_conf based on the provided MTU.
3690 * Allocate the Tx/Rx DMA queue and init them.
3692 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3694 static struct stmmac_dma_conf *
3695 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3697 struct stmmac_dma_conf *dma_conf;
3698 int chan, bfsize, ret;
3700 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3702 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3704 return ERR_PTR(-ENOMEM);
3707 bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3711 if (bfsize < BUF_SIZE_16KiB)
3712 bfsize = stmmac_set_bfsize(mtu, 0);
3714 dma_conf->dma_buf_sz = bfsize;
3715 /* Chose the tx/rx size from the already defined one in the
3716 * priv struct. (if defined)
3718 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3719 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3721 if (!dma_conf->dma_tx_size)
3722 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3723 if (!dma_conf->dma_rx_size)
3724 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3726 /* Earlier check for TBS */
3727 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3728 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3729 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3731 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3732 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3735 ret = alloc_dma_desc_resources(priv, dma_conf);
3737 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3742 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3744 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3752 free_dma_desc_resources(priv, dma_conf);
3755 return ERR_PTR(ret);
3759 * __stmmac_open - open entry point of the driver
3760 * @dev : pointer to the device structure.
3761 * @dma_conf : structure to take the dma data
3763 * This function is the open entry point of the driver.
3765 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3768 static int __stmmac_open(struct net_device *dev,
3769 struct stmmac_dma_conf *dma_conf)
3771 struct stmmac_priv *priv = netdev_priv(dev);
3772 int mode = priv->plat->phy_interface;
3776 ret = pm_runtime_resume_and_get(priv->device);
3780 if (priv->hw->pcs != STMMAC_PCS_TBI &&
3781 priv->hw->pcs != STMMAC_PCS_RTBI &&
3783 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3784 ret = stmmac_init_phy(dev);
3786 netdev_err(priv->dev,
3787 "%s: Cannot attach to PHY (error: %d)\n",
3789 goto init_phy_error;
3793 /* Extra statistics */
3794 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3795 priv->xstats.threshold = tc;
3797 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3799 buf_sz = dma_conf->dma_buf_sz;
3800 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3802 stmmac_reset_queues_param(priv);
3804 if (priv->plat->serdes_powerup) {
3805 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3807 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3813 ret = stmmac_hw_setup(dev, true);
3815 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3819 stmmac_init_coalesce(priv);
3821 phylink_start(priv->phylink);
3822 /* We may have called phylink_speed_down before */
3823 phylink_speed_up(priv->phylink);
3825 ret = stmmac_request_irq(dev);
3829 stmmac_enable_all_queues(priv);
3830 netif_tx_start_all_queues(priv->dev);
3831 stmmac_enable_all_dma_irq(priv);
3836 phylink_stop(priv->phylink);
3838 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3839 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3841 stmmac_hw_teardown(dev);
3843 free_dma_desc_resources(priv, &priv->dma_conf);
3844 phylink_disconnect_phy(priv->phylink);
3846 pm_runtime_put(priv->device);
3850 static int stmmac_open(struct net_device *dev)
3852 struct stmmac_priv *priv = netdev_priv(dev);
3853 struct stmmac_dma_conf *dma_conf;
3856 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3857 if (IS_ERR(dma_conf))
3858 return PTR_ERR(dma_conf);
3860 ret = __stmmac_open(dev, dma_conf);
3865 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3867 set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3870 destroy_workqueue(priv->fpe_wq);
3872 netdev_info(priv->dev, "FPE workqueue stop");
3876 * stmmac_release - close entry point of the driver
3877 * @dev : device pointer.
3879 * This is the stop entry point of the driver.
3881 static int stmmac_release(struct net_device *dev)
3883 struct stmmac_priv *priv = netdev_priv(dev);
3886 if (device_may_wakeup(priv->device))
3887 phylink_speed_down(priv->phylink, false);
3888 /* Stop and disconnect the PHY */
3889 phylink_stop(priv->phylink);
3890 phylink_disconnect_phy(priv->phylink);
3892 stmmac_disable_all_queues(priv);
3894 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3895 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3897 netif_tx_disable(dev);
3899 /* Free the IRQ lines */
3900 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3902 if (priv->eee_enabled) {
3903 priv->tx_path_in_lpi_mode = false;
3904 del_timer_sync(&priv->eee_ctrl_timer);
3907 /* Stop TX/RX DMA and clear the descriptors */
3908 stmmac_stop_all_dma(priv);
3910 /* Release and free the Rx/Tx resources */
3911 free_dma_desc_resources(priv, &priv->dma_conf);
3913 /* Disable the MAC Rx/Tx */
3914 stmmac_mac_set(priv, priv->ioaddr, false);
3916 /* Powerdown Serdes if there is */
3917 if (priv->plat->serdes_powerdown)
3918 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3920 netif_carrier_off(dev);
3922 stmmac_release_ptp(priv);
3924 pm_runtime_put(priv->device);
3926 if (priv->dma_cap.fpesel)
3927 stmmac_fpe_stop_wq(priv);
3932 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3933 struct stmmac_tx_queue *tx_q)
3935 u16 tag = 0x0, inner_tag = 0x0;
3936 u32 inner_type = 0x0;
3939 if (!priv->dma_cap.vlins)
3941 if (!skb_vlan_tag_present(skb))
3943 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3944 inner_tag = skb_vlan_tag_get(skb);
3945 inner_type = STMMAC_VLAN_INSERT;
3948 tag = skb_vlan_tag_get(skb);
3950 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3951 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3953 p = &tx_q->dma_tx[tx_q->cur_tx];
3955 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3958 stmmac_set_tx_owner(priv, p);
3959 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3964 * stmmac_tso_allocator - close entry point of the driver
3965 * @priv: driver private structure
3966 * @des: buffer start address
3967 * @total_len: total length to fill in descriptors
3968 * @last_segment: condition for the last descriptor
3969 * @queue: TX queue index
3971 * This function fills descriptor and request new descriptors according to
3972 * buffer length to fill
3974 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3975 int total_len, bool last_segment, u32 queue)
3977 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3978 struct dma_desc *desc;
3982 tmp_len = total_len;
3984 while (tmp_len > 0) {
3985 dma_addr_t curr_addr;
3987 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3988 priv->dma_conf.dma_tx_size);
3989 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3991 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3992 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3994 desc = &tx_q->dma_tx[tx_q->cur_tx];
3996 curr_addr = des + (total_len - tmp_len);
3997 if (priv->dma_cap.addr64 <= 32)
3998 desc->des0 = cpu_to_le32(curr_addr);
4000 stmmac_set_desc_addr(priv, desc, curr_addr);
4002 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4003 TSO_MAX_BUFF_SIZE : tmp_len;
4005 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4007 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4010 tmp_len -= TSO_MAX_BUFF_SIZE;
4014 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4016 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4019 if (likely(priv->extend_desc))
4020 desc_size = sizeof(struct dma_extended_desc);
4021 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4022 desc_size = sizeof(struct dma_edesc);
4024 desc_size = sizeof(struct dma_desc);
4026 /* The own bit must be the latest setting done when prepare the
4027 * descriptor and then barrier is needed to make sure that
4028 * all is coherent before granting the DMA engine.
4032 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4033 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4037 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4038 * @skb : the socket buffer
4039 * @dev : device pointer
4040 * Description: this is the transmit function that is called on TSO frames
4041 * (support available on GMAC4 and newer chips).
4042 * Diagram below show the ring programming in case of TSO frames:
4046 * | DES0 |---> buffer1 = L2/L3/L4 header
4047 * | DES1 |---> TCP Payload (can continue on next descr...)
4048 * | DES2 |---> buffer 1 and 2 len
4049 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4055 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
4057 * | DES2 | --> buffer 1 and 2 len
4061 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4063 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4065 struct dma_desc *desc, *first, *mss_desc = NULL;
4066 struct stmmac_priv *priv = netdev_priv(dev);
4067 int nfrags = skb_shinfo(skb)->nr_frags;
4068 u32 queue = skb_get_queue_mapping(skb);
4069 unsigned int first_entry, tx_packets;
4070 int tmp_pay_len = 0, first_tx;
4071 struct stmmac_tx_queue *tx_q;
4072 bool has_vlan, set_ic;
4073 u8 proto_hdr_len, hdr;
4078 tx_q = &priv->dma_conf.tx_queue[queue];
4079 first_tx = tx_q->cur_tx;
4081 /* Compute header lengths */
4082 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4083 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4084 hdr = sizeof(struct udphdr);
4086 proto_hdr_len = skb_tcp_all_headers(skb);
4087 hdr = tcp_hdrlen(skb);
4090 /* Desc availability based on threshold should be enough safe */
4091 if (unlikely(stmmac_tx_avail(priv, queue) <
4092 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4093 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4094 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4096 /* This is a hard error, log it. */
4097 netdev_err(priv->dev,
4098 "%s: Tx Ring full when queue awake\n",
4101 return NETDEV_TX_BUSY;
4104 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4106 mss = skb_shinfo(skb)->gso_size;
4108 /* set new MSS value if needed */
4109 if (mss != tx_q->mss) {
4110 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4111 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4113 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4115 stmmac_set_mss(priv, mss_desc, mss);
4117 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4118 priv->dma_conf.dma_tx_size);
4119 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4122 if (netif_msg_tx_queued(priv)) {
4123 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4124 __func__, hdr, proto_hdr_len, pay_len, mss);
4125 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4129 /* Check if VLAN can be inserted by HW */
4130 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4132 first_entry = tx_q->cur_tx;
4133 WARN_ON(tx_q->tx_skbuff[first_entry]);
4135 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4136 desc = &tx_q->dma_entx[first_entry].basic;
4138 desc = &tx_q->dma_tx[first_entry];
4142 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4144 /* first descriptor: fill Headers on Buf1 */
4145 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4147 if (dma_mapping_error(priv->device, des))
4150 tx_q->tx_skbuff_dma[first_entry].buf = des;
4151 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4152 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4153 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4155 if (priv->dma_cap.addr64 <= 32) {
4156 first->des0 = cpu_to_le32(des);
4158 /* Fill start of payload in buff2 of first descriptor */
4160 first->des1 = cpu_to_le32(des + proto_hdr_len);
4162 /* If needed take extra descriptors to fill the remaining payload */
4163 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4165 stmmac_set_desc_addr(priv, first, des);
4166 tmp_pay_len = pay_len;
4167 des += proto_hdr_len;
4171 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4173 /* Prepare fragments */
4174 for (i = 0; i < nfrags; i++) {
4175 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4177 des = skb_frag_dma_map(priv->device, frag, 0,
4178 skb_frag_size(frag),
4180 if (dma_mapping_error(priv->device, des))
4183 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4184 (i == nfrags - 1), queue);
4186 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4187 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4188 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4189 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4192 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4194 /* Only the last descriptor gets to point to the skb. */
4195 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4196 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4198 /* Manage tx mitigation */
4199 tx_packets = (tx_q->cur_tx + 1) - first_tx;
4200 tx_q->tx_count_frames += tx_packets;
4202 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4204 else if (!priv->tx_coal_frames[queue])
4206 else if (tx_packets > priv->tx_coal_frames[queue])
4208 else if ((tx_q->tx_count_frames %
4209 priv->tx_coal_frames[queue]) < tx_packets)
4215 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4216 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4218 desc = &tx_q->dma_tx[tx_q->cur_tx];
4220 tx_q->tx_count_frames = 0;
4221 stmmac_set_tx_ic(priv, desc);
4222 priv->xstats.tx_set_ic_bit++;
4225 /* We've used all descriptors we need for this skb, however,
4226 * advance cur_tx so that it references a fresh descriptor.
4227 * ndo_start_xmit will fill this descriptor the next time it's
4228 * called and stmmac_tx_clean may clean up to this descriptor.
4230 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4232 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4233 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4235 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4238 dev->stats.tx_bytes += skb->len;
4239 priv->xstats.tx_tso_frames++;
4240 priv->xstats.tx_tso_nfrags += nfrags;
4242 if (priv->sarc_type)
4243 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4245 skb_tx_timestamp(skb);
4247 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4248 priv->hwts_tx_en)) {
4249 /* declare that device is doing timestamping */
4250 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4251 stmmac_enable_tx_timestamp(priv, first);
4254 /* Complete the first descriptor before granting the DMA */
4255 stmmac_prepare_tso_tx_desc(priv, first, 1,
4258 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4259 hdr / 4, (skb->len - proto_hdr_len));
4261 /* If context desc is used to change MSS */
4263 /* Make sure that first descriptor has been completely
4264 * written, including its own bit. This is because MSS is
4265 * actually before first descriptor, so we need to make
4266 * sure that MSS's own bit is the last thing written.
4269 stmmac_set_tx_owner(priv, mss_desc);
4272 if (netif_msg_pktdata(priv)) {
4273 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4274 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4275 tx_q->cur_tx, first, nfrags);
4276 pr_info(">>> frame to be transmitted: ");
4277 print_pkt(skb->data, skb_headlen(skb));
4280 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4282 stmmac_flush_tx_descriptors(priv, queue);
4283 stmmac_tx_timer_arm(priv, queue);
4285 return NETDEV_TX_OK;
4288 dev_err(priv->device, "Tx dma map failed\n");
4290 priv->dev->stats.tx_dropped++;
4291 return NETDEV_TX_OK;
4295 * stmmac_xmit - Tx entry point of the driver
4296 * @skb : the socket buffer
4297 * @dev : device pointer
4298 * Description : this is the tx entry point of the driver.
4299 * It programs the chain or the ring and supports oversized frames
4302 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4304 unsigned int first_entry, tx_packets, enh_desc;
4305 struct stmmac_priv *priv = netdev_priv(dev);
4306 unsigned int nopaged_len = skb_headlen(skb);
4307 int i, csum_insertion = 0, is_jumbo = 0;
4308 u32 queue = skb_get_queue_mapping(skb);
4309 int nfrags = skb_shinfo(skb)->nr_frags;
4310 int gso = skb_shinfo(skb)->gso_type;
4311 struct dma_edesc *tbs_desc = NULL;
4312 struct dma_desc *desc, *first;
4313 struct stmmac_tx_queue *tx_q;
4314 bool has_vlan, set_ic;
4315 int entry, first_tx;
4318 tx_q = &priv->dma_conf.tx_queue[queue];
4319 first_tx = tx_q->cur_tx;
4321 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4322 stmmac_disable_eee_mode(priv);
4324 /* Manage oversized TCP frames for GMAC4 device */
4325 if (skb_is_gso(skb) && priv->tso) {
4326 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4327 return stmmac_tso_xmit(skb, dev);
4328 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4329 return stmmac_tso_xmit(skb, dev);
4332 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4333 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4334 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4336 /* This is a hard error, log it. */
4337 netdev_err(priv->dev,
4338 "%s: Tx Ring full when queue awake\n",
4341 return NETDEV_TX_BUSY;
4344 /* Check if VLAN can be inserted by HW */
4345 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4347 entry = tx_q->cur_tx;
4348 first_entry = entry;
4349 WARN_ON(tx_q->tx_skbuff[first_entry]);
4351 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4353 if (likely(priv->extend_desc))
4354 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4355 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4356 desc = &tx_q->dma_entx[entry].basic;
4358 desc = tx_q->dma_tx + entry;
4363 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4365 enh_desc = priv->plat->enh_desc;
4366 /* To program the descriptors according to the size of the frame */
4368 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4370 if (unlikely(is_jumbo)) {
4371 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4372 if (unlikely(entry < 0) && (entry != -EINVAL))
4376 for (i = 0; i < nfrags; i++) {
4377 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4378 int len = skb_frag_size(frag);
4379 bool last_segment = (i == (nfrags - 1));
4381 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4382 WARN_ON(tx_q->tx_skbuff[entry]);
4384 if (likely(priv->extend_desc))
4385 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4386 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4387 desc = &tx_q->dma_entx[entry].basic;
4389 desc = tx_q->dma_tx + entry;
4391 des = skb_frag_dma_map(priv->device, frag, 0, len,
4393 if (dma_mapping_error(priv->device, des))
4394 goto dma_map_err; /* should reuse desc w/o issues */
4396 tx_q->tx_skbuff_dma[entry].buf = des;
4398 stmmac_set_desc_addr(priv, desc, des);
4400 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4401 tx_q->tx_skbuff_dma[entry].len = len;
4402 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4403 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4405 /* Prepare the descriptor and set the own bit too */
4406 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4407 priv->mode, 1, last_segment, skb->len);
4410 /* Only the last descriptor gets to point to the skb. */
4411 tx_q->tx_skbuff[entry] = skb;
4412 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4414 /* According to the coalesce parameter the IC bit for the latest
4415 * segment is reset and the timer re-started to clean the tx status.
4416 * This approach takes care about the fragments: desc is the first
4417 * element in case of no SG.
4419 tx_packets = (entry + 1) - first_tx;
4420 tx_q->tx_count_frames += tx_packets;
4422 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4424 else if (!priv->tx_coal_frames[queue])
4426 else if (tx_packets > priv->tx_coal_frames[queue])
4428 else if ((tx_q->tx_count_frames %
4429 priv->tx_coal_frames[queue]) < tx_packets)
4435 if (likely(priv->extend_desc))
4436 desc = &tx_q->dma_etx[entry].basic;
4437 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4438 desc = &tx_q->dma_entx[entry].basic;
4440 desc = &tx_q->dma_tx[entry];
4442 tx_q->tx_count_frames = 0;
4443 stmmac_set_tx_ic(priv, desc);
4444 priv->xstats.tx_set_ic_bit++;
4447 /* We've used all descriptors we need for this skb, however,
4448 * advance cur_tx so that it references a fresh descriptor.
4449 * ndo_start_xmit will fill this descriptor the next time it's
4450 * called and stmmac_tx_clean may clean up to this descriptor.
4452 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4453 tx_q->cur_tx = entry;
4455 if (netif_msg_pktdata(priv)) {
4456 netdev_dbg(priv->dev,
4457 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4458 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4459 entry, first, nfrags);
4461 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4462 print_pkt(skb->data, skb->len);
4465 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4466 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4468 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4471 dev->stats.tx_bytes += skb->len;
4473 if (priv->sarc_type)
4474 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4476 skb_tx_timestamp(skb);
4478 /* Ready to fill the first descriptor and set the OWN bit w/o any
4479 * problems because all the descriptors are actually ready to be
4480 * passed to the DMA engine.
4482 if (likely(!is_jumbo)) {
4483 bool last_segment = (nfrags == 0);
4485 des = dma_map_single(priv->device, skb->data,
4486 nopaged_len, DMA_TO_DEVICE);
4487 if (dma_mapping_error(priv->device, des))
4490 tx_q->tx_skbuff_dma[first_entry].buf = des;
4491 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4492 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4494 stmmac_set_desc_addr(priv, first, des);
4496 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4497 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4499 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4500 priv->hwts_tx_en)) {
4501 /* declare that device is doing timestamping */
4502 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4503 stmmac_enable_tx_timestamp(priv, first);
4506 /* Prepare the first descriptor setting the OWN bit too */
4507 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4508 csum_insertion, priv->mode, 0, last_segment,
4512 if (tx_q->tbs & STMMAC_TBS_EN) {
4513 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4515 tbs_desc = &tx_q->dma_entx[first_entry];
4516 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4519 stmmac_set_tx_owner(priv, first);
4521 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4523 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4525 stmmac_flush_tx_descriptors(priv, queue);
4526 stmmac_tx_timer_arm(priv, queue);
4528 return NETDEV_TX_OK;
4531 netdev_err(priv->dev, "Tx DMA map failed\n");
4533 priv->dev->stats.tx_dropped++;
4534 return NETDEV_TX_OK;
4537 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4539 struct vlan_ethhdr *veth;
4543 veth = (struct vlan_ethhdr *)skb->data;
4544 vlan_proto = veth->h_vlan_proto;
4546 if ((vlan_proto == htons(ETH_P_8021Q) &&
4547 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4548 (vlan_proto == htons(ETH_P_8021AD) &&
4549 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4550 /* pop the vlan tag */
4551 vlanid = ntohs(veth->h_vlan_TCI);
4552 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4553 skb_pull(skb, VLAN_HLEN);
4554 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4559 * stmmac_rx_refill - refill used skb preallocated buffers
4560 * @priv: driver private structure
4561 * @queue: RX queue index
4562 * Description : this is to reallocate the skb for the reception process
4563 * that is based on zero-copy.
4565 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4567 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4568 int dirty = stmmac_rx_dirty(priv, queue);
4569 unsigned int entry = rx_q->dirty_rx;
4570 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4572 if (priv->dma_cap.addr64 <= 32)
4575 while (dirty-- > 0) {
4576 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4580 if (priv->extend_desc)
4581 p = (struct dma_desc *)(rx_q->dma_erx + entry);
4583 p = rx_q->dma_rx + entry;
4586 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4591 if (priv->sph && !buf->sec_page) {
4592 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4596 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4599 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4601 stmmac_set_desc_addr(priv, p, buf->addr);
4603 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4605 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4606 stmmac_refill_desc3(priv, rx_q, p);
4608 rx_q->rx_count_frames++;
4609 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4610 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4611 rx_q->rx_count_frames = 0;
4613 use_rx_wd = !priv->rx_coal_frames[queue];
4614 use_rx_wd |= rx_q->rx_count_frames > 0;
4615 if (!priv->use_riwt)
4619 stmmac_set_rx_owner(priv, p, use_rx_wd);
4621 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4623 rx_q->dirty_rx = entry;
4624 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4625 (rx_q->dirty_rx * sizeof(struct dma_desc));
4626 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4629 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4631 int status, unsigned int len)
4633 unsigned int plen = 0, hlen = 0;
4634 int coe = priv->hw->rx_csum;
4636 /* Not first descriptor, buffer is always zero */
4637 if (priv->sph && len)
4640 /* First descriptor, get split header length */
4641 stmmac_get_rx_header_len(priv, p, &hlen);
4642 if (priv->sph && hlen) {
4643 priv->xstats.rx_split_hdr_pkt_n++;
4647 /* First descriptor, not last descriptor and not split header */
4648 if (status & rx_not_ls)
4649 return priv->dma_conf.dma_buf_sz;
4651 plen = stmmac_get_rx_frame_len(priv, p, coe);
4653 /* First descriptor and last descriptor and not split header */
4654 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4657 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4659 int status, unsigned int len)
4661 int coe = priv->hw->rx_csum;
4662 unsigned int plen = 0;
4664 /* Not split header, buffer is not available */
4668 /* Not last descriptor */
4669 if (status & rx_not_ls)
4670 return priv->dma_conf.dma_buf_sz;
4672 plen = stmmac_get_rx_frame_len(priv, p, coe);
4674 /* Last descriptor */
4678 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4679 struct xdp_frame *xdpf, bool dma_map)
4681 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4682 unsigned int entry = tx_q->cur_tx;
4683 struct dma_desc *tx_desc;
4684 dma_addr_t dma_addr;
4687 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4688 return STMMAC_XDP_CONSUMED;
4690 if (likely(priv->extend_desc))
4691 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4692 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4693 tx_desc = &tx_q->dma_entx[entry].basic;
4695 tx_desc = tx_q->dma_tx + entry;
4698 dma_addr = dma_map_single(priv->device, xdpf->data,
4699 xdpf->len, DMA_TO_DEVICE);
4700 if (dma_mapping_error(priv->device, dma_addr))
4701 return STMMAC_XDP_CONSUMED;
4703 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4705 struct page *page = virt_to_page(xdpf->data);
4707 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4709 dma_sync_single_for_device(priv->device, dma_addr,
4710 xdpf->len, DMA_BIDIRECTIONAL);
4712 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4715 tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4716 tx_q->tx_skbuff_dma[entry].map_as_page = false;
4717 tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4718 tx_q->tx_skbuff_dma[entry].last_segment = true;
4719 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4721 tx_q->xdpf[entry] = xdpf;
4723 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4725 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4726 true, priv->mode, true, true,
4729 tx_q->tx_count_frames++;
4731 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4737 tx_q->tx_count_frames = 0;
4738 stmmac_set_tx_ic(priv, tx_desc);
4739 priv->xstats.tx_set_ic_bit++;
4742 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4744 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4745 tx_q->cur_tx = entry;
4747 return STMMAC_XDP_TX;
4750 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4755 if (unlikely(index < 0))
4758 while (index >= priv->plat->tx_queues_to_use)
4759 index -= priv->plat->tx_queues_to_use;
4764 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4765 struct xdp_buff *xdp)
4767 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4768 int cpu = smp_processor_id();
4769 struct netdev_queue *nq;
4773 if (unlikely(!xdpf))
4774 return STMMAC_XDP_CONSUMED;
4776 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4777 nq = netdev_get_tx_queue(priv->dev, queue);
4779 __netif_tx_lock(nq, cpu);
4780 /* Avoids TX time-out as we are sharing with slow path */
4781 txq_trans_cond_update(nq);
4783 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4784 if (res == STMMAC_XDP_TX)
4785 stmmac_flush_tx_descriptors(priv, queue);
4787 __netif_tx_unlock(nq);
4792 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4793 struct bpf_prog *prog,
4794 struct xdp_buff *xdp)
4799 act = bpf_prog_run_xdp(prog, xdp);
4802 res = STMMAC_XDP_PASS;
4805 res = stmmac_xdp_xmit_back(priv, xdp);
4808 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4809 res = STMMAC_XDP_CONSUMED;
4811 res = STMMAC_XDP_REDIRECT;
4814 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4817 trace_xdp_exception(priv->dev, prog, act);
4820 res = STMMAC_XDP_CONSUMED;
4827 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4828 struct xdp_buff *xdp)
4830 struct bpf_prog *prog;
4833 prog = READ_ONCE(priv->xdp_prog);
4835 res = STMMAC_XDP_PASS;
4839 res = __stmmac_xdp_run_prog(priv, prog, xdp);
4841 return ERR_PTR(-res);
4844 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4847 int cpu = smp_processor_id();
4850 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4852 if (xdp_status & STMMAC_XDP_TX)
4853 stmmac_tx_timer_arm(priv, queue);
4855 if (xdp_status & STMMAC_XDP_REDIRECT)
4859 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4860 struct xdp_buff *xdp)
4862 unsigned int metasize = xdp->data - xdp->data_meta;
4863 unsigned int datasize = xdp->data_end - xdp->data;
4864 struct sk_buff *skb;
4866 skb = __napi_alloc_skb(&ch->rxtx_napi,
4867 xdp->data_end - xdp->data_hard_start,
4868 GFP_ATOMIC | __GFP_NOWARN);
4872 skb_reserve(skb, xdp->data - xdp->data_hard_start);
4873 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4875 skb_metadata_set(skb, metasize);
4880 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4881 struct dma_desc *p, struct dma_desc *np,
4882 struct xdp_buff *xdp)
4884 struct stmmac_channel *ch = &priv->channel[queue];
4885 unsigned int len = xdp->data_end - xdp->data;
4886 enum pkt_hash_types hash_type;
4887 int coe = priv->hw->rx_csum;
4888 struct sk_buff *skb;
4891 skb = stmmac_construct_skb_zc(ch, xdp);
4893 priv->dev->stats.rx_dropped++;
4897 stmmac_get_rx_hwtstamp(priv, p, np, skb);
4898 stmmac_rx_vlan(priv->dev, skb);
4899 skb->protocol = eth_type_trans(skb, priv->dev);
4902 skb_checksum_none_assert(skb);
4904 skb->ip_summed = CHECKSUM_UNNECESSARY;
4906 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4907 skb_set_hash(skb, hash, hash_type);
4909 skb_record_rx_queue(skb, queue);
4910 napi_gro_receive(&ch->rxtx_napi, skb);
4912 priv->dev->stats.rx_packets++;
4913 priv->dev->stats.rx_bytes += len;
4916 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4918 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4919 unsigned int entry = rx_q->dirty_rx;
4920 struct dma_desc *rx_desc = NULL;
4923 budget = min(budget, stmmac_rx_dirty(priv, queue));
4925 while (budget-- > 0 && entry != rx_q->cur_rx) {
4926 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4927 dma_addr_t dma_addr;
4931 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4938 if (priv->extend_desc)
4939 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4941 rx_desc = rx_q->dma_rx + entry;
4943 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4944 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4945 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4946 stmmac_refill_desc3(priv, rx_q, rx_desc);
4948 rx_q->rx_count_frames++;
4949 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4950 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4951 rx_q->rx_count_frames = 0;
4953 use_rx_wd = !priv->rx_coal_frames[queue];
4954 use_rx_wd |= rx_q->rx_count_frames > 0;
4955 if (!priv->use_riwt)
4959 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4961 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4965 rx_q->dirty_rx = entry;
4966 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4967 (rx_q->dirty_rx * sizeof(struct dma_desc));
4968 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4974 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4976 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4977 unsigned int count = 0, error = 0, len = 0;
4978 int dirty = stmmac_rx_dirty(priv, queue);
4979 unsigned int next_entry = rx_q->cur_rx;
4980 unsigned int desc_size;
4981 struct bpf_prog *prog;
4982 bool failure = false;
4986 if (netif_msg_rx_status(priv)) {
4989 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4990 if (priv->extend_desc) {
4991 rx_head = (void *)rx_q->dma_erx;
4992 desc_size = sizeof(struct dma_extended_desc);
4994 rx_head = (void *)rx_q->dma_rx;
4995 desc_size = sizeof(struct dma_desc);
4998 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
4999 rx_q->dma_rx_phy, desc_size);
5001 while (count < limit) {
5002 struct stmmac_rx_buffer *buf;
5003 unsigned int buf1_len = 0;
5004 struct dma_desc *np, *p;
5008 if (!count && rx_q->state_saved) {
5009 error = rx_q->state.error;
5010 len = rx_q->state.len;
5012 rx_q->state_saved = false;
5023 buf = &rx_q->buf_pool[entry];
5025 if (dirty >= STMMAC_RX_FILL_BATCH) {
5026 failure = failure ||
5027 !stmmac_rx_refill_zc(priv, queue, dirty);
5031 if (priv->extend_desc)
5032 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5034 p = rx_q->dma_rx + entry;
5036 /* read the status of the incoming frame */
5037 status = stmmac_rx_status(priv, &priv->dev->stats,
5039 /* check if managed by the DMA otherwise go ahead */
5040 if (unlikely(status & dma_own))
5043 /* Prefetch the next RX descriptor */
5044 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5045 priv->dma_conf.dma_rx_size);
5046 next_entry = rx_q->cur_rx;
5048 if (priv->extend_desc)
5049 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5051 np = rx_q->dma_rx + next_entry;
5055 /* Ensure a valid XSK buffer before proceed */
5059 if (priv->extend_desc)
5060 stmmac_rx_extended_status(priv, &priv->dev->stats,
5062 rx_q->dma_erx + entry);
5063 if (unlikely(status == discard_frame)) {
5064 xsk_buff_free(buf->xdp);
5068 if (!priv->hwts_rx_en)
5069 priv->dev->stats.rx_errors++;
5072 if (unlikely(error && (status & rx_not_ls)))
5074 if (unlikely(error)) {
5079 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5080 if (likely(status & rx_not_ls)) {
5081 xsk_buff_free(buf->xdp);
5088 /* XDP ZC Frame only support primary buffers for now */
5089 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5092 /* ACS is disabled; strip manually. */
5093 if (likely(!(status & rx_not_ls))) {
5094 buf1_len -= ETH_FCS_LEN;
5098 /* RX buffer is good and fit into a XSK pool buffer */
5099 buf->xdp->data_end = buf->xdp->data + buf1_len;
5100 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5102 prog = READ_ONCE(priv->xdp_prog);
5103 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5106 case STMMAC_XDP_PASS:
5107 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5108 xsk_buff_free(buf->xdp);
5110 case STMMAC_XDP_CONSUMED:
5111 xsk_buff_free(buf->xdp);
5112 priv->dev->stats.rx_dropped++;
5115 case STMMAC_XDP_REDIRECT:
5125 if (status & rx_not_ls) {
5126 rx_q->state_saved = true;
5127 rx_q->state.error = error;
5128 rx_q->state.len = len;
5131 stmmac_finalize_xdp_rx(priv, xdp_status);
5133 priv->xstats.rx_pkt_n += count;
5134 priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5136 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5137 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5138 xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5140 xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5145 return failure ? limit : (int)count;
5149 * stmmac_rx - manage the receive process
5150 * @priv: driver private structure
5151 * @limit: napi bugget
5152 * @queue: RX queue index.
5153 * Description : this the function called by the napi poll method.
5154 * It gets all the frames inside the ring.
5156 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5158 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5159 struct stmmac_channel *ch = &priv->channel[queue];
5160 unsigned int count = 0, error = 0, len = 0;
5161 int status = 0, coe = priv->hw->rx_csum;
5162 unsigned int next_entry = rx_q->cur_rx;
5163 enum dma_data_direction dma_dir;
5164 unsigned int desc_size;
5165 struct sk_buff *skb = NULL;
5166 struct xdp_buff xdp;
5170 dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5171 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5173 if (netif_msg_rx_status(priv)) {
5176 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5177 if (priv->extend_desc) {
5178 rx_head = (void *)rx_q->dma_erx;
5179 desc_size = sizeof(struct dma_extended_desc);
5181 rx_head = (void *)rx_q->dma_rx;
5182 desc_size = sizeof(struct dma_desc);
5185 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5186 rx_q->dma_rx_phy, desc_size);
5188 while (count < limit) {
5189 unsigned int buf1_len = 0, buf2_len = 0;
5190 enum pkt_hash_types hash_type;
5191 struct stmmac_rx_buffer *buf;
5192 struct dma_desc *np, *p;
5196 if (!count && rx_q->state_saved) {
5197 skb = rx_q->state.skb;
5198 error = rx_q->state.error;
5199 len = rx_q->state.len;
5201 rx_q->state_saved = false;
5214 buf = &rx_q->buf_pool[entry];
5216 if (priv->extend_desc)
5217 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5219 p = rx_q->dma_rx + entry;
5221 /* read the status of the incoming frame */
5222 status = stmmac_rx_status(priv, &priv->dev->stats,
5224 /* check if managed by the DMA otherwise go ahead */
5225 if (unlikely(status & dma_own))
5228 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5229 priv->dma_conf.dma_rx_size);
5230 next_entry = rx_q->cur_rx;
5232 if (priv->extend_desc)
5233 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5235 np = rx_q->dma_rx + next_entry;
5239 if (priv->extend_desc)
5240 stmmac_rx_extended_status(priv, &priv->dev->stats,
5241 &priv->xstats, rx_q->dma_erx + entry);
5242 if (unlikely(status == discard_frame)) {
5243 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5246 if (!priv->hwts_rx_en)
5247 priv->dev->stats.rx_errors++;
5250 if (unlikely(error && (status & rx_not_ls)))
5252 if (unlikely(error)) {
5259 /* Buffer is good. Go on. */
5261 prefetch(page_address(buf->page) + buf->page_offset);
5263 prefetch(page_address(buf->sec_page));
5265 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5267 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5270 /* ACS is disabled; strip manually. */
5271 if (likely(!(status & rx_not_ls))) {
5273 buf2_len -= ETH_FCS_LEN;
5275 } else if (buf1_len) {
5276 buf1_len -= ETH_FCS_LEN;
5282 unsigned int pre_len, sync_len;
5284 dma_sync_single_for_cpu(priv->device, buf->addr,
5287 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5288 xdp_prepare_buff(&xdp, page_address(buf->page),
5289 buf->page_offset, buf1_len, false);
5291 pre_len = xdp.data_end - xdp.data_hard_start -
5293 skb = stmmac_xdp_run_prog(priv, &xdp);
5294 /* Due xdp_adjust_tail: DMA sync for_device
5295 * cover max len CPU touch
5297 sync_len = xdp.data_end - xdp.data_hard_start -
5299 sync_len = max(sync_len, pre_len);
5301 /* For Not XDP_PASS verdict */
5303 unsigned int xdp_res = -PTR_ERR(skb);
5305 if (xdp_res & STMMAC_XDP_CONSUMED) {
5306 page_pool_put_page(rx_q->page_pool,
5307 virt_to_head_page(xdp.data),
5310 priv->dev->stats.rx_dropped++;
5312 /* Clear skb as it was set as
5313 * status by XDP program.
5317 if (unlikely((status & rx_not_ls)))
5322 } else if (xdp_res & (STMMAC_XDP_TX |
5323 STMMAC_XDP_REDIRECT)) {
5324 xdp_status |= xdp_res;
5334 /* XDP program may expand or reduce tail */
5335 buf1_len = xdp.data_end - xdp.data;
5337 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5339 priv->dev->stats.rx_dropped++;
5344 /* XDP program may adjust header */
5345 skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5346 skb_put(skb, buf1_len);
5348 /* Data payload copied into SKB, page ready for recycle */
5349 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5351 } else if (buf1_len) {
5352 dma_sync_single_for_cpu(priv->device, buf->addr,
5354 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5355 buf->page, buf->page_offset, buf1_len,
5356 priv->dma_conf.dma_buf_sz);
5358 /* Data payload appended into SKB */
5359 page_pool_release_page(rx_q->page_pool, buf->page);
5364 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5366 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5367 buf->sec_page, 0, buf2_len,
5368 priv->dma_conf.dma_buf_sz);
5370 /* Data payload appended into SKB */
5371 page_pool_release_page(rx_q->page_pool, buf->sec_page);
5372 buf->sec_page = NULL;
5376 if (likely(status & rx_not_ls))
5381 /* Got entire packet into SKB. Finish it. */
5383 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5384 stmmac_rx_vlan(priv->dev, skb);
5385 skb->protocol = eth_type_trans(skb, priv->dev);
5388 skb_checksum_none_assert(skb);
5390 skb->ip_summed = CHECKSUM_UNNECESSARY;
5392 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5393 skb_set_hash(skb, hash, hash_type);
5395 skb_record_rx_queue(skb, queue);
5396 napi_gro_receive(&ch->rx_napi, skb);
5399 priv->dev->stats.rx_packets++;
5400 priv->dev->stats.rx_bytes += len;
5404 if (status & rx_not_ls || skb) {
5405 rx_q->state_saved = true;
5406 rx_q->state.skb = skb;
5407 rx_q->state.error = error;
5408 rx_q->state.len = len;
5411 stmmac_finalize_xdp_rx(priv, xdp_status);
5413 stmmac_rx_refill(priv, queue);
5415 priv->xstats.rx_pkt_n += count;
5416 priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5421 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5423 struct stmmac_channel *ch =
5424 container_of(napi, struct stmmac_channel, rx_napi);
5425 struct stmmac_priv *priv = ch->priv_data;
5426 u32 chan = ch->index;
5429 priv->xstats.napi_poll++;
5431 work_done = stmmac_rx(priv, budget, chan);
5432 if (work_done < budget && napi_complete_done(napi, work_done)) {
5433 unsigned long flags;
5435 spin_lock_irqsave(&ch->lock, flags);
5436 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5437 spin_unlock_irqrestore(&ch->lock, flags);
5443 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5445 struct stmmac_channel *ch =
5446 container_of(napi, struct stmmac_channel, tx_napi);
5447 struct stmmac_priv *priv = ch->priv_data;
5448 u32 chan = ch->index;
5451 priv->xstats.napi_poll++;
5453 work_done = stmmac_tx_clean(priv, budget, chan);
5454 work_done = min(work_done, budget);
5456 if (work_done < budget && napi_complete_done(napi, work_done)) {
5457 unsigned long flags;
5459 spin_lock_irqsave(&ch->lock, flags);
5460 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5461 spin_unlock_irqrestore(&ch->lock, flags);
5467 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5469 struct stmmac_channel *ch =
5470 container_of(napi, struct stmmac_channel, rxtx_napi);
5471 struct stmmac_priv *priv = ch->priv_data;
5472 int rx_done, tx_done, rxtx_done;
5473 u32 chan = ch->index;
5475 priv->xstats.napi_poll++;
5477 tx_done = stmmac_tx_clean(priv, budget, chan);
5478 tx_done = min(tx_done, budget);
5480 rx_done = stmmac_rx_zc(priv, budget, chan);
5482 rxtx_done = max(tx_done, rx_done);
5484 /* If either TX or RX work is not complete, return budget
5487 if (rxtx_done >= budget)
5490 /* all work done, exit the polling mode */
5491 if (napi_complete_done(napi, rxtx_done)) {
5492 unsigned long flags;
5494 spin_lock_irqsave(&ch->lock, flags);
5495 /* Both RX and TX work done are compelte,
5496 * so enable both RX & TX IRQs.
5498 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5499 spin_unlock_irqrestore(&ch->lock, flags);
5502 return min(rxtx_done, budget - 1);
5507 * @dev : Pointer to net device structure
5508 * @txqueue: the index of the hanging transmit queue
5509 * Description: this function is called when a packet transmission fails to
5510 * complete within a reasonable time. The driver will mark the error in the
5511 * netdev structure and arrange for the device to be reset to a sane state
5512 * in order to transmit a new packet.
5514 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5516 struct stmmac_priv *priv = netdev_priv(dev);
5518 stmmac_global_err(priv);
5522 * stmmac_set_rx_mode - entry point for multicast addressing
5523 * @dev : pointer to the device structure
5525 * This function is a driver entry point which gets called by the kernel
5526 * whenever multicast addresses must be enabled/disabled.
5530 static void stmmac_set_rx_mode(struct net_device *dev)
5532 struct stmmac_priv *priv = netdev_priv(dev);
5534 stmmac_set_filter(priv, priv->hw, dev);
5538 * stmmac_change_mtu - entry point to change MTU size for the device.
5539 * @dev : device pointer.
5540 * @new_mtu : the new MTU size for the device.
5541 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
5542 * to drive packet transmission. Ethernet has an MTU of 1500 octets
5543 * (ETH_DATA_LEN). This value can be changed with ifconfig.
5545 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5548 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5550 struct stmmac_priv *priv = netdev_priv(dev);
5551 int txfifosz = priv->plat->tx_fifo_size;
5552 struct stmmac_dma_conf *dma_conf;
5553 const int mtu = new_mtu;
5557 txfifosz = priv->dma_cap.tx_fifo_size;
5559 txfifosz /= priv->plat->tx_queues_to_use;
5561 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5562 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5566 new_mtu = STMMAC_ALIGN(new_mtu);
5568 /* If condition true, FIFO is too small or MTU too large */
5569 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5572 if (netif_running(dev)) {
5573 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5574 /* Try to allocate the new DMA conf with the new mtu */
5575 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5576 if (IS_ERR(dma_conf)) {
5577 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5579 return PTR_ERR(dma_conf);
5582 stmmac_release(dev);
5584 ret = __stmmac_open(dev, dma_conf);
5587 netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5591 stmmac_set_rx_mode(dev);
5595 netdev_update_features(dev);
5600 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5601 netdev_features_t features)
5603 struct stmmac_priv *priv = netdev_priv(dev);
5605 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5606 features &= ~NETIF_F_RXCSUM;
5608 if (!priv->plat->tx_coe)
5609 features &= ~NETIF_F_CSUM_MASK;
5611 /* Some GMAC devices have a bugged Jumbo frame support that
5612 * needs to have the Tx COE disabled for oversized frames
5613 * (due to limited buffer sizes). In this case we disable
5614 * the TX csum insertion in the TDES and not use SF.
5616 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5617 features &= ~NETIF_F_CSUM_MASK;
5619 /* Disable tso if asked by ethtool */
5620 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5621 if (features & NETIF_F_TSO)
5630 static int stmmac_set_features(struct net_device *netdev,
5631 netdev_features_t features)
5633 struct stmmac_priv *priv = netdev_priv(netdev);
5635 /* Keep the COE Type in case of csum is supporting */
5636 if (features & NETIF_F_RXCSUM)
5637 priv->hw->rx_csum = priv->plat->rx_coe;
5639 priv->hw->rx_csum = 0;
5640 /* No check needed because rx_coe has been set before and it will be
5641 * fixed in case of issue.
5643 stmmac_rx_ipc(priv, priv->hw);
5645 if (priv->sph_cap) {
5646 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5649 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5650 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5656 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5658 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5659 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5660 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5661 bool *hs_enable = &fpe_cfg->hs_enable;
5663 if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5666 /* If LP has sent verify mPacket, LP is FPE capable */
5667 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5668 if (*lp_state < FPE_STATE_CAPABLE)
5669 *lp_state = FPE_STATE_CAPABLE;
5671 /* If user has requested FPE enable, quickly response */
5673 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5677 /* If Local has sent verify mPacket, Local is FPE capable */
5678 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5679 if (*lo_state < FPE_STATE_CAPABLE)
5680 *lo_state = FPE_STATE_CAPABLE;
5683 /* If LP has sent response mPacket, LP is entering FPE ON */
5684 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5685 *lp_state = FPE_STATE_ENTERING_ON;
5687 /* If Local has sent response mPacket, Local is entering FPE ON */
5688 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5689 *lo_state = FPE_STATE_ENTERING_ON;
5691 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5692 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5694 queue_work(priv->fpe_wq, &priv->fpe_task);
5698 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5700 u32 rx_cnt = priv->plat->rx_queues_to_use;
5701 u32 tx_cnt = priv->plat->tx_queues_to_use;
5706 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5707 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5710 pm_wakeup_event(priv->device, 0);
5712 if (priv->dma_cap.estsel)
5713 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5714 &priv->xstats, tx_cnt);
5716 if (priv->dma_cap.fpesel) {
5717 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5720 stmmac_fpe_event_status(priv, status);
5723 /* To handle GMAC own interrupts */
5724 if ((priv->plat->has_gmac) || xmac) {
5725 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5727 if (unlikely(status)) {
5728 /* For LPI we need to save the tx status */
5729 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5730 priv->tx_path_in_lpi_mode = true;
5731 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5732 priv->tx_path_in_lpi_mode = false;
5735 for (queue = 0; queue < queues_count; queue++) {
5736 status = stmmac_host_mtl_irq_status(priv, priv->hw,
5740 /* PCS link status */
5741 if (priv->hw->pcs) {
5742 if (priv->xstats.pcs_link)
5743 netif_carrier_on(priv->dev);
5745 netif_carrier_off(priv->dev);
5748 stmmac_timestamp_interrupt(priv, priv);
5753 * stmmac_interrupt - main ISR
5754 * @irq: interrupt number.
5755 * @dev_id: to pass the net device pointer.
5756 * Description: this is the main driver interrupt service routine.
5758 * o DMA service routine (to manage incoming frame reception and transmission
5760 * o Core interrupts to manage: remote wake-up, management counter, LPI
5763 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5765 struct net_device *dev = (struct net_device *)dev_id;
5766 struct stmmac_priv *priv = netdev_priv(dev);
5768 /* Check if adapter is up */
5769 if (test_bit(STMMAC_DOWN, &priv->state))
5772 /* Check if a fatal error happened */
5773 if (stmmac_safety_feat_interrupt(priv))
5776 /* To handle Common interrupts */
5777 stmmac_common_interrupt(priv);
5779 /* To handle DMA interrupts */
5780 stmmac_dma_interrupt(priv);
5785 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5787 struct net_device *dev = (struct net_device *)dev_id;
5788 struct stmmac_priv *priv = netdev_priv(dev);
5790 if (unlikely(!dev)) {
5791 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5795 /* Check if adapter is up */
5796 if (test_bit(STMMAC_DOWN, &priv->state))
5799 /* To handle Common interrupts */
5800 stmmac_common_interrupt(priv);
5805 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5807 struct net_device *dev = (struct net_device *)dev_id;
5808 struct stmmac_priv *priv = netdev_priv(dev);
5810 if (unlikely(!dev)) {
5811 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5815 /* Check if adapter is up */
5816 if (test_bit(STMMAC_DOWN, &priv->state))
5819 /* Check if a fatal error happened */
5820 stmmac_safety_feat_interrupt(priv);
5825 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5827 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5828 struct stmmac_dma_conf *dma_conf;
5829 int chan = tx_q->queue_index;
5830 struct stmmac_priv *priv;
5833 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5834 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5836 if (unlikely(!data)) {
5837 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5841 /* Check if adapter is up */
5842 if (test_bit(STMMAC_DOWN, &priv->state))
5845 status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5847 if (unlikely(status & tx_hard_error_bump_tc)) {
5848 /* Try to bump up the dma threshold on this failure */
5849 stmmac_bump_dma_threshold(priv, chan);
5850 } else if (unlikely(status == tx_hard_error)) {
5851 stmmac_tx_err(priv, chan);
5857 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5859 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5860 struct stmmac_dma_conf *dma_conf;
5861 int chan = rx_q->queue_index;
5862 struct stmmac_priv *priv;
5864 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5865 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5867 if (unlikely(!data)) {
5868 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5872 /* Check if adapter is up */
5873 if (test_bit(STMMAC_DOWN, &priv->state))
5876 stmmac_napi_check(priv, chan, DMA_DIR_RX);
5881 #ifdef CONFIG_NET_POLL_CONTROLLER
5882 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5883 * to allow network I/O with interrupts disabled.
5885 static void stmmac_poll_controller(struct net_device *dev)
5887 struct stmmac_priv *priv = netdev_priv(dev);
5890 /* If adapter is down, do nothing */
5891 if (test_bit(STMMAC_DOWN, &priv->state))
5894 if (priv->plat->multi_msi_en) {
5895 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5896 stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5898 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5899 stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5901 disable_irq(dev->irq);
5902 stmmac_interrupt(dev->irq, dev);
5903 enable_irq(dev->irq);
5909 * stmmac_ioctl - Entry point for the Ioctl
5910 * @dev: Device pointer.
5911 * @rq: An IOCTL specefic structure, that can contain a pointer to
5912 * a proprietary structure used to pass information to the driver.
5913 * @cmd: IOCTL command
5915 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5917 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5919 struct stmmac_priv *priv = netdev_priv (dev);
5920 int ret = -EOPNOTSUPP;
5922 if (!netif_running(dev))
5929 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5932 ret = stmmac_hwtstamp_set(dev, rq);
5935 ret = stmmac_hwtstamp_get(dev, rq);
5944 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5947 struct stmmac_priv *priv = cb_priv;
5948 int ret = -EOPNOTSUPP;
5950 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5953 __stmmac_disable_all_queues(priv);
5956 case TC_SETUP_CLSU32:
5957 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5959 case TC_SETUP_CLSFLOWER:
5960 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5966 stmmac_enable_all_queues(priv);
5970 static LIST_HEAD(stmmac_block_cb_list);
5972 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5975 struct stmmac_priv *priv = netdev_priv(ndev);
5978 case TC_SETUP_BLOCK:
5979 return flow_block_cb_setup_simple(type_data,
5980 &stmmac_block_cb_list,
5981 stmmac_setup_tc_block_cb,
5983 case TC_SETUP_QDISC_CBS:
5984 return stmmac_tc_setup_cbs(priv, priv, type_data);
5985 case TC_SETUP_QDISC_TAPRIO:
5986 return stmmac_tc_setup_taprio(priv, priv, type_data);
5987 case TC_SETUP_QDISC_ETF:
5988 return stmmac_tc_setup_etf(priv, priv, type_data);
5994 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5995 struct net_device *sb_dev)
5997 int gso = skb_shinfo(skb)->gso_type;
5999 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6001 * There is no way to determine the number of TSO/USO
6002 * capable Queues. Let's use always the Queue 0
6003 * because if TSO/USO is supported then at least this
6004 * one will be capable.
6009 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6012 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6014 struct stmmac_priv *priv = netdev_priv(ndev);
6017 ret = pm_runtime_resume_and_get(priv->device);
6021 ret = eth_mac_addr(ndev, addr);
6025 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6028 pm_runtime_put(priv->device);
6033 #ifdef CONFIG_DEBUG_FS
6034 static struct dentry *stmmac_fs_dir;
6036 static void sysfs_display_ring(void *head, int size, int extend_desc,
6037 struct seq_file *seq, dma_addr_t dma_phy_addr)
6040 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6041 struct dma_desc *p = (struct dma_desc *)head;
6042 dma_addr_t dma_addr;
6044 for (i = 0; i < size; i++) {
6046 dma_addr = dma_phy_addr + i * sizeof(*ep);
6047 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6049 le32_to_cpu(ep->basic.des0),
6050 le32_to_cpu(ep->basic.des1),
6051 le32_to_cpu(ep->basic.des2),
6052 le32_to_cpu(ep->basic.des3));
6055 dma_addr = dma_phy_addr + i * sizeof(*p);
6056 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6058 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6059 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6062 seq_printf(seq, "\n");
6066 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6068 struct net_device *dev = seq->private;
6069 struct stmmac_priv *priv = netdev_priv(dev);
6070 u32 rx_count = priv->plat->rx_queues_to_use;
6071 u32 tx_count = priv->plat->tx_queues_to_use;
6074 if ((dev->flags & IFF_UP) == 0)
6077 for (queue = 0; queue < rx_count; queue++) {
6078 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6080 seq_printf(seq, "RX Queue %d:\n", queue);
6082 if (priv->extend_desc) {
6083 seq_printf(seq, "Extended descriptor ring:\n");
6084 sysfs_display_ring((void *)rx_q->dma_erx,
6085 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6087 seq_printf(seq, "Descriptor ring:\n");
6088 sysfs_display_ring((void *)rx_q->dma_rx,
6089 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6093 for (queue = 0; queue < tx_count; queue++) {
6094 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6096 seq_printf(seq, "TX Queue %d:\n", queue);
6098 if (priv->extend_desc) {
6099 seq_printf(seq, "Extended descriptor ring:\n");
6100 sysfs_display_ring((void *)tx_q->dma_etx,
6101 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6102 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6103 seq_printf(seq, "Descriptor ring:\n");
6104 sysfs_display_ring((void *)tx_q->dma_tx,
6105 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6111 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6113 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6115 struct net_device *dev = seq->private;
6116 struct stmmac_priv *priv = netdev_priv(dev);
6118 if (!priv->hw_cap_support) {
6119 seq_printf(seq, "DMA HW features not supported\n");
6123 seq_printf(seq, "==============================\n");
6124 seq_printf(seq, "\tDMA HW features\n");
6125 seq_printf(seq, "==============================\n");
6127 seq_printf(seq, "\t10/100 Mbps: %s\n",
6128 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6129 seq_printf(seq, "\t1000 Mbps: %s\n",
6130 (priv->dma_cap.mbps_1000) ? "Y" : "N");
6131 seq_printf(seq, "\tHalf duplex: %s\n",
6132 (priv->dma_cap.half_duplex) ? "Y" : "N");
6133 seq_printf(seq, "\tHash Filter: %s\n",
6134 (priv->dma_cap.hash_filter) ? "Y" : "N");
6135 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6136 (priv->dma_cap.multi_addr) ? "Y" : "N");
6137 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6138 (priv->dma_cap.pcs) ? "Y" : "N");
6139 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6140 (priv->dma_cap.sma_mdio) ? "Y" : "N");
6141 seq_printf(seq, "\tPMT Remote wake up: %s\n",
6142 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6143 seq_printf(seq, "\tPMT Magic Frame: %s\n",
6144 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6145 seq_printf(seq, "\tRMON module: %s\n",
6146 (priv->dma_cap.rmon) ? "Y" : "N");
6147 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6148 (priv->dma_cap.time_stamp) ? "Y" : "N");
6149 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6150 (priv->dma_cap.atime_stamp) ? "Y" : "N");
6151 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6152 (priv->dma_cap.eee) ? "Y" : "N");
6153 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6154 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6155 (priv->dma_cap.tx_coe) ? "Y" : "N");
6156 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6157 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6158 (priv->dma_cap.rx_coe) ? "Y" : "N");
6160 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6161 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6162 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6163 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6165 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6166 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6167 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6168 priv->dma_cap.number_rx_channel);
6169 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6170 priv->dma_cap.number_tx_channel);
6171 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6172 priv->dma_cap.number_rx_queues);
6173 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6174 priv->dma_cap.number_tx_queues);
6175 seq_printf(seq, "\tEnhanced descriptors: %s\n",
6176 (priv->dma_cap.enh_desc) ? "Y" : "N");
6177 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6178 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6179 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6180 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6181 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6182 priv->dma_cap.pps_out_num);
6183 seq_printf(seq, "\tSafety Features: %s\n",
6184 priv->dma_cap.asp ? "Y" : "N");
6185 seq_printf(seq, "\tFlexible RX Parser: %s\n",
6186 priv->dma_cap.frpsel ? "Y" : "N");
6187 seq_printf(seq, "\tEnhanced Addressing: %d\n",
6188 priv->dma_cap.addr64);
6189 seq_printf(seq, "\tReceive Side Scaling: %s\n",
6190 priv->dma_cap.rssen ? "Y" : "N");
6191 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6192 priv->dma_cap.vlhash ? "Y" : "N");
6193 seq_printf(seq, "\tSplit Header: %s\n",
6194 priv->dma_cap.sphen ? "Y" : "N");
6195 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6196 priv->dma_cap.vlins ? "Y" : "N");
6197 seq_printf(seq, "\tDouble VLAN: %s\n",
6198 priv->dma_cap.dvlan ? "Y" : "N");
6199 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6200 priv->dma_cap.l3l4fnum);
6201 seq_printf(seq, "\tARP Offloading: %s\n",
6202 priv->dma_cap.arpoffsel ? "Y" : "N");
6203 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6204 priv->dma_cap.estsel ? "Y" : "N");
6205 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6206 priv->dma_cap.fpesel ? "Y" : "N");
6207 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6208 priv->dma_cap.tbssel ? "Y" : "N");
6211 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6213 /* Use network device events to rename debugfs file entries.
6215 static int stmmac_device_event(struct notifier_block *unused,
6216 unsigned long event, void *ptr)
6218 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6219 struct stmmac_priv *priv = netdev_priv(dev);
6221 if (dev->netdev_ops != &stmmac_netdev_ops)
6225 case NETDEV_CHANGENAME:
6226 if (priv->dbgfs_dir)
6227 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6237 static struct notifier_block stmmac_notifier = {
6238 .notifier_call = stmmac_device_event,
6241 static void stmmac_init_fs(struct net_device *dev)
6243 struct stmmac_priv *priv = netdev_priv(dev);
6247 /* Create per netdev entries */
6248 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6250 /* Entry to report DMA RX/TX rings */
6251 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6252 &stmmac_rings_status_fops);
6254 /* Entry to report the DMA HW features */
6255 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6256 &stmmac_dma_cap_fops);
6261 static void stmmac_exit_fs(struct net_device *dev)
6263 struct stmmac_priv *priv = netdev_priv(dev);
6265 debugfs_remove_recursive(priv->dbgfs_dir);
6267 #endif /* CONFIG_DEBUG_FS */
6269 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6271 unsigned char *data = (unsigned char *)&vid_le;
6272 unsigned char data_byte = 0;
6277 bits = get_bitmask_order(VLAN_VID_MASK);
6278 for (i = 0; i < bits; i++) {
6280 data_byte = data[i / 8];
6282 temp = ((crc & 1) ^ data_byte) & 1;
6293 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6300 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6301 __le16 vid_le = cpu_to_le16(vid);
6302 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6307 if (!priv->dma_cap.vlhash) {
6308 if (count > 2) /* VID = 0 always passes filter */
6311 pmatch = cpu_to_le16(vid);
6315 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6318 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6320 struct stmmac_priv *priv = netdev_priv(ndev);
6321 bool is_double = false;
6324 if (be16_to_cpu(proto) == ETH_P_8021AD)
6327 set_bit(vid, priv->active_vlans);
6328 ret = stmmac_vlan_update(priv, is_double);
6330 clear_bit(vid, priv->active_vlans);
6334 if (priv->hw->num_vlan) {
6335 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6343 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6345 struct stmmac_priv *priv = netdev_priv(ndev);
6346 bool is_double = false;
6349 ret = pm_runtime_resume_and_get(priv->device);
6353 if (be16_to_cpu(proto) == ETH_P_8021AD)
6356 clear_bit(vid, priv->active_vlans);
6358 if (priv->hw->num_vlan) {
6359 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6361 goto del_vlan_error;
6364 ret = stmmac_vlan_update(priv, is_double);
6367 pm_runtime_put(priv->device);
6372 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6374 struct stmmac_priv *priv = netdev_priv(dev);
6376 switch (bpf->command) {
6377 case XDP_SETUP_PROG:
6378 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6379 case XDP_SETUP_XSK_POOL:
6380 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6387 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6388 struct xdp_frame **frames, u32 flags)
6390 struct stmmac_priv *priv = netdev_priv(dev);
6391 int cpu = smp_processor_id();
6392 struct netdev_queue *nq;
6396 if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6399 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6402 queue = stmmac_xdp_get_tx_queue(priv, cpu);
6403 nq = netdev_get_tx_queue(priv->dev, queue);
6405 __netif_tx_lock(nq, cpu);
6406 /* Avoids TX time-out as we are sharing with slow path */
6407 txq_trans_cond_update(nq);
6409 for (i = 0; i < num_frames; i++) {
6412 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6413 if (res == STMMAC_XDP_CONSUMED)
6419 if (flags & XDP_XMIT_FLUSH) {
6420 stmmac_flush_tx_descriptors(priv, queue);
6421 stmmac_tx_timer_arm(priv, queue);
6424 __netif_tx_unlock(nq);
6429 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6431 struct stmmac_channel *ch = &priv->channel[queue];
6432 unsigned long flags;
6434 spin_lock_irqsave(&ch->lock, flags);
6435 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6436 spin_unlock_irqrestore(&ch->lock, flags);
6438 stmmac_stop_rx_dma(priv, queue);
6439 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6442 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6444 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6445 struct stmmac_channel *ch = &priv->channel[queue];
6446 unsigned long flags;
6450 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6452 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6456 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6458 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6459 netdev_err(priv->dev, "Failed to init RX desc.\n");
6463 stmmac_reset_rx_queue(priv, queue);
6464 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6466 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6467 rx_q->dma_rx_phy, rx_q->queue_index);
6469 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6470 sizeof(struct dma_desc));
6471 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6472 rx_q->rx_tail_addr, rx_q->queue_index);
6474 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6475 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6476 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6480 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6481 priv->dma_conf.dma_buf_sz,
6485 stmmac_start_rx_dma(priv, queue);
6487 spin_lock_irqsave(&ch->lock, flags);
6488 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6489 spin_unlock_irqrestore(&ch->lock, flags);
6492 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6494 struct stmmac_channel *ch = &priv->channel[queue];
6495 unsigned long flags;
6497 spin_lock_irqsave(&ch->lock, flags);
6498 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6499 spin_unlock_irqrestore(&ch->lock, flags);
6501 stmmac_stop_tx_dma(priv, queue);
6502 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6505 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6507 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6508 struct stmmac_channel *ch = &priv->channel[queue];
6509 unsigned long flags;
6512 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6514 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6518 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue);
6520 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6521 netdev_err(priv->dev, "Failed to init TX desc.\n");
6525 stmmac_reset_tx_queue(priv, queue);
6526 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6528 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6529 tx_q->dma_tx_phy, tx_q->queue_index);
6531 if (tx_q->tbs & STMMAC_TBS_AVAIL)
6532 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6534 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6535 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6536 tx_q->tx_tail_addr, tx_q->queue_index);
6538 stmmac_start_tx_dma(priv, queue);
6540 spin_lock_irqsave(&ch->lock, flags);
6541 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6542 spin_unlock_irqrestore(&ch->lock, flags);
6545 void stmmac_xdp_release(struct net_device *dev)
6547 struct stmmac_priv *priv = netdev_priv(dev);
6550 /* Disable NAPI process */
6551 stmmac_disable_all_queues(priv);
6553 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6554 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6556 /* Free the IRQ lines */
6557 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6559 /* Stop TX/RX DMA channels */
6560 stmmac_stop_all_dma(priv);
6562 /* Release and free the Rx/Tx resources */
6563 free_dma_desc_resources(priv, &priv->dma_conf);
6565 /* Disable the MAC Rx/Tx */
6566 stmmac_mac_set(priv, priv->ioaddr, false);
6568 /* set trans_start so we don't get spurious
6569 * watchdogs during reset
6571 netif_trans_update(dev);
6572 netif_carrier_off(dev);
6575 int stmmac_xdp_open(struct net_device *dev)
6577 struct stmmac_priv *priv = netdev_priv(dev);
6578 u32 rx_cnt = priv->plat->rx_queues_to_use;
6579 u32 tx_cnt = priv->plat->tx_queues_to_use;
6580 u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6581 struct stmmac_rx_queue *rx_q;
6582 struct stmmac_tx_queue *tx_q;
6588 ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6590 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6592 goto dma_desc_error;
6595 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6597 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6602 /* DMA CSR Channel configuration */
6603 for (chan = 0; chan < dma_csr_ch; chan++) {
6604 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6605 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6608 /* Adjust Split header */
6609 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6611 /* DMA RX Channel Configuration */
6612 for (chan = 0; chan < rx_cnt; chan++) {
6613 rx_q = &priv->dma_conf.rx_queue[chan];
6615 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6616 rx_q->dma_rx_phy, chan);
6618 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6619 (rx_q->buf_alloc_num *
6620 sizeof(struct dma_desc));
6621 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6622 rx_q->rx_tail_addr, chan);
6624 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6625 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6626 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6630 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6631 priv->dma_conf.dma_buf_sz,
6635 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6638 /* DMA TX Channel Configuration */
6639 for (chan = 0; chan < tx_cnt; chan++) {
6640 tx_q = &priv->dma_conf.tx_queue[chan];
6642 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6643 tx_q->dma_tx_phy, chan);
6645 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6646 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6647 tx_q->tx_tail_addr, chan);
6649 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6650 tx_q->txtimer.function = stmmac_tx_timer;
6653 /* Enable the MAC Rx/Tx */
6654 stmmac_mac_set(priv, priv->ioaddr, true);
6656 /* Start Rx & Tx DMA Channels */
6657 stmmac_start_all_dma(priv);
6659 ret = stmmac_request_irq(dev);
6663 /* Enable NAPI process*/
6664 stmmac_enable_all_queues(priv);
6665 netif_carrier_on(dev);
6666 netif_tx_start_all_queues(dev);
6667 stmmac_enable_all_dma_irq(priv);
6672 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6673 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6675 stmmac_hw_teardown(dev);
6677 free_dma_desc_resources(priv, &priv->dma_conf);
6682 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6684 struct stmmac_priv *priv = netdev_priv(dev);
6685 struct stmmac_rx_queue *rx_q;
6686 struct stmmac_tx_queue *tx_q;
6687 struct stmmac_channel *ch;
6689 if (test_bit(STMMAC_DOWN, &priv->state) ||
6690 !netif_carrier_ok(priv->dev))
6693 if (!stmmac_xdp_is_enabled(priv))
6696 if (queue >= priv->plat->rx_queues_to_use ||
6697 queue >= priv->plat->tx_queues_to_use)
6700 rx_q = &priv->dma_conf.rx_queue[queue];
6701 tx_q = &priv->dma_conf.tx_queue[queue];
6702 ch = &priv->channel[queue];
6704 if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6707 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6708 /* EQoS does not have per-DMA channel SW interrupt,
6709 * so we schedule RX Napi straight-away.
6711 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6712 __napi_schedule(&ch->rxtx_napi);
6718 static const struct net_device_ops stmmac_netdev_ops = {
6719 .ndo_open = stmmac_open,
6720 .ndo_start_xmit = stmmac_xmit,
6721 .ndo_stop = stmmac_release,
6722 .ndo_change_mtu = stmmac_change_mtu,
6723 .ndo_fix_features = stmmac_fix_features,
6724 .ndo_set_features = stmmac_set_features,
6725 .ndo_set_rx_mode = stmmac_set_rx_mode,
6726 .ndo_tx_timeout = stmmac_tx_timeout,
6727 .ndo_eth_ioctl = stmmac_ioctl,
6728 .ndo_setup_tc = stmmac_setup_tc,
6729 .ndo_select_queue = stmmac_select_queue,
6730 #ifdef CONFIG_NET_POLL_CONTROLLER
6731 .ndo_poll_controller = stmmac_poll_controller,
6733 .ndo_set_mac_address = stmmac_set_mac_address,
6734 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6735 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6736 .ndo_bpf = stmmac_bpf,
6737 .ndo_xdp_xmit = stmmac_xdp_xmit,
6738 .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6741 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6743 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6745 if (test_bit(STMMAC_DOWN, &priv->state))
6748 netdev_err(priv->dev, "Reset adapter.\n");
6751 netif_trans_update(priv->dev);
6752 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6753 usleep_range(1000, 2000);
6755 set_bit(STMMAC_DOWN, &priv->state);
6756 dev_close(priv->dev);
6757 dev_open(priv->dev, NULL);
6758 clear_bit(STMMAC_DOWN, &priv->state);
6759 clear_bit(STMMAC_RESETING, &priv->state);
6763 static void stmmac_service_task(struct work_struct *work)
6765 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6768 stmmac_reset_subtask(priv);
6769 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6773 * stmmac_hw_init - Init the MAC device
6774 * @priv: driver private structure
6775 * Description: this function is to configure the MAC device according to
6776 * some platform parameters or the HW capability register. It prepares the
6777 * driver to use either ring or chain modes and to setup either enhanced or
6778 * normal descriptors.
6780 static int stmmac_hw_init(struct stmmac_priv *priv)
6784 /* dwmac-sun8i only work in chain mode */
6785 if (priv->plat->has_sun8i)
6787 priv->chain_mode = chain_mode;
6789 /* Initialize HW Interface */
6790 ret = stmmac_hwif_init(priv);
6794 /* Get the HW capability (new GMAC newer than 3.50a) */
6795 priv->hw_cap_support = stmmac_get_hw_features(priv);
6796 if (priv->hw_cap_support) {
6797 dev_info(priv->device, "DMA HW capability register supported\n");
6799 /* We can override some gmac/dma configuration fields: e.g.
6800 * enh_desc, tx_coe (e.g. that are passed through the
6801 * platform) with the values from the HW capability
6802 * register (if supported).
6804 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6805 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6806 !priv->plat->use_phy_wol;
6807 priv->hw->pmt = priv->plat->pmt;
6808 if (priv->dma_cap.hash_tb_sz) {
6809 priv->hw->multicast_filter_bins =
6810 (BIT(priv->dma_cap.hash_tb_sz) << 5);
6811 priv->hw->mcast_bits_log2 =
6812 ilog2(priv->hw->multicast_filter_bins);
6815 /* TXCOE doesn't work in thresh DMA mode */
6816 if (priv->plat->force_thresh_dma_mode)
6817 priv->plat->tx_coe = 0;
6819 priv->plat->tx_coe = priv->dma_cap.tx_coe;
6821 /* In case of GMAC4 rx_coe is from HW cap register. */
6822 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6824 if (priv->dma_cap.rx_coe_type2)
6825 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6826 else if (priv->dma_cap.rx_coe_type1)
6827 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6830 dev_info(priv->device, "No HW DMA feature register supported\n");
6833 if (priv->plat->rx_coe) {
6834 priv->hw->rx_csum = priv->plat->rx_coe;
6835 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6836 if (priv->synopsys_id < DWMAC_CORE_4_00)
6837 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6839 if (priv->plat->tx_coe)
6840 dev_info(priv->device, "TX Checksum insertion supported\n");
6842 if (priv->plat->pmt) {
6843 dev_info(priv->device, "Wake-Up On Lan supported\n");
6844 device_set_wakeup_capable(priv->device, 1);
6847 if (priv->dma_cap.tsoen)
6848 dev_info(priv->device, "TSO supported\n");
6850 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6851 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6853 /* Run HW quirks, if any */
6854 if (priv->hwif_quirks) {
6855 ret = priv->hwif_quirks(priv);
6860 /* Rx Watchdog is available in the COREs newer than the 3.40.
6861 * In some case, for example on bugged HW this feature
6862 * has to be disable and this can be done by passing the
6863 * riwt_off field from the platform.
6865 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6866 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6868 dev_info(priv->device,
6869 "Enable RX Mitigation via HW Watchdog Timer\n");
6875 static void stmmac_napi_add(struct net_device *dev)
6877 struct stmmac_priv *priv = netdev_priv(dev);
6880 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6882 for (queue = 0; queue < maxq; queue++) {
6883 struct stmmac_channel *ch = &priv->channel[queue];
6885 ch->priv_data = priv;
6887 spin_lock_init(&ch->lock);
6889 if (queue < priv->plat->rx_queues_to_use) {
6890 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6892 if (queue < priv->plat->tx_queues_to_use) {
6893 netif_napi_add_tx(dev, &ch->tx_napi,
6894 stmmac_napi_poll_tx);
6896 if (queue < priv->plat->rx_queues_to_use &&
6897 queue < priv->plat->tx_queues_to_use) {
6898 netif_napi_add(dev, &ch->rxtx_napi,
6899 stmmac_napi_poll_rxtx);
6904 static void stmmac_napi_del(struct net_device *dev)
6906 struct stmmac_priv *priv = netdev_priv(dev);
6909 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6911 for (queue = 0; queue < maxq; queue++) {
6912 struct stmmac_channel *ch = &priv->channel[queue];
6914 if (queue < priv->plat->rx_queues_to_use)
6915 netif_napi_del(&ch->rx_napi);
6916 if (queue < priv->plat->tx_queues_to_use)
6917 netif_napi_del(&ch->tx_napi);
6918 if (queue < priv->plat->rx_queues_to_use &&
6919 queue < priv->plat->tx_queues_to_use) {
6920 netif_napi_del(&ch->rxtx_napi);
6925 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6927 struct stmmac_priv *priv = netdev_priv(dev);
6930 if (netif_running(dev))
6931 stmmac_release(dev);
6933 stmmac_napi_del(dev);
6935 priv->plat->rx_queues_to_use = rx_cnt;
6936 priv->plat->tx_queues_to_use = tx_cnt;
6938 stmmac_napi_add(dev);
6940 if (netif_running(dev))
6941 ret = stmmac_open(dev);
6946 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6948 struct stmmac_priv *priv = netdev_priv(dev);
6951 if (netif_running(dev))
6952 stmmac_release(dev);
6954 priv->dma_conf.dma_rx_size = rx_size;
6955 priv->dma_conf.dma_tx_size = tx_size;
6957 if (netif_running(dev))
6958 ret = stmmac_open(dev);
6963 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6964 static void stmmac_fpe_lp_task(struct work_struct *work)
6966 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6968 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6969 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6970 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6971 bool *hs_enable = &fpe_cfg->hs_enable;
6972 bool *enable = &fpe_cfg->enable;
6975 while (retries-- > 0) {
6976 /* Bail out immediately if FPE handshake is OFF */
6977 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6980 if (*lo_state == FPE_STATE_ENTERING_ON &&
6981 *lp_state == FPE_STATE_ENTERING_ON) {
6982 stmmac_fpe_configure(priv, priv->ioaddr,
6983 priv->plat->tx_queues_to_use,
6984 priv->plat->rx_queues_to_use,
6987 netdev_info(priv->dev, "configured FPE\n");
6989 *lo_state = FPE_STATE_ON;
6990 *lp_state = FPE_STATE_ON;
6991 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6995 if ((*lo_state == FPE_STATE_CAPABLE ||
6996 *lo_state == FPE_STATE_ENTERING_ON) &&
6997 *lp_state != FPE_STATE_ON) {
6998 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6999 *lo_state, *lp_state);
7000 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7003 /* Sleep then retry */
7007 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7010 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7012 if (priv->plat->fpe_cfg->hs_enable != enable) {
7014 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7017 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7018 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7021 priv->plat->fpe_cfg->hs_enable = enable;
7027 * @device: device pointer
7028 * @plat_dat: platform data pointer
7029 * @res: stmmac resource pointer
7030 * Description: this is the main probe function used to
7031 * call the alloc_etherdev, allocate the priv structure.
7033 * returns 0 on success, otherwise errno.
7035 int stmmac_dvr_probe(struct device *device,
7036 struct plat_stmmacenet_data *plat_dat,
7037 struct stmmac_resources *res)
7039 struct net_device *ndev = NULL;
7040 struct stmmac_priv *priv;
7044 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7045 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7049 SET_NETDEV_DEV(ndev, device);
7051 priv = netdev_priv(ndev);
7052 priv->device = device;
7055 stmmac_set_ethtool_ops(ndev);
7056 priv->pause = pause;
7057 priv->plat = plat_dat;
7058 priv->ioaddr = res->addr;
7059 priv->dev->base_addr = (unsigned long)res->addr;
7060 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7062 priv->dev->irq = res->irq;
7063 priv->wol_irq = res->wol_irq;
7064 priv->lpi_irq = res->lpi_irq;
7065 priv->sfty_ce_irq = res->sfty_ce_irq;
7066 priv->sfty_ue_irq = res->sfty_ue_irq;
7067 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7068 priv->rx_irq[i] = res->rx_irq[i];
7069 for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7070 priv->tx_irq[i] = res->tx_irq[i];
7072 if (!is_zero_ether_addr(res->mac))
7073 eth_hw_addr_set(priv->dev, res->mac);
7075 dev_set_drvdata(device, priv->dev);
7077 /* Verify driver arguments */
7078 stmmac_verify_args();
7080 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7081 if (!priv->af_xdp_zc_qps)
7084 /* Allocate workqueue */
7085 priv->wq = create_singlethread_workqueue("stmmac_wq");
7087 dev_err(priv->device, "failed to create workqueue\n");
7091 INIT_WORK(&priv->service_task, stmmac_service_task);
7093 /* Initialize Link Partner FPE workqueue */
7094 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7096 /* Override with kernel parameters if supplied XXX CRS XXX
7097 * this needs to have multiple instances
7099 if ((phyaddr >= 0) && (phyaddr <= 31))
7100 priv->plat->phy_addr = phyaddr;
7102 if (priv->plat->stmmac_rst) {
7103 ret = reset_control_assert(priv->plat->stmmac_rst);
7104 reset_control_deassert(priv->plat->stmmac_rst);
7105 /* Some reset controllers have only reset callback instead of
7106 * assert + deassert callbacks pair.
7108 if (ret == -ENOTSUPP)
7109 reset_control_reset(priv->plat->stmmac_rst);
7112 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7113 if (ret == -ENOTSUPP)
7114 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7117 /* Init MAC and get the capabilities */
7118 ret = stmmac_hw_init(priv);
7122 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7124 if (priv->synopsys_id < DWMAC_CORE_5_20)
7125 priv->plat->dma_cfg->dche = false;
7127 stmmac_check_ether_addr(priv);
7129 ndev->netdev_ops = &stmmac_netdev_ops;
7131 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7134 ret = stmmac_tc_init(priv, priv);
7136 ndev->hw_features |= NETIF_F_HW_TC;
7139 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7140 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7141 if (priv->plat->has_gmac4)
7142 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7144 dev_info(priv->device, "TSO feature enabled\n");
7147 if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7148 ndev->hw_features |= NETIF_F_GRO;
7149 priv->sph_cap = true;
7150 priv->sph = priv->sph_cap;
7151 dev_info(priv->device, "SPH feature enabled\n");
7154 /* The current IP register MAC_HW_Feature1[ADDR64] only define
7155 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7156 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7157 * So overwrite dma_cap.addr64 according to HW real design.
7159 if (priv->plat->addr64)
7160 priv->dma_cap.addr64 = priv->plat->addr64;
7162 if (priv->dma_cap.addr64) {
7163 ret = dma_set_mask_and_coherent(device,
7164 DMA_BIT_MASK(priv->dma_cap.addr64));
7166 dev_info(priv->device, "Using %d bits DMA width\n",
7167 priv->dma_cap.addr64);
7170 * If more than 32 bits can be addressed, make sure to
7171 * enable enhanced addressing mode.
7173 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7174 priv->plat->dma_cfg->eame = true;
7176 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7178 dev_err(priv->device, "Failed to set DMA Mask\n");
7182 priv->dma_cap.addr64 = 32;
7186 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7187 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7188 #ifdef STMMAC_VLAN_TAG_USED
7189 /* Both mac100 and gmac support receive VLAN tag detection */
7190 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7191 if (priv->dma_cap.vlhash) {
7192 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7193 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7195 if (priv->dma_cap.vlins) {
7196 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7197 if (priv->dma_cap.dvlan)
7198 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7201 priv->msg_enable = netif_msg_init(debug, default_msg_level);
7203 /* Initialize RSS */
7204 rxq = priv->plat->rx_queues_to_use;
7205 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7206 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7207 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7209 if (priv->dma_cap.rssen && priv->plat->rss_en)
7210 ndev->features |= NETIF_F_RXHASH;
7212 /* MTU range: 46 - hw-specific max */
7213 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7214 if (priv->plat->has_xgmac)
7215 ndev->max_mtu = XGMAC_JUMBO_LEN;
7216 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7217 ndev->max_mtu = JUMBO_LEN;
7219 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7220 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7221 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7223 if ((priv->plat->maxmtu < ndev->max_mtu) &&
7224 (priv->plat->maxmtu >= ndev->min_mtu))
7225 ndev->max_mtu = priv->plat->maxmtu;
7226 else if (priv->plat->maxmtu < ndev->min_mtu)
7227 dev_warn(priv->device,
7228 "%s: warning: maxmtu having invalid value (%d)\n",
7229 __func__, priv->plat->maxmtu);
7232 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
7234 /* Setup channels NAPI */
7235 stmmac_napi_add(ndev);
7237 mutex_init(&priv->lock);
7239 /* If a specific clk_csr value is passed from the platform
7240 * this means that the CSR Clock Range selection cannot be
7241 * changed at run-time and it is fixed. Viceversa the driver'll try to
7242 * set the MDC clock dynamically according to the csr actual
7245 if (priv->plat->clk_csr >= 0)
7246 priv->clk_csr = priv->plat->clk_csr;
7248 stmmac_clk_csr_set(priv);
7250 stmmac_check_pcs_mode(priv);
7252 pm_runtime_get_noresume(device);
7253 pm_runtime_set_active(device);
7254 if (!pm_runtime_enabled(device))
7255 pm_runtime_enable(device);
7257 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7258 priv->hw->pcs != STMMAC_PCS_RTBI) {
7259 /* MDIO bus Registration */
7260 ret = stmmac_mdio_register(ndev);
7262 dev_err_probe(priv->device, ret,
7263 "%s: MDIO bus (id: %d) registration failed\n",
7264 __func__, priv->plat->bus_id);
7265 goto error_mdio_register;
7269 if (priv->plat->speed_mode_2500)
7270 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7272 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7273 ret = stmmac_xpcs_setup(priv->mii);
7275 goto error_xpcs_setup;
7278 ret = stmmac_phy_setup(priv);
7280 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7281 goto error_phy_setup;
7284 ret = register_netdev(ndev);
7286 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7288 goto error_netdev_register;
7291 #ifdef CONFIG_DEBUG_FS
7292 stmmac_init_fs(ndev);
7295 if (priv->plat->dump_debug_regs)
7296 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7298 /* Let pm_runtime_put() disable the clocks.
7299 * If CONFIG_PM is not enabled, the clocks will stay powered.
7301 pm_runtime_put(device);
7305 error_netdev_register:
7306 phylink_destroy(priv->phylink);
7309 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7310 priv->hw->pcs != STMMAC_PCS_RTBI)
7311 stmmac_mdio_unregister(ndev);
7312 error_mdio_register:
7313 stmmac_napi_del(ndev);
7315 destroy_workqueue(priv->wq);
7316 bitmap_free(priv->af_xdp_zc_qps);
7320 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7324 * @dev: device pointer
7325 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7326 * changes the link status, releases the DMA descriptor rings.
7328 int stmmac_dvr_remove(struct device *dev)
7330 struct net_device *ndev = dev_get_drvdata(dev);
7331 struct stmmac_priv *priv = netdev_priv(ndev);
7333 netdev_info(priv->dev, "%s: removing driver", __func__);
7335 pm_runtime_get_sync(dev);
7337 stmmac_stop_all_dma(priv);
7338 stmmac_mac_set(priv, priv->ioaddr, false);
7339 netif_carrier_off(ndev);
7340 unregister_netdev(ndev);
7342 /* Serdes power down needs to happen after VLAN filter
7343 * is deleted that is triggered by unregister_netdev().
7345 if (priv->plat->serdes_powerdown)
7346 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7348 #ifdef CONFIG_DEBUG_FS
7349 stmmac_exit_fs(ndev);
7351 phylink_destroy(priv->phylink);
7352 if (priv->plat->stmmac_rst)
7353 reset_control_assert(priv->plat->stmmac_rst);
7354 reset_control_assert(priv->plat->stmmac_ahb_rst);
7355 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7356 priv->hw->pcs != STMMAC_PCS_RTBI)
7357 stmmac_mdio_unregister(ndev);
7358 destroy_workqueue(priv->wq);
7359 mutex_destroy(&priv->lock);
7360 bitmap_free(priv->af_xdp_zc_qps);
7362 pm_runtime_disable(dev);
7363 pm_runtime_put_noidle(dev);
7367 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7370 * stmmac_suspend - suspend callback
7371 * @dev: device pointer
7372 * Description: this is the function to suspend the device and it is called
7373 * by the platform driver to stop the network queue, release the resources,
7374 * program the PMT register (for WoL), clean and release driver resources.
7376 int stmmac_suspend(struct device *dev)
7378 struct net_device *ndev = dev_get_drvdata(dev);
7379 struct stmmac_priv *priv = netdev_priv(ndev);
7382 if (!ndev || !netif_running(ndev))
7385 mutex_lock(&priv->lock);
7387 netif_device_detach(ndev);
7389 stmmac_disable_all_queues(priv);
7391 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7392 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7394 if (priv->eee_enabled) {
7395 priv->tx_path_in_lpi_mode = false;
7396 del_timer_sync(&priv->eee_ctrl_timer);
7399 /* Stop TX/RX DMA */
7400 stmmac_stop_all_dma(priv);
7402 if (priv->plat->serdes_powerdown)
7403 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7405 /* Enable Power down mode by programming the PMT regs */
7406 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7407 stmmac_pmt(priv, priv->hw, priv->wolopts);
7410 stmmac_mac_set(priv, priv->ioaddr, false);
7411 pinctrl_pm_select_sleep_state(priv->device);
7414 mutex_unlock(&priv->lock);
7417 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7418 phylink_suspend(priv->phylink, true);
7420 if (device_may_wakeup(priv->device))
7421 phylink_speed_down(priv->phylink, false);
7422 phylink_suspend(priv->phylink, false);
7426 if (priv->dma_cap.fpesel) {
7428 stmmac_fpe_configure(priv, priv->ioaddr,
7429 priv->plat->tx_queues_to_use,
7430 priv->plat->rx_queues_to_use, false);
7432 stmmac_fpe_handshake(priv, false);
7433 stmmac_fpe_stop_wq(priv);
7436 priv->speed = SPEED_UNKNOWN;
7439 EXPORT_SYMBOL_GPL(stmmac_suspend);
7441 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7443 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7449 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7451 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7457 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7461 * stmmac_reset_queues_param - reset queue parameters
7462 * @priv: device pointer
7464 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7466 u32 rx_cnt = priv->plat->rx_queues_to_use;
7467 u32 tx_cnt = priv->plat->tx_queues_to_use;
7470 for (queue = 0; queue < rx_cnt; queue++)
7471 stmmac_reset_rx_queue(priv, queue);
7473 for (queue = 0; queue < tx_cnt; queue++)
7474 stmmac_reset_tx_queue(priv, queue);
7478 * stmmac_resume - resume callback
7479 * @dev: device pointer
7480 * Description: when resume this function is invoked to setup the DMA and CORE
7481 * in a usable state.
7483 int stmmac_resume(struct device *dev)
7485 struct net_device *ndev = dev_get_drvdata(dev);
7486 struct stmmac_priv *priv = netdev_priv(ndev);
7489 if (!netif_running(ndev))
7492 /* Power Down bit, into the PM register, is cleared
7493 * automatically as soon as a magic packet or a Wake-up frame
7494 * is received. Anyway, it's better to manually clear
7495 * this bit because it can generate problems while resuming
7496 * from another devices (e.g. serial console).
7498 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7499 mutex_lock(&priv->lock);
7500 stmmac_pmt(priv, priv->hw, 0);
7501 mutex_unlock(&priv->lock);
7504 pinctrl_pm_select_default_state(priv->device);
7505 /* reset the phy so that it's ready */
7507 stmmac_mdio_reset(priv->mii);
7510 if (priv->plat->serdes_powerup) {
7511 ret = priv->plat->serdes_powerup(ndev,
7512 priv->plat->bsp_priv);
7519 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7520 phylink_resume(priv->phylink);
7522 phylink_resume(priv->phylink);
7523 if (device_may_wakeup(priv->device))
7524 phylink_speed_up(priv->phylink);
7529 mutex_lock(&priv->lock);
7531 stmmac_reset_queues_param(priv);
7533 stmmac_free_tx_skbufs(priv);
7534 stmmac_clear_descriptors(priv, &priv->dma_conf);
7536 stmmac_hw_setup(ndev, false);
7537 stmmac_init_coalesce(priv);
7538 stmmac_set_rx_mode(ndev);
7540 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7542 stmmac_enable_all_queues(priv);
7543 stmmac_enable_all_dma_irq(priv);
7545 mutex_unlock(&priv->lock);
7548 netif_device_attach(ndev);
7552 EXPORT_SYMBOL_GPL(stmmac_resume);
7555 static int __init stmmac_cmdline_opt(char *str)
7561 while ((opt = strsep(&str, ",")) != NULL) {
7562 if (!strncmp(opt, "debug:", 6)) {
7563 if (kstrtoint(opt + 6, 0, &debug))
7565 } else if (!strncmp(opt, "phyaddr:", 8)) {
7566 if (kstrtoint(opt + 8, 0, &phyaddr))
7568 } else if (!strncmp(opt, "buf_sz:", 7)) {
7569 if (kstrtoint(opt + 7, 0, &buf_sz))
7571 } else if (!strncmp(opt, "tc:", 3)) {
7572 if (kstrtoint(opt + 3, 0, &tc))
7574 } else if (!strncmp(opt, "watchdog:", 9)) {
7575 if (kstrtoint(opt + 9, 0, &watchdog))
7577 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7578 if (kstrtoint(opt + 10, 0, &flow_ctrl))
7580 } else if (!strncmp(opt, "pause:", 6)) {
7581 if (kstrtoint(opt + 6, 0, &pause))
7583 } else if (!strncmp(opt, "eee_timer:", 10)) {
7584 if (kstrtoint(opt + 10, 0, &eee_timer))
7586 } else if (!strncmp(opt, "chain_mode:", 11)) {
7587 if (kstrtoint(opt + 11, 0, &chain_mode))
7594 pr_err("%s: ERROR broken module parameter conversion", __func__);
7598 __setup("stmmaceth=", stmmac_cmdline_opt);
7601 static int __init stmmac_init(void)
7603 #ifdef CONFIG_DEBUG_FS
7604 /* Create debugfs main directory if it doesn't exist yet */
7606 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7607 register_netdevice_notifier(&stmmac_notifier);
7613 static void __exit stmmac_exit(void)
7615 #ifdef CONFIG_DEBUG_FS
7616 unregister_netdevice_notifier(&stmmac_notifier);
7617 debugfs_remove_recursive(stmmac_fs_dir);
7621 module_init(stmmac_init)
7622 module_exit(stmmac_exit)
7624 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7625 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7626 MODULE_LICENSE("GPL");