net: stmmac: Set MAC's flow control register to reflect current settings
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE      (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58                                  PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO        5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x)     ((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)     ((x)->dma_conf.dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX        256
82 #define STMMAC_TX_XSK_AVAIL             16
83 #define STMMAC_RX_FILL_BATCH            16
84
85 #define STMMAC_XDP_PASS         0
86 #define STMMAC_XDP_CONSUMED     BIT(0)
87 #define STMMAC_XDP_TX           BIT(1)
88 #define STMMAC_XDP_REDIRECT     BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK     256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
112                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER        1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139                                           u32 rxmode, u32 chan);
140
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151         int ret = 0;
152
153         if (enabled) {
154                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
155                 if (ret)
156                         return ret;
157                 ret = clk_prepare_enable(priv->plat->pclk);
158                 if (ret) {
159                         clk_disable_unprepare(priv->plat->stmmac_clk);
160                         return ret;
161                 }
162                 if (priv->plat->clks_config) {
163                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164                         if (ret) {
165                                 clk_disable_unprepare(priv->plat->stmmac_clk);
166                                 clk_disable_unprepare(priv->plat->pclk);
167                                 return ret;
168                         }
169                 }
170         } else {
171                 clk_disable_unprepare(priv->plat->stmmac_clk);
172                 clk_disable_unprepare(priv->plat->pclk);
173                 if (priv->plat->clks_config)
174                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175         }
176
177         return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188         if (unlikely(watchdog < 0))
189                 watchdog = TX_TIMEO;
190         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191                 buf_sz = DEFAULT_BUFSIZE;
192         if (unlikely(flow_ctrl > 1))
193                 flow_ctrl = FLOW_AUTO;
194         else if (likely(flow_ctrl < 0))
195                 flow_ctrl = FLOW_OFF;
196         if (unlikely((pause < 0) || (pause > 0xffff)))
197                 pause = PAUSE_TIME;
198         if (eee_timer < 0)
199                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207         u32 queue;
208
209         for (queue = 0; queue < maxq; queue++) {
210                 struct stmmac_channel *ch = &priv->channel[queue];
211
212                 if (stmmac_xdp_is_enabled(priv) &&
213                     test_bit(queue, priv->af_xdp_zc_qps)) {
214                         napi_disable(&ch->rxtx_napi);
215                         continue;
216                 }
217
218                 if (queue < rx_queues_cnt)
219                         napi_disable(&ch->rx_napi);
220                 if (queue < tx_queues_cnt)
221                         napi_disable(&ch->tx_napi);
222         }
223 }
224
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232         struct stmmac_rx_queue *rx_q;
233         u32 queue;
234
235         /* synchronize_rcu() needed for pending XDP buffers to drain */
236         for (queue = 0; queue < rx_queues_cnt; queue++) {
237                 rx_q = &priv->dma_conf.rx_queue[queue];
238                 if (rx_q->xsk_pool) {
239                         synchronize_rcu();
240                         break;
241                 }
242         }
243
244         __stmmac_disable_all_queues(priv);
245 }
246
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256         u32 queue;
257
258         for (queue = 0; queue < maxq; queue++) {
259                 struct stmmac_channel *ch = &priv->channel[queue];
260
261                 if (stmmac_xdp_is_enabled(priv) &&
262                     test_bit(queue, priv->af_xdp_zc_qps)) {
263                         napi_enable(&ch->rxtx_napi);
264                         continue;
265                 }
266
267                 if (queue < rx_queues_cnt)
268                         napi_enable(&ch->rx_napi);
269                 if (queue < tx_queues_cnt)
270                         napi_enable(&ch->tx_napi);
271         }
272 }
273
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276         if (!test_bit(STMMAC_DOWN, &priv->state) &&
277             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278                 queue_work(priv->wq, &priv->service_task);
279 }
280
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283         netif_carrier_off(priv->dev);
284         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285         stmmac_service_event_schedule(priv);
286 }
287
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *      If a specific clk_csr value is passed from the platform
295  *      this means that the CSR Clock Range selection cannot be
296  *      changed at run-time and it is fixed (as reported in the driver
297  *      documentation). Viceversa the driver will try to set the MDC
298  *      clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302         u32 clk_rate;
303
304         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305
306         /* Platform provided default clk_csr would be assumed valid
307          * for all other cases except for the below mentioned ones.
308          * For values higher than the IEEE 802.3 specified frequency
309          * we can not estimate the proper divider as it is not known
310          * the frequency of clk_csr_i. So we do not change the default
311          * divider.
312          */
313         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314                 if (clk_rate < CSR_F_35M)
315                         priv->clk_csr = STMMAC_CSR_20_35M;
316                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317                         priv->clk_csr = STMMAC_CSR_35_60M;
318                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319                         priv->clk_csr = STMMAC_CSR_60_100M;
320                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321                         priv->clk_csr = STMMAC_CSR_100_150M;
322                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323                         priv->clk_csr = STMMAC_CSR_150_250M;
324                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325                         priv->clk_csr = STMMAC_CSR_250_300M;
326         }
327
328         if (priv->plat->has_sun8i) {
329                 if (clk_rate > 160000000)
330                         priv->clk_csr = 0x03;
331                 else if (clk_rate > 80000000)
332                         priv->clk_csr = 0x02;
333                 else if (clk_rate > 40000000)
334                         priv->clk_csr = 0x01;
335                 else
336                         priv->clk_csr = 0;
337         }
338
339         if (priv->plat->has_xgmac) {
340                 if (clk_rate > 400000000)
341                         priv->clk_csr = 0x5;
342                 else if (clk_rate > 350000000)
343                         priv->clk_csr = 0x4;
344                 else if (clk_rate > 300000000)
345                         priv->clk_csr = 0x3;
346                 else if (clk_rate > 250000000)
347                         priv->clk_csr = 0x2;
348                 else if (clk_rate > 150000000)
349                         priv->clk_csr = 0x1;
350                 else
351                         priv->clk_csr = 0x0;
352         }
353 }
354
355 static void print_pkt(unsigned char *buf, int len)
356 {
357         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364         u32 avail;
365
366         if (tx_q->dirty_tx > tx_q->cur_tx)
367                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368         else
369                 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370
371         return avail;
372 }
373
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382         u32 dirty;
383
384         if (rx_q->dirty_rx <= rx_q->cur_rx)
385                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
386         else
387                 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388
389         return dirty;
390 }
391
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394         int tx_lpi_timer;
395
396         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
397         priv->eee_sw_timer_en = en ? 0 : 1;
398         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410         u32 tx_cnt = priv->plat->tx_queues_to_use;
411         u32 queue;
412
413         /* check if all TX queues have the work finished */
414         for (queue = 0; queue < tx_cnt; queue++) {
415                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416
417                 if (tx_q->dirty_tx != tx_q->cur_tx)
418                         return -EBUSY; /* still unfinished work */
419         }
420
421         /* Check and enter in LPI mode */
422         if (!priv->tx_path_in_lpi_mode)
423                 stmmac_set_eee_mode(priv, priv->hw,
424                                 priv->plat->en_tx_lpi_clockgating);
425         return 0;
426 }
427
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436         if (!priv->eee_sw_timer_en) {
437                 stmmac_lpi_entry_timer_config(priv, 0);
438                 return;
439         }
440
441         stmmac_reset_eee_mode(priv, priv->hw);
442         del_timer_sync(&priv->eee_ctrl_timer);
443         priv->tx_path_in_lpi_mode = false;
444 }
445
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456
457         if (stmmac_enable_eee_mode(priv))
458                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471         int eee_tw_timer = priv->eee_tw_timer;
472
473         /* Using PCS we cannot dial with the phy registers at this stage
474          * so we do not support extra feature like EEE.
475          */
476         if (priv->hw->pcs == STMMAC_PCS_TBI ||
477             priv->hw->pcs == STMMAC_PCS_RTBI)
478                 return false;
479
480         /* Check if MAC core supports the EEE feature. */
481         if (!priv->dma_cap.eee)
482                 return false;
483
484         mutex_lock(&priv->lock);
485
486         /* Check if it needs to be deactivated */
487         if (!priv->eee_active) {
488                 if (priv->eee_enabled) {
489                         netdev_dbg(priv->dev, "disable EEE\n");
490                         stmmac_lpi_entry_timer_config(priv, 0);
491                         del_timer_sync(&priv->eee_ctrl_timer);
492                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493                         if (priv->hw->xpcs)
494                                 xpcs_config_eee(priv->hw->xpcs,
495                                                 priv->plat->mult_fact_100ns,
496                                                 false);
497                 }
498                 mutex_unlock(&priv->lock);
499                 return false;
500         }
501
502         if (priv->eee_active && !priv->eee_enabled) {
503                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505                                      eee_tw_timer);
506                 if (priv->hw->xpcs)
507                         xpcs_config_eee(priv->hw->xpcs,
508                                         priv->plat->mult_fact_100ns,
509                                         true);
510         }
511
512         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513                 del_timer_sync(&priv->eee_ctrl_timer);
514                 priv->tx_path_in_lpi_mode = false;
515                 stmmac_lpi_entry_timer_config(priv, 1);
516         } else {
517                 stmmac_lpi_entry_timer_config(priv, 0);
518                 mod_timer(&priv->eee_ctrl_timer,
519                           STMMAC_LPI_T(priv->tx_lpi_timer));
520         }
521
522         mutex_unlock(&priv->lock);
523         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524         return true;
525 }
526
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536                                    struct dma_desc *p, struct sk_buff *skb)
537 {
538         struct skb_shared_hwtstamps shhwtstamp;
539         bool found = false;
540         u64 ns = 0;
541
542         if (!priv->hwts_tx_en)
543                 return;
544
545         /* exit if skb doesn't support hw tstamp */
546         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547                 return;
548
549         /* check tx tstamp status */
550         if (stmmac_get_tx_timestamp_status(priv, p)) {
551                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552                 found = true;
553         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554                 found = true;
555         }
556
557         if (found) {
558                 ns -= priv->plat->cdc_error_adj;
559
560                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
562
563                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564                 /* pass tstamp to stack */
565                 skb_tstamp_tx(skb, &shhwtstamp);
566         }
567 }
568
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579                                    struct dma_desc *np, struct sk_buff *skb)
580 {
581         struct skb_shared_hwtstamps *shhwtstamp = NULL;
582         struct dma_desc *desc = p;
583         u64 ns = 0;
584
585         if (!priv->hwts_rx_en)
586                 return;
587         /* For GMAC4, the valid timestamp is from CTX next desc. */
588         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589                 desc = np;
590
591         /* Check if timestamp is available */
592         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594
595                 ns -= priv->plat->cdc_error_adj;
596
597                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598                 shhwtstamp = skb_hwtstamps(skb);
599                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
601         } else  {
602                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603         }
604 }
605
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619         struct stmmac_priv *priv = netdev_priv(dev);
620         struct hwtstamp_config config;
621         u32 ptp_v2 = 0;
622         u32 tstamp_all = 0;
623         u32 ptp_over_ipv4_udp = 0;
624         u32 ptp_over_ipv6_udp = 0;
625         u32 ptp_over_ethernet = 0;
626         u32 snap_type_sel = 0;
627         u32 ts_master_en = 0;
628         u32 ts_event_en = 0;
629
630         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631                 netdev_alert(priv->dev, "No support for HW time stamping\n");
632                 priv->hwts_tx_en = 0;
633                 priv->hwts_rx_en = 0;
634
635                 return -EOPNOTSUPP;
636         }
637
638         if (copy_from_user(&config, ifr->ifr_data,
639                            sizeof(config)))
640                 return -EFAULT;
641
642         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643                    __func__, config.flags, config.tx_type, config.rx_filter);
644
645         if (config.tx_type != HWTSTAMP_TX_OFF &&
646             config.tx_type != HWTSTAMP_TX_ON)
647                 return -ERANGE;
648
649         if (priv->adv_ts) {
650                 switch (config.rx_filter) {
651                 case HWTSTAMP_FILTER_NONE:
652                         /* time stamp no incoming packet at all */
653                         config.rx_filter = HWTSTAMP_FILTER_NONE;
654                         break;
655
656                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657                         /* PTP v1, UDP, any kind of event packet */
658                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659                         /* 'xmac' hardware can support Sync, Pdelay_Req and
660                          * Pdelay_resp by setting bit14 and bits17/16 to 01
661                          * This leaves Delay_Req timestamps out.
662                          * Enable all events *and* general purpose message
663                          * timestamping
664                          */
665                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668                         break;
669
670                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671                         /* PTP v1, UDP, Sync packet */
672                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673                         /* take time stamp for SYNC messages only */
674                         ts_event_en = PTP_TCR_TSEVNTENA;
675
676                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678                         break;
679
680                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681                         /* PTP v1, UDP, Delay_req packet */
682                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683                         /* take time stamp for Delay_Req messages only */
684                         ts_master_en = PTP_TCR_TSMSTRENA;
685                         ts_event_en = PTP_TCR_TSEVNTENA;
686
687                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689                         break;
690
691                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692                         /* PTP v2, UDP, any kind of event packet */
693                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694                         ptp_v2 = PTP_TCR_TSVER2ENA;
695                         /* take time stamp for all event messages */
696                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697
698                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700                         break;
701
702                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703                         /* PTP v2, UDP, Sync packet */
704                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705                         ptp_v2 = PTP_TCR_TSVER2ENA;
706                         /* take time stamp for SYNC messages only */
707                         ts_event_en = PTP_TCR_TSEVNTENA;
708
709                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711                         break;
712
713                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714                         /* PTP v2, UDP, Delay_req packet */
715                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716                         ptp_v2 = PTP_TCR_TSVER2ENA;
717                         /* take time stamp for Delay_Req messages only */
718                         ts_master_en = PTP_TCR_TSMSTRENA;
719                         ts_event_en = PTP_TCR_TSEVNTENA;
720
721                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723                         break;
724
725                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
726                         /* PTP v2/802.AS1 any layer, any kind of event packet */
727                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728                         ptp_v2 = PTP_TCR_TSVER2ENA;
729                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730                         if (priv->synopsys_id < DWMAC_CORE_4_10)
731                                 ts_event_en = PTP_TCR_TSEVNTENA;
732                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734                         ptp_over_ethernet = PTP_TCR_TSIPENA;
735                         break;
736
737                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
738                         /* PTP v2/802.AS1, any layer, Sync packet */
739                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740                         ptp_v2 = PTP_TCR_TSVER2ENA;
741                         /* take time stamp for SYNC messages only */
742                         ts_event_en = PTP_TCR_TSEVNTENA;
743
744                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746                         ptp_over_ethernet = PTP_TCR_TSIPENA;
747                         break;
748
749                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750                         /* PTP v2/802.AS1, any layer, Delay_req packet */
751                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752                         ptp_v2 = PTP_TCR_TSVER2ENA;
753                         /* take time stamp for Delay_Req messages only */
754                         ts_master_en = PTP_TCR_TSMSTRENA;
755                         ts_event_en = PTP_TCR_TSEVNTENA;
756
757                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759                         ptp_over_ethernet = PTP_TCR_TSIPENA;
760                         break;
761
762                 case HWTSTAMP_FILTER_NTP_ALL:
763                 case HWTSTAMP_FILTER_ALL:
764                         /* time stamp any incoming packet */
765                         config.rx_filter = HWTSTAMP_FILTER_ALL;
766                         tstamp_all = PTP_TCR_TSENALL;
767                         break;
768
769                 default:
770                         return -ERANGE;
771                 }
772         } else {
773                 switch (config.rx_filter) {
774                 case HWTSTAMP_FILTER_NONE:
775                         config.rx_filter = HWTSTAMP_FILTER_NONE;
776                         break;
777                 default:
778                         /* PTP v1, UDP, any kind of event packet */
779                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780                         break;
781                 }
782         }
783         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785
786         priv->systime_flags = STMMAC_HWTS_ACTIVE;
787
788         if (priv->hwts_tx_en || priv->hwts_rx_en) {
789                 priv->systime_flags |= tstamp_all | ptp_v2 |
790                                        ptp_over_ethernet | ptp_over_ipv6_udp |
791                                        ptp_over_ipv4_udp | ts_event_en |
792                                        ts_master_en | snap_type_sel;
793         }
794
795         stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796
797         memcpy(&priv->tstamp_config, &config, sizeof(config));
798
799         return copy_to_user(ifr->ifr_data, &config,
800                             sizeof(config)) ? -EFAULT : 0;
801 }
802
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814         struct stmmac_priv *priv = netdev_priv(dev);
815         struct hwtstamp_config *config = &priv->tstamp_config;
816
817         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818                 return -EOPNOTSUPP;
819
820         return copy_to_user(ifr->ifr_data, config,
821                             sizeof(*config)) ? -EFAULT : 0;
822 }
823
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837         struct timespec64 now;
838         u32 sec_inc = 0;
839         u64 temp = 0;
840
841         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842                 return -EOPNOTSUPP;
843
844         stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845         priv->systime_flags = systime_flags;
846
847         /* program Sub Second Increment reg */
848         stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849                                            priv->plat->clk_ptp_rate,
850                                            xmac, &sec_inc);
851         temp = div_u64(1000000000ULL, sec_inc);
852
853         /* Store sub second increment for later use */
854         priv->sub_second_inc = sec_inc;
855
856         /* calculate default added value:
857          * formula is :
858          * addend = (2^32)/freq_div_ratio;
859          * where, freq_div_ratio = 1e9ns/sec_inc
860          */
861         temp = (u64)(temp << 32);
862         priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863         stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864
865         /* initialize system time */
866         ktime_get_real_ts64(&now);
867
868         /* lower 32 bits of tv_sec are safe until y2106 */
869         stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870
871         return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885         int ret;
886
887         if (priv->plat->ptp_clk_freq_config)
888                 priv->plat->ptp_clk_freq_config(priv);
889
890         ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891         if (ret)
892                 return ret;
893
894         priv->adv_ts = 0;
895         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896         if (xmac && priv->dma_cap.atime_stamp)
897                 priv->adv_ts = 1;
898         /* Dwmac 3.x core with extend_desc can support adv_ts */
899         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900                 priv->adv_ts = 1;
901
902         if (priv->dma_cap.time_stamp)
903                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904
905         if (priv->adv_ts)
906                 netdev_info(priv->dev,
907                             "IEEE 1588-2008 Advanced Timestamp supported\n");
908
909         priv->hwts_tx_en = 0;
910         priv->hwts_rx_en = 0;
911
912         return 0;
913 }
914
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917         clk_disable_unprepare(priv->plat->clk_ptp_ref);
918         stmmac_ptp_unregister(priv);
919 }
920
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929         u32 tx_cnt = priv->plat->tx_queues_to_use;
930
931         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932                         priv->pause, tx_cnt);
933 }
934
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936                                                  phy_interface_t interface)
937 {
938         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939
940         if (!priv->hw->xpcs)
941                 return NULL;
942
943         return &priv->hw->xpcs->pcs;
944 }
945
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947                               const struct phylink_link_state *state)
948 {
949         /* Nothing to do, xpcs_config() handles everything */
950 }
951
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957         bool *hs_enable = &fpe_cfg->hs_enable;
958
959         if (is_up && *hs_enable) {
960                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961         } else {
962                 *lo_state = FPE_STATE_OFF;
963                 *lp_state = FPE_STATE_OFF;
964         }
965 }
966
967 static void stmmac_mac_link_down(struct phylink_config *config,
968                                  unsigned int mode, phy_interface_t interface)
969 {
970         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971
972         stmmac_mac_set(priv, priv->ioaddr, false);
973         priv->eee_active = false;
974         priv->tx_lpi_enabled = false;
975         priv->eee_enabled = stmmac_eee_init(priv);
976         stmmac_set_eee_pls(priv, priv->hw, false);
977
978         if (priv->dma_cap.fpesel)
979                 stmmac_fpe_link_state_handle(priv, false);
980 }
981
982 static void stmmac_mac_link_up(struct phylink_config *config,
983                                struct phy_device *phy,
984                                unsigned int mode, phy_interface_t interface,
985                                int speed, int duplex,
986                                bool tx_pause, bool rx_pause)
987 {
988         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989         u32 old_ctrl, ctrl;
990
991         old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992         ctrl = old_ctrl & ~priv->hw->link.speed_mask;
993
994         if (interface == PHY_INTERFACE_MODE_USXGMII) {
995                 switch (speed) {
996                 case SPEED_10000:
997                         ctrl |= priv->hw->link.xgmii.speed10000;
998                         break;
999                 case SPEED_5000:
1000                         ctrl |= priv->hw->link.xgmii.speed5000;
1001                         break;
1002                 case SPEED_2500:
1003                         ctrl |= priv->hw->link.xgmii.speed2500;
1004                         break;
1005                 default:
1006                         return;
1007                 }
1008         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009                 switch (speed) {
1010                 case SPEED_100000:
1011                         ctrl |= priv->hw->link.xlgmii.speed100000;
1012                         break;
1013                 case SPEED_50000:
1014                         ctrl |= priv->hw->link.xlgmii.speed50000;
1015                         break;
1016                 case SPEED_40000:
1017                         ctrl |= priv->hw->link.xlgmii.speed40000;
1018                         break;
1019                 case SPEED_25000:
1020                         ctrl |= priv->hw->link.xlgmii.speed25000;
1021                         break;
1022                 case SPEED_10000:
1023                         ctrl |= priv->hw->link.xgmii.speed10000;
1024                         break;
1025                 case SPEED_2500:
1026                         ctrl |= priv->hw->link.speed2500;
1027                         break;
1028                 case SPEED_1000:
1029                         ctrl |= priv->hw->link.speed1000;
1030                         break;
1031                 default:
1032                         return;
1033                 }
1034         } else {
1035                 switch (speed) {
1036                 case SPEED_2500:
1037                         ctrl |= priv->hw->link.speed2500;
1038                         break;
1039                 case SPEED_1000:
1040                         ctrl |= priv->hw->link.speed1000;
1041                         break;
1042                 case SPEED_100:
1043                         ctrl |= priv->hw->link.speed100;
1044                         break;
1045                 case SPEED_10:
1046                         ctrl |= priv->hw->link.speed10;
1047                         break;
1048                 default:
1049                         return;
1050                 }
1051         }
1052
1053         priv->speed = speed;
1054
1055         if (priv->plat->fix_mac_speed)
1056                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057
1058         if (!duplex)
1059                 ctrl &= ~priv->hw->link.duplex;
1060         else
1061                 ctrl |= priv->hw->link.duplex;
1062
1063         /* Flow Control operation */
1064         if (rx_pause && tx_pause)
1065                 priv->flow_ctrl = FLOW_AUTO;
1066         else if (rx_pause && !tx_pause)
1067                 priv->flow_ctrl = FLOW_RX;
1068         else if (!rx_pause && tx_pause)
1069                 priv->flow_ctrl = FLOW_TX;
1070         else
1071                 priv->flow_ctrl = FLOW_OFF;
1072
1073         stmmac_mac_flow_ctrl(priv, duplex);
1074
1075         if (ctrl != old_ctrl)
1076                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1077
1078         stmmac_mac_set(priv, priv->ioaddr, true);
1079         if (phy && priv->dma_cap.eee) {
1080                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1081                 priv->eee_enabled = stmmac_eee_init(priv);
1082                 priv->tx_lpi_enabled = priv->eee_enabled;
1083                 stmmac_set_eee_pls(priv, priv->hw, true);
1084         }
1085
1086         if (priv->dma_cap.fpesel)
1087                 stmmac_fpe_link_state_handle(priv, true);
1088 }
1089
1090 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1091         .validate = phylink_generic_validate,
1092         .mac_select_pcs = stmmac_mac_select_pcs,
1093         .mac_config = stmmac_mac_config,
1094         .mac_link_down = stmmac_mac_link_down,
1095         .mac_link_up = stmmac_mac_link_up,
1096 };
1097
1098 /**
1099  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1100  * @priv: driver private structure
1101  * Description: this is to verify if the HW supports the PCS.
1102  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1103  * configured for the TBI, RTBI, or SGMII PHY interface.
1104  */
1105 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1106 {
1107         int interface = priv->plat->interface;
1108
1109         if (priv->dma_cap.pcs) {
1110                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1111                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1112                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1113                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1114                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1115                         priv->hw->pcs = STMMAC_PCS_RGMII;
1116                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1117                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1118                         priv->hw->pcs = STMMAC_PCS_SGMII;
1119                 }
1120         }
1121 }
1122
1123 /**
1124  * stmmac_init_phy - PHY initialization
1125  * @dev: net device structure
1126  * Description: it initializes the driver's PHY state, and attaches the PHY
1127  * to the mac driver.
1128  *  Return value:
1129  *  0 on success
1130  */
1131 static int stmmac_init_phy(struct net_device *dev)
1132 {
1133         struct stmmac_priv *priv = netdev_priv(dev);
1134         struct fwnode_handle *fwnode;
1135         int ret;
1136
1137         fwnode = of_fwnode_handle(priv->plat->phylink_node);
1138         if (!fwnode)
1139                 fwnode = dev_fwnode(priv->device);
1140
1141         if (fwnode)
1142                 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1143
1144         /* Some DT bindings do not set-up the PHY handle. Let's try to
1145          * manually parse it
1146          */
1147         if (!fwnode || ret) {
1148                 int addr = priv->plat->phy_addr;
1149                 struct phy_device *phydev;
1150
1151                 phydev = mdiobus_get_phy(priv->mii, addr);
1152                 if (!phydev) {
1153                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1154                         return -ENODEV;
1155                 }
1156
1157                 ret = phylink_connect_phy(priv->phylink, phydev);
1158         }
1159
1160         if (!priv->plat->pmt) {
1161                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1162
1163                 phylink_ethtool_get_wol(priv->phylink, &wol);
1164                 device_set_wakeup_capable(priv->device, !!wol.supported);
1165         }
1166
1167         return ret;
1168 }
1169
1170 static int stmmac_phy_setup(struct stmmac_priv *priv)
1171 {
1172         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1173         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1174         int max_speed = priv->plat->max_speed;
1175         int mode = priv->plat->phy_interface;
1176         struct phylink *phylink;
1177
1178         priv->phylink_config.dev = &priv->dev->dev;
1179         priv->phylink_config.type = PHYLINK_NETDEV;
1180         if (priv->plat->mdio_bus_data)
1181                 priv->phylink_config.ovr_an_inband =
1182                         mdio_bus_data->xpcs_an_inband;
1183
1184         if (!fwnode)
1185                 fwnode = dev_fwnode(priv->device);
1186
1187         /* Set the platform/firmware specified interface mode */
1188         __set_bit(mode, priv->phylink_config.supported_interfaces);
1189
1190         /* If we have an xpcs, it defines which PHY interfaces are supported. */
1191         if (priv->hw->xpcs)
1192                 xpcs_get_interfaces(priv->hw->xpcs,
1193                                     priv->phylink_config.supported_interfaces);
1194
1195         priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1196                 MAC_10 | MAC_100;
1197
1198         if (!max_speed || max_speed >= 1000)
1199                 priv->phylink_config.mac_capabilities |= MAC_1000;
1200
1201         if (priv->plat->has_gmac4) {
1202                 if (!max_speed || max_speed >= 2500)
1203                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1204         } else if (priv->plat->has_xgmac) {
1205                 if (!max_speed || max_speed >= 2500)
1206                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1207                 if (!max_speed || max_speed >= 5000)
1208                         priv->phylink_config.mac_capabilities |= MAC_5000FD;
1209                 if (!max_speed || max_speed >= 10000)
1210                         priv->phylink_config.mac_capabilities |= MAC_10000FD;
1211                 if (!max_speed || max_speed >= 25000)
1212                         priv->phylink_config.mac_capabilities |= MAC_25000FD;
1213                 if (!max_speed || max_speed >= 40000)
1214                         priv->phylink_config.mac_capabilities |= MAC_40000FD;
1215                 if (!max_speed || max_speed >= 50000)
1216                         priv->phylink_config.mac_capabilities |= MAC_50000FD;
1217                 if (!max_speed || max_speed >= 100000)
1218                         priv->phylink_config.mac_capabilities |= MAC_100000FD;
1219         }
1220
1221         /* Half-Duplex can only work with single queue */
1222         if (priv->plat->tx_queues_to_use > 1)
1223                 priv->phylink_config.mac_capabilities &=
1224                         ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1225         priv->phylink_config.mac_managed_pm = true;
1226
1227         phylink = phylink_create(&priv->phylink_config, fwnode,
1228                                  mode, &stmmac_phylink_mac_ops);
1229         if (IS_ERR(phylink))
1230                 return PTR_ERR(phylink);
1231
1232         priv->phylink = phylink;
1233         return 0;
1234 }
1235
1236 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1237                                     struct stmmac_dma_conf *dma_conf)
1238 {
1239         u32 rx_cnt = priv->plat->rx_queues_to_use;
1240         unsigned int desc_size;
1241         void *head_rx;
1242         u32 queue;
1243
1244         /* Display RX rings */
1245         for (queue = 0; queue < rx_cnt; queue++) {
1246                 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1247
1248                 pr_info("\tRX Queue %u rings\n", queue);
1249
1250                 if (priv->extend_desc) {
1251                         head_rx = (void *)rx_q->dma_erx;
1252                         desc_size = sizeof(struct dma_extended_desc);
1253                 } else {
1254                         head_rx = (void *)rx_q->dma_rx;
1255                         desc_size = sizeof(struct dma_desc);
1256                 }
1257
1258                 /* Display RX ring */
1259                 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1260                                     rx_q->dma_rx_phy, desc_size);
1261         }
1262 }
1263
1264 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1265                                     struct stmmac_dma_conf *dma_conf)
1266 {
1267         u32 tx_cnt = priv->plat->tx_queues_to_use;
1268         unsigned int desc_size;
1269         void *head_tx;
1270         u32 queue;
1271
1272         /* Display TX rings */
1273         for (queue = 0; queue < tx_cnt; queue++) {
1274                 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1275
1276                 pr_info("\tTX Queue %d rings\n", queue);
1277
1278                 if (priv->extend_desc) {
1279                         head_tx = (void *)tx_q->dma_etx;
1280                         desc_size = sizeof(struct dma_extended_desc);
1281                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1282                         head_tx = (void *)tx_q->dma_entx;
1283                         desc_size = sizeof(struct dma_edesc);
1284                 } else {
1285                         head_tx = (void *)tx_q->dma_tx;
1286                         desc_size = sizeof(struct dma_desc);
1287                 }
1288
1289                 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1290                                     tx_q->dma_tx_phy, desc_size);
1291         }
1292 }
1293
1294 static void stmmac_display_rings(struct stmmac_priv *priv,
1295                                  struct stmmac_dma_conf *dma_conf)
1296 {
1297         /* Display RX ring */
1298         stmmac_display_rx_rings(priv, dma_conf);
1299
1300         /* Display TX ring */
1301         stmmac_display_tx_rings(priv, dma_conf);
1302 }
1303
1304 static int stmmac_set_bfsize(int mtu, int bufsize)
1305 {
1306         int ret = bufsize;
1307
1308         if (mtu >= BUF_SIZE_8KiB)
1309                 ret = BUF_SIZE_16KiB;
1310         else if (mtu >= BUF_SIZE_4KiB)
1311                 ret = BUF_SIZE_8KiB;
1312         else if (mtu >= BUF_SIZE_2KiB)
1313                 ret = BUF_SIZE_4KiB;
1314         else if (mtu > DEFAULT_BUFSIZE)
1315                 ret = BUF_SIZE_2KiB;
1316         else
1317                 ret = DEFAULT_BUFSIZE;
1318
1319         return ret;
1320 }
1321
1322 /**
1323  * stmmac_clear_rx_descriptors - clear RX descriptors
1324  * @priv: driver private structure
1325  * @dma_conf: structure to take the dma data
1326  * @queue: RX queue index
1327  * Description: this function is called to clear the RX descriptors
1328  * in case of both basic and extended descriptors are used.
1329  */
1330 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1331                                         struct stmmac_dma_conf *dma_conf,
1332                                         u32 queue)
1333 {
1334         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1335         int i;
1336
1337         /* Clear the RX descriptors */
1338         for (i = 0; i < dma_conf->dma_rx_size; i++)
1339                 if (priv->extend_desc)
1340                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1341                                         priv->use_riwt, priv->mode,
1342                                         (i == dma_conf->dma_rx_size - 1),
1343                                         dma_conf->dma_buf_sz);
1344                 else
1345                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1346                                         priv->use_riwt, priv->mode,
1347                                         (i == dma_conf->dma_rx_size - 1),
1348                                         dma_conf->dma_buf_sz);
1349 }
1350
1351 /**
1352  * stmmac_clear_tx_descriptors - clear tx descriptors
1353  * @priv: driver private structure
1354  * @dma_conf: structure to take the dma data
1355  * @queue: TX queue index.
1356  * Description: this function is called to clear the TX descriptors
1357  * in case of both basic and extended descriptors are used.
1358  */
1359 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1360                                         struct stmmac_dma_conf *dma_conf,
1361                                         u32 queue)
1362 {
1363         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1364         int i;
1365
1366         /* Clear the TX descriptors */
1367         for (i = 0; i < dma_conf->dma_tx_size; i++) {
1368                 int last = (i == (dma_conf->dma_tx_size - 1));
1369                 struct dma_desc *p;
1370
1371                 if (priv->extend_desc)
1372                         p = &tx_q->dma_etx[i].basic;
1373                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1374                         p = &tx_q->dma_entx[i].basic;
1375                 else
1376                         p = &tx_q->dma_tx[i];
1377
1378                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1379         }
1380 }
1381
1382 /**
1383  * stmmac_clear_descriptors - clear descriptors
1384  * @priv: driver private structure
1385  * @dma_conf: structure to take the dma data
1386  * Description: this function is called to clear the TX and RX descriptors
1387  * in case of both basic and extended descriptors are used.
1388  */
1389 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1390                                      struct stmmac_dma_conf *dma_conf)
1391 {
1392         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1393         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1394         u32 queue;
1395
1396         /* Clear the RX descriptors */
1397         for (queue = 0; queue < rx_queue_cnt; queue++)
1398                 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1399
1400         /* Clear the TX descriptors */
1401         for (queue = 0; queue < tx_queue_cnt; queue++)
1402                 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1403 }
1404
1405 /**
1406  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1407  * @priv: driver private structure
1408  * @dma_conf: structure to take the dma data
1409  * @p: descriptor pointer
1410  * @i: descriptor index
1411  * @flags: gfp flag
1412  * @queue: RX queue index
1413  * Description: this function is called to allocate a receive buffer, perform
1414  * the DMA mapping and init the descriptor.
1415  */
1416 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1417                                   struct stmmac_dma_conf *dma_conf,
1418                                   struct dma_desc *p,
1419                                   int i, gfp_t flags, u32 queue)
1420 {
1421         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1422         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1423         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1424
1425         if (priv->dma_cap.addr64 <= 32)
1426                 gfp |= GFP_DMA32;
1427
1428         if (!buf->page) {
1429                 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1430                 if (!buf->page)
1431                         return -ENOMEM;
1432                 buf->page_offset = stmmac_rx_offset(priv);
1433         }
1434
1435         if (priv->sph && !buf->sec_page) {
1436                 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1437                 if (!buf->sec_page)
1438                         return -ENOMEM;
1439
1440                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1441                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1442         } else {
1443                 buf->sec_page = NULL;
1444                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1445         }
1446
1447         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1448
1449         stmmac_set_desc_addr(priv, p, buf->addr);
1450         if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1451                 stmmac_init_desc3(priv, p);
1452
1453         return 0;
1454 }
1455
1456 /**
1457  * stmmac_free_rx_buffer - free RX dma buffers
1458  * @priv: private structure
1459  * @rx_q: RX queue
1460  * @i: buffer index.
1461  */
1462 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1463                                   struct stmmac_rx_queue *rx_q,
1464                                   int i)
1465 {
1466         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1467
1468         if (buf->page)
1469                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1470         buf->page = NULL;
1471
1472         if (buf->sec_page)
1473                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1474         buf->sec_page = NULL;
1475 }
1476
1477 /**
1478  * stmmac_free_tx_buffer - free RX dma buffers
1479  * @priv: private structure
1480  * @dma_conf: structure to take the dma data
1481  * @queue: RX queue index
1482  * @i: buffer index.
1483  */
1484 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1485                                   struct stmmac_dma_conf *dma_conf,
1486                                   u32 queue, int i)
1487 {
1488         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1489
1490         if (tx_q->tx_skbuff_dma[i].buf &&
1491             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1492                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1493                         dma_unmap_page(priv->device,
1494                                        tx_q->tx_skbuff_dma[i].buf,
1495                                        tx_q->tx_skbuff_dma[i].len,
1496                                        DMA_TO_DEVICE);
1497                 else
1498                         dma_unmap_single(priv->device,
1499                                          tx_q->tx_skbuff_dma[i].buf,
1500                                          tx_q->tx_skbuff_dma[i].len,
1501                                          DMA_TO_DEVICE);
1502         }
1503
1504         if (tx_q->xdpf[i] &&
1505             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1506              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1507                 xdp_return_frame(tx_q->xdpf[i]);
1508                 tx_q->xdpf[i] = NULL;
1509         }
1510
1511         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1512                 tx_q->xsk_frames_done++;
1513
1514         if (tx_q->tx_skbuff[i] &&
1515             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1516                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1517                 tx_q->tx_skbuff[i] = NULL;
1518         }
1519
1520         tx_q->tx_skbuff_dma[i].buf = 0;
1521         tx_q->tx_skbuff_dma[i].map_as_page = false;
1522 }
1523
1524 /**
1525  * dma_free_rx_skbufs - free RX dma buffers
1526  * @priv: private structure
1527  * @dma_conf: structure to take the dma data
1528  * @queue: RX queue index
1529  */
1530 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1531                                struct stmmac_dma_conf *dma_conf,
1532                                u32 queue)
1533 {
1534         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1535         int i;
1536
1537         for (i = 0; i < dma_conf->dma_rx_size; i++)
1538                 stmmac_free_rx_buffer(priv, rx_q, i);
1539 }
1540
1541 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1542                                    struct stmmac_dma_conf *dma_conf,
1543                                    u32 queue, gfp_t flags)
1544 {
1545         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1546         int i;
1547
1548         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1549                 struct dma_desc *p;
1550                 int ret;
1551
1552                 if (priv->extend_desc)
1553                         p = &((rx_q->dma_erx + i)->basic);
1554                 else
1555                         p = rx_q->dma_rx + i;
1556
1557                 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1558                                              queue);
1559                 if (ret)
1560                         return ret;
1561
1562                 rx_q->buf_alloc_num++;
1563         }
1564
1565         return 0;
1566 }
1567
1568 /**
1569  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1570  * @priv: private structure
1571  * @dma_conf: structure to take the dma data
1572  * @queue: RX queue index
1573  */
1574 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1575                                 struct stmmac_dma_conf *dma_conf,
1576                                 u32 queue)
1577 {
1578         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1579         int i;
1580
1581         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1582                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1583
1584                 if (!buf->xdp)
1585                         continue;
1586
1587                 xsk_buff_free(buf->xdp);
1588                 buf->xdp = NULL;
1589         }
1590 }
1591
1592 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1593                                       struct stmmac_dma_conf *dma_conf,
1594                                       u32 queue)
1595 {
1596         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1597         int i;
1598
1599         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1600                 struct stmmac_rx_buffer *buf;
1601                 dma_addr_t dma_addr;
1602                 struct dma_desc *p;
1603
1604                 if (priv->extend_desc)
1605                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1606                 else
1607                         p = rx_q->dma_rx + i;
1608
1609                 buf = &rx_q->buf_pool[i];
1610
1611                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1612                 if (!buf->xdp)
1613                         return -ENOMEM;
1614
1615                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1616                 stmmac_set_desc_addr(priv, p, dma_addr);
1617                 rx_q->buf_alloc_num++;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1624 {
1625         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1626                 return NULL;
1627
1628         return xsk_get_pool_from_qid(priv->dev, queue);
1629 }
1630
1631 /**
1632  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1633  * @priv: driver private structure
1634  * @dma_conf: structure to take the dma data
1635  * @queue: RX queue index
1636  * @flags: gfp flag.
1637  * Description: this function initializes the DMA RX descriptors
1638  * and allocates the socket buffers. It supports the chained and ring
1639  * modes.
1640  */
1641 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1642                                     struct stmmac_dma_conf *dma_conf,
1643                                     u32 queue, gfp_t flags)
1644 {
1645         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1646         int ret;
1647
1648         netif_dbg(priv, probe, priv->dev,
1649                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1650                   (u32)rx_q->dma_rx_phy);
1651
1652         stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1653
1654         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1655
1656         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1657
1658         if (rx_q->xsk_pool) {
1659                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1660                                                    MEM_TYPE_XSK_BUFF_POOL,
1661                                                    NULL));
1662                 netdev_info(priv->dev,
1663                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1664                             rx_q->queue_index);
1665                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1666         } else {
1667                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1668                                                    MEM_TYPE_PAGE_POOL,
1669                                                    rx_q->page_pool));
1670                 netdev_info(priv->dev,
1671                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1672                             rx_q->queue_index);
1673         }
1674
1675         if (rx_q->xsk_pool) {
1676                 /* RX XDP ZC buffer pool may not be populated, e.g.
1677                  * xdpsock TX-only.
1678                  */
1679                 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1680         } else {
1681                 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1682                 if (ret < 0)
1683                         return -ENOMEM;
1684         }
1685
1686         /* Setup the chained descriptor addresses */
1687         if (priv->mode == STMMAC_CHAIN_MODE) {
1688                 if (priv->extend_desc)
1689                         stmmac_mode_init(priv, rx_q->dma_erx,
1690                                          rx_q->dma_rx_phy,
1691                                          dma_conf->dma_rx_size, 1);
1692                 else
1693                         stmmac_mode_init(priv, rx_q->dma_rx,
1694                                          rx_q->dma_rx_phy,
1695                                          dma_conf->dma_rx_size, 0);
1696         }
1697
1698         return 0;
1699 }
1700
1701 static int init_dma_rx_desc_rings(struct net_device *dev,
1702                                   struct stmmac_dma_conf *dma_conf,
1703                                   gfp_t flags)
1704 {
1705         struct stmmac_priv *priv = netdev_priv(dev);
1706         u32 rx_count = priv->plat->rx_queues_to_use;
1707         int queue;
1708         int ret;
1709
1710         /* RX INITIALIZATION */
1711         netif_dbg(priv, probe, priv->dev,
1712                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1713
1714         for (queue = 0; queue < rx_count; queue++) {
1715                 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1716                 if (ret)
1717                         goto err_init_rx_buffers;
1718         }
1719
1720         return 0;
1721
1722 err_init_rx_buffers:
1723         while (queue >= 0) {
1724                 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1725
1726                 if (rx_q->xsk_pool)
1727                         dma_free_rx_xskbufs(priv, dma_conf, queue);
1728                 else
1729                         dma_free_rx_skbufs(priv, dma_conf, queue);
1730
1731                 rx_q->buf_alloc_num = 0;
1732                 rx_q->xsk_pool = NULL;
1733
1734                 queue--;
1735         }
1736
1737         return ret;
1738 }
1739
1740 /**
1741  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1742  * @priv: driver private structure
1743  * @dma_conf: structure to take the dma data
1744  * @queue: TX queue index
1745  * Description: this function initializes the DMA TX descriptors
1746  * and allocates the socket buffers. It supports the chained and ring
1747  * modes.
1748  */
1749 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1750                                     struct stmmac_dma_conf *dma_conf,
1751                                     u32 queue)
1752 {
1753         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1754         int i;
1755
1756         netif_dbg(priv, probe, priv->dev,
1757                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1758                   (u32)tx_q->dma_tx_phy);
1759
1760         /* Setup the chained descriptor addresses */
1761         if (priv->mode == STMMAC_CHAIN_MODE) {
1762                 if (priv->extend_desc)
1763                         stmmac_mode_init(priv, tx_q->dma_etx,
1764                                          tx_q->dma_tx_phy,
1765                                          dma_conf->dma_tx_size, 1);
1766                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1767                         stmmac_mode_init(priv, tx_q->dma_tx,
1768                                          tx_q->dma_tx_phy,
1769                                          dma_conf->dma_tx_size, 0);
1770         }
1771
1772         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1773
1774         for (i = 0; i < dma_conf->dma_tx_size; i++) {
1775                 struct dma_desc *p;
1776
1777                 if (priv->extend_desc)
1778                         p = &((tx_q->dma_etx + i)->basic);
1779                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1780                         p = &((tx_q->dma_entx + i)->basic);
1781                 else
1782                         p = tx_q->dma_tx + i;
1783
1784                 stmmac_clear_desc(priv, p);
1785
1786                 tx_q->tx_skbuff_dma[i].buf = 0;
1787                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1788                 tx_q->tx_skbuff_dma[i].len = 0;
1789                 tx_q->tx_skbuff_dma[i].last_segment = false;
1790                 tx_q->tx_skbuff[i] = NULL;
1791         }
1792
1793         return 0;
1794 }
1795
1796 static int init_dma_tx_desc_rings(struct net_device *dev,
1797                                   struct stmmac_dma_conf *dma_conf)
1798 {
1799         struct stmmac_priv *priv = netdev_priv(dev);
1800         u32 tx_queue_cnt;
1801         u32 queue;
1802
1803         tx_queue_cnt = priv->plat->tx_queues_to_use;
1804
1805         for (queue = 0; queue < tx_queue_cnt; queue++)
1806                 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1807
1808         return 0;
1809 }
1810
1811 /**
1812  * init_dma_desc_rings - init the RX/TX descriptor rings
1813  * @dev: net device structure
1814  * @dma_conf: structure to take the dma data
1815  * @flags: gfp flag.
1816  * Description: this function initializes the DMA RX/TX descriptors
1817  * and allocates the socket buffers. It supports the chained and ring
1818  * modes.
1819  */
1820 static int init_dma_desc_rings(struct net_device *dev,
1821                                struct stmmac_dma_conf *dma_conf,
1822                                gfp_t flags)
1823 {
1824         struct stmmac_priv *priv = netdev_priv(dev);
1825         int ret;
1826
1827         ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1828         if (ret)
1829                 return ret;
1830
1831         ret = init_dma_tx_desc_rings(dev, dma_conf);
1832
1833         stmmac_clear_descriptors(priv, dma_conf);
1834
1835         if (netif_msg_hw(priv))
1836                 stmmac_display_rings(priv, dma_conf);
1837
1838         return ret;
1839 }
1840
1841 /**
1842  * dma_free_tx_skbufs - free TX dma buffers
1843  * @priv: private structure
1844  * @dma_conf: structure to take the dma data
1845  * @queue: TX queue index
1846  */
1847 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1848                                struct stmmac_dma_conf *dma_conf,
1849                                u32 queue)
1850 {
1851         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1852         int i;
1853
1854         tx_q->xsk_frames_done = 0;
1855
1856         for (i = 0; i < dma_conf->dma_tx_size; i++)
1857                 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1858
1859         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1860                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1861                 tx_q->xsk_frames_done = 0;
1862                 tx_q->xsk_pool = NULL;
1863         }
1864 }
1865
1866 /**
1867  * stmmac_free_tx_skbufs - free TX skb buffers
1868  * @priv: private structure
1869  */
1870 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1871 {
1872         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1873         u32 queue;
1874
1875         for (queue = 0; queue < tx_queue_cnt; queue++)
1876                 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1877 }
1878
1879 /**
1880  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1881  * @priv: private structure
1882  * @dma_conf: structure to take the dma data
1883  * @queue: RX queue index
1884  */
1885 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1886                                          struct stmmac_dma_conf *dma_conf,
1887                                          u32 queue)
1888 {
1889         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1890
1891         /* Release the DMA RX socket buffers */
1892         if (rx_q->xsk_pool)
1893                 dma_free_rx_xskbufs(priv, dma_conf, queue);
1894         else
1895                 dma_free_rx_skbufs(priv, dma_conf, queue);
1896
1897         rx_q->buf_alloc_num = 0;
1898         rx_q->xsk_pool = NULL;
1899
1900         /* Free DMA regions of consistent memory previously allocated */
1901         if (!priv->extend_desc)
1902                 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1903                                   sizeof(struct dma_desc),
1904                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1905         else
1906                 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1907                                   sizeof(struct dma_extended_desc),
1908                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1909
1910         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1911                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1912
1913         kfree(rx_q->buf_pool);
1914         if (rx_q->page_pool)
1915                 page_pool_destroy(rx_q->page_pool);
1916 }
1917
1918 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1919                                        struct stmmac_dma_conf *dma_conf)
1920 {
1921         u32 rx_count = priv->plat->rx_queues_to_use;
1922         u32 queue;
1923
1924         /* Free RX queue resources */
1925         for (queue = 0; queue < rx_count; queue++)
1926                 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1927 }
1928
1929 /**
1930  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1931  * @priv: private structure
1932  * @dma_conf: structure to take the dma data
1933  * @queue: TX queue index
1934  */
1935 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1936                                          struct stmmac_dma_conf *dma_conf,
1937                                          u32 queue)
1938 {
1939         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1940         size_t size;
1941         void *addr;
1942
1943         /* Release the DMA TX socket buffers */
1944         dma_free_tx_skbufs(priv, dma_conf, queue);
1945
1946         if (priv->extend_desc) {
1947                 size = sizeof(struct dma_extended_desc);
1948                 addr = tx_q->dma_etx;
1949         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1950                 size = sizeof(struct dma_edesc);
1951                 addr = tx_q->dma_entx;
1952         } else {
1953                 size = sizeof(struct dma_desc);
1954                 addr = tx_q->dma_tx;
1955         }
1956
1957         size *= dma_conf->dma_tx_size;
1958
1959         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1960
1961         kfree(tx_q->tx_skbuff_dma);
1962         kfree(tx_q->tx_skbuff);
1963 }
1964
1965 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1966                                        struct stmmac_dma_conf *dma_conf)
1967 {
1968         u32 tx_count = priv->plat->tx_queues_to_use;
1969         u32 queue;
1970
1971         /* Free TX queue resources */
1972         for (queue = 0; queue < tx_count; queue++)
1973                 __free_dma_tx_desc_resources(priv, dma_conf, queue);
1974 }
1975
1976 /**
1977  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1978  * @priv: private structure
1979  * @dma_conf: structure to take the dma data
1980  * @queue: RX queue index
1981  * Description: according to which descriptor can be used (extend or basic)
1982  * this function allocates the resources for TX and RX paths. In case of
1983  * reception, for example, it pre-allocated the RX socket buffer in order to
1984  * allow zero-copy mechanism.
1985  */
1986 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1987                                          struct stmmac_dma_conf *dma_conf,
1988                                          u32 queue)
1989 {
1990         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1991         struct stmmac_channel *ch = &priv->channel[queue];
1992         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1993         struct page_pool_params pp_params = { 0 };
1994         unsigned int num_pages;
1995         unsigned int napi_id;
1996         int ret;
1997
1998         rx_q->queue_index = queue;
1999         rx_q->priv_data = priv;
2000
2001         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2002         pp_params.pool_size = dma_conf->dma_rx_size;
2003         num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2004         pp_params.order = ilog2(num_pages);
2005         pp_params.nid = dev_to_node(priv->device);
2006         pp_params.dev = priv->device;
2007         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2008         pp_params.offset = stmmac_rx_offset(priv);
2009         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2010
2011         rx_q->page_pool = page_pool_create(&pp_params);
2012         if (IS_ERR(rx_q->page_pool)) {
2013                 ret = PTR_ERR(rx_q->page_pool);
2014                 rx_q->page_pool = NULL;
2015                 return ret;
2016         }
2017
2018         rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2019                                  sizeof(*rx_q->buf_pool),
2020                                  GFP_KERNEL);
2021         if (!rx_q->buf_pool)
2022                 return -ENOMEM;
2023
2024         if (priv->extend_desc) {
2025                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2026                                                    dma_conf->dma_rx_size *
2027                                                    sizeof(struct dma_extended_desc),
2028                                                    &rx_q->dma_rx_phy,
2029                                                    GFP_KERNEL);
2030                 if (!rx_q->dma_erx)
2031                         return -ENOMEM;
2032
2033         } else {
2034                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2035                                                   dma_conf->dma_rx_size *
2036                                                   sizeof(struct dma_desc),
2037                                                   &rx_q->dma_rx_phy,
2038                                                   GFP_KERNEL);
2039                 if (!rx_q->dma_rx)
2040                         return -ENOMEM;
2041         }
2042
2043         if (stmmac_xdp_is_enabled(priv) &&
2044             test_bit(queue, priv->af_xdp_zc_qps))
2045                 napi_id = ch->rxtx_napi.napi_id;
2046         else
2047                 napi_id = ch->rx_napi.napi_id;
2048
2049         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2050                                rx_q->queue_index,
2051                                napi_id);
2052         if (ret) {
2053                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2054                 return -EINVAL;
2055         }
2056
2057         return 0;
2058 }
2059
2060 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2061                                        struct stmmac_dma_conf *dma_conf)
2062 {
2063         u32 rx_count = priv->plat->rx_queues_to_use;
2064         u32 queue;
2065         int ret;
2066
2067         /* RX queues buffers and DMA */
2068         for (queue = 0; queue < rx_count; queue++) {
2069                 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2070                 if (ret)
2071                         goto err_dma;
2072         }
2073
2074         return 0;
2075
2076 err_dma:
2077         free_dma_rx_desc_resources(priv, dma_conf);
2078
2079         return ret;
2080 }
2081
2082 /**
2083  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2084  * @priv: private structure
2085  * @dma_conf: structure to take the dma data
2086  * @queue: TX queue index
2087  * Description: according to which descriptor can be used (extend or basic)
2088  * this function allocates the resources for TX and RX paths. In case of
2089  * reception, for example, it pre-allocated the RX socket buffer in order to
2090  * allow zero-copy mechanism.
2091  */
2092 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2093                                          struct stmmac_dma_conf *dma_conf,
2094                                          u32 queue)
2095 {
2096         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2097         size_t size;
2098         void *addr;
2099
2100         tx_q->queue_index = queue;
2101         tx_q->priv_data = priv;
2102
2103         tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2104                                       sizeof(*tx_q->tx_skbuff_dma),
2105                                       GFP_KERNEL);
2106         if (!tx_q->tx_skbuff_dma)
2107                 return -ENOMEM;
2108
2109         tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2110                                   sizeof(struct sk_buff *),
2111                                   GFP_KERNEL);
2112         if (!tx_q->tx_skbuff)
2113                 return -ENOMEM;
2114
2115         if (priv->extend_desc)
2116                 size = sizeof(struct dma_extended_desc);
2117         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2118                 size = sizeof(struct dma_edesc);
2119         else
2120                 size = sizeof(struct dma_desc);
2121
2122         size *= dma_conf->dma_tx_size;
2123
2124         addr = dma_alloc_coherent(priv->device, size,
2125                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2126         if (!addr)
2127                 return -ENOMEM;
2128
2129         if (priv->extend_desc)
2130                 tx_q->dma_etx = addr;
2131         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2132                 tx_q->dma_entx = addr;
2133         else
2134                 tx_q->dma_tx = addr;
2135
2136         return 0;
2137 }
2138
2139 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2140                                        struct stmmac_dma_conf *dma_conf)
2141 {
2142         u32 tx_count = priv->plat->tx_queues_to_use;
2143         u32 queue;
2144         int ret;
2145
2146         /* TX queues buffers and DMA */
2147         for (queue = 0; queue < tx_count; queue++) {
2148                 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2149                 if (ret)
2150                         goto err_dma;
2151         }
2152
2153         return 0;
2154
2155 err_dma:
2156         free_dma_tx_desc_resources(priv, dma_conf);
2157         return ret;
2158 }
2159
2160 /**
2161  * alloc_dma_desc_resources - alloc TX/RX resources.
2162  * @priv: private structure
2163  * @dma_conf: structure to take the dma data
2164  * Description: according to which descriptor can be used (extend or basic)
2165  * this function allocates the resources for TX and RX paths. In case of
2166  * reception, for example, it pre-allocated the RX socket buffer in order to
2167  * allow zero-copy mechanism.
2168  */
2169 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2170                                     struct stmmac_dma_conf *dma_conf)
2171 {
2172         /* RX Allocation */
2173         int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2174
2175         if (ret)
2176                 return ret;
2177
2178         ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2179
2180         return ret;
2181 }
2182
2183 /**
2184  * free_dma_desc_resources - free dma desc resources
2185  * @priv: private structure
2186  * @dma_conf: structure to take the dma data
2187  */
2188 static void free_dma_desc_resources(struct stmmac_priv *priv,
2189                                     struct stmmac_dma_conf *dma_conf)
2190 {
2191         /* Release the DMA TX socket buffers */
2192         free_dma_tx_desc_resources(priv, dma_conf);
2193
2194         /* Release the DMA RX socket buffers later
2195          * to ensure all pending XDP_TX buffers are returned.
2196          */
2197         free_dma_rx_desc_resources(priv, dma_conf);
2198 }
2199
2200 /**
2201  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2202  *  @priv: driver private structure
2203  *  Description: It is used for enabling the rx queues in the MAC
2204  */
2205 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2206 {
2207         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2208         int queue;
2209         u8 mode;
2210
2211         for (queue = 0; queue < rx_queues_count; queue++) {
2212                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2213                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2214         }
2215 }
2216
2217 /**
2218  * stmmac_start_rx_dma - start RX DMA channel
2219  * @priv: driver private structure
2220  * @chan: RX channel index
2221  * Description:
2222  * This starts a RX DMA channel
2223  */
2224 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2225 {
2226         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2227         stmmac_start_rx(priv, priv->ioaddr, chan);
2228 }
2229
2230 /**
2231  * stmmac_start_tx_dma - start TX DMA channel
2232  * @priv: driver private structure
2233  * @chan: TX channel index
2234  * Description:
2235  * This starts a TX DMA channel
2236  */
2237 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2238 {
2239         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2240         stmmac_start_tx(priv, priv->ioaddr, chan);
2241 }
2242
2243 /**
2244  * stmmac_stop_rx_dma - stop RX DMA channel
2245  * @priv: driver private structure
2246  * @chan: RX channel index
2247  * Description:
2248  * This stops a RX DMA channel
2249  */
2250 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2251 {
2252         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2253         stmmac_stop_rx(priv, priv->ioaddr, chan);
2254 }
2255
2256 /**
2257  * stmmac_stop_tx_dma - stop TX DMA channel
2258  * @priv: driver private structure
2259  * @chan: TX channel index
2260  * Description:
2261  * This stops a TX DMA channel
2262  */
2263 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2264 {
2265         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2266         stmmac_stop_tx(priv, priv->ioaddr, chan);
2267 }
2268
2269 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2270 {
2271         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2272         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2273         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2274         u32 chan;
2275
2276         for (chan = 0; chan < dma_csr_ch; chan++) {
2277                 struct stmmac_channel *ch = &priv->channel[chan];
2278                 unsigned long flags;
2279
2280                 spin_lock_irqsave(&ch->lock, flags);
2281                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2282                 spin_unlock_irqrestore(&ch->lock, flags);
2283         }
2284 }
2285
2286 /**
2287  * stmmac_start_all_dma - start all RX and TX DMA channels
2288  * @priv: driver private structure
2289  * Description:
2290  * This starts all the RX and TX DMA channels
2291  */
2292 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2293 {
2294         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2295         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2296         u32 chan = 0;
2297
2298         for (chan = 0; chan < rx_channels_count; chan++)
2299                 stmmac_start_rx_dma(priv, chan);
2300
2301         for (chan = 0; chan < tx_channels_count; chan++)
2302                 stmmac_start_tx_dma(priv, chan);
2303 }
2304
2305 /**
2306  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2307  * @priv: driver private structure
2308  * Description:
2309  * This stops the RX and TX DMA channels
2310  */
2311 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2312 {
2313         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2314         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2315         u32 chan = 0;
2316
2317         for (chan = 0; chan < rx_channels_count; chan++)
2318                 stmmac_stop_rx_dma(priv, chan);
2319
2320         for (chan = 0; chan < tx_channels_count; chan++)
2321                 stmmac_stop_tx_dma(priv, chan);
2322 }
2323
2324 /**
2325  *  stmmac_dma_operation_mode - HW DMA operation mode
2326  *  @priv: driver private structure
2327  *  Description: it is used for configuring the DMA operation mode register in
2328  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2329  */
2330 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2331 {
2332         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2333         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2334         int rxfifosz = priv->plat->rx_fifo_size;
2335         int txfifosz = priv->plat->tx_fifo_size;
2336         u32 txmode = 0;
2337         u32 rxmode = 0;
2338         u32 chan = 0;
2339         u8 qmode = 0;
2340
2341         if (rxfifosz == 0)
2342                 rxfifosz = priv->dma_cap.rx_fifo_size;
2343         if (txfifosz == 0)
2344                 txfifosz = priv->dma_cap.tx_fifo_size;
2345
2346         /* Adjust for real per queue fifo size */
2347         rxfifosz /= rx_channels_count;
2348         txfifosz /= tx_channels_count;
2349
2350         if (priv->plat->force_thresh_dma_mode) {
2351                 txmode = tc;
2352                 rxmode = tc;
2353         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2354                 /*
2355                  * In case of GMAC, SF mode can be enabled
2356                  * to perform the TX COE in HW. This depends on:
2357                  * 1) TX COE if actually supported
2358                  * 2) There is no bugged Jumbo frame support
2359                  *    that needs to not insert csum in the TDES.
2360                  */
2361                 txmode = SF_DMA_MODE;
2362                 rxmode = SF_DMA_MODE;
2363                 priv->xstats.threshold = SF_DMA_MODE;
2364         } else {
2365                 txmode = tc;
2366                 rxmode = SF_DMA_MODE;
2367         }
2368
2369         /* configure all channels */
2370         for (chan = 0; chan < rx_channels_count; chan++) {
2371                 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2372                 u32 buf_size;
2373
2374                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2375
2376                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2377                                 rxfifosz, qmode);
2378
2379                 if (rx_q->xsk_pool) {
2380                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2381                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2382                                               buf_size,
2383                                               chan);
2384                 } else {
2385                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2386                                               priv->dma_conf.dma_buf_sz,
2387                                               chan);
2388                 }
2389         }
2390
2391         for (chan = 0; chan < tx_channels_count; chan++) {
2392                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2393
2394                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2395                                 txfifosz, qmode);
2396         }
2397 }
2398
2399 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2400 {
2401         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2402         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2403         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2404         unsigned int entry = tx_q->cur_tx;
2405         struct dma_desc *tx_desc = NULL;
2406         struct xdp_desc xdp_desc;
2407         bool work_done = true;
2408
2409         /* Avoids TX time-out as we are sharing with slow path */
2410         txq_trans_cond_update(nq);
2411
2412         budget = min(budget, stmmac_tx_avail(priv, queue));
2413
2414         while (budget-- > 0) {
2415                 dma_addr_t dma_addr;
2416                 bool set_ic;
2417
2418                 /* We are sharing with slow path and stop XSK TX desc submission when
2419                  * available TX ring is less than threshold.
2420                  */
2421                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2422                     !netif_carrier_ok(priv->dev)) {
2423                         work_done = false;
2424                         break;
2425                 }
2426
2427                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2428                         break;
2429
2430                 if (likely(priv->extend_desc))
2431                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2432                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2433                         tx_desc = &tx_q->dma_entx[entry].basic;
2434                 else
2435                         tx_desc = tx_q->dma_tx + entry;
2436
2437                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2438                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2439
2440                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2441
2442                 /* To return XDP buffer to XSK pool, we simple call
2443                  * xsk_tx_completed(), so we don't need to fill up
2444                  * 'buf' and 'xdpf'.
2445                  */
2446                 tx_q->tx_skbuff_dma[entry].buf = 0;
2447                 tx_q->xdpf[entry] = NULL;
2448
2449                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2450                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2451                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2452                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2453
2454                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2455
2456                 tx_q->tx_count_frames++;
2457
2458                 if (!priv->tx_coal_frames[queue])
2459                         set_ic = false;
2460                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2461                         set_ic = true;
2462                 else
2463                         set_ic = false;
2464
2465                 if (set_ic) {
2466                         tx_q->tx_count_frames = 0;
2467                         stmmac_set_tx_ic(priv, tx_desc);
2468                         priv->xstats.tx_set_ic_bit++;
2469                 }
2470
2471                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2472                                        true, priv->mode, true, true,
2473                                        xdp_desc.len);
2474
2475                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2476
2477                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2478                 entry = tx_q->cur_tx;
2479         }
2480
2481         if (tx_desc) {
2482                 stmmac_flush_tx_descriptors(priv, queue);
2483                 xsk_tx_release(pool);
2484         }
2485
2486         /* Return true if all of the 3 conditions are met
2487          *  a) TX Budget is still available
2488          *  b) work_done = true when XSK TX desc peek is empty (no more
2489          *     pending XSK TX for transmission)
2490          */
2491         return !!budget && work_done;
2492 }
2493
2494 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2495 {
2496         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2497                 tc += 64;
2498
2499                 if (priv->plat->force_thresh_dma_mode)
2500                         stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2501                 else
2502                         stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2503                                                       chan);
2504
2505                 priv->xstats.threshold = tc;
2506         }
2507 }
2508
2509 /**
2510  * stmmac_tx_clean - to manage the transmission completion
2511  * @priv: driver private structure
2512  * @budget: napi budget limiting this functions packet handling
2513  * @queue: TX queue index
2514  * Description: it reclaims the transmit resources after transmission completes.
2515  */
2516 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2517 {
2518         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2519         unsigned int bytes_compl = 0, pkts_compl = 0;
2520         unsigned int entry, xmits = 0, count = 0;
2521
2522         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2523
2524         priv->xstats.tx_clean++;
2525
2526         tx_q->xsk_frames_done = 0;
2527
2528         entry = tx_q->dirty_tx;
2529
2530         /* Try to clean all TX complete frame in 1 shot */
2531         while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2532                 struct xdp_frame *xdpf;
2533                 struct sk_buff *skb;
2534                 struct dma_desc *p;
2535                 int status;
2536
2537                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2538                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2539                         xdpf = tx_q->xdpf[entry];
2540                         skb = NULL;
2541                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2542                         xdpf = NULL;
2543                         skb = tx_q->tx_skbuff[entry];
2544                 } else {
2545                         xdpf = NULL;
2546                         skb = NULL;
2547                 }
2548
2549                 if (priv->extend_desc)
2550                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2551                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2552                         p = &tx_q->dma_entx[entry].basic;
2553                 else
2554                         p = tx_q->dma_tx + entry;
2555
2556                 status = stmmac_tx_status(priv, &priv->dev->stats,
2557                                 &priv->xstats, p, priv->ioaddr);
2558                 /* Check if the descriptor is owned by the DMA */
2559                 if (unlikely(status & tx_dma_own))
2560                         break;
2561
2562                 count++;
2563
2564                 /* Make sure descriptor fields are read after reading
2565                  * the own bit.
2566                  */
2567                 dma_rmb();
2568
2569                 /* Just consider the last segment and ...*/
2570                 if (likely(!(status & tx_not_ls))) {
2571                         /* ... verify the status error condition */
2572                         if (unlikely(status & tx_err)) {
2573                                 priv->dev->stats.tx_errors++;
2574                                 if (unlikely(status & tx_err_bump_tc))
2575                                         stmmac_bump_dma_threshold(priv, queue);
2576                         } else {
2577                                 priv->dev->stats.tx_packets++;
2578                                 priv->xstats.tx_pkt_n++;
2579                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2580                         }
2581                         if (skb)
2582                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2583                 }
2584
2585                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2586                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2587                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2588                                 dma_unmap_page(priv->device,
2589                                                tx_q->tx_skbuff_dma[entry].buf,
2590                                                tx_q->tx_skbuff_dma[entry].len,
2591                                                DMA_TO_DEVICE);
2592                         else
2593                                 dma_unmap_single(priv->device,
2594                                                  tx_q->tx_skbuff_dma[entry].buf,
2595                                                  tx_q->tx_skbuff_dma[entry].len,
2596                                                  DMA_TO_DEVICE);
2597                         tx_q->tx_skbuff_dma[entry].buf = 0;
2598                         tx_q->tx_skbuff_dma[entry].len = 0;
2599                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2600                 }
2601
2602                 stmmac_clean_desc3(priv, tx_q, p);
2603
2604                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2605                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2606
2607                 if (xdpf &&
2608                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2609                         xdp_return_frame_rx_napi(xdpf);
2610                         tx_q->xdpf[entry] = NULL;
2611                 }
2612
2613                 if (xdpf &&
2614                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2615                         xdp_return_frame(xdpf);
2616                         tx_q->xdpf[entry] = NULL;
2617                 }
2618
2619                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2620                         tx_q->xsk_frames_done++;
2621
2622                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2623                         if (likely(skb)) {
2624                                 pkts_compl++;
2625                                 bytes_compl += skb->len;
2626                                 dev_consume_skb_any(skb);
2627                                 tx_q->tx_skbuff[entry] = NULL;
2628                         }
2629                 }
2630
2631                 stmmac_release_tx_desc(priv, p, priv->mode);
2632
2633                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2634         }
2635         tx_q->dirty_tx = entry;
2636
2637         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2638                                   pkts_compl, bytes_compl);
2639
2640         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2641                                                                 queue))) &&
2642             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2643
2644                 netif_dbg(priv, tx_done, priv->dev,
2645                           "%s: restart transmit\n", __func__);
2646                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2647         }
2648
2649         if (tx_q->xsk_pool) {
2650                 bool work_done;
2651
2652                 if (tx_q->xsk_frames_done)
2653                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2654
2655                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2656                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2657
2658                 /* For XSK TX, we try to send as many as possible.
2659                  * If XSK work done (XSK TX desc empty and budget still
2660                  * available), return "budget - 1" to reenable TX IRQ.
2661                  * Else, return "budget" to make NAPI continue polling.
2662                  */
2663                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2664                                                STMMAC_XSK_TX_BUDGET_MAX);
2665                 if (work_done)
2666                         xmits = budget - 1;
2667                 else
2668                         xmits = budget;
2669         }
2670
2671         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2672             priv->eee_sw_timer_en) {
2673                 if (stmmac_enable_eee_mode(priv))
2674                         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2675         }
2676
2677         /* We still have pending packets, let's call for a new scheduling */
2678         if (tx_q->dirty_tx != tx_q->cur_tx)
2679                 hrtimer_start(&tx_q->txtimer,
2680                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2681                               HRTIMER_MODE_REL);
2682
2683         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2684
2685         /* Combine decisions from TX clean and XSK TX */
2686         return max(count, xmits);
2687 }
2688
2689 /**
2690  * stmmac_tx_err - to manage the tx error
2691  * @priv: driver private structure
2692  * @chan: channel index
2693  * Description: it cleans the descriptors and restarts the transmission
2694  * in case of transmission errors.
2695  */
2696 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2697 {
2698         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2699
2700         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2701
2702         stmmac_stop_tx_dma(priv, chan);
2703         dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2704         stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2705         stmmac_reset_tx_queue(priv, chan);
2706         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2707                             tx_q->dma_tx_phy, chan);
2708         stmmac_start_tx_dma(priv, chan);
2709
2710         priv->dev->stats.tx_errors++;
2711         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2712 }
2713
2714 /**
2715  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2716  *  @priv: driver private structure
2717  *  @txmode: TX operating mode
2718  *  @rxmode: RX operating mode
2719  *  @chan: channel index
2720  *  Description: it is used for configuring of the DMA operation mode in
2721  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2722  *  mode.
2723  */
2724 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2725                                           u32 rxmode, u32 chan)
2726 {
2727         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2728         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2729         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2730         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2731         int rxfifosz = priv->plat->rx_fifo_size;
2732         int txfifosz = priv->plat->tx_fifo_size;
2733
2734         if (rxfifosz == 0)
2735                 rxfifosz = priv->dma_cap.rx_fifo_size;
2736         if (txfifosz == 0)
2737                 txfifosz = priv->dma_cap.tx_fifo_size;
2738
2739         /* Adjust for real per queue fifo size */
2740         rxfifosz /= rx_channels_count;
2741         txfifosz /= tx_channels_count;
2742
2743         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2744         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2745 }
2746
2747 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2748 {
2749         int ret;
2750
2751         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2752                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2753         if (ret && (ret != -EINVAL)) {
2754                 stmmac_global_err(priv);
2755                 return true;
2756         }
2757
2758         return false;
2759 }
2760
2761 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2762 {
2763         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2764                                                  &priv->xstats, chan, dir);
2765         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2766         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2767         struct stmmac_channel *ch = &priv->channel[chan];
2768         struct napi_struct *rx_napi;
2769         struct napi_struct *tx_napi;
2770         unsigned long flags;
2771
2772         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2773         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2774
2775         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2776                 if (napi_schedule_prep(rx_napi)) {
2777                         spin_lock_irqsave(&ch->lock, flags);
2778                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2779                         spin_unlock_irqrestore(&ch->lock, flags);
2780                         __napi_schedule(rx_napi);
2781                 }
2782         }
2783
2784         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2785                 if (napi_schedule_prep(tx_napi)) {
2786                         spin_lock_irqsave(&ch->lock, flags);
2787                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2788                         spin_unlock_irqrestore(&ch->lock, flags);
2789                         __napi_schedule(tx_napi);
2790                 }
2791         }
2792
2793         return status;
2794 }
2795
2796 /**
2797  * stmmac_dma_interrupt - DMA ISR
2798  * @priv: driver private structure
2799  * Description: this is the DMA ISR. It is called by the main ISR.
2800  * It calls the dwmac dma routine and schedule poll method in case of some
2801  * work can be done.
2802  */
2803 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2804 {
2805         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2806         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2807         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2808                                 tx_channel_count : rx_channel_count;
2809         u32 chan;
2810         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2811
2812         /* Make sure we never check beyond our status buffer. */
2813         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2814                 channels_to_check = ARRAY_SIZE(status);
2815
2816         for (chan = 0; chan < channels_to_check; chan++)
2817                 status[chan] = stmmac_napi_check(priv, chan,
2818                                                  DMA_DIR_RXTX);
2819
2820         for (chan = 0; chan < tx_channel_count; chan++) {
2821                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2822                         /* Try to bump up the dma threshold on this failure */
2823                         stmmac_bump_dma_threshold(priv, chan);
2824                 } else if (unlikely(status[chan] == tx_hard_error)) {
2825                         stmmac_tx_err(priv, chan);
2826                 }
2827         }
2828 }
2829
2830 /**
2831  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2832  * @priv: driver private structure
2833  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2834  */
2835 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2836 {
2837         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2838                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2839
2840         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2841
2842         if (priv->dma_cap.rmon) {
2843                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2844                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2845         } else
2846                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2847 }
2848
2849 /**
2850  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2851  * @priv: driver private structure
2852  * Description:
2853  *  new GMAC chip generations have a new register to indicate the
2854  *  presence of the optional feature/functions.
2855  *  This can be also used to override the value passed through the
2856  *  platform and necessary for old MAC10/100 and GMAC chips.
2857  */
2858 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2859 {
2860         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2861 }
2862
2863 /**
2864  * stmmac_check_ether_addr - check if the MAC addr is valid
2865  * @priv: driver private structure
2866  * Description:
2867  * it is to verify if the MAC address is valid, in case of failures it
2868  * generates a random MAC address
2869  */
2870 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2871 {
2872         u8 addr[ETH_ALEN];
2873
2874         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2875                 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2876                 if (is_valid_ether_addr(addr))
2877                         eth_hw_addr_set(priv->dev, addr);
2878                 else
2879                         eth_hw_addr_random(priv->dev);
2880                 dev_info(priv->device, "device MAC address %pM\n",
2881                          priv->dev->dev_addr);
2882         }
2883 }
2884
2885 /**
2886  * stmmac_init_dma_engine - DMA init.
2887  * @priv: driver private structure
2888  * Description:
2889  * It inits the DMA invoking the specific MAC/GMAC callback.
2890  * Some DMA parameters can be passed from the platform;
2891  * in case of these are not passed a default is kept for the MAC or GMAC.
2892  */
2893 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2894 {
2895         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2896         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2897         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2898         struct stmmac_rx_queue *rx_q;
2899         struct stmmac_tx_queue *tx_q;
2900         u32 chan = 0;
2901         int atds = 0;
2902         int ret = 0;
2903
2904         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2905                 dev_err(priv->device, "Invalid DMA configuration\n");
2906                 return -EINVAL;
2907         }
2908
2909         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2910                 atds = 1;
2911
2912         ret = stmmac_reset(priv, priv->ioaddr);
2913         if (ret) {
2914                 dev_err(priv->device, "Failed to reset the dma\n");
2915                 return ret;
2916         }
2917
2918         /* DMA Configuration */
2919         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2920
2921         if (priv->plat->axi)
2922                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2923
2924         /* DMA CSR Channel configuration */
2925         for (chan = 0; chan < dma_csr_ch; chan++) {
2926                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2927                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2928         }
2929
2930         /* DMA RX Channel Configuration */
2931         for (chan = 0; chan < rx_channels_count; chan++) {
2932                 rx_q = &priv->dma_conf.rx_queue[chan];
2933
2934                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2935                                     rx_q->dma_rx_phy, chan);
2936
2937                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2938                                      (rx_q->buf_alloc_num *
2939                                       sizeof(struct dma_desc));
2940                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2941                                        rx_q->rx_tail_addr, chan);
2942         }
2943
2944         /* DMA TX Channel Configuration */
2945         for (chan = 0; chan < tx_channels_count; chan++) {
2946                 tx_q = &priv->dma_conf.tx_queue[chan];
2947
2948                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2949                                     tx_q->dma_tx_phy, chan);
2950
2951                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2952                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2953                                        tx_q->tx_tail_addr, chan);
2954         }
2955
2956         return ret;
2957 }
2958
2959 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2960 {
2961         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2962
2963         hrtimer_start(&tx_q->txtimer,
2964                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2965                       HRTIMER_MODE_REL);
2966 }
2967
2968 /**
2969  * stmmac_tx_timer - mitigation sw timer for tx.
2970  * @t: data pointer
2971  * Description:
2972  * This is the timer handler to directly invoke the stmmac_tx_clean.
2973  */
2974 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2975 {
2976         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2977         struct stmmac_priv *priv = tx_q->priv_data;
2978         struct stmmac_channel *ch;
2979         struct napi_struct *napi;
2980
2981         ch = &priv->channel[tx_q->queue_index];
2982         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2983
2984         if (likely(napi_schedule_prep(napi))) {
2985                 unsigned long flags;
2986
2987                 spin_lock_irqsave(&ch->lock, flags);
2988                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2989                 spin_unlock_irqrestore(&ch->lock, flags);
2990                 __napi_schedule(napi);
2991         }
2992
2993         return HRTIMER_NORESTART;
2994 }
2995
2996 /**
2997  * stmmac_init_coalesce - init mitigation options.
2998  * @priv: driver private structure
2999  * Description:
3000  * This inits the coalesce parameters: i.e. timer rate,
3001  * timer handler and default threshold used for enabling the
3002  * interrupt on completion bit.
3003  */
3004 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3005 {
3006         u32 tx_channel_count = priv->plat->tx_queues_to_use;
3007         u32 rx_channel_count = priv->plat->rx_queues_to_use;
3008         u32 chan;
3009
3010         for (chan = 0; chan < tx_channel_count; chan++) {
3011                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3012
3013                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3014                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3015
3016                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3017                 tx_q->txtimer.function = stmmac_tx_timer;
3018         }
3019
3020         for (chan = 0; chan < rx_channel_count; chan++)
3021                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3022 }
3023
3024 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3025 {
3026         u32 rx_channels_count = priv->plat->rx_queues_to_use;
3027         u32 tx_channels_count = priv->plat->tx_queues_to_use;
3028         u32 chan;
3029
3030         /* set TX ring length */
3031         for (chan = 0; chan < tx_channels_count; chan++)
3032                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3033                                        (priv->dma_conf.dma_tx_size - 1), chan);
3034
3035         /* set RX ring length */
3036         for (chan = 0; chan < rx_channels_count; chan++)
3037                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3038                                        (priv->dma_conf.dma_rx_size - 1), chan);
3039 }
3040
3041 /**
3042  *  stmmac_set_tx_queue_weight - Set TX queue weight
3043  *  @priv: driver private structure
3044  *  Description: It is used for setting TX queues weight
3045  */
3046 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3047 {
3048         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3049         u32 weight;
3050         u32 queue;
3051
3052         for (queue = 0; queue < tx_queues_count; queue++) {
3053                 weight = priv->plat->tx_queues_cfg[queue].weight;
3054                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3055         }
3056 }
3057
3058 /**
3059  *  stmmac_configure_cbs - Configure CBS in TX queue
3060  *  @priv: driver private structure
3061  *  Description: It is used for configuring CBS in AVB TX queues
3062  */
3063 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3064 {
3065         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3066         u32 mode_to_use;
3067         u32 queue;
3068
3069         /* queue 0 is reserved for legacy traffic */
3070         for (queue = 1; queue < tx_queues_count; queue++) {
3071                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3072                 if (mode_to_use == MTL_QUEUE_DCB)
3073                         continue;
3074
3075                 stmmac_config_cbs(priv, priv->hw,
3076                                 priv->plat->tx_queues_cfg[queue].send_slope,
3077                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3078                                 priv->plat->tx_queues_cfg[queue].high_credit,
3079                                 priv->plat->tx_queues_cfg[queue].low_credit,
3080                                 queue);
3081         }
3082 }
3083
3084 /**
3085  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3086  *  @priv: driver private structure
3087  *  Description: It is used for mapping RX queues to RX dma channels
3088  */
3089 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3090 {
3091         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092         u32 queue;
3093         u32 chan;
3094
3095         for (queue = 0; queue < rx_queues_count; queue++) {
3096                 chan = priv->plat->rx_queues_cfg[queue].chan;
3097                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3098         }
3099 }
3100
3101 /**
3102  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3103  *  @priv: driver private structure
3104  *  Description: It is used for configuring the RX Queue Priority
3105  */
3106 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3107 {
3108         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3109         u32 queue;
3110         u32 prio;
3111
3112         for (queue = 0; queue < rx_queues_count; queue++) {
3113                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3114                         continue;
3115
3116                 prio = priv->plat->rx_queues_cfg[queue].prio;
3117                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3118         }
3119 }
3120
3121 /**
3122  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3123  *  @priv: driver private structure
3124  *  Description: It is used for configuring the TX Queue Priority
3125  */
3126 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3127 {
3128         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3129         u32 queue;
3130         u32 prio;
3131
3132         for (queue = 0; queue < tx_queues_count; queue++) {
3133                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3134                         continue;
3135
3136                 prio = priv->plat->tx_queues_cfg[queue].prio;
3137                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3138         }
3139 }
3140
3141 /**
3142  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3143  *  @priv: driver private structure
3144  *  Description: It is used for configuring the RX queue routing
3145  */
3146 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3147 {
3148         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3149         u32 queue;
3150         u8 packet;
3151
3152         for (queue = 0; queue < rx_queues_count; queue++) {
3153                 /* no specific packet type routing specified for the queue */
3154                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3155                         continue;
3156
3157                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3158                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3159         }
3160 }
3161
3162 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3163 {
3164         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3165                 priv->rss.enable = false;
3166                 return;
3167         }
3168
3169         if (priv->dev->features & NETIF_F_RXHASH)
3170                 priv->rss.enable = true;
3171         else
3172                 priv->rss.enable = false;
3173
3174         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3175                              priv->plat->rx_queues_to_use);
3176 }
3177
3178 /**
3179  *  stmmac_mtl_configuration - Configure MTL
3180  *  @priv: driver private structure
3181  *  Description: It is used for configurring MTL
3182  */
3183 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3184 {
3185         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3186         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3187
3188         if (tx_queues_count > 1)
3189                 stmmac_set_tx_queue_weight(priv);
3190
3191         /* Configure MTL RX algorithms */
3192         if (rx_queues_count > 1)
3193                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3194                                 priv->plat->rx_sched_algorithm);
3195
3196         /* Configure MTL TX algorithms */
3197         if (tx_queues_count > 1)
3198                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3199                                 priv->plat->tx_sched_algorithm);
3200
3201         /* Configure CBS in AVB TX queues */
3202         if (tx_queues_count > 1)
3203                 stmmac_configure_cbs(priv);
3204
3205         /* Map RX MTL to DMA channels */
3206         stmmac_rx_queue_dma_chan_map(priv);
3207
3208         /* Enable MAC RX Queues */
3209         stmmac_mac_enable_rx_queues(priv);
3210
3211         /* Set RX priorities */
3212         if (rx_queues_count > 1)
3213                 stmmac_mac_config_rx_queues_prio(priv);
3214
3215         /* Set TX priorities */
3216         if (tx_queues_count > 1)
3217                 stmmac_mac_config_tx_queues_prio(priv);
3218
3219         /* Set RX routing */
3220         if (rx_queues_count > 1)
3221                 stmmac_mac_config_rx_queues_routing(priv);
3222
3223         /* Receive Side Scaling */
3224         if (rx_queues_count > 1)
3225                 stmmac_mac_config_rss(priv);
3226 }
3227
3228 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3229 {
3230         if (priv->dma_cap.asp) {
3231                 netdev_info(priv->dev, "Enabling Safety Features\n");
3232                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3233                                           priv->plat->safety_feat_cfg);
3234         } else {
3235                 netdev_info(priv->dev, "No Safety Features support found\n");
3236         }
3237 }
3238
3239 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3240 {
3241         char *name;
3242
3243         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3244         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3245
3246         name = priv->wq_name;
3247         sprintf(name, "%s-fpe", priv->dev->name);
3248
3249         priv->fpe_wq = create_singlethread_workqueue(name);
3250         if (!priv->fpe_wq) {
3251                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3252
3253                 return -ENOMEM;
3254         }
3255         netdev_info(priv->dev, "FPE workqueue start");
3256
3257         return 0;
3258 }
3259
3260 /**
3261  * stmmac_hw_setup - setup mac in a usable state.
3262  *  @dev : pointer to the device structure.
3263  *  @ptp_register: register PTP if set
3264  *  Description:
3265  *  this is the main function to setup the HW in a usable state because the
3266  *  dma engine is reset, the core registers are configured (e.g. AXI,
3267  *  Checksum features, timers). The DMA is ready to start receiving and
3268  *  transmitting.
3269  *  Return value:
3270  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3271  *  file on failure.
3272  */
3273 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3274 {
3275         struct stmmac_priv *priv = netdev_priv(dev);
3276         u32 rx_cnt = priv->plat->rx_queues_to_use;
3277         u32 tx_cnt = priv->plat->tx_queues_to_use;
3278         bool sph_en;
3279         u32 chan;
3280         int ret;
3281
3282         /* DMA initialization and SW reset */
3283         ret = stmmac_init_dma_engine(priv);
3284         if (ret < 0) {
3285                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3286                            __func__);
3287                 return ret;
3288         }
3289
3290         /* Copy the MAC addr into the HW  */
3291         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3292
3293         /* PS and related bits will be programmed according to the speed */
3294         if (priv->hw->pcs) {
3295                 int speed = priv->plat->mac_port_sel_speed;
3296
3297                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3298                     (speed == SPEED_1000)) {
3299                         priv->hw->ps = speed;
3300                 } else {
3301                         dev_warn(priv->device, "invalid port speed\n");
3302                         priv->hw->ps = 0;
3303                 }
3304         }
3305
3306         /* Initialize the MAC Core */
3307         stmmac_core_init(priv, priv->hw, dev);
3308
3309         /* Initialize MTL*/
3310         stmmac_mtl_configuration(priv);
3311
3312         /* Initialize Safety Features */
3313         stmmac_safety_feat_configuration(priv);
3314
3315         ret = stmmac_rx_ipc(priv, priv->hw);
3316         if (!ret) {
3317                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3318                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3319                 priv->hw->rx_csum = 0;
3320         }
3321
3322         /* Enable the MAC Rx/Tx */
3323         stmmac_mac_set(priv, priv->ioaddr, true);
3324
3325         /* Set the HW DMA mode and the COE */
3326         stmmac_dma_operation_mode(priv);
3327
3328         stmmac_mmc_setup(priv);
3329
3330         if (ptp_register) {
3331                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3332                 if (ret < 0)
3333                         netdev_warn(priv->dev,
3334                                     "failed to enable PTP reference clock: %pe\n",
3335                                     ERR_PTR(ret));
3336         }
3337
3338         ret = stmmac_init_ptp(priv);
3339         if (ret == -EOPNOTSUPP)
3340                 netdev_info(priv->dev, "PTP not supported by HW\n");
3341         else if (ret)
3342                 netdev_warn(priv->dev, "PTP init failed\n");
3343         else if (ptp_register)
3344                 stmmac_ptp_register(priv);
3345
3346         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3347
3348         /* Convert the timer from msec to usec */
3349         if (!priv->tx_lpi_timer)
3350                 priv->tx_lpi_timer = eee_timer * 1000;
3351
3352         if (priv->use_riwt) {
3353                 u32 queue;
3354
3355                 for (queue = 0; queue < rx_cnt; queue++) {
3356                         if (!priv->rx_riwt[queue])
3357                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3358
3359                         stmmac_rx_watchdog(priv, priv->ioaddr,
3360                                            priv->rx_riwt[queue], queue);
3361                 }
3362         }
3363
3364         if (priv->hw->pcs)
3365                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3366
3367         /* set TX and RX rings length */
3368         stmmac_set_rings_length(priv);
3369
3370         /* Enable TSO */
3371         if (priv->tso) {
3372                 for (chan = 0; chan < tx_cnt; chan++) {
3373                         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3374
3375                         /* TSO and TBS cannot co-exist */
3376                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3377                                 continue;
3378
3379                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3380                 }
3381         }
3382
3383         /* Enable Split Header */
3384         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3385         for (chan = 0; chan < rx_cnt; chan++)
3386                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3387
3388
3389         /* VLAN Tag Insertion */
3390         if (priv->dma_cap.vlins)
3391                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3392
3393         /* TBS */
3394         for (chan = 0; chan < tx_cnt; chan++) {
3395                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3396                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3397
3398                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3399         }
3400
3401         /* Configure real RX and TX queues */
3402         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3403         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3404
3405         /* Start the ball rolling... */
3406         stmmac_start_all_dma(priv);
3407
3408         if (priv->dma_cap.fpesel) {
3409                 stmmac_fpe_start_wq(priv);
3410
3411                 if (priv->plat->fpe_cfg->enable)
3412                         stmmac_fpe_handshake(priv, true);
3413         }
3414
3415         return 0;
3416 }
3417
3418 static void stmmac_hw_teardown(struct net_device *dev)
3419 {
3420         struct stmmac_priv *priv = netdev_priv(dev);
3421
3422         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3423 }
3424
3425 static void stmmac_free_irq(struct net_device *dev,
3426                             enum request_irq_err irq_err, int irq_idx)
3427 {
3428         struct stmmac_priv *priv = netdev_priv(dev);
3429         int j;
3430
3431         switch (irq_err) {
3432         case REQ_IRQ_ERR_ALL:
3433                 irq_idx = priv->plat->tx_queues_to_use;
3434                 fallthrough;
3435         case REQ_IRQ_ERR_TX:
3436                 for (j = irq_idx - 1; j >= 0; j--) {
3437                         if (priv->tx_irq[j] > 0) {
3438                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3439                                 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3440                         }
3441                 }
3442                 irq_idx = priv->plat->rx_queues_to_use;
3443                 fallthrough;
3444         case REQ_IRQ_ERR_RX:
3445                 for (j = irq_idx - 1; j >= 0; j--) {
3446                         if (priv->rx_irq[j] > 0) {
3447                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3448                                 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3449                         }
3450                 }
3451
3452                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3453                         free_irq(priv->sfty_ue_irq, dev);
3454                 fallthrough;
3455         case REQ_IRQ_ERR_SFTY_UE:
3456                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3457                         free_irq(priv->sfty_ce_irq, dev);
3458                 fallthrough;
3459         case REQ_IRQ_ERR_SFTY_CE:
3460                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3461                         free_irq(priv->lpi_irq, dev);
3462                 fallthrough;
3463         case REQ_IRQ_ERR_LPI:
3464                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3465                         free_irq(priv->wol_irq, dev);
3466                 fallthrough;
3467         case REQ_IRQ_ERR_WOL:
3468                 free_irq(dev->irq, dev);
3469                 fallthrough;
3470         case REQ_IRQ_ERR_MAC:
3471         case REQ_IRQ_ERR_NO:
3472                 /* If MAC IRQ request error, no more IRQ to free */
3473                 break;
3474         }
3475 }
3476
3477 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3478 {
3479         struct stmmac_priv *priv = netdev_priv(dev);
3480         enum request_irq_err irq_err;
3481         cpumask_t cpu_mask;
3482         int irq_idx = 0;
3483         char *int_name;
3484         int ret;
3485         int i;
3486
3487         /* For common interrupt */
3488         int_name = priv->int_name_mac;
3489         sprintf(int_name, "%s:%s", dev->name, "mac");
3490         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3491                           0, int_name, dev);
3492         if (unlikely(ret < 0)) {
3493                 netdev_err(priv->dev,
3494                            "%s: alloc mac MSI %d (error: %d)\n",
3495                            __func__, dev->irq, ret);
3496                 irq_err = REQ_IRQ_ERR_MAC;
3497                 goto irq_error;
3498         }
3499
3500         /* Request the Wake IRQ in case of another line
3501          * is used for WoL
3502          */
3503         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3504                 int_name = priv->int_name_wol;
3505                 sprintf(int_name, "%s:%s", dev->name, "wol");
3506                 ret = request_irq(priv->wol_irq,
3507                                   stmmac_mac_interrupt,
3508                                   0, int_name, dev);
3509                 if (unlikely(ret < 0)) {
3510                         netdev_err(priv->dev,
3511                                    "%s: alloc wol MSI %d (error: %d)\n",
3512                                    __func__, priv->wol_irq, ret);
3513                         irq_err = REQ_IRQ_ERR_WOL;
3514                         goto irq_error;
3515                 }
3516         }
3517
3518         /* Request the LPI IRQ in case of another line
3519          * is used for LPI
3520          */
3521         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3522                 int_name = priv->int_name_lpi;
3523                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3524                 ret = request_irq(priv->lpi_irq,
3525                                   stmmac_mac_interrupt,
3526                                   0, int_name, dev);
3527                 if (unlikely(ret < 0)) {
3528                         netdev_err(priv->dev,
3529                                    "%s: alloc lpi MSI %d (error: %d)\n",
3530                                    __func__, priv->lpi_irq, ret);
3531                         irq_err = REQ_IRQ_ERR_LPI;
3532                         goto irq_error;
3533                 }
3534         }
3535
3536         /* Request the Safety Feature Correctible Error line in
3537          * case of another line is used
3538          */
3539         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3540                 int_name = priv->int_name_sfty_ce;
3541                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3542                 ret = request_irq(priv->sfty_ce_irq,
3543                                   stmmac_safety_interrupt,
3544                                   0, int_name, dev);
3545                 if (unlikely(ret < 0)) {
3546                         netdev_err(priv->dev,
3547                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3548                                    __func__, priv->sfty_ce_irq, ret);
3549                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3550                         goto irq_error;
3551                 }
3552         }
3553
3554         /* Request the Safety Feature Uncorrectible Error line in
3555          * case of another line is used
3556          */
3557         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3558                 int_name = priv->int_name_sfty_ue;
3559                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3560                 ret = request_irq(priv->sfty_ue_irq,
3561                                   stmmac_safety_interrupt,
3562                                   0, int_name, dev);
3563                 if (unlikely(ret < 0)) {
3564                         netdev_err(priv->dev,
3565                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3566                                    __func__, priv->sfty_ue_irq, ret);
3567                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3568                         goto irq_error;
3569                 }
3570         }
3571
3572         /* Request Rx MSI irq */
3573         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3574                 if (i >= MTL_MAX_RX_QUEUES)
3575                         break;
3576                 if (priv->rx_irq[i] == 0)
3577                         continue;
3578
3579                 int_name = priv->int_name_rx_irq[i];
3580                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3581                 ret = request_irq(priv->rx_irq[i],
3582                                   stmmac_msi_intr_rx,
3583                                   0, int_name, &priv->dma_conf.rx_queue[i]);
3584                 if (unlikely(ret < 0)) {
3585                         netdev_err(priv->dev,
3586                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3587                                    __func__, i, priv->rx_irq[i], ret);
3588                         irq_err = REQ_IRQ_ERR_RX;
3589                         irq_idx = i;
3590                         goto irq_error;
3591                 }
3592                 cpumask_clear(&cpu_mask);
3593                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3594                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3595         }
3596
3597         /* Request Tx MSI irq */
3598         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3599                 if (i >= MTL_MAX_TX_QUEUES)
3600                         break;
3601                 if (priv->tx_irq[i] == 0)
3602                         continue;
3603
3604                 int_name = priv->int_name_tx_irq[i];
3605                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3606                 ret = request_irq(priv->tx_irq[i],
3607                                   stmmac_msi_intr_tx,
3608                                   0, int_name, &priv->dma_conf.tx_queue[i]);
3609                 if (unlikely(ret < 0)) {
3610                         netdev_err(priv->dev,
3611                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3612                                    __func__, i, priv->tx_irq[i], ret);
3613                         irq_err = REQ_IRQ_ERR_TX;
3614                         irq_idx = i;
3615                         goto irq_error;
3616                 }
3617                 cpumask_clear(&cpu_mask);
3618                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3619                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3620         }
3621
3622         return 0;
3623
3624 irq_error:
3625         stmmac_free_irq(dev, irq_err, irq_idx);
3626         return ret;
3627 }
3628
3629 static int stmmac_request_irq_single(struct net_device *dev)
3630 {
3631         struct stmmac_priv *priv = netdev_priv(dev);
3632         enum request_irq_err irq_err;
3633         int ret;
3634
3635         ret = request_irq(dev->irq, stmmac_interrupt,
3636                           IRQF_SHARED, dev->name, dev);
3637         if (unlikely(ret < 0)) {
3638                 netdev_err(priv->dev,
3639                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3640                            __func__, dev->irq, ret);
3641                 irq_err = REQ_IRQ_ERR_MAC;
3642                 goto irq_error;
3643         }
3644
3645         /* Request the Wake IRQ in case of another line
3646          * is used for WoL
3647          */
3648         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3649                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3650                                   IRQF_SHARED, dev->name, dev);
3651                 if (unlikely(ret < 0)) {
3652                         netdev_err(priv->dev,
3653                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3654                                    __func__, priv->wol_irq, ret);
3655                         irq_err = REQ_IRQ_ERR_WOL;
3656                         goto irq_error;
3657                 }
3658         }
3659
3660         /* Request the IRQ lines */
3661         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3662                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3663                                   IRQF_SHARED, dev->name, dev);
3664                 if (unlikely(ret < 0)) {
3665                         netdev_err(priv->dev,
3666                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3667                                    __func__, priv->lpi_irq, ret);
3668                         irq_err = REQ_IRQ_ERR_LPI;
3669                         goto irq_error;
3670                 }
3671         }
3672
3673         return 0;
3674
3675 irq_error:
3676         stmmac_free_irq(dev, irq_err, 0);
3677         return ret;
3678 }
3679
3680 static int stmmac_request_irq(struct net_device *dev)
3681 {
3682         struct stmmac_priv *priv = netdev_priv(dev);
3683         int ret;
3684
3685         /* Request the IRQ lines */
3686         if (priv->plat->multi_msi_en)
3687                 ret = stmmac_request_irq_multi_msi(dev);
3688         else
3689                 ret = stmmac_request_irq_single(dev);
3690
3691         return ret;
3692 }
3693
3694 /**
3695  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3696  *  @priv: driver private structure
3697  *  @mtu: MTU to setup the dma queue and buf with
3698  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3699  *  Allocate the Tx/Rx DMA queue and init them.
3700  *  Return value:
3701  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3702  */
3703 static struct stmmac_dma_conf *
3704 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3705 {
3706         struct stmmac_dma_conf *dma_conf;
3707         int chan, bfsize, ret;
3708
3709         dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3710         if (!dma_conf) {
3711                 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3712                            __func__);
3713                 return ERR_PTR(-ENOMEM);
3714         }
3715
3716         bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3717         if (bfsize < 0)
3718                 bfsize = 0;
3719
3720         if (bfsize < BUF_SIZE_16KiB)
3721                 bfsize = stmmac_set_bfsize(mtu, 0);
3722
3723         dma_conf->dma_buf_sz = bfsize;
3724         /* Chose the tx/rx size from the already defined one in the
3725          * priv struct. (if defined)
3726          */
3727         dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3728         dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3729
3730         if (!dma_conf->dma_tx_size)
3731                 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3732         if (!dma_conf->dma_rx_size)
3733                 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3734
3735         /* Earlier check for TBS */
3736         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3737                 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3738                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3739
3740                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3741                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3742         }
3743
3744         ret = alloc_dma_desc_resources(priv, dma_conf);
3745         if (ret < 0) {
3746                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3747                            __func__);
3748                 goto alloc_error;
3749         }
3750
3751         ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3752         if (ret < 0) {
3753                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3754                            __func__);
3755                 goto init_error;
3756         }
3757
3758         return dma_conf;
3759
3760 init_error:
3761         free_dma_desc_resources(priv, dma_conf);
3762 alloc_error:
3763         kfree(dma_conf);
3764         return ERR_PTR(ret);
3765 }
3766
3767 /**
3768  *  __stmmac_open - open entry point of the driver
3769  *  @dev : pointer to the device structure.
3770  *  @dma_conf :  structure to take the dma data
3771  *  Description:
3772  *  This function is the open entry point of the driver.
3773  *  Return value:
3774  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3775  *  file on failure.
3776  */
3777 static int __stmmac_open(struct net_device *dev,
3778                          struct stmmac_dma_conf *dma_conf)
3779 {
3780         struct stmmac_priv *priv = netdev_priv(dev);
3781         int mode = priv->plat->phy_interface;
3782         u32 chan;
3783         int ret;
3784
3785         ret = pm_runtime_resume_and_get(priv->device);
3786         if (ret < 0)
3787                 return ret;
3788
3789         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3790             priv->hw->pcs != STMMAC_PCS_RTBI &&
3791             (!priv->hw->xpcs ||
3792              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3793                 ret = stmmac_init_phy(dev);
3794                 if (ret) {
3795                         netdev_err(priv->dev,
3796                                    "%s: Cannot attach to PHY (error: %d)\n",
3797                                    __func__, ret);
3798                         goto init_phy_error;
3799                 }
3800         }
3801
3802         /* Extra statistics */
3803         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3804         priv->xstats.threshold = tc;
3805
3806         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3807
3808         buf_sz = dma_conf->dma_buf_sz;
3809         memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3810
3811         stmmac_reset_queues_param(priv);
3812
3813         if (priv->plat->serdes_powerup) {
3814                 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3815                 if (ret < 0) {
3816                         netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3817                                    __func__);
3818                         goto init_error;
3819                 }
3820         }
3821
3822         ret = stmmac_hw_setup(dev, true);
3823         if (ret < 0) {
3824                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3825                 goto init_error;
3826         }
3827
3828         stmmac_init_coalesce(priv);
3829
3830         phylink_start(priv->phylink);
3831         /* We may have called phylink_speed_down before */
3832         phylink_speed_up(priv->phylink);
3833
3834         ret = stmmac_request_irq(dev);
3835         if (ret)
3836                 goto irq_error;
3837
3838         stmmac_enable_all_queues(priv);
3839         netif_tx_start_all_queues(priv->dev);
3840         stmmac_enable_all_dma_irq(priv);
3841
3842         return 0;
3843
3844 irq_error:
3845         phylink_stop(priv->phylink);
3846
3847         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3848                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3849
3850         stmmac_hw_teardown(dev);
3851 init_error:
3852         free_dma_desc_resources(priv, &priv->dma_conf);
3853         phylink_disconnect_phy(priv->phylink);
3854 init_phy_error:
3855         pm_runtime_put(priv->device);
3856         return ret;
3857 }
3858
3859 static int stmmac_open(struct net_device *dev)
3860 {
3861         struct stmmac_priv *priv = netdev_priv(dev);
3862         struct stmmac_dma_conf *dma_conf;
3863         int ret;
3864
3865         dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3866         if (IS_ERR(dma_conf))
3867                 return PTR_ERR(dma_conf);
3868
3869         ret = __stmmac_open(dev, dma_conf);
3870         kfree(dma_conf);
3871         return ret;
3872 }
3873
3874 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3875 {
3876         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3877
3878         if (priv->fpe_wq)
3879                 destroy_workqueue(priv->fpe_wq);
3880
3881         netdev_info(priv->dev, "FPE workqueue stop");
3882 }
3883
3884 /**
3885  *  stmmac_release - close entry point of the driver
3886  *  @dev : device pointer.
3887  *  Description:
3888  *  This is the stop entry point of the driver.
3889  */
3890 static int stmmac_release(struct net_device *dev)
3891 {
3892         struct stmmac_priv *priv = netdev_priv(dev);
3893         u32 chan;
3894
3895         if (device_may_wakeup(priv->device))
3896                 phylink_speed_down(priv->phylink, false);
3897         /* Stop and disconnect the PHY */
3898         phylink_stop(priv->phylink);
3899         phylink_disconnect_phy(priv->phylink);
3900
3901         stmmac_disable_all_queues(priv);
3902
3903         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3904                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3905
3906         netif_tx_disable(dev);
3907
3908         /* Free the IRQ lines */
3909         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3910
3911         if (priv->eee_enabled) {
3912                 priv->tx_path_in_lpi_mode = false;
3913                 del_timer_sync(&priv->eee_ctrl_timer);
3914         }
3915
3916         /* Stop TX/RX DMA and clear the descriptors */
3917         stmmac_stop_all_dma(priv);
3918
3919         /* Release and free the Rx/Tx resources */
3920         free_dma_desc_resources(priv, &priv->dma_conf);
3921
3922         /* Disable the MAC Rx/Tx */
3923         stmmac_mac_set(priv, priv->ioaddr, false);
3924
3925         /* Powerdown Serdes if there is */
3926         if (priv->plat->serdes_powerdown)
3927                 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3928
3929         netif_carrier_off(dev);
3930
3931         stmmac_release_ptp(priv);
3932
3933         pm_runtime_put(priv->device);
3934
3935         if (priv->dma_cap.fpesel)
3936                 stmmac_fpe_stop_wq(priv);
3937
3938         return 0;
3939 }
3940
3941 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3942                                struct stmmac_tx_queue *tx_q)
3943 {
3944         u16 tag = 0x0, inner_tag = 0x0;
3945         u32 inner_type = 0x0;
3946         struct dma_desc *p;
3947
3948         if (!priv->dma_cap.vlins)
3949                 return false;
3950         if (!skb_vlan_tag_present(skb))
3951                 return false;
3952         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3953                 inner_tag = skb_vlan_tag_get(skb);
3954                 inner_type = STMMAC_VLAN_INSERT;
3955         }
3956
3957         tag = skb_vlan_tag_get(skb);
3958
3959         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3960                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3961         else
3962                 p = &tx_q->dma_tx[tx_q->cur_tx];
3963
3964         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3965                 return false;
3966
3967         stmmac_set_tx_owner(priv, p);
3968         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3969         return true;
3970 }
3971
3972 /**
3973  *  stmmac_tso_allocator - close entry point of the driver
3974  *  @priv: driver private structure
3975  *  @des: buffer start address
3976  *  @total_len: total length to fill in descriptors
3977  *  @last_segment: condition for the last descriptor
3978  *  @queue: TX queue index
3979  *  Description:
3980  *  This function fills descriptor and request new descriptors according to
3981  *  buffer length to fill
3982  */
3983 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3984                                  int total_len, bool last_segment, u32 queue)
3985 {
3986         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3987         struct dma_desc *desc;
3988         u32 buff_size;
3989         int tmp_len;
3990
3991         tmp_len = total_len;
3992
3993         while (tmp_len > 0) {
3994                 dma_addr_t curr_addr;
3995
3996                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3997                                                 priv->dma_conf.dma_tx_size);
3998                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3999
4000                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4001                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4002                 else
4003                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4004
4005                 curr_addr = des + (total_len - tmp_len);
4006                 if (priv->dma_cap.addr64 <= 32)
4007                         desc->des0 = cpu_to_le32(curr_addr);
4008                 else
4009                         stmmac_set_desc_addr(priv, desc, curr_addr);
4010
4011                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4012                             TSO_MAX_BUFF_SIZE : tmp_len;
4013
4014                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4015                                 0, 1,
4016                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4017                                 0, 0);
4018
4019                 tmp_len -= TSO_MAX_BUFF_SIZE;
4020         }
4021 }
4022
4023 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4024 {
4025         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4026         int desc_size;
4027
4028         if (likely(priv->extend_desc))
4029                 desc_size = sizeof(struct dma_extended_desc);
4030         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4031                 desc_size = sizeof(struct dma_edesc);
4032         else
4033                 desc_size = sizeof(struct dma_desc);
4034
4035         /* The own bit must be the latest setting done when prepare the
4036          * descriptor and then barrier is needed to make sure that
4037          * all is coherent before granting the DMA engine.
4038          */
4039         wmb();
4040
4041         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4042         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4043 }
4044
4045 /**
4046  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4047  *  @skb : the socket buffer
4048  *  @dev : device pointer
4049  *  Description: this is the transmit function that is called on TSO frames
4050  *  (support available on GMAC4 and newer chips).
4051  *  Diagram below show the ring programming in case of TSO frames:
4052  *
4053  *  First Descriptor
4054  *   --------
4055  *   | DES0 |---> buffer1 = L2/L3/L4 header
4056  *   | DES1 |---> TCP Payload (can continue on next descr...)
4057  *   | DES2 |---> buffer 1 and 2 len
4058  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4059  *   --------
4060  *      |
4061  *     ...
4062  *      |
4063  *   --------
4064  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4065  *   | DES1 | --|
4066  *   | DES2 | --> buffer 1 and 2 len
4067  *   | DES3 |
4068  *   --------
4069  *
4070  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4071  */
4072 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4073 {
4074         struct dma_desc *desc, *first, *mss_desc = NULL;
4075         struct stmmac_priv *priv = netdev_priv(dev);
4076         int nfrags = skb_shinfo(skb)->nr_frags;
4077         u32 queue = skb_get_queue_mapping(skb);
4078         unsigned int first_entry, tx_packets;
4079         int tmp_pay_len = 0, first_tx;
4080         struct stmmac_tx_queue *tx_q;
4081         bool has_vlan, set_ic;
4082         u8 proto_hdr_len, hdr;
4083         u32 pay_len, mss;
4084         dma_addr_t des;
4085         int i;
4086
4087         tx_q = &priv->dma_conf.tx_queue[queue];
4088         first_tx = tx_q->cur_tx;
4089
4090         /* Compute header lengths */
4091         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4092                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4093                 hdr = sizeof(struct udphdr);
4094         } else {
4095                 proto_hdr_len = skb_tcp_all_headers(skb);
4096                 hdr = tcp_hdrlen(skb);
4097         }
4098
4099         /* Desc availability based on threshold should be enough safe */
4100         if (unlikely(stmmac_tx_avail(priv, queue) <
4101                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4102                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4103                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4104                                                                 queue));
4105                         /* This is a hard error, log it. */
4106                         netdev_err(priv->dev,
4107                                    "%s: Tx Ring full when queue awake\n",
4108                                    __func__);
4109                 }
4110                 return NETDEV_TX_BUSY;
4111         }
4112
4113         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4114
4115         mss = skb_shinfo(skb)->gso_size;
4116
4117         /* set new MSS value if needed */
4118         if (mss != tx_q->mss) {
4119                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4120                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4121                 else
4122                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4123
4124                 stmmac_set_mss(priv, mss_desc, mss);
4125                 tx_q->mss = mss;
4126                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4127                                                 priv->dma_conf.dma_tx_size);
4128                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4129         }
4130
4131         if (netif_msg_tx_queued(priv)) {
4132                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4133                         __func__, hdr, proto_hdr_len, pay_len, mss);
4134                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4135                         skb->data_len);
4136         }
4137
4138         /* Check if VLAN can be inserted by HW */
4139         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4140
4141         first_entry = tx_q->cur_tx;
4142         WARN_ON(tx_q->tx_skbuff[first_entry]);
4143
4144         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4145                 desc = &tx_q->dma_entx[first_entry].basic;
4146         else
4147                 desc = &tx_q->dma_tx[first_entry];
4148         first = desc;
4149
4150         if (has_vlan)
4151                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4152
4153         /* first descriptor: fill Headers on Buf1 */
4154         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4155                              DMA_TO_DEVICE);
4156         if (dma_mapping_error(priv->device, des))
4157                 goto dma_map_err;
4158
4159         tx_q->tx_skbuff_dma[first_entry].buf = des;
4160         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4161         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4162         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4163
4164         if (priv->dma_cap.addr64 <= 32) {
4165                 first->des0 = cpu_to_le32(des);
4166
4167                 /* Fill start of payload in buff2 of first descriptor */
4168                 if (pay_len)
4169                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4170
4171                 /* If needed take extra descriptors to fill the remaining payload */
4172                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4173         } else {
4174                 stmmac_set_desc_addr(priv, first, des);
4175                 tmp_pay_len = pay_len;
4176                 des += proto_hdr_len;
4177                 pay_len = 0;
4178         }
4179
4180         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4181
4182         /* Prepare fragments */
4183         for (i = 0; i < nfrags; i++) {
4184                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4185
4186                 des = skb_frag_dma_map(priv->device, frag, 0,
4187                                        skb_frag_size(frag),
4188                                        DMA_TO_DEVICE);
4189                 if (dma_mapping_error(priv->device, des))
4190                         goto dma_map_err;
4191
4192                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4193                                      (i == nfrags - 1), queue);
4194
4195                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4196                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4197                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4198                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4199         }
4200
4201         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4202
4203         /* Only the last descriptor gets to point to the skb. */
4204         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4205         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4206
4207         /* Manage tx mitigation */
4208         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4209         tx_q->tx_count_frames += tx_packets;
4210
4211         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4212                 set_ic = true;
4213         else if (!priv->tx_coal_frames[queue])
4214                 set_ic = false;
4215         else if (tx_packets > priv->tx_coal_frames[queue])
4216                 set_ic = true;
4217         else if ((tx_q->tx_count_frames %
4218                   priv->tx_coal_frames[queue]) < tx_packets)
4219                 set_ic = true;
4220         else
4221                 set_ic = false;
4222
4223         if (set_ic) {
4224                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4225                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4226                 else
4227                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4228
4229                 tx_q->tx_count_frames = 0;
4230                 stmmac_set_tx_ic(priv, desc);
4231                 priv->xstats.tx_set_ic_bit++;
4232         }
4233
4234         /* We've used all descriptors we need for this skb, however,
4235          * advance cur_tx so that it references a fresh descriptor.
4236          * ndo_start_xmit will fill this descriptor the next time it's
4237          * called and stmmac_tx_clean may clean up to this descriptor.
4238          */
4239         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4240
4241         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4242                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4243                           __func__);
4244                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4245         }
4246
4247         dev->stats.tx_bytes += skb->len;
4248         priv->xstats.tx_tso_frames++;
4249         priv->xstats.tx_tso_nfrags += nfrags;
4250
4251         if (priv->sarc_type)
4252                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4253
4254         skb_tx_timestamp(skb);
4255
4256         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4257                      priv->hwts_tx_en)) {
4258                 /* declare that device is doing timestamping */
4259                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4260                 stmmac_enable_tx_timestamp(priv, first);
4261         }
4262
4263         /* Complete the first descriptor before granting the DMA */
4264         stmmac_prepare_tso_tx_desc(priv, first, 1,
4265                         proto_hdr_len,
4266                         pay_len,
4267                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4268                         hdr / 4, (skb->len - proto_hdr_len));
4269
4270         /* If context desc is used to change MSS */
4271         if (mss_desc) {
4272                 /* Make sure that first descriptor has been completely
4273                  * written, including its own bit. This is because MSS is
4274                  * actually before first descriptor, so we need to make
4275                  * sure that MSS's own bit is the last thing written.
4276                  */
4277                 dma_wmb();
4278                 stmmac_set_tx_owner(priv, mss_desc);
4279         }
4280
4281         if (netif_msg_pktdata(priv)) {
4282                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4283                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4284                         tx_q->cur_tx, first, nfrags);
4285                 pr_info(">>> frame to be transmitted: ");
4286                 print_pkt(skb->data, skb_headlen(skb));
4287         }
4288
4289         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4290
4291         stmmac_flush_tx_descriptors(priv, queue);
4292         stmmac_tx_timer_arm(priv, queue);
4293
4294         return NETDEV_TX_OK;
4295
4296 dma_map_err:
4297         dev_err(priv->device, "Tx dma map failed\n");
4298         dev_kfree_skb(skb);
4299         priv->dev->stats.tx_dropped++;
4300         return NETDEV_TX_OK;
4301 }
4302
4303 /**
4304  *  stmmac_xmit - Tx entry point of the driver
4305  *  @skb : the socket buffer
4306  *  @dev : device pointer
4307  *  Description : this is the tx entry point of the driver.
4308  *  It programs the chain or the ring and supports oversized frames
4309  *  and SG feature.
4310  */
4311 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4312 {
4313         unsigned int first_entry, tx_packets, enh_desc;
4314         struct stmmac_priv *priv = netdev_priv(dev);
4315         unsigned int nopaged_len = skb_headlen(skb);
4316         int i, csum_insertion = 0, is_jumbo = 0;
4317         u32 queue = skb_get_queue_mapping(skb);
4318         int nfrags = skb_shinfo(skb)->nr_frags;
4319         int gso = skb_shinfo(skb)->gso_type;
4320         struct dma_edesc *tbs_desc = NULL;
4321         struct dma_desc *desc, *first;
4322         struct stmmac_tx_queue *tx_q;
4323         bool has_vlan, set_ic;
4324         int entry, first_tx;
4325         dma_addr_t des;
4326
4327         tx_q = &priv->dma_conf.tx_queue[queue];
4328         first_tx = tx_q->cur_tx;
4329
4330         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4331                 stmmac_disable_eee_mode(priv);
4332
4333         /* Manage oversized TCP frames for GMAC4 device */
4334         if (skb_is_gso(skb) && priv->tso) {
4335                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4336                         return stmmac_tso_xmit(skb, dev);
4337                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4338                         return stmmac_tso_xmit(skb, dev);
4339         }
4340
4341         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4342                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4343                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4344                                                                 queue));
4345                         /* This is a hard error, log it. */
4346                         netdev_err(priv->dev,
4347                                    "%s: Tx Ring full when queue awake\n",
4348                                    __func__);
4349                 }
4350                 return NETDEV_TX_BUSY;
4351         }
4352
4353         /* Check if VLAN can be inserted by HW */
4354         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4355
4356         entry = tx_q->cur_tx;
4357         first_entry = entry;
4358         WARN_ON(tx_q->tx_skbuff[first_entry]);
4359
4360         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4361
4362         if (likely(priv->extend_desc))
4363                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4364         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4365                 desc = &tx_q->dma_entx[entry].basic;
4366         else
4367                 desc = tx_q->dma_tx + entry;
4368
4369         first = desc;
4370
4371         if (has_vlan)
4372                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4373
4374         enh_desc = priv->plat->enh_desc;
4375         /* To program the descriptors according to the size of the frame */
4376         if (enh_desc)
4377                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4378
4379         if (unlikely(is_jumbo)) {
4380                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4381                 if (unlikely(entry < 0) && (entry != -EINVAL))
4382                         goto dma_map_err;
4383         }
4384
4385         for (i = 0; i < nfrags; i++) {
4386                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4387                 int len = skb_frag_size(frag);
4388                 bool last_segment = (i == (nfrags - 1));
4389
4390                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4391                 WARN_ON(tx_q->tx_skbuff[entry]);
4392
4393                 if (likely(priv->extend_desc))
4394                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4395                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4396                         desc = &tx_q->dma_entx[entry].basic;
4397                 else
4398                         desc = tx_q->dma_tx + entry;
4399
4400                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4401                                        DMA_TO_DEVICE);
4402                 if (dma_mapping_error(priv->device, des))
4403                         goto dma_map_err; /* should reuse desc w/o issues */
4404
4405                 tx_q->tx_skbuff_dma[entry].buf = des;
4406
4407                 stmmac_set_desc_addr(priv, desc, des);
4408
4409                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4410                 tx_q->tx_skbuff_dma[entry].len = len;
4411                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4412                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4413
4414                 /* Prepare the descriptor and set the own bit too */
4415                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4416                                 priv->mode, 1, last_segment, skb->len);
4417         }
4418
4419         /* Only the last descriptor gets to point to the skb. */
4420         tx_q->tx_skbuff[entry] = skb;
4421         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4422
4423         /* According to the coalesce parameter the IC bit for the latest
4424          * segment is reset and the timer re-started to clean the tx status.
4425          * This approach takes care about the fragments: desc is the first
4426          * element in case of no SG.
4427          */
4428         tx_packets = (entry + 1) - first_tx;
4429         tx_q->tx_count_frames += tx_packets;
4430
4431         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4432                 set_ic = true;
4433         else if (!priv->tx_coal_frames[queue])
4434                 set_ic = false;
4435         else if (tx_packets > priv->tx_coal_frames[queue])
4436                 set_ic = true;
4437         else if ((tx_q->tx_count_frames %
4438                   priv->tx_coal_frames[queue]) < tx_packets)
4439                 set_ic = true;
4440         else
4441                 set_ic = false;
4442
4443         if (set_ic) {
4444                 if (likely(priv->extend_desc))
4445                         desc = &tx_q->dma_etx[entry].basic;
4446                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4447                         desc = &tx_q->dma_entx[entry].basic;
4448                 else
4449                         desc = &tx_q->dma_tx[entry];
4450
4451                 tx_q->tx_count_frames = 0;
4452                 stmmac_set_tx_ic(priv, desc);
4453                 priv->xstats.tx_set_ic_bit++;
4454         }
4455
4456         /* We've used all descriptors we need for this skb, however,
4457          * advance cur_tx so that it references a fresh descriptor.
4458          * ndo_start_xmit will fill this descriptor the next time it's
4459          * called and stmmac_tx_clean may clean up to this descriptor.
4460          */
4461         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4462         tx_q->cur_tx = entry;
4463
4464         if (netif_msg_pktdata(priv)) {
4465                 netdev_dbg(priv->dev,
4466                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4467                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4468                            entry, first, nfrags);
4469
4470                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4471                 print_pkt(skb->data, skb->len);
4472         }
4473
4474         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4475                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4476                           __func__);
4477                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4478         }
4479
4480         dev->stats.tx_bytes += skb->len;
4481
4482         if (priv->sarc_type)
4483                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4484
4485         skb_tx_timestamp(skb);
4486
4487         /* Ready to fill the first descriptor and set the OWN bit w/o any
4488          * problems because all the descriptors are actually ready to be
4489          * passed to the DMA engine.
4490          */
4491         if (likely(!is_jumbo)) {
4492                 bool last_segment = (nfrags == 0);
4493
4494                 des = dma_map_single(priv->device, skb->data,
4495                                      nopaged_len, DMA_TO_DEVICE);
4496                 if (dma_mapping_error(priv->device, des))
4497                         goto dma_map_err;
4498
4499                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4500                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4501                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4502
4503                 stmmac_set_desc_addr(priv, first, des);
4504
4505                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4506                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4507
4508                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4509                              priv->hwts_tx_en)) {
4510                         /* declare that device is doing timestamping */
4511                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4512                         stmmac_enable_tx_timestamp(priv, first);
4513                 }
4514
4515                 /* Prepare the first descriptor setting the OWN bit too */
4516                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4517                                 csum_insertion, priv->mode, 0, last_segment,
4518                                 skb->len);
4519         }
4520
4521         if (tx_q->tbs & STMMAC_TBS_EN) {
4522                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4523
4524                 tbs_desc = &tx_q->dma_entx[first_entry];
4525                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4526         }
4527
4528         stmmac_set_tx_owner(priv, first);
4529
4530         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4531
4532         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4533
4534         stmmac_flush_tx_descriptors(priv, queue);
4535         stmmac_tx_timer_arm(priv, queue);
4536
4537         return NETDEV_TX_OK;
4538
4539 dma_map_err:
4540         netdev_err(priv->dev, "Tx DMA map failed\n");
4541         dev_kfree_skb(skb);
4542         priv->dev->stats.tx_dropped++;
4543         return NETDEV_TX_OK;
4544 }
4545
4546 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4547 {
4548         struct vlan_ethhdr *veth;
4549         __be16 vlan_proto;
4550         u16 vlanid;
4551
4552         veth = (struct vlan_ethhdr *)skb->data;
4553         vlan_proto = veth->h_vlan_proto;
4554
4555         if ((vlan_proto == htons(ETH_P_8021Q) &&
4556              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4557             (vlan_proto == htons(ETH_P_8021AD) &&
4558              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4559                 /* pop the vlan tag */
4560                 vlanid = ntohs(veth->h_vlan_TCI);
4561                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4562                 skb_pull(skb, VLAN_HLEN);
4563                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4564         }
4565 }
4566
4567 /**
4568  * stmmac_rx_refill - refill used skb preallocated buffers
4569  * @priv: driver private structure
4570  * @queue: RX queue index
4571  * Description : this is to reallocate the skb for the reception process
4572  * that is based on zero-copy.
4573  */
4574 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4575 {
4576         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4577         int dirty = stmmac_rx_dirty(priv, queue);
4578         unsigned int entry = rx_q->dirty_rx;
4579         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4580
4581         if (priv->dma_cap.addr64 <= 32)
4582                 gfp |= GFP_DMA32;
4583
4584         while (dirty-- > 0) {
4585                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4586                 struct dma_desc *p;
4587                 bool use_rx_wd;
4588
4589                 if (priv->extend_desc)
4590                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4591                 else
4592                         p = rx_q->dma_rx + entry;
4593
4594                 if (!buf->page) {
4595                         buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4596                         if (!buf->page)
4597                                 break;
4598                 }
4599
4600                 if (priv->sph && !buf->sec_page) {
4601                         buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4602                         if (!buf->sec_page)
4603                                 break;
4604
4605                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4606                 }
4607
4608                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4609
4610                 stmmac_set_desc_addr(priv, p, buf->addr);
4611                 if (priv->sph)
4612                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4613                 else
4614                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4615                 stmmac_refill_desc3(priv, rx_q, p);
4616
4617                 rx_q->rx_count_frames++;
4618                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4619                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4620                         rx_q->rx_count_frames = 0;
4621
4622                 use_rx_wd = !priv->rx_coal_frames[queue];
4623                 use_rx_wd |= rx_q->rx_count_frames > 0;
4624                 if (!priv->use_riwt)
4625                         use_rx_wd = false;
4626
4627                 dma_wmb();
4628                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4629
4630                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4631         }
4632         rx_q->dirty_rx = entry;
4633         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4634                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4635         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4636 }
4637
4638 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4639                                        struct dma_desc *p,
4640                                        int status, unsigned int len)
4641 {
4642         unsigned int plen = 0, hlen = 0;
4643         int coe = priv->hw->rx_csum;
4644
4645         /* Not first descriptor, buffer is always zero */
4646         if (priv->sph && len)
4647                 return 0;
4648
4649         /* First descriptor, get split header length */
4650         stmmac_get_rx_header_len(priv, p, &hlen);
4651         if (priv->sph && hlen) {
4652                 priv->xstats.rx_split_hdr_pkt_n++;
4653                 return hlen;
4654         }
4655
4656         /* First descriptor, not last descriptor and not split header */
4657         if (status & rx_not_ls)
4658                 return priv->dma_conf.dma_buf_sz;
4659
4660         plen = stmmac_get_rx_frame_len(priv, p, coe);
4661
4662         /* First descriptor and last descriptor and not split header */
4663         return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4664 }
4665
4666 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4667                                        struct dma_desc *p,
4668                                        int status, unsigned int len)
4669 {
4670         int coe = priv->hw->rx_csum;
4671         unsigned int plen = 0;
4672
4673         /* Not split header, buffer is not available */
4674         if (!priv->sph)
4675                 return 0;
4676
4677         /* Not last descriptor */
4678         if (status & rx_not_ls)
4679                 return priv->dma_conf.dma_buf_sz;
4680
4681         plen = stmmac_get_rx_frame_len(priv, p, coe);
4682
4683         /* Last descriptor */
4684         return plen - len;
4685 }
4686
4687 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4688                                 struct xdp_frame *xdpf, bool dma_map)
4689 {
4690         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4691         unsigned int entry = tx_q->cur_tx;
4692         struct dma_desc *tx_desc;
4693         dma_addr_t dma_addr;
4694         bool set_ic;
4695
4696         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4697                 return STMMAC_XDP_CONSUMED;
4698
4699         if (likely(priv->extend_desc))
4700                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4701         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4702                 tx_desc = &tx_q->dma_entx[entry].basic;
4703         else
4704                 tx_desc = tx_q->dma_tx + entry;
4705
4706         if (dma_map) {
4707                 dma_addr = dma_map_single(priv->device, xdpf->data,
4708                                           xdpf->len, DMA_TO_DEVICE);
4709                 if (dma_mapping_error(priv->device, dma_addr))
4710                         return STMMAC_XDP_CONSUMED;
4711
4712                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4713         } else {
4714                 struct page *page = virt_to_page(xdpf->data);
4715
4716                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4717                            xdpf->headroom;
4718                 dma_sync_single_for_device(priv->device, dma_addr,
4719                                            xdpf->len, DMA_BIDIRECTIONAL);
4720
4721                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4722         }
4723
4724         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4725         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4726         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4727         tx_q->tx_skbuff_dma[entry].last_segment = true;
4728         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4729
4730         tx_q->xdpf[entry] = xdpf;
4731
4732         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4733
4734         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4735                                true, priv->mode, true, true,
4736                                xdpf->len);
4737
4738         tx_q->tx_count_frames++;
4739
4740         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4741                 set_ic = true;
4742         else
4743                 set_ic = false;
4744
4745         if (set_ic) {
4746                 tx_q->tx_count_frames = 0;
4747                 stmmac_set_tx_ic(priv, tx_desc);
4748                 priv->xstats.tx_set_ic_bit++;
4749         }
4750
4751         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4752
4753         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4754         tx_q->cur_tx = entry;
4755
4756         return STMMAC_XDP_TX;
4757 }
4758
4759 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4760                                    int cpu)
4761 {
4762         int index = cpu;
4763
4764         if (unlikely(index < 0))
4765                 index = 0;
4766
4767         while (index >= priv->plat->tx_queues_to_use)
4768                 index -= priv->plat->tx_queues_to_use;
4769
4770         return index;
4771 }
4772
4773 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4774                                 struct xdp_buff *xdp)
4775 {
4776         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4777         int cpu = smp_processor_id();
4778         struct netdev_queue *nq;
4779         int queue;
4780         int res;
4781
4782         if (unlikely(!xdpf))
4783                 return STMMAC_XDP_CONSUMED;
4784
4785         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4786         nq = netdev_get_tx_queue(priv->dev, queue);
4787
4788         __netif_tx_lock(nq, cpu);
4789         /* Avoids TX time-out as we are sharing with slow path */
4790         txq_trans_cond_update(nq);
4791
4792         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4793         if (res == STMMAC_XDP_TX)
4794                 stmmac_flush_tx_descriptors(priv, queue);
4795
4796         __netif_tx_unlock(nq);
4797
4798         return res;
4799 }
4800
4801 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4802                                  struct bpf_prog *prog,
4803                                  struct xdp_buff *xdp)
4804 {
4805         u32 act;
4806         int res;
4807
4808         act = bpf_prog_run_xdp(prog, xdp);
4809         switch (act) {
4810         case XDP_PASS:
4811                 res = STMMAC_XDP_PASS;
4812                 break;
4813         case XDP_TX:
4814                 res = stmmac_xdp_xmit_back(priv, xdp);
4815                 break;
4816         case XDP_REDIRECT:
4817                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4818                         res = STMMAC_XDP_CONSUMED;
4819                 else
4820                         res = STMMAC_XDP_REDIRECT;
4821                 break;
4822         default:
4823                 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4824                 fallthrough;
4825         case XDP_ABORTED:
4826                 trace_xdp_exception(priv->dev, prog, act);
4827                 fallthrough;
4828         case XDP_DROP:
4829                 res = STMMAC_XDP_CONSUMED;
4830                 break;
4831         }
4832
4833         return res;
4834 }
4835
4836 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4837                                            struct xdp_buff *xdp)
4838 {
4839         struct bpf_prog *prog;
4840         int res;
4841
4842         prog = READ_ONCE(priv->xdp_prog);
4843         if (!prog) {
4844                 res = STMMAC_XDP_PASS;
4845                 goto out;
4846         }
4847
4848         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4849 out:
4850         return ERR_PTR(-res);
4851 }
4852
4853 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4854                                    int xdp_status)
4855 {
4856         int cpu = smp_processor_id();
4857         int queue;
4858
4859         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4860
4861         if (xdp_status & STMMAC_XDP_TX)
4862                 stmmac_tx_timer_arm(priv, queue);
4863
4864         if (xdp_status & STMMAC_XDP_REDIRECT)
4865                 xdp_do_flush();
4866 }
4867
4868 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4869                                                struct xdp_buff *xdp)
4870 {
4871         unsigned int metasize = xdp->data - xdp->data_meta;
4872         unsigned int datasize = xdp->data_end - xdp->data;
4873         struct sk_buff *skb;
4874
4875         skb = __napi_alloc_skb(&ch->rxtx_napi,
4876                                xdp->data_end - xdp->data_hard_start,
4877                                GFP_ATOMIC | __GFP_NOWARN);
4878         if (unlikely(!skb))
4879                 return NULL;
4880
4881         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4882         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4883         if (metasize)
4884                 skb_metadata_set(skb, metasize);
4885
4886         return skb;
4887 }
4888
4889 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4890                                    struct dma_desc *p, struct dma_desc *np,
4891                                    struct xdp_buff *xdp)
4892 {
4893         struct stmmac_channel *ch = &priv->channel[queue];
4894         unsigned int len = xdp->data_end - xdp->data;
4895         enum pkt_hash_types hash_type;
4896         int coe = priv->hw->rx_csum;
4897         struct sk_buff *skb;
4898         u32 hash;
4899
4900         skb = stmmac_construct_skb_zc(ch, xdp);
4901         if (!skb) {
4902                 priv->dev->stats.rx_dropped++;
4903                 return;
4904         }
4905
4906         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4907         stmmac_rx_vlan(priv->dev, skb);
4908         skb->protocol = eth_type_trans(skb, priv->dev);
4909
4910         if (unlikely(!coe))
4911                 skb_checksum_none_assert(skb);
4912         else
4913                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4914
4915         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4916                 skb_set_hash(skb, hash, hash_type);
4917
4918         skb_record_rx_queue(skb, queue);
4919         napi_gro_receive(&ch->rxtx_napi, skb);
4920
4921         priv->dev->stats.rx_packets++;
4922         priv->dev->stats.rx_bytes += len;
4923 }
4924
4925 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4926 {
4927         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4928         unsigned int entry = rx_q->dirty_rx;
4929         struct dma_desc *rx_desc = NULL;
4930         bool ret = true;
4931
4932         budget = min(budget, stmmac_rx_dirty(priv, queue));
4933
4934         while (budget-- > 0 && entry != rx_q->cur_rx) {
4935                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4936                 dma_addr_t dma_addr;
4937                 bool use_rx_wd;
4938
4939                 if (!buf->xdp) {
4940                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4941                         if (!buf->xdp) {
4942                                 ret = false;
4943                                 break;
4944                         }
4945                 }
4946
4947                 if (priv->extend_desc)
4948                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4949                 else
4950                         rx_desc = rx_q->dma_rx + entry;
4951
4952                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4953                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4954                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4955                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4956
4957                 rx_q->rx_count_frames++;
4958                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4959                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4960                         rx_q->rx_count_frames = 0;
4961
4962                 use_rx_wd = !priv->rx_coal_frames[queue];
4963                 use_rx_wd |= rx_q->rx_count_frames > 0;
4964                 if (!priv->use_riwt)
4965                         use_rx_wd = false;
4966
4967                 dma_wmb();
4968                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4969
4970                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4971         }
4972
4973         if (rx_desc) {
4974                 rx_q->dirty_rx = entry;
4975                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4976                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4977                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4978         }
4979
4980         return ret;
4981 }
4982
4983 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4984 {
4985         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4986         unsigned int count = 0, error = 0, len = 0;
4987         int dirty = stmmac_rx_dirty(priv, queue);
4988         unsigned int next_entry = rx_q->cur_rx;
4989         unsigned int desc_size;
4990         struct bpf_prog *prog;
4991         bool failure = false;
4992         int xdp_status = 0;
4993         int status = 0;
4994
4995         if (netif_msg_rx_status(priv)) {
4996                 void *rx_head;
4997
4998                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4999                 if (priv->extend_desc) {
5000                         rx_head = (void *)rx_q->dma_erx;
5001                         desc_size = sizeof(struct dma_extended_desc);
5002                 } else {
5003                         rx_head = (void *)rx_q->dma_rx;
5004                         desc_size = sizeof(struct dma_desc);
5005                 }
5006
5007                 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5008                                     rx_q->dma_rx_phy, desc_size);
5009         }
5010         while (count < limit) {
5011                 struct stmmac_rx_buffer *buf;
5012                 unsigned int buf1_len = 0;
5013                 struct dma_desc *np, *p;
5014                 int entry;
5015                 int res;
5016
5017                 if (!count && rx_q->state_saved) {
5018                         error = rx_q->state.error;
5019                         len = rx_q->state.len;
5020                 } else {
5021                         rx_q->state_saved = false;
5022                         error = 0;
5023                         len = 0;
5024                 }
5025
5026                 if (count >= limit)
5027                         break;
5028
5029 read_again:
5030                 buf1_len = 0;
5031                 entry = next_entry;
5032                 buf = &rx_q->buf_pool[entry];
5033
5034                 if (dirty >= STMMAC_RX_FILL_BATCH) {
5035                         failure = failure ||
5036                                   !stmmac_rx_refill_zc(priv, queue, dirty);
5037                         dirty = 0;
5038                 }
5039
5040                 if (priv->extend_desc)
5041                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5042                 else
5043                         p = rx_q->dma_rx + entry;
5044
5045                 /* read the status of the incoming frame */
5046                 status = stmmac_rx_status(priv, &priv->dev->stats,
5047                                           &priv->xstats, p);
5048                 /* check if managed by the DMA otherwise go ahead */
5049                 if (unlikely(status & dma_own))
5050                         break;
5051
5052                 /* Prefetch the next RX descriptor */
5053                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5054                                                 priv->dma_conf.dma_rx_size);
5055                 next_entry = rx_q->cur_rx;
5056
5057                 if (priv->extend_desc)
5058                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5059                 else
5060                         np = rx_q->dma_rx + next_entry;
5061
5062                 prefetch(np);
5063
5064                 /* Ensure a valid XSK buffer before proceed */
5065                 if (!buf->xdp)
5066                         break;
5067
5068                 if (priv->extend_desc)
5069                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5070                                                   &priv->xstats,
5071                                                   rx_q->dma_erx + entry);
5072                 if (unlikely(status == discard_frame)) {
5073                         xsk_buff_free(buf->xdp);
5074                         buf->xdp = NULL;
5075                         dirty++;
5076                         error = 1;
5077                         if (!priv->hwts_rx_en)
5078                                 priv->dev->stats.rx_errors++;
5079                 }
5080
5081                 if (unlikely(error && (status & rx_not_ls)))
5082                         goto read_again;
5083                 if (unlikely(error)) {
5084                         count++;
5085                         continue;
5086                 }
5087
5088                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5089                 if (likely(status & rx_not_ls)) {
5090                         xsk_buff_free(buf->xdp);
5091                         buf->xdp = NULL;
5092                         dirty++;
5093                         count++;
5094                         goto read_again;
5095                 }
5096
5097                 /* XDP ZC Frame only support primary buffers for now */
5098                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5099                 len += buf1_len;
5100
5101                 /* ACS is disabled; strip manually. */
5102                 if (likely(!(status & rx_not_ls))) {
5103                         buf1_len -= ETH_FCS_LEN;
5104                         len -= ETH_FCS_LEN;
5105                 }
5106
5107                 /* RX buffer is good and fit into a XSK pool buffer */
5108                 buf->xdp->data_end = buf->xdp->data + buf1_len;
5109                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5110
5111                 prog = READ_ONCE(priv->xdp_prog);
5112                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5113
5114                 switch (res) {
5115                 case STMMAC_XDP_PASS:
5116                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5117                         xsk_buff_free(buf->xdp);
5118                         break;
5119                 case STMMAC_XDP_CONSUMED:
5120                         xsk_buff_free(buf->xdp);
5121                         priv->dev->stats.rx_dropped++;
5122                         break;
5123                 case STMMAC_XDP_TX:
5124                 case STMMAC_XDP_REDIRECT:
5125                         xdp_status |= res;
5126                         break;
5127                 }
5128
5129                 buf->xdp = NULL;
5130                 dirty++;
5131                 count++;
5132         }
5133
5134         if (status & rx_not_ls) {
5135                 rx_q->state_saved = true;
5136                 rx_q->state.error = error;
5137                 rx_q->state.len = len;
5138         }
5139
5140         stmmac_finalize_xdp_rx(priv, xdp_status);
5141
5142         priv->xstats.rx_pkt_n += count;
5143         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5144
5145         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5146                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5147                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5148                 else
5149                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5150
5151                 return (int)count;
5152         }
5153
5154         return failure ? limit : (int)count;
5155 }
5156
5157 /**
5158  * stmmac_rx - manage the receive process
5159  * @priv: driver private structure
5160  * @limit: napi bugget
5161  * @queue: RX queue index.
5162  * Description :  this the function called by the napi poll method.
5163  * It gets all the frames inside the ring.
5164  */
5165 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5166 {
5167         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5168         struct stmmac_channel *ch = &priv->channel[queue];
5169         unsigned int count = 0, error = 0, len = 0;
5170         int status = 0, coe = priv->hw->rx_csum;
5171         unsigned int next_entry = rx_q->cur_rx;
5172         enum dma_data_direction dma_dir;
5173         unsigned int desc_size;
5174         struct sk_buff *skb = NULL;
5175         struct xdp_buff xdp;
5176         int xdp_status = 0;
5177         int buf_sz;
5178
5179         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5180         buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5181
5182         if (netif_msg_rx_status(priv)) {
5183                 void *rx_head;
5184
5185                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5186                 if (priv->extend_desc) {
5187                         rx_head = (void *)rx_q->dma_erx;
5188                         desc_size = sizeof(struct dma_extended_desc);
5189                 } else {
5190                         rx_head = (void *)rx_q->dma_rx;
5191                         desc_size = sizeof(struct dma_desc);
5192                 }
5193
5194                 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5195                                     rx_q->dma_rx_phy, desc_size);
5196         }
5197         while (count < limit) {
5198                 unsigned int buf1_len = 0, buf2_len = 0;
5199                 enum pkt_hash_types hash_type;
5200                 struct stmmac_rx_buffer *buf;
5201                 struct dma_desc *np, *p;
5202                 int entry;
5203                 u32 hash;
5204
5205                 if (!count && rx_q->state_saved) {
5206                         skb = rx_q->state.skb;
5207                         error = rx_q->state.error;
5208                         len = rx_q->state.len;
5209                 } else {
5210                         rx_q->state_saved = false;
5211                         skb = NULL;
5212                         error = 0;
5213                         len = 0;
5214                 }
5215
5216                 if (count >= limit)
5217                         break;
5218
5219 read_again:
5220                 buf1_len = 0;
5221                 buf2_len = 0;
5222                 entry = next_entry;
5223                 buf = &rx_q->buf_pool[entry];
5224
5225                 if (priv->extend_desc)
5226                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5227                 else
5228                         p = rx_q->dma_rx + entry;
5229
5230                 /* read the status of the incoming frame */
5231                 status = stmmac_rx_status(priv, &priv->dev->stats,
5232                                 &priv->xstats, p);
5233                 /* check if managed by the DMA otherwise go ahead */
5234                 if (unlikely(status & dma_own))
5235                         break;
5236
5237                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5238                                                 priv->dma_conf.dma_rx_size);
5239                 next_entry = rx_q->cur_rx;
5240
5241                 if (priv->extend_desc)
5242                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5243                 else
5244                         np = rx_q->dma_rx + next_entry;
5245
5246                 prefetch(np);
5247
5248                 if (priv->extend_desc)
5249                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5250                                         &priv->xstats, rx_q->dma_erx + entry);
5251                 if (unlikely(status == discard_frame)) {
5252                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5253                         buf->page = NULL;
5254                         error = 1;
5255                         if (!priv->hwts_rx_en)
5256                                 priv->dev->stats.rx_errors++;
5257                 }
5258
5259                 if (unlikely(error && (status & rx_not_ls)))
5260                         goto read_again;
5261                 if (unlikely(error)) {
5262                         dev_kfree_skb(skb);
5263                         skb = NULL;
5264                         count++;
5265                         continue;
5266                 }
5267
5268                 /* Buffer is good. Go on. */
5269
5270                 prefetch(page_address(buf->page) + buf->page_offset);
5271                 if (buf->sec_page)
5272                         prefetch(page_address(buf->sec_page));
5273
5274                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5275                 len += buf1_len;
5276                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5277                 len += buf2_len;
5278
5279                 /* ACS is disabled; strip manually. */
5280                 if (likely(!(status & rx_not_ls))) {
5281                         if (buf2_len) {
5282                                 buf2_len -= ETH_FCS_LEN;
5283                                 len -= ETH_FCS_LEN;
5284                         } else if (buf1_len) {
5285                                 buf1_len -= ETH_FCS_LEN;
5286                                 len -= ETH_FCS_LEN;
5287                         }
5288                 }
5289
5290                 if (!skb) {
5291                         unsigned int pre_len, sync_len;
5292
5293                         dma_sync_single_for_cpu(priv->device, buf->addr,
5294                                                 buf1_len, dma_dir);
5295
5296                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5297                         xdp_prepare_buff(&xdp, page_address(buf->page),
5298                                          buf->page_offset, buf1_len, false);
5299
5300                         pre_len = xdp.data_end - xdp.data_hard_start -
5301                                   buf->page_offset;
5302                         skb = stmmac_xdp_run_prog(priv, &xdp);
5303                         /* Due xdp_adjust_tail: DMA sync for_device
5304                          * cover max len CPU touch
5305                          */
5306                         sync_len = xdp.data_end - xdp.data_hard_start -
5307                                    buf->page_offset;
5308                         sync_len = max(sync_len, pre_len);
5309
5310                         /* For Not XDP_PASS verdict */
5311                         if (IS_ERR(skb)) {
5312                                 unsigned int xdp_res = -PTR_ERR(skb);
5313
5314                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5315                                         page_pool_put_page(rx_q->page_pool,
5316                                                            virt_to_head_page(xdp.data),
5317                                                            sync_len, true);
5318                                         buf->page = NULL;
5319                                         priv->dev->stats.rx_dropped++;
5320
5321                                         /* Clear skb as it was set as
5322                                          * status by XDP program.
5323                                          */
5324                                         skb = NULL;
5325
5326                                         if (unlikely((status & rx_not_ls)))
5327                                                 goto read_again;
5328
5329                                         count++;
5330                                         continue;
5331                                 } else if (xdp_res & (STMMAC_XDP_TX |
5332                                                       STMMAC_XDP_REDIRECT)) {
5333                                         xdp_status |= xdp_res;
5334                                         buf->page = NULL;
5335                                         skb = NULL;
5336                                         count++;
5337                                         continue;
5338                                 }
5339                         }
5340                 }
5341
5342                 if (!skb) {
5343                         /* XDP program may expand or reduce tail */
5344                         buf1_len = xdp.data_end - xdp.data;
5345
5346                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5347                         if (!skb) {
5348                                 priv->dev->stats.rx_dropped++;
5349                                 count++;
5350                                 goto drain_data;
5351                         }
5352
5353                         /* XDP program may adjust header */
5354                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5355                         skb_put(skb, buf1_len);
5356
5357                         /* Data payload copied into SKB, page ready for recycle */
5358                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5359                         buf->page = NULL;
5360                 } else if (buf1_len) {
5361                         dma_sync_single_for_cpu(priv->device, buf->addr,
5362                                                 buf1_len, dma_dir);
5363                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5364                                         buf->page, buf->page_offset, buf1_len,
5365                                         priv->dma_conf.dma_buf_sz);
5366
5367                         /* Data payload appended into SKB */
5368                         page_pool_release_page(rx_q->page_pool, buf->page);
5369                         buf->page = NULL;
5370                 }
5371
5372                 if (buf2_len) {
5373                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5374                                                 buf2_len, dma_dir);
5375                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5376                                         buf->sec_page, 0, buf2_len,
5377                                         priv->dma_conf.dma_buf_sz);
5378
5379                         /* Data payload appended into SKB */
5380                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5381                         buf->sec_page = NULL;
5382                 }
5383
5384 drain_data:
5385                 if (likely(status & rx_not_ls))
5386                         goto read_again;
5387                 if (!skb)
5388                         continue;
5389
5390                 /* Got entire packet into SKB. Finish it. */
5391
5392                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5393                 stmmac_rx_vlan(priv->dev, skb);
5394                 skb->protocol = eth_type_trans(skb, priv->dev);
5395
5396                 if (unlikely(!coe))
5397                         skb_checksum_none_assert(skb);
5398                 else
5399                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5400
5401                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5402                         skb_set_hash(skb, hash, hash_type);
5403
5404                 skb_record_rx_queue(skb, queue);
5405                 napi_gro_receive(&ch->rx_napi, skb);
5406                 skb = NULL;
5407
5408                 priv->dev->stats.rx_packets++;
5409                 priv->dev->stats.rx_bytes += len;
5410                 count++;
5411         }
5412
5413         if (status & rx_not_ls || skb) {
5414                 rx_q->state_saved = true;
5415                 rx_q->state.skb = skb;
5416                 rx_q->state.error = error;
5417                 rx_q->state.len = len;
5418         }
5419
5420         stmmac_finalize_xdp_rx(priv, xdp_status);
5421
5422         stmmac_rx_refill(priv, queue);
5423
5424         priv->xstats.rx_pkt_n += count;
5425         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5426
5427         return count;
5428 }
5429
5430 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5431 {
5432         struct stmmac_channel *ch =
5433                 container_of(napi, struct stmmac_channel, rx_napi);
5434         struct stmmac_priv *priv = ch->priv_data;
5435         u32 chan = ch->index;
5436         int work_done;
5437
5438         priv->xstats.napi_poll++;
5439
5440         work_done = stmmac_rx(priv, budget, chan);
5441         if (work_done < budget && napi_complete_done(napi, work_done)) {
5442                 unsigned long flags;
5443
5444                 spin_lock_irqsave(&ch->lock, flags);
5445                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5446                 spin_unlock_irqrestore(&ch->lock, flags);
5447         }
5448
5449         return work_done;
5450 }
5451
5452 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5453 {
5454         struct stmmac_channel *ch =
5455                 container_of(napi, struct stmmac_channel, tx_napi);
5456         struct stmmac_priv *priv = ch->priv_data;
5457         u32 chan = ch->index;
5458         int work_done;
5459
5460         priv->xstats.napi_poll++;
5461
5462         work_done = stmmac_tx_clean(priv, budget, chan);
5463         work_done = min(work_done, budget);
5464
5465         if (work_done < budget && napi_complete_done(napi, work_done)) {
5466                 unsigned long flags;
5467
5468                 spin_lock_irqsave(&ch->lock, flags);
5469                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5470                 spin_unlock_irqrestore(&ch->lock, flags);
5471         }
5472
5473         return work_done;
5474 }
5475
5476 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5477 {
5478         struct stmmac_channel *ch =
5479                 container_of(napi, struct stmmac_channel, rxtx_napi);
5480         struct stmmac_priv *priv = ch->priv_data;
5481         int rx_done, tx_done, rxtx_done;
5482         u32 chan = ch->index;
5483
5484         priv->xstats.napi_poll++;
5485
5486         tx_done = stmmac_tx_clean(priv, budget, chan);
5487         tx_done = min(tx_done, budget);
5488
5489         rx_done = stmmac_rx_zc(priv, budget, chan);
5490
5491         rxtx_done = max(tx_done, rx_done);
5492
5493         /* If either TX or RX work is not complete, return budget
5494          * and keep pooling
5495          */
5496         if (rxtx_done >= budget)
5497                 return budget;
5498
5499         /* all work done, exit the polling mode */
5500         if (napi_complete_done(napi, rxtx_done)) {
5501                 unsigned long flags;
5502
5503                 spin_lock_irqsave(&ch->lock, flags);
5504                 /* Both RX and TX work done are compelte,
5505                  * so enable both RX & TX IRQs.
5506                  */
5507                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5508                 spin_unlock_irqrestore(&ch->lock, flags);
5509         }
5510
5511         return min(rxtx_done, budget - 1);
5512 }
5513
5514 /**
5515  *  stmmac_tx_timeout
5516  *  @dev : Pointer to net device structure
5517  *  @txqueue: the index of the hanging transmit queue
5518  *  Description: this function is called when a packet transmission fails to
5519  *   complete within a reasonable time. The driver will mark the error in the
5520  *   netdev structure and arrange for the device to be reset to a sane state
5521  *   in order to transmit a new packet.
5522  */
5523 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5524 {
5525         struct stmmac_priv *priv = netdev_priv(dev);
5526
5527         stmmac_global_err(priv);
5528 }
5529
5530 /**
5531  *  stmmac_set_rx_mode - entry point for multicast addressing
5532  *  @dev : pointer to the device structure
5533  *  Description:
5534  *  This function is a driver entry point which gets called by the kernel
5535  *  whenever multicast addresses must be enabled/disabled.
5536  *  Return value:
5537  *  void.
5538  */
5539 static void stmmac_set_rx_mode(struct net_device *dev)
5540 {
5541         struct stmmac_priv *priv = netdev_priv(dev);
5542
5543         stmmac_set_filter(priv, priv->hw, dev);
5544 }
5545
5546 /**
5547  *  stmmac_change_mtu - entry point to change MTU size for the device.
5548  *  @dev : device pointer.
5549  *  @new_mtu : the new MTU size for the device.
5550  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5551  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5552  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5553  *  Return value:
5554  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5555  *  file on failure.
5556  */
5557 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5558 {
5559         struct stmmac_priv *priv = netdev_priv(dev);
5560         int txfifosz = priv->plat->tx_fifo_size;
5561         struct stmmac_dma_conf *dma_conf;
5562         const int mtu = new_mtu;
5563         int ret;
5564
5565         if (txfifosz == 0)
5566                 txfifosz = priv->dma_cap.tx_fifo_size;
5567
5568         txfifosz /= priv->plat->tx_queues_to_use;
5569
5570         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5571                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5572                 return -EINVAL;
5573         }
5574
5575         new_mtu = STMMAC_ALIGN(new_mtu);
5576
5577         /* If condition true, FIFO is too small or MTU too large */
5578         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5579                 return -EINVAL;
5580
5581         if (netif_running(dev)) {
5582                 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5583                 /* Try to allocate the new DMA conf with the new mtu */
5584                 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5585                 if (IS_ERR(dma_conf)) {
5586                         netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5587                                    mtu);
5588                         return PTR_ERR(dma_conf);
5589                 }
5590
5591                 stmmac_release(dev);
5592
5593                 ret = __stmmac_open(dev, dma_conf);
5594                 kfree(dma_conf);
5595                 if (ret) {
5596                         netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5597                         return ret;
5598                 }
5599
5600                 stmmac_set_rx_mode(dev);
5601         }
5602
5603         dev->mtu = mtu;
5604         netdev_update_features(dev);
5605
5606         return 0;
5607 }
5608
5609 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5610                                              netdev_features_t features)
5611 {
5612         struct stmmac_priv *priv = netdev_priv(dev);
5613
5614         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5615                 features &= ~NETIF_F_RXCSUM;
5616
5617         if (!priv->plat->tx_coe)
5618                 features &= ~NETIF_F_CSUM_MASK;
5619
5620         /* Some GMAC devices have a bugged Jumbo frame support that
5621          * needs to have the Tx COE disabled for oversized frames
5622          * (due to limited buffer sizes). In this case we disable
5623          * the TX csum insertion in the TDES and not use SF.
5624          */
5625         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5626                 features &= ~NETIF_F_CSUM_MASK;
5627
5628         /* Disable tso if asked by ethtool */
5629         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5630                 if (features & NETIF_F_TSO)
5631                         priv->tso = true;
5632                 else
5633                         priv->tso = false;
5634         }
5635
5636         return features;
5637 }
5638
5639 static int stmmac_set_features(struct net_device *netdev,
5640                                netdev_features_t features)
5641 {
5642         struct stmmac_priv *priv = netdev_priv(netdev);
5643
5644         /* Keep the COE Type in case of csum is supporting */
5645         if (features & NETIF_F_RXCSUM)
5646                 priv->hw->rx_csum = priv->plat->rx_coe;
5647         else
5648                 priv->hw->rx_csum = 0;
5649         /* No check needed because rx_coe has been set before and it will be
5650          * fixed in case of issue.
5651          */
5652         stmmac_rx_ipc(priv, priv->hw);
5653
5654         if (priv->sph_cap) {
5655                 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5656                 u32 chan;
5657
5658                 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5659                         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5660         }
5661
5662         return 0;
5663 }
5664
5665 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5666 {
5667         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5668         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5669         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5670         bool *hs_enable = &fpe_cfg->hs_enable;
5671
5672         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5673                 return;
5674
5675         /* If LP has sent verify mPacket, LP is FPE capable */
5676         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5677                 if (*lp_state < FPE_STATE_CAPABLE)
5678                         *lp_state = FPE_STATE_CAPABLE;
5679
5680                 /* If user has requested FPE enable, quickly response */
5681                 if (*hs_enable)
5682                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5683                                                 MPACKET_RESPONSE);
5684         }
5685
5686         /* If Local has sent verify mPacket, Local is FPE capable */
5687         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5688                 if (*lo_state < FPE_STATE_CAPABLE)
5689                         *lo_state = FPE_STATE_CAPABLE;
5690         }
5691
5692         /* If LP has sent response mPacket, LP is entering FPE ON */
5693         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5694                 *lp_state = FPE_STATE_ENTERING_ON;
5695
5696         /* If Local has sent response mPacket, Local is entering FPE ON */
5697         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5698                 *lo_state = FPE_STATE_ENTERING_ON;
5699
5700         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5701             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5702             priv->fpe_wq) {
5703                 queue_work(priv->fpe_wq, &priv->fpe_task);
5704         }
5705 }
5706
5707 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5708 {
5709         u32 rx_cnt = priv->plat->rx_queues_to_use;
5710         u32 tx_cnt = priv->plat->tx_queues_to_use;
5711         u32 queues_count;
5712         u32 queue;
5713         bool xmac;
5714
5715         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5716         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5717
5718         if (priv->irq_wake)
5719                 pm_wakeup_event(priv->device, 0);
5720
5721         if (priv->dma_cap.estsel)
5722                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5723                                       &priv->xstats, tx_cnt);
5724
5725         if (priv->dma_cap.fpesel) {
5726                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5727                                                    priv->dev);
5728
5729                 stmmac_fpe_event_status(priv, status);
5730         }
5731
5732         /* To handle GMAC own interrupts */
5733         if ((priv->plat->has_gmac) || xmac) {
5734                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5735
5736                 if (unlikely(status)) {
5737                         /* For LPI we need to save the tx status */
5738                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5739                                 priv->tx_path_in_lpi_mode = true;
5740                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5741                                 priv->tx_path_in_lpi_mode = false;
5742                 }
5743
5744                 for (queue = 0; queue < queues_count; queue++) {
5745                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5746                                                             queue);
5747                 }
5748
5749                 /* PCS link status */
5750                 if (priv->hw->pcs) {
5751                         if (priv->xstats.pcs_link)
5752                                 netif_carrier_on(priv->dev);
5753                         else
5754                                 netif_carrier_off(priv->dev);
5755                 }
5756
5757                 stmmac_timestamp_interrupt(priv, priv);
5758         }
5759 }
5760
5761 /**
5762  *  stmmac_interrupt - main ISR
5763  *  @irq: interrupt number.
5764  *  @dev_id: to pass the net device pointer.
5765  *  Description: this is the main driver interrupt service routine.
5766  *  It can call:
5767  *  o DMA service routine (to manage incoming frame reception and transmission
5768  *    status)
5769  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5770  *    interrupts.
5771  */
5772 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5773 {
5774         struct net_device *dev = (struct net_device *)dev_id;
5775         struct stmmac_priv *priv = netdev_priv(dev);
5776
5777         /* Check if adapter is up */
5778         if (test_bit(STMMAC_DOWN, &priv->state))
5779                 return IRQ_HANDLED;
5780
5781         /* Check if a fatal error happened */
5782         if (stmmac_safety_feat_interrupt(priv))
5783                 return IRQ_HANDLED;
5784
5785         /* To handle Common interrupts */
5786         stmmac_common_interrupt(priv);
5787
5788         /* To handle DMA interrupts */
5789         stmmac_dma_interrupt(priv);
5790
5791         return IRQ_HANDLED;
5792 }
5793
5794 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5795 {
5796         struct net_device *dev = (struct net_device *)dev_id;
5797         struct stmmac_priv *priv = netdev_priv(dev);
5798
5799         if (unlikely(!dev)) {
5800                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5801                 return IRQ_NONE;
5802         }
5803
5804         /* Check if adapter is up */
5805         if (test_bit(STMMAC_DOWN, &priv->state))
5806                 return IRQ_HANDLED;
5807
5808         /* To handle Common interrupts */
5809         stmmac_common_interrupt(priv);
5810
5811         return IRQ_HANDLED;
5812 }
5813
5814 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5815 {
5816         struct net_device *dev = (struct net_device *)dev_id;
5817         struct stmmac_priv *priv = netdev_priv(dev);
5818
5819         if (unlikely(!dev)) {
5820                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5821                 return IRQ_NONE;
5822         }
5823
5824         /* Check if adapter is up */
5825         if (test_bit(STMMAC_DOWN, &priv->state))
5826                 return IRQ_HANDLED;
5827
5828         /* Check if a fatal error happened */
5829         stmmac_safety_feat_interrupt(priv);
5830
5831         return IRQ_HANDLED;
5832 }
5833
5834 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5835 {
5836         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5837         struct stmmac_dma_conf *dma_conf;
5838         int chan = tx_q->queue_index;
5839         struct stmmac_priv *priv;
5840         int status;
5841
5842         dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5843         priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5844
5845         if (unlikely(!data)) {
5846                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5847                 return IRQ_NONE;
5848         }
5849
5850         /* Check if adapter is up */
5851         if (test_bit(STMMAC_DOWN, &priv->state))
5852                 return IRQ_HANDLED;
5853
5854         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5855
5856         if (unlikely(status & tx_hard_error_bump_tc)) {
5857                 /* Try to bump up the dma threshold on this failure */
5858                 stmmac_bump_dma_threshold(priv, chan);
5859         } else if (unlikely(status == tx_hard_error)) {
5860                 stmmac_tx_err(priv, chan);
5861         }
5862
5863         return IRQ_HANDLED;
5864 }
5865
5866 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5867 {
5868         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5869         struct stmmac_dma_conf *dma_conf;
5870         int chan = rx_q->queue_index;
5871         struct stmmac_priv *priv;
5872
5873         dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5874         priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5875
5876         if (unlikely(!data)) {
5877                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5878                 return IRQ_NONE;
5879         }
5880
5881         /* Check if adapter is up */
5882         if (test_bit(STMMAC_DOWN, &priv->state))
5883                 return IRQ_HANDLED;
5884
5885         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5886
5887         return IRQ_HANDLED;
5888 }
5889
5890 #ifdef CONFIG_NET_POLL_CONTROLLER
5891 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5892  * to allow network I/O with interrupts disabled.
5893  */
5894 static void stmmac_poll_controller(struct net_device *dev)
5895 {
5896         struct stmmac_priv *priv = netdev_priv(dev);
5897         int i;
5898
5899         /* If adapter is down, do nothing */
5900         if (test_bit(STMMAC_DOWN, &priv->state))
5901                 return;
5902
5903         if (priv->plat->multi_msi_en) {
5904                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5905                         stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5906
5907                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5908                         stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5909         } else {
5910                 disable_irq(dev->irq);
5911                 stmmac_interrupt(dev->irq, dev);
5912                 enable_irq(dev->irq);
5913         }
5914 }
5915 #endif
5916
5917 /**
5918  *  stmmac_ioctl - Entry point for the Ioctl
5919  *  @dev: Device pointer.
5920  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5921  *  a proprietary structure used to pass information to the driver.
5922  *  @cmd: IOCTL command
5923  *  Description:
5924  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5925  */
5926 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5927 {
5928         struct stmmac_priv *priv = netdev_priv (dev);
5929         int ret = -EOPNOTSUPP;
5930
5931         if (!netif_running(dev))
5932                 return -EINVAL;
5933
5934         switch (cmd) {
5935         case SIOCGMIIPHY:
5936         case SIOCGMIIREG:
5937         case SIOCSMIIREG:
5938                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5939                 break;
5940         case SIOCSHWTSTAMP:
5941                 ret = stmmac_hwtstamp_set(dev, rq);
5942                 break;
5943         case SIOCGHWTSTAMP:
5944                 ret = stmmac_hwtstamp_get(dev, rq);
5945                 break;
5946         default:
5947                 break;
5948         }
5949
5950         return ret;
5951 }
5952
5953 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5954                                     void *cb_priv)
5955 {
5956         struct stmmac_priv *priv = cb_priv;
5957         int ret = -EOPNOTSUPP;
5958
5959         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5960                 return ret;
5961
5962         __stmmac_disable_all_queues(priv);
5963
5964         switch (type) {
5965         case TC_SETUP_CLSU32:
5966                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5967                 break;
5968         case TC_SETUP_CLSFLOWER:
5969                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5970                 break;
5971         default:
5972                 break;
5973         }
5974
5975         stmmac_enable_all_queues(priv);
5976         return ret;
5977 }
5978
5979 static LIST_HEAD(stmmac_block_cb_list);
5980
5981 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5982                            void *type_data)
5983 {
5984         struct stmmac_priv *priv = netdev_priv(ndev);
5985
5986         switch (type) {
5987         case TC_SETUP_BLOCK:
5988                 return flow_block_cb_setup_simple(type_data,
5989                                                   &stmmac_block_cb_list,
5990                                                   stmmac_setup_tc_block_cb,
5991                                                   priv, priv, true);
5992         case TC_SETUP_QDISC_CBS:
5993                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5994         case TC_SETUP_QDISC_TAPRIO:
5995                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5996         case TC_SETUP_QDISC_ETF:
5997                 return stmmac_tc_setup_etf(priv, priv, type_data);
5998         default:
5999                 return -EOPNOTSUPP;
6000         }
6001 }
6002
6003 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6004                                struct net_device *sb_dev)
6005 {
6006         int gso = skb_shinfo(skb)->gso_type;
6007
6008         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6009                 /*
6010                  * There is no way to determine the number of TSO/USO
6011                  * capable Queues. Let's use always the Queue 0
6012                  * because if TSO/USO is supported then at least this
6013                  * one will be capable.
6014                  */
6015                 return 0;
6016         }
6017
6018         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6019 }
6020
6021 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6022 {
6023         struct stmmac_priv *priv = netdev_priv(ndev);
6024         int ret = 0;
6025
6026         ret = pm_runtime_resume_and_get(priv->device);
6027         if (ret < 0)
6028                 return ret;
6029
6030         ret = eth_mac_addr(ndev, addr);
6031         if (ret)
6032                 goto set_mac_error;
6033
6034         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6035
6036 set_mac_error:
6037         pm_runtime_put(priv->device);
6038
6039         return ret;
6040 }
6041
6042 #ifdef CONFIG_DEBUG_FS
6043 static struct dentry *stmmac_fs_dir;
6044
6045 static void sysfs_display_ring(void *head, int size, int extend_desc,
6046                                struct seq_file *seq, dma_addr_t dma_phy_addr)
6047 {
6048         int i;
6049         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6050         struct dma_desc *p = (struct dma_desc *)head;
6051         dma_addr_t dma_addr;
6052
6053         for (i = 0; i < size; i++) {
6054                 if (extend_desc) {
6055                         dma_addr = dma_phy_addr + i * sizeof(*ep);
6056                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6057                                    i, &dma_addr,
6058                                    le32_to_cpu(ep->basic.des0),
6059                                    le32_to_cpu(ep->basic.des1),
6060                                    le32_to_cpu(ep->basic.des2),
6061                                    le32_to_cpu(ep->basic.des3));
6062                         ep++;
6063                 } else {
6064                         dma_addr = dma_phy_addr + i * sizeof(*p);
6065                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6066                                    i, &dma_addr,
6067                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6068                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6069                         p++;
6070                 }
6071                 seq_printf(seq, "\n");
6072         }
6073 }
6074
6075 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6076 {
6077         struct net_device *dev = seq->private;
6078         struct stmmac_priv *priv = netdev_priv(dev);
6079         u32 rx_count = priv->plat->rx_queues_to_use;
6080         u32 tx_count = priv->plat->tx_queues_to_use;
6081         u32 queue;
6082
6083         if ((dev->flags & IFF_UP) == 0)
6084                 return 0;
6085
6086         for (queue = 0; queue < rx_count; queue++) {
6087                 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6088
6089                 seq_printf(seq, "RX Queue %d:\n", queue);
6090
6091                 if (priv->extend_desc) {
6092                         seq_printf(seq, "Extended descriptor ring:\n");
6093                         sysfs_display_ring((void *)rx_q->dma_erx,
6094                                            priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6095                 } else {
6096                         seq_printf(seq, "Descriptor ring:\n");
6097                         sysfs_display_ring((void *)rx_q->dma_rx,
6098                                            priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6099                 }
6100         }
6101
6102         for (queue = 0; queue < tx_count; queue++) {
6103                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6104
6105                 seq_printf(seq, "TX Queue %d:\n", queue);
6106
6107                 if (priv->extend_desc) {
6108                         seq_printf(seq, "Extended descriptor ring:\n");
6109                         sysfs_display_ring((void *)tx_q->dma_etx,
6110                                            priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6111                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6112                         seq_printf(seq, "Descriptor ring:\n");
6113                         sysfs_display_ring((void *)tx_q->dma_tx,
6114                                            priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6115                 }
6116         }
6117
6118         return 0;
6119 }
6120 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6121
6122 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6123 {
6124         struct net_device *dev = seq->private;
6125         struct stmmac_priv *priv = netdev_priv(dev);
6126
6127         if (!priv->hw_cap_support) {
6128                 seq_printf(seq, "DMA HW features not supported\n");
6129                 return 0;
6130         }
6131
6132         seq_printf(seq, "==============================\n");
6133         seq_printf(seq, "\tDMA HW features\n");
6134         seq_printf(seq, "==============================\n");
6135
6136         seq_printf(seq, "\t10/100 Mbps: %s\n",
6137                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6138         seq_printf(seq, "\t1000 Mbps: %s\n",
6139                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6140         seq_printf(seq, "\tHalf duplex: %s\n",
6141                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6142         seq_printf(seq, "\tHash Filter: %s\n",
6143                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6144         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6145                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6146         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6147                    (priv->dma_cap.pcs) ? "Y" : "N");
6148         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6149                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6150         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6151                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6152         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6153                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6154         seq_printf(seq, "\tRMON module: %s\n",
6155                    (priv->dma_cap.rmon) ? "Y" : "N");
6156         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6157                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6158         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6159                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6160         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6161                    (priv->dma_cap.eee) ? "Y" : "N");
6162         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6163         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6164                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6165         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6166                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6167                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6168         } else {
6169                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6170                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6171                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6172                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6173         }
6174         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6175                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6176         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6177                    priv->dma_cap.number_rx_channel);
6178         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6179                    priv->dma_cap.number_tx_channel);
6180         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6181                    priv->dma_cap.number_rx_queues);
6182         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6183                    priv->dma_cap.number_tx_queues);
6184         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6185                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6186         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6187         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6188         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6189         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6190         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6191                    priv->dma_cap.pps_out_num);
6192         seq_printf(seq, "\tSafety Features: %s\n",
6193                    priv->dma_cap.asp ? "Y" : "N");
6194         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6195                    priv->dma_cap.frpsel ? "Y" : "N");
6196         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6197                    priv->dma_cap.addr64);
6198         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6199                    priv->dma_cap.rssen ? "Y" : "N");
6200         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6201                    priv->dma_cap.vlhash ? "Y" : "N");
6202         seq_printf(seq, "\tSplit Header: %s\n",
6203                    priv->dma_cap.sphen ? "Y" : "N");
6204         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6205                    priv->dma_cap.vlins ? "Y" : "N");
6206         seq_printf(seq, "\tDouble VLAN: %s\n",
6207                    priv->dma_cap.dvlan ? "Y" : "N");
6208         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6209                    priv->dma_cap.l3l4fnum);
6210         seq_printf(seq, "\tARP Offloading: %s\n",
6211                    priv->dma_cap.arpoffsel ? "Y" : "N");
6212         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6213                    priv->dma_cap.estsel ? "Y" : "N");
6214         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6215                    priv->dma_cap.fpesel ? "Y" : "N");
6216         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6217                    priv->dma_cap.tbssel ? "Y" : "N");
6218         return 0;
6219 }
6220 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6221
6222 /* Use network device events to rename debugfs file entries.
6223  */
6224 static int stmmac_device_event(struct notifier_block *unused,
6225                                unsigned long event, void *ptr)
6226 {
6227         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6228         struct stmmac_priv *priv = netdev_priv(dev);
6229
6230         if (dev->netdev_ops != &stmmac_netdev_ops)
6231                 goto done;
6232
6233         switch (event) {
6234         case NETDEV_CHANGENAME:
6235                 if (priv->dbgfs_dir)
6236                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6237                                                          priv->dbgfs_dir,
6238                                                          stmmac_fs_dir,
6239                                                          dev->name);
6240                 break;
6241         }
6242 done:
6243         return NOTIFY_DONE;
6244 }
6245
6246 static struct notifier_block stmmac_notifier = {
6247         .notifier_call = stmmac_device_event,
6248 };
6249
6250 static void stmmac_init_fs(struct net_device *dev)
6251 {
6252         struct stmmac_priv *priv = netdev_priv(dev);
6253
6254         rtnl_lock();
6255
6256         /* Create per netdev entries */
6257         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6258
6259         /* Entry to report DMA RX/TX rings */
6260         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6261                             &stmmac_rings_status_fops);
6262
6263         /* Entry to report the DMA HW features */
6264         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6265                             &stmmac_dma_cap_fops);
6266
6267         rtnl_unlock();
6268 }
6269
6270 static void stmmac_exit_fs(struct net_device *dev)
6271 {
6272         struct stmmac_priv *priv = netdev_priv(dev);
6273
6274         debugfs_remove_recursive(priv->dbgfs_dir);
6275 }
6276 #endif /* CONFIG_DEBUG_FS */
6277
6278 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6279 {
6280         unsigned char *data = (unsigned char *)&vid_le;
6281         unsigned char data_byte = 0;
6282         u32 crc = ~0x0;
6283         u32 temp = 0;
6284         int i, bits;
6285
6286         bits = get_bitmask_order(VLAN_VID_MASK);
6287         for (i = 0; i < bits; i++) {
6288                 if ((i % 8) == 0)
6289                         data_byte = data[i / 8];
6290
6291                 temp = ((crc & 1) ^ data_byte) & 1;
6292                 crc >>= 1;
6293                 data_byte >>= 1;
6294
6295                 if (temp)
6296                         crc ^= 0xedb88320;
6297         }
6298
6299         return crc;
6300 }
6301
6302 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6303 {
6304         u32 crc, hash = 0;
6305         __le16 pmatch = 0;
6306         int count = 0;
6307         u16 vid = 0;
6308
6309         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6310                 __le16 vid_le = cpu_to_le16(vid);
6311                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6312                 hash |= (1 << crc);
6313                 count++;
6314         }
6315
6316         if (!priv->dma_cap.vlhash) {
6317                 if (count > 2) /* VID = 0 always passes filter */
6318                         return -EOPNOTSUPP;
6319
6320                 pmatch = cpu_to_le16(vid);
6321                 hash = 0;
6322         }
6323
6324         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6325 }
6326
6327 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6328 {
6329         struct stmmac_priv *priv = netdev_priv(ndev);
6330         bool is_double = false;
6331         int ret;
6332
6333         if (be16_to_cpu(proto) == ETH_P_8021AD)
6334                 is_double = true;
6335
6336         set_bit(vid, priv->active_vlans);
6337         ret = stmmac_vlan_update(priv, is_double);
6338         if (ret) {
6339                 clear_bit(vid, priv->active_vlans);
6340                 return ret;
6341         }
6342
6343         if (priv->hw->num_vlan) {
6344                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6345                 if (ret)
6346                         return ret;
6347         }
6348
6349         return 0;
6350 }
6351
6352 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6353 {
6354         struct stmmac_priv *priv = netdev_priv(ndev);
6355         bool is_double = false;
6356         int ret;
6357
6358         ret = pm_runtime_resume_and_get(priv->device);
6359         if (ret < 0)
6360                 return ret;
6361
6362         if (be16_to_cpu(proto) == ETH_P_8021AD)
6363                 is_double = true;
6364
6365         clear_bit(vid, priv->active_vlans);
6366
6367         if (priv->hw->num_vlan) {
6368                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6369                 if (ret)
6370                         goto del_vlan_error;
6371         }
6372
6373         ret = stmmac_vlan_update(priv, is_double);
6374
6375 del_vlan_error:
6376         pm_runtime_put(priv->device);
6377
6378         return ret;
6379 }
6380
6381 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6382 {
6383         struct stmmac_priv *priv = netdev_priv(dev);
6384
6385         switch (bpf->command) {
6386         case XDP_SETUP_PROG:
6387                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6388         case XDP_SETUP_XSK_POOL:
6389                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6390                                              bpf->xsk.queue_id);
6391         default:
6392                 return -EOPNOTSUPP;
6393         }
6394 }
6395
6396 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6397                            struct xdp_frame **frames, u32 flags)
6398 {
6399         struct stmmac_priv *priv = netdev_priv(dev);
6400         int cpu = smp_processor_id();
6401         struct netdev_queue *nq;
6402         int i, nxmit = 0;
6403         int queue;
6404
6405         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6406                 return -ENETDOWN;
6407
6408         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6409                 return -EINVAL;
6410
6411         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6412         nq = netdev_get_tx_queue(priv->dev, queue);
6413
6414         __netif_tx_lock(nq, cpu);
6415         /* Avoids TX time-out as we are sharing with slow path */
6416         txq_trans_cond_update(nq);
6417
6418         for (i = 0; i < num_frames; i++) {
6419                 int res;
6420
6421                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6422                 if (res == STMMAC_XDP_CONSUMED)
6423                         break;
6424
6425                 nxmit++;
6426         }
6427
6428         if (flags & XDP_XMIT_FLUSH) {
6429                 stmmac_flush_tx_descriptors(priv, queue);
6430                 stmmac_tx_timer_arm(priv, queue);
6431         }
6432
6433         __netif_tx_unlock(nq);
6434
6435         return nxmit;
6436 }
6437
6438 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6439 {
6440         struct stmmac_channel *ch = &priv->channel[queue];
6441         unsigned long flags;
6442
6443         spin_lock_irqsave(&ch->lock, flags);
6444         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6445         spin_unlock_irqrestore(&ch->lock, flags);
6446
6447         stmmac_stop_rx_dma(priv, queue);
6448         __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6449 }
6450
6451 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6452 {
6453         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6454         struct stmmac_channel *ch = &priv->channel[queue];
6455         unsigned long flags;
6456         u32 buf_size;
6457         int ret;
6458
6459         ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6460         if (ret) {
6461                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6462                 return;
6463         }
6464
6465         ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6466         if (ret) {
6467                 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6468                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6469                 return;
6470         }
6471
6472         stmmac_reset_rx_queue(priv, queue);
6473         stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6474
6475         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6476                             rx_q->dma_rx_phy, rx_q->queue_index);
6477
6478         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6479                              sizeof(struct dma_desc));
6480         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6481                                rx_q->rx_tail_addr, rx_q->queue_index);
6482
6483         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6484                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6485                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6486                                       buf_size,
6487                                       rx_q->queue_index);
6488         } else {
6489                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6490                                       priv->dma_conf.dma_buf_sz,
6491                                       rx_q->queue_index);
6492         }
6493
6494         stmmac_start_rx_dma(priv, queue);
6495
6496         spin_lock_irqsave(&ch->lock, flags);
6497         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6498         spin_unlock_irqrestore(&ch->lock, flags);
6499 }
6500
6501 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6502 {
6503         struct stmmac_channel *ch = &priv->channel[queue];
6504         unsigned long flags;
6505
6506         spin_lock_irqsave(&ch->lock, flags);
6507         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6508         spin_unlock_irqrestore(&ch->lock, flags);
6509
6510         stmmac_stop_tx_dma(priv, queue);
6511         __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6512 }
6513
6514 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6515 {
6516         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6517         struct stmmac_channel *ch = &priv->channel[queue];
6518         unsigned long flags;
6519         int ret;
6520
6521         ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6522         if (ret) {
6523                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6524                 return;
6525         }
6526
6527         ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6528         if (ret) {
6529                 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6530                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6531                 return;
6532         }
6533
6534         stmmac_reset_tx_queue(priv, queue);
6535         stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6536
6537         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6538                             tx_q->dma_tx_phy, tx_q->queue_index);
6539
6540         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6541                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6542
6543         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6544         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6545                                tx_q->tx_tail_addr, tx_q->queue_index);
6546
6547         stmmac_start_tx_dma(priv, queue);
6548
6549         spin_lock_irqsave(&ch->lock, flags);
6550         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6551         spin_unlock_irqrestore(&ch->lock, flags);
6552 }
6553
6554 void stmmac_xdp_release(struct net_device *dev)
6555 {
6556         struct stmmac_priv *priv = netdev_priv(dev);
6557         u32 chan;
6558
6559         /* Ensure tx function is not running */
6560         netif_tx_disable(dev);
6561
6562         /* Disable NAPI process */
6563         stmmac_disable_all_queues(priv);
6564
6565         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6566                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6567
6568         /* Free the IRQ lines */
6569         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6570
6571         /* Stop TX/RX DMA channels */
6572         stmmac_stop_all_dma(priv);
6573
6574         /* Release and free the Rx/Tx resources */
6575         free_dma_desc_resources(priv, &priv->dma_conf);
6576
6577         /* Disable the MAC Rx/Tx */
6578         stmmac_mac_set(priv, priv->ioaddr, false);
6579
6580         /* set trans_start so we don't get spurious
6581          * watchdogs during reset
6582          */
6583         netif_trans_update(dev);
6584         netif_carrier_off(dev);
6585 }
6586
6587 int stmmac_xdp_open(struct net_device *dev)
6588 {
6589         struct stmmac_priv *priv = netdev_priv(dev);
6590         u32 rx_cnt = priv->plat->rx_queues_to_use;
6591         u32 tx_cnt = priv->plat->tx_queues_to_use;
6592         u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6593         struct stmmac_rx_queue *rx_q;
6594         struct stmmac_tx_queue *tx_q;
6595         u32 buf_size;
6596         bool sph_en;
6597         u32 chan;
6598         int ret;
6599
6600         ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6601         if (ret < 0) {
6602                 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6603                            __func__);
6604                 goto dma_desc_error;
6605         }
6606
6607         ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6608         if (ret < 0) {
6609                 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6610                            __func__);
6611                 goto init_error;
6612         }
6613
6614         /* DMA CSR Channel configuration */
6615         for (chan = 0; chan < dma_csr_ch; chan++) {
6616                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6617                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6618         }
6619
6620         /* Adjust Split header */
6621         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6622
6623         /* DMA RX Channel Configuration */
6624         for (chan = 0; chan < rx_cnt; chan++) {
6625                 rx_q = &priv->dma_conf.rx_queue[chan];
6626
6627                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6628                                     rx_q->dma_rx_phy, chan);
6629
6630                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6631                                      (rx_q->buf_alloc_num *
6632                                       sizeof(struct dma_desc));
6633                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6634                                        rx_q->rx_tail_addr, chan);
6635
6636                 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6637                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6638                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6639                                               buf_size,
6640                                               rx_q->queue_index);
6641                 } else {
6642                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6643                                               priv->dma_conf.dma_buf_sz,
6644                                               rx_q->queue_index);
6645                 }
6646
6647                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6648         }
6649
6650         /* DMA TX Channel Configuration */
6651         for (chan = 0; chan < tx_cnt; chan++) {
6652                 tx_q = &priv->dma_conf.tx_queue[chan];
6653
6654                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6655                                     tx_q->dma_tx_phy, chan);
6656
6657                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6658                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6659                                        tx_q->tx_tail_addr, chan);
6660
6661                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6662                 tx_q->txtimer.function = stmmac_tx_timer;
6663         }
6664
6665         /* Enable the MAC Rx/Tx */
6666         stmmac_mac_set(priv, priv->ioaddr, true);
6667
6668         /* Start Rx & Tx DMA Channels */
6669         stmmac_start_all_dma(priv);
6670
6671         ret = stmmac_request_irq(dev);
6672         if (ret)
6673                 goto irq_error;
6674
6675         /* Enable NAPI process*/
6676         stmmac_enable_all_queues(priv);
6677         netif_carrier_on(dev);
6678         netif_tx_start_all_queues(dev);
6679         stmmac_enable_all_dma_irq(priv);
6680
6681         return 0;
6682
6683 irq_error:
6684         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6685                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6686
6687         stmmac_hw_teardown(dev);
6688 init_error:
6689         free_dma_desc_resources(priv, &priv->dma_conf);
6690 dma_desc_error:
6691         return ret;
6692 }
6693
6694 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6695 {
6696         struct stmmac_priv *priv = netdev_priv(dev);
6697         struct stmmac_rx_queue *rx_q;
6698         struct stmmac_tx_queue *tx_q;
6699         struct stmmac_channel *ch;
6700
6701         if (test_bit(STMMAC_DOWN, &priv->state) ||
6702             !netif_carrier_ok(priv->dev))
6703                 return -ENETDOWN;
6704
6705         if (!stmmac_xdp_is_enabled(priv))
6706                 return -EINVAL;
6707
6708         if (queue >= priv->plat->rx_queues_to_use ||
6709             queue >= priv->plat->tx_queues_to_use)
6710                 return -EINVAL;
6711
6712         rx_q = &priv->dma_conf.rx_queue[queue];
6713         tx_q = &priv->dma_conf.tx_queue[queue];
6714         ch = &priv->channel[queue];
6715
6716         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6717                 return -EINVAL;
6718
6719         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6720                 /* EQoS does not have per-DMA channel SW interrupt,
6721                  * so we schedule RX Napi straight-away.
6722                  */
6723                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6724                         __napi_schedule(&ch->rxtx_napi);
6725         }
6726
6727         return 0;
6728 }
6729
6730 static const struct net_device_ops stmmac_netdev_ops = {
6731         .ndo_open = stmmac_open,
6732         .ndo_start_xmit = stmmac_xmit,
6733         .ndo_stop = stmmac_release,
6734         .ndo_change_mtu = stmmac_change_mtu,
6735         .ndo_fix_features = stmmac_fix_features,
6736         .ndo_set_features = stmmac_set_features,
6737         .ndo_set_rx_mode = stmmac_set_rx_mode,
6738         .ndo_tx_timeout = stmmac_tx_timeout,
6739         .ndo_eth_ioctl = stmmac_ioctl,
6740         .ndo_setup_tc = stmmac_setup_tc,
6741         .ndo_select_queue = stmmac_select_queue,
6742 #ifdef CONFIG_NET_POLL_CONTROLLER
6743         .ndo_poll_controller = stmmac_poll_controller,
6744 #endif
6745         .ndo_set_mac_address = stmmac_set_mac_address,
6746         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6747         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6748         .ndo_bpf = stmmac_bpf,
6749         .ndo_xdp_xmit = stmmac_xdp_xmit,
6750         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6751 };
6752
6753 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6754 {
6755         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6756                 return;
6757         if (test_bit(STMMAC_DOWN, &priv->state))
6758                 return;
6759
6760         netdev_err(priv->dev, "Reset adapter.\n");
6761
6762         rtnl_lock();
6763         netif_trans_update(priv->dev);
6764         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6765                 usleep_range(1000, 2000);
6766
6767         set_bit(STMMAC_DOWN, &priv->state);
6768         dev_close(priv->dev);
6769         dev_open(priv->dev, NULL);
6770         clear_bit(STMMAC_DOWN, &priv->state);
6771         clear_bit(STMMAC_RESETING, &priv->state);
6772         rtnl_unlock();
6773 }
6774
6775 static void stmmac_service_task(struct work_struct *work)
6776 {
6777         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6778                         service_task);
6779
6780         stmmac_reset_subtask(priv);
6781         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6782 }
6783
6784 /**
6785  *  stmmac_hw_init - Init the MAC device
6786  *  @priv: driver private structure
6787  *  Description: this function is to configure the MAC device according to
6788  *  some platform parameters or the HW capability register. It prepares the
6789  *  driver to use either ring or chain modes and to setup either enhanced or
6790  *  normal descriptors.
6791  */
6792 static int stmmac_hw_init(struct stmmac_priv *priv)
6793 {
6794         int ret;
6795
6796         /* dwmac-sun8i only work in chain mode */
6797         if (priv->plat->has_sun8i)
6798                 chain_mode = 1;
6799         priv->chain_mode = chain_mode;
6800
6801         /* Initialize HW Interface */
6802         ret = stmmac_hwif_init(priv);
6803         if (ret)
6804                 return ret;
6805
6806         /* Get the HW capability (new GMAC newer than 3.50a) */
6807         priv->hw_cap_support = stmmac_get_hw_features(priv);
6808         if (priv->hw_cap_support) {
6809                 dev_info(priv->device, "DMA HW capability register supported\n");
6810
6811                 /* We can override some gmac/dma configuration fields: e.g.
6812                  * enh_desc, tx_coe (e.g. that are passed through the
6813                  * platform) with the values from the HW capability
6814                  * register (if supported).
6815                  */
6816                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6817                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6818                                 !priv->plat->use_phy_wol;
6819                 priv->hw->pmt = priv->plat->pmt;
6820                 if (priv->dma_cap.hash_tb_sz) {
6821                         priv->hw->multicast_filter_bins =
6822                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6823                         priv->hw->mcast_bits_log2 =
6824                                         ilog2(priv->hw->multicast_filter_bins);
6825                 }
6826
6827                 /* TXCOE doesn't work in thresh DMA mode */
6828                 if (priv->plat->force_thresh_dma_mode)
6829                         priv->plat->tx_coe = 0;
6830                 else
6831                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6832
6833                 /* In case of GMAC4 rx_coe is from HW cap register. */
6834                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6835
6836                 if (priv->dma_cap.rx_coe_type2)
6837                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6838                 else if (priv->dma_cap.rx_coe_type1)
6839                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6840
6841         } else {
6842                 dev_info(priv->device, "No HW DMA feature register supported\n");
6843         }
6844
6845         if (priv->plat->rx_coe) {
6846                 priv->hw->rx_csum = priv->plat->rx_coe;
6847                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6848                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6849                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6850         }
6851         if (priv->plat->tx_coe)
6852                 dev_info(priv->device, "TX Checksum insertion supported\n");
6853
6854         if (priv->plat->pmt) {
6855                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6856                 device_set_wakeup_capable(priv->device, 1);
6857         }
6858
6859         if (priv->dma_cap.tsoen)
6860                 dev_info(priv->device, "TSO supported\n");
6861
6862         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6863         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6864
6865         /* Run HW quirks, if any */
6866         if (priv->hwif_quirks) {
6867                 ret = priv->hwif_quirks(priv);
6868                 if (ret)
6869                         return ret;
6870         }
6871
6872         /* Rx Watchdog is available in the COREs newer than the 3.40.
6873          * In some case, for example on bugged HW this feature
6874          * has to be disable and this can be done by passing the
6875          * riwt_off field from the platform.
6876          */
6877         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6878             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6879                 priv->use_riwt = 1;
6880                 dev_info(priv->device,
6881                          "Enable RX Mitigation via HW Watchdog Timer\n");
6882         }
6883
6884         return 0;
6885 }
6886
6887 static void stmmac_napi_add(struct net_device *dev)
6888 {
6889         struct stmmac_priv *priv = netdev_priv(dev);
6890         u32 queue, maxq;
6891
6892         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6893
6894         for (queue = 0; queue < maxq; queue++) {
6895                 struct stmmac_channel *ch = &priv->channel[queue];
6896
6897                 ch->priv_data = priv;
6898                 ch->index = queue;
6899                 spin_lock_init(&ch->lock);
6900
6901                 if (queue < priv->plat->rx_queues_to_use) {
6902                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6903                 }
6904                 if (queue < priv->plat->tx_queues_to_use) {
6905                         netif_napi_add_tx(dev, &ch->tx_napi,
6906                                           stmmac_napi_poll_tx);
6907                 }
6908                 if (queue < priv->plat->rx_queues_to_use &&
6909                     queue < priv->plat->tx_queues_to_use) {
6910                         netif_napi_add(dev, &ch->rxtx_napi,
6911                                        stmmac_napi_poll_rxtx);
6912                 }
6913         }
6914 }
6915
6916 static void stmmac_napi_del(struct net_device *dev)
6917 {
6918         struct stmmac_priv *priv = netdev_priv(dev);
6919         u32 queue, maxq;
6920
6921         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6922
6923         for (queue = 0; queue < maxq; queue++) {
6924                 struct stmmac_channel *ch = &priv->channel[queue];
6925
6926                 if (queue < priv->plat->rx_queues_to_use)
6927                         netif_napi_del(&ch->rx_napi);
6928                 if (queue < priv->plat->tx_queues_to_use)
6929                         netif_napi_del(&ch->tx_napi);
6930                 if (queue < priv->plat->rx_queues_to_use &&
6931                     queue < priv->plat->tx_queues_to_use) {
6932                         netif_napi_del(&ch->rxtx_napi);
6933                 }
6934         }
6935 }
6936
6937 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6938 {
6939         struct stmmac_priv *priv = netdev_priv(dev);
6940         int ret = 0;
6941
6942         if (netif_running(dev))
6943                 stmmac_release(dev);
6944
6945         stmmac_napi_del(dev);
6946
6947         priv->plat->rx_queues_to_use = rx_cnt;
6948         priv->plat->tx_queues_to_use = tx_cnt;
6949
6950         stmmac_napi_add(dev);
6951
6952         if (netif_running(dev))
6953                 ret = stmmac_open(dev);
6954
6955         return ret;
6956 }
6957
6958 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6959 {
6960         struct stmmac_priv *priv = netdev_priv(dev);
6961         int ret = 0;
6962
6963         if (netif_running(dev))
6964                 stmmac_release(dev);
6965
6966         priv->dma_conf.dma_rx_size = rx_size;
6967         priv->dma_conf.dma_tx_size = tx_size;
6968
6969         if (netif_running(dev))
6970                 ret = stmmac_open(dev);
6971
6972         return ret;
6973 }
6974
6975 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6976 static void stmmac_fpe_lp_task(struct work_struct *work)
6977 {
6978         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6979                                                 fpe_task);
6980         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6981         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6982         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6983         bool *hs_enable = &fpe_cfg->hs_enable;
6984         bool *enable = &fpe_cfg->enable;
6985         int retries = 20;
6986
6987         while (retries-- > 0) {
6988                 /* Bail out immediately if FPE handshake is OFF */
6989                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6990                         break;
6991
6992                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6993                     *lp_state == FPE_STATE_ENTERING_ON) {
6994                         stmmac_fpe_configure(priv, priv->ioaddr,
6995                                              priv->plat->tx_queues_to_use,
6996                                              priv->plat->rx_queues_to_use,
6997                                              *enable);
6998
6999                         netdev_info(priv->dev, "configured FPE\n");
7000
7001                         *lo_state = FPE_STATE_ON;
7002                         *lp_state = FPE_STATE_ON;
7003                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7004                         break;
7005                 }
7006
7007                 if ((*lo_state == FPE_STATE_CAPABLE ||
7008                      *lo_state == FPE_STATE_ENTERING_ON) &&
7009                      *lp_state != FPE_STATE_ON) {
7010                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7011                                     *lo_state, *lp_state);
7012                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7013                                                 MPACKET_VERIFY);
7014                 }
7015                 /* Sleep then retry */
7016                 msleep(500);
7017         }
7018
7019         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7020 }
7021
7022 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7023 {
7024         if (priv->plat->fpe_cfg->hs_enable != enable) {
7025                 if (enable) {
7026                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7027                                                 MPACKET_VERIFY);
7028                 } else {
7029                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7030                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7031                 }
7032
7033                 priv->plat->fpe_cfg->hs_enable = enable;
7034         }
7035 }
7036
7037 /**
7038  * stmmac_dvr_probe
7039  * @device: device pointer
7040  * @plat_dat: platform data pointer
7041  * @res: stmmac resource pointer
7042  * Description: this is the main probe function used to
7043  * call the alloc_etherdev, allocate the priv structure.
7044  * Return:
7045  * returns 0 on success, otherwise errno.
7046  */
7047 int stmmac_dvr_probe(struct device *device,
7048                      struct plat_stmmacenet_data *plat_dat,
7049                      struct stmmac_resources *res)
7050 {
7051         struct net_device *ndev = NULL;
7052         struct stmmac_priv *priv;
7053         u32 rxq;
7054         int i, ret = 0;
7055
7056         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7057                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7058         if (!ndev)
7059                 return -ENOMEM;
7060
7061         SET_NETDEV_DEV(ndev, device);
7062
7063         priv = netdev_priv(ndev);
7064         priv->device = device;
7065         priv->dev = ndev;
7066
7067         stmmac_set_ethtool_ops(ndev);
7068         priv->pause = pause;
7069         priv->plat = plat_dat;
7070         priv->ioaddr = res->addr;
7071         priv->dev->base_addr = (unsigned long)res->addr;
7072         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7073
7074         priv->dev->irq = res->irq;
7075         priv->wol_irq = res->wol_irq;
7076         priv->lpi_irq = res->lpi_irq;
7077         priv->sfty_ce_irq = res->sfty_ce_irq;
7078         priv->sfty_ue_irq = res->sfty_ue_irq;
7079         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7080                 priv->rx_irq[i] = res->rx_irq[i];
7081         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7082                 priv->tx_irq[i] = res->tx_irq[i];
7083
7084         if (!is_zero_ether_addr(res->mac))
7085                 eth_hw_addr_set(priv->dev, res->mac);
7086
7087         dev_set_drvdata(device, priv->dev);
7088
7089         /* Verify driver arguments */
7090         stmmac_verify_args();
7091
7092         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7093         if (!priv->af_xdp_zc_qps)
7094                 return -ENOMEM;
7095
7096         /* Allocate workqueue */
7097         priv->wq = create_singlethread_workqueue("stmmac_wq");
7098         if (!priv->wq) {
7099                 dev_err(priv->device, "failed to create workqueue\n");
7100                 return -ENOMEM;
7101         }
7102
7103         INIT_WORK(&priv->service_task, stmmac_service_task);
7104
7105         /* Initialize Link Partner FPE workqueue */
7106         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7107
7108         /* Override with kernel parameters if supplied XXX CRS XXX
7109          * this needs to have multiple instances
7110          */
7111         if ((phyaddr >= 0) && (phyaddr <= 31))
7112                 priv->plat->phy_addr = phyaddr;
7113
7114         if (priv->plat->stmmac_rst) {
7115                 ret = reset_control_assert(priv->plat->stmmac_rst);
7116                 reset_control_deassert(priv->plat->stmmac_rst);
7117                 /* Some reset controllers have only reset callback instead of
7118                  * assert + deassert callbacks pair.
7119                  */
7120                 if (ret == -ENOTSUPP)
7121                         reset_control_reset(priv->plat->stmmac_rst);
7122         }
7123
7124         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7125         if (ret == -ENOTSUPP)
7126                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7127                         ERR_PTR(ret));
7128
7129         /* Init MAC and get the capabilities */
7130         ret = stmmac_hw_init(priv);
7131         if (ret)
7132                 goto error_hw_init;
7133
7134         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7135          */
7136         if (priv->synopsys_id < DWMAC_CORE_5_20)
7137                 priv->plat->dma_cfg->dche = false;
7138
7139         stmmac_check_ether_addr(priv);
7140
7141         ndev->netdev_ops = &stmmac_netdev_ops;
7142
7143         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7144                             NETIF_F_RXCSUM;
7145
7146         ret = stmmac_tc_init(priv, priv);
7147         if (!ret) {
7148                 ndev->hw_features |= NETIF_F_HW_TC;
7149         }
7150
7151         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7152                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7153                 if (priv->plat->has_gmac4)
7154                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7155                 priv->tso = true;
7156                 dev_info(priv->device, "TSO feature enabled\n");
7157         }
7158
7159         if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7160                 ndev->hw_features |= NETIF_F_GRO;
7161                 priv->sph_cap = true;
7162                 priv->sph = priv->sph_cap;
7163                 dev_info(priv->device, "SPH feature enabled\n");
7164         }
7165
7166         /* The current IP register MAC_HW_Feature1[ADDR64] only define
7167          * 32/40/64 bit width, but some SOC support others like i.MX8MP
7168          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7169          * So overwrite dma_cap.addr64 according to HW real design.
7170          */
7171         if (priv->plat->addr64)
7172                 priv->dma_cap.addr64 = priv->plat->addr64;
7173
7174         if (priv->dma_cap.addr64) {
7175                 ret = dma_set_mask_and_coherent(device,
7176                                 DMA_BIT_MASK(priv->dma_cap.addr64));
7177                 if (!ret) {
7178                         dev_info(priv->device, "Using %d bits DMA width\n",
7179                                  priv->dma_cap.addr64);
7180
7181                         /*
7182                          * If more than 32 bits can be addressed, make sure to
7183                          * enable enhanced addressing mode.
7184                          */
7185                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7186                                 priv->plat->dma_cfg->eame = true;
7187                 } else {
7188                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7189                         if (ret) {
7190                                 dev_err(priv->device, "Failed to set DMA Mask\n");
7191                                 goto error_hw_init;
7192                         }
7193
7194                         priv->dma_cap.addr64 = 32;
7195                 }
7196         }
7197
7198         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7199         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7200 #ifdef STMMAC_VLAN_TAG_USED
7201         /* Both mac100 and gmac support receive VLAN tag detection */
7202         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7203         if (priv->dma_cap.vlhash) {
7204                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7205                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7206         }
7207         if (priv->dma_cap.vlins) {
7208                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7209                 if (priv->dma_cap.dvlan)
7210                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7211         }
7212 #endif
7213         priv->msg_enable = netif_msg_init(debug, default_msg_level);
7214
7215         /* Initialize RSS */
7216         rxq = priv->plat->rx_queues_to_use;
7217         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7218         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7219                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7220
7221         if (priv->dma_cap.rssen && priv->plat->rss_en)
7222                 ndev->features |= NETIF_F_RXHASH;
7223
7224         /* MTU range: 46 - hw-specific max */
7225         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7226         if (priv->plat->has_xgmac)
7227                 ndev->max_mtu = XGMAC_JUMBO_LEN;
7228         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7229                 ndev->max_mtu = JUMBO_LEN;
7230         else
7231                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7232         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7233          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7234          */
7235         if ((priv->plat->maxmtu < ndev->max_mtu) &&
7236             (priv->plat->maxmtu >= ndev->min_mtu))
7237                 ndev->max_mtu = priv->plat->maxmtu;
7238         else if (priv->plat->maxmtu < ndev->min_mtu)
7239                 dev_warn(priv->device,
7240                          "%s: warning: maxmtu having invalid value (%d)\n",
7241                          __func__, priv->plat->maxmtu);
7242
7243         if (flow_ctrl)
7244                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
7245
7246         /* Setup channels NAPI */
7247         stmmac_napi_add(ndev);
7248
7249         mutex_init(&priv->lock);
7250
7251         /* If a specific clk_csr value is passed from the platform
7252          * this means that the CSR Clock Range selection cannot be
7253          * changed at run-time and it is fixed. Viceversa the driver'll try to
7254          * set the MDC clock dynamically according to the csr actual
7255          * clock input.
7256          */
7257         if (priv->plat->clk_csr >= 0)
7258                 priv->clk_csr = priv->plat->clk_csr;
7259         else
7260                 stmmac_clk_csr_set(priv);
7261
7262         stmmac_check_pcs_mode(priv);
7263
7264         pm_runtime_get_noresume(device);
7265         pm_runtime_set_active(device);
7266         if (!pm_runtime_enabled(device))
7267                 pm_runtime_enable(device);
7268
7269         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7270             priv->hw->pcs != STMMAC_PCS_RTBI) {
7271                 /* MDIO bus Registration */
7272                 ret = stmmac_mdio_register(ndev);
7273                 if (ret < 0) {
7274                         dev_err_probe(priv->device, ret,
7275                                       "%s: MDIO bus (id: %d) registration failed\n",
7276                                       __func__, priv->plat->bus_id);
7277                         goto error_mdio_register;
7278                 }
7279         }
7280
7281         if (priv->plat->speed_mode_2500)
7282                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7283
7284         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7285                 ret = stmmac_xpcs_setup(priv->mii);
7286                 if (ret)
7287                         goto error_xpcs_setup;
7288         }
7289
7290         ret = stmmac_phy_setup(priv);
7291         if (ret) {
7292                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7293                 goto error_phy_setup;
7294         }
7295
7296         ret = register_netdev(ndev);
7297         if (ret) {
7298                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7299                         __func__, ret);
7300                 goto error_netdev_register;
7301         }
7302
7303 #ifdef CONFIG_DEBUG_FS
7304         stmmac_init_fs(ndev);
7305 #endif
7306
7307         if (priv->plat->dump_debug_regs)
7308                 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7309
7310         /* Let pm_runtime_put() disable the clocks.
7311          * If CONFIG_PM is not enabled, the clocks will stay powered.
7312          */
7313         pm_runtime_put(device);
7314
7315         return ret;
7316
7317 error_netdev_register:
7318         phylink_destroy(priv->phylink);
7319 error_xpcs_setup:
7320 error_phy_setup:
7321         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7322             priv->hw->pcs != STMMAC_PCS_RTBI)
7323                 stmmac_mdio_unregister(ndev);
7324 error_mdio_register:
7325         stmmac_napi_del(ndev);
7326 error_hw_init:
7327         destroy_workqueue(priv->wq);
7328         bitmap_free(priv->af_xdp_zc_qps);
7329
7330         return ret;
7331 }
7332 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7333
7334 /**
7335  * stmmac_dvr_remove
7336  * @dev: device pointer
7337  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7338  * changes the link status, releases the DMA descriptor rings.
7339  */
7340 int stmmac_dvr_remove(struct device *dev)
7341 {
7342         struct net_device *ndev = dev_get_drvdata(dev);
7343         struct stmmac_priv *priv = netdev_priv(ndev);
7344
7345         netdev_info(priv->dev, "%s: removing driver", __func__);
7346
7347         pm_runtime_get_sync(dev);
7348
7349         stmmac_stop_all_dma(priv);
7350         stmmac_mac_set(priv, priv->ioaddr, false);
7351         netif_carrier_off(ndev);
7352         unregister_netdev(ndev);
7353
7354         /* Serdes power down needs to happen after VLAN filter
7355          * is deleted that is triggered by unregister_netdev().
7356          */
7357         if (priv->plat->serdes_powerdown)
7358                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7359
7360 #ifdef CONFIG_DEBUG_FS
7361         stmmac_exit_fs(ndev);
7362 #endif
7363         phylink_destroy(priv->phylink);
7364         if (priv->plat->stmmac_rst)
7365                 reset_control_assert(priv->plat->stmmac_rst);
7366         reset_control_assert(priv->plat->stmmac_ahb_rst);
7367         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7368             priv->hw->pcs != STMMAC_PCS_RTBI)
7369                 stmmac_mdio_unregister(ndev);
7370         destroy_workqueue(priv->wq);
7371         mutex_destroy(&priv->lock);
7372         bitmap_free(priv->af_xdp_zc_qps);
7373
7374         pm_runtime_disable(dev);
7375         pm_runtime_put_noidle(dev);
7376
7377         return 0;
7378 }
7379 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7380
7381 /**
7382  * stmmac_suspend - suspend callback
7383  * @dev: device pointer
7384  * Description: this is the function to suspend the device and it is called
7385  * by the platform driver to stop the network queue, release the resources,
7386  * program the PMT register (for WoL), clean and release driver resources.
7387  */
7388 int stmmac_suspend(struct device *dev)
7389 {
7390         struct net_device *ndev = dev_get_drvdata(dev);
7391         struct stmmac_priv *priv = netdev_priv(ndev);
7392         u32 chan;
7393
7394         if (!ndev || !netif_running(ndev))
7395                 return 0;
7396
7397         mutex_lock(&priv->lock);
7398
7399         netif_device_detach(ndev);
7400
7401         stmmac_disable_all_queues(priv);
7402
7403         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7404                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7405
7406         if (priv->eee_enabled) {
7407                 priv->tx_path_in_lpi_mode = false;
7408                 del_timer_sync(&priv->eee_ctrl_timer);
7409         }
7410
7411         /* Stop TX/RX DMA */
7412         stmmac_stop_all_dma(priv);
7413
7414         if (priv->plat->serdes_powerdown)
7415                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7416
7417         /* Enable Power down mode by programming the PMT regs */
7418         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7419                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7420                 priv->irq_wake = 1;
7421         } else {
7422                 stmmac_mac_set(priv, priv->ioaddr, false);
7423                 pinctrl_pm_select_sleep_state(priv->device);
7424         }
7425
7426         mutex_unlock(&priv->lock);
7427
7428         rtnl_lock();
7429         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7430                 phylink_suspend(priv->phylink, true);
7431         } else {
7432                 if (device_may_wakeup(priv->device))
7433                         phylink_speed_down(priv->phylink, false);
7434                 phylink_suspend(priv->phylink, false);
7435         }
7436         rtnl_unlock();
7437
7438         if (priv->dma_cap.fpesel) {
7439                 /* Disable FPE */
7440                 stmmac_fpe_configure(priv, priv->ioaddr,
7441                                      priv->plat->tx_queues_to_use,
7442                                      priv->plat->rx_queues_to_use, false);
7443
7444                 stmmac_fpe_handshake(priv, false);
7445                 stmmac_fpe_stop_wq(priv);
7446         }
7447
7448         priv->speed = SPEED_UNKNOWN;
7449         return 0;
7450 }
7451 EXPORT_SYMBOL_GPL(stmmac_suspend);
7452
7453 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7454 {
7455         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7456
7457         rx_q->cur_rx = 0;
7458         rx_q->dirty_rx = 0;
7459 }
7460
7461 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7462 {
7463         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7464
7465         tx_q->cur_tx = 0;
7466         tx_q->dirty_tx = 0;
7467         tx_q->mss = 0;
7468
7469         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7470 }
7471
7472 /**
7473  * stmmac_reset_queues_param - reset queue parameters
7474  * @priv: device pointer
7475  */
7476 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7477 {
7478         u32 rx_cnt = priv->plat->rx_queues_to_use;
7479         u32 tx_cnt = priv->plat->tx_queues_to_use;
7480         u32 queue;
7481
7482         for (queue = 0; queue < rx_cnt; queue++)
7483                 stmmac_reset_rx_queue(priv, queue);
7484
7485         for (queue = 0; queue < tx_cnt; queue++)
7486                 stmmac_reset_tx_queue(priv, queue);
7487 }
7488
7489 /**
7490  * stmmac_resume - resume callback
7491  * @dev: device pointer
7492  * Description: when resume this function is invoked to setup the DMA and CORE
7493  * in a usable state.
7494  */
7495 int stmmac_resume(struct device *dev)
7496 {
7497         struct net_device *ndev = dev_get_drvdata(dev);
7498         struct stmmac_priv *priv = netdev_priv(ndev);
7499         int ret;
7500
7501         if (!netif_running(ndev))
7502                 return 0;
7503
7504         /* Power Down bit, into the PM register, is cleared
7505          * automatically as soon as a magic packet or a Wake-up frame
7506          * is received. Anyway, it's better to manually clear
7507          * this bit because it can generate problems while resuming
7508          * from another devices (e.g. serial console).
7509          */
7510         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7511                 mutex_lock(&priv->lock);
7512                 stmmac_pmt(priv, priv->hw, 0);
7513                 mutex_unlock(&priv->lock);
7514                 priv->irq_wake = 0;
7515         } else {
7516                 pinctrl_pm_select_default_state(priv->device);
7517                 /* reset the phy so that it's ready */
7518                 if (priv->mii)
7519                         stmmac_mdio_reset(priv->mii);
7520         }
7521
7522         if (priv->plat->serdes_powerup) {
7523                 ret = priv->plat->serdes_powerup(ndev,
7524                                                  priv->plat->bsp_priv);
7525
7526                 if (ret < 0)
7527                         return ret;
7528         }
7529
7530         rtnl_lock();
7531         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7532                 phylink_resume(priv->phylink);
7533         } else {
7534                 phylink_resume(priv->phylink);
7535                 if (device_may_wakeup(priv->device))
7536                         phylink_speed_up(priv->phylink);
7537         }
7538         rtnl_unlock();
7539
7540         rtnl_lock();
7541         mutex_lock(&priv->lock);
7542
7543         stmmac_reset_queues_param(priv);
7544
7545         stmmac_free_tx_skbufs(priv);
7546         stmmac_clear_descriptors(priv, &priv->dma_conf);
7547
7548         stmmac_hw_setup(ndev, false);
7549         stmmac_init_coalesce(priv);
7550         stmmac_set_rx_mode(ndev);
7551
7552         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7553
7554         stmmac_enable_all_queues(priv);
7555         stmmac_enable_all_dma_irq(priv);
7556
7557         mutex_unlock(&priv->lock);
7558         rtnl_unlock();
7559
7560         netif_device_attach(ndev);
7561
7562         return 0;
7563 }
7564 EXPORT_SYMBOL_GPL(stmmac_resume);
7565
7566 #ifndef MODULE
7567 static int __init stmmac_cmdline_opt(char *str)
7568 {
7569         char *opt;
7570
7571         if (!str || !*str)
7572                 return 1;
7573         while ((opt = strsep(&str, ",")) != NULL) {
7574                 if (!strncmp(opt, "debug:", 6)) {
7575                         if (kstrtoint(opt + 6, 0, &debug))
7576                                 goto err;
7577                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7578                         if (kstrtoint(opt + 8, 0, &phyaddr))
7579                                 goto err;
7580                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7581                         if (kstrtoint(opt + 7, 0, &buf_sz))
7582                                 goto err;
7583                 } else if (!strncmp(opt, "tc:", 3)) {
7584                         if (kstrtoint(opt + 3, 0, &tc))
7585                                 goto err;
7586                 } else if (!strncmp(opt, "watchdog:", 9)) {
7587                         if (kstrtoint(opt + 9, 0, &watchdog))
7588                                 goto err;
7589                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7590                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7591                                 goto err;
7592                 } else if (!strncmp(opt, "pause:", 6)) {
7593                         if (kstrtoint(opt + 6, 0, &pause))
7594                                 goto err;
7595                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7596                         if (kstrtoint(opt + 10, 0, &eee_timer))
7597                                 goto err;
7598                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7599                         if (kstrtoint(opt + 11, 0, &chain_mode))
7600                                 goto err;
7601                 }
7602         }
7603         return 1;
7604
7605 err:
7606         pr_err("%s: ERROR broken module parameter conversion", __func__);
7607         return 1;
7608 }
7609
7610 __setup("stmmaceth=", stmmac_cmdline_opt);
7611 #endif /* MODULE */
7612
7613 static int __init stmmac_init(void)
7614 {
7615 #ifdef CONFIG_DEBUG_FS
7616         /* Create debugfs main directory if it doesn't exist yet */
7617         if (!stmmac_fs_dir)
7618                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7619         register_netdevice_notifier(&stmmac_notifier);
7620 #endif
7621
7622         return 0;
7623 }
7624
7625 static void __exit stmmac_exit(void)
7626 {
7627 #ifdef CONFIG_DEBUG_FS
7628         unregister_netdevice_notifier(&stmmac_notifier);
7629         debugfs_remove_recursive(stmmac_fs_dir);
7630 #endif
7631 }
7632
7633 module_init(stmmac_init)
7634 module_exit(stmmac_exit)
7635
7636 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7637 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7638 MODULE_LICENSE("GPL");