1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2010-2012 Solarflare Communications Inc.
7 #include <linux/module.h>
8 #include "net_driver.h"
10 #include "efx_channels.h"
15 #include "mcdi_pcol.h"
16 #include "farch_regs.h"
17 #include "siena_sriov.h"
20 /* Number of longs required to track all the VIs in a VF */
21 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23 /* Maximum number of RX queues supported */
24 #define VF_MAX_RX_QUEUES 63
27 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
28 * @VF_TX_FILTER_OFF: Disabled
29 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
30 * 2 TX queues allowed per VF.
31 * @VF_TX_FILTER_ON: Enabled
33 enum efx_vf_tx_filter_mode {
40 * struct siena_vf - Back-end resource and protocol state for a PCI VF
41 * @efx: The Efx NIC owning this VF
42 * @pci_rid: The PCI requester ID for this VF
43 * @pci_name: The PCI name (formatted address) of this VF
44 * @index: Index of VF within its port and PF.
45 * @req: VFDI incoming request work item. Incoming USR_EV events are received
46 * by the NAPI handler, but must be handled by executing MCDI requests
48 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
49 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
50 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
51 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
53 * @busy: VFDI request queued to be processed or being processed. Receiving
54 * a VFDI request when @busy is set is an error condition.
55 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
56 * @buftbl_base: Buffer table entries for this VF start at this index.
57 * @rx_filtering: Receive filtering has been requested by the VF driver.
58 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
59 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
60 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
61 * @tx_filter_mode: Transmit MAC filtering mode.
62 * @tx_filter_id: Transmit MAC filter ID.
63 * @addr: The MAC address and outer vlan tag of the VF.
64 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
65 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
66 * @peer_page_addrs and @peer_page_count from simultaneous
67 * updates by the VM and consumption by
68 * efx_siena_sriov_update_vf_addr()
69 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
70 * @peer_page_count: Number of entries in @peer_page_count.
71 * @evq0_addrs: Array of guest pages backing evq0.
72 * @evq0_count: Number of entries in @evq0_addrs.
73 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
74 * to wait for flush completions.
75 * @txq_lock: Mutex for TX queue allocation.
76 * @txq_mask: Mask of initialized transmit queues.
77 * @txq_count: Number of initialized transmit queues.
78 * @rxq_mask: Mask of initialized receive queues.
79 * @rxq_count: Number of initialized receive queues.
80 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
81 * due to flush failure.
82 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
83 * @reset_work: Work item to schedule a VF reset.
88 char pci_name[13]; /* dddd:bb:dd.f */
90 struct work_struct req;
96 struct efx_buffer buf;
99 enum efx_filter_flags rx_filter_flags;
100 unsigned rx_filter_qid;
102 enum efx_vf_tx_filter_mode tx_filter_mode;
104 struct vfdi_endpoint addr;
106 struct mutex status_lock;
107 u64 *peer_page_addrs;
108 unsigned peer_page_count;
109 u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
112 wait_queue_head_t flush_waitq;
113 struct mutex txq_lock;
114 unsigned long txq_mask[VI_MASK_LENGTH];
116 unsigned long rxq_mask[VI_MASK_LENGTH];
118 unsigned long rxq_retry_mask[VI_MASK_LENGTH];
119 atomic_t rxq_retry_count;
120 struct work_struct reset_work;
123 struct efx_memcpy_req {
124 unsigned int from_rid;
133 * struct efx_local_addr - A MAC address on the vswitch without a VF.
135 * Siena does not have a switch, so VFs can't transmit data to each
136 * other. Instead the VFs must be made aware of the local addresses
137 * on the vswitch, so that they can arrange for an alternative
138 * software datapath to be used.
140 * @link: List head for insertion into efx->local_addr_list.
141 * @addr: Ethernet address
143 struct efx_local_addr {
144 struct list_head link;
149 * struct efx_endpoint_page - Page of vfdi_endpoint structures
151 * @link: List head for insertion into efx->local_page_list.
152 * @ptr: Pointer to page.
153 * @addr: DMA address of page.
155 struct efx_endpoint_page {
156 struct list_head link;
161 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
162 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
163 ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
164 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
165 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
166 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
167 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
168 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
169 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
171 #define EFX_FIELD_MASK(_field) \
172 ((1 << _field ## _WIDTH) - 1)
174 /* VFs can only use this many transmit channels */
175 static unsigned int vf_max_tx_channels = 2;
176 module_param(vf_max_tx_channels, uint, 0444);
177 MODULE_PARM_DESC(vf_max_tx_channels,
178 "Limit the number of TX channels VFs can use");
180 static int max_vfs = -1;
181 module_param(max_vfs, int, 0444);
182 MODULE_PARM_DESC(max_vfs,
183 "Reduce the number of VFs initialized by the driver");
185 /* Workqueue used by VFDI communication. We can't use the global
186 * workqueue because it may be running the VF driver's probe()
187 * routine, which will be blocked there waiting for a VFDI response.
189 static struct workqueue_struct *vfdi_workqueue;
191 static unsigned abs_index(struct siena_vf *vf, unsigned index)
193 return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
196 static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
197 unsigned *vi_scale_out, unsigned *vf_total_out)
199 MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
200 MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
201 unsigned vi_scale, vf_total;
205 MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
206 MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
207 MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
209 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
210 outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
213 if (outlen < MC_CMD_SRIOV_OUT_LEN)
216 vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
217 vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
218 if (vi_scale > EFX_VI_SCALE_MAX)
222 *vi_scale_out = vi_scale;
224 *vf_total_out = vf_total;
229 static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
231 struct siena_nic_data *nic_data = efx->nic_data;
234 EFX_POPULATE_OWORD_2(reg,
235 FRF_CZ_USREV_DIS, enabled ? 0 : 1,
236 FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
237 efx_writeo(efx, ®, FR_CZ_USR_EV_CFG);
240 static int efx_siena_sriov_memcpy(struct efx_nic *efx,
241 struct efx_memcpy_req *req,
244 MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
245 MCDI_DECLARE_STRUCT_PTR(record);
246 unsigned int index, used;
251 mb(); /* Finish writing source/reading dest before DMA starts */
253 if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
255 used = MC_CMD_MEMCPY_IN_LEN(count);
257 for (index = 0; index < count; index++) {
258 record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
259 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
261 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
263 MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
265 if (req->from_buf == NULL) {
266 from_rid = req->from_rid;
267 from_addr = req->from_addr;
269 if (WARN_ON(used + req->length >
270 MCDI_CTL_SDU_LEN_MAX_V1)) {
275 from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
277 memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
282 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
283 MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
285 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
291 rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
293 mb(); /* Don't write source/read dest before DMA is complete */
298 /* The TX filter is entirely controlled by this driver, and is modified
299 * underneath the feet of the VF
301 static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
303 struct efx_nic *efx = vf->efx;
304 struct efx_filter_spec filter;
308 if (vf->tx_filter_id != -1) {
309 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
311 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
312 vf->pci_name, vf->tx_filter_id);
313 vf->tx_filter_id = -1;
316 if (is_zero_ether_addr(vf->addr.mac_addr))
319 /* Turn on TX filtering automatically if not explicitly
320 * enabled or disabled.
322 if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
323 vf->tx_filter_mode = VF_TX_FILTER_ON;
325 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
326 efx_filter_init_tx(&filter, abs_index(vf, 0));
327 rc = efx_filter_set_eth_local(&filter,
328 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
332 rc = efx_filter_insert_filter(efx, &filter, true);
334 netif_warn(efx, hw, efx->net_dev,
335 "Unable to migrate tx filter for vf %s\n",
338 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
340 vf->tx_filter_id = rc;
344 /* The RX filter is managed here on behalf of the VF driver */
345 static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
347 struct efx_nic *efx = vf->efx;
348 struct efx_filter_spec filter;
352 if (vf->rx_filter_id != -1) {
353 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
355 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
356 vf->pci_name, vf->rx_filter_id);
357 vf->rx_filter_id = -1;
360 if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
363 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
364 efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
366 abs_index(vf, vf->rx_filter_qid));
367 rc = efx_filter_set_eth_local(&filter,
368 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
372 rc = efx_filter_insert_filter(efx, &filter, true);
374 netif_warn(efx, hw, efx->net_dev,
375 "Unable to insert rx filter for vf %s\n",
378 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
380 vf->rx_filter_id = rc;
384 static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
386 struct efx_nic *efx = vf->efx;
387 struct siena_nic_data *nic_data = efx->nic_data;
389 efx_siena_sriov_reset_tx_filter(vf);
390 efx_siena_sriov_reset_rx_filter(vf);
391 queue_work(vfdi_workqueue, &nic_data->peer_work);
394 /* Push the peer list to this VF. The caller must hold status_lock to interlock
395 * with VFDI requests, and they must be serialised against manipulation of
396 * local_page_list, either by acquiring local_lock or by running from
397 * efx_siena_sriov_peer_work()
399 static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
401 struct efx_nic *efx = vf->efx;
402 struct siena_nic_data *nic_data = efx->nic_data;
403 struct vfdi_status *status = nic_data->vfdi_status.addr;
404 struct efx_memcpy_req copy[4];
405 struct efx_endpoint_page *epp;
406 unsigned int pos, count;
407 unsigned data_offset;
410 WARN_ON(!mutex_is_locked(&vf->status_lock));
411 WARN_ON(!vf->status_addr);
413 status->local = vf->addr;
414 status->generation_end = ++status->generation_start;
416 memset(copy, '\0', sizeof(copy));
417 /* Write generation_start */
418 copy[0].from_buf = &status->generation_start;
419 copy[0].to_rid = vf->pci_rid;
420 copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
422 copy[0].length = sizeof(status->generation_start);
423 /* DMA the rest of the structure (excluding the generations). This
424 * assumes that the non-generation portion of vfdi_status is in
425 * one chunk starting at the version member.
427 data_offset = offsetof(struct vfdi_status, version);
428 copy[1].from_rid = efx->pci_dev->devfn;
429 copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
430 copy[1].to_rid = vf->pci_rid;
431 copy[1].to_addr = vf->status_addr + data_offset;
432 copy[1].length = status->length - data_offset;
434 /* Copy the peer pages */
437 list_for_each_entry(epp, &nic_data->local_page_list, link) {
438 if (count == vf->peer_page_count) {
439 /* The VF driver will know they need to provide more
440 * pages because peer_addr_count is too large.
444 copy[pos].from_buf = NULL;
445 copy[pos].from_rid = efx->pci_dev->devfn;
446 copy[pos].from_addr = epp->addr;
447 copy[pos].to_rid = vf->pci_rid;
448 copy[pos].to_addr = vf->peer_page_addrs[count];
449 copy[pos].length = EFX_PAGE_SIZE;
451 if (++pos == ARRAY_SIZE(copy)) {
452 efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
458 /* Write generation_end */
459 copy[pos].from_buf = &status->generation_end;
460 copy[pos].to_rid = vf->pci_rid;
461 copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
463 copy[pos].length = sizeof(status->generation_end);
464 efx_siena_sriov_memcpy(efx, copy, pos + 1);
466 /* Notify the guest */
467 EFX_POPULATE_QWORD_3(event,
468 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
469 VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
470 VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
472 efx_farch_generate_event(efx,
473 EFX_VI_BASE + vf->index * efx_vf_size(efx),
477 static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
478 u64 *addr, unsigned count)
483 for (pos = 0; pos < count; ++pos) {
484 EFX_POPULATE_QWORD_3(buf,
485 FRF_AZ_BUF_ADR_REGION, 0,
487 addr ? addr[pos] >> 12 : 0,
488 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
489 efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
494 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
496 return index >= efx_vf_size(efx);
499 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
501 unsigned max_buf_count = max_entry_count *
502 sizeof(efx_qword_t) / EFX_BUF_SIZE;
504 return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
507 /* Check that VI specified by per-port index belongs to a VF.
508 * Optionally set VF index and VI index within the VF.
510 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
511 struct siena_vf **vf_out, unsigned *rel_index_out)
513 struct siena_nic_data *nic_data = efx->nic_data;
516 if (abs_index < EFX_VI_BASE)
518 vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
519 if (vf_i >= efx->vf_init_count)
523 *vf_out = nic_data->vf + vf_i;
525 *rel_index_out = abs_index % efx_vf_size(efx);
529 static int efx_vfdi_init_evq(struct siena_vf *vf)
531 struct efx_nic *efx = vf->efx;
532 struct vfdi_req *req = vf->buf.addr;
533 unsigned vf_evq = req->u.init_evq.index;
534 unsigned buf_count = req->u.init_evq.buf_count;
535 unsigned abs_evq = abs_index(vf, vf_evq);
536 unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
539 if (bad_vf_index(efx, vf_evq) ||
540 bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
542 netif_err(efx, hw, efx->net_dev,
543 "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
544 vf->pci_name, vf_evq, buf_count);
545 return VFDI_RC_EINVAL;
548 efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
550 EFX_POPULATE_OWORD_3(reg,
551 FRF_CZ_TIMER_Q_EN, 1,
552 FRF_CZ_HOST_NOTIFY_MODE, 0,
553 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
554 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq);
555 EFX_POPULATE_OWORD_3(reg,
557 FRF_AZ_EVQ_SIZE, __ffs(buf_count),
558 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
559 efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq);
562 memcpy(vf->evq0_addrs, req->u.init_evq.addr,
563 buf_count * sizeof(u64));
564 vf->evq0_count = buf_count;
567 return VFDI_RC_SUCCESS;
570 static int efx_vfdi_init_rxq(struct siena_vf *vf)
572 struct efx_nic *efx = vf->efx;
573 struct vfdi_req *req = vf->buf.addr;
574 unsigned vf_rxq = req->u.init_rxq.index;
575 unsigned vf_evq = req->u.init_rxq.evq;
576 unsigned buf_count = req->u.init_rxq.buf_count;
577 unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
581 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
582 vf_rxq >= VF_MAX_RX_QUEUES ||
583 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
585 netif_err(efx, hw, efx->net_dev,
586 "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
587 "buf_count %d\n", vf->pci_name, vf_rxq,
589 return VFDI_RC_EINVAL;
591 if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
593 efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
595 label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
596 EFX_POPULATE_OWORD_6(reg,
597 FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
598 FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
599 FRF_AZ_RX_DESCQ_LABEL, label,
600 FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
601 FRF_AZ_RX_DESCQ_JUMBO,
602 !!(req->u.init_rxq.flags &
603 VFDI_RXQ_FLAG_SCATTER_EN),
604 FRF_AZ_RX_DESCQ_EN, 1);
605 efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL,
606 abs_index(vf, vf_rxq));
608 return VFDI_RC_SUCCESS;
611 static int efx_vfdi_init_txq(struct siena_vf *vf)
613 struct efx_nic *efx = vf->efx;
614 struct vfdi_req *req = vf->buf.addr;
615 unsigned vf_txq = req->u.init_txq.index;
616 unsigned vf_evq = req->u.init_txq.evq;
617 unsigned buf_count = req->u.init_txq.buf_count;
618 unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
619 unsigned label, eth_filt_en;
622 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
623 vf_txq >= vf_max_tx_channels ||
624 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
626 netif_err(efx, hw, efx->net_dev,
627 "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
628 "buf_count %d\n", vf->pci_name, vf_txq,
630 return VFDI_RC_EINVAL;
633 mutex_lock(&vf->txq_lock);
634 if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
636 mutex_unlock(&vf->txq_lock);
637 efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
639 eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
641 label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
642 EFX_POPULATE_OWORD_8(reg,
643 FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
644 FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
645 FRF_AZ_TX_DESCQ_EN, 1,
646 FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
647 FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
648 FRF_AZ_TX_DESCQ_LABEL, label,
649 FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
650 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
651 efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL,
652 abs_index(vf, vf_txq));
654 return VFDI_RC_SUCCESS;
657 /* Returns true when efx_vfdi_fini_all_queues should wake */
658 static bool efx_vfdi_flush_wake(struct siena_vf *vf)
660 /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
663 return (!vf->txq_count && !vf->rxq_count) ||
664 atomic_read(&vf->rxq_retry_count);
667 static void efx_vfdi_flush_clear(struct siena_vf *vf)
669 memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
671 memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
673 memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
674 atomic_set(&vf->rxq_retry_count, 0);
677 static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
679 struct efx_nic *efx = vf->efx;
681 unsigned count = efx_vf_size(efx);
682 unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
683 unsigned timeout = HZ;
684 unsigned index, rxqs_count;
685 MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
688 BUILD_BUG_ON(VF_MAX_RX_QUEUES >
689 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
692 siena_prepare_flush(efx);
695 /* Flush all the initialized queues */
697 for (index = 0; index < count; ++index) {
698 if (test_bit(index, vf->txq_mask)) {
699 EFX_POPULATE_OWORD_2(reg,
700 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
701 FRF_AZ_TX_FLUSH_DESCQ,
703 efx_writeo(efx, ®, FR_AZ_TX_FLUSH_DESCQ);
705 if (test_bit(index, vf->rxq_mask)) {
706 MCDI_SET_ARRAY_DWORD(
707 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
708 rxqs_count, vf_offset + index);
713 atomic_set(&vf->rxq_retry_count, 0);
714 while (timeout && (vf->rxq_count || vf->txq_count)) {
715 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
716 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
720 timeout = wait_event_timeout(vf->flush_waitq,
721 efx_vfdi_flush_wake(vf),
724 for (index = 0; index < count; ++index) {
725 if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
726 atomic_dec(&vf->rxq_retry_count);
727 MCDI_SET_ARRAY_DWORD(
728 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
729 rxqs_count, vf_offset + index);
736 siena_finish_flush(efx);
739 /* Irrespective of success/failure, fini the queues */
741 for (index = 0; index < count; ++index) {
742 efx_writeo_table(efx, ®, FR_BZ_RX_DESC_PTR_TBL,
744 efx_writeo_table(efx, ®, FR_BZ_TX_DESC_PTR_TBL,
746 efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL,
748 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL,
751 efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
752 EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
753 efx_vfdi_flush_clear(vf);
757 return timeout ? 0 : VFDI_RC_ETIMEDOUT;
760 static int efx_vfdi_insert_filter(struct siena_vf *vf)
762 struct efx_nic *efx = vf->efx;
763 struct siena_nic_data *nic_data = efx->nic_data;
764 struct vfdi_req *req = vf->buf.addr;
765 unsigned vf_rxq = req->u.mac_filter.rxq;
768 if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
770 netif_err(efx, hw, efx->net_dev,
771 "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
772 "flags 0x%x\n", vf->pci_name, vf_rxq,
773 req->u.mac_filter.flags);
774 return VFDI_RC_EINVAL;
778 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
779 flags |= EFX_FILTER_FLAG_RX_RSS;
780 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
781 flags |= EFX_FILTER_FLAG_RX_SCATTER;
782 vf->rx_filter_flags = flags;
783 vf->rx_filter_qid = vf_rxq;
784 vf->rx_filtering = true;
786 efx_siena_sriov_reset_rx_filter(vf);
787 queue_work(vfdi_workqueue, &nic_data->peer_work);
789 return VFDI_RC_SUCCESS;
792 static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
794 struct efx_nic *efx = vf->efx;
795 struct siena_nic_data *nic_data = efx->nic_data;
797 vf->rx_filtering = false;
798 efx_siena_sriov_reset_rx_filter(vf);
799 queue_work(vfdi_workqueue, &nic_data->peer_work);
801 return VFDI_RC_SUCCESS;
804 static int efx_vfdi_set_status_page(struct siena_vf *vf)
806 struct efx_nic *efx = vf->efx;
807 struct siena_nic_data *nic_data = efx->nic_data;
808 struct vfdi_req *req = vf->buf.addr;
809 u64 page_count = req->u.set_status_page.peer_page_count;
812 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
813 / sizeof(req->u.set_status_page.peer_page_addr[0]);
815 if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
817 netif_err(efx, hw, efx->net_dev,
818 "ERROR: Invalid SET_STATUS_PAGE from %s\n",
820 return VFDI_RC_EINVAL;
823 mutex_lock(&nic_data->local_lock);
824 mutex_lock(&vf->status_lock);
825 vf->status_addr = req->u.set_status_page.dma_addr;
827 kfree(vf->peer_page_addrs);
828 vf->peer_page_addrs = NULL;
829 vf->peer_page_count = 0;
832 vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
834 if (vf->peer_page_addrs) {
835 memcpy(vf->peer_page_addrs,
836 req->u.set_status_page.peer_page_addr,
837 page_count * sizeof(u64));
838 vf->peer_page_count = page_count;
842 __efx_siena_sriov_push_vf_status(vf);
843 mutex_unlock(&vf->status_lock);
844 mutex_unlock(&nic_data->local_lock);
846 return VFDI_RC_SUCCESS;
849 static int efx_vfdi_clear_status_page(struct siena_vf *vf)
851 mutex_lock(&vf->status_lock);
853 mutex_unlock(&vf->status_lock);
855 return VFDI_RC_SUCCESS;
858 typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
860 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
861 [VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
862 [VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
863 [VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
864 [VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
865 [VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
866 [VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
867 [VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
868 [VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
871 static void efx_siena_sriov_vfdi(struct work_struct *work)
873 struct siena_vf *vf = container_of(work, struct siena_vf, req);
874 struct efx_nic *efx = vf->efx;
875 struct vfdi_req *req = vf->buf.addr;
876 struct efx_memcpy_req copy[2];
879 /* Copy this page into the local address space */
880 memset(copy, '\0', sizeof(copy));
881 copy[0].from_rid = vf->pci_rid;
882 copy[0].from_addr = vf->req_addr;
883 copy[0].to_rid = efx->pci_dev->devfn;
884 copy[0].to_addr = vf->buf.dma_addr;
885 copy[0].length = EFX_PAGE_SIZE;
886 rc = efx_siena_sriov_memcpy(efx, copy, 1);
888 /* If we can't get the request, we can't reply to the caller */
890 netif_err(efx, hw, efx->net_dev,
891 "ERROR: Unable to fetch VFDI request from %s rc %d\n",
897 if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
898 rc = vfdi_ops[req->op](vf);
900 netif_dbg(efx, hw, efx->net_dev,
901 "vfdi request %d from %s ok\n",
902 req->op, vf->pci_name);
905 netif_dbg(efx, hw, efx->net_dev,
906 "ERROR: Unrecognised request %d from VF %s addr "
907 "%llx\n", req->op, vf->pci_name,
908 (unsigned long long)vf->req_addr);
909 rc = VFDI_RC_EOPNOTSUPP;
912 /* Allow subsequent VF requests */
916 /* Respond to the request */
918 req->op = VFDI_OP_RESPONSE;
920 memset(copy, '\0', sizeof(copy));
921 copy[0].from_buf = &req->rc;
922 copy[0].to_rid = vf->pci_rid;
923 copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
924 copy[0].length = sizeof(req->rc);
925 copy[1].from_buf = &req->op;
926 copy[1].to_rid = vf->pci_rid;
927 copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
928 copy[1].length = sizeof(req->op);
930 (void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
935 /* After a reset the event queues inside the guests no longer exist. Fill the
936 * event ring in guest memory with VFDI reset events, then (re-initialise) the
937 * event queue to raise an interrupt. The guest driver will then recover.
940 static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
941 struct efx_buffer *buffer)
943 struct efx_nic *efx = vf->efx;
944 struct efx_memcpy_req copy_req[4];
946 unsigned int pos, count, k, buftbl, abs_evq;
951 BUG_ON(buffer->len != EFX_PAGE_SIZE);
955 BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
957 mutex_lock(&vf->status_lock);
958 EFX_POPULATE_QWORD_3(event,
959 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
960 VFDI_EV_SEQ, vf->msg_seqno,
961 VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
963 for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
964 memcpy(buffer->addr + pos, &event, sizeof(event));
966 for (pos = 0; pos < vf->evq0_count; pos += count) {
967 count = min_t(unsigned, vf->evq0_count - pos,
968 ARRAY_SIZE(copy_req));
969 for (k = 0; k < count; k++) {
970 copy_req[k].from_buf = NULL;
971 copy_req[k].from_rid = efx->pci_dev->devfn;
972 copy_req[k].from_addr = buffer->dma_addr;
973 copy_req[k].to_rid = vf->pci_rid;
974 copy_req[k].to_addr = vf->evq0_addrs[pos + k];
975 copy_req[k].length = EFX_PAGE_SIZE;
977 rc = efx_siena_sriov_memcpy(efx, copy_req, count);
980 netif_err(efx, hw, efx->net_dev,
981 "ERROR: Unable to notify %s of reset"
982 ": %d\n", vf->pci_name, -rc);
987 /* Reinitialise, arm and trigger evq0 */
988 abs_evq = abs_index(vf, 0);
989 buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
990 efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
992 EFX_POPULATE_OWORD_3(reg,
993 FRF_CZ_TIMER_Q_EN, 1,
994 FRF_CZ_HOST_NOTIFY_MODE, 0,
995 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
996 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, abs_evq);
997 EFX_POPULATE_OWORD_3(reg,
999 FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1000 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1001 efx_writeo_table(efx, ®, FR_BZ_EVQ_PTR_TBL, abs_evq);
1002 EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1003 efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1005 mutex_unlock(&vf->status_lock);
1008 static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1010 struct siena_vf *vf = container_of(work, struct siena_vf, req);
1011 struct efx_nic *efx = vf->efx;
1012 struct efx_buffer buf;
1014 if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1015 efx_siena_sriov_reset_vf(vf, &buf);
1016 efx_nic_free_buffer(efx, &buf);
1020 static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1022 netif_err(efx, drv, efx->net_dev,
1023 "ERROR: IOV requires MSI-X and 1 additional interrupt"
1024 "vector. IOV disabled\n");
1028 static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1030 struct siena_nic_data *nic_data = channel->efx->nic_data;
1031 nic_data->vfdi_channel = channel;
1037 efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1038 char *buf, size_t len)
1040 snprintf(buf, len, "%s-iov", channel->efx->name);
1043 static const struct efx_channel_type efx_siena_sriov_channel_type = {
1044 .handle_no_channel = efx_siena_sriov_handle_no_channel,
1045 .pre_probe = efx_siena_sriov_probe_channel,
1046 .post_remove = efx_channel_dummy_op_void,
1047 .get_name = efx_siena_sriov_get_channel_name,
1048 /* no copy operation; channel must not be reallocated */
1049 .keep_eventq = true,
1052 void efx_siena_sriov_probe(struct efx_nic *efx)
1059 if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1060 pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
1063 if (count > 0 && count > max_vfs)
1066 /* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1067 efx->vf_count = count;
1069 efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1072 /* Copy the list of individual addresses into the vfdi_status.peers
1073 * array and auxiliary pages, protected by %local_lock. Drop that lock
1074 * and then broadcast the address list to every VF.
1076 static void efx_siena_sriov_peer_work(struct work_struct *data)
1078 struct siena_nic_data *nic_data = container_of(data,
1079 struct siena_nic_data,
1081 struct efx_nic *efx = nic_data->efx;
1082 struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1083 struct siena_vf *vf;
1084 struct efx_local_addr *local_addr;
1085 struct vfdi_endpoint *peer;
1086 struct efx_endpoint_page *epp;
1087 struct list_head pages;
1088 unsigned int peer_space;
1089 unsigned int peer_count;
1092 mutex_lock(&nic_data->local_lock);
1094 /* Move the existing peer pages off %local_page_list */
1095 INIT_LIST_HEAD(&pages);
1096 list_splice_tail_init(&nic_data->local_page_list, &pages);
1098 /* Populate the VF addresses starting from entry 1 (entry 0 is
1101 peer = vfdi_status->peers + 1;
1102 peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1104 for (pos = 0; pos < efx->vf_count; ++pos) {
1105 vf = nic_data->vf + pos;
1107 mutex_lock(&vf->status_lock);
1108 if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1112 BUG_ON(peer_space == 0);
1114 mutex_unlock(&vf->status_lock);
1117 /* Fill the remaining addresses */
1118 list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1119 ether_addr_copy(peer->mac_addr, local_addr->addr);
1123 if (--peer_space == 0) {
1124 if (list_empty(&pages)) {
1125 epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1128 epp->ptr = dma_alloc_coherent(
1129 &efx->pci_dev->dev, EFX_PAGE_SIZE,
1130 &epp->addr, GFP_KERNEL);
1136 epp = list_first_entry(
1137 &pages, struct efx_endpoint_page, link);
1138 list_del(&epp->link);
1141 list_add_tail(&epp->link, &nic_data->local_page_list);
1142 peer = (struct vfdi_endpoint *)epp->ptr;
1143 peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1146 vfdi_status->peer_count = peer_count;
1147 mutex_unlock(&nic_data->local_lock);
1149 /* Free any now unused endpoint pages */
1150 while (!list_empty(&pages)) {
1151 epp = list_first_entry(
1152 &pages, struct efx_endpoint_page, link);
1153 list_del(&epp->link);
1154 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1155 epp->ptr, epp->addr);
1159 /* Finally, push the pages */
1160 for (pos = 0; pos < efx->vf_count; ++pos) {
1161 vf = nic_data->vf + pos;
1163 mutex_lock(&vf->status_lock);
1164 if (vf->status_addr)
1165 __efx_siena_sriov_push_vf_status(vf);
1166 mutex_unlock(&vf->status_lock);
1170 static void efx_siena_sriov_free_local(struct efx_nic *efx)
1172 struct siena_nic_data *nic_data = efx->nic_data;
1173 struct efx_local_addr *local_addr;
1174 struct efx_endpoint_page *epp;
1176 while (!list_empty(&nic_data->local_addr_list)) {
1177 local_addr = list_first_entry(&nic_data->local_addr_list,
1178 struct efx_local_addr, link);
1179 list_del(&local_addr->link);
1183 while (!list_empty(&nic_data->local_page_list)) {
1184 epp = list_first_entry(&nic_data->local_page_list,
1185 struct efx_endpoint_page, link);
1186 list_del(&epp->link);
1187 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1188 epp->ptr, epp->addr);
1193 static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1196 struct siena_vf *vf;
1197 struct siena_nic_data *nic_data = efx->nic_data;
1199 nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1204 for (index = 0; index < efx->vf_count; ++index) {
1205 vf = nic_data->vf + index;
1209 vf->rx_filter_id = -1;
1210 vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1211 vf->tx_filter_id = -1;
1212 INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1213 INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1214 init_waitqueue_head(&vf->flush_waitq);
1215 mutex_init(&vf->status_lock);
1216 mutex_init(&vf->txq_lock);
1222 static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1224 struct siena_nic_data *nic_data = efx->nic_data;
1225 struct siena_vf *vf;
1228 for (pos = 0; pos < efx->vf_count; ++pos) {
1229 vf = nic_data->vf + pos;
1231 efx_nic_free_buffer(efx, &vf->buf);
1232 kfree(vf->peer_page_addrs);
1233 vf->peer_page_addrs = NULL;
1234 vf->peer_page_count = 0;
1240 static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1242 struct pci_dev *pci_dev = efx->pci_dev;
1243 struct siena_nic_data *nic_data = efx->nic_data;
1244 unsigned index, devfn, sriov, buftbl_base;
1246 struct siena_vf *vf;
1249 sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1253 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1254 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1256 buftbl_base = nic_data->vf_buftbl_base;
1257 devfn = pci_dev->devfn + offset;
1258 for (index = 0; index < efx->vf_count; ++index) {
1259 vf = nic_data->vf + index;
1261 /* Reserve buffer entries */
1262 vf->buftbl_base = buftbl_base;
1263 buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1265 vf->pci_rid = devfn;
1266 snprintf(vf->pci_name, sizeof(vf->pci_name),
1267 "%04x:%02x:%02x.%d",
1268 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1269 PCI_SLOT(devfn), PCI_FUNC(devfn));
1271 rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1282 efx_siena_sriov_vfs_fini(efx);
1286 int efx_siena_sriov_init(struct efx_nic *efx)
1288 struct net_device *net_dev = efx->net_dev;
1289 struct siena_nic_data *nic_data = efx->nic_data;
1290 struct vfdi_status *vfdi_status;
1293 /* Ensure there's room for vf_channel */
1294 BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1295 /* Ensure that VI_BASE is aligned on VI_SCALE */
1296 BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1298 if (efx->vf_count == 0)
1301 rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1305 rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
1306 sizeof(*vfdi_status), GFP_KERNEL);
1309 vfdi_status = nic_data->vfdi_status.addr;
1310 memset(vfdi_status, 0, sizeof(*vfdi_status));
1311 vfdi_status->version = 1;
1312 vfdi_status->length = sizeof(*vfdi_status);
1313 vfdi_status->max_tx_channels = vf_max_tx_channels;
1314 vfdi_status->vi_scale = efx->vi_scale;
1315 vfdi_status->rss_rxq_count = efx->rss_spread;
1316 vfdi_status->peer_count = 1 + efx->vf_count;
1317 vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1319 rc = efx_siena_sriov_vf_alloc(efx);
1323 mutex_init(&nic_data->local_lock);
1324 INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1325 INIT_LIST_HEAD(&nic_data->local_addr_list);
1326 INIT_LIST_HEAD(&nic_data->local_page_list);
1328 rc = efx_siena_sriov_vfs_init(efx);
1333 ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1334 efx->vf_init_count = efx->vf_count;
1337 efx_siena_sriov_usrev(efx, true);
1339 /* At this point we must be ready to accept VFDI requests */
1341 rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1345 netif_info(efx, probe, net_dev,
1346 "enabled SR-IOV for %d VFs, %d VI per VF\n",
1347 efx->vf_count, efx_vf_size(efx));
1351 efx_siena_sriov_usrev(efx, false);
1353 efx->vf_init_count = 0;
1355 efx_siena_sriov_vfs_fini(efx);
1357 cancel_work_sync(&nic_data->peer_work);
1358 efx_siena_sriov_free_local(efx);
1359 kfree(nic_data->vf);
1361 efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1363 efx_siena_sriov_cmd(efx, false, NULL, NULL);
1368 void efx_siena_sriov_fini(struct efx_nic *efx)
1370 struct siena_vf *vf;
1372 struct siena_nic_data *nic_data = efx->nic_data;
1374 if (efx->vf_init_count == 0)
1377 /* Disable all interfaces to reconfiguration */
1378 BUG_ON(nic_data->vfdi_channel->enabled);
1379 efx_siena_sriov_usrev(efx, false);
1381 efx->vf_init_count = 0;
1384 /* Flush all reconfiguration work */
1385 for (pos = 0; pos < efx->vf_count; ++pos) {
1386 vf = nic_data->vf + pos;
1387 cancel_work_sync(&vf->req);
1388 cancel_work_sync(&vf->reset_work);
1390 cancel_work_sync(&nic_data->peer_work);
1392 pci_disable_sriov(efx->pci_dev);
1394 /* Tear down back-end state */
1395 efx_siena_sriov_vfs_fini(efx);
1396 efx_siena_sriov_free_local(efx);
1397 kfree(nic_data->vf);
1398 efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1399 efx_siena_sriov_cmd(efx, false, NULL, NULL);
1402 void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1404 struct efx_nic *efx = channel->efx;
1405 struct siena_vf *vf;
1406 unsigned qid, seq, type, data;
1408 qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1410 /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1411 BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1412 seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1413 type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1414 data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1416 netif_vdbg(efx, hw, efx->net_dev,
1417 "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1418 qid, seq, type, data);
1420 if (map_vi_index(efx, qid, &vf, NULL))
1425 if (type == VFDI_EV_TYPE_REQ_WORD0) {
1427 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1428 vf->req_seqno = seq + 1;
1430 } else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1433 switch (vf->req_type) {
1434 case VFDI_EV_TYPE_REQ_WORD0:
1435 case VFDI_EV_TYPE_REQ_WORD1:
1436 case VFDI_EV_TYPE_REQ_WORD2:
1437 vf->req_addr |= (u64)data << (vf->req_type << 4);
1441 case VFDI_EV_TYPE_REQ_WORD3:
1442 vf->req_addr |= (u64)data << 48;
1443 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1445 queue_work(vfdi_workqueue, &vf->req);
1450 if (net_ratelimit())
1451 netif_err(efx, hw, efx->net_dev,
1452 "ERROR: Screaming VFDI request from %s\n",
1454 /* Reset the request and sequence number */
1455 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1456 vf->req_seqno = seq + 1;
1459 void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1461 struct siena_nic_data *nic_data = efx->nic_data;
1462 struct siena_vf *vf;
1464 if (vf_i > efx->vf_init_count)
1466 vf = nic_data->vf + vf_i;
1467 netif_info(efx, hw, efx->net_dev,
1468 "FLR on VF %s\n", vf->pci_name);
1470 vf->status_addr = 0;
1471 efx_vfdi_remove_all_filters(vf);
1472 efx_vfdi_flush_clear(vf);
1477 int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1479 struct siena_nic_data *nic_data = efx->nic_data;
1480 struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1482 if (!efx->vf_init_count)
1484 ether_addr_copy(vfdi_status->peers[0].mac_addr,
1485 efx->net_dev->dev_addr);
1486 queue_work(vfdi_workqueue, &nic_data->peer_work);
1491 void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1493 struct siena_vf *vf;
1494 unsigned queue, qid;
1496 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1497 if (map_vi_index(efx, queue, &vf, &qid))
1499 /* Ignore flush completions triggered by an FLR */
1500 if (!test_bit(qid, vf->txq_mask))
1503 __clear_bit(qid, vf->txq_mask);
1506 if (efx_vfdi_flush_wake(vf))
1507 wake_up(&vf->flush_waitq);
1510 void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1512 struct siena_vf *vf;
1513 unsigned ev_failed, queue, qid;
1515 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1516 ev_failed = EFX_QWORD_FIELD(*event,
1517 FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1518 if (map_vi_index(efx, queue, &vf, &qid))
1520 if (!test_bit(qid, vf->rxq_mask))
1524 set_bit(qid, vf->rxq_retry_mask);
1525 atomic_inc(&vf->rxq_retry_count);
1527 __clear_bit(qid, vf->rxq_mask);
1530 if (efx_vfdi_flush_wake(vf))
1531 wake_up(&vf->flush_waitq);
1534 /* Called from napi. Schedule the reset work item */
1535 void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1537 struct siena_vf *vf;
1540 if (map_vi_index(efx, dmaq, &vf, &rel))
1543 if (net_ratelimit())
1544 netif_err(efx, hw, efx->net_dev,
1545 "VF %d DMA Q %d reports descriptor fetch error.\n",
1547 queue_work(vfdi_workqueue, &vf->reset_work);
1551 void efx_siena_sriov_reset(struct efx_nic *efx)
1553 struct siena_nic_data *nic_data = efx->nic_data;
1555 struct efx_buffer buf;
1556 struct siena_vf *vf;
1560 if (efx->vf_init_count == 0)
1563 efx_siena_sriov_usrev(efx, true);
1564 (void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1566 if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1569 for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1570 vf = nic_data->vf + vf_i;
1571 efx_siena_sriov_reset_vf(vf, &buf);
1574 efx_nic_free_buffer(efx, &buf);
1577 int efx_init_sriov(void)
1579 /* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1580 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1581 * MCDI to complete anyway
1583 vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1584 if (!vfdi_workqueue)
1589 void efx_fini_sriov(void)
1591 destroy_workqueue(vfdi_workqueue);
1594 int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, u8 *mac)
1596 struct siena_nic_data *nic_data = efx->nic_data;
1597 struct siena_vf *vf;
1599 if (vf_i >= efx->vf_init_count)
1601 vf = nic_data->vf + vf_i;
1603 mutex_lock(&vf->status_lock);
1604 ether_addr_copy(vf->addr.mac_addr, mac);
1605 __efx_siena_sriov_update_vf_addr(vf);
1606 mutex_unlock(&vf->status_lock);
1611 int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1614 struct siena_nic_data *nic_data = efx->nic_data;
1615 struct siena_vf *vf;
1618 if (vf_i >= efx->vf_init_count)
1620 vf = nic_data->vf + vf_i;
1622 mutex_lock(&vf->status_lock);
1623 tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1624 vf->addr.tci = htons(tci);
1625 __efx_siena_sriov_update_vf_addr(vf);
1626 mutex_unlock(&vf->status_lock);
1631 int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1634 struct siena_nic_data *nic_data = efx->nic_data;
1635 struct siena_vf *vf;
1638 if (vf_i >= efx->vf_init_count)
1640 vf = nic_data->vf + vf_i;
1642 mutex_lock(&vf->txq_lock);
1643 if (vf->txq_count == 0) {
1644 vf->tx_filter_mode =
1645 spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1648 /* This cannot be changed while TX queues are running */
1651 mutex_unlock(&vf->txq_lock);
1655 int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1656 struct ifla_vf_info *ivi)
1658 struct siena_nic_data *nic_data = efx->nic_data;
1659 struct siena_vf *vf;
1662 if (vf_i >= efx->vf_init_count)
1664 vf = nic_data->vf + vf_i;
1667 ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1668 ivi->max_tx_rate = 0;
1669 ivi->min_tx_rate = 0;
1670 tci = ntohs(vf->addr.tci);
1671 ivi->vlan = tci & VLAN_VID_MASK;
1672 ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1673 ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1678 bool efx_siena_sriov_wanted(struct efx_nic *efx)
1680 return efx->vf_count != 0;
1683 int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)