sfc: Do not free an empty page_ring
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / sfc / rx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include "efx.h"
15 #include "nic.h"
16 #include "rx_common.h"
17
18 /* This is the percentage fill level below which new RX descriptors
19  * will be added to the RX descriptor ring.
20  */
21 static unsigned int rx_refill_threshold;
22 module_param(rx_refill_threshold, uint, 0444);
23 MODULE_PARM_DESC(rx_refill_threshold,
24                  "RX descriptor ring refill threshold (%)");
25
26 /* RX maximum head room required.
27  *
28  * This must be at least 1 to prevent overflow, plus one packet-worth
29  * to allow pipelined receives.
30  */
31 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
32
33 /* Check the RX page recycle ring for a page that can be reused. */
34 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
35 {
36         struct efx_nic *efx = rx_queue->efx;
37         struct efx_rx_page_state *state;
38         unsigned int index;
39         struct page *page;
40
41         if (unlikely(!rx_queue->page_ring))
42                 return NULL;
43         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
44         page = rx_queue->page_ring[index];
45         if (page == NULL)
46                 return NULL;
47
48         rx_queue->page_ring[index] = NULL;
49         /* page_remove cannot exceed page_add. */
50         if (rx_queue->page_remove != rx_queue->page_add)
51                 ++rx_queue->page_remove;
52
53         /* If page_count is 1 then we hold the only reference to this page. */
54         if (page_count(page) == 1) {
55                 ++rx_queue->page_recycle_count;
56                 return page;
57         } else {
58                 state = page_address(page);
59                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
60                                PAGE_SIZE << efx->rx_buffer_order,
61                                DMA_FROM_DEVICE);
62                 put_page(page);
63                 ++rx_queue->page_recycle_failed;
64         }
65
66         return NULL;
67 }
68
69 /* Attempt to recycle the page if there is an RX recycle ring; the page can
70  * only be added if this is the final RX buffer, to prevent pages being used in
71  * the descriptor ring and appearing in the recycle ring simultaneously.
72  */
73 static void efx_recycle_rx_page(struct efx_channel *channel,
74                                 struct efx_rx_buffer *rx_buf)
75 {
76         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
77         struct efx_nic *efx = rx_queue->efx;
78         struct page *page = rx_buf->page;
79         unsigned int index;
80
81         /* Only recycle the page after processing the final buffer. */
82         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
83                 return;
84
85         index = rx_queue->page_add & rx_queue->page_ptr_mask;
86         if (rx_queue->page_ring[index] == NULL) {
87                 unsigned int read_index = rx_queue->page_remove &
88                         rx_queue->page_ptr_mask;
89
90                 /* The next slot in the recycle ring is available, but
91                  * increment page_remove if the read pointer currently
92                  * points here.
93                  */
94                 if (read_index == index)
95                         ++rx_queue->page_remove;
96                 rx_queue->page_ring[index] = page;
97                 ++rx_queue->page_add;
98                 return;
99         }
100         ++rx_queue->page_recycle_full;
101         efx_unmap_rx_buffer(efx, rx_buf);
102         put_page(rx_buf->page);
103 }
104
105 /* Recycle the pages that are used by buffers that have just been received. */
106 void efx_recycle_rx_pages(struct efx_channel *channel,
107                           struct efx_rx_buffer *rx_buf,
108                           unsigned int n_frags)
109 {
110         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
111
112         if (unlikely(!rx_queue->page_ring))
113                 return;
114
115         do {
116                 efx_recycle_rx_page(channel, rx_buf);
117                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
118         } while (--n_frags);
119 }
120
121 void efx_discard_rx_packet(struct efx_channel *channel,
122                            struct efx_rx_buffer *rx_buf,
123                            unsigned int n_frags)
124 {
125         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
126
127         efx_recycle_rx_pages(channel, rx_buf, n_frags);
128
129         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
130 }
131
132 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
133 {
134         unsigned int bufs_in_recycle_ring, page_ring_size;
135         struct efx_nic *efx = rx_queue->efx;
136
137         bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
138         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
139                                             efx->rx_bufs_per_page);
140         rx_queue->page_ring = kcalloc(page_ring_size,
141                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
142         if (!rx_queue->page_ring)
143                 rx_queue->page_ptr_mask = 0;
144         else
145                 rx_queue->page_ptr_mask = page_ring_size - 1;
146 }
147
148 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
149 {
150         struct efx_nic *efx = rx_queue->efx;
151         int i;
152
153         if (unlikely(!rx_queue->page_ring))
154                 return;
155
156         /* Unmap and release the pages in the recycle ring. Remove the ring. */
157         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
158                 struct page *page = rx_queue->page_ring[i];
159                 struct efx_rx_page_state *state;
160
161                 if (page == NULL)
162                         continue;
163
164                 state = page_address(page);
165                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
166                                PAGE_SIZE << efx->rx_buffer_order,
167                                DMA_FROM_DEVICE);
168                 put_page(page);
169         }
170         kfree(rx_queue->page_ring);
171         rx_queue->page_ring = NULL;
172 }
173
174 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
175                                struct efx_rx_buffer *rx_buf)
176 {
177         /* Release the page reference we hold for the buffer. */
178         if (rx_buf->page)
179                 put_page(rx_buf->page);
180
181         /* If this is the last buffer in a page, unmap and free it. */
182         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
183                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
184                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
185         }
186         rx_buf->page = NULL;
187 }
188
189 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
190 {
191         struct efx_nic *efx = rx_queue->efx;
192         unsigned int entries;
193         int rc;
194
195         /* Create the smallest power-of-two aligned ring */
196         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
197         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
198         rx_queue->ptr_mask = entries - 1;
199
200         netif_dbg(efx, probe, efx->net_dev,
201                   "creating RX queue %d size %#x mask %#x\n",
202                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
203                   rx_queue->ptr_mask);
204
205         /* Allocate RX buffers */
206         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
207                                    GFP_KERNEL);
208         if (!rx_queue->buffer)
209                 return -ENOMEM;
210
211         rc = efx_nic_probe_rx(rx_queue);
212         if (rc) {
213                 kfree(rx_queue->buffer);
214                 rx_queue->buffer = NULL;
215         }
216
217         return rc;
218 }
219
220 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
221 {
222         unsigned int max_fill, trigger, max_trigger;
223         struct efx_nic *efx = rx_queue->efx;
224         int rc = 0;
225
226         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
227                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
228
229         /* Initialise ptr fields */
230         rx_queue->added_count = 0;
231         rx_queue->notified_count = 0;
232         rx_queue->removed_count = 0;
233         rx_queue->min_fill = -1U;
234         efx_init_rx_recycle_ring(rx_queue);
235
236         rx_queue->page_remove = 0;
237         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
238         rx_queue->page_recycle_count = 0;
239         rx_queue->page_recycle_failed = 0;
240         rx_queue->page_recycle_full = 0;
241
242         /* Initialise limit fields */
243         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
244         max_trigger =
245                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
246         if (rx_refill_threshold != 0) {
247                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
248                 if (trigger > max_trigger)
249                         trigger = max_trigger;
250         } else {
251                 trigger = max_trigger;
252         }
253
254         rx_queue->max_fill = max_fill;
255         rx_queue->fast_fill_trigger = trigger;
256         rx_queue->refill_enabled = true;
257
258         /* Initialise XDP queue information */
259         rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
260                               rx_queue->core_index, 0);
261
262         if (rc) {
263                 netif_err(efx, rx_err, efx->net_dev,
264                           "Failure to initialise XDP queue information rc=%d\n",
265                           rc);
266                 efx->xdp_rxq_info_failed = true;
267         } else {
268                 rx_queue->xdp_rxq_info_valid = true;
269         }
270
271         /* Set up RX descriptor ring */
272         efx_nic_init_rx(rx_queue);
273 }
274
275 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
276 {
277         struct efx_rx_buffer *rx_buf;
278         int i;
279
280         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
281                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
282
283         del_timer_sync(&rx_queue->slow_fill);
284
285         /* Release RX buffers from the current read ptr to the write ptr */
286         if (rx_queue->buffer) {
287                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
288                      i++) {
289                         unsigned int index = i & rx_queue->ptr_mask;
290
291                         rx_buf = efx_rx_buffer(rx_queue, index);
292                         efx_fini_rx_buffer(rx_queue, rx_buf);
293                 }
294         }
295
296         efx_fini_rx_recycle_ring(rx_queue);
297
298         if (rx_queue->xdp_rxq_info_valid)
299                 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
300
301         rx_queue->xdp_rxq_info_valid = false;
302 }
303
304 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
305 {
306         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
307                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
308
309         efx_nic_remove_rx(rx_queue);
310
311         kfree(rx_queue->buffer);
312         rx_queue->buffer = NULL;
313 }
314
315 /* Unmap a DMA-mapped page.  This function is only called for the final RX
316  * buffer in a page.
317  */
318 void efx_unmap_rx_buffer(struct efx_nic *efx,
319                          struct efx_rx_buffer *rx_buf)
320 {
321         struct page *page = rx_buf->page;
322
323         if (page) {
324                 struct efx_rx_page_state *state = page_address(page);
325
326                 dma_unmap_page(&efx->pci_dev->dev,
327                                state->dma_addr,
328                                PAGE_SIZE << efx->rx_buffer_order,
329                                DMA_FROM_DEVICE);
330         }
331 }
332
333 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
334                          struct efx_rx_buffer *rx_buf,
335                          unsigned int num_bufs)
336 {
337         do {
338                 if (rx_buf->page) {
339                         put_page(rx_buf->page);
340                         rx_buf->page = NULL;
341                 }
342                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
343         } while (--num_bufs);
344 }
345
346 void efx_rx_slow_fill(struct timer_list *t)
347 {
348         struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
349
350         /* Post an event to cause NAPI to run and refill the queue */
351         efx_nic_generate_fill_event(rx_queue);
352         ++rx_queue->slow_fill_count;
353 }
354
355 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
356 {
357         mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
358 }
359
360 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
361  *
362  * @rx_queue:           Efx RX queue
363  *
364  * This allocates a batch of pages, maps them for DMA, and populates
365  * struct efx_rx_buffers for each one. Return a negative error code or
366  * 0 on success. If a single page can be used for multiple buffers,
367  * then the page will either be inserted fully, or not at all.
368  */
369 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
370 {
371         unsigned int page_offset, index, count;
372         struct efx_nic *efx = rx_queue->efx;
373         struct efx_rx_page_state *state;
374         struct efx_rx_buffer *rx_buf;
375         dma_addr_t dma_addr;
376         struct page *page;
377
378         count = 0;
379         do {
380                 page = efx_reuse_page(rx_queue);
381                 if (page == NULL) {
382                         page = alloc_pages(__GFP_COMP |
383                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
384                                            efx->rx_buffer_order);
385                         if (unlikely(page == NULL))
386                                 return -ENOMEM;
387                         dma_addr =
388                                 dma_map_page(&efx->pci_dev->dev, page, 0,
389                                              PAGE_SIZE << efx->rx_buffer_order,
390                                              DMA_FROM_DEVICE);
391                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
392                                                        dma_addr))) {
393                                 __free_pages(page, efx->rx_buffer_order);
394                                 return -EIO;
395                         }
396                         state = page_address(page);
397                         state->dma_addr = dma_addr;
398                 } else {
399                         state = page_address(page);
400                         dma_addr = state->dma_addr;
401                 }
402
403                 dma_addr += sizeof(struct efx_rx_page_state);
404                 page_offset = sizeof(struct efx_rx_page_state);
405
406                 do {
407                         index = rx_queue->added_count & rx_queue->ptr_mask;
408                         rx_buf = efx_rx_buffer(rx_queue, index);
409                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
410                                            EFX_XDP_HEADROOM;
411                         rx_buf->page = page;
412                         rx_buf->page_offset = page_offset + efx->rx_ip_align +
413                                               EFX_XDP_HEADROOM;
414                         rx_buf->len = efx->rx_dma_len;
415                         rx_buf->flags = 0;
416                         ++rx_queue->added_count;
417                         get_page(page);
418                         dma_addr += efx->rx_page_buf_step;
419                         page_offset += efx->rx_page_buf_step;
420                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
421
422                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
423         } while (++count < efx->rx_pages_per_batch);
424
425         return 0;
426 }
427
428 void efx_rx_config_page_split(struct efx_nic *efx)
429 {
430         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
431                                       EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
432                                       EFX_RX_BUF_ALIGNMENT);
433         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
434                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
435                 efx->rx_page_buf_step);
436         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
437                 efx->rx_bufs_per_page;
438         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
439                                                efx->rx_bufs_per_page);
440 }
441
442 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
443  * @rx_queue:           RX descriptor queue
444  *
445  * This will aim to fill the RX descriptor queue up to
446  * @rx_queue->@max_fill. If there is insufficient atomic
447  * memory to do so, a slow fill will be scheduled.
448  *
449  * The caller must provide serialisation (none is used here). In practise,
450  * this means this function must run from the NAPI handler, or be called
451  * when NAPI is disabled.
452  */
453 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
454 {
455         struct efx_nic *efx = rx_queue->efx;
456         unsigned int fill_level, batch_size;
457         int space, rc = 0;
458
459         if (!rx_queue->refill_enabled)
460                 return;
461
462         /* Calculate current fill level, and exit if we don't need to fill */
463         fill_level = (rx_queue->added_count - rx_queue->removed_count);
464         EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
465         if (fill_level >= rx_queue->fast_fill_trigger)
466                 goto out;
467
468         /* Record minimum fill level */
469         if (unlikely(fill_level < rx_queue->min_fill)) {
470                 if (fill_level)
471                         rx_queue->min_fill = fill_level;
472         }
473
474         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
475         space = rx_queue->max_fill - fill_level;
476         EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
477
478         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
479                    "RX queue %d fast-filling descriptor ring from"
480                    " level %d to level %d\n",
481                    efx_rx_queue_index(rx_queue), fill_level,
482                    rx_queue->max_fill);
483
484         do {
485                 rc = efx_init_rx_buffers(rx_queue, atomic);
486                 if (unlikely(rc)) {
487                         /* Ensure that we don't leave the rx queue empty */
488                         efx_schedule_slow_fill(rx_queue);
489                         goto out;
490                 }
491         } while ((space -= batch_size) >= batch_size);
492
493         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
494                    "RX queue %d fast-filled descriptor ring "
495                    "to level %d\n", efx_rx_queue_index(rx_queue),
496                    rx_queue->added_count - rx_queue->removed_count);
497
498  out:
499         if (rx_queue->notified_count != rx_queue->added_count)
500                 efx_nic_notify_rx_desc(rx_queue);
501 }
502
503 /* Pass a received packet up through GRO.  GRO can handle pages
504  * regardless of checksum state and skbs with a good checksum.
505  */
506 void
507 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
508                   unsigned int n_frags, u8 *eh, __wsum csum)
509 {
510         struct napi_struct *napi = &channel->napi_str;
511         struct efx_nic *efx = channel->efx;
512         struct sk_buff *skb;
513
514         skb = napi_get_frags(napi);
515         if (unlikely(!skb)) {
516                 struct efx_rx_queue *rx_queue;
517
518                 rx_queue = efx_channel_get_rx_queue(channel);
519                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
520                 return;
521         }
522
523         if (efx->net_dev->features & NETIF_F_RXHASH &&
524             efx_rx_buf_hash_valid(efx, eh))
525                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
526                              PKT_HASH_TYPE_L3);
527         if (csum) {
528                 skb->csum = csum;
529                 skb->ip_summed = CHECKSUM_COMPLETE;
530         } else {
531                 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
532                                   CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
533         }
534         skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
535
536         for (;;) {
537                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
538                                    rx_buf->page, rx_buf->page_offset,
539                                    rx_buf->len);
540                 rx_buf->page = NULL;
541                 skb->len += rx_buf->len;
542                 if (skb_shinfo(skb)->nr_frags == n_frags)
543                         break;
544
545                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
546         }
547
548         skb->data_len = skb->len;
549         skb->truesize += n_frags * efx->rx_buffer_truesize;
550
551         skb_record_rx_queue(skb, channel->rx_queue.core_index);
552
553         napi_gro_frags(napi);
554 }
555
556 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
557  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
558  */
559 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
560 {
561         struct list_head *head = &efx->rss_context.list;
562         struct efx_rss_context *ctx, *new;
563         u32 id = 1; /* Don't use zero, that refers to the master RSS context */
564
565         WARN_ON(!mutex_is_locked(&efx->rss_lock));
566
567         /* Search for first gap in the numbering */
568         list_for_each_entry(ctx, head, list) {
569                 if (ctx->user_id != id)
570                         break;
571                 id++;
572                 /* Check for wrap.  If this happens, we have nearly 2^32
573                  * allocated RSS contexts, which seems unlikely.
574                  */
575                 if (WARN_ON_ONCE(!id))
576                         return NULL;
577         }
578
579         /* Create the new entry */
580         new = kmalloc(sizeof(*new), GFP_KERNEL);
581         if (!new)
582                 return NULL;
583         new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
584         new->rx_hash_udp_4tuple = false;
585
586         /* Insert the new entry into the gap */
587         new->user_id = id;
588         list_add_tail(&new->list, &ctx->list);
589         return new;
590 }
591
592 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
593 {
594         struct list_head *head = &efx->rss_context.list;
595         struct efx_rss_context *ctx;
596
597         WARN_ON(!mutex_is_locked(&efx->rss_lock));
598
599         list_for_each_entry(ctx, head, list)
600                 if (ctx->user_id == id)
601                         return ctx;
602         return NULL;
603 }
604
605 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
606 {
607         list_del(&ctx->list);
608         kfree(ctx);
609 }
610
611 void efx_set_default_rx_indir_table(struct efx_nic *efx,
612                                     struct efx_rss_context *ctx)
613 {
614         size_t i;
615
616         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
617                 ctx->rx_indir_table[i] =
618                         ethtool_rxfh_indir_default(i, efx->rss_spread);
619 }
620
621 /**
622  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
623  * @spec: Specification to test
624  *
625  * Return: %true if the specification is a non-drop RX filter that
626  * matches a local MAC address I/G bit value of 1 or matches a local
627  * IPv4 or IPv6 address value in the respective multicast address
628  * range.  Otherwise %false.
629  */
630 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
631 {
632         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
633             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
634                 return false;
635
636         if (spec->match_flags &
637             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
638             is_multicast_ether_addr(spec->loc_mac))
639                 return true;
640
641         if ((spec->match_flags &
642              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
643             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
644                 if (spec->ether_type == htons(ETH_P_IP) &&
645                     ipv4_is_multicast(spec->loc_host[0]))
646                         return true;
647                 if (spec->ether_type == htons(ETH_P_IPV6) &&
648                     ((const u8 *)spec->loc_host)[0] == 0xff)
649                         return true;
650         }
651
652         return false;
653 }
654
655 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
656                            const struct efx_filter_spec *right)
657 {
658         if ((left->match_flags ^ right->match_flags) |
659             ((left->flags ^ right->flags) &
660              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
661                 return false;
662
663         return memcmp(&left->outer_vid, &right->outer_vid,
664                       sizeof(struct efx_filter_spec) -
665                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
666 }
667
668 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
669 {
670         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
671         return jhash2((const u32 *)&spec->outer_vid,
672                       (sizeof(struct efx_filter_spec) -
673                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
674                       0);
675 }
676
677 #ifdef CONFIG_RFS_ACCEL
678 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
679                         bool *force)
680 {
681         if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
682                 /* ARFS is currently updating this entry, leave it */
683                 return false;
684         }
685         if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
686                 /* ARFS tried and failed to update this, so it's probably out
687                  * of date.  Remove the filter and the ARFS rule entry.
688                  */
689                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
690                 *force = true;
691                 return true;
692         } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
693                 /* ARFS has moved on, so old filter is not needed.  Since we did
694                  * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
695                  * not be removed by efx_rps_hash_del() subsequently.
696                  */
697                 *force = true;
698                 return true;
699         }
700         /* Remove it iff ARFS wants to. */
701         return true;
702 }
703
704 static
705 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
706                                        const struct efx_filter_spec *spec)
707 {
708         u32 hash = efx_filter_spec_hash(spec);
709
710         lockdep_assert_held(&efx->rps_hash_lock);
711         if (!efx->rps_hash_table)
712                 return NULL;
713         return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
714 }
715
716 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
717                                         const struct efx_filter_spec *spec)
718 {
719         struct efx_arfs_rule *rule;
720         struct hlist_head *head;
721         struct hlist_node *node;
722
723         head = efx_rps_hash_bucket(efx, spec);
724         if (!head)
725                 return NULL;
726         hlist_for_each(node, head) {
727                 rule = container_of(node, struct efx_arfs_rule, node);
728                 if (efx_filter_spec_equal(spec, &rule->spec))
729                         return rule;
730         }
731         return NULL;
732 }
733
734 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
735                                        const struct efx_filter_spec *spec,
736                                        bool *new)
737 {
738         struct efx_arfs_rule *rule;
739         struct hlist_head *head;
740         struct hlist_node *node;
741
742         head = efx_rps_hash_bucket(efx, spec);
743         if (!head)
744                 return NULL;
745         hlist_for_each(node, head) {
746                 rule = container_of(node, struct efx_arfs_rule, node);
747                 if (efx_filter_spec_equal(spec, &rule->spec)) {
748                         *new = false;
749                         return rule;
750                 }
751         }
752         rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
753         *new = true;
754         if (rule) {
755                 memcpy(&rule->spec, spec, sizeof(rule->spec));
756                 hlist_add_head(&rule->node, head);
757         }
758         return rule;
759 }
760
761 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
762 {
763         struct efx_arfs_rule *rule;
764         struct hlist_head *head;
765         struct hlist_node *node;
766
767         head = efx_rps_hash_bucket(efx, spec);
768         if (WARN_ON(!head))
769                 return;
770         hlist_for_each(node, head) {
771                 rule = container_of(node, struct efx_arfs_rule, node);
772                 if (efx_filter_spec_equal(spec, &rule->spec)) {
773                         /* Someone already reused the entry.  We know that if
774                          * this check doesn't fire (i.e. filter_id == REMOVING)
775                          * then the REMOVING mark was put there by our caller,
776                          * because caller is holding a lock on filter table and
777                          * only holders of that lock set REMOVING.
778                          */
779                         if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
780                                 return;
781                         hlist_del(node);
782                         kfree(rule);
783                         return;
784                 }
785         }
786         /* We didn't find it. */
787         WARN_ON(1);
788 }
789 #endif
790
791 int efx_probe_filters(struct efx_nic *efx)
792 {
793         int rc;
794
795         mutex_lock(&efx->mac_lock);
796         down_write(&efx->filter_sem);
797         rc = efx->type->filter_table_probe(efx);
798         if (rc)
799                 goto out_unlock;
800
801 #ifdef CONFIG_RFS_ACCEL
802         if (efx->type->offload_features & NETIF_F_NTUPLE) {
803                 struct efx_channel *channel;
804                 int i, success = 1;
805
806                 efx_for_each_channel(channel, efx) {
807                         channel->rps_flow_id =
808                                 kcalloc(efx->type->max_rx_ip_filters,
809                                         sizeof(*channel->rps_flow_id),
810                                         GFP_KERNEL);
811                         if (!channel->rps_flow_id)
812                                 success = 0;
813                         else
814                                 for (i = 0;
815                                      i < efx->type->max_rx_ip_filters;
816                                      ++i)
817                                         channel->rps_flow_id[i] =
818                                                 RPS_FLOW_ID_INVALID;
819                         channel->rfs_expire_index = 0;
820                         channel->rfs_filter_count = 0;
821                 }
822
823                 if (!success) {
824                         efx_for_each_channel(channel, efx)
825                                 kfree(channel->rps_flow_id);
826                         efx->type->filter_table_remove(efx);
827                         rc = -ENOMEM;
828                         goto out_unlock;
829                 }
830         }
831 #endif
832 out_unlock:
833         up_write(&efx->filter_sem);
834         mutex_unlock(&efx->mac_lock);
835         return rc;
836 }
837
838 void efx_remove_filters(struct efx_nic *efx)
839 {
840 #ifdef CONFIG_RFS_ACCEL
841         struct efx_channel *channel;
842
843         efx_for_each_channel(channel, efx) {
844                 cancel_delayed_work_sync(&channel->filter_work);
845                 kfree(channel->rps_flow_id);
846                 channel->rps_flow_id = NULL;
847         }
848 #endif
849         down_write(&efx->filter_sem);
850         efx->type->filter_table_remove(efx);
851         up_write(&efx->filter_sem);
852 }
853
854 #ifdef CONFIG_RFS_ACCEL
855
856 static void efx_filter_rfs_work(struct work_struct *data)
857 {
858         struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
859                                                               work);
860         struct efx_nic *efx = netdev_priv(req->net_dev);
861         struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
862         int slot_idx = req - efx->rps_slot;
863         struct efx_arfs_rule *rule;
864         u16 arfs_id = 0;
865         int rc;
866
867         rc = efx->type->filter_insert(efx, &req->spec, true);
868         if (rc >= 0)
869                 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
870                 rc %= efx->type->max_rx_ip_filters;
871         if (efx->rps_hash_table) {
872                 spin_lock_bh(&efx->rps_hash_lock);
873                 rule = efx_rps_hash_find(efx, &req->spec);
874                 /* The rule might have already gone, if someone else's request
875                  * for the same spec was already worked and then expired before
876                  * we got around to our work.  In that case we have nothing
877                  * tying us to an arfs_id, meaning that as soon as the filter
878                  * is considered for expiry it will be removed.
879                  */
880                 if (rule) {
881                         if (rc < 0)
882                                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
883                         else
884                                 rule->filter_id = rc;
885                         arfs_id = rule->arfs_id;
886                 }
887                 spin_unlock_bh(&efx->rps_hash_lock);
888         }
889         if (rc >= 0) {
890                 /* Remember this so we can check whether to expire the filter
891                  * later.
892                  */
893                 mutex_lock(&efx->rps_mutex);
894                 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
895                         channel->rfs_filter_count++;
896                 channel->rps_flow_id[rc] = req->flow_id;
897                 mutex_unlock(&efx->rps_mutex);
898
899                 if (req->spec.ether_type == htons(ETH_P_IP))
900                         netif_info(efx, rx_status, efx->net_dev,
901                                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
902                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
903                                    req->spec.rem_host, ntohs(req->spec.rem_port),
904                                    req->spec.loc_host, ntohs(req->spec.loc_port),
905                                    req->rxq_index, req->flow_id, rc, arfs_id);
906                 else
907                         netif_info(efx, rx_status, efx->net_dev,
908                                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
909                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
910                                    req->spec.rem_host, ntohs(req->spec.rem_port),
911                                    req->spec.loc_host, ntohs(req->spec.loc_port),
912                                    req->rxq_index, req->flow_id, rc, arfs_id);
913                 channel->n_rfs_succeeded++;
914         } else {
915                 if (req->spec.ether_type == htons(ETH_P_IP))
916                         netif_dbg(efx, rx_status, efx->net_dev,
917                                   "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
918                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
919                                   req->spec.rem_host, ntohs(req->spec.rem_port),
920                                   req->spec.loc_host, ntohs(req->spec.loc_port),
921                                   req->rxq_index, req->flow_id, rc, arfs_id);
922                 else
923                         netif_dbg(efx, rx_status, efx->net_dev,
924                                   "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
925                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
926                                   req->spec.rem_host, ntohs(req->spec.rem_port),
927                                   req->spec.loc_host, ntohs(req->spec.loc_port),
928                                   req->rxq_index, req->flow_id, rc, arfs_id);
929                 channel->n_rfs_failed++;
930                 /* We're overloading the NIC's filter tables, so let's do a
931                  * chunk of extra expiry work.
932                  */
933                 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
934                                                      100u));
935         }
936
937         /* Release references */
938         clear_bit(slot_idx, &efx->rps_slot_map);
939         dev_put(req->net_dev);
940 }
941
942 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
943                    u16 rxq_index, u32 flow_id)
944 {
945         struct efx_nic *efx = netdev_priv(net_dev);
946         struct efx_async_filter_insertion *req;
947         struct efx_arfs_rule *rule;
948         struct flow_keys fk;
949         int slot_idx;
950         bool new;
951         int rc;
952
953         /* find a free slot */
954         for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
955                 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
956                         break;
957         if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
958                 return -EBUSY;
959
960         if (flow_id == RPS_FLOW_ID_INVALID) {
961                 rc = -EINVAL;
962                 goto out_clear;
963         }
964
965         if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
966                 rc = -EPROTONOSUPPORT;
967                 goto out_clear;
968         }
969
970         if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
971                 rc = -EPROTONOSUPPORT;
972                 goto out_clear;
973         }
974         if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
975                 rc = -EPROTONOSUPPORT;
976                 goto out_clear;
977         }
978
979         req = efx->rps_slot + slot_idx;
980         efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
981                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
982                            rxq_index);
983         req->spec.match_flags =
984                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
985                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
986                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
987         req->spec.ether_type = fk.basic.n_proto;
988         req->spec.ip_proto = fk.basic.ip_proto;
989
990         if (fk.basic.n_proto == htons(ETH_P_IP)) {
991                 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
992                 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
993         } else {
994                 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
995                        sizeof(struct in6_addr));
996                 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
997                        sizeof(struct in6_addr));
998         }
999
1000         req->spec.rem_port = fk.ports.src;
1001         req->spec.loc_port = fk.ports.dst;
1002
1003         if (efx->rps_hash_table) {
1004                 /* Add it to ARFS hash table */
1005                 spin_lock(&efx->rps_hash_lock);
1006                 rule = efx_rps_hash_add(efx, &req->spec, &new);
1007                 if (!rule) {
1008                         rc = -ENOMEM;
1009                         goto out_unlock;
1010                 }
1011                 if (new)
1012                         rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1013                 rc = rule->arfs_id;
1014                 /* Skip if existing or pending filter already does the right thing */
1015                 if (!new && rule->rxq_index == rxq_index &&
1016                     rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1017                         goto out_unlock;
1018                 rule->rxq_index = rxq_index;
1019                 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1020                 spin_unlock(&efx->rps_hash_lock);
1021         } else {
1022                 /* Without an ARFS hash table, we just use arfs_id 0 for all
1023                  * filters.  This means if multiple flows hash to the same
1024                  * flow_id, all but the most recently touched will be eligible
1025                  * for expiry.
1026                  */
1027                 rc = 0;
1028         }
1029
1030         /* Queue the request */
1031         dev_hold(req->net_dev = net_dev);
1032         INIT_WORK(&req->work, efx_filter_rfs_work);
1033         req->rxq_index = rxq_index;
1034         req->flow_id = flow_id;
1035         schedule_work(&req->work);
1036         return rc;
1037 out_unlock:
1038         spin_unlock(&efx->rps_hash_lock);
1039 out_clear:
1040         clear_bit(slot_idx, &efx->rps_slot_map);
1041         return rc;
1042 }
1043
1044 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1045 {
1046         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1047         struct efx_nic *efx = channel->efx;
1048         unsigned int index, size, start;
1049         u32 flow_id;
1050
1051         if (!mutex_trylock(&efx->rps_mutex))
1052                 return false;
1053         expire_one = efx->type->filter_rfs_expire_one;
1054         index = channel->rfs_expire_index;
1055         start = index;
1056         size = efx->type->max_rx_ip_filters;
1057         while (quota) {
1058                 flow_id = channel->rps_flow_id[index];
1059
1060                 if (flow_id != RPS_FLOW_ID_INVALID) {
1061                         quota--;
1062                         if (expire_one(efx, flow_id, index)) {
1063                                 netif_info(efx, rx_status, efx->net_dev,
1064                                            "expired filter %d [channel %u flow %u]\n",
1065                                            index, channel->channel, flow_id);
1066                                 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1067                                 channel->rfs_filter_count--;
1068                         }
1069                 }
1070                 if (++index == size)
1071                         index = 0;
1072                 /* If we were called with a quota that exceeds the total number
1073                  * of filters in the table (which shouldn't happen, but could
1074                  * if two callers race), ensure that we don't loop forever -
1075                  * stop when we've examined every row of the table.
1076                  */
1077                 if (index == start)
1078                         break;
1079         }
1080
1081         channel->rfs_expire_index = index;
1082         mutex_unlock(&efx->rps_mutex);
1083         return true;
1084 }
1085
1086 #endif /* CONFIG_RFS_ACCEL */