1b22c7be0088e74194e4a556d3ee2341aec4b5fd
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / sfc / rx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include "efx.h"
15 #include "nic.h"
16 #include "rx_common.h"
17
18 /* This is the percentage fill level below which new RX descriptors
19  * will be added to the RX descriptor ring.
20  */
21 static unsigned int rx_refill_threshold;
22 module_param(rx_refill_threshold, uint, 0444);
23 MODULE_PARM_DESC(rx_refill_threshold,
24                  "RX descriptor ring refill threshold (%)");
25
26 /* RX maximum head room required.
27  *
28  * This must be at least 1 to prevent overflow, plus one packet-worth
29  * to allow pipelined receives.
30  */
31 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
32
33 /* Check the RX page recycle ring for a page that can be reused. */
34 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
35 {
36         struct efx_nic *efx = rx_queue->efx;
37         struct efx_rx_page_state *state;
38         unsigned int index;
39         struct page *page;
40
41         if (unlikely(!rx_queue->page_ring))
42                 return NULL;
43         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
44         page = rx_queue->page_ring[index];
45         if (page == NULL)
46                 return NULL;
47
48         rx_queue->page_ring[index] = NULL;
49         /* page_remove cannot exceed page_add. */
50         if (rx_queue->page_remove != rx_queue->page_add)
51                 ++rx_queue->page_remove;
52
53         /* If page_count is 1 then we hold the only reference to this page. */
54         if (page_count(page) == 1) {
55                 ++rx_queue->page_recycle_count;
56                 return page;
57         } else {
58                 state = page_address(page);
59                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
60                                PAGE_SIZE << efx->rx_buffer_order,
61                                DMA_FROM_DEVICE);
62                 put_page(page);
63                 ++rx_queue->page_recycle_failed;
64         }
65
66         return NULL;
67 }
68
69 /* Attempt to recycle the page if there is an RX recycle ring; the page can
70  * only be added if this is the final RX buffer, to prevent pages being used in
71  * the descriptor ring and appearing in the recycle ring simultaneously.
72  */
73 static void efx_recycle_rx_page(struct efx_channel *channel,
74                                 struct efx_rx_buffer *rx_buf)
75 {
76         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
77         struct efx_nic *efx = rx_queue->efx;
78         struct page *page = rx_buf->page;
79         unsigned int index;
80
81         /* Only recycle the page after processing the final buffer. */
82         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
83                 return;
84
85         index = rx_queue->page_add & rx_queue->page_ptr_mask;
86         if (rx_queue->page_ring[index] == NULL) {
87                 unsigned int read_index = rx_queue->page_remove &
88                         rx_queue->page_ptr_mask;
89
90                 /* The next slot in the recycle ring is available, but
91                  * increment page_remove if the read pointer currently
92                  * points here.
93                  */
94                 if (read_index == index)
95                         ++rx_queue->page_remove;
96                 rx_queue->page_ring[index] = page;
97                 ++rx_queue->page_add;
98                 return;
99         }
100         ++rx_queue->page_recycle_full;
101         efx_unmap_rx_buffer(efx, rx_buf);
102         put_page(rx_buf->page);
103 }
104
105 /* Recycle the pages that are used by buffers that have just been received. */
106 void efx_recycle_rx_pages(struct efx_channel *channel,
107                           struct efx_rx_buffer *rx_buf,
108                           unsigned int n_frags)
109 {
110         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
111
112         if (unlikely(!rx_queue->page_ring))
113                 return;
114
115         do {
116                 efx_recycle_rx_page(channel, rx_buf);
117                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
118         } while (--n_frags);
119 }
120
121 void efx_discard_rx_packet(struct efx_channel *channel,
122                            struct efx_rx_buffer *rx_buf,
123                            unsigned int n_frags)
124 {
125         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
126
127         efx_recycle_rx_pages(channel, rx_buf, n_frags);
128
129         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
130 }
131
132 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
133 {
134         unsigned int bufs_in_recycle_ring, page_ring_size;
135         struct efx_nic *efx = rx_queue->efx;
136
137         bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
138         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
139                                             efx->rx_bufs_per_page);
140         rx_queue->page_ring = kcalloc(page_ring_size,
141                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
142         if (!rx_queue->page_ring)
143                 rx_queue->page_ptr_mask = 0;
144         else
145                 rx_queue->page_ptr_mask = page_ring_size - 1;
146 }
147
148 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
149 {
150         struct efx_nic *efx = rx_queue->efx;
151         int i;
152
153         /* Unmap and release the pages in the recycle ring. Remove the ring. */
154         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
155                 struct page *page = rx_queue->page_ring[i];
156                 struct efx_rx_page_state *state;
157
158                 if (page == NULL)
159                         continue;
160
161                 state = page_address(page);
162                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
163                                PAGE_SIZE << efx->rx_buffer_order,
164                                DMA_FROM_DEVICE);
165                 put_page(page);
166         }
167         kfree(rx_queue->page_ring);
168         rx_queue->page_ring = NULL;
169 }
170
171 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
172                                struct efx_rx_buffer *rx_buf)
173 {
174         /* Release the page reference we hold for the buffer. */
175         if (rx_buf->page)
176                 put_page(rx_buf->page);
177
178         /* If this is the last buffer in a page, unmap and free it. */
179         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
180                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
181                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
182         }
183         rx_buf->page = NULL;
184 }
185
186 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
187 {
188         struct efx_nic *efx = rx_queue->efx;
189         unsigned int entries;
190         int rc;
191
192         /* Create the smallest power-of-two aligned ring */
193         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
194         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
195         rx_queue->ptr_mask = entries - 1;
196
197         netif_dbg(efx, probe, efx->net_dev,
198                   "creating RX queue %d size %#x mask %#x\n",
199                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
200                   rx_queue->ptr_mask);
201
202         /* Allocate RX buffers */
203         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
204                                    GFP_KERNEL);
205         if (!rx_queue->buffer)
206                 return -ENOMEM;
207
208         rc = efx_nic_probe_rx(rx_queue);
209         if (rc) {
210                 kfree(rx_queue->buffer);
211                 rx_queue->buffer = NULL;
212         }
213
214         return rc;
215 }
216
217 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
218 {
219         unsigned int max_fill, trigger, max_trigger;
220         struct efx_nic *efx = rx_queue->efx;
221         int rc = 0;
222
223         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
224                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
225
226         /* Initialise ptr fields */
227         rx_queue->added_count = 0;
228         rx_queue->notified_count = 0;
229         rx_queue->removed_count = 0;
230         rx_queue->min_fill = -1U;
231         efx_init_rx_recycle_ring(rx_queue);
232
233         rx_queue->page_remove = 0;
234         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
235         rx_queue->page_recycle_count = 0;
236         rx_queue->page_recycle_failed = 0;
237         rx_queue->page_recycle_full = 0;
238
239         /* Initialise limit fields */
240         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
241         max_trigger =
242                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
243         if (rx_refill_threshold != 0) {
244                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
245                 if (trigger > max_trigger)
246                         trigger = max_trigger;
247         } else {
248                 trigger = max_trigger;
249         }
250
251         rx_queue->max_fill = max_fill;
252         rx_queue->fast_fill_trigger = trigger;
253         rx_queue->refill_enabled = true;
254
255         /* Initialise XDP queue information */
256         rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
257                               rx_queue->core_index, 0);
258
259         if (rc) {
260                 netif_err(efx, rx_err, efx->net_dev,
261                           "Failure to initialise XDP queue information rc=%d\n",
262                           rc);
263                 efx->xdp_rxq_info_failed = true;
264         } else {
265                 rx_queue->xdp_rxq_info_valid = true;
266         }
267
268         /* Set up RX descriptor ring */
269         efx_nic_init_rx(rx_queue);
270 }
271
272 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
273 {
274         struct efx_rx_buffer *rx_buf;
275         int i;
276
277         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
278                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
279
280         del_timer_sync(&rx_queue->slow_fill);
281
282         /* Release RX buffers from the current read ptr to the write ptr */
283         if (rx_queue->buffer) {
284                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
285                      i++) {
286                         unsigned int index = i & rx_queue->ptr_mask;
287
288                         rx_buf = efx_rx_buffer(rx_queue, index);
289                         efx_fini_rx_buffer(rx_queue, rx_buf);
290                 }
291         }
292
293         efx_fini_rx_recycle_ring(rx_queue);
294
295         if (rx_queue->xdp_rxq_info_valid)
296                 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
297
298         rx_queue->xdp_rxq_info_valid = false;
299 }
300
301 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
302 {
303         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
304                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
305
306         efx_nic_remove_rx(rx_queue);
307
308         kfree(rx_queue->buffer);
309         rx_queue->buffer = NULL;
310 }
311
312 /* Unmap a DMA-mapped page.  This function is only called for the final RX
313  * buffer in a page.
314  */
315 void efx_unmap_rx_buffer(struct efx_nic *efx,
316                          struct efx_rx_buffer *rx_buf)
317 {
318         struct page *page = rx_buf->page;
319
320         if (page) {
321                 struct efx_rx_page_state *state = page_address(page);
322
323                 dma_unmap_page(&efx->pci_dev->dev,
324                                state->dma_addr,
325                                PAGE_SIZE << efx->rx_buffer_order,
326                                DMA_FROM_DEVICE);
327         }
328 }
329
330 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
331                          struct efx_rx_buffer *rx_buf,
332                          unsigned int num_bufs)
333 {
334         do {
335                 if (rx_buf->page) {
336                         put_page(rx_buf->page);
337                         rx_buf->page = NULL;
338                 }
339                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
340         } while (--num_bufs);
341 }
342
343 void efx_rx_slow_fill(struct timer_list *t)
344 {
345         struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
346
347         /* Post an event to cause NAPI to run and refill the queue */
348         efx_nic_generate_fill_event(rx_queue);
349         ++rx_queue->slow_fill_count;
350 }
351
352 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
353 {
354         mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
355 }
356
357 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
358  *
359  * @rx_queue:           Efx RX queue
360  *
361  * This allocates a batch of pages, maps them for DMA, and populates
362  * struct efx_rx_buffers for each one. Return a negative error code or
363  * 0 on success. If a single page can be used for multiple buffers,
364  * then the page will either be inserted fully, or not at all.
365  */
366 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
367 {
368         unsigned int page_offset, index, count;
369         struct efx_nic *efx = rx_queue->efx;
370         struct efx_rx_page_state *state;
371         struct efx_rx_buffer *rx_buf;
372         dma_addr_t dma_addr;
373         struct page *page;
374
375         count = 0;
376         do {
377                 page = efx_reuse_page(rx_queue);
378                 if (page == NULL) {
379                         page = alloc_pages(__GFP_COMP |
380                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
381                                            efx->rx_buffer_order);
382                         if (unlikely(page == NULL))
383                                 return -ENOMEM;
384                         dma_addr =
385                                 dma_map_page(&efx->pci_dev->dev, page, 0,
386                                              PAGE_SIZE << efx->rx_buffer_order,
387                                              DMA_FROM_DEVICE);
388                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
389                                                        dma_addr))) {
390                                 __free_pages(page, efx->rx_buffer_order);
391                                 return -EIO;
392                         }
393                         state = page_address(page);
394                         state->dma_addr = dma_addr;
395                 } else {
396                         state = page_address(page);
397                         dma_addr = state->dma_addr;
398                 }
399
400                 dma_addr += sizeof(struct efx_rx_page_state);
401                 page_offset = sizeof(struct efx_rx_page_state);
402
403                 do {
404                         index = rx_queue->added_count & rx_queue->ptr_mask;
405                         rx_buf = efx_rx_buffer(rx_queue, index);
406                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
407                                            EFX_XDP_HEADROOM;
408                         rx_buf->page = page;
409                         rx_buf->page_offset = page_offset + efx->rx_ip_align +
410                                               EFX_XDP_HEADROOM;
411                         rx_buf->len = efx->rx_dma_len;
412                         rx_buf->flags = 0;
413                         ++rx_queue->added_count;
414                         get_page(page);
415                         dma_addr += efx->rx_page_buf_step;
416                         page_offset += efx->rx_page_buf_step;
417                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
418
419                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
420         } while (++count < efx->rx_pages_per_batch);
421
422         return 0;
423 }
424
425 void efx_rx_config_page_split(struct efx_nic *efx)
426 {
427         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
428                                       EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
429                                       EFX_RX_BUF_ALIGNMENT);
430         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
431                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
432                 efx->rx_page_buf_step);
433         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
434                 efx->rx_bufs_per_page;
435         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
436                                                efx->rx_bufs_per_page);
437 }
438
439 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
440  * @rx_queue:           RX descriptor queue
441  *
442  * This will aim to fill the RX descriptor queue up to
443  * @rx_queue->@max_fill. If there is insufficient atomic
444  * memory to do so, a slow fill will be scheduled.
445  *
446  * The caller must provide serialisation (none is used here). In practise,
447  * this means this function must run from the NAPI handler, or be called
448  * when NAPI is disabled.
449  */
450 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
451 {
452         struct efx_nic *efx = rx_queue->efx;
453         unsigned int fill_level, batch_size;
454         int space, rc = 0;
455
456         if (!rx_queue->refill_enabled)
457                 return;
458
459         /* Calculate current fill level, and exit if we don't need to fill */
460         fill_level = (rx_queue->added_count - rx_queue->removed_count);
461         EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
462         if (fill_level >= rx_queue->fast_fill_trigger)
463                 goto out;
464
465         /* Record minimum fill level */
466         if (unlikely(fill_level < rx_queue->min_fill)) {
467                 if (fill_level)
468                         rx_queue->min_fill = fill_level;
469         }
470
471         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
472         space = rx_queue->max_fill - fill_level;
473         EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
474
475         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
476                    "RX queue %d fast-filling descriptor ring from"
477                    " level %d to level %d\n",
478                    efx_rx_queue_index(rx_queue), fill_level,
479                    rx_queue->max_fill);
480
481         do {
482                 rc = efx_init_rx_buffers(rx_queue, atomic);
483                 if (unlikely(rc)) {
484                         /* Ensure that we don't leave the rx queue empty */
485                         efx_schedule_slow_fill(rx_queue);
486                         goto out;
487                 }
488         } while ((space -= batch_size) >= batch_size);
489
490         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
491                    "RX queue %d fast-filled descriptor ring "
492                    "to level %d\n", efx_rx_queue_index(rx_queue),
493                    rx_queue->added_count - rx_queue->removed_count);
494
495  out:
496         if (rx_queue->notified_count != rx_queue->added_count)
497                 efx_nic_notify_rx_desc(rx_queue);
498 }
499
500 /* Pass a received packet up through GRO.  GRO can handle pages
501  * regardless of checksum state and skbs with a good checksum.
502  */
503 void
504 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
505                   unsigned int n_frags, u8 *eh, __wsum csum)
506 {
507         struct napi_struct *napi = &channel->napi_str;
508         struct efx_nic *efx = channel->efx;
509         struct sk_buff *skb;
510
511         skb = napi_get_frags(napi);
512         if (unlikely(!skb)) {
513                 struct efx_rx_queue *rx_queue;
514
515                 rx_queue = efx_channel_get_rx_queue(channel);
516                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
517                 return;
518         }
519
520         if (efx->net_dev->features & NETIF_F_RXHASH &&
521             efx_rx_buf_hash_valid(efx, eh))
522                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
523                              PKT_HASH_TYPE_L3);
524         if (csum) {
525                 skb->csum = csum;
526                 skb->ip_summed = CHECKSUM_COMPLETE;
527         } else {
528                 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
529                                   CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
530         }
531         skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
532
533         for (;;) {
534                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
535                                    rx_buf->page, rx_buf->page_offset,
536                                    rx_buf->len);
537                 rx_buf->page = NULL;
538                 skb->len += rx_buf->len;
539                 if (skb_shinfo(skb)->nr_frags == n_frags)
540                         break;
541
542                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
543         }
544
545         skb->data_len = skb->len;
546         skb->truesize += n_frags * efx->rx_buffer_truesize;
547
548         skb_record_rx_queue(skb, channel->rx_queue.core_index);
549
550         napi_gro_frags(napi);
551 }
552
553 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
554  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
555  */
556 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
557 {
558         struct list_head *head = &efx->rss_context.list;
559         struct efx_rss_context *ctx, *new;
560         u32 id = 1; /* Don't use zero, that refers to the master RSS context */
561
562         WARN_ON(!mutex_is_locked(&efx->rss_lock));
563
564         /* Search for first gap in the numbering */
565         list_for_each_entry(ctx, head, list) {
566                 if (ctx->user_id != id)
567                         break;
568                 id++;
569                 /* Check for wrap.  If this happens, we have nearly 2^32
570                  * allocated RSS contexts, which seems unlikely.
571                  */
572                 if (WARN_ON_ONCE(!id))
573                         return NULL;
574         }
575
576         /* Create the new entry */
577         new = kmalloc(sizeof(*new), GFP_KERNEL);
578         if (!new)
579                 return NULL;
580         new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
581         new->rx_hash_udp_4tuple = false;
582
583         /* Insert the new entry into the gap */
584         new->user_id = id;
585         list_add_tail(&new->list, &ctx->list);
586         return new;
587 }
588
589 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
590 {
591         struct list_head *head = &efx->rss_context.list;
592         struct efx_rss_context *ctx;
593
594         WARN_ON(!mutex_is_locked(&efx->rss_lock));
595
596         list_for_each_entry(ctx, head, list)
597                 if (ctx->user_id == id)
598                         return ctx;
599         return NULL;
600 }
601
602 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
603 {
604         list_del(&ctx->list);
605         kfree(ctx);
606 }
607
608 void efx_set_default_rx_indir_table(struct efx_nic *efx,
609                                     struct efx_rss_context *ctx)
610 {
611         size_t i;
612
613         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
614                 ctx->rx_indir_table[i] =
615                         ethtool_rxfh_indir_default(i, efx->rss_spread);
616 }
617
618 /**
619  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
620  * @spec: Specification to test
621  *
622  * Return: %true if the specification is a non-drop RX filter that
623  * matches a local MAC address I/G bit value of 1 or matches a local
624  * IPv4 or IPv6 address value in the respective multicast address
625  * range.  Otherwise %false.
626  */
627 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
628 {
629         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
630             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
631                 return false;
632
633         if (spec->match_flags &
634             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
635             is_multicast_ether_addr(spec->loc_mac))
636                 return true;
637
638         if ((spec->match_flags &
639              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
640             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
641                 if (spec->ether_type == htons(ETH_P_IP) &&
642                     ipv4_is_multicast(spec->loc_host[0]))
643                         return true;
644                 if (spec->ether_type == htons(ETH_P_IPV6) &&
645                     ((const u8 *)spec->loc_host)[0] == 0xff)
646                         return true;
647         }
648
649         return false;
650 }
651
652 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
653                            const struct efx_filter_spec *right)
654 {
655         if ((left->match_flags ^ right->match_flags) |
656             ((left->flags ^ right->flags) &
657              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
658                 return false;
659
660         return memcmp(&left->outer_vid, &right->outer_vid,
661                       sizeof(struct efx_filter_spec) -
662                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
663 }
664
665 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
666 {
667         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
668         return jhash2((const u32 *)&spec->outer_vid,
669                       (sizeof(struct efx_filter_spec) -
670                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
671                       0);
672 }
673
674 #ifdef CONFIG_RFS_ACCEL
675 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
676                         bool *force)
677 {
678         if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
679                 /* ARFS is currently updating this entry, leave it */
680                 return false;
681         }
682         if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
683                 /* ARFS tried and failed to update this, so it's probably out
684                  * of date.  Remove the filter and the ARFS rule entry.
685                  */
686                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
687                 *force = true;
688                 return true;
689         } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
690                 /* ARFS has moved on, so old filter is not needed.  Since we did
691                  * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
692                  * not be removed by efx_rps_hash_del() subsequently.
693                  */
694                 *force = true;
695                 return true;
696         }
697         /* Remove it iff ARFS wants to. */
698         return true;
699 }
700
701 static
702 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
703                                        const struct efx_filter_spec *spec)
704 {
705         u32 hash = efx_filter_spec_hash(spec);
706
707         lockdep_assert_held(&efx->rps_hash_lock);
708         if (!efx->rps_hash_table)
709                 return NULL;
710         return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
711 }
712
713 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
714                                         const struct efx_filter_spec *spec)
715 {
716         struct efx_arfs_rule *rule;
717         struct hlist_head *head;
718         struct hlist_node *node;
719
720         head = efx_rps_hash_bucket(efx, spec);
721         if (!head)
722                 return NULL;
723         hlist_for_each(node, head) {
724                 rule = container_of(node, struct efx_arfs_rule, node);
725                 if (efx_filter_spec_equal(spec, &rule->spec))
726                         return rule;
727         }
728         return NULL;
729 }
730
731 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
732                                        const struct efx_filter_spec *spec,
733                                        bool *new)
734 {
735         struct efx_arfs_rule *rule;
736         struct hlist_head *head;
737         struct hlist_node *node;
738
739         head = efx_rps_hash_bucket(efx, spec);
740         if (!head)
741                 return NULL;
742         hlist_for_each(node, head) {
743                 rule = container_of(node, struct efx_arfs_rule, node);
744                 if (efx_filter_spec_equal(spec, &rule->spec)) {
745                         *new = false;
746                         return rule;
747                 }
748         }
749         rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
750         *new = true;
751         if (rule) {
752                 memcpy(&rule->spec, spec, sizeof(rule->spec));
753                 hlist_add_head(&rule->node, head);
754         }
755         return rule;
756 }
757
758 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
759 {
760         struct efx_arfs_rule *rule;
761         struct hlist_head *head;
762         struct hlist_node *node;
763
764         head = efx_rps_hash_bucket(efx, spec);
765         if (WARN_ON(!head))
766                 return;
767         hlist_for_each(node, head) {
768                 rule = container_of(node, struct efx_arfs_rule, node);
769                 if (efx_filter_spec_equal(spec, &rule->spec)) {
770                         /* Someone already reused the entry.  We know that if
771                          * this check doesn't fire (i.e. filter_id == REMOVING)
772                          * then the REMOVING mark was put there by our caller,
773                          * because caller is holding a lock on filter table and
774                          * only holders of that lock set REMOVING.
775                          */
776                         if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
777                                 return;
778                         hlist_del(node);
779                         kfree(rule);
780                         return;
781                 }
782         }
783         /* We didn't find it. */
784         WARN_ON(1);
785 }
786 #endif
787
788 int efx_probe_filters(struct efx_nic *efx)
789 {
790         int rc;
791
792         mutex_lock(&efx->mac_lock);
793         down_write(&efx->filter_sem);
794         rc = efx->type->filter_table_probe(efx);
795         if (rc)
796                 goto out_unlock;
797
798 #ifdef CONFIG_RFS_ACCEL
799         if (efx->type->offload_features & NETIF_F_NTUPLE) {
800                 struct efx_channel *channel;
801                 int i, success = 1;
802
803                 efx_for_each_channel(channel, efx) {
804                         channel->rps_flow_id =
805                                 kcalloc(efx->type->max_rx_ip_filters,
806                                         sizeof(*channel->rps_flow_id),
807                                         GFP_KERNEL);
808                         if (!channel->rps_flow_id)
809                                 success = 0;
810                         else
811                                 for (i = 0;
812                                      i < efx->type->max_rx_ip_filters;
813                                      ++i)
814                                         channel->rps_flow_id[i] =
815                                                 RPS_FLOW_ID_INVALID;
816                         channel->rfs_expire_index = 0;
817                         channel->rfs_filter_count = 0;
818                 }
819
820                 if (!success) {
821                         efx_for_each_channel(channel, efx)
822                                 kfree(channel->rps_flow_id);
823                         efx->type->filter_table_remove(efx);
824                         rc = -ENOMEM;
825                         goto out_unlock;
826                 }
827         }
828 #endif
829 out_unlock:
830         up_write(&efx->filter_sem);
831         mutex_unlock(&efx->mac_lock);
832         return rc;
833 }
834
835 void efx_remove_filters(struct efx_nic *efx)
836 {
837 #ifdef CONFIG_RFS_ACCEL
838         struct efx_channel *channel;
839
840         efx_for_each_channel(channel, efx) {
841                 cancel_delayed_work_sync(&channel->filter_work);
842                 kfree(channel->rps_flow_id);
843                 channel->rps_flow_id = NULL;
844         }
845 #endif
846         down_write(&efx->filter_sem);
847         efx->type->filter_table_remove(efx);
848         up_write(&efx->filter_sem);
849 }
850
851 #ifdef CONFIG_RFS_ACCEL
852
853 static void efx_filter_rfs_work(struct work_struct *data)
854 {
855         struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
856                                                               work);
857         struct efx_nic *efx = netdev_priv(req->net_dev);
858         struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
859         int slot_idx = req - efx->rps_slot;
860         struct efx_arfs_rule *rule;
861         u16 arfs_id = 0;
862         int rc;
863
864         rc = efx->type->filter_insert(efx, &req->spec, true);
865         if (rc >= 0)
866                 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
867                 rc %= efx->type->max_rx_ip_filters;
868         if (efx->rps_hash_table) {
869                 spin_lock_bh(&efx->rps_hash_lock);
870                 rule = efx_rps_hash_find(efx, &req->spec);
871                 /* The rule might have already gone, if someone else's request
872                  * for the same spec was already worked and then expired before
873                  * we got around to our work.  In that case we have nothing
874                  * tying us to an arfs_id, meaning that as soon as the filter
875                  * is considered for expiry it will be removed.
876                  */
877                 if (rule) {
878                         if (rc < 0)
879                                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
880                         else
881                                 rule->filter_id = rc;
882                         arfs_id = rule->arfs_id;
883                 }
884                 spin_unlock_bh(&efx->rps_hash_lock);
885         }
886         if (rc >= 0) {
887                 /* Remember this so we can check whether to expire the filter
888                  * later.
889                  */
890                 mutex_lock(&efx->rps_mutex);
891                 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
892                         channel->rfs_filter_count++;
893                 channel->rps_flow_id[rc] = req->flow_id;
894                 mutex_unlock(&efx->rps_mutex);
895
896                 if (req->spec.ether_type == htons(ETH_P_IP))
897                         netif_info(efx, rx_status, efx->net_dev,
898                                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
899                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
900                                    req->spec.rem_host, ntohs(req->spec.rem_port),
901                                    req->spec.loc_host, ntohs(req->spec.loc_port),
902                                    req->rxq_index, req->flow_id, rc, arfs_id);
903                 else
904                         netif_info(efx, rx_status, efx->net_dev,
905                                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
906                                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
907                                    req->spec.rem_host, ntohs(req->spec.rem_port),
908                                    req->spec.loc_host, ntohs(req->spec.loc_port),
909                                    req->rxq_index, req->flow_id, rc, arfs_id);
910                 channel->n_rfs_succeeded++;
911         } else {
912                 if (req->spec.ether_type == htons(ETH_P_IP))
913                         netif_dbg(efx, rx_status, efx->net_dev,
914                                   "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
915                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
916                                   req->spec.rem_host, ntohs(req->spec.rem_port),
917                                   req->spec.loc_host, ntohs(req->spec.loc_port),
918                                   req->rxq_index, req->flow_id, rc, arfs_id);
919                 else
920                         netif_dbg(efx, rx_status, efx->net_dev,
921                                   "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
922                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
923                                   req->spec.rem_host, ntohs(req->spec.rem_port),
924                                   req->spec.loc_host, ntohs(req->spec.loc_port),
925                                   req->rxq_index, req->flow_id, rc, arfs_id);
926                 channel->n_rfs_failed++;
927                 /* We're overloading the NIC's filter tables, so let's do a
928                  * chunk of extra expiry work.
929                  */
930                 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
931                                                      100u));
932         }
933
934         /* Release references */
935         clear_bit(slot_idx, &efx->rps_slot_map);
936         dev_put(req->net_dev);
937 }
938
939 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
940                    u16 rxq_index, u32 flow_id)
941 {
942         struct efx_nic *efx = netdev_priv(net_dev);
943         struct efx_async_filter_insertion *req;
944         struct efx_arfs_rule *rule;
945         struct flow_keys fk;
946         int slot_idx;
947         bool new;
948         int rc;
949
950         /* find a free slot */
951         for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
952                 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
953                         break;
954         if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
955                 return -EBUSY;
956
957         if (flow_id == RPS_FLOW_ID_INVALID) {
958                 rc = -EINVAL;
959                 goto out_clear;
960         }
961
962         if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
963                 rc = -EPROTONOSUPPORT;
964                 goto out_clear;
965         }
966
967         if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
968                 rc = -EPROTONOSUPPORT;
969                 goto out_clear;
970         }
971         if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
972                 rc = -EPROTONOSUPPORT;
973                 goto out_clear;
974         }
975
976         req = efx->rps_slot + slot_idx;
977         efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
978                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
979                            rxq_index);
980         req->spec.match_flags =
981                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
982                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
983                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
984         req->spec.ether_type = fk.basic.n_proto;
985         req->spec.ip_proto = fk.basic.ip_proto;
986
987         if (fk.basic.n_proto == htons(ETH_P_IP)) {
988                 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
989                 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
990         } else {
991                 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
992                        sizeof(struct in6_addr));
993                 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
994                        sizeof(struct in6_addr));
995         }
996
997         req->spec.rem_port = fk.ports.src;
998         req->spec.loc_port = fk.ports.dst;
999
1000         if (efx->rps_hash_table) {
1001                 /* Add it to ARFS hash table */
1002                 spin_lock(&efx->rps_hash_lock);
1003                 rule = efx_rps_hash_add(efx, &req->spec, &new);
1004                 if (!rule) {
1005                         rc = -ENOMEM;
1006                         goto out_unlock;
1007                 }
1008                 if (new)
1009                         rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1010                 rc = rule->arfs_id;
1011                 /* Skip if existing or pending filter already does the right thing */
1012                 if (!new && rule->rxq_index == rxq_index &&
1013                     rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1014                         goto out_unlock;
1015                 rule->rxq_index = rxq_index;
1016                 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1017                 spin_unlock(&efx->rps_hash_lock);
1018         } else {
1019                 /* Without an ARFS hash table, we just use arfs_id 0 for all
1020                  * filters.  This means if multiple flows hash to the same
1021                  * flow_id, all but the most recently touched will be eligible
1022                  * for expiry.
1023                  */
1024                 rc = 0;
1025         }
1026
1027         /* Queue the request */
1028         dev_hold(req->net_dev = net_dev);
1029         INIT_WORK(&req->work, efx_filter_rfs_work);
1030         req->rxq_index = rxq_index;
1031         req->flow_id = flow_id;
1032         schedule_work(&req->work);
1033         return rc;
1034 out_unlock:
1035         spin_unlock(&efx->rps_hash_lock);
1036 out_clear:
1037         clear_bit(slot_idx, &efx->rps_slot_map);
1038         return rc;
1039 }
1040
1041 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1042 {
1043         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1044         struct efx_nic *efx = channel->efx;
1045         unsigned int index, size, start;
1046         u32 flow_id;
1047
1048         if (!mutex_trylock(&efx->rps_mutex))
1049                 return false;
1050         expire_one = efx->type->filter_rfs_expire_one;
1051         index = channel->rfs_expire_index;
1052         start = index;
1053         size = efx->type->max_rx_ip_filters;
1054         while (quota) {
1055                 flow_id = channel->rps_flow_id[index];
1056
1057                 if (flow_id != RPS_FLOW_ID_INVALID) {
1058                         quota--;
1059                         if (expire_one(efx, flow_id, index)) {
1060                                 netif_info(efx, rx_status, efx->net_dev,
1061                                            "expired filter %d [channel %u flow %u]\n",
1062                                            index, channel->channel, flow_id);
1063                                 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1064                                 channel->rfs_filter_count--;
1065                         }
1066                 }
1067                 if (++index == size)
1068                         index = 0;
1069                 /* If we were called with a quota that exceeds the total number
1070                  * of filters in the table (which shouldn't happen, but could
1071                  * if two callers race), ensure that we don't loop forever -
1072                  * stop when we've examined every row of the table.
1073                  */
1074                 if (index == start)
1075                         break;
1076         }
1077
1078         channel->rfs_expire_index = index;
1079         mutex_unlock(&efx->rps_mutex);
1080         return true;
1081 }
1082
1083 #endif /* CONFIG_RFS_ACCEL */