packaging: release out (3.8.3)
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / net / ethernet / sfc / ptp.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2011 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 /* Theory of operation:
11  *
12  * PTP support is assisted by firmware running on the MC, which provides
13  * the hardware timestamping capabilities.  Both transmitted and received
14  * PTP event packets are queued onto internal queues for subsequent processing;
15  * this is because the MC operations are relatively long and would block
16  * block NAPI/interrupt operation.
17  *
18  * Receive event processing:
19  *      The event contains the packet's UUID and sequence number, together
20  *      with the hardware timestamp.  The PTP receive packet queue is searched
21  *      for this UUID/sequence number and, if found, put on a pending queue.
22  *      Packets not matching are delivered without timestamps (MCDI events will
23  *      always arrive after the actual packet).
24  *      It is important for the operation of the PTP protocol that the ordering
25  *      of packets between the event and general port is maintained.
26  *
27  * Work queue processing:
28  *      If work waiting, synchronise host/hardware time
29  *
30  *      Transmit: send packet through MC, which returns the transmission time
31  *      that is converted to an appropriate timestamp.
32  *
33  *      Receive: the packet's reception time is converted to an appropriate
34  *      timestamp.
35  */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "regs.h"
50 #include "nic.h"
51
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS                 3
54
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS         2
57
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS           250000
60
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS  200
63
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define MIN_SYNCHRONISATION_NS          120
66
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS          1000
69
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS              8
72
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH                  16
75
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS           10
78
79 /* Offsets into PTP packet for identification.  These offsets are from the
80  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
81  * PTP V2 permit the use of IPV4 options.
82  */
83 #define PTP_DPORT_OFFSET        22
84
85 #define PTP_V1_VERSION_LENGTH   2
86 #define PTP_V1_VERSION_OFFSET   28
87
88 #define PTP_V1_UUID_LENGTH      6
89 #define PTP_V1_UUID_OFFSET      50
90
91 #define PTP_V1_SEQUENCE_LENGTH  2
92 #define PTP_V1_SEQUENCE_OFFSET  58
93
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95  * includes IP header.
96  */
97 #define PTP_V1_MIN_LENGTH       64
98
99 #define PTP_V2_VERSION_LENGTH   1
100 #define PTP_V2_VERSION_OFFSET   29
101
102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103  * the MC only captures the last six bytes of the clock identity. These values
104  * reflect those, not the ones used in the standard.  The standard permits
105  * mapping of V1 UUIDs to V2 UUIDs with these same values.
106  */
107 #define PTP_V2_MC_UUID_LENGTH   6
108 #define PTP_V2_MC_UUID_OFFSET   50
109
110 #define PTP_V2_SEQUENCE_LENGTH  2
111 #define PTP_V2_SEQUENCE_OFFSET  58
112
113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114  * includes IP header.
115  */
116 #define PTP_V2_MIN_LENGTH       63
117
118 #define PTP_MIN_LENGTH          63
119
120 #define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
121 #define PTP_EVENT_PORT          319
122 #define PTP_GENERAL_PORT        320
123
124 /* Annoyingly the format of the version numbers are different between
125  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126  */
127 #define PTP_VERSION_V1          1
128
129 #define PTP_VERSION_V2          2
130 #define PTP_VERSION_V2_MASK     0x0f
131
132 enum ptp_packet_state {
133         PTP_PACKET_STATE_UNMATCHED = 0,
134         PTP_PACKET_STATE_MATCHED,
135         PTP_PACKET_STATE_TIMED_OUT,
136         PTP_PACKET_STATE_MATCH_UNWANTED
137 };
138
139 /* NIC synchronised with single word of time only comprising
140  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141  */
142 #define MC_NANOSECOND_BITS      30
143 #define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
144 #define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145
146 /* Maximum parts-per-billion adjustment that is acceptable */
147 #define MAX_PPB                 1000000
148
149 /* Number of bits required to hold the above */
150 #define MAX_PPB_BITS            20
151
152 /* Number of extra bits allowed when calculating fractional ns.
153  * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
154  * be less than 63.
155  */
156 #define PPB_EXTRA_BITS          2
157
158 /* Precalculate scale word to avoid long long division at runtime */
159 #define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
160                         MAX_PPB_BITS)) / 1000000000LL)
161
162 #define PTP_SYNC_ATTEMPTS       4
163
164 /**
165  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
166  * @words: UUID and (partial) sequence number
167  * @expiry: Time after which the packet should be delivered irrespective of
168  *            event arrival.
169  * @state: The state of the packet - whether it is ready for processing or
170  *         whether that is of no interest.
171  */
172 struct efx_ptp_match {
173         u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
174         unsigned long expiry;
175         enum ptp_packet_state state;
176 };
177
178 /**
179  * struct efx_ptp_event_rx - A PTP receive event (from MC)
180  * @seq0: First part of (PTP) UUID
181  * @seq1: Second part of (PTP) UUID and sequence number
182  * @hwtimestamp: Event timestamp
183  */
184 struct efx_ptp_event_rx {
185         struct list_head link;
186         u32 seq0;
187         u32 seq1;
188         ktime_t hwtimestamp;
189         unsigned long expiry;
190 };
191
192 /**
193  * struct efx_ptp_timeset - Synchronisation between host and MC
194  * @host_start: Host time immediately before hardware timestamp taken
195  * @seconds: Hardware timestamp, seconds
196  * @nanoseconds: Hardware timestamp, nanoseconds
197  * @host_end: Host time immediately after hardware timestamp taken
198  * @waitns: Number of nanoseconds between hardware timestamp being read and
199  *          host end time being seen
200  * @window: Difference of host_end and host_start
201  * @valid: Whether this timeset is valid
202  */
203 struct efx_ptp_timeset {
204         u32 host_start;
205         u32 seconds;
206         u32 nanoseconds;
207         u32 host_end;
208         u32 waitns;
209         u32 window;     /* Derived: end - start, allowing for wrap */
210 };
211
212 /**
213  * struct efx_ptp_data - Precision Time Protocol (PTP) state
214  * @channel: The PTP channel
215  * @rxq: Receive queue (awaiting timestamps)
216  * @txq: Transmit queue
217  * @evt_list: List of MC receive events awaiting packets
218  * @evt_free_list: List of free events
219  * @evt_lock: Lock for manipulating evt_list and evt_free_list
220  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
221  * @workwq: Work queue for processing pending PTP operations
222  * @work: Work task
223  * @reset_required: A serious error has occurred and the PTP task needs to be
224  *                  reset (disable, enable).
225  * @rxfilter_event: Receive filter when operating
226  * @rxfilter_general: Receive filter when operating
227  * @config: Current timestamp configuration
228  * @enabled: PTP operation enabled
229  * @mode: Mode in which PTP operating (PTP version)
230  * @evt_frags: Partly assembled PTP events
231  * @evt_frag_idx: Current fragment number
232  * @evt_code: Last event code
233  * @start: Address at which MC indicates ready for synchronisation
234  * @host_time_pps: Host time at last PPS
235  * @last_sync_ns: Last number of nanoseconds between readings when synchronising
236  * @base_sync_ns: Number of nanoseconds for last synchronisation.
237  * @base_sync_valid: Whether base_sync_time is valid.
238  * @current_adjfreq: Current ppb adjustment.
239  * @phc_clock: Pointer to registered phc device
240  * @phc_clock_info: Registration structure for phc device
241  * @pps_work: pps work task for handling pps events
242  * @pps_workwq: pps work queue
243  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
244  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
245  *         allocations in main data path).
246  * @debug_ptp_dir: PTP debugfs directory
247  * @missed_rx_sync: Number of packets received without syncrhonisation.
248  * @good_syncs: Number of successful synchronisations.
249  * @no_time_syncs: Number of synchronisations with no good times.
250  * @bad_sync_durations: Number of synchronisations with bad durations.
251  * @bad_syncs: Number of failed synchronisations.
252  * @last_sync_time: Number of nanoseconds for last synchronisation.
253  * @sync_timeouts: Number of synchronisation timeouts
254  * @fast_syncs: Number of synchronisations requiring short delay
255  * @min_sync_delta: Minimum time between event and synchronisation
256  * @max_sync_delta: Maximum time between event and synchronisation
257  * @average_sync_delta: Average time between event and synchronisation.
258  *                      Modified moving average.
259  * @last_sync_delta: Last time between event and synchronisation
260  * @mc_stats: Context value for MC statistics
261  * @timeset: Last set of synchronisation statistics.
262  */
263 struct efx_ptp_data {
264         struct efx_channel *channel;
265         struct sk_buff_head rxq;
266         struct sk_buff_head txq;
267         struct list_head evt_list;
268         struct list_head evt_free_list;
269         spinlock_t evt_lock;
270         struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
271         struct workqueue_struct *workwq;
272         struct work_struct work;
273         bool reset_required;
274         u32 rxfilter_event;
275         u32 rxfilter_general;
276         bool rxfilter_installed;
277         struct hwtstamp_config config;
278         bool enabled;
279         unsigned int mode;
280         efx_qword_t evt_frags[MAX_EVENT_FRAGS];
281         int evt_frag_idx;
282         int evt_code;
283         struct efx_buffer start;
284         struct pps_event_time host_time_pps;
285         unsigned last_sync_ns;
286         unsigned base_sync_ns;
287         bool base_sync_valid;
288         s64 current_adjfreq;
289         struct ptp_clock *phc_clock;
290         struct ptp_clock_info phc_clock_info;
291         struct work_struct pps_work;
292         struct workqueue_struct *pps_workwq;
293         bool nic_ts_enabled;
294         u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
295                                MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
296         struct efx_ptp_timeset
297         timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
298 };
299
300 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
301 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
302 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
303 static int efx_phc_settime(struct ptp_clock_info *ptp,
304                            const struct timespec *e_ts);
305 static int efx_phc_enable(struct ptp_clock_info *ptp,
306                           struct ptp_clock_request *request, int on);
307
308 /* Enable MCDI PTP support. */
309 static int efx_ptp_enable(struct efx_nic *efx)
310 {
311         u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN];
312
313         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
314         MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
315                        efx->ptp_data->channel->channel);
316         MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
317
318         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
319                             NULL, 0, NULL);
320 }
321
322 /* Disable MCDI PTP support.
323  *
324  * Note that this function should never rely on the presence of ptp_data -
325  * may be called before that exists.
326  */
327 static int efx_ptp_disable(struct efx_nic *efx)
328 {
329         u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN];
330
331         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
332         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
333                             NULL, 0, NULL);
334 }
335
336 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
337 {
338         struct sk_buff *skb;
339
340         while ((skb = skb_dequeue(q))) {
341                 local_bh_disable();
342                 netif_receive_skb(skb);
343                 local_bh_enable();
344         }
345 }
346
347 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
348 {
349         netif_err(efx, drv, efx->net_dev,
350                   "ERROR: PTP requires MSI-X and 1 additional interrupt"
351                   "vector. PTP disabled\n");
352 }
353
354 /* Repeatedly send the host time to the MC which will capture the hardware
355  * time.
356  */
357 static void efx_ptp_send_times(struct efx_nic *efx,
358                                struct pps_event_time *last_time)
359 {
360         struct pps_event_time now;
361         struct timespec limit;
362         struct efx_ptp_data *ptp = efx->ptp_data;
363         struct timespec start;
364         int *mc_running = ptp->start.addr;
365
366         pps_get_ts(&now);
367         start = now.ts_real;
368         limit = now.ts_real;
369         timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
370
371         /* Write host time for specified period or until MC is done */
372         while ((timespec_compare(&now.ts_real, &limit) < 0) &&
373                ACCESS_ONCE(*mc_running)) {
374                 struct timespec update_time;
375                 unsigned int host_time;
376
377                 /* Don't update continuously to avoid saturating the PCIe bus */
378                 update_time = now.ts_real;
379                 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
380                 do {
381                         pps_get_ts(&now);
382                 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
383                          ACCESS_ONCE(*mc_running));
384
385                 /* Synchronise NIC with single word of time only */
386                 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
387                              now.ts_real.tv_nsec);
388                 /* Update host time in NIC memory */
389                 _efx_writed(efx, cpu_to_le32(host_time),
390                             FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
391         }
392         *last_time = now;
393 }
394
395 /* Read a timeset from the MC's results and partial process. */
396 static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
397 {
398         unsigned start_ns, end_ns;
399
400         timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
401         timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
402         timeset->nanoseconds = MCDI_DWORD(data,
403                                          PTP_OUT_SYNCHRONIZE_NANOSECONDS);
404         timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
405         timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
406
407         /* Ignore seconds */
408         start_ns = timeset->host_start & MC_NANOSECOND_MASK;
409         end_ns = timeset->host_end & MC_NANOSECOND_MASK;
410         /* Allow for rollover */
411         if (end_ns < start_ns)
412                 end_ns += NSEC_PER_SEC;
413         /* Determine duration of operation */
414         timeset->window = end_ns - start_ns;
415 }
416
417 /* Process times received from MC.
418  *
419  * Extract times from returned results, and establish the minimum value
420  * seen.  The minimum value represents the "best" possible time and events
421  * too much greater than this are rejected - the machine is, perhaps, too
422  * busy. A number of readings are taken so that, hopefully, at least one good
423  * synchronisation will be seen in the results.
424  */
425 static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
426                                  size_t response_length,
427                                  const struct pps_event_time *last_time)
428 {
429         unsigned number_readings = (response_length /
430                                MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN);
431         unsigned i;
432         unsigned min;
433         unsigned min_set = 0;
434         unsigned total;
435         unsigned ngood = 0;
436         unsigned last_good = 0;
437         struct efx_ptp_data *ptp = efx->ptp_data;
438         bool min_valid = false;
439         u32 last_sec;
440         u32 start_sec;
441         struct timespec delta;
442
443         if (number_readings == 0)
444                 return -EAGAIN;
445
446         /* Find minimum value in this set of results, discarding clearly
447          * erroneous results.
448          */
449         for (i = 0; i < number_readings; i++) {
450                 efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
451                 synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN;
452                 if (ptp->timeset[i].window > SYNCHRONISATION_GRANULARITY_NS) {
453                         if (min_valid) {
454                                 if (ptp->timeset[i].window < min_set)
455                                         min_set = ptp->timeset[i].window;
456                         } else {
457                                 min_valid = true;
458                                 min_set = ptp->timeset[i].window;
459                         }
460                 }
461         }
462
463         if (min_valid) {
464                 if (ptp->base_sync_valid && (min_set > ptp->base_sync_ns))
465                         min = ptp->base_sync_ns;
466                 else
467                         min = min_set;
468         } else {
469                 min = SYNCHRONISATION_GRANULARITY_NS;
470         }
471
472         /* Discard excessively long synchronise durations.  The MC times
473          * when it finishes reading the host time so the corrected window
474          * time should be fairly constant for a given platform.
475          */
476         total = 0;
477         for (i = 0; i < number_readings; i++)
478                 if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
479                         unsigned win;
480
481                         win = ptp->timeset[i].window - ptp->timeset[i].waitns;
482                         if (win >= MIN_SYNCHRONISATION_NS &&
483                             win < MAX_SYNCHRONISATION_NS) {
484                                 total += ptp->timeset[i].window;
485                                 ngood++;
486                                 last_good = i;
487                         }
488                 }
489
490         if (ngood == 0) {
491                 netif_warn(efx, drv, efx->net_dev,
492                            "PTP no suitable synchronisations %dns %dns\n",
493                            ptp->base_sync_ns, min_set);
494                 return -EAGAIN;
495         }
496
497         /* Average minimum this synchronisation */
498         ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
499         if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
500                 ptp->base_sync_valid = true;
501                 ptp->base_sync_ns = ptp->last_sync_ns;
502         }
503
504         /* Calculate delay from actual PPS to last_time */
505         delta.tv_nsec =
506                 ptp->timeset[last_good].nanoseconds +
507                 last_time->ts_real.tv_nsec -
508                 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
509
510         /* It is possible that the seconds rolled over between taking
511          * the start reading and the last value written by the host.  The
512          * timescales are such that a gap of more than one second is never
513          * expected.
514          */
515         start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
516         last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
517         if (start_sec != last_sec) {
518                 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
519                         netif_warn(efx, hw, efx->net_dev,
520                                    "PTP bad synchronisation seconds\n");
521                         return -EAGAIN;
522                 } else {
523                         delta.tv_sec = 1;
524                 }
525         } else {
526                 delta.tv_sec = 0;
527         }
528
529         ptp->host_time_pps = *last_time;
530         pps_sub_ts(&ptp->host_time_pps, delta);
531
532         return 0;
533 }
534
535 /* Synchronize times between the host and the MC */
536 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
537 {
538         struct efx_ptp_data *ptp = efx->ptp_data;
539         u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX];
540         size_t response_length;
541         int rc;
542         unsigned long timeout;
543         struct pps_event_time last_time = {};
544         unsigned int loops = 0;
545         int *start = ptp->start.addr;
546
547         MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
548         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
549                        num_readings);
550         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
551                        (u32)ptp->start.dma_addr);
552         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
553                        (u32)((u64)ptp->start.dma_addr >> 32));
554
555         /* Clear flag that signals MC ready */
556         ACCESS_ONCE(*start) = 0;
557         efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
558                            MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
559
560         /* Wait for start from MCDI (or timeout) */
561         timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
562         while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
563                 udelay(20);     /* Usually start MCDI execution quickly */
564                 loops++;
565         }
566
567         if (ACCESS_ONCE(*start))
568                 efx_ptp_send_times(efx, &last_time);
569
570         /* Collect results */
571         rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
572                                  MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
573                                  synch_buf, sizeof(synch_buf),
574                                  &response_length);
575         if (rc == 0)
576                 rc = efx_ptp_process_times(efx, synch_buf, response_length,
577                                            &last_time);
578
579         return rc;
580 }
581
582 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
583 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
584 {
585         u8 *txbuf = efx->ptp_data->txbuf;
586         struct skb_shared_hwtstamps timestamps;
587         int rc = -EIO;
588         /* MCDI driver requires word aligned lengths */
589         size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
590         u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
591
592         MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
593         MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
594         if (skb_shinfo(skb)->nr_frags != 0) {
595                 rc = skb_linearize(skb);
596                 if (rc != 0)
597                         goto fail;
598         }
599
600         if (skb->ip_summed == CHECKSUM_PARTIAL) {
601                 rc = skb_checksum_help(skb);
602                 if (rc != 0)
603                         goto fail;
604         }
605         skb_copy_from_linear_data(skb,
606                                   &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST],
607                                   len);
608         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
609                           sizeof(txtime), &len);
610         if (rc != 0)
611                 goto fail;
612
613         memset(&timestamps, 0, sizeof(timestamps));
614         timestamps.hwtstamp = ktime_set(
615                 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
616                 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
617
618         skb_tstamp_tx(skb, &timestamps);
619
620         rc = 0;
621
622 fail:
623         dev_kfree_skb(skb);
624
625         return rc;
626 }
627
628 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
629 {
630         struct efx_ptp_data *ptp = efx->ptp_data;
631         struct list_head *cursor;
632         struct list_head *next;
633
634         /* Drop time-expired events */
635         spin_lock_bh(&ptp->evt_lock);
636         if (!list_empty(&ptp->evt_list)) {
637                 list_for_each_safe(cursor, next, &ptp->evt_list) {
638                         struct efx_ptp_event_rx *evt;
639
640                         evt = list_entry(cursor, struct efx_ptp_event_rx,
641                                          link);
642                         if (time_after(jiffies, evt->expiry)) {
643                                 list_move(&evt->link, &ptp->evt_free_list);
644                                 netif_warn(efx, hw, efx->net_dev,
645                                            "PTP rx event dropped\n");
646                         }
647                 }
648         }
649         spin_unlock_bh(&ptp->evt_lock);
650 }
651
652 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
653                                               struct sk_buff *skb)
654 {
655         struct efx_ptp_data *ptp = efx->ptp_data;
656         bool evts_waiting;
657         struct list_head *cursor;
658         struct list_head *next;
659         struct efx_ptp_match *match;
660         enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
661
662         spin_lock_bh(&ptp->evt_lock);
663         evts_waiting = !list_empty(&ptp->evt_list);
664         spin_unlock_bh(&ptp->evt_lock);
665
666         if (!evts_waiting)
667                 return PTP_PACKET_STATE_UNMATCHED;
668
669         match = (struct efx_ptp_match *)skb->cb;
670         /* Look for a matching timestamp in the event queue */
671         spin_lock_bh(&ptp->evt_lock);
672         list_for_each_safe(cursor, next, &ptp->evt_list) {
673                 struct efx_ptp_event_rx *evt;
674
675                 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
676                 if ((evt->seq0 == match->words[0]) &&
677                     (evt->seq1 == match->words[1])) {
678                         struct skb_shared_hwtstamps *timestamps;
679
680                         /* Match - add in hardware timestamp */
681                         timestamps = skb_hwtstamps(skb);
682                         timestamps->hwtstamp = evt->hwtimestamp;
683
684                         match->state = PTP_PACKET_STATE_MATCHED;
685                         rc = PTP_PACKET_STATE_MATCHED;
686                         list_move(&evt->link, &ptp->evt_free_list);
687                         break;
688                 }
689         }
690         spin_unlock_bh(&ptp->evt_lock);
691
692         return rc;
693 }
694
695 /* Process any queued receive events and corresponding packets
696  *
697  * q is returned with all the packets that are ready for delivery.
698  * true is returned if at least one of those packets requires
699  * synchronisation.
700  */
701 static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
702 {
703         struct efx_ptp_data *ptp = efx->ptp_data;
704         bool rc = false;
705         struct sk_buff *skb;
706
707         while ((skb = skb_dequeue(&ptp->rxq))) {
708                 struct efx_ptp_match *match;
709
710                 match = (struct efx_ptp_match *)skb->cb;
711                 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
712                         __skb_queue_tail(q, skb);
713                 } else if (efx_ptp_match_rx(efx, skb) ==
714                            PTP_PACKET_STATE_MATCHED) {
715                         rc = true;
716                         __skb_queue_tail(q, skb);
717                 } else if (time_after(jiffies, match->expiry)) {
718                         match->state = PTP_PACKET_STATE_TIMED_OUT;
719                         netif_warn(efx, rx_err, efx->net_dev,
720                                    "PTP packet - no timestamp seen\n");
721                         __skb_queue_tail(q, skb);
722                 } else {
723                         /* Replace unprocessed entry and stop */
724                         skb_queue_head(&ptp->rxq, skb);
725                         break;
726                 }
727         }
728
729         return rc;
730 }
731
732 /* Complete processing of a received packet */
733 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
734 {
735         local_bh_disable();
736         netif_receive_skb(skb);
737         local_bh_enable();
738 }
739
740 static int efx_ptp_start(struct efx_nic *efx)
741 {
742         struct efx_ptp_data *ptp = efx->ptp_data;
743         struct efx_filter_spec rxfilter;
744         int rc;
745
746         ptp->reset_required = false;
747
748         /* Must filter on both event and general ports to ensure
749          * that there is no packet re-ordering.
750          */
751         efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
752                            efx_rx_queue_index(
753                                    efx_channel_get_rx_queue(ptp->channel)));
754         rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
755                                        htonl(PTP_ADDRESS),
756                                        htons(PTP_EVENT_PORT));
757         if (rc != 0)
758                 return rc;
759
760         rc = efx_filter_insert_filter(efx, &rxfilter, true);
761         if (rc < 0)
762                 return rc;
763         ptp->rxfilter_event = rc;
764
765         efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
766                            efx_rx_queue_index(
767                                    efx_channel_get_rx_queue(ptp->channel)));
768         rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
769                                        htonl(PTP_ADDRESS),
770                                        htons(PTP_GENERAL_PORT));
771         if (rc != 0)
772                 goto fail;
773
774         rc = efx_filter_insert_filter(efx, &rxfilter, true);
775         if (rc < 0)
776                 goto fail;
777         ptp->rxfilter_general = rc;
778
779         rc = efx_ptp_enable(efx);
780         if (rc != 0)
781                 goto fail2;
782
783         ptp->evt_frag_idx = 0;
784         ptp->current_adjfreq = 0;
785         ptp->rxfilter_installed = true;
786
787         return 0;
788
789 fail2:
790         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
791                                   ptp->rxfilter_general);
792 fail:
793         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
794                                   ptp->rxfilter_event);
795
796         return rc;
797 }
798
799 static int efx_ptp_stop(struct efx_nic *efx)
800 {
801         struct efx_ptp_data *ptp = efx->ptp_data;
802         int rc = efx_ptp_disable(efx);
803         struct list_head *cursor;
804         struct list_head *next;
805
806         if (ptp->rxfilter_installed) {
807                 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
808                                           ptp->rxfilter_general);
809                 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
810                                           ptp->rxfilter_event);
811                 ptp->rxfilter_installed = false;
812         }
813
814         /* Make sure RX packets are really delivered */
815         efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
816         skb_queue_purge(&efx->ptp_data->txq);
817
818         /* Drop any pending receive events */
819         spin_lock_bh(&efx->ptp_data->evt_lock);
820         list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
821                 list_move(cursor, &efx->ptp_data->evt_free_list);
822         }
823         spin_unlock_bh(&efx->ptp_data->evt_lock);
824
825         return rc;
826 }
827
828 static void efx_ptp_pps_worker(struct work_struct *work)
829 {
830         struct efx_ptp_data *ptp =
831                 container_of(work, struct efx_ptp_data, pps_work);
832         struct efx_nic *efx = ptp->channel->efx;
833         struct ptp_clock_event ptp_evt;
834
835         if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
836                 return;
837
838         ptp_evt.type = PTP_CLOCK_PPSUSR;
839         ptp_evt.pps_times = ptp->host_time_pps;
840         ptp_clock_event(ptp->phc_clock, &ptp_evt);
841 }
842
843 /* Process any pending transmissions and timestamp any received packets.
844  */
845 static void efx_ptp_worker(struct work_struct *work)
846 {
847         struct efx_ptp_data *ptp_data =
848                 container_of(work, struct efx_ptp_data, work);
849         struct efx_nic *efx = ptp_data->channel->efx;
850         struct sk_buff *skb;
851         struct sk_buff_head tempq;
852
853         if (ptp_data->reset_required) {
854                 efx_ptp_stop(efx);
855                 efx_ptp_start(efx);
856                 return;
857         }
858
859         efx_ptp_drop_time_expired_events(efx);
860
861         __skb_queue_head_init(&tempq);
862         if (efx_ptp_process_events(efx, &tempq) ||
863             !skb_queue_empty(&ptp_data->txq)) {
864
865                 while ((skb = skb_dequeue(&ptp_data->txq)))
866                         efx_ptp_xmit_skb(efx, skb);
867         }
868
869         while ((skb = __skb_dequeue(&tempq)))
870                 efx_ptp_process_rx(efx, skb);
871 }
872
873 /* Initialise PTP channel and state.
874  *
875  * Setting core_index to zero causes the queue to be initialised and doesn't
876  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
877  */
878 static int efx_ptp_probe_channel(struct efx_channel *channel)
879 {
880         struct efx_nic *efx = channel->efx;
881         struct efx_ptp_data *ptp;
882         int rc = 0;
883         unsigned int pos;
884
885         channel->irq_moderation = 0;
886         channel->rx_queue.core_index = 0;
887
888         ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
889         efx->ptp_data = ptp;
890         if (!efx->ptp_data)
891                 return -ENOMEM;
892
893         rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
894         if (rc != 0)
895                 goto fail1;
896
897         ptp->channel = channel;
898         skb_queue_head_init(&ptp->rxq);
899         skb_queue_head_init(&ptp->txq);
900         ptp->workwq = create_singlethread_workqueue("sfc_ptp");
901         if (!ptp->workwq) {
902                 rc = -ENOMEM;
903                 goto fail2;
904         }
905
906         INIT_WORK(&ptp->work, efx_ptp_worker);
907         ptp->config.flags = 0;
908         ptp->config.tx_type = HWTSTAMP_TX_OFF;
909         ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
910         INIT_LIST_HEAD(&ptp->evt_list);
911         INIT_LIST_HEAD(&ptp->evt_free_list);
912         spin_lock_init(&ptp->evt_lock);
913         for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
914                 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
915
916         ptp->phc_clock_info.owner = THIS_MODULE;
917         snprintf(ptp->phc_clock_info.name,
918                  sizeof(ptp->phc_clock_info.name),
919                  "%pm", efx->net_dev->perm_addr);
920         ptp->phc_clock_info.max_adj = MAX_PPB;
921         ptp->phc_clock_info.n_alarm = 0;
922         ptp->phc_clock_info.n_ext_ts = 0;
923         ptp->phc_clock_info.n_per_out = 0;
924         ptp->phc_clock_info.pps = 1;
925         ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
926         ptp->phc_clock_info.adjtime = efx_phc_adjtime;
927         ptp->phc_clock_info.gettime = efx_phc_gettime;
928         ptp->phc_clock_info.settime = efx_phc_settime;
929         ptp->phc_clock_info.enable = efx_phc_enable;
930
931         ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
932                                             &efx->pci_dev->dev);
933         if (!ptp->phc_clock)
934                 goto fail3;
935
936         INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
937         ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
938         if (!ptp->pps_workwq) {
939                 rc = -ENOMEM;
940                 goto fail4;
941         }
942         ptp->nic_ts_enabled = false;
943
944         return 0;
945 fail4:
946         ptp_clock_unregister(efx->ptp_data->phc_clock);
947
948 fail3:
949         destroy_workqueue(efx->ptp_data->workwq);
950
951 fail2:
952         efx_nic_free_buffer(efx, &ptp->start);
953
954 fail1:
955         kfree(efx->ptp_data);
956         efx->ptp_data = NULL;
957
958         return rc;
959 }
960
961 static void efx_ptp_remove_channel(struct efx_channel *channel)
962 {
963         struct efx_nic *efx = channel->efx;
964
965         if (!efx->ptp_data)
966                 return;
967
968         (void)efx_ptp_disable(channel->efx);
969
970         cancel_work_sync(&efx->ptp_data->work);
971         cancel_work_sync(&efx->ptp_data->pps_work);
972
973         skb_queue_purge(&efx->ptp_data->rxq);
974         skb_queue_purge(&efx->ptp_data->txq);
975
976         ptp_clock_unregister(efx->ptp_data->phc_clock);
977
978         destroy_workqueue(efx->ptp_data->workwq);
979         destroy_workqueue(efx->ptp_data->pps_workwq);
980
981         efx_nic_free_buffer(efx, &efx->ptp_data->start);
982         kfree(efx->ptp_data);
983 }
984
985 static void efx_ptp_get_channel_name(struct efx_channel *channel,
986                                      char *buf, size_t len)
987 {
988         snprintf(buf, len, "%s-ptp", channel->efx->name);
989 }
990
991 /* Determine whether this packet should be processed by the PTP module
992  * or transmitted conventionally.
993  */
994 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
995 {
996         return efx->ptp_data &&
997                 efx->ptp_data->enabled &&
998                 skb->len >= PTP_MIN_LENGTH &&
999                 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1000                 likely(skb->protocol == htons(ETH_P_IP)) &&
1001                 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1002                 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1003 }
1004
1005 /* Receive a PTP packet.  Packets are queued until the arrival of
1006  * the receive timestamp from the MC - this will probably occur after the
1007  * packet arrival because of the processing in the MC.
1008  */
1009 static void efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1010 {
1011         struct efx_nic *efx = channel->efx;
1012         struct efx_ptp_data *ptp = efx->ptp_data;
1013         struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1014         u8 *data;
1015         unsigned int version;
1016
1017         match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1018
1019         /* Correct version? */
1020         if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1021                 if (skb->len < PTP_V1_MIN_LENGTH) {
1022                         netif_receive_skb(skb);
1023                         return;
1024                 }
1025                 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1026                 if (version != PTP_VERSION_V1) {
1027                         netif_receive_skb(skb);
1028                         return;
1029                 }
1030         } else {
1031                 if (skb->len < PTP_V2_MIN_LENGTH) {
1032                         netif_receive_skb(skb);
1033                         return;
1034                 }
1035                 version = skb->data[PTP_V2_VERSION_OFFSET];
1036
1037                 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2);
1038                 BUILD_BUG_ON(PTP_V1_UUID_OFFSET != PTP_V2_MC_UUID_OFFSET);
1039                 BUILD_BUG_ON(PTP_V1_UUID_LENGTH != PTP_V2_MC_UUID_LENGTH);
1040                 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1041                 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1042
1043                 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1044                         netif_receive_skb(skb);
1045                         return;
1046                 }
1047         }
1048
1049         /* Does this packet require timestamping? */
1050         if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1051                 struct skb_shared_hwtstamps *timestamps;
1052
1053                 match->state = PTP_PACKET_STATE_UNMATCHED;
1054
1055                 /* Clear all timestamps held: filled in later */
1056                 timestamps = skb_hwtstamps(skb);
1057                 memset(timestamps, 0, sizeof(*timestamps));
1058
1059                 /* Extract UUID/Sequence information */
1060                 data = skb->data + PTP_V1_UUID_OFFSET;
1061                 match->words[0] = (data[0]         |
1062                                    (data[1] << 8)  |
1063                                    (data[2] << 16) |
1064                                    (data[3] << 24));
1065                 match->words[1] = (data[4]         |
1066                                    (data[5] << 8)  |
1067                                    (skb->data[PTP_V1_SEQUENCE_OFFSET +
1068                                               PTP_V1_SEQUENCE_LENGTH - 1] <<
1069                                     16));
1070         } else {
1071                 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1072         }
1073
1074         skb_queue_tail(&ptp->rxq, skb);
1075         queue_work(ptp->workwq, &ptp->work);
1076 }
1077
1078 /* Transmit a PTP packet.  This has to be transmitted by the MC
1079  * itself, through an MCDI call.  MCDI calls aren't permitted
1080  * in the transmit path so defer the actual transmission to a suitable worker.
1081  */
1082 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1083 {
1084         struct efx_ptp_data *ptp = efx->ptp_data;
1085
1086         skb_queue_tail(&ptp->txq, skb);
1087
1088         if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1089             (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1090                 efx_xmit_hwtstamp_pending(skb);
1091         queue_work(ptp->workwq, &ptp->work);
1092
1093         return NETDEV_TX_OK;
1094 }
1095
1096 static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1097                                unsigned int new_mode)
1098 {
1099         if ((enable_wanted != efx->ptp_data->enabled) ||
1100             (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1101                 int rc;
1102
1103                 if (enable_wanted) {
1104                         /* Change of mode requires disable */
1105                         if (efx->ptp_data->enabled &&
1106                             (efx->ptp_data->mode != new_mode)) {
1107                                 efx->ptp_data->enabled = false;
1108                                 rc = efx_ptp_stop(efx);
1109                                 if (rc != 0)
1110                                         return rc;
1111                         }
1112
1113                         /* Set new operating mode and establish
1114                          * baseline synchronisation, which must
1115                          * succeed.
1116                          */
1117                         efx->ptp_data->mode = new_mode;
1118                         rc = efx_ptp_start(efx);
1119                         if (rc == 0) {
1120                                 rc = efx_ptp_synchronize(efx,
1121                                                          PTP_SYNC_ATTEMPTS * 2);
1122                                 if (rc != 0)
1123                                         efx_ptp_stop(efx);
1124                         }
1125                 } else {
1126                         rc = efx_ptp_stop(efx);
1127                 }
1128
1129                 if (rc != 0)
1130                         return rc;
1131
1132                 efx->ptp_data->enabled = enable_wanted;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1139 {
1140         bool enable_wanted = false;
1141         unsigned int new_mode;
1142         int rc;
1143
1144         if (init->flags)
1145                 return -EINVAL;
1146
1147         if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1148             (init->tx_type != HWTSTAMP_TX_ON))
1149                 return -ERANGE;
1150
1151         new_mode = efx->ptp_data->mode;
1152         /* Determine whether any PTP HW operations are required */
1153         switch (init->rx_filter) {
1154         case HWTSTAMP_FILTER_NONE:
1155                 break;
1156         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1157         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1158         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1159                 init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1160                 new_mode = MC_CMD_PTP_MODE_V1;
1161                 enable_wanted = true;
1162                 break;
1163         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1164         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1165         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1166         /* Although these three are accepted only IPV4 packets will be
1167          * timestamped
1168          */
1169                 init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1170                 new_mode = MC_CMD_PTP_MODE_V2;
1171                 enable_wanted = true;
1172                 break;
1173         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1174         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1175         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1176         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1177         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1178         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1179                 /* Non-IP + IPv6 timestamping not supported */
1180                 return -ERANGE;
1181                 break;
1182         default:
1183                 return -ERANGE;
1184         }
1185
1186         if (init->tx_type != HWTSTAMP_TX_OFF)
1187                 enable_wanted = true;
1188
1189         rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1190         if (rc != 0)
1191                 return rc;
1192
1193         efx->ptp_data->config = *init;
1194
1195         return 0;
1196 }
1197
1198 int
1199 efx_ptp_get_ts_info(struct net_device *net_dev, struct ethtool_ts_info *ts_info)
1200 {
1201         struct efx_nic *efx = netdev_priv(net_dev);
1202         struct efx_ptp_data *ptp = efx->ptp_data;
1203
1204         if (!ptp)
1205                 return -EOPNOTSUPP;
1206
1207         ts_info->so_timestamping = (SOF_TIMESTAMPING_TX_HARDWARE |
1208                                     SOF_TIMESTAMPING_RX_HARDWARE |
1209                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1210         ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1211         ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1212         ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1213                                1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1214                                1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1215                                1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1216                                1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1217                                1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1218                                1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1219         return 0;
1220 }
1221
1222 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1223 {
1224         struct hwtstamp_config config;
1225         int rc;
1226
1227         /* Not a PTP enabled port */
1228         if (!efx->ptp_data)
1229                 return -EOPNOTSUPP;
1230
1231         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1232                 return -EFAULT;
1233
1234         rc = efx_ptp_ts_init(efx, &config);
1235         if (rc != 0)
1236                 return rc;
1237
1238         return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1239                 ? -EFAULT : 0;
1240 }
1241
1242 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1243 {
1244         struct efx_ptp_data *ptp = efx->ptp_data;
1245
1246         netif_err(efx, hw, efx->net_dev,
1247                 "PTP unexpected event length: got %d expected %d\n",
1248                 ptp->evt_frag_idx, expected_frag_len);
1249         ptp->reset_required = true;
1250         queue_work(ptp->workwq, &ptp->work);
1251 }
1252
1253 /* Process a completed receive event.  Put it on the event queue and
1254  * start worker thread.  This is required because event and their
1255  * correspoding packets may come in either order.
1256  */
1257 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1258 {
1259         struct efx_ptp_event_rx *evt = NULL;
1260
1261         if (ptp->evt_frag_idx != 3) {
1262                 ptp_event_failure(efx, 3);
1263                 return;
1264         }
1265
1266         spin_lock_bh(&ptp->evt_lock);
1267         if (!list_empty(&ptp->evt_free_list)) {
1268                 evt = list_first_entry(&ptp->evt_free_list,
1269                                        struct efx_ptp_event_rx, link);
1270                 list_del(&evt->link);
1271
1272                 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1273                 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1274                                              MCDI_EVENT_SRC)        |
1275                              (EFX_QWORD_FIELD(ptp->evt_frags[1],
1276                                               MCDI_EVENT_SRC) << 8) |
1277                              (EFX_QWORD_FIELD(ptp->evt_frags[0],
1278                                               MCDI_EVENT_SRC) << 16));
1279                 evt->hwtimestamp = ktime_set(
1280                         EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1281                         EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1282                 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1283                 list_add_tail(&evt->link, &ptp->evt_list);
1284
1285                 queue_work(ptp->workwq, &ptp->work);
1286         } else {
1287                 netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1288         }
1289         spin_unlock_bh(&ptp->evt_lock);
1290 }
1291
1292 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1293 {
1294         int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1295         if (ptp->evt_frag_idx != 1) {
1296                 ptp_event_failure(efx, 1);
1297                 return;
1298         }
1299
1300         netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1301 }
1302
1303 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1304 {
1305         if (ptp->nic_ts_enabled)
1306                 queue_work(ptp->pps_workwq, &ptp->pps_work);
1307 }
1308
1309 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1310 {
1311         struct efx_ptp_data *ptp = efx->ptp_data;
1312         int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1313
1314         if (!ptp->enabled)
1315                 return;
1316
1317         if (ptp->evt_frag_idx == 0) {
1318                 ptp->evt_code = code;
1319         } else if (ptp->evt_code != code) {
1320                 netif_err(efx, hw, efx->net_dev,
1321                           "PTP out of sequence event %d\n", code);
1322                 ptp->evt_frag_idx = 0;
1323         }
1324
1325         ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1326         if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1327                 /* Process resulting event */
1328                 switch (code) {
1329                 case MCDI_EVENT_CODE_PTP_RX:
1330                         ptp_event_rx(efx, ptp);
1331                         break;
1332                 case MCDI_EVENT_CODE_PTP_FAULT:
1333                         ptp_event_fault(efx, ptp);
1334                         break;
1335                 case MCDI_EVENT_CODE_PTP_PPS:
1336                         ptp_event_pps(efx, ptp);
1337                         break;
1338                 default:
1339                         netif_err(efx, hw, efx->net_dev,
1340                                   "PTP unknown event %d\n", code);
1341                         break;
1342                 }
1343                 ptp->evt_frag_idx = 0;
1344         } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1345                 netif_err(efx, hw, efx->net_dev,
1346                           "PTP too many event fragments\n");
1347                 ptp->evt_frag_idx = 0;
1348         }
1349 }
1350
1351 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1352 {
1353         struct efx_ptp_data *ptp_data = container_of(ptp,
1354                                                      struct efx_ptp_data,
1355                                                      phc_clock_info);
1356         struct efx_nic *efx = ptp_data->channel->efx;
1357         u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN];
1358         s64 adjustment_ns;
1359         int rc;
1360
1361         if (delta > MAX_PPB)
1362                 delta = MAX_PPB;
1363         else if (delta < -MAX_PPB)
1364                 delta = -MAX_PPB;
1365
1366         /* Convert ppb to fixed point ns. */
1367         adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1368                          (PPB_EXTRA_BITS + MAX_PPB_BITS));
1369
1370         MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1371         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1372         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1373                        (u32)(adjustment_ns >> 32));
1374         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1375         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1376         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1377                           NULL, 0, NULL);
1378         if (rc != 0)
1379                 return rc;
1380
1381         ptp_data->current_adjfreq = delta;
1382         return 0;
1383 }
1384
1385 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1386 {
1387         struct efx_ptp_data *ptp_data = container_of(ptp,
1388                                                      struct efx_ptp_data,
1389                                                      phc_clock_info);
1390         struct efx_nic *efx = ptp_data->channel->efx;
1391         struct timespec delta_ts = ns_to_timespec(delta);
1392         u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN];
1393
1394         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1395         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1396         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1397         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1398         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1399         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1400                             NULL, 0, NULL);
1401 }
1402
1403 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1404 {
1405         struct efx_ptp_data *ptp_data = container_of(ptp,
1406                                                      struct efx_ptp_data,
1407                                                      phc_clock_info);
1408         struct efx_nic *efx = ptp_data->channel->efx;
1409         u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN];
1410         u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN];
1411         int rc;
1412
1413         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1414
1415         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1416                           outbuf, sizeof(outbuf), NULL);
1417         if (rc != 0)
1418                 return rc;
1419
1420         ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1421         ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1422         return 0;
1423 }
1424
1425 static int efx_phc_settime(struct ptp_clock_info *ptp,
1426                            const struct timespec *e_ts)
1427 {
1428         /* Get the current NIC time, efx_phc_gettime.
1429          * Subtract from the desired time to get the offset
1430          * call efx_phc_adjtime with the offset
1431          */
1432         int rc;
1433         struct timespec time_now;
1434         struct timespec delta;
1435
1436         rc = efx_phc_gettime(ptp, &time_now);
1437         if (rc != 0)
1438                 return rc;
1439
1440         delta = timespec_sub(*e_ts, time_now);
1441
1442         efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1443         if (rc != 0)
1444                 return rc;
1445
1446         return 0;
1447 }
1448
1449 static int efx_phc_enable(struct ptp_clock_info *ptp,
1450                           struct ptp_clock_request *request,
1451                           int enable)
1452 {
1453         struct efx_ptp_data *ptp_data = container_of(ptp,
1454                                                      struct efx_ptp_data,
1455                                                      phc_clock_info);
1456         if (request->type != PTP_CLK_REQ_PPS)
1457                 return -EOPNOTSUPP;
1458
1459         ptp_data->nic_ts_enabled = !!enable;
1460         return 0;
1461 }
1462
1463 static const struct efx_channel_type efx_ptp_channel_type = {
1464         .handle_no_channel      = efx_ptp_handle_no_channel,
1465         .pre_probe              = efx_ptp_probe_channel,
1466         .post_remove            = efx_ptp_remove_channel,
1467         .get_name               = efx_ptp_get_channel_name,
1468         /* no copy operation; there is no need to reallocate this channel */
1469         .receive_skb            = efx_ptp_rx,
1470         .keep_eventq            = false,
1471 };
1472
1473 void efx_ptp_probe(struct efx_nic *efx)
1474 {
1475         /* Check whether PTP is implemented on this NIC.  The DISABLE
1476          * operation will succeed if and only if it is implemented.
1477          */
1478         if (efx_ptp_disable(efx) == 0)
1479                 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1480                         &efx_ptp_channel_type;
1481 }