aab7cacb2e34a87203d199be8df72c20020b0e0b
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
65         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
67         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
68                            efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
74                            (_tx_queue)->queue)
75
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83                                      unsigned int index)
84 {
85         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86                         value, index);
87 }
88
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91                                      unsigned int index)
92 {
93         return ((efx_qword_t *) (channel->eventq.addr)) +
94                 (index & channel->eventq_mask);
95 }
96
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones.  We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords.  This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114                                      const efx_oword_t *mask)
115 {
116         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119
120 int efx_nic_test_registers(struct efx_nic *efx,
121                            const struct efx_nic_register_test *regs,
122                            size_t n_regs)
123 {
124         unsigned address = 0, i, j;
125         efx_oword_t mask, imask, original, reg, buf;
126
127         for (i = 0; i < n_regs; ++i) {
128                 address = regs[i].address;
129                 mask = imask = regs[i].mask;
130                 EFX_INVERT_OWORD(imask);
131
132                 efx_reado(efx, &original, address);
133
134                 /* bit sweep on and off */
135                 for (j = 0; j < 128; j++) {
136                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
137                                 continue;
138
139                         /* Test this testable bit can be set in isolation */
140                         EFX_AND_OWORD(reg, original, mask);
141                         EFX_SET_OWORD32(reg, j, j, 1);
142
143                         efx_writeo(efx, &reg, address);
144                         efx_reado(efx, &buf, address);
145
146                         if (efx_masked_compare_oword(&reg, &buf, &mask))
147                                 goto fail;
148
149                         /* Test this testable bit can be cleared in isolation */
150                         EFX_OR_OWORD(reg, original, mask);
151                         EFX_SET_OWORD32(reg, j, j, 0);
152
153                         efx_writeo(efx, &reg, address);
154                         efx_reado(efx, &buf, address);
155
156                         if (efx_masked_compare_oword(&reg, &buf, &mask))
157                                 goto fail;
158                 }
159
160                 efx_writeo(efx, &original, address);
161         }
162
163         return 0;
164
165 fail:
166         netif_err(efx, hw, efx->net_dev,
167                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
170         return -EIO;
171 }
172
173 /**************************************************************************
174  *
175  * Special buffer handling
176  * Special buffers are used for event queues and the TX and RX
177  * descriptor rings.
178  *
179  *************************************************************************/
180
181 /*
182  * Initialise a special buffer
183  *
184  * This will define a buffer (previously allocated via
185  * efx_alloc_special_buffer()) in the buffer table, allowing
186  * it to be used for event queues, descriptor rings etc.
187  */
188 static void
189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190 {
191         efx_qword_t buf_desc;
192         unsigned int index;
193         dma_addr_t dma_addr;
194         int i;
195
196         EFX_BUG_ON_PARANOID(!buffer->addr);
197
198         /* Write buffer descriptors to NIC */
199         for (i = 0; i < buffer->entries; i++) {
200                 index = buffer->index + i;
201                 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
202                 netif_dbg(efx, probe, efx->net_dev,
203                           "mapping special buffer %d at %llx\n",
204                           index, (unsigned long long)dma_addr);
205                 EFX_POPULATE_QWORD_3(buf_desc,
206                                      FRF_AZ_BUF_ADR_REGION, 0,
207                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209                 efx_write_buf_tbl(efx, &buf_desc, index);
210         }
211 }
212
213 /* Unmaps a buffer and clears the buffer table entries */
214 static void
215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216 {
217         efx_oword_t buf_tbl_upd;
218         unsigned int start = buffer->index;
219         unsigned int end = (buffer->index + buffer->entries - 1);
220
221         if (!buffer->entries)
222                 return;
223
224         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225                   buffer->index, buffer->index + buffer->entries - 1);
226
227         EFX_POPULATE_OWORD_4(buf_tbl_upd,
228                              FRF_AZ_BUF_UPD_CMD, 0,
229                              FRF_AZ_BUF_CLR_CMD, 1,
230                              FRF_AZ_BUF_CLR_END_ID, end,
231                              FRF_AZ_BUF_CLR_START_ID, start);
232         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233 }
234
235 /*
236  * Allocate a new special buffer
237  *
238  * This allocates memory for a new buffer, clears it and allocates a
239  * new buffer ID range.  It does not write into the buffer table.
240  *
241  * This call will allocate 4KB buffers, since 8KB buffers can't be
242  * used for event queues and descriptor rings.
243  */
244 static int efx_alloc_special_buffer(struct efx_nic *efx,
245                                     struct efx_special_buffer *buffer,
246                                     unsigned int len)
247 {
248         len = ALIGN(len, EFX_BUF_SIZE);
249
250         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251                                           &buffer->dma_addr, GFP_KERNEL);
252         if (!buffer->addr)
253                 return -ENOMEM;
254         buffer->len = len;
255         buffer->entries = len / EFX_BUF_SIZE;
256         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257
258         /* All zeros is a potentially valid event so memset to 0xff */
259         memset(buffer->addr, 0xff, len);
260
261         /* Select new buffer ID */
262         buffer->index = efx->next_buffer_table;
263         efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265         BUG_ON(efx_sriov_enabled(efx) &&
266                efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268
269         netif_dbg(efx, probe, efx->net_dev,
270                   "allocating special buffers %d-%d at %llx+%x "
271                   "(virt %p phys %llx)\n", buffer->index,
272                   buffer->index + buffer->entries - 1,
273                   (u64)buffer->dma_addr, len,
274                   buffer->addr, (u64)virt_to_phys(buffer->addr));
275
276         return 0;
277 }
278
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282         if (!buffer->addr)
283                 return;
284
285         netif_dbg(efx, hw, efx->net_dev,
286                   "deallocating special buffers %d-%d at %llx+%x "
287                   "(virt %p phys %llx)\n", buffer->index,
288                   buffer->index + buffer->entries - 1,
289                   (u64)buffer->dma_addr, buffer->len,
290                   buffer->addr, (u64)virt_to_phys(buffer->addr));
291
292         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293                           buffer->dma_addr);
294         buffer->addr = NULL;
295         buffer->entries = 0;
296 }
297
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status, MAC stats, etc.
302  *
303  **************************************************************************/
304
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306                          unsigned int len)
307 {
308         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309                                           &buffer->dma_addr, GFP_ATOMIC);
310         if (!buffer->addr)
311                 return -ENOMEM;
312         buffer->len = len;
313         memset(buffer->addr, 0, len);
314         return 0;
315 }
316
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319         if (buffer->addr) {
320                 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321                                   buffer->addr, buffer->dma_addr);
322                 buffer->addr = NULL;
323         }
324 }
325
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344         unsigned write_ptr;
345         efx_dword_t reg;
346
347         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349         efx_writed_page(tx_queue->efx, &reg,
350                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355                                     const efx_qword_t *txd)
356 {
357         unsigned write_ptr;
358         efx_oword_t reg;
359
360         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362
363         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365                              FRF_AZ_TX_DESC_WPTR, write_ptr);
366         reg.qword[0] = *txd;
367         efx_writeo_page(tx_queue->efx, &reg,
368                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375
376         if (empty_read_count == 0)
377                 return false;
378
379         tx_queue->empty_read_count = 0;
380         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381 }
382
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389
390         struct efx_tx_buffer *buffer;
391         efx_qword_t *txd;
392         unsigned write_ptr;
393         unsigned old_write_count = tx_queue->write_count;
394
395         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397         do {
398                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399                 buffer = &tx_queue->buffer[write_ptr];
400                 txd = efx_tx_desc(tx_queue, write_ptr);
401                 ++tx_queue->write_count;
402
403                 /* Create TX descriptor ring entry */
404                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405                 EFX_POPULATE_QWORD_4(*txd,
406                                      FSF_AZ_TX_KER_CONT,
407                                      buffer->flags & EFX_TX_BUF_CONT,
408                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409                                      FSF_AZ_TX_KER_BUF_REGION, 0,
410                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411         } while (tx_queue->write_count != tx_queue->insert_count);
412
413         wmb(); /* Ensure descriptors are written before they are fetched */
414
415         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416                 txd = efx_tx_desc(tx_queue,
417                                   old_write_count & tx_queue->ptr_mask);
418                 efx_push_tx_desc(tx_queue, txd);
419                 ++tx_queue->pushes;
420         } else {
421                 efx_notify_tx_desc(tx_queue);
422         }
423 }
424
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428         struct efx_nic *efx = tx_queue->efx;
429         unsigned entries;
430
431         entries = tx_queue->ptr_mask + 1;
432         return efx_alloc_special_buffer(efx, &tx_queue->txd,
433                                         entries * sizeof(efx_qword_t));
434 }
435
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438         struct efx_nic *efx = tx_queue->efx;
439         efx_oword_t reg;
440
441         /* Pin TX descriptor ring */
442         efx_init_special_buffer(efx, &tx_queue->txd);
443
444         /* Push TX descriptor ring to card */
445         EFX_POPULATE_OWORD_10(reg,
446                               FRF_AZ_TX_DESCQ_EN, 1,
447                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450                               FRF_AZ_TX_DESCQ_EVQ_ID,
451                               tx_queue->channel->channel,
452                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454                               FRF_AZ_TX_DESCQ_SIZE,
455                               __ffs(tx_queue->txd.entries),
456                               FRF_AZ_TX_DESCQ_TYPE, 0,
457                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458
459         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463                                     !csum);
464         }
465
466         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467                          tx_queue->queue);
468
469         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470                 /* Only 128 bits in this register */
471                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472
473                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475                         __clear_bit_le(tx_queue->queue, &reg);
476                 else
477                         __set_bit_le(tx_queue->queue, &reg);
478                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479         }
480
481         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482                 EFX_POPULATE_OWORD_1(reg,
483                                      FRF_BZ_TX_PACE,
484                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485                                      FFE_BZ_TX_PACE_OFF :
486                                      FFE_BZ_TX_PACE_RESERVED);
487                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488                                  tx_queue->queue);
489         }
490 }
491
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494         struct efx_nic *efx = tx_queue->efx;
495         efx_oword_t tx_flush_descq;
496
497         EFX_POPULATE_OWORD_2(tx_flush_descq,
498                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501 }
502
503 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
504 {
505         struct efx_nic *efx = tx_queue->efx;
506         efx_oword_t tx_desc_ptr;
507
508         /* Remove TX descriptor ring from card */
509         EFX_ZERO_OWORD(tx_desc_ptr);
510         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511                          tx_queue->queue);
512
513         /* Unpin TX descriptor ring */
514         efx_fini_special_buffer(efx, &tx_queue->txd);
515 }
516
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
519 {
520         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521 }
522
523 /**************************************************************************
524  *
525  * RX path
526  *
527  **************************************************************************/
528
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t *
531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
532 {
533         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
534 }
535
536 /* This creates an entry in the RX descriptor queue */
537 static inline void
538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
539 {
540         struct efx_rx_buffer *rx_buf;
541         efx_qword_t *rxd;
542
543         rxd = efx_rx_desc(rx_queue, index);
544         rx_buf = efx_rx_buffer(rx_queue, index);
545         EFX_POPULATE_QWORD_3(*rxd,
546                              FSF_AZ_RX_KER_BUF_SIZE,
547                              rx_buf->len -
548                              rx_queue->efx->type->rx_buffer_padding,
549                              FSF_AZ_RX_KER_BUF_REGION, 0,
550                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551 }
552
553 /* This writes to the RX_DESC_WPTR register for the specified receive
554  * descriptor ring.
555  */
556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
557 {
558         struct efx_nic *efx = rx_queue->efx;
559         efx_dword_t reg;
560         unsigned write_ptr;
561
562         while (rx_queue->notified_count != rx_queue->added_count) {
563                 efx_build_rx_desc(
564                         rx_queue,
565                         rx_queue->notified_count & rx_queue->ptr_mask);
566                 ++rx_queue->notified_count;
567         }
568
569         wmb();
570         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
571         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
572         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
573                         efx_rx_queue_index(rx_queue));
574 }
575
576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
577 {
578         struct efx_nic *efx = rx_queue->efx;
579         unsigned entries;
580
581         entries = rx_queue->ptr_mask + 1;
582         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
583                                         entries * sizeof(efx_qword_t));
584 }
585
586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
587 {
588         efx_oword_t rx_desc_ptr;
589         struct efx_nic *efx = rx_queue->efx;
590         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591         bool iscsi_digest_en = is_b0;
592
593         netif_dbg(efx, hw, efx->net_dev,
594                   "RX queue %d ring in special buffers %d-%d\n",
595                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
596                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597
598         /* Pin RX descriptor ring */
599         efx_init_special_buffer(efx, &rx_queue->rxd);
600
601         /* Push RX descriptor ring to card */
602         EFX_POPULATE_OWORD_10(rx_desc_ptr,
603                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606                               FRF_AZ_RX_DESCQ_EVQ_ID,
607                               efx_rx_queue_channel(rx_queue)->channel,
608                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
609                               FRF_AZ_RX_DESCQ_LABEL,
610                               efx_rx_queue_index(rx_queue),
611                               FRF_AZ_RX_DESCQ_SIZE,
612                               __ffs(rx_queue->rxd.entries),
613                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614                               /* For >=B0 this is scatter so disable */
615                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616                               FRF_AZ_RX_DESCQ_EN, 1);
617         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
618                          efx_rx_queue_index(rx_queue));
619 }
620
621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622 {
623         struct efx_nic *efx = rx_queue->efx;
624         efx_oword_t rx_flush_descq;
625
626         EFX_POPULATE_OWORD_2(rx_flush_descq,
627                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
628                              FRF_AZ_RX_FLUSH_DESCQ,
629                              efx_rx_queue_index(rx_queue));
630         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
631 }
632
633 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
634 {
635         efx_oword_t rx_desc_ptr;
636         struct efx_nic *efx = rx_queue->efx;
637
638         /* Remove RX descriptor ring from card */
639         EFX_ZERO_OWORD(rx_desc_ptr);
640         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
641                          efx_rx_queue_index(rx_queue));
642
643         /* Unpin RX descriptor ring */
644         efx_fini_special_buffer(efx, &rx_queue->rxd);
645 }
646
647 /* Free buffers backing RX queue */
648 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
649 {
650         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
651 }
652
653 /**************************************************************************
654  *
655  * Flush handling
656  *
657  **************************************************************************/
658
659 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
660  * or more RX flushes can be kicked off.
661  */
662 static bool efx_flush_wake(struct efx_nic *efx)
663 {
664         /* Ensure that all updates are visible to efx_nic_flush_queues() */
665         smp_mb();
666
667         return (atomic_read(&efx->drain_pending) == 0 ||
668                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
669                  && atomic_read(&efx->rxq_flush_pending) > 0));
670 }
671
672 /* Flush all the transmit queues, and continue flushing receive queues until
673  * they're all flushed. Wait for the DRAIN events to be recieved so that there
674  * are no more RX and TX events left on any channel. */
675 int efx_nic_flush_queues(struct efx_nic *efx)
676 {
677         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
678         struct efx_channel *channel;
679         struct efx_rx_queue *rx_queue;
680         struct efx_tx_queue *tx_queue;
681         int rc = 0;
682
683         efx->fc_disable++;
684         efx->type->prepare_flush(efx);
685
686         efx_for_each_channel(channel, efx) {
687                 efx_for_each_channel_tx_queue(tx_queue, channel) {
688                         atomic_inc(&efx->drain_pending);
689                         efx_flush_tx_queue(tx_queue);
690                 }
691                 efx_for_each_channel_rx_queue(rx_queue, channel) {
692                         atomic_inc(&efx->drain_pending);
693                         rx_queue->flush_pending = true;
694                         atomic_inc(&efx->rxq_flush_pending);
695                 }
696         }
697
698         while (timeout && atomic_read(&efx->drain_pending) > 0) {
699                 /* If SRIOV is enabled, then offload receive queue flushing to
700                  * the firmware (though we will still have to poll for
701                  * completion). If that fails, fall back to the old scheme.
702                  */
703                 if (efx_sriov_enabled(efx)) {
704                         rc = efx_mcdi_flush_rxqs(efx);
705                         if (!rc)
706                                 goto wait;
707                 }
708
709                 /* The hardware supports four concurrent rx flushes, each of
710                  * which may need to be retried if there is an outstanding
711                  * descriptor fetch
712                  */
713                 efx_for_each_channel(channel, efx) {
714                         efx_for_each_channel_rx_queue(rx_queue, channel) {
715                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
716                                     EFX_RX_FLUSH_COUNT)
717                                         break;
718
719                                 if (rx_queue->flush_pending) {
720                                         rx_queue->flush_pending = false;
721                                         atomic_dec(&efx->rxq_flush_pending);
722                                         atomic_inc(&efx->rxq_flush_outstanding);
723                                         efx_flush_rx_queue(rx_queue);
724                                 }
725                         }
726                 }
727
728         wait:
729                 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
730                                              timeout);
731         }
732
733         if (atomic_read(&efx->drain_pending)) {
734                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
735                           "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
736                           atomic_read(&efx->rxq_flush_outstanding),
737                           atomic_read(&efx->rxq_flush_pending));
738                 rc = -ETIMEDOUT;
739
740                 atomic_set(&efx->drain_pending, 0);
741                 atomic_set(&efx->rxq_flush_pending, 0);
742                 atomic_set(&efx->rxq_flush_outstanding, 0);
743         }
744
745         efx->fc_disable--;
746
747         return rc;
748 }
749
750 /**************************************************************************
751  *
752  * Event queue processing
753  * Event queues are processed by per-channel tasklets.
754  *
755  **************************************************************************/
756
757 /* Update a channel's event queue's read pointer (RPTR) register
758  *
759  * This writes the EVQ_RPTR_REG register for the specified channel's
760  * event queue.
761  */
762 void efx_nic_eventq_read_ack(struct efx_channel *channel)
763 {
764         efx_dword_t reg;
765         struct efx_nic *efx = channel->efx;
766
767         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
768                              channel->eventq_read_ptr & channel->eventq_mask);
769         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
770                          channel->channel);
771 }
772
773 /* Use HW to insert a SW defined event */
774 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
775                         efx_qword_t *event)
776 {
777         efx_oword_t drv_ev_reg;
778
779         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
780                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
781         drv_ev_reg.u32[0] = event->u32[0];
782         drv_ev_reg.u32[1] = event->u32[1];
783         drv_ev_reg.u32[2] = 0;
784         drv_ev_reg.u32[3] = 0;
785         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
786         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
787 }
788
789 static void efx_magic_event(struct efx_channel *channel, u32 magic)
790 {
791         efx_qword_t event;
792
793         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
794                              FSE_AZ_EV_CODE_DRV_GEN_EV,
795                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
796         efx_generate_event(channel->efx, channel->channel, &event);
797 }
798
799 /* Handle a transmit completion event
800  *
801  * The NIC batches TX completion events; the message we receive is of
802  * the form "complete all TX events up to this index".
803  */
804 static int
805 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
806 {
807         unsigned int tx_ev_desc_ptr;
808         unsigned int tx_ev_q_label;
809         struct efx_tx_queue *tx_queue;
810         struct efx_nic *efx = channel->efx;
811         int tx_packets = 0;
812
813         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
814                 return 0;
815
816         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
817                 /* Transmit completion */
818                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
819                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
820                 tx_queue = efx_channel_get_tx_queue(
821                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
822                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
823                               tx_queue->ptr_mask);
824                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
825         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
826                 /* Rewrite the FIFO write pointer */
827                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
828                 tx_queue = efx_channel_get_tx_queue(
829                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
830
831                 netif_tx_lock(efx->net_dev);
832                 efx_notify_tx_desc(tx_queue);
833                 netif_tx_unlock(efx->net_dev);
834         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
835                    EFX_WORKAROUND_10727(efx)) {
836                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
837         } else {
838                 netif_err(efx, tx_err, efx->net_dev,
839                           "channel %d unexpected TX event "
840                           EFX_QWORD_FMT"\n", channel->channel,
841                           EFX_QWORD_VAL(*event));
842         }
843
844         return tx_packets;
845 }
846
847 /* Detect errors included in the rx_evt_pkt_ok bit. */
848 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
849                                 const efx_qword_t *event)
850 {
851         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
852         struct efx_nic *efx = rx_queue->efx;
853         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
854         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
855         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
856         bool rx_ev_other_err, rx_ev_pause_frm;
857         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
858         unsigned rx_ev_pkt_type;
859
860         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
861         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
862         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
863         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
864         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
865                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
866         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
867                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
868         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
869                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
870         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
871         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
872         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
873                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
874         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
875
876         /* Every error apart from tobe_disc and pause_frm */
877         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
878                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
879                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
880
881         /* Count errors that are not in MAC stats.  Ignore expected
882          * checksum errors during self-test. */
883         if (rx_ev_frm_trunc)
884                 ++channel->n_rx_frm_trunc;
885         else if (rx_ev_tobe_disc)
886                 ++channel->n_rx_tobe_disc;
887         else if (!efx->loopback_selftest) {
888                 if (rx_ev_ip_hdr_chksum_err)
889                         ++channel->n_rx_ip_hdr_chksum_err;
890                 else if (rx_ev_tcp_udp_chksum_err)
891                         ++channel->n_rx_tcp_udp_chksum_err;
892         }
893
894         /* TOBE_DISC is expected on unicast mismatches; don't print out an
895          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
896          * to a FIFO overflow.
897          */
898 #ifdef DEBUG
899         if (rx_ev_other_err && net_ratelimit()) {
900                 netif_dbg(efx, rx_err, efx->net_dev,
901                           " RX queue %d unexpected RX event "
902                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
903                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
904                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
905                           rx_ev_ip_hdr_chksum_err ?
906                           " [IP_HDR_CHKSUM_ERR]" : "",
907                           rx_ev_tcp_udp_chksum_err ?
908                           " [TCP_UDP_CHKSUM_ERR]" : "",
909                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
910                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
911                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
912                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
913                           rx_ev_pause_frm ? " [PAUSE]" : "");
914         }
915 #endif
916
917         /* The frame must be discarded if any of these are true. */
918         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
919                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
920                 EFX_RX_PKT_DISCARD : 0;
921 }
922
923 /* Handle receive events that are not in-order. */
924 static void
925 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
926 {
927         struct efx_nic *efx = rx_queue->efx;
928         unsigned expected, dropped;
929
930         expected = rx_queue->removed_count & rx_queue->ptr_mask;
931         dropped = (index - expected) & rx_queue->ptr_mask;
932         netif_info(efx, rx_err, efx->net_dev,
933                    "dropped %d events (index=%d expected=%d)\n",
934                    dropped, index, expected);
935
936         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
937                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
938 }
939
940 /* Handle a packet received event
941  *
942  * The NIC gives a "discard" flag if it's a unicast packet with the
943  * wrong destination address
944  * Also "is multicast" and "matches multicast filter" flags can be used to
945  * discard non-matching multicast packets.
946  */
947 static void
948 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
949 {
950         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
951         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
952         unsigned expected_ptr;
953         bool rx_ev_pkt_ok;
954         u16 flags;
955         struct efx_rx_queue *rx_queue;
956         struct efx_nic *efx = channel->efx;
957
958         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
959                 return;
960
961         /* Basic packet information */
962         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
963         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
964         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
965         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
966         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
967         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
968                 channel->channel);
969
970         rx_queue = efx_channel_get_rx_queue(channel);
971
972         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
973         expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
974         if (unlikely(rx_ev_desc_ptr != expected_ptr))
975                 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
976
977         if (likely(rx_ev_pkt_ok)) {
978                 /* If packet is marked as OK and packet type is TCP/IP or
979                  * UDP/IP, then we can rely on the hardware checksum.
980                  */
981                 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
982                          rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
983                         EFX_RX_PKT_CSUMMED : 0;
984         } else {
985                 flags = efx_handle_rx_not_ok(rx_queue, event);
986         }
987
988         /* Detect multicast packets that didn't match the filter */
989         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
990         if (rx_ev_mcast_pkt) {
991                 unsigned int rx_ev_mcast_hash_match =
992                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
993
994                 if (unlikely(!rx_ev_mcast_hash_match)) {
995                         ++channel->n_rx_mcast_mismatch;
996                         flags |= EFX_RX_PKT_DISCARD;
997                 }
998         }
999
1000         channel->irq_mod_score += 2;
1001
1002         /* Handle received packet */
1003         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1004 }
1005
1006 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1007  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1008  * of all transmit completions.
1009  */
1010 static void
1011 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1012 {
1013         struct efx_tx_queue *tx_queue;
1014         int qid;
1015
1016         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1017         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1018                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1019                                             qid % EFX_TXQ_TYPES);
1020
1021                 efx_magic_event(tx_queue->channel,
1022                                 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1023         }
1024 }
1025
1026 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1027  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1028  * the RX queue back to the mask of RX queues in need of flushing.
1029  */
1030 static void
1031 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1032 {
1033         struct efx_channel *channel;
1034         struct efx_rx_queue *rx_queue;
1035         int qid;
1036         bool failed;
1037
1038         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1039         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1040         if (qid >= efx->n_channels)
1041                 return;
1042         channel = efx_get_channel(efx, qid);
1043         if (!efx_channel_has_rx_queue(channel))
1044                 return;
1045         rx_queue = efx_channel_get_rx_queue(channel);
1046
1047         if (failed) {
1048                 netif_info(efx, hw, efx->net_dev,
1049                            "RXQ %d flush retry\n", qid);
1050                 rx_queue->flush_pending = true;
1051                 atomic_inc(&efx->rxq_flush_pending);
1052         } else {
1053                 efx_magic_event(efx_rx_queue_channel(rx_queue),
1054                                 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1055         }
1056         atomic_dec(&efx->rxq_flush_outstanding);
1057         if (efx_flush_wake(efx))
1058                 wake_up(&efx->flush_wq);
1059 }
1060
1061 static void
1062 efx_handle_drain_event(struct efx_channel *channel)
1063 {
1064         struct efx_nic *efx = channel->efx;
1065
1066         WARN_ON(atomic_read(&efx->drain_pending) == 0);
1067         atomic_dec(&efx->drain_pending);
1068         if (efx_flush_wake(efx))
1069                 wake_up(&efx->flush_wq);
1070 }
1071
1072 static void
1073 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1074 {
1075         struct efx_nic *efx = channel->efx;
1076         struct efx_rx_queue *rx_queue =
1077                 efx_channel_has_rx_queue(channel) ?
1078                 efx_channel_get_rx_queue(channel) : NULL;
1079         unsigned magic, code;
1080
1081         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1082         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1083
1084         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1085                 channel->event_test_cpu = raw_smp_processor_id();
1086         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1087                 /* The queue must be empty, so we won't receive any rx
1088                  * events, so efx_process_channel() won't refill the
1089                  * queue. Refill it here */
1090                 efx_fast_push_rx_descriptors(rx_queue);
1091         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1092                 rx_queue->enabled = false;
1093                 efx_handle_drain_event(channel);
1094         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1095                 efx_handle_drain_event(channel);
1096         } else {
1097                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1098                           "generated event "EFX_QWORD_FMT"\n",
1099                           channel->channel, EFX_QWORD_VAL(*event));
1100         }
1101 }
1102
1103 static void
1104 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1105 {
1106         struct efx_nic *efx = channel->efx;
1107         unsigned int ev_sub_code;
1108         unsigned int ev_sub_data;
1109
1110         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1111         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1112
1113         switch (ev_sub_code) {
1114         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1115                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1116                            channel->channel, ev_sub_data);
1117                 efx_handle_tx_flush_done(efx, event);
1118                 efx_sriov_tx_flush_done(efx, event);
1119                 break;
1120         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1121                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1122                            channel->channel, ev_sub_data);
1123                 efx_handle_rx_flush_done(efx, event);
1124                 efx_sriov_rx_flush_done(efx, event);
1125                 break;
1126         case FSE_AZ_EVQ_INIT_DONE_EV:
1127                 netif_dbg(efx, hw, efx->net_dev,
1128                           "channel %d EVQ %d initialised\n",
1129                           channel->channel, ev_sub_data);
1130                 break;
1131         case FSE_AZ_SRM_UPD_DONE_EV:
1132                 netif_vdbg(efx, hw, efx->net_dev,
1133                            "channel %d SRAM update done\n", channel->channel);
1134                 break;
1135         case FSE_AZ_WAKE_UP_EV:
1136                 netif_vdbg(efx, hw, efx->net_dev,
1137                            "channel %d RXQ %d wakeup event\n",
1138                            channel->channel, ev_sub_data);
1139                 break;
1140         case FSE_AZ_TIMER_EV:
1141                 netif_vdbg(efx, hw, efx->net_dev,
1142                            "channel %d RX queue %d timer expired\n",
1143                            channel->channel, ev_sub_data);
1144                 break;
1145         case FSE_AA_RX_RECOVER_EV:
1146                 netif_err(efx, rx_err, efx->net_dev,
1147                           "channel %d seen DRIVER RX_RESET event. "
1148                         "Resetting.\n", channel->channel);
1149                 atomic_inc(&efx->rx_reset);
1150                 efx_schedule_reset(efx,
1151                                    EFX_WORKAROUND_6555(efx) ?
1152                                    RESET_TYPE_RX_RECOVERY :
1153                                    RESET_TYPE_DISABLE);
1154                 break;
1155         case FSE_BZ_RX_DSC_ERROR_EV:
1156                 if (ev_sub_data < EFX_VI_BASE) {
1157                         netif_err(efx, rx_err, efx->net_dev,
1158                                   "RX DMA Q %d reports descriptor fetch error."
1159                                   " RX Q %d is disabled.\n", ev_sub_data,
1160                                   ev_sub_data);
1161                         efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1162                 } else
1163                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1164                 break;
1165         case FSE_BZ_TX_DSC_ERROR_EV:
1166                 if (ev_sub_data < EFX_VI_BASE) {
1167                         netif_err(efx, tx_err, efx->net_dev,
1168                                   "TX DMA Q %d reports descriptor fetch error."
1169                                   " TX Q %d is disabled.\n", ev_sub_data,
1170                                   ev_sub_data);
1171                         efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1172                 } else
1173                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1174                 break;
1175         default:
1176                 netif_vdbg(efx, hw, efx->net_dev,
1177                            "channel %d unknown driver event code %d "
1178                            "data %04x\n", channel->channel, ev_sub_code,
1179                            ev_sub_data);
1180                 break;
1181         }
1182 }
1183
1184 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1185 {
1186         struct efx_nic *efx = channel->efx;
1187         unsigned int read_ptr;
1188         efx_qword_t event, *p_event;
1189         int ev_code;
1190         int tx_packets = 0;
1191         int spent = 0;
1192
1193         read_ptr = channel->eventq_read_ptr;
1194
1195         for (;;) {
1196                 p_event = efx_event(channel, read_ptr);
1197                 event = *p_event;
1198
1199                 if (!efx_event_present(&event))
1200                         /* End of events */
1201                         break;
1202
1203                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1204                            "channel %d event is "EFX_QWORD_FMT"\n",
1205                            channel->channel, EFX_QWORD_VAL(event));
1206
1207                 /* Clear this event by marking it all ones */
1208                 EFX_SET_QWORD(*p_event);
1209
1210                 ++read_ptr;
1211
1212                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1213
1214                 switch (ev_code) {
1215                 case FSE_AZ_EV_CODE_RX_EV:
1216                         efx_handle_rx_event(channel, &event);
1217                         if (++spent == budget)
1218                                 goto out;
1219                         break;
1220                 case FSE_AZ_EV_CODE_TX_EV:
1221                         tx_packets += efx_handle_tx_event(channel, &event);
1222                         if (tx_packets > efx->txq_entries) {
1223                                 spent = budget;
1224                                 goto out;
1225                         }
1226                         break;
1227                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1228                         efx_handle_generated_event(channel, &event);
1229                         break;
1230                 case FSE_AZ_EV_CODE_DRIVER_EV:
1231                         efx_handle_driver_event(channel, &event);
1232                         break;
1233                 case FSE_CZ_EV_CODE_USER_EV:
1234                         efx_sriov_event(channel, &event);
1235                         break;
1236                 case FSE_CZ_EV_CODE_MCDI_EV:
1237                         efx_mcdi_process_event(channel, &event);
1238                         break;
1239                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1240                         if (efx->type->handle_global_event &&
1241                             efx->type->handle_global_event(channel, &event))
1242                                 break;
1243                         /* else fall through */
1244                 default:
1245                         netif_err(channel->efx, hw, channel->efx->net_dev,
1246                                   "channel %d unknown event type %d (data "
1247                                   EFX_QWORD_FMT ")\n", channel->channel,
1248                                   ev_code, EFX_QWORD_VAL(event));
1249                 }
1250         }
1251
1252 out:
1253         channel->eventq_read_ptr = read_ptr;
1254         return spent;
1255 }
1256
1257 /* Check whether an event is present in the eventq at the current
1258  * read pointer.  Only useful for self-test.
1259  */
1260 bool efx_nic_event_present(struct efx_channel *channel)
1261 {
1262         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1263 }
1264
1265 /* Allocate buffer table entries for event queue */
1266 int efx_nic_probe_eventq(struct efx_channel *channel)
1267 {
1268         struct efx_nic *efx = channel->efx;
1269         unsigned entries;
1270
1271         entries = channel->eventq_mask + 1;
1272         return efx_alloc_special_buffer(efx, &channel->eventq,
1273                                         entries * sizeof(efx_qword_t));
1274 }
1275
1276 void efx_nic_init_eventq(struct efx_channel *channel)
1277 {
1278         efx_oword_t reg;
1279         struct efx_nic *efx = channel->efx;
1280
1281         netif_dbg(efx, hw, efx->net_dev,
1282                   "channel %d event queue in special buffers %d-%d\n",
1283                   channel->channel, channel->eventq.index,
1284                   channel->eventq.index + channel->eventq.entries - 1);
1285
1286         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1287                 EFX_POPULATE_OWORD_3(reg,
1288                                      FRF_CZ_TIMER_Q_EN, 1,
1289                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1290                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1291                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1292         }
1293
1294         /* Pin event queue buffer */
1295         efx_init_special_buffer(efx, &channel->eventq);
1296
1297         /* Fill event queue with all ones (i.e. empty events) */
1298         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1299
1300         /* Push event queue to card */
1301         EFX_POPULATE_OWORD_3(reg,
1302                              FRF_AZ_EVQ_EN, 1,
1303                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1304                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1305         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1306                          channel->channel);
1307
1308         efx->type->push_irq_moderation(channel);
1309 }
1310
1311 void efx_nic_fini_eventq(struct efx_channel *channel)
1312 {
1313         efx_oword_t reg;
1314         struct efx_nic *efx = channel->efx;
1315
1316         /* Remove event queue from card */
1317         EFX_ZERO_OWORD(reg);
1318         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1319                          channel->channel);
1320         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1321                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1322
1323         /* Unpin event queue */
1324         efx_fini_special_buffer(efx, &channel->eventq);
1325 }
1326
1327 /* Free buffers backing event queue */
1328 void efx_nic_remove_eventq(struct efx_channel *channel)
1329 {
1330         efx_free_special_buffer(channel->efx, &channel->eventq);
1331 }
1332
1333
1334 void efx_nic_event_test_start(struct efx_channel *channel)
1335 {
1336         channel->event_test_cpu = -1;
1337         smp_wmb();
1338         efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1339 }
1340
1341 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1342 {
1343         efx_magic_event(efx_rx_queue_channel(rx_queue),
1344                         EFX_CHANNEL_MAGIC_FILL(rx_queue));
1345 }
1346
1347 /**************************************************************************
1348  *
1349  * Hardware interrupts
1350  * The hardware interrupt handler does very little work; all the event
1351  * queue processing is carried out by per-channel tasklets.
1352  *
1353  **************************************************************************/
1354
1355 /* Enable/disable/generate interrupts */
1356 static inline void efx_nic_interrupts(struct efx_nic *efx,
1357                                       bool enabled, bool force)
1358 {
1359         efx_oword_t int_en_reg_ker;
1360
1361         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1362                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1363                              FRF_AZ_KER_INT_KER, force,
1364                              FRF_AZ_DRV_INT_EN_KER, enabled);
1365         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1366 }
1367
1368 void efx_nic_enable_interrupts(struct efx_nic *efx)
1369 {
1370         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1371         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1372
1373         efx_nic_interrupts(efx, true, false);
1374 }
1375
1376 void efx_nic_disable_interrupts(struct efx_nic *efx)
1377 {
1378         /* Disable interrupts */
1379         efx_nic_interrupts(efx, false, false);
1380 }
1381
1382 /* Generate a test interrupt
1383  * Interrupt must already have been enabled, otherwise nasty things
1384  * may happen.
1385  */
1386 void efx_nic_irq_test_start(struct efx_nic *efx)
1387 {
1388         efx->last_irq_cpu = -1;
1389         smp_wmb();
1390         efx_nic_interrupts(efx, true, true);
1391 }
1392
1393 /* Process a fatal interrupt
1394  * Disable bus mastering ASAP and schedule a reset
1395  */
1396 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1397 {
1398         struct falcon_nic_data *nic_data = efx->nic_data;
1399         efx_oword_t *int_ker = efx->irq_status.addr;
1400         efx_oword_t fatal_intr;
1401         int error, mem_perr;
1402
1403         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1404         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1405
1406         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1407                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1408                   EFX_OWORD_VAL(fatal_intr),
1409                   error ? "disabling bus mastering" : "no recognised error");
1410
1411         /* If this is a memory parity error dump which blocks are offending */
1412         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1413                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1414         if (mem_perr) {
1415                 efx_oword_t reg;
1416                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1417                 netif_err(efx, hw, efx->net_dev,
1418                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1419                           EFX_OWORD_VAL(reg));
1420         }
1421
1422         /* Disable both devices */
1423         pci_clear_master(efx->pci_dev);
1424         if (efx_nic_is_dual_func(efx))
1425                 pci_clear_master(nic_data->pci_dev2);
1426         efx_nic_disable_interrupts(efx);
1427
1428         /* Count errors and reset or disable the NIC accordingly */
1429         if (efx->int_error_count == 0 ||
1430             time_after(jiffies, efx->int_error_expire)) {
1431                 efx->int_error_count = 0;
1432                 efx->int_error_expire =
1433                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1434         }
1435         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1436                 netif_err(efx, hw, efx->net_dev,
1437                           "SYSTEM ERROR - reset scheduled\n");
1438                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1439         } else {
1440                 netif_err(efx, hw, efx->net_dev,
1441                           "SYSTEM ERROR - max number of errors seen."
1442                           "NIC will be disabled\n");
1443                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1444         }
1445
1446         return IRQ_HANDLED;
1447 }
1448
1449 /* Handle a legacy interrupt
1450  * Acknowledges the interrupt and schedule event queue processing.
1451  */
1452 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1453 {
1454         struct efx_nic *efx = dev_id;
1455         efx_oword_t *int_ker = efx->irq_status.addr;
1456         irqreturn_t result = IRQ_NONE;
1457         struct efx_channel *channel;
1458         efx_dword_t reg;
1459         u32 queues;
1460         int syserr;
1461
1462         /* Could this be ours?  If interrupts are disabled then the
1463          * channel state may not be valid.
1464          */
1465         if (!efx->legacy_irq_enabled)
1466                 return result;
1467
1468         /* Read the ISR which also ACKs the interrupts */
1469         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1470         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1471
1472         /* Handle non-event-queue sources */
1473         if (queues & (1U << efx->irq_level)) {
1474                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1475                 if (unlikely(syserr))
1476                         return efx_nic_fatal_interrupt(efx);
1477                 efx->last_irq_cpu = raw_smp_processor_id();
1478         }
1479
1480         if (queues != 0) {
1481                 if (EFX_WORKAROUND_15783(efx))
1482                         efx->irq_zero_count = 0;
1483
1484                 /* Schedule processing of any interrupting queues */
1485                 efx_for_each_channel(channel, efx) {
1486                         if (queues & 1)
1487                                 efx_schedule_channel_irq(channel);
1488                         queues >>= 1;
1489                 }
1490                 result = IRQ_HANDLED;
1491
1492         } else if (EFX_WORKAROUND_15783(efx)) {
1493                 efx_qword_t *event;
1494
1495                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1496                  * because this might be a shared interrupt. */
1497                 if (efx->irq_zero_count++ == 0)
1498                         result = IRQ_HANDLED;
1499
1500                 /* Ensure we schedule or rearm all event queues */
1501                 efx_for_each_channel(channel, efx) {
1502                         event = efx_event(channel, channel->eventq_read_ptr);
1503                         if (efx_event_present(event))
1504                                 efx_schedule_channel_irq(channel);
1505                         else
1506                                 efx_nic_eventq_read_ack(channel);
1507                 }
1508         }
1509
1510         if (result == IRQ_HANDLED)
1511                 netif_vdbg(efx, intr, efx->net_dev,
1512                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1513                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1514
1515         return result;
1516 }
1517
1518 /* Handle an MSI interrupt
1519  *
1520  * Handle an MSI hardware interrupt.  This routine schedules event
1521  * queue processing.  No interrupt acknowledgement cycle is necessary.
1522  * Also, we never need to check that the interrupt is for us, since
1523  * MSI interrupts cannot be shared.
1524  */
1525 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1526 {
1527         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1528         struct efx_nic *efx = channel->efx;
1529         efx_oword_t *int_ker = efx->irq_status.addr;
1530         int syserr;
1531
1532         netif_vdbg(efx, intr, efx->net_dev,
1533                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1534                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1535
1536         /* Handle non-event-queue sources */
1537         if (channel->channel == efx->irq_level) {
1538                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539                 if (unlikely(syserr))
1540                         return efx_nic_fatal_interrupt(efx);
1541                 efx->last_irq_cpu = raw_smp_processor_id();
1542         }
1543
1544         /* Schedule processing of the channel */
1545         efx_schedule_channel_irq(channel);
1546
1547         return IRQ_HANDLED;
1548 }
1549
1550
1551 /* Setup RSS indirection table.
1552  * This maps from the hash value of the packet to RXQ
1553  */
1554 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1555 {
1556         size_t i = 0;
1557         efx_dword_t dword;
1558
1559         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1560                 return;
1561
1562         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1563                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1564
1565         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1566                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1567                                      efx->rx_indir_table[i]);
1568                 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1569         }
1570 }
1571
1572 /* Hook interrupt handler(s)
1573  * Try MSI and then legacy interrupts.
1574  */
1575 int efx_nic_init_interrupt(struct efx_nic *efx)
1576 {
1577         struct efx_channel *channel;
1578         int rc;
1579
1580         if (!EFX_INT_MODE_USE_MSI(efx)) {
1581                 irq_handler_t handler;
1582                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1583                         handler = efx_legacy_interrupt;
1584                 else
1585                         handler = falcon_legacy_interrupt_a1;
1586
1587                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1588                                  efx->name, efx);
1589                 if (rc) {
1590                         netif_err(efx, drv, efx->net_dev,
1591                                   "failed to hook legacy IRQ %d\n",
1592                                   efx->pci_dev->irq);
1593                         goto fail1;
1594                 }
1595                 return 0;
1596         }
1597
1598         /* Hook MSI or MSI-X interrupt */
1599         efx_for_each_channel(channel, efx) {
1600                 rc = request_irq(channel->irq, efx_msi_interrupt,
1601                                  IRQF_PROBE_SHARED, /* Not shared */
1602                                  efx->channel_name[channel->channel],
1603                                  &efx->channel[channel->channel]);
1604                 if (rc) {
1605                         netif_err(efx, drv, efx->net_dev,
1606                                   "failed to hook IRQ %d\n", channel->irq);
1607                         goto fail2;
1608                 }
1609         }
1610
1611         return 0;
1612
1613  fail2:
1614         efx_for_each_channel(channel, efx)
1615                 free_irq(channel->irq, &efx->channel[channel->channel]);
1616  fail1:
1617         return rc;
1618 }
1619
1620 void efx_nic_fini_interrupt(struct efx_nic *efx)
1621 {
1622         struct efx_channel *channel;
1623         efx_oword_t reg;
1624
1625         /* Disable MSI/MSI-X interrupts */
1626         efx_for_each_channel(channel, efx) {
1627                 if (channel->irq)
1628                         free_irq(channel->irq, &efx->channel[channel->channel]);
1629         }
1630
1631         /* ACK legacy interrupt */
1632         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1633                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1634         else
1635                 falcon_irq_ack_a1(efx);
1636
1637         /* Disable legacy interrupt */
1638         if (efx->legacy_irq)
1639                 free_irq(efx->legacy_irq, efx);
1640 }
1641
1642 /* Looks at available SRAM resources and works out how many queues we
1643  * can support, and where things like descriptor caches should live.
1644  *
1645  * SRAM is split up as follows:
1646  * 0                          buftbl entries for channels
1647  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1648  * efx->rx_dc_base            RX descriptor caches
1649  * efx->tx_dc_base            TX descriptor caches
1650  */
1651 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1652 {
1653         unsigned vi_count, buftbl_min;
1654
1655         /* Account for the buffer table entries backing the datapath channels
1656          * and the descriptor caches for those channels.
1657          */
1658         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1659                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1660                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1661                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1662         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1663
1664 #ifdef CONFIG_SFC_SRIOV
1665         if (efx_sriov_wanted(efx)) {
1666                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1667
1668                 efx->vf_buftbl_base = buftbl_min;
1669
1670                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1671                 vi_count = max(vi_count, EFX_VI_BASE);
1672                 buftbl_free = (sram_lim_qw - buftbl_min -
1673                                vi_count * vi_dc_entries);
1674
1675                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1676                                   efx_vf_size(efx));
1677                 vf_limit = min(buftbl_free / entries_per_vf,
1678                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1679
1680                 if (efx->vf_count > vf_limit) {
1681                         netif_err(efx, probe, efx->net_dev,
1682                                   "Reducing VF count from from %d to %d\n",
1683                                   efx->vf_count, vf_limit);
1684                         efx->vf_count = vf_limit;
1685                 }
1686                 vi_count += efx->vf_count * efx_vf_size(efx);
1687         }
1688 #endif
1689
1690         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1691         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1692 }
1693
1694 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1695 {
1696         efx_oword_t altera_build;
1697         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1698         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1699 }
1700
1701 void efx_nic_init_common(struct efx_nic *efx)
1702 {
1703         efx_oword_t temp;
1704
1705         /* Set positions of descriptor caches in SRAM. */
1706         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1707         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1708         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1709         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1710
1711         /* Set TX descriptor cache size. */
1712         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1713         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1714         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1715
1716         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1717          * this allows most efficient prefetching.
1718          */
1719         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1720         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1721         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1722         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1723         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1724
1725         /* Program INT_KER address */
1726         EFX_POPULATE_OWORD_2(temp,
1727                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1728                              EFX_INT_MODE_USE_MSI(efx),
1729                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1730         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1731
1732         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1733                 /* Use an interrupt level unused by event queues */
1734                 efx->irq_level = 0x1f;
1735         else
1736                 /* Use a valid MSI-X vector */
1737                 efx->irq_level = 0;
1738
1739         /* Enable all the genuinely fatal interrupts.  (They are still
1740          * masked by the overall interrupt mask, controlled by
1741          * falcon_interrupts()).
1742          *
1743          * Note: All other fatal interrupts are enabled
1744          */
1745         EFX_POPULATE_OWORD_3(temp,
1746                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1747                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1748                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1749         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1750                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1751         EFX_INVERT_OWORD(temp);
1752         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1753
1754         efx_nic_push_rx_indir_table(efx);
1755
1756         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1757          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1758          */
1759         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1760         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1761         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1762         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1763         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1764         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1765         /* Enable SW_EV to inherit in char driver - assume harmless here */
1766         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1767         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1768         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1769         /* Disable hardware watchdog which can misfire */
1770         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1771         /* Squash TX of packets of 16 bytes or less */
1772         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1773                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1774         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1775
1776         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1777                 EFX_POPULATE_OWORD_4(temp,
1778                                      /* Default values */
1779                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1780                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1781                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1782                                      /* Allow large pace values in the
1783                                       * fast bin. */
1784                                      FRF_BZ_TX_PACE_BIN_TH,
1785                                      FFE_BZ_TX_PACE_RESERVED);
1786                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1787         }
1788 }
1789
1790 /* Register dump */
1791
1792 #define REGISTER_REVISION_A     1
1793 #define REGISTER_REVISION_B     2
1794 #define REGISTER_REVISION_C     3
1795 #define REGISTER_REVISION_Z     3       /* latest revision */
1796
1797 struct efx_nic_reg {
1798         u32 offset:24;
1799         u32 min_revision:2, max_revision:2;
1800 };
1801
1802 #define REGISTER(name, min_rev, max_rev) {                              \
1803         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1804         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1805 }
1806 #define REGISTER_AA(name) REGISTER(name, A, A)
1807 #define REGISTER_AB(name) REGISTER(name, A, B)
1808 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1809 #define REGISTER_BB(name) REGISTER(name, B, B)
1810 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1811 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1812
1813 static const struct efx_nic_reg efx_nic_regs[] = {
1814         REGISTER_AZ(ADR_REGION),
1815         REGISTER_AZ(INT_EN_KER),
1816         REGISTER_BZ(INT_EN_CHAR),
1817         REGISTER_AZ(INT_ADR_KER),
1818         REGISTER_BZ(INT_ADR_CHAR),
1819         /* INT_ACK_KER is WO */
1820         /* INT_ISR0 is RC */
1821         REGISTER_AZ(HW_INIT),
1822         REGISTER_CZ(USR_EV_CFG),
1823         REGISTER_AB(EE_SPI_HCMD),
1824         REGISTER_AB(EE_SPI_HADR),
1825         REGISTER_AB(EE_SPI_HDATA),
1826         REGISTER_AB(EE_BASE_PAGE),
1827         REGISTER_AB(EE_VPD_CFG0),
1828         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1829         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1830         /* PCIE_CORE_INDIRECT is indirect */
1831         REGISTER_AB(NIC_STAT),
1832         REGISTER_AB(GPIO_CTL),
1833         REGISTER_AB(GLB_CTL),
1834         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1835         REGISTER_BZ(DP_CTRL),
1836         REGISTER_AZ(MEM_STAT),
1837         REGISTER_AZ(CS_DEBUG),
1838         REGISTER_AZ(ALTERA_BUILD),
1839         REGISTER_AZ(CSR_SPARE),
1840         REGISTER_AB(PCIE_SD_CTL0123),
1841         REGISTER_AB(PCIE_SD_CTL45),
1842         REGISTER_AB(PCIE_PCS_CTL_STAT),
1843         /* DEBUG_DATA_OUT is not used */
1844         /* DRV_EV is WO */
1845         REGISTER_AZ(EVQ_CTL),
1846         REGISTER_AZ(EVQ_CNT1),
1847         REGISTER_AZ(EVQ_CNT2),
1848         REGISTER_AZ(BUF_TBL_CFG),
1849         REGISTER_AZ(SRM_RX_DC_CFG),
1850         REGISTER_AZ(SRM_TX_DC_CFG),
1851         REGISTER_AZ(SRM_CFG),
1852         /* BUF_TBL_UPD is WO */
1853         REGISTER_AZ(SRM_UPD_EVQ),
1854         REGISTER_AZ(SRAM_PARITY),
1855         REGISTER_AZ(RX_CFG),
1856         REGISTER_BZ(RX_FILTER_CTL),
1857         /* RX_FLUSH_DESCQ is WO */
1858         REGISTER_AZ(RX_DC_CFG),
1859         REGISTER_AZ(RX_DC_PF_WM),
1860         REGISTER_BZ(RX_RSS_TKEY),
1861         /* RX_NODESC_DROP is RC */
1862         REGISTER_AA(RX_SELF_RST),
1863         /* RX_DEBUG, RX_PUSH_DROP are not used */
1864         REGISTER_CZ(RX_RSS_IPV6_REG1),
1865         REGISTER_CZ(RX_RSS_IPV6_REG2),
1866         REGISTER_CZ(RX_RSS_IPV6_REG3),
1867         /* TX_FLUSH_DESCQ is WO */
1868         REGISTER_AZ(TX_DC_CFG),
1869         REGISTER_AA(TX_CHKSM_CFG),
1870         REGISTER_AZ(TX_CFG),
1871         /* TX_PUSH_DROP is not used */
1872         REGISTER_AZ(TX_RESERVED),
1873         REGISTER_BZ(TX_PACE),
1874         /* TX_PACE_DROP_QID is RC */
1875         REGISTER_BB(TX_VLAN),
1876         REGISTER_BZ(TX_IPFIL_PORTEN),
1877         REGISTER_AB(MD_TXD),
1878         REGISTER_AB(MD_RXD),
1879         REGISTER_AB(MD_CS),
1880         REGISTER_AB(MD_PHY_ADR),
1881         REGISTER_AB(MD_ID),
1882         /* MD_STAT is RC */
1883         REGISTER_AB(MAC_STAT_DMA),
1884         REGISTER_AB(MAC_CTRL),
1885         REGISTER_BB(GEN_MODE),
1886         REGISTER_AB(MAC_MC_HASH_REG0),
1887         REGISTER_AB(MAC_MC_HASH_REG1),
1888         REGISTER_AB(GM_CFG1),
1889         REGISTER_AB(GM_CFG2),
1890         /* GM_IPG and GM_HD are not used */
1891         REGISTER_AB(GM_MAX_FLEN),
1892         /* GM_TEST is not used */
1893         REGISTER_AB(GM_ADR1),
1894         REGISTER_AB(GM_ADR2),
1895         REGISTER_AB(GMF_CFG0),
1896         REGISTER_AB(GMF_CFG1),
1897         REGISTER_AB(GMF_CFG2),
1898         REGISTER_AB(GMF_CFG3),
1899         REGISTER_AB(GMF_CFG4),
1900         REGISTER_AB(GMF_CFG5),
1901         REGISTER_BB(TX_SRC_MAC_CTL),
1902         REGISTER_AB(XM_ADR_LO),
1903         REGISTER_AB(XM_ADR_HI),
1904         REGISTER_AB(XM_GLB_CFG),
1905         REGISTER_AB(XM_TX_CFG),
1906         REGISTER_AB(XM_RX_CFG),
1907         REGISTER_AB(XM_MGT_INT_MASK),
1908         REGISTER_AB(XM_FC),
1909         REGISTER_AB(XM_PAUSE_TIME),
1910         REGISTER_AB(XM_TX_PARAM),
1911         REGISTER_AB(XM_RX_PARAM),
1912         /* XM_MGT_INT_MSK (note no 'A') is RC */
1913         REGISTER_AB(XX_PWR_RST),
1914         REGISTER_AB(XX_SD_CTL),
1915         REGISTER_AB(XX_TXDRV_CTL),
1916         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1917         /* XX_CORE_STAT is partly RC */
1918 };
1919
1920 struct efx_nic_reg_table {
1921         u32 offset:24;
1922         u32 min_revision:2, max_revision:2;
1923         u32 step:6, rows:21;
1924 };
1925
1926 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1927         offset,                                                         \
1928         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
1929         step, rows                                                      \
1930 }
1931 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
1932         REGISTER_TABLE_DIMENSIONS(                                      \
1933                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
1934                 min_rev, max_rev,                                       \
1935                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
1936                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1937 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1938 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1939 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1940 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1941 #define REGISTER_TABLE_BB_CZ(name)                                      \
1942         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
1943                                   FR_BZ_ ## name ## _STEP,              \
1944                                   FR_BB_ ## name ## _ROWS),             \
1945         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
1946                                   FR_BZ_ ## name ## _STEP,              \
1947                                   FR_CZ_ ## name ## _ROWS)
1948 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1949
1950 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1951         /* DRIVER is not used */
1952         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1953         REGISTER_TABLE_BB(TX_IPFIL_TBL),
1954         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1955         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1956         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1957         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1958         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1959         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1960         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1961         /* We can't reasonably read all of the buffer table (up to 8MB!).
1962          * However this driver will only use a few entries.  Reading
1963          * 1K entries allows for some expansion of queue count and
1964          * size before we need to change the version. */
1965         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1966                                   A, A, 8, 1024),
1967         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1968                                   B, Z, 8, 1024),
1969         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1970         REGISTER_TABLE_BB_CZ(TIMER_TBL),
1971         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1972         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1973         /* TX_FILTER_TBL0 is huge and not used by this driver */
1974         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1975         REGISTER_TABLE_CZ(MC_TREG_SMEM),
1976         /* MSIX_PBA_TABLE is not mapped */
1977         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1978         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1979 };
1980
1981 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1982 {
1983         const struct efx_nic_reg *reg;
1984         const struct efx_nic_reg_table *table;
1985         size_t len = 0;
1986
1987         for (reg = efx_nic_regs;
1988              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1989              reg++)
1990                 if (efx->type->revision >= reg->min_revision &&
1991                     efx->type->revision <= reg->max_revision)
1992                         len += sizeof(efx_oword_t);
1993
1994         for (table = efx_nic_reg_tables;
1995              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1996              table++)
1997                 if (efx->type->revision >= table->min_revision &&
1998                     efx->type->revision <= table->max_revision)
1999                         len += table->rows * min_t(size_t, table->step, 16);
2000
2001         return len;
2002 }
2003
2004 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2005 {
2006         const struct efx_nic_reg *reg;
2007         const struct efx_nic_reg_table *table;
2008
2009         for (reg = efx_nic_regs;
2010              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2011              reg++) {
2012                 if (efx->type->revision >= reg->min_revision &&
2013                     efx->type->revision <= reg->max_revision) {
2014                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2015                         buf += sizeof(efx_oword_t);
2016                 }
2017         }
2018
2019         for (table = efx_nic_reg_tables;
2020              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2021              table++) {
2022                 size_t size, i;
2023
2024                 if (!(efx->type->revision >= table->min_revision &&
2025                       efx->type->revision <= table->max_revision))
2026                         continue;
2027
2028                 size = min_t(size_t, table->step, 16);
2029
2030                 for (i = 0; i < table->rows; i++) {
2031                         switch (table->step) {
2032                         case 4: /* 32-bit register or SRAM */
2033                                 efx_readd_table(efx, buf, table->offset, i);
2034                                 break;
2035                         case 8: /* 64-bit SRAM */
2036                                 efx_sram_readq(efx,
2037                                                efx->membase + table->offset,
2038                                                buf, i);
2039                                 break;
2040                         case 16: /* 128-bit register */
2041                                 efx_reado_table(efx, buf, table->offset, i);
2042                                 break;
2043                         case 32: /* 128-bit register, interleaved */
2044                                 efx_reado_table(efx, buf, table->offset, 2 * i);
2045                                 break;
2046                         default:
2047                                 WARN_ON(1);
2048                                 return;
2049                         }
2050                         buf += size;
2051                 }
2052         }
2053 }