sfc: Support variable-length response to MCDI GET_BOARD_CFG
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / net / ethernet / sfc / mtd.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17
18 #include "net_driver.h"
19 #include "spi.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "mcdi.h"
23 #include "mcdi_pcol.h"
24
25 #define EFX_SPI_VERIFY_BUF_LEN 16
26
27 struct efx_mtd_partition {
28         struct mtd_info mtd;
29         union {
30                 struct {
31                         bool updating;
32                         u8 nvram_type;
33                         u16 fw_subtype;
34                 } mcdi;
35                 size_t offset;
36         };
37         const char *type_name;
38         char name[IFNAMSIZ + 20];
39 };
40
41 struct efx_mtd_ops {
42         int (*read)(struct mtd_info *mtd, loff_t start, size_t len,
43                     size_t *retlen, u8 *buffer);
44         int (*erase)(struct mtd_info *mtd, loff_t start, size_t len);
45         int (*write)(struct mtd_info *mtd, loff_t start, size_t len,
46                      size_t *retlen, const u8 *buffer);
47         int (*sync)(struct mtd_info *mtd);
48 };
49
50 struct efx_mtd {
51         struct list_head node;
52         struct efx_nic *efx;
53         const struct efx_spi_device *spi;
54         const char *name;
55         const struct efx_mtd_ops *ops;
56         size_t n_parts;
57         struct efx_mtd_partition part[0];
58 };
59
60 #define efx_for_each_partition(part, efx_mtd)                   \
61         for ((part) = &(efx_mtd)->part[0];                      \
62              (part) != &(efx_mtd)->part[(efx_mtd)->n_parts];    \
63              (part)++)
64
65 #define to_efx_mtd_partition(mtd)                               \
66         container_of(mtd, struct efx_mtd_partition, mtd)
67
68 static int falcon_mtd_probe(struct efx_nic *efx);
69 static int siena_mtd_probe(struct efx_nic *efx);
70
71 /* SPI utilities */
72
73 static int
74 efx_spi_slow_wait(struct efx_mtd_partition *part, bool uninterruptible)
75 {
76         struct efx_mtd *efx_mtd = part->mtd.priv;
77         const struct efx_spi_device *spi = efx_mtd->spi;
78         struct efx_nic *efx = efx_mtd->efx;
79         u8 status;
80         int rc, i;
81
82         /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
83         for (i = 0; i < 40; i++) {
84                 __set_current_state(uninterruptible ?
85                                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
86                 schedule_timeout(HZ / 10);
87                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
88                                     &status, sizeof(status));
89                 if (rc)
90                         return rc;
91                 if (!(status & SPI_STATUS_NRDY))
92                         return 0;
93                 if (signal_pending(current))
94                         return -EINTR;
95         }
96         pr_err("%s: timed out waiting for %s\n", part->name, efx_mtd->name);
97         return -ETIMEDOUT;
98 }
99
100 static int
101 efx_spi_unlock(struct efx_nic *efx, const struct efx_spi_device *spi)
102 {
103         const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
104                                 SPI_STATUS_BP0);
105         u8 status;
106         int rc;
107
108         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
109                             &status, sizeof(status));
110         if (rc)
111                 return rc;
112
113         if (!(status & unlock_mask))
114                 return 0; /* already unlocked */
115
116         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
117         if (rc)
118                 return rc;
119         rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
120         if (rc)
121                 return rc;
122
123         status &= ~unlock_mask;
124         rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
125                             NULL, sizeof(status));
126         if (rc)
127                 return rc;
128         rc = falcon_spi_wait_write(efx, spi);
129         if (rc)
130                 return rc;
131
132         return 0;
133 }
134
135 static int
136 efx_spi_erase(struct efx_mtd_partition *part, loff_t start, size_t len)
137 {
138         struct efx_mtd *efx_mtd = part->mtd.priv;
139         const struct efx_spi_device *spi = efx_mtd->spi;
140         struct efx_nic *efx = efx_mtd->efx;
141         unsigned pos, block_len;
142         u8 empty[EFX_SPI_VERIFY_BUF_LEN];
143         u8 buffer[EFX_SPI_VERIFY_BUF_LEN];
144         int rc;
145
146         if (len != spi->erase_size)
147                 return -EINVAL;
148
149         if (spi->erase_command == 0)
150                 return -EOPNOTSUPP;
151
152         rc = efx_spi_unlock(efx, spi);
153         if (rc)
154                 return rc;
155         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
156         if (rc)
157                 return rc;
158         rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
159                             NULL, 0);
160         if (rc)
161                 return rc;
162         rc = efx_spi_slow_wait(part, false);
163
164         /* Verify the entire region has been wiped */
165         memset(empty, 0xff, sizeof(empty));
166         for (pos = 0; pos < len; pos += block_len) {
167                 block_len = min(len - pos, sizeof(buffer));
168                 rc = falcon_spi_read(efx, spi, start + pos, block_len,
169                                      NULL, buffer);
170                 if (rc)
171                         return rc;
172                 if (memcmp(empty, buffer, block_len))
173                         return -EIO;
174
175                 /* Avoid locking up the system */
176                 cond_resched();
177                 if (signal_pending(current))
178                         return -EINTR;
179         }
180
181         return rc;
182 }
183
184 /* MTD interface */
185
186 static int efx_mtd_erase(struct mtd_info *mtd, struct erase_info *erase)
187 {
188         struct efx_mtd *efx_mtd = mtd->priv;
189         int rc;
190
191         rc = efx_mtd->ops->erase(mtd, erase->addr, erase->len);
192         if (rc == 0) {
193                 erase->state = MTD_ERASE_DONE;
194         } else {
195                 erase->state = MTD_ERASE_FAILED;
196                 erase->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
197         }
198         mtd_erase_callback(erase);
199         return rc;
200 }
201
202 static void efx_mtd_sync(struct mtd_info *mtd)
203 {
204         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
205         struct efx_mtd *efx_mtd = mtd->priv;
206         int rc;
207
208         rc = efx_mtd->ops->sync(mtd);
209         if (rc)
210                 pr_err("%s: %s sync failed (%d)\n",
211                        part->name, efx_mtd->name, rc);
212 }
213
214 static void efx_mtd_remove_partition(struct efx_mtd_partition *part)
215 {
216         int rc;
217
218         for (;;) {
219                 rc = mtd_device_unregister(&part->mtd);
220                 if (rc != -EBUSY)
221                         break;
222                 ssleep(1);
223         }
224         WARN_ON(rc);
225 }
226
227 static void efx_mtd_remove_device(struct efx_mtd *efx_mtd)
228 {
229         struct efx_mtd_partition *part;
230
231         efx_for_each_partition(part, efx_mtd)
232                 efx_mtd_remove_partition(part);
233         list_del(&efx_mtd->node);
234         kfree(efx_mtd);
235 }
236
237 static void efx_mtd_rename_device(struct efx_mtd *efx_mtd)
238 {
239         struct efx_mtd_partition *part;
240
241         efx_for_each_partition(part, efx_mtd)
242                 if (efx_nic_rev(efx_mtd->efx) >= EFX_REV_SIENA_A0)
243                         snprintf(part->name, sizeof(part->name),
244                                  "%s %s:%02x", efx_mtd->efx->name,
245                                  part->type_name, part->mcdi.fw_subtype);
246                 else
247                         snprintf(part->name, sizeof(part->name),
248                                  "%s %s", efx_mtd->efx->name,
249                                  part->type_name);
250 }
251
252 static int efx_mtd_probe_device(struct efx_nic *efx, struct efx_mtd *efx_mtd)
253 {
254         struct efx_mtd_partition *part;
255
256         efx_mtd->efx = efx;
257
258         efx_mtd_rename_device(efx_mtd);
259
260         efx_for_each_partition(part, efx_mtd) {
261                 part->mtd.writesize = 1;
262
263                 part->mtd.owner = THIS_MODULE;
264                 part->mtd.priv = efx_mtd;
265                 part->mtd.name = part->name;
266                 part->mtd._erase = efx_mtd_erase;
267                 part->mtd._read = efx_mtd->ops->read;
268                 part->mtd._write = efx_mtd->ops->write;
269                 part->mtd._sync = efx_mtd_sync;
270
271                 if (mtd_device_register(&part->mtd, NULL, 0))
272                         goto fail;
273         }
274
275         list_add(&efx_mtd->node, &efx->mtd_list);
276         return 0;
277
278 fail:
279         while (part != &efx_mtd->part[0]) {
280                 --part;
281                 efx_mtd_remove_partition(part);
282         }
283         /* Failure is unlikely here, but probably means we're out of memory */
284         return -ENOMEM;
285 }
286
287 void efx_mtd_remove(struct efx_nic *efx)
288 {
289         struct efx_mtd *efx_mtd, *next;
290
291         WARN_ON(efx_dev_registered(efx));
292
293         list_for_each_entry_safe(efx_mtd, next, &efx->mtd_list, node)
294                 efx_mtd_remove_device(efx_mtd);
295 }
296
297 void efx_mtd_rename(struct efx_nic *efx)
298 {
299         struct efx_mtd *efx_mtd;
300
301         ASSERT_RTNL();
302
303         list_for_each_entry(efx_mtd, &efx->mtd_list, node)
304                 efx_mtd_rename_device(efx_mtd);
305 }
306
307 int efx_mtd_probe(struct efx_nic *efx)
308 {
309         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
310                 return siena_mtd_probe(efx);
311         else
312                 return falcon_mtd_probe(efx);
313 }
314
315 /* Implementation of MTD operations for Falcon */
316
317 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
318                            size_t len, size_t *retlen, u8 *buffer)
319 {
320         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
321         struct efx_mtd *efx_mtd = mtd->priv;
322         const struct efx_spi_device *spi = efx_mtd->spi;
323         struct efx_nic *efx = efx_mtd->efx;
324         struct falcon_nic_data *nic_data = efx->nic_data;
325         int rc;
326
327         rc = mutex_lock_interruptible(&nic_data->spi_lock);
328         if (rc)
329                 return rc;
330         rc = falcon_spi_read(efx, spi, part->offset + start, len,
331                              retlen, buffer);
332         mutex_unlock(&nic_data->spi_lock);
333         return rc;
334 }
335
336 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
337 {
338         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
339         struct efx_mtd *efx_mtd = mtd->priv;
340         struct efx_nic *efx = efx_mtd->efx;
341         struct falcon_nic_data *nic_data = efx->nic_data;
342         int rc;
343
344         rc = mutex_lock_interruptible(&nic_data->spi_lock);
345         if (rc)
346                 return rc;
347         rc = efx_spi_erase(part, part->offset + start, len);
348         mutex_unlock(&nic_data->spi_lock);
349         return rc;
350 }
351
352 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
353                             size_t len, size_t *retlen, const u8 *buffer)
354 {
355         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
356         struct efx_mtd *efx_mtd = mtd->priv;
357         const struct efx_spi_device *spi = efx_mtd->spi;
358         struct efx_nic *efx = efx_mtd->efx;
359         struct falcon_nic_data *nic_data = efx->nic_data;
360         int rc;
361
362         rc = mutex_lock_interruptible(&nic_data->spi_lock);
363         if (rc)
364                 return rc;
365         rc = falcon_spi_write(efx, spi, part->offset + start, len,
366                               retlen, buffer);
367         mutex_unlock(&nic_data->spi_lock);
368         return rc;
369 }
370
371 static int falcon_mtd_sync(struct mtd_info *mtd)
372 {
373         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
374         struct efx_mtd *efx_mtd = mtd->priv;
375         struct efx_nic *efx = efx_mtd->efx;
376         struct falcon_nic_data *nic_data = efx->nic_data;
377         int rc;
378
379         mutex_lock(&nic_data->spi_lock);
380         rc = efx_spi_slow_wait(part, true);
381         mutex_unlock(&nic_data->spi_lock);
382         return rc;
383 }
384
385 static const struct efx_mtd_ops falcon_mtd_ops = {
386         .read   = falcon_mtd_read,
387         .erase  = falcon_mtd_erase,
388         .write  = falcon_mtd_write,
389         .sync   = falcon_mtd_sync,
390 };
391
392 static int falcon_mtd_probe(struct efx_nic *efx)
393 {
394         struct falcon_nic_data *nic_data = efx->nic_data;
395         struct efx_spi_device *spi;
396         struct efx_mtd *efx_mtd;
397         int rc = -ENODEV;
398
399         ASSERT_RTNL();
400
401         spi = &nic_data->spi_flash;
402         if (efx_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
403                 efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]),
404                                   GFP_KERNEL);
405                 if (!efx_mtd)
406                         return -ENOMEM;
407
408                 efx_mtd->spi = spi;
409                 efx_mtd->name = "flash";
410                 efx_mtd->ops = &falcon_mtd_ops;
411
412                 efx_mtd->n_parts = 1;
413                 efx_mtd->part[0].mtd.type = MTD_NORFLASH;
414                 efx_mtd->part[0].mtd.flags = MTD_CAP_NORFLASH;
415                 efx_mtd->part[0].mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
416                 efx_mtd->part[0].mtd.erasesize = spi->erase_size;
417                 efx_mtd->part[0].offset = FALCON_FLASH_BOOTCODE_START;
418                 efx_mtd->part[0].type_name = "sfc_flash_bootrom";
419
420                 rc = efx_mtd_probe_device(efx, efx_mtd);
421                 if (rc) {
422                         kfree(efx_mtd);
423                         return rc;
424                 }
425         }
426
427         spi = &nic_data->spi_eeprom;
428         if (efx_spi_present(spi) && spi->size > EFX_EEPROM_BOOTCONFIG_START) {
429                 efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]),
430                                   GFP_KERNEL);
431                 if (!efx_mtd)
432                         return -ENOMEM;
433
434                 efx_mtd->spi = spi;
435                 efx_mtd->name = "EEPROM";
436                 efx_mtd->ops = &falcon_mtd_ops;
437
438                 efx_mtd->n_parts = 1;
439                 efx_mtd->part[0].mtd.type = MTD_RAM;
440                 efx_mtd->part[0].mtd.flags = MTD_CAP_RAM;
441                 efx_mtd->part[0].mtd.size =
442                         min(spi->size, EFX_EEPROM_BOOTCONFIG_END) -
443                         EFX_EEPROM_BOOTCONFIG_START;
444                 efx_mtd->part[0].mtd.erasesize = spi->erase_size;
445                 efx_mtd->part[0].offset = EFX_EEPROM_BOOTCONFIG_START;
446                 efx_mtd->part[0].type_name = "sfc_bootconfig";
447
448                 rc = efx_mtd_probe_device(efx, efx_mtd);
449                 if (rc) {
450                         kfree(efx_mtd);
451                         return rc;
452                 }
453         }
454
455         return rc;
456 }
457
458 /* Implementation of MTD operations for Siena */
459
460 static int siena_mtd_read(struct mtd_info *mtd, loff_t start,
461                           size_t len, size_t *retlen, u8 *buffer)
462 {
463         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
464         struct efx_mtd *efx_mtd = mtd->priv;
465         struct efx_nic *efx = efx_mtd->efx;
466         loff_t offset = start;
467         loff_t end = min_t(loff_t, start + len, mtd->size);
468         size_t chunk;
469         int rc = 0;
470
471         while (offset < end) {
472                 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
473                 rc = efx_mcdi_nvram_read(efx, part->mcdi.nvram_type, offset,
474                                          buffer, chunk);
475                 if (rc)
476                         goto out;
477                 offset += chunk;
478                 buffer += chunk;
479         }
480 out:
481         *retlen = offset - start;
482         return rc;
483 }
484
485 static int siena_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
486 {
487         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
488         struct efx_mtd *efx_mtd = mtd->priv;
489         struct efx_nic *efx = efx_mtd->efx;
490         loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
491         loff_t end = min_t(loff_t, start + len, mtd->size);
492         size_t chunk = part->mtd.erasesize;
493         int rc = 0;
494
495         if (!part->mcdi.updating) {
496                 rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type);
497                 if (rc)
498                         goto out;
499                 part->mcdi.updating = true;
500         }
501
502         /* The MCDI interface can in fact do multiple erase blocks at once;
503          * but erasing may be slow, so we make multiple calls here to avoid
504          * tripping the MCDI RPC timeout. */
505         while (offset < end) {
506                 rc = efx_mcdi_nvram_erase(efx, part->mcdi.nvram_type, offset,
507                                           chunk);
508                 if (rc)
509                         goto out;
510                 offset += chunk;
511         }
512 out:
513         return rc;
514 }
515
516 static int siena_mtd_write(struct mtd_info *mtd, loff_t start,
517                            size_t len, size_t *retlen, const u8 *buffer)
518 {
519         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
520         struct efx_mtd *efx_mtd = mtd->priv;
521         struct efx_nic *efx = efx_mtd->efx;
522         loff_t offset = start;
523         loff_t end = min_t(loff_t, start + len, mtd->size);
524         size_t chunk;
525         int rc = 0;
526
527         if (!part->mcdi.updating) {
528                 rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type);
529                 if (rc)
530                         goto out;
531                 part->mcdi.updating = true;
532         }
533
534         while (offset < end) {
535                 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
536                 rc = efx_mcdi_nvram_write(efx, part->mcdi.nvram_type, offset,
537                                           buffer, chunk);
538                 if (rc)
539                         goto out;
540                 offset += chunk;
541                 buffer += chunk;
542         }
543 out:
544         *retlen = offset - start;
545         return rc;
546 }
547
548 static int siena_mtd_sync(struct mtd_info *mtd)
549 {
550         struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
551         struct efx_mtd *efx_mtd = mtd->priv;
552         struct efx_nic *efx = efx_mtd->efx;
553         int rc = 0;
554
555         if (part->mcdi.updating) {
556                 part->mcdi.updating = false;
557                 rc = efx_mcdi_nvram_update_finish(efx, part->mcdi.nvram_type);
558         }
559
560         return rc;
561 }
562
563 static const struct efx_mtd_ops siena_mtd_ops = {
564         .read   = siena_mtd_read,
565         .erase  = siena_mtd_erase,
566         .write  = siena_mtd_write,
567         .sync   = siena_mtd_sync,
568 };
569
570 struct siena_nvram_type_info {
571         int port;
572         const char *name;
573 };
574
575 static const struct siena_nvram_type_info siena_nvram_types[] = {
576         [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO]   = { 0, "sfc_dummy_phy" },
577         [MC_CMD_NVRAM_TYPE_MC_FW]               = { 0, "sfc_mcfw" },
578         [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP]        = { 0, "sfc_mcfw_backup" },
579         [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0]    = { 0, "sfc_static_cfg" },
580         [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1]    = { 1, "sfc_static_cfg" },
581         [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0]   = { 0, "sfc_dynamic_cfg" },
582         [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1]   = { 1, "sfc_dynamic_cfg" },
583         [MC_CMD_NVRAM_TYPE_EXP_ROM]             = { 0, "sfc_exp_rom" },
584         [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0]   = { 0, "sfc_exp_rom_cfg" },
585         [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1]   = { 1, "sfc_exp_rom_cfg" },
586         [MC_CMD_NVRAM_TYPE_PHY_PORT0]           = { 0, "sfc_phy_fw" },
587         [MC_CMD_NVRAM_TYPE_PHY_PORT1]           = { 1, "sfc_phy_fw" },
588 };
589
590 static int siena_mtd_probe_partition(struct efx_nic *efx,
591                                      struct efx_mtd *efx_mtd,
592                                      unsigned int part_id,
593                                      unsigned int type)
594 {
595         struct efx_mtd_partition *part = &efx_mtd->part[part_id];
596         const struct siena_nvram_type_info *info;
597         size_t size, erase_size;
598         bool protected;
599         int rc;
600
601         if (type >= ARRAY_SIZE(siena_nvram_types))
602                 return -ENODEV;
603
604         info = &siena_nvram_types[type];
605
606         if (info->port != efx_port_num(efx))
607                 return -ENODEV;
608
609         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
610         if (rc)
611                 return rc;
612         if (protected)
613                 return -ENODEV; /* hide it */
614
615         part->mcdi.nvram_type = type;
616         part->type_name = info->name;
617
618         part->mtd.type = MTD_NORFLASH;
619         part->mtd.flags = MTD_CAP_NORFLASH;
620         part->mtd.size = size;
621         part->mtd.erasesize = erase_size;
622
623         return 0;
624 }
625
626 static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
627                                      struct efx_mtd *efx_mtd)
628 {
629         struct efx_mtd_partition *part;
630         uint16_t fw_subtype_list[
631                 MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
632         int rc;
633
634         rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
635         if (rc)
636                 return rc;
637
638         efx_for_each_partition(part, efx_mtd)
639                 part->mcdi.fw_subtype = fw_subtype_list[part->mcdi.nvram_type];
640
641         return 0;
642 }
643
644 static int siena_mtd_probe(struct efx_nic *efx)
645 {
646         struct efx_mtd *efx_mtd;
647         int rc = -ENODEV;
648         u32 nvram_types;
649         unsigned int type;
650
651         ASSERT_RTNL();
652
653         rc = efx_mcdi_nvram_types(efx, &nvram_types);
654         if (rc)
655                 return rc;
656
657         efx_mtd = kzalloc(sizeof(*efx_mtd) +
658                           hweight32(nvram_types) * sizeof(efx_mtd->part[0]),
659                           GFP_KERNEL);
660         if (!efx_mtd)
661                 return -ENOMEM;
662
663         efx_mtd->name = "Siena NVRAM manager";
664
665         efx_mtd->ops = &siena_mtd_ops;
666
667         type = 0;
668         efx_mtd->n_parts = 0;
669
670         while (nvram_types != 0) {
671                 if (nvram_types & 1) {
672                         rc = siena_mtd_probe_partition(efx, efx_mtd,
673                                                        efx_mtd->n_parts, type);
674                         if (rc == 0)
675                                 efx_mtd->n_parts++;
676                         else if (rc != -ENODEV)
677                                 goto fail;
678                 }
679                 type++;
680                 nvram_types >>= 1;
681         }
682
683         rc = siena_mtd_get_fw_subtypes(efx, efx_mtd);
684         if (rc)
685                 goto fail;
686
687         rc = efx_mtd_probe_device(efx, efx_mtd);
688 fail:
689         if (rc)
690                 kfree(efx_mtd);
691         return rc;
692 }
693