sh_eth: replace devm_kzalloc() with devm_kmalloc_array()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
5  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
6  *  Copyright (C) 2014 Codethink Limited
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *
17  *  The full GNU General Public License is included in this distribution in
18  *  the file called "COPYING".
19  */
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/platform_device.h>
29 #include <linux/mdio-bitbang.h>
30 #include <linux/netdevice.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_net.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45
46 #include "sh_eth.h"
47
48 #define SH_ETH_DEF_MSG_ENABLE \
49                 (NETIF_MSG_LINK | \
50                 NETIF_MSG_TIMER | \
51                 NETIF_MSG_RX_ERR| \
52                 NETIF_MSG_TX_ERR)
53
54 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
55         [EDSR]          = 0x0000,
56         [EDMR]          = 0x0400,
57         [EDTRR]         = 0x0408,
58         [EDRRR]         = 0x0410,
59         [EESR]          = 0x0428,
60         [EESIPR]        = 0x0430,
61         [TDLAR]         = 0x0010,
62         [TDFAR]         = 0x0014,
63         [TDFXR]         = 0x0018,
64         [TDFFR]         = 0x001c,
65         [RDLAR]         = 0x0030,
66         [RDFAR]         = 0x0034,
67         [RDFXR]         = 0x0038,
68         [RDFFR]         = 0x003c,
69         [TRSCER]        = 0x0438,
70         [RMFCR]         = 0x0440,
71         [TFTR]          = 0x0448,
72         [FDR]           = 0x0450,
73         [RMCR]          = 0x0458,
74         [RPADIR]        = 0x0460,
75         [FCFTR]         = 0x0468,
76         [CSMR]          = 0x04E4,
77
78         [ECMR]          = 0x0500,
79         [ECSR]          = 0x0510,
80         [ECSIPR]        = 0x0518,
81         [PIR]           = 0x0520,
82         [PSR]           = 0x0528,
83         [PIPR]          = 0x052c,
84         [RFLR]          = 0x0508,
85         [APR]           = 0x0554,
86         [MPR]           = 0x0558,
87         [PFTCR]         = 0x055c,
88         [PFRCR]         = 0x0560,
89         [TPAUSER]       = 0x0564,
90         [GECMR]         = 0x05b0,
91         [BCULR]         = 0x05b4,
92         [MAHR]          = 0x05c0,
93         [MALR]          = 0x05c8,
94         [TROCR]         = 0x0700,
95         [CDCR]          = 0x0708,
96         [LCCR]          = 0x0710,
97         [CEFCR]         = 0x0740,
98         [FRECR]         = 0x0748,
99         [TSFRCR]        = 0x0750,
100         [TLFRCR]        = 0x0758,
101         [RFCR]          = 0x0760,
102         [CERCR]         = 0x0768,
103         [CEECR]         = 0x0770,
104         [MAFCR]         = 0x0778,
105         [RMII_MII]      = 0x0790,
106
107         [ARSTR]         = 0x0000,
108         [TSU_CTRST]     = 0x0004,
109         [TSU_FWEN0]     = 0x0010,
110         [TSU_FWEN1]     = 0x0014,
111         [TSU_FCM]       = 0x0018,
112         [TSU_BSYSL0]    = 0x0020,
113         [TSU_BSYSL1]    = 0x0024,
114         [TSU_PRISL0]    = 0x0028,
115         [TSU_PRISL1]    = 0x002c,
116         [TSU_FWSL0]     = 0x0030,
117         [TSU_FWSL1]     = 0x0034,
118         [TSU_FWSLC]     = 0x0038,
119         [TSU_QTAG0]     = 0x0040,
120         [TSU_QTAG1]     = 0x0044,
121         [TSU_FWSR]      = 0x0050,
122         [TSU_FWINMK]    = 0x0054,
123         [TSU_ADQT0]     = 0x0048,
124         [TSU_ADQT1]     = 0x004c,
125         [TSU_VTAG0]     = 0x0058,
126         [TSU_VTAG1]     = 0x005c,
127         [TSU_ADSBSY]    = 0x0060,
128         [TSU_TEN]       = 0x0064,
129         [TSU_POST1]     = 0x0070,
130         [TSU_POST2]     = 0x0074,
131         [TSU_POST3]     = 0x0078,
132         [TSU_POST4]     = 0x007c,
133         [TSU_ADRH0]     = 0x0100,
134         [TSU_ADRL0]     = 0x0104,
135         [TSU_ADRH31]    = 0x01f8,
136         [TSU_ADRL31]    = 0x01fc,
137
138         [TXNLCR0]       = 0x0080,
139         [TXALCR0]       = 0x0084,
140         [RXNLCR0]       = 0x0088,
141         [RXALCR0]       = 0x008c,
142         [FWNLCR0]       = 0x0090,
143         [FWALCR0]       = 0x0094,
144         [TXNLCR1]       = 0x00a0,
145         [TXALCR1]       = 0x00a0,
146         [RXNLCR1]       = 0x00a8,
147         [RXALCR1]       = 0x00ac,
148         [FWNLCR1]       = 0x00b0,
149         [FWALCR1]       = 0x00b4,
150 };
151
152 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
153         [EDSR]          = 0x0000,
154         [EDMR]          = 0x0400,
155         [EDTRR]         = 0x0408,
156         [EDRRR]         = 0x0410,
157         [EESR]          = 0x0428,
158         [EESIPR]        = 0x0430,
159         [TDLAR]         = 0x0010,
160         [TDFAR]         = 0x0014,
161         [TDFXR]         = 0x0018,
162         [TDFFR]         = 0x001c,
163         [RDLAR]         = 0x0030,
164         [RDFAR]         = 0x0034,
165         [RDFXR]         = 0x0038,
166         [RDFFR]         = 0x003c,
167         [TRSCER]        = 0x0438,
168         [RMFCR]         = 0x0440,
169         [TFTR]          = 0x0448,
170         [FDR]           = 0x0450,
171         [RMCR]          = 0x0458,
172         [RPADIR]        = 0x0460,
173         [FCFTR]         = 0x0468,
174         [CSMR]          = 0x04E4,
175
176         [ECMR]          = 0x0500,
177         [RFLR]          = 0x0508,
178         [ECSR]          = 0x0510,
179         [ECSIPR]        = 0x0518,
180         [PIR]           = 0x0520,
181         [APR]           = 0x0554,
182         [MPR]           = 0x0558,
183         [PFTCR]         = 0x055c,
184         [PFRCR]         = 0x0560,
185         [TPAUSER]       = 0x0564,
186         [MAHR]          = 0x05c0,
187         [MALR]          = 0x05c8,
188         [CEFCR]         = 0x0740,
189         [FRECR]         = 0x0748,
190         [TSFRCR]        = 0x0750,
191         [TLFRCR]        = 0x0758,
192         [RFCR]          = 0x0760,
193         [MAFCR]         = 0x0778,
194
195         [ARSTR]         = 0x0000,
196         [TSU_CTRST]     = 0x0004,
197         [TSU_VTAG0]     = 0x0058,
198         [TSU_ADSBSY]    = 0x0060,
199         [TSU_TEN]       = 0x0064,
200         [TSU_ADRH0]     = 0x0100,
201         [TSU_ADRL0]     = 0x0104,
202         [TSU_ADRH31]    = 0x01f8,
203         [TSU_ADRL31]    = 0x01fc,
204
205         [TXNLCR0]       = 0x0080,
206         [TXALCR0]       = 0x0084,
207         [RXNLCR0]       = 0x0088,
208         [RXALCR0]       = 0x008C,
209 };
210
211 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
212         [ECMR]          = 0x0300,
213         [RFLR]          = 0x0308,
214         [ECSR]          = 0x0310,
215         [ECSIPR]        = 0x0318,
216         [PIR]           = 0x0320,
217         [PSR]           = 0x0328,
218         [RDMLR]         = 0x0340,
219         [IPGR]          = 0x0350,
220         [APR]           = 0x0354,
221         [MPR]           = 0x0358,
222         [RFCF]          = 0x0360,
223         [TPAUSER]       = 0x0364,
224         [TPAUSECR]      = 0x0368,
225         [MAHR]          = 0x03c0,
226         [MALR]          = 0x03c8,
227         [TROCR]         = 0x03d0,
228         [CDCR]          = 0x03d4,
229         [LCCR]          = 0x03d8,
230         [CNDCR]         = 0x03dc,
231         [CEFCR]         = 0x03e4,
232         [FRECR]         = 0x03e8,
233         [TSFRCR]        = 0x03ec,
234         [TLFRCR]        = 0x03f0,
235         [RFCR]          = 0x03f4,
236         [MAFCR]         = 0x03f8,
237
238         [EDMR]          = 0x0200,
239         [EDTRR]         = 0x0208,
240         [EDRRR]         = 0x0210,
241         [TDLAR]         = 0x0218,
242         [RDLAR]         = 0x0220,
243         [EESR]          = 0x0228,
244         [EESIPR]        = 0x0230,
245         [TRSCER]        = 0x0238,
246         [RMFCR]         = 0x0240,
247         [TFTR]          = 0x0248,
248         [FDR]           = 0x0250,
249         [RMCR]          = 0x0258,
250         [TFUCR]         = 0x0264,
251         [RFOCR]         = 0x0268,
252         [RMIIMODE]      = 0x026c,
253         [FCFTR]         = 0x0270,
254         [TRIMD]         = 0x027c,
255 };
256
257 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
258         [ECMR]          = 0x0100,
259         [RFLR]          = 0x0108,
260         [ECSR]          = 0x0110,
261         [ECSIPR]        = 0x0118,
262         [PIR]           = 0x0120,
263         [PSR]           = 0x0128,
264         [RDMLR]         = 0x0140,
265         [IPGR]          = 0x0150,
266         [APR]           = 0x0154,
267         [MPR]           = 0x0158,
268         [TPAUSER]       = 0x0164,
269         [RFCF]          = 0x0160,
270         [TPAUSECR]      = 0x0168,
271         [BCFRR]         = 0x016c,
272         [MAHR]          = 0x01c0,
273         [MALR]          = 0x01c8,
274         [TROCR]         = 0x01d0,
275         [CDCR]          = 0x01d4,
276         [LCCR]          = 0x01d8,
277         [CNDCR]         = 0x01dc,
278         [CEFCR]         = 0x01e4,
279         [FRECR]         = 0x01e8,
280         [TSFRCR]        = 0x01ec,
281         [TLFRCR]        = 0x01f0,
282         [RFCR]          = 0x01f4,
283         [MAFCR]         = 0x01f8,
284         [RTRATE]        = 0x01fc,
285
286         [EDMR]          = 0x0000,
287         [EDTRR]         = 0x0008,
288         [EDRRR]         = 0x0010,
289         [TDLAR]         = 0x0018,
290         [RDLAR]         = 0x0020,
291         [EESR]          = 0x0028,
292         [EESIPR]        = 0x0030,
293         [TRSCER]        = 0x0038,
294         [RMFCR]         = 0x0040,
295         [TFTR]          = 0x0048,
296         [FDR]           = 0x0050,
297         [RMCR]          = 0x0058,
298         [TFUCR]         = 0x0064,
299         [RFOCR]         = 0x0068,
300         [FCFTR]         = 0x0070,
301         [RPADIR]        = 0x0078,
302         [TRIMD]         = 0x007c,
303         [RBWAR]         = 0x00c8,
304         [RDFAR]         = 0x00cc,
305         [TBRAR]         = 0x00d4,
306         [TDFAR]         = 0x00d8,
307 };
308
309 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
310         [EDMR]          = 0x0000,
311         [EDTRR]         = 0x0004,
312         [EDRRR]         = 0x0008,
313         [TDLAR]         = 0x000c,
314         [RDLAR]         = 0x0010,
315         [EESR]          = 0x0014,
316         [EESIPR]        = 0x0018,
317         [TRSCER]        = 0x001c,
318         [RMFCR]         = 0x0020,
319         [TFTR]          = 0x0024,
320         [FDR]           = 0x0028,
321         [RMCR]          = 0x002c,
322         [EDOCR]         = 0x0030,
323         [FCFTR]         = 0x0034,
324         [RPADIR]        = 0x0038,
325         [TRIMD]         = 0x003c,
326         [RBWAR]         = 0x0040,
327         [RDFAR]         = 0x0044,
328         [TBRAR]         = 0x004c,
329         [TDFAR]         = 0x0050,
330
331         [ECMR]          = 0x0160,
332         [ECSR]          = 0x0164,
333         [ECSIPR]        = 0x0168,
334         [PIR]           = 0x016c,
335         [MAHR]          = 0x0170,
336         [MALR]          = 0x0174,
337         [RFLR]          = 0x0178,
338         [PSR]           = 0x017c,
339         [TROCR]         = 0x0180,
340         [CDCR]          = 0x0184,
341         [LCCR]          = 0x0188,
342         [CNDCR]         = 0x018c,
343         [CEFCR]         = 0x0194,
344         [FRECR]         = 0x0198,
345         [TSFRCR]        = 0x019c,
346         [TLFRCR]        = 0x01a0,
347         [RFCR]          = 0x01a4,
348         [MAFCR]         = 0x01a8,
349         [IPGR]          = 0x01b4,
350         [APR]           = 0x01b8,
351         [MPR]           = 0x01bc,
352         [TPAUSER]       = 0x01c4,
353         [BCFR]          = 0x01cc,
354
355         [ARSTR]         = 0x0000,
356         [TSU_CTRST]     = 0x0004,
357         [TSU_FWEN0]     = 0x0010,
358         [TSU_FWEN1]     = 0x0014,
359         [TSU_FCM]       = 0x0018,
360         [TSU_BSYSL0]    = 0x0020,
361         [TSU_BSYSL1]    = 0x0024,
362         [TSU_PRISL0]    = 0x0028,
363         [TSU_PRISL1]    = 0x002c,
364         [TSU_FWSL0]     = 0x0030,
365         [TSU_FWSL1]     = 0x0034,
366         [TSU_FWSLC]     = 0x0038,
367         [TSU_QTAGM0]    = 0x0040,
368         [TSU_QTAGM1]    = 0x0044,
369         [TSU_ADQT0]     = 0x0048,
370         [TSU_ADQT1]     = 0x004c,
371         [TSU_FWSR]      = 0x0050,
372         [TSU_FWINMK]    = 0x0054,
373         [TSU_ADSBSY]    = 0x0060,
374         [TSU_TEN]       = 0x0064,
375         [TSU_POST1]     = 0x0070,
376         [TSU_POST2]     = 0x0074,
377         [TSU_POST3]     = 0x0078,
378         [TSU_POST4]     = 0x007c,
379
380         [TXNLCR0]       = 0x0080,
381         [TXALCR0]       = 0x0084,
382         [RXNLCR0]       = 0x0088,
383         [RXALCR0]       = 0x008c,
384         [FWNLCR0]       = 0x0090,
385         [FWALCR0]       = 0x0094,
386         [TXNLCR1]       = 0x00a0,
387         [TXALCR1]       = 0x00a0,
388         [RXNLCR1]       = 0x00a8,
389         [RXALCR1]       = 0x00ac,
390         [FWNLCR1]       = 0x00b0,
391         [FWALCR1]       = 0x00b4,
392
393         [TSU_ADRH0]     = 0x0100,
394         [TSU_ADRL0]     = 0x0104,
395         [TSU_ADRL31]    = 0x01fc,
396 };
397
398 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
399 {
400         return mdp->reg_offset == sh_eth_offset_gigabit;
401 }
402
403 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
404 {
405         return mdp->reg_offset == sh_eth_offset_fast_rz;
406 }
407
408 static void sh_eth_select_mii(struct net_device *ndev)
409 {
410         u32 value = 0x0;
411         struct sh_eth_private *mdp = netdev_priv(ndev);
412
413         switch (mdp->phy_interface) {
414         case PHY_INTERFACE_MODE_GMII:
415                 value = 0x2;
416                 break;
417         case PHY_INTERFACE_MODE_MII:
418                 value = 0x1;
419                 break;
420         case PHY_INTERFACE_MODE_RMII:
421                 value = 0x0;
422                 break;
423         default:
424                 netdev_warn(ndev,
425                             "PHY interface mode was not setup. Set to MII.\n");
426                 value = 0x1;
427                 break;
428         }
429
430         sh_eth_write(ndev, value, RMII_MII);
431 }
432
433 static void sh_eth_set_duplex(struct net_device *ndev)
434 {
435         struct sh_eth_private *mdp = netdev_priv(ndev);
436
437         if (mdp->duplex) /* Full */
438                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
439         else            /* Half */
440                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
441 }
442
443 /* There is CPU dependent code */
444 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
445 {
446         struct sh_eth_private *mdp = netdev_priv(ndev);
447
448         switch (mdp->speed) {
449         case 10: /* 10BASE */
450                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
451                 break;
452         case 100:/* 100BASE */
453                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
454                 break;
455         default:
456                 break;
457         }
458 }
459
460 /* R8A7778/9 */
461 static struct sh_eth_cpu_data r8a777x_data = {
462         .set_duplex     = sh_eth_set_duplex,
463         .set_rate       = sh_eth_set_rate_r8a777x,
464
465         .register_type  = SH_ETH_REG_FAST_RCAR,
466
467         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
468         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
469         .eesipr_value   = 0x01ff009f,
470
471         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
472         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
473                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
474                           EESR_ECI,
475
476         .apr            = 1,
477         .mpr            = 1,
478         .tpauser        = 1,
479         .hw_swap        = 1,
480 };
481
482 /* R8A7790/1 */
483 static struct sh_eth_cpu_data r8a779x_data = {
484         .set_duplex     = sh_eth_set_duplex,
485         .set_rate       = sh_eth_set_rate_r8a777x,
486
487         .register_type  = SH_ETH_REG_FAST_RCAR,
488
489         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
490         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
491         .eesipr_value   = 0x01ff009f,
492
493         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
494         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
495                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
496                           EESR_ECI,
497
498         .apr            = 1,
499         .mpr            = 1,
500         .tpauser        = 1,
501         .hw_swap        = 1,
502         .rmiimode       = 1,
503         .shift_rd0      = 1,
504 };
505
506 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
507 {
508         struct sh_eth_private *mdp = netdev_priv(ndev);
509
510         switch (mdp->speed) {
511         case 10: /* 10BASE */
512                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
513                 break;
514         case 100:/* 100BASE */
515                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
516                 break;
517         default:
518                 break;
519         }
520 }
521
522 /* SH7724 */
523 static struct sh_eth_cpu_data sh7724_data = {
524         .set_duplex     = sh_eth_set_duplex,
525         .set_rate       = sh_eth_set_rate_sh7724,
526
527         .register_type  = SH_ETH_REG_FAST_SH4,
528
529         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
530         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
531         .eesipr_value   = 0x01ff009f,
532
533         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
534         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
535                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
536                           EESR_ECI,
537
538         .apr            = 1,
539         .mpr            = 1,
540         .tpauser        = 1,
541         .hw_swap        = 1,
542         .rpadir         = 1,
543         .rpadir_value   = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
544 };
545
546 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
547 {
548         struct sh_eth_private *mdp = netdev_priv(ndev);
549
550         switch (mdp->speed) {
551         case 10: /* 10BASE */
552                 sh_eth_write(ndev, 0, RTRATE);
553                 break;
554         case 100:/* 100BASE */
555                 sh_eth_write(ndev, 1, RTRATE);
556                 break;
557         default:
558                 break;
559         }
560 }
561
562 /* SH7757 */
563 static struct sh_eth_cpu_data sh7757_data = {
564         .set_duplex     = sh_eth_set_duplex,
565         .set_rate       = sh_eth_set_rate_sh7757,
566
567         .register_type  = SH_ETH_REG_FAST_SH4,
568
569         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
570
571         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
572         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
573                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
574                           EESR_ECI,
575
576         .irq_flags      = IRQF_SHARED,
577         .apr            = 1,
578         .mpr            = 1,
579         .tpauser        = 1,
580         .hw_swap        = 1,
581         .no_ade         = 1,
582         .rpadir         = 1,
583         .rpadir_value   = 2 << 16,
584 };
585
586 #define SH_GIGA_ETH_BASE        0xfee00000UL
587 #define GIGA_MALR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
588 #define GIGA_MAHR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
589 static void sh_eth_chip_reset_giga(struct net_device *ndev)
590 {
591         int i;
592         unsigned long mahr[2], malr[2];
593
594         /* save MAHR and MALR */
595         for (i = 0; i < 2; i++) {
596                 malr[i] = ioread32((void *)GIGA_MALR(i));
597                 mahr[i] = ioread32((void *)GIGA_MAHR(i));
598         }
599
600         /* reset device */
601         iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
602         mdelay(1);
603
604         /* restore MAHR and MALR */
605         for (i = 0; i < 2; i++) {
606                 iowrite32(malr[i], (void *)GIGA_MALR(i));
607                 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
608         }
609 }
610
611 static void sh_eth_set_rate_giga(struct net_device *ndev)
612 {
613         struct sh_eth_private *mdp = netdev_priv(ndev);
614
615         switch (mdp->speed) {
616         case 10: /* 10BASE */
617                 sh_eth_write(ndev, 0x00000000, GECMR);
618                 break;
619         case 100:/* 100BASE */
620                 sh_eth_write(ndev, 0x00000010, GECMR);
621                 break;
622         case 1000: /* 1000BASE */
623                 sh_eth_write(ndev, 0x00000020, GECMR);
624                 break;
625         default:
626                 break;
627         }
628 }
629
630 /* SH7757(GETHERC) */
631 static struct sh_eth_cpu_data sh7757_data_giga = {
632         .chip_reset     = sh_eth_chip_reset_giga,
633         .set_duplex     = sh_eth_set_duplex,
634         .set_rate       = sh_eth_set_rate_giga,
635
636         .register_type  = SH_ETH_REG_GIGABIT,
637
638         .ecsr_value     = ECSR_ICD | ECSR_MPD,
639         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
640         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
641
642         .tx_check       = EESR_TC1 | EESR_FTC,
643         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
644                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
645                           EESR_TDE | EESR_ECI,
646         .fdr_value      = 0x0000072f,
647
648         .irq_flags      = IRQF_SHARED,
649         .apr            = 1,
650         .mpr            = 1,
651         .tpauser        = 1,
652         .bculr          = 1,
653         .hw_swap        = 1,
654         .rpadir         = 1,
655         .rpadir_value   = 2 << 16,
656         .no_trimd       = 1,
657         .no_ade         = 1,
658         .tsu            = 1,
659 };
660
661 static void sh_eth_chip_reset(struct net_device *ndev)
662 {
663         struct sh_eth_private *mdp = netdev_priv(ndev);
664
665         /* reset device */
666         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
667         mdelay(1);
668 }
669
670 static void sh_eth_set_rate_gether(struct net_device *ndev)
671 {
672         struct sh_eth_private *mdp = netdev_priv(ndev);
673
674         switch (mdp->speed) {
675         case 10: /* 10BASE */
676                 sh_eth_write(ndev, GECMR_10, GECMR);
677                 break;
678         case 100:/* 100BASE */
679                 sh_eth_write(ndev, GECMR_100, GECMR);
680                 break;
681         case 1000: /* 1000BASE */
682                 sh_eth_write(ndev, GECMR_1000, GECMR);
683                 break;
684         default:
685                 break;
686         }
687 }
688
689 /* SH7734 */
690 static struct sh_eth_cpu_data sh7734_data = {
691         .chip_reset     = sh_eth_chip_reset,
692         .set_duplex     = sh_eth_set_duplex,
693         .set_rate       = sh_eth_set_rate_gether,
694
695         .register_type  = SH_ETH_REG_GIGABIT,
696
697         .ecsr_value     = ECSR_ICD | ECSR_MPD,
698         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
699         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
700
701         .tx_check       = EESR_TC1 | EESR_FTC,
702         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
703                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
704                           EESR_TDE | EESR_ECI,
705
706         .apr            = 1,
707         .mpr            = 1,
708         .tpauser        = 1,
709         .bculr          = 1,
710         .hw_swap        = 1,
711         .no_trimd       = 1,
712         .no_ade         = 1,
713         .tsu            = 1,
714         .hw_crc         = 1,
715         .select_mii     = 1,
716 };
717
718 /* SH7763 */
719 static struct sh_eth_cpu_data sh7763_data = {
720         .chip_reset     = sh_eth_chip_reset,
721         .set_duplex     = sh_eth_set_duplex,
722         .set_rate       = sh_eth_set_rate_gether,
723
724         .register_type  = SH_ETH_REG_GIGABIT,
725
726         .ecsr_value     = ECSR_ICD | ECSR_MPD,
727         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
728         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
729
730         .tx_check       = EESR_TC1 | EESR_FTC,
731         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
732                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
733                           EESR_ECI,
734
735         .apr            = 1,
736         .mpr            = 1,
737         .tpauser        = 1,
738         .bculr          = 1,
739         .hw_swap        = 1,
740         .no_trimd       = 1,
741         .no_ade         = 1,
742         .tsu            = 1,
743         .irq_flags      = IRQF_SHARED,
744 };
745
746 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
747 {
748         struct sh_eth_private *mdp = netdev_priv(ndev);
749
750         /* reset device */
751         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
752         mdelay(1);
753
754         sh_eth_select_mii(ndev);
755 }
756
757 /* R8A7740 */
758 static struct sh_eth_cpu_data r8a7740_data = {
759         .chip_reset     = sh_eth_chip_reset_r8a7740,
760         .set_duplex     = sh_eth_set_duplex,
761         .set_rate       = sh_eth_set_rate_gether,
762
763         .register_type  = SH_ETH_REG_GIGABIT,
764
765         .ecsr_value     = ECSR_ICD | ECSR_MPD,
766         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
767         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
768
769         .tx_check       = EESR_TC1 | EESR_FTC,
770         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
771                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
772                           EESR_TDE | EESR_ECI,
773         .fdr_value      = 0x0000070f,
774
775         .apr            = 1,
776         .mpr            = 1,
777         .tpauser        = 1,
778         .bculr          = 1,
779         .hw_swap        = 1,
780         .rpadir         = 1,
781         .rpadir_value   = 2 << 16,
782         .no_trimd       = 1,
783         .no_ade         = 1,
784         .tsu            = 1,
785         .select_mii     = 1,
786         .shift_rd0      = 1,
787 };
788
789 /* R7S72100 */
790 static struct sh_eth_cpu_data r7s72100_data = {
791         .chip_reset     = sh_eth_chip_reset,
792         .set_duplex     = sh_eth_set_duplex,
793
794         .register_type  = SH_ETH_REG_FAST_RZ,
795
796         .ecsr_value     = ECSR_ICD,
797         .ecsipr_value   = ECSIPR_ICDIP,
798         .eesipr_value   = 0xff7f009f,
799
800         .tx_check       = EESR_TC1 | EESR_FTC,
801         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
802                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
803                           EESR_TDE | EESR_ECI,
804         .fdr_value      = 0x0000070f,
805
806         .no_psr         = 1,
807         .apr            = 1,
808         .mpr            = 1,
809         .tpauser        = 1,
810         .hw_swap        = 1,
811         .rpadir         = 1,
812         .rpadir_value   = 2 << 16,
813         .no_trimd       = 1,
814         .no_ade         = 1,
815         .hw_crc         = 1,
816         .tsu            = 1,
817         .shift_rd0      = 1,
818 };
819
820 static struct sh_eth_cpu_data sh7619_data = {
821         .register_type  = SH_ETH_REG_FAST_SH3_SH2,
822
823         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
824
825         .apr            = 1,
826         .mpr            = 1,
827         .tpauser        = 1,
828         .hw_swap        = 1,
829 };
830
831 static struct sh_eth_cpu_data sh771x_data = {
832         .register_type  = SH_ETH_REG_FAST_SH3_SH2,
833
834         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835         .tsu            = 1,
836 };
837
838 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
839 {
840         if (!cd->ecsr_value)
841                 cd->ecsr_value = DEFAULT_ECSR_INIT;
842
843         if (!cd->ecsipr_value)
844                 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
845
846         if (!cd->fcftr_value)
847                 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
848                                   DEFAULT_FIFO_F_D_RFD;
849
850         if (!cd->fdr_value)
851                 cd->fdr_value = DEFAULT_FDR_INIT;
852
853         if (!cd->tx_check)
854                 cd->tx_check = DEFAULT_TX_CHECK;
855
856         if (!cd->eesr_err_check)
857                 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
858 }
859
860 static int sh_eth_check_reset(struct net_device *ndev)
861 {
862         int ret = 0;
863         int cnt = 100;
864
865         while (cnt > 0) {
866                 if (!(sh_eth_read(ndev, EDMR) & 0x3))
867                         break;
868                 mdelay(1);
869                 cnt--;
870         }
871         if (cnt <= 0) {
872                 netdev_err(ndev, "Device reset failed\n");
873                 ret = -ETIMEDOUT;
874         }
875         return ret;
876 }
877
878 static int sh_eth_reset(struct net_device *ndev)
879 {
880         struct sh_eth_private *mdp = netdev_priv(ndev);
881         int ret = 0;
882
883         if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
884                 sh_eth_write(ndev, EDSR_ENALL, EDSR);
885                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
886                              EDMR);
887
888                 ret = sh_eth_check_reset(ndev);
889                 if (ret)
890                         return ret;
891
892                 /* Table Init */
893                 sh_eth_write(ndev, 0x0, TDLAR);
894                 sh_eth_write(ndev, 0x0, TDFAR);
895                 sh_eth_write(ndev, 0x0, TDFXR);
896                 sh_eth_write(ndev, 0x0, TDFFR);
897                 sh_eth_write(ndev, 0x0, RDLAR);
898                 sh_eth_write(ndev, 0x0, RDFAR);
899                 sh_eth_write(ndev, 0x0, RDFXR);
900                 sh_eth_write(ndev, 0x0, RDFFR);
901
902                 /* Reset HW CRC register */
903                 if (mdp->cd->hw_crc)
904                         sh_eth_write(ndev, 0x0, CSMR);
905
906                 /* Select MII mode */
907                 if (mdp->cd->select_mii)
908                         sh_eth_select_mii(ndev);
909         } else {
910                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
911                              EDMR);
912                 mdelay(3);
913                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
914                              EDMR);
915         }
916
917         return ret;
918 }
919
920 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
921 static void sh_eth_set_receive_align(struct sk_buff *skb)
922 {
923         int reserve;
924
925         reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
926         if (reserve)
927                 skb_reserve(skb, reserve);
928 }
929 #else
930 static void sh_eth_set_receive_align(struct sk_buff *skb)
931 {
932         skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
933 }
934 #endif
935
936
937 /* CPU <-> EDMAC endian convert */
938 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
939 {
940         switch (mdp->edmac_endian) {
941         case EDMAC_LITTLE_ENDIAN:
942                 return cpu_to_le32(x);
943         case EDMAC_BIG_ENDIAN:
944                 return cpu_to_be32(x);
945         }
946         return x;
947 }
948
949 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
950 {
951         switch (mdp->edmac_endian) {
952         case EDMAC_LITTLE_ENDIAN:
953                 return le32_to_cpu(x);
954         case EDMAC_BIG_ENDIAN:
955                 return be32_to_cpu(x);
956         }
957         return x;
958 }
959
960 /* Program the hardware MAC address from dev->dev_addr. */
961 static void update_mac_address(struct net_device *ndev)
962 {
963         sh_eth_write(ndev,
964                      (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
965                      (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
966         sh_eth_write(ndev,
967                      (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
968 }
969
970 /* Get MAC address from SuperH MAC address register
971  *
972  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
973  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
974  * When you want use this device, you must set MAC address in bootloader.
975  *
976  */
977 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
978 {
979         if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
980                 memcpy(ndev->dev_addr, mac, ETH_ALEN);
981         } else {
982                 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
983                 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
984                 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
985                 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
986                 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
987                 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
988         }
989 }
990
991 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
992 {
993         if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
994                 return EDTRR_TRNS_GETHER;
995         else
996                 return EDTRR_TRNS_ETHER;
997 }
998
999 struct bb_info {
1000         void (*set_gate)(void *addr);
1001         struct mdiobb_ctrl ctrl;
1002         void *addr;
1003         u32 mmd_msk;/* MMD */
1004         u32 mdo_msk;
1005         u32 mdi_msk;
1006         u32 mdc_msk;
1007 };
1008
1009 /* PHY bit set */
1010 static void bb_set(void *addr, u32 msk)
1011 {
1012         iowrite32(ioread32(addr) | msk, addr);
1013 }
1014
1015 /* PHY bit clear */
1016 static void bb_clr(void *addr, u32 msk)
1017 {
1018         iowrite32((ioread32(addr) & ~msk), addr);
1019 }
1020
1021 /* PHY bit read */
1022 static int bb_read(void *addr, u32 msk)
1023 {
1024         return (ioread32(addr) & msk) != 0;
1025 }
1026
1027 /* Data I/O pin control */
1028 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1029 {
1030         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1031
1032         if (bitbang->set_gate)
1033                 bitbang->set_gate(bitbang->addr);
1034
1035         if (bit)
1036                 bb_set(bitbang->addr, bitbang->mmd_msk);
1037         else
1038                 bb_clr(bitbang->addr, bitbang->mmd_msk);
1039 }
1040
1041 /* Set bit data*/
1042 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1043 {
1044         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1045
1046         if (bitbang->set_gate)
1047                 bitbang->set_gate(bitbang->addr);
1048
1049         if (bit)
1050                 bb_set(bitbang->addr, bitbang->mdo_msk);
1051         else
1052                 bb_clr(bitbang->addr, bitbang->mdo_msk);
1053 }
1054
1055 /* Get bit data*/
1056 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1057 {
1058         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1059
1060         if (bitbang->set_gate)
1061                 bitbang->set_gate(bitbang->addr);
1062
1063         return bb_read(bitbang->addr, bitbang->mdi_msk);
1064 }
1065
1066 /* MDC pin control */
1067 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1068 {
1069         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1070
1071         if (bitbang->set_gate)
1072                 bitbang->set_gate(bitbang->addr);
1073
1074         if (bit)
1075                 bb_set(bitbang->addr, bitbang->mdc_msk);
1076         else
1077                 bb_clr(bitbang->addr, bitbang->mdc_msk);
1078 }
1079
1080 /* mdio bus control struct */
1081 static struct mdiobb_ops bb_ops = {
1082         .owner = THIS_MODULE,
1083         .set_mdc = sh_mdc_ctrl,
1084         .set_mdio_dir = sh_mmd_ctrl,
1085         .set_mdio_data = sh_set_mdio,
1086         .get_mdio_data = sh_get_mdio,
1087 };
1088
1089 /* free skb and descriptor buffer */
1090 static void sh_eth_ring_free(struct net_device *ndev)
1091 {
1092         struct sh_eth_private *mdp = netdev_priv(ndev);
1093         int i;
1094
1095         /* Free Rx skb ringbuffer */
1096         if (mdp->rx_skbuff) {
1097                 for (i = 0; i < mdp->num_rx_ring; i++) {
1098                         if (mdp->rx_skbuff[i])
1099                                 dev_kfree_skb(mdp->rx_skbuff[i]);
1100                 }
1101         }
1102         kfree(mdp->rx_skbuff);
1103         mdp->rx_skbuff = NULL;
1104
1105         /* Free Tx skb ringbuffer */
1106         if (mdp->tx_skbuff) {
1107                 for (i = 0; i < mdp->num_tx_ring; i++) {
1108                         if (mdp->tx_skbuff[i])
1109                                 dev_kfree_skb(mdp->tx_skbuff[i]);
1110                 }
1111         }
1112         kfree(mdp->tx_skbuff);
1113         mdp->tx_skbuff = NULL;
1114 }
1115
1116 /* format skb and descriptor buffer */
1117 static void sh_eth_ring_format(struct net_device *ndev)
1118 {
1119         struct sh_eth_private *mdp = netdev_priv(ndev);
1120         int i;
1121         struct sk_buff *skb;
1122         struct sh_eth_rxdesc *rxdesc = NULL;
1123         struct sh_eth_txdesc *txdesc = NULL;
1124         int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1125         int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1126
1127         mdp->cur_rx = 0;
1128         mdp->cur_tx = 0;
1129         mdp->dirty_rx = 0;
1130         mdp->dirty_tx = 0;
1131
1132         memset(mdp->rx_ring, 0, rx_ringsize);
1133
1134         /* build Rx ring buffer */
1135         for (i = 0; i < mdp->num_rx_ring; i++) {
1136                 /* skb */
1137                 mdp->rx_skbuff[i] = NULL;
1138                 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1139                 mdp->rx_skbuff[i] = skb;
1140                 if (skb == NULL)
1141                         break;
1142                 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1143                                DMA_FROM_DEVICE);
1144                 sh_eth_set_receive_align(skb);
1145
1146                 /* RX descriptor */
1147                 rxdesc = &mdp->rx_ring[i];
1148                 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1149                 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1150
1151                 /* The size of the buffer is 16 byte boundary. */
1152                 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1153                 /* Rx descriptor address set */
1154                 if (i == 0) {
1155                         sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1156                         if (sh_eth_is_gether(mdp) ||
1157                             sh_eth_is_rz_fast_ether(mdp))
1158                                 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1159                 }
1160         }
1161
1162         mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1163
1164         /* Mark the last entry as wrapping the ring. */
1165         rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1166
1167         memset(mdp->tx_ring, 0, tx_ringsize);
1168
1169         /* build Tx ring buffer */
1170         for (i = 0; i < mdp->num_tx_ring; i++) {
1171                 mdp->tx_skbuff[i] = NULL;
1172                 txdesc = &mdp->tx_ring[i];
1173                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1174                 txdesc->buffer_length = 0;
1175                 if (i == 0) {
1176                         /* Tx descriptor address set */
1177                         sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1178                         if (sh_eth_is_gether(mdp) ||
1179                             sh_eth_is_rz_fast_ether(mdp))
1180                                 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1181                 }
1182         }
1183
1184         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1185 }
1186
1187 /* Get skb and descriptor buffer */
1188 static int sh_eth_ring_init(struct net_device *ndev)
1189 {
1190         struct sh_eth_private *mdp = netdev_priv(ndev);
1191         int rx_ringsize, tx_ringsize, ret = 0;
1192
1193         /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1194          * card needs room to do 8 byte alignment, +2 so we can reserve
1195          * the first 2 bytes, and +16 gets room for the status word from the
1196          * card.
1197          */
1198         mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1199                           (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1200         if (mdp->cd->rpadir)
1201                 mdp->rx_buf_sz += NET_IP_ALIGN;
1202
1203         /* Allocate RX and TX skb rings */
1204         mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1205                                        sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1206         if (!mdp->rx_skbuff) {
1207                 ret = -ENOMEM;
1208                 return ret;
1209         }
1210
1211         mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1212                                        sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1213         if (!mdp->tx_skbuff) {
1214                 ret = -ENOMEM;
1215                 goto skb_ring_free;
1216         }
1217
1218         /* Allocate all Rx descriptors. */
1219         rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1220         mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1221                                           GFP_KERNEL);
1222         if (!mdp->rx_ring) {
1223                 ret = -ENOMEM;
1224                 goto desc_ring_free;
1225         }
1226
1227         mdp->dirty_rx = 0;
1228
1229         /* Allocate all Tx descriptors. */
1230         tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1231         mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1232                                           GFP_KERNEL);
1233         if (!mdp->tx_ring) {
1234                 ret = -ENOMEM;
1235                 goto desc_ring_free;
1236         }
1237         return ret;
1238
1239 desc_ring_free:
1240         /* free DMA buffer */
1241         dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1242
1243 skb_ring_free:
1244         /* Free Rx and Tx skb ring buffer */
1245         sh_eth_ring_free(ndev);
1246         mdp->tx_ring = NULL;
1247         mdp->rx_ring = NULL;
1248
1249         return ret;
1250 }
1251
1252 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1253 {
1254         int ringsize;
1255
1256         if (mdp->rx_ring) {
1257                 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1258                 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1259                                   mdp->rx_desc_dma);
1260                 mdp->rx_ring = NULL;
1261         }
1262
1263         if (mdp->tx_ring) {
1264                 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1265                 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1266                                   mdp->tx_desc_dma);
1267                 mdp->tx_ring = NULL;
1268         }
1269 }
1270
1271 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1272 {
1273         int ret = 0;
1274         struct sh_eth_private *mdp = netdev_priv(ndev);
1275         u32 val;
1276
1277         /* Soft Reset */
1278         ret = sh_eth_reset(ndev);
1279         if (ret)
1280                 return ret;
1281
1282         if (mdp->cd->rmiimode)
1283                 sh_eth_write(ndev, 0x1, RMIIMODE);
1284
1285         /* Descriptor format */
1286         sh_eth_ring_format(ndev);
1287         if (mdp->cd->rpadir)
1288                 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1289
1290         /* all sh_eth int mask */
1291         sh_eth_write(ndev, 0, EESIPR);
1292
1293 #if defined(__LITTLE_ENDIAN)
1294         if (mdp->cd->hw_swap)
1295                 sh_eth_write(ndev, EDMR_EL, EDMR);
1296         else
1297 #endif
1298                 sh_eth_write(ndev, 0, EDMR);
1299
1300         /* FIFO size set */
1301         sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1302         sh_eth_write(ndev, 0, TFTR);
1303
1304         /* Frame recv control (enable multiple-packets per rx irq) */
1305         sh_eth_write(ndev, RMCR_RNC, RMCR);
1306
1307         sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1308
1309         if (mdp->cd->bculr)
1310                 sh_eth_write(ndev, 0x800, BCULR);       /* Burst sycle set */
1311
1312         sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1313
1314         if (!mdp->cd->no_trimd)
1315                 sh_eth_write(ndev, 0, TRIMD);
1316
1317         /* Recv frame limit set register */
1318         sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1319                      RFLR);
1320
1321         sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1322         if (start)
1323                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1324
1325         /* PAUSE Prohibition */
1326         val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1327                 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1328
1329         sh_eth_write(ndev, val, ECMR);
1330
1331         if (mdp->cd->set_rate)
1332                 mdp->cd->set_rate(ndev);
1333
1334         /* E-MAC Status Register clear */
1335         sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1336
1337         /* E-MAC Interrupt Enable register */
1338         if (start)
1339                 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1340
1341         /* Set MAC address */
1342         update_mac_address(ndev);
1343
1344         /* mask reset */
1345         if (mdp->cd->apr)
1346                 sh_eth_write(ndev, APR_AP, APR);
1347         if (mdp->cd->mpr)
1348                 sh_eth_write(ndev, MPR_MP, MPR);
1349         if (mdp->cd->tpauser)
1350                 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1351
1352         if (start) {
1353                 /* Setting the Rx mode will start the Rx process. */
1354                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1355
1356                 netif_start_queue(ndev);
1357         }
1358
1359         return ret;
1360 }
1361
1362 /* free Tx skb function */
1363 static int sh_eth_txfree(struct net_device *ndev)
1364 {
1365         struct sh_eth_private *mdp = netdev_priv(ndev);
1366         struct sh_eth_txdesc *txdesc;
1367         int free_num = 0;
1368         int entry = 0;
1369
1370         for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1371                 entry = mdp->dirty_tx % mdp->num_tx_ring;
1372                 txdesc = &mdp->tx_ring[entry];
1373                 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1374                         break;
1375                 /* Free the original skb. */
1376                 if (mdp->tx_skbuff[entry]) {
1377                         dma_unmap_single(&ndev->dev, txdesc->addr,
1378                                          txdesc->buffer_length, DMA_TO_DEVICE);
1379                         dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1380                         mdp->tx_skbuff[entry] = NULL;
1381                         free_num++;
1382                 }
1383                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1384                 if (entry >= mdp->num_tx_ring - 1)
1385                         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1386
1387                 ndev->stats.tx_packets++;
1388                 ndev->stats.tx_bytes += txdesc->buffer_length;
1389         }
1390         return free_num;
1391 }
1392
1393 /* Packet receive function */
1394 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1395 {
1396         struct sh_eth_private *mdp = netdev_priv(ndev);
1397         struct sh_eth_rxdesc *rxdesc;
1398
1399         int entry = mdp->cur_rx % mdp->num_rx_ring;
1400         int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1401         struct sk_buff *skb;
1402         int exceeded = 0;
1403         u16 pkt_len = 0;
1404         u32 desc_status;
1405
1406         rxdesc = &mdp->rx_ring[entry];
1407         while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1408                 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1409                 pkt_len = rxdesc->frame_length;
1410
1411                 if (--boguscnt < 0)
1412                         break;
1413
1414                 if (*quota <= 0) {
1415                         exceeded = 1;
1416                         break;
1417                 }
1418                 (*quota)--;
1419
1420                 if (!(desc_status & RDFEND))
1421                         ndev->stats.rx_length_errors++;
1422
1423                 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1424                  * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1425                  * bit 0. However, in case of the R8A7740, R8A779x, and
1426                  * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1427                  * driver needs right shifting by 16.
1428                  */
1429                 if (mdp->cd->shift_rd0)
1430                         desc_status >>= 16;
1431
1432                 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1433                                    RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1434                         ndev->stats.rx_errors++;
1435                         if (desc_status & RD_RFS1)
1436                                 ndev->stats.rx_crc_errors++;
1437                         if (desc_status & RD_RFS2)
1438                                 ndev->stats.rx_frame_errors++;
1439                         if (desc_status & RD_RFS3)
1440                                 ndev->stats.rx_length_errors++;
1441                         if (desc_status & RD_RFS4)
1442                                 ndev->stats.rx_length_errors++;
1443                         if (desc_status & RD_RFS6)
1444                                 ndev->stats.rx_missed_errors++;
1445                         if (desc_status & RD_RFS10)
1446                                 ndev->stats.rx_over_errors++;
1447                 } else {
1448                         if (!mdp->cd->hw_swap)
1449                                 sh_eth_soft_swap(
1450                                         phys_to_virt(ALIGN(rxdesc->addr, 4)),
1451                                         pkt_len + 2);
1452                         skb = mdp->rx_skbuff[entry];
1453                         mdp->rx_skbuff[entry] = NULL;
1454                         if (mdp->cd->rpadir)
1455                                 skb_reserve(skb, NET_IP_ALIGN);
1456                         dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1457                                                 mdp->rx_buf_sz,
1458                                                 DMA_FROM_DEVICE);
1459                         skb_put(skb, pkt_len);
1460                         skb->protocol = eth_type_trans(skb, ndev);
1461                         netif_receive_skb(skb);
1462                         ndev->stats.rx_packets++;
1463                         ndev->stats.rx_bytes += pkt_len;
1464                 }
1465                 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1466                 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1467                 rxdesc = &mdp->rx_ring[entry];
1468         }
1469
1470         /* Refill the Rx ring buffers. */
1471         for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1472                 entry = mdp->dirty_rx % mdp->num_rx_ring;
1473                 rxdesc = &mdp->rx_ring[entry];
1474                 /* The size of the buffer is 16 byte boundary. */
1475                 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1476
1477                 if (mdp->rx_skbuff[entry] == NULL) {
1478                         skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1479                         mdp->rx_skbuff[entry] = skb;
1480                         if (skb == NULL)
1481                                 break;  /* Better luck next round. */
1482                         dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1483                                        DMA_FROM_DEVICE);
1484                         sh_eth_set_receive_align(skb);
1485
1486                         skb_checksum_none_assert(skb);
1487                         rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1488                 }
1489                 if (entry >= mdp->num_rx_ring - 1)
1490                         rxdesc->status |=
1491                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1492                 else
1493                         rxdesc->status |=
1494                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1495         }
1496
1497         /* Restart Rx engine if stopped. */
1498         /* If we don't need to check status, don't. -KDU */
1499         if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1500                 /* fix the values for the next receiving if RDE is set */
1501                 if (intr_status & EESR_RDE) {
1502                         u32 count = (sh_eth_read(ndev, RDFAR) -
1503                                      sh_eth_read(ndev, RDLAR)) >> 4;
1504
1505                         mdp->cur_rx = count;
1506                         mdp->dirty_rx = count;
1507                 }
1508                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1509         }
1510
1511         return exceeded;
1512 }
1513
1514 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1515 {
1516         /* disable tx and rx */
1517         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1518                 ~(ECMR_RE | ECMR_TE), ECMR);
1519 }
1520
1521 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1522 {
1523         /* enable tx and rx */
1524         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1525                 (ECMR_RE | ECMR_TE), ECMR);
1526 }
1527
1528 /* error control function */
1529 static void sh_eth_error(struct net_device *ndev, int intr_status)
1530 {
1531         struct sh_eth_private *mdp = netdev_priv(ndev);
1532         u32 felic_stat;
1533         u32 link_stat;
1534         u32 mask;
1535
1536         if (intr_status & EESR_ECI) {
1537                 felic_stat = sh_eth_read(ndev, ECSR);
1538                 sh_eth_write(ndev, felic_stat, ECSR);   /* clear int */
1539                 if (felic_stat & ECSR_ICD)
1540                         ndev->stats.tx_carrier_errors++;
1541                 if (felic_stat & ECSR_LCHNG) {
1542                         /* Link Changed */
1543                         if (mdp->cd->no_psr || mdp->no_ether_link) {
1544                                 goto ignore_link;
1545                         } else {
1546                                 link_stat = (sh_eth_read(ndev, PSR));
1547                                 if (mdp->ether_link_active_low)
1548                                         link_stat = ~link_stat;
1549                         }
1550                         if (!(link_stat & PHY_ST_LINK)) {
1551                                 sh_eth_rcv_snd_disable(ndev);
1552                         } else {
1553                                 /* Link Up */
1554                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1555                                                    ~DMAC_M_ECI, EESIPR);
1556                                 /* clear int */
1557                                 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1558                                              ECSR);
1559                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1560                                                    DMAC_M_ECI, EESIPR);
1561                                 /* enable tx and rx */
1562                                 sh_eth_rcv_snd_enable(ndev);
1563                         }
1564                 }
1565         }
1566
1567 ignore_link:
1568         if (intr_status & EESR_TWB) {
1569                 /* Unused write back interrupt */
1570                 if (intr_status & EESR_TABT) {  /* Transmit Abort int */
1571                         ndev->stats.tx_aborted_errors++;
1572                         netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1573                 }
1574         }
1575
1576         if (intr_status & EESR_RABT) {
1577                 /* Receive Abort int */
1578                 if (intr_status & EESR_RFRMER) {
1579                         /* Receive Frame Overflow int */
1580                         ndev->stats.rx_frame_errors++;
1581                         netif_err(mdp, rx_err, ndev, "Receive Abort\n");
1582                 }
1583         }
1584
1585         if (intr_status & EESR_TDE) {
1586                 /* Transmit Descriptor Empty int */
1587                 ndev->stats.tx_fifo_errors++;
1588                 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1589         }
1590
1591         if (intr_status & EESR_TFE) {
1592                 /* FIFO under flow */
1593                 ndev->stats.tx_fifo_errors++;
1594                 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1595         }
1596
1597         if (intr_status & EESR_RDE) {
1598                 /* Receive Descriptor Empty int */
1599                 ndev->stats.rx_over_errors++;
1600                 netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n");
1601         }
1602
1603         if (intr_status & EESR_RFE) {
1604                 /* Receive FIFO Overflow int */
1605                 ndev->stats.rx_fifo_errors++;
1606                 netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n");
1607         }
1608
1609         if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1610                 /* Address Error */
1611                 ndev->stats.tx_fifo_errors++;
1612                 netif_err(mdp, tx_err, ndev, "Address Error\n");
1613         }
1614
1615         mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1616         if (mdp->cd->no_ade)
1617                 mask &= ~EESR_ADE;
1618         if (intr_status & mask) {
1619                 /* Tx error */
1620                 u32 edtrr = sh_eth_read(ndev, EDTRR);
1621
1622                 /* dmesg */
1623                 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1624                            intr_status, mdp->cur_tx, mdp->dirty_tx,
1625                            (u32)ndev->state, edtrr);
1626                 /* dirty buffer free */
1627                 sh_eth_txfree(ndev);
1628
1629                 /* SH7712 BUG */
1630                 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1631                         /* tx dma start */
1632                         sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1633                 }
1634                 /* wakeup */
1635                 netif_wake_queue(ndev);
1636         }
1637 }
1638
1639 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1640 {
1641         struct net_device *ndev = netdev;
1642         struct sh_eth_private *mdp = netdev_priv(ndev);
1643         struct sh_eth_cpu_data *cd = mdp->cd;
1644         irqreturn_t ret = IRQ_NONE;
1645         unsigned long intr_status, intr_enable;
1646
1647         spin_lock(&mdp->lock);
1648
1649         /* Get interrupt status */
1650         intr_status = sh_eth_read(ndev, EESR);
1651         /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1652          * enabled since it's the one that  comes thru regardless of the mask,
1653          * and we need to fully handle it in sh_eth_error() in order to quench
1654          * it as it doesn't get cleared by just writing 1 to the ECI bit...
1655          */
1656         intr_enable = sh_eth_read(ndev, EESIPR);
1657         intr_status &= intr_enable | DMAC_M_ECI;
1658         if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1659                 ret = IRQ_HANDLED;
1660         else
1661                 goto other_irq;
1662
1663         if (intr_status & EESR_RX_CHECK) {
1664                 if (napi_schedule_prep(&mdp->napi)) {
1665                         /* Mask Rx interrupts */
1666                         sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1667                                      EESIPR);
1668                         __napi_schedule(&mdp->napi);
1669                 } else {
1670                         netdev_warn(ndev,
1671                                     "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1672                                     intr_status, intr_enable);
1673                 }
1674         }
1675
1676         /* Tx Check */
1677         if (intr_status & cd->tx_check) {
1678                 /* Clear Tx interrupts */
1679                 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1680
1681                 sh_eth_txfree(ndev);
1682                 netif_wake_queue(ndev);
1683         }
1684
1685         if (intr_status & cd->eesr_err_check) {
1686                 /* Clear error interrupts */
1687                 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1688
1689                 sh_eth_error(ndev, intr_status);
1690         }
1691
1692 other_irq:
1693         spin_unlock(&mdp->lock);
1694
1695         return ret;
1696 }
1697
1698 static int sh_eth_poll(struct napi_struct *napi, int budget)
1699 {
1700         struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1701                                                   napi);
1702         struct net_device *ndev = napi->dev;
1703         int quota = budget;
1704         unsigned long intr_status;
1705
1706         for (;;) {
1707                 intr_status = sh_eth_read(ndev, EESR);
1708                 if (!(intr_status & EESR_RX_CHECK))
1709                         break;
1710                 /* Clear Rx interrupts */
1711                 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1712
1713                 if (sh_eth_rx(ndev, intr_status, &quota))
1714                         goto out;
1715         }
1716
1717         napi_complete(napi);
1718
1719         /* Reenable Rx interrupts */
1720         sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1721 out:
1722         return budget - quota;
1723 }
1724
1725 /* PHY state control function */
1726 static void sh_eth_adjust_link(struct net_device *ndev)
1727 {
1728         struct sh_eth_private *mdp = netdev_priv(ndev);
1729         struct phy_device *phydev = mdp->phydev;
1730         int new_state = 0;
1731
1732         if (phydev->link) {
1733                 if (phydev->duplex != mdp->duplex) {
1734                         new_state = 1;
1735                         mdp->duplex = phydev->duplex;
1736                         if (mdp->cd->set_duplex)
1737                                 mdp->cd->set_duplex(ndev);
1738                 }
1739
1740                 if (phydev->speed != mdp->speed) {
1741                         new_state = 1;
1742                         mdp->speed = phydev->speed;
1743                         if (mdp->cd->set_rate)
1744                                 mdp->cd->set_rate(ndev);
1745                 }
1746                 if (!mdp->link) {
1747                         sh_eth_write(ndev,
1748                                      sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1749                                      ECMR);
1750                         new_state = 1;
1751                         mdp->link = phydev->link;
1752                         if (mdp->cd->no_psr || mdp->no_ether_link)
1753                                 sh_eth_rcv_snd_enable(ndev);
1754                 }
1755         } else if (mdp->link) {
1756                 new_state = 1;
1757                 mdp->link = 0;
1758                 mdp->speed = 0;
1759                 mdp->duplex = -1;
1760                 if (mdp->cd->no_psr || mdp->no_ether_link)
1761                         sh_eth_rcv_snd_disable(ndev);
1762         }
1763
1764         if (new_state && netif_msg_link(mdp))
1765                 phy_print_status(phydev);
1766 }
1767
1768 /* PHY init function */
1769 static int sh_eth_phy_init(struct net_device *ndev)
1770 {
1771         struct device_node *np = ndev->dev.parent->of_node;
1772         struct sh_eth_private *mdp = netdev_priv(ndev);
1773         struct phy_device *phydev = NULL;
1774
1775         mdp->link = 0;
1776         mdp->speed = 0;
1777         mdp->duplex = -1;
1778
1779         /* Try connect to PHY */
1780         if (np) {
1781                 struct device_node *pn;
1782
1783                 pn = of_parse_phandle(np, "phy-handle", 0);
1784                 phydev = of_phy_connect(ndev, pn,
1785                                         sh_eth_adjust_link, 0,
1786                                         mdp->phy_interface);
1787
1788                 if (!phydev)
1789                         phydev = ERR_PTR(-ENOENT);
1790         } else {
1791                 char phy_id[MII_BUS_ID_SIZE + 3];
1792
1793                 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1794                          mdp->mii_bus->id, mdp->phy_id);
1795
1796                 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1797                                      mdp->phy_interface);
1798         }
1799
1800         if (IS_ERR(phydev)) {
1801                 netdev_err(ndev, "failed to connect PHY\n");
1802                 return PTR_ERR(phydev);
1803         }
1804
1805         netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1806                     phydev->addr, phydev->irq, phydev->drv->name);
1807
1808         mdp->phydev = phydev;
1809
1810         return 0;
1811 }
1812
1813 /* PHY control start function */
1814 static int sh_eth_phy_start(struct net_device *ndev)
1815 {
1816         struct sh_eth_private *mdp = netdev_priv(ndev);
1817         int ret;
1818
1819         ret = sh_eth_phy_init(ndev);
1820         if (ret)
1821                 return ret;
1822
1823         phy_start(mdp->phydev);
1824
1825         return 0;
1826 }
1827
1828 static int sh_eth_get_settings(struct net_device *ndev,
1829                                struct ethtool_cmd *ecmd)
1830 {
1831         struct sh_eth_private *mdp = netdev_priv(ndev);
1832         unsigned long flags;
1833         int ret;
1834
1835         spin_lock_irqsave(&mdp->lock, flags);
1836         ret = phy_ethtool_gset(mdp->phydev, ecmd);
1837         spin_unlock_irqrestore(&mdp->lock, flags);
1838
1839         return ret;
1840 }
1841
1842 static int sh_eth_set_settings(struct net_device *ndev,
1843                                struct ethtool_cmd *ecmd)
1844 {
1845         struct sh_eth_private *mdp = netdev_priv(ndev);
1846         unsigned long flags;
1847         int ret;
1848
1849         spin_lock_irqsave(&mdp->lock, flags);
1850
1851         /* disable tx and rx */
1852         sh_eth_rcv_snd_disable(ndev);
1853
1854         ret = phy_ethtool_sset(mdp->phydev, ecmd);
1855         if (ret)
1856                 goto error_exit;
1857
1858         if (ecmd->duplex == DUPLEX_FULL)
1859                 mdp->duplex = 1;
1860         else
1861                 mdp->duplex = 0;
1862
1863         if (mdp->cd->set_duplex)
1864                 mdp->cd->set_duplex(ndev);
1865
1866 error_exit:
1867         mdelay(1);
1868
1869         /* enable tx and rx */
1870         sh_eth_rcv_snd_enable(ndev);
1871
1872         spin_unlock_irqrestore(&mdp->lock, flags);
1873
1874         return ret;
1875 }
1876
1877 static int sh_eth_nway_reset(struct net_device *ndev)
1878 {
1879         struct sh_eth_private *mdp = netdev_priv(ndev);
1880         unsigned long flags;
1881         int ret;
1882
1883         spin_lock_irqsave(&mdp->lock, flags);
1884         ret = phy_start_aneg(mdp->phydev);
1885         spin_unlock_irqrestore(&mdp->lock, flags);
1886
1887         return ret;
1888 }
1889
1890 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1891 {
1892         struct sh_eth_private *mdp = netdev_priv(ndev);
1893         return mdp->msg_enable;
1894 }
1895
1896 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1897 {
1898         struct sh_eth_private *mdp = netdev_priv(ndev);
1899         mdp->msg_enable = value;
1900 }
1901
1902 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1903         "rx_current", "tx_current",
1904         "rx_dirty", "tx_dirty",
1905 };
1906 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1907
1908 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1909 {
1910         switch (sset) {
1911         case ETH_SS_STATS:
1912                 return SH_ETH_STATS_LEN;
1913         default:
1914                 return -EOPNOTSUPP;
1915         }
1916 }
1917
1918 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1919                                      struct ethtool_stats *stats, u64 *data)
1920 {
1921         struct sh_eth_private *mdp = netdev_priv(ndev);
1922         int i = 0;
1923
1924         /* device-specific stats */
1925         data[i++] = mdp->cur_rx;
1926         data[i++] = mdp->cur_tx;
1927         data[i++] = mdp->dirty_rx;
1928         data[i++] = mdp->dirty_tx;
1929 }
1930
1931 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1932 {
1933         switch (stringset) {
1934         case ETH_SS_STATS:
1935                 memcpy(data, *sh_eth_gstrings_stats,
1936                        sizeof(sh_eth_gstrings_stats));
1937                 break;
1938         }
1939 }
1940
1941 static void sh_eth_get_ringparam(struct net_device *ndev,
1942                                  struct ethtool_ringparam *ring)
1943 {
1944         struct sh_eth_private *mdp = netdev_priv(ndev);
1945
1946         ring->rx_max_pending = RX_RING_MAX;
1947         ring->tx_max_pending = TX_RING_MAX;
1948         ring->rx_pending = mdp->num_rx_ring;
1949         ring->tx_pending = mdp->num_tx_ring;
1950 }
1951
1952 static int sh_eth_set_ringparam(struct net_device *ndev,
1953                                 struct ethtool_ringparam *ring)
1954 {
1955         struct sh_eth_private *mdp = netdev_priv(ndev);
1956         int ret;
1957
1958         if (ring->tx_pending > TX_RING_MAX ||
1959             ring->rx_pending > RX_RING_MAX ||
1960             ring->tx_pending < TX_RING_MIN ||
1961             ring->rx_pending < RX_RING_MIN)
1962                 return -EINVAL;
1963         if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1964                 return -EINVAL;
1965
1966         if (netif_running(ndev)) {
1967                 netif_tx_disable(ndev);
1968                 /* Disable interrupts by clearing the interrupt mask. */
1969                 sh_eth_write(ndev, 0x0000, EESIPR);
1970                 /* Stop the chip's Tx and Rx processes. */
1971                 sh_eth_write(ndev, 0, EDTRR);
1972                 sh_eth_write(ndev, 0, EDRRR);
1973                 synchronize_irq(ndev->irq);
1974         }
1975
1976         /* Free all the skbuffs in the Rx queue. */
1977         sh_eth_ring_free(ndev);
1978         /* Free DMA buffer */
1979         sh_eth_free_dma_buffer(mdp);
1980
1981         /* Set new parameters */
1982         mdp->num_rx_ring = ring->rx_pending;
1983         mdp->num_tx_ring = ring->tx_pending;
1984
1985         ret = sh_eth_ring_init(ndev);
1986         if (ret < 0) {
1987                 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__);
1988                 return ret;
1989         }
1990         ret = sh_eth_dev_init(ndev, false);
1991         if (ret < 0) {
1992                 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__);
1993                 return ret;
1994         }
1995
1996         if (netif_running(ndev)) {
1997                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1998                 /* Setting the Rx mode will start the Rx process. */
1999                 sh_eth_write(ndev, EDRRR_R, EDRRR);
2000                 netif_wake_queue(ndev);
2001         }
2002
2003         return 0;
2004 }
2005
2006 static const struct ethtool_ops sh_eth_ethtool_ops = {
2007         .get_settings   = sh_eth_get_settings,
2008         .set_settings   = sh_eth_set_settings,
2009         .nway_reset     = sh_eth_nway_reset,
2010         .get_msglevel   = sh_eth_get_msglevel,
2011         .set_msglevel   = sh_eth_set_msglevel,
2012         .get_link       = ethtool_op_get_link,
2013         .get_strings    = sh_eth_get_strings,
2014         .get_ethtool_stats  = sh_eth_get_ethtool_stats,
2015         .get_sset_count     = sh_eth_get_sset_count,
2016         .get_ringparam  = sh_eth_get_ringparam,
2017         .set_ringparam  = sh_eth_set_ringparam,
2018 };
2019
2020 /* network device open function */
2021 static int sh_eth_open(struct net_device *ndev)
2022 {
2023         int ret = 0;
2024         struct sh_eth_private *mdp = netdev_priv(ndev);
2025
2026         pm_runtime_get_sync(&mdp->pdev->dev);
2027
2028         napi_enable(&mdp->napi);
2029
2030         ret = request_irq(ndev->irq, sh_eth_interrupt,
2031                           mdp->cd->irq_flags, ndev->name, ndev);
2032         if (ret) {
2033                 netdev_err(ndev, "Can not assign IRQ number\n");
2034                 goto out_napi_off;
2035         }
2036
2037         /* Descriptor set */
2038         ret = sh_eth_ring_init(ndev);
2039         if (ret)
2040                 goto out_free_irq;
2041
2042         /* device init */
2043         ret = sh_eth_dev_init(ndev, true);
2044         if (ret)
2045                 goto out_free_irq;
2046
2047         /* PHY control start*/
2048         ret = sh_eth_phy_start(ndev);
2049         if (ret)
2050                 goto out_free_irq;
2051
2052         return ret;
2053
2054 out_free_irq:
2055         free_irq(ndev->irq, ndev);
2056 out_napi_off:
2057         napi_disable(&mdp->napi);
2058         pm_runtime_put_sync(&mdp->pdev->dev);
2059         return ret;
2060 }
2061
2062 /* Timeout function */
2063 static void sh_eth_tx_timeout(struct net_device *ndev)
2064 {
2065         struct sh_eth_private *mdp = netdev_priv(ndev);
2066         struct sh_eth_rxdesc *rxdesc;
2067         int i;
2068
2069         netif_stop_queue(ndev);
2070
2071         netif_err(mdp, timer, ndev,
2072                   "transmit timed out, status %8.8x, resetting...\n",
2073                   (int)sh_eth_read(ndev, EESR));
2074
2075         /* tx_errors count up */
2076         ndev->stats.tx_errors++;
2077
2078         /* Free all the skbuffs in the Rx queue. */
2079         for (i = 0; i < mdp->num_rx_ring; i++) {
2080                 rxdesc = &mdp->rx_ring[i];
2081                 rxdesc->status = 0;
2082                 rxdesc->addr = 0xBADF00D0;
2083                 if (mdp->rx_skbuff[i])
2084                         dev_kfree_skb(mdp->rx_skbuff[i]);
2085                 mdp->rx_skbuff[i] = NULL;
2086         }
2087         for (i = 0; i < mdp->num_tx_ring; i++) {
2088                 if (mdp->tx_skbuff[i])
2089                         dev_kfree_skb(mdp->tx_skbuff[i]);
2090                 mdp->tx_skbuff[i] = NULL;
2091         }
2092
2093         /* device init */
2094         sh_eth_dev_init(ndev, true);
2095 }
2096
2097 /* Packet transmit function */
2098 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2099 {
2100         struct sh_eth_private *mdp = netdev_priv(ndev);
2101         struct sh_eth_txdesc *txdesc;
2102         u32 entry;
2103         unsigned long flags;
2104
2105         spin_lock_irqsave(&mdp->lock, flags);
2106         if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2107                 if (!sh_eth_txfree(ndev)) {
2108                         netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2109                         netif_stop_queue(ndev);
2110                         spin_unlock_irqrestore(&mdp->lock, flags);
2111                         return NETDEV_TX_BUSY;
2112                 }
2113         }
2114         spin_unlock_irqrestore(&mdp->lock, flags);
2115
2116         entry = mdp->cur_tx % mdp->num_tx_ring;
2117         mdp->tx_skbuff[entry] = skb;
2118         txdesc = &mdp->tx_ring[entry];
2119         /* soft swap. */
2120         if (!mdp->cd->hw_swap)
2121                 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2122                                  skb->len + 2);
2123         txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2124                                       DMA_TO_DEVICE);
2125         if (skb->len < ETH_ZLEN)
2126                 txdesc->buffer_length = ETH_ZLEN;
2127         else
2128                 txdesc->buffer_length = skb->len;
2129
2130         if (entry >= mdp->num_tx_ring - 1)
2131                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2132         else
2133                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2134
2135         mdp->cur_tx++;
2136
2137         if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2138                 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2139
2140         return NETDEV_TX_OK;
2141 }
2142
2143 /* device close function */
2144 static int sh_eth_close(struct net_device *ndev)
2145 {
2146         struct sh_eth_private *mdp = netdev_priv(ndev);
2147
2148         netif_stop_queue(ndev);
2149
2150         /* Disable interrupts by clearing the interrupt mask. */
2151         sh_eth_write(ndev, 0x0000, EESIPR);
2152
2153         /* Stop the chip's Tx and Rx processes. */
2154         sh_eth_write(ndev, 0, EDTRR);
2155         sh_eth_write(ndev, 0, EDRRR);
2156
2157         /* PHY Disconnect */
2158         if (mdp->phydev) {
2159                 phy_stop(mdp->phydev);
2160                 phy_disconnect(mdp->phydev);
2161         }
2162
2163         free_irq(ndev->irq, ndev);
2164
2165         napi_disable(&mdp->napi);
2166
2167         /* Free all the skbuffs in the Rx queue. */
2168         sh_eth_ring_free(ndev);
2169
2170         /* free DMA buffer */
2171         sh_eth_free_dma_buffer(mdp);
2172
2173         pm_runtime_put_sync(&mdp->pdev->dev);
2174
2175         return 0;
2176 }
2177
2178 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2179 {
2180         struct sh_eth_private *mdp = netdev_priv(ndev);
2181
2182         if (sh_eth_is_rz_fast_ether(mdp))
2183                 return &ndev->stats;
2184
2185         pm_runtime_get_sync(&mdp->pdev->dev);
2186
2187         ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2188         sh_eth_write(ndev, 0, TROCR);   /* (write clear) */
2189         ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2190         sh_eth_write(ndev, 0, CDCR);    /* (write clear) */
2191         ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2192         sh_eth_write(ndev, 0, LCCR);    /* (write clear) */
2193         if (sh_eth_is_gether(mdp)) {
2194                 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2195                 sh_eth_write(ndev, 0, CERCR);   /* (write clear) */
2196                 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2197                 sh_eth_write(ndev, 0, CEECR);   /* (write clear) */
2198         } else {
2199                 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2200                 sh_eth_write(ndev, 0, CNDCR);   /* (write clear) */
2201         }
2202         pm_runtime_put_sync(&mdp->pdev->dev);
2203
2204         return &ndev->stats;
2205 }
2206
2207 /* ioctl to device function */
2208 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2209 {
2210         struct sh_eth_private *mdp = netdev_priv(ndev);
2211         struct phy_device *phydev = mdp->phydev;
2212
2213         if (!netif_running(ndev))
2214                 return -EINVAL;
2215
2216         if (!phydev)
2217                 return -ENODEV;
2218
2219         return phy_mii_ioctl(phydev, rq, cmd);
2220 }
2221
2222 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2223 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2224                                             int entry)
2225 {
2226         return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2227 }
2228
2229 static u32 sh_eth_tsu_get_post_mask(int entry)
2230 {
2231         return 0x0f << (28 - ((entry % 8) * 4));
2232 }
2233
2234 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2235 {
2236         return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2237 }
2238
2239 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2240                                              int entry)
2241 {
2242         struct sh_eth_private *mdp = netdev_priv(ndev);
2243         u32 tmp;
2244         void *reg_offset;
2245
2246         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2247         tmp = ioread32(reg_offset);
2248         iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2249 }
2250
2251 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2252                                               int entry)
2253 {
2254         struct sh_eth_private *mdp = netdev_priv(ndev);
2255         u32 post_mask, ref_mask, tmp;
2256         void *reg_offset;
2257
2258         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2259         post_mask = sh_eth_tsu_get_post_mask(entry);
2260         ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2261
2262         tmp = ioread32(reg_offset);
2263         iowrite32(tmp & ~post_mask, reg_offset);
2264
2265         /* If other port enables, the function returns "true" */
2266         return tmp & ref_mask;
2267 }
2268
2269 static int sh_eth_tsu_busy(struct net_device *ndev)
2270 {
2271         int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2272         struct sh_eth_private *mdp = netdev_priv(ndev);
2273
2274         while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2275                 udelay(10);
2276                 timeout--;
2277                 if (timeout <= 0) {
2278                         netdev_err(ndev, "%s: timeout\n", __func__);
2279                         return -ETIMEDOUT;
2280                 }
2281         }
2282
2283         return 0;
2284 }
2285
2286 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2287                                   const u8 *addr)
2288 {
2289         u32 val;
2290
2291         val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2292         iowrite32(val, reg);
2293         if (sh_eth_tsu_busy(ndev) < 0)
2294                 return -EBUSY;
2295
2296         val = addr[4] << 8 | addr[5];
2297         iowrite32(val, reg + 4);
2298         if (sh_eth_tsu_busy(ndev) < 0)
2299                 return -EBUSY;
2300
2301         return 0;
2302 }
2303
2304 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2305 {
2306         u32 val;
2307
2308         val = ioread32(reg);
2309         addr[0] = (val >> 24) & 0xff;
2310         addr[1] = (val >> 16) & 0xff;
2311         addr[2] = (val >> 8) & 0xff;
2312         addr[3] = val & 0xff;
2313         val = ioread32(reg + 4);
2314         addr[4] = (val >> 8) & 0xff;
2315         addr[5] = val & 0xff;
2316 }
2317
2318
2319 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2320 {
2321         struct sh_eth_private *mdp = netdev_priv(ndev);
2322         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2323         int i;
2324         u8 c_addr[ETH_ALEN];
2325
2326         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2327                 sh_eth_tsu_read_entry(reg_offset, c_addr);
2328                 if (ether_addr_equal(addr, c_addr))
2329                         return i;
2330         }
2331
2332         return -ENOENT;
2333 }
2334
2335 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2336 {
2337         u8 blank[ETH_ALEN];
2338         int entry;
2339
2340         memset(blank, 0, sizeof(blank));
2341         entry = sh_eth_tsu_find_entry(ndev, blank);
2342         return (entry < 0) ? -ENOMEM : entry;
2343 }
2344
2345 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2346                                               int entry)
2347 {
2348         struct sh_eth_private *mdp = netdev_priv(ndev);
2349         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2350         int ret;
2351         u8 blank[ETH_ALEN];
2352
2353         sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2354                          ~(1 << (31 - entry)), TSU_TEN);
2355
2356         memset(blank, 0, sizeof(blank));
2357         ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2358         if (ret < 0)
2359                 return ret;
2360         return 0;
2361 }
2362
2363 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2364 {
2365         struct sh_eth_private *mdp = netdev_priv(ndev);
2366         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2367         int i, ret;
2368
2369         if (!mdp->cd->tsu)
2370                 return 0;
2371
2372         i = sh_eth_tsu_find_entry(ndev, addr);
2373         if (i < 0) {
2374                 /* No entry found, create one */
2375                 i = sh_eth_tsu_find_empty(ndev);
2376                 if (i < 0)
2377                         return -ENOMEM;
2378                 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2379                 if (ret < 0)
2380                         return ret;
2381
2382                 /* Enable the entry */
2383                 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2384                                  (1 << (31 - i)), TSU_TEN);
2385         }
2386
2387         /* Entry found or created, enable POST */
2388         sh_eth_tsu_enable_cam_entry_post(ndev, i);
2389
2390         return 0;
2391 }
2392
2393 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2394 {
2395         struct sh_eth_private *mdp = netdev_priv(ndev);
2396         int i, ret;
2397
2398         if (!mdp->cd->tsu)
2399                 return 0;
2400
2401         i = sh_eth_tsu_find_entry(ndev, addr);
2402         if (i) {
2403                 /* Entry found */
2404                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2405                         goto done;
2406
2407                 /* Disable the entry if both ports was disabled */
2408                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2409                 if (ret < 0)
2410                         return ret;
2411         }
2412 done:
2413         return 0;
2414 }
2415
2416 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2417 {
2418         struct sh_eth_private *mdp = netdev_priv(ndev);
2419         int i, ret;
2420
2421         if (unlikely(!mdp->cd->tsu))
2422                 return 0;
2423
2424         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2425                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2426                         continue;
2427
2428                 /* Disable the entry if both ports was disabled */
2429                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2430                 if (ret < 0)
2431                         return ret;
2432         }
2433
2434         return 0;
2435 }
2436
2437 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2438 {
2439         struct sh_eth_private *mdp = netdev_priv(ndev);
2440         u8 addr[ETH_ALEN];
2441         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2442         int i;
2443
2444         if (unlikely(!mdp->cd->tsu))
2445                 return;
2446
2447         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2448                 sh_eth_tsu_read_entry(reg_offset, addr);
2449                 if (is_multicast_ether_addr(addr))
2450                         sh_eth_tsu_del_entry(ndev, addr);
2451         }
2452 }
2453
2454 /* Multicast reception directions set */
2455 static void sh_eth_set_multicast_list(struct net_device *ndev)
2456 {
2457         struct sh_eth_private *mdp = netdev_priv(ndev);
2458         u32 ecmr_bits;
2459         int mcast_all = 0;
2460         unsigned long flags;
2461
2462         spin_lock_irqsave(&mdp->lock, flags);
2463         /* Initial condition is MCT = 1, PRM = 0.
2464          * Depending on ndev->flags, set PRM or clear MCT
2465          */
2466         ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2467
2468         if (!(ndev->flags & IFF_MULTICAST)) {
2469                 sh_eth_tsu_purge_mcast(ndev);
2470                 mcast_all = 1;
2471         }
2472         if (ndev->flags & IFF_ALLMULTI) {
2473                 sh_eth_tsu_purge_mcast(ndev);
2474                 ecmr_bits &= ~ECMR_MCT;
2475                 mcast_all = 1;
2476         }
2477
2478         if (ndev->flags & IFF_PROMISC) {
2479                 sh_eth_tsu_purge_all(ndev);
2480                 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2481         } else if (mdp->cd->tsu) {
2482                 struct netdev_hw_addr *ha;
2483                 netdev_for_each_mc_addr(ha, ndev) {
2484                         if (mcast_all && is_multicast_ether_addr(ha->addr))
2485                                 continue;
2486
2487                         if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2488                                 if (!mcast_all) {
2489                                         sh_eth_tsu_purge_mcast(ndev);
2490                                         ecmr_bits &= ~ECMR_MCT;
2491                                         mcast_all = 1;
2492                                 }
2493                         }
2494                 }
2495         } else {
2496                 /* Normal, unicast/broadcast-only mode. */
2497                 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2498         }
2499
2500         /* update the ethernet mode */
2501         sh_eth_write(ndev, ecmr_bits, ECMR);
2502
2503         spin_unlock_irqrestore(&mdp->lock, flags);
2504 }
2505
2506 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2507 {
2508         if (!mdp->port)
2509                 return TSU_VTAG0;
2510         else
2511                 return TSU_VTAG1;
2512 }
2513
2514 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2515                                   __be16 proto, u16 vid)
2516 {
2517         struct sh_eth_private *mdp = netdev_priv(ndev);
2518         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2519
2520         if (unlikely(!mdp->cd->tsu))
2521                 return -EPERM;
2522
2523         /* No filtering if vid = 0 */
2524         if (!vid)
2525                 return 0;
2526
2527         mdp->vlan_num_ids++;
2528
2529         /* The controller has one VLAN tag HW filter. So, if the filter is
2530          * already enabled, the driver disables it and the filte
2531          */
2532         if (mdp->vlan_num_ids > 1) {
2533                 /* disable VLAN filter */
2534                 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2535                 return 0;
2536         }
2537
2538         sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2539                          vtag_reg_index);
2540
2541         return 0;
2542 }
2543
2544 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2545                                    __be16 proto, u16 vid)
2546 {
2547         struct sh_eth_private *mdp = netdev_priv(ndev);
2548         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2549
2550         if (unlikely(!mdp->cd->tsu))
2551                 return -EPERM;
2552
2553         /* No filtering if vid = 0 */
2554         if (!vid)
2555                 return 0;
2556
2557         mdp->vlan_num_ids--;
2558         sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2559
2560         return 0;
2561 }
2562
2563 /* SuperH's TSU register init function */
2564 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2565 {
2566         if (sh_eth_is_rz_fast_ether(mdp)) {
2567                 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2568                 return;
2569         }
2570
2571         sh_eth_tsu_write(mdp, 0, TSU_FWEN0);    /* Disable forward(0->1) */
2572         sh_eth_tsu_write(mdp, 0, TSU_FWEN1);    /* Disable forward(1->0) */
2573         sh_eth_tsu_write(mdp, 0, TSU_FCM);      /* forward fifo 3k-3k */
2574         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2575         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2576         sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2577         sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2578         sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2579         sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2580         sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2581         if (sh_eth_is_gether(mdp)) {
2582                 sh_eth_tsu_write(mdp, 0, TSU_QTAG0);    /* Disable QTAG(0->1) */
2583                 sh_eth_tsu_write(mdp, 0, TSU_QTAG1);    /* Disable QTAG(1->0) */
2584         } else {
2585                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);   /* Disable QTAG(0->1) */
2586                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);   /* Disable QTAG(1->0) */
2587         }
2588         sh_eth_tsu_write(mdp, 0, TSU_FWSR);     /* all interrupt status clear */
2589         sh_eth_tsu_write(mdp, 0, TSU_FWINMK);   /* Disable all interrupt */
2590         sh_eth_tsu_write(mdp, 0, TSU_TEN);      /* Disable all CAM entry */
2591         sh_eth_tsu_write(mdp, 0, TSU_POST1);    /* Disable CAM entry [ 0- 7] */
2592         sh_eth_tsu_write(mdp, 0, TSU_POST2);    /* Disable CAM entry [ 8-15] */
2593         sh_eth_tsu_write(mdp, 0, TSU_POST3);    /* Disable CAM entry [16-23] */
2594         sh_eth_tsu_write(mdp, 0, TSU_POST4);    /* Disable CAM entry [24-31] */
2595 }
2596
2597 /* MDIO bus release function */
2598 static int sh_mdio_release(struct sh_eth_private *mdp)
2599 {
2600         /* unregister mdio bus */
2601         mdiobus_unregister(mdp->mii_bus);
2602
2603         /* free bitbang info */
2604         free_mdio_bitbang(mdp->mii_bus);
2605
2606         return 0;
2607 }
2608
2609 /* MDIO bus init function */
2610 static int sh_mdio_init(struct sh_eth_private *mdp,
2611                         struct sh_eth_plat_data *pd)
2612 {
2613         int ret, i;
2614         struct bb_info *bitbang;
2615         struct platform_device *pdev = mdp->pdev;
2616         struct device *dev = &mdp->pdev->dev;
2617
2618         /* create bit control struct for PHY */
2619         bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2620         if (!bitbang)
2621                 return -ENOMEM;
2622
2623         /* bitbang init */
2624         bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2625         bitbang->set_gate = pd->set_mdio_gate;
2626         bitbang->mdi_msk = PIR_MDI;
2627         bitbang->mdo_msk = PIR_MDO;
2628         bitbang->mmd_msk = PIR_MMD;
2629         bitbang->mdc_msk = PIR_MDC;
2630         bitbang->ctrl.ops = &bb_ops;
2631
2632         /* MII controller setting */
2633         mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2634         if (!mdp->mii_bus)
2635                 return -ENOMEM;
2636
2637         /* Hook up MII support for ethtool */
2638         mdp->mii_bus->name = "sh_mii";
2639         mdp->mii_bus->parent = dev;
2640         snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2641                  pdev->name, pdev->id);
2642
2643         /* PHY IRQ */
2644         mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2645                                                GFP_KERNEL);
2646         if (!mdp->mii_bus->irq) {
2647                 ret = -ENOMEM;
2648                 goto out_free_bus;
2649         }
2650
2651         /* register MDIO bus */
2652         if (dev->of_node) {
2653                 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2654         } else {
2655                 for (i = 0; i < PHY_MAX_ADDR; i++)
2656                         mdp->mii_bus->irq[i] = PHY_POLL;
2657                 if (pd->phy_irq > 0)
2658                         mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2659
2660                 ret = mdiobus_register(mdp->mii_bus);
2661         }
2662
2663         if (ret)
2664                 goto out_free_bus;
2665
2666         return 0;
2667
2668 out_free_bus:
2669         free_mdio_bitbang(mdp->mii_bus);
2670         return ret;
2671 }
2672
2673 static const u16 *sh_eth_get_register_offset(int register_type)
2674 {
2675         const u16 *reg_offset = NULL;
2676
2677         switch (register_type) {
2678         case SH_ETH_REG_GIGABIT:
2679                 reg_offset = sh_eth_offset_gigabit;
2680                 break;
2681         case SH_ETH_REG_FAST_RZ:
2682                 reg_offset = sh_eth_offset_fast_rz;
2683                 break;
2684         case SH_ETH_REG_FAST_RCAR:
2685                 reg_offset = sh_eth_offset_fast_rcar;
2686                 break;
2687         case SH_ETH_REG_FAST_SH4:
2688                 reg_offset = sh_eth_offset_fast_sh4;
2689                 break;
2690         case SH_ETH_REG_FAST_SH3_SH2:
2691                 reg_offset = sh_eth_offset_fast_sh3_sh2;
2692                 break;
2693         default:
2694                 break;
2695         }
2696
2697         return reg_offset;
2698 }
2699
2700 static const struct net_device_ops sh_eth_netdev_ops = {
2701         .ndo_open               = sh_eth_open,
2702         .ndo_stop               = sh_eth_close,
2703         .ndo_start_xmit         = sh_eth_start_xmit,
2704         .ndo_get_stats          = sh_eth_get_stats,
2705         .ndo_tx_timeout         = sh_eth_tx_timeout,
2706         .ndo_do_ioctl           = sh_eth_do_ioctl,
2707         .ndo_validate_addr      = eth_validate_addr,
2708         .ndo_set_mac_address    = eth_mac_addr,
2709         .ndo_change_mtu         = eth_change_mtu,
2710 };
2711
2712 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2713         .ndo_open               = sh_eth_open,
2714         .ndo_stop               = sh_eth_close,
2715         .ndo_start_xmit         = sh_eth_start_xmit,
2716         .ndo_get_stats          = sh_eth_get_stats,
2717         .ndo_set_rx_mode        = sh_eth_set_multicast_list,
2718         .ndo_vlan_rx_add_vid    = sh_eth_vlan_rx_add_vid,
2719         .ndo_vlan_rx_kill_vid   = sh_eth_vlan_rx_kill_vid,
2720         .ndo_tx_timeout         = sh_eth_tx_timeout,
2721         .ndo_do_ioctl           = sh_eth_do_ioctl,
2722         .ndo_validate_addr      = eth_validate_addr,
2723         .ndo_set_mac_address    = eth_mac_addr,
2724         .ndo_change_mtu         = eth_change_mtu,
2725 };
2726
2727 #ifdef CONFIG_OF
2728 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2729 {
2730         struct device_node *np = dev->of_node;
2731         struct sh_eth_plat_data *pdata;
2732         const char *mac_addr;
2733
2734         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2735         if (!pdata)
2736                 return NULL;
2737
2738         pdata->phy_interface = of_get_phy_mode(np);
2739
2740         mac_addr = of_get_mac_address(np);
2741         if (mac_addr)
2742                 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2743
2744         pdata->no_ether_link =
2745                 of_property_read_bool(np, "renesas,no-ether-link");
2746         pdata->ether_link_active_low =
2747                 of_property_read_bool(np, "renesas,ether-link-active-low");
2748
2749         return pdata;
2750 }
2751
2752 static const struct of_device_id sh_eth_match_table[] = {
2753         { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2754         { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2755         { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2756         { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2757         { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2758         { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2759         { }
2760 };
2761 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2762 #else
2763 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2764 {
2765         return NULL;
2766 }
2767 #endif
2768
2769 static int sh_eth_drv_probe(struct platform_device *pdev)
2770 {
2771         int ret, devno = 0;
2772         struct resource *res;
2773         struct net_device *ndev = NULL;
2774         struct sh_eth_private *mdp = NULL;
2775         struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2776         const struct platform_device_id *id = platform_get_device_id(pdev);
2777
2778         /* get base addr */
2779         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2780         if (unlikely(res == NULL)) {
2781                 dev_err(&pdev->dev, "invalid resource\n");
2782                 return -EINVAL;
2783         }
2784
2785         ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2786         if (!ndev)
2787                 return -ENOMEM;
2788
2789         pm_runtime_enable(&pdev->dev);
2790         pm_runtime_get_sync(&pdev->dev);
2791
2792         /* The sh Ether-specific entries in the device structure. */
2793         ndev->base_addr = res->start;
2794         devno = pdev->id;
2795         if (devno < 0)
2796                 devno = 0;
2797
2798         ndev->dma = -1;
2799         ret = platform_get_irq(pdev, 0);
2800         if (ret < 0) {
2801                 ret = -ENODEV;
2802                 goto out_release;
2803         }
2804         ndev->irq = ret;
2805
2806         SET_NETDEV_DEV(ndev, &pdev->dev);
2807
2808         mdp = netdev_priv(ndev);
2809         mdp->num_tx_ring = TX_RING_SIZE;
2810         mdp->num_rx_ring = RX_RING_SIZE;
2811         mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2812         if (IS_ERR(mdp->addr)) {
2813                 ret = PTR_ERR(mdp->addr);
2814                 goto out_release;
2815         }
2816
2817         spin_lock_init(&mdp->lock);
2818         mdp->pdev = pdev;
2819
2820         if (pdev->dev.of_node)
2821                 pd = sh_eth_parse_dt(&pdev->dev);
2822         if (!pd) {
2823                 dev_err(&pdev->dev, "no platform data\n");
2824                 ret = -EINVAL;
2825                 goto out_release;
2826         }
2827
2828         /* get PHY ID */
2829         mdp->phy_id = pd->phy;
2830         mdp->phy_interface = pd->phy_interface;
2831         /* EDMAC endian */
2832         mdp->edmac_endian = pd->edmac_endian;
2833         mdp->no_ether_link = pd->no_ether_link;
2834         mdp->ether_link_active_low = pd->ether_link_active_low;
2835
2836         /* set cpu data */
2837         if (id) {
2838                 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2839         } else  {
2840                 const struct of_device_id *match;
2841
2842                 match = of_match_device(of_match_ptr(sh_eth_match_table),
2843                                         &pdev->dev);
2844                 mdp->cd = (struct sh_eth_cpu_data *)match->data;
2845         }
2846         mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2847         if (!mdp->reg_offset) {
2848                 dev_err(&pdev->dev, "Unknown register type (%d)\n",
2849                         mdp->cd->register_type);
2850                 ret = -EINVAL;
2851                 goto out_release;
2852         }
2853         sh_eth_set_default_cpu_data(mdp->cd);
2854
2855         /* set function */
2856         if (mdp->cd->tsu)
2857                 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2858         else
2859                 ndev->netdev_ops = &sh_eth_netdev_ops;
2860         SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2861         ndev->watchdog_timeo = TX_TIMEOUT;
2862
2863         /* debug message level */
2864         mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2865
2866         /* read and set MAC address */
2867         read_mac_address(ndev, pd->mac_addr);
2868         if (!is_valid_ether_addr(ndev->dev_addr)) {
2869                 dev_warn(&pdev->dev,
2870                          "no valid MAC address supplied, using a random one.\n");
2871                 eth_hw_addr_random(ndev);
2872         }
2873
2874         /* ioremap the TSU registers */
2875         if (mdp->cd->tsu) {
2876                 struct resource *rtsu;
2877                 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2878                 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2879                 if (IS_ERR(mdp->tsu_addr)) {
2880                         ret = PTR_ERR(mdp->tsu_addr);
2881                         goto out_release;
2882                 }
2883                 mdp->port = devno % 2;
2884                 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2885         }
2886
2887         /* initialize first or needed device */
2888         if (!devno || pd->needs_init) {
2889                 if (mdp->cd->chip_reset)
2890                         mdp->cd->chip_reset(ndev);
2891
2892                 if (mdp->cd->tsu) {
2893                         /* TSU init (Init only)*/
2894                         sh_eth_tsu_init(mdp);
2895                 }
2896         }
2897
2898         /* MDIO bus init */
2899         ret = sh_mdio_init(mdp, pd);
2900         if (ret) {
2901                 dev_err(&ndev->dev, "failed to initialise MDIO\n");
2902                 goto out_release;
2903         }
2904
2905         netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2906
2907         /* network device register */
2908         ret = register_netdev(ndev);
2909         if (ret)
2910                 goto out_napi_del;
2911
2912         /* print device information */
2913         netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2914                     (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2915
2916         pm_runtime_put(&pdev->dev);
2917         platform_set_drvdata(pdev, ndev);
2918
2919         return ret;
2920
2921 out_napi_del:
2922         netif_napi_del(&mdp->napi);
2923         sh_mdio_release(mdp);
2924
2925 out_release:
2926         /* net_dev free */
2927         if (ndev)
2928                 free_netdev(ndev);
2929
2930         pm_runtime_put(&pdev->dev);
2931         pm_runtime_disable(&pdev->dev);
2932         return ret;
2933 }
2934
2935 static int sh_eth_drv_remove(struct platform_device *pdev)
2936 {
2937         struct net_device *ndev = platform_get_drvdata(pdev);
2938         struct sh_eth_private *mdp = netdev_priv(ndev);
2939
2940         unregister_netdev(ndev);
2941         netif_napi_del(&mdp->napi);
2942         sh_mdio_release(mdp);
2943         pm_runtime_disable(&pdev->dev);
2944         free_netdev(ndev);
2945
2946         return 0;
2947 }
2948
2949 #ifdef CONFIG_PM
2950 static int sh_eth_runtime_nop(struct device *dev)
2951 {
2952         /* Runtime PM callback shared between ->runtime_suspend()
2953          * and ->runtime_resume(). Simply returns success.
2954          *
2955          * This driver re-initializes all registers after
2956          * pm_runtime_get_sync() anyway so there is no need
2957          * to save and restore registers here.
2958          */
2959         return 0;
2960 }
2961
2962 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2963         .runtime_suspend = sh_eth_runtime_nop,
2964         .runtime_resume = sh_eth_runtime_nop,
2965 };
2966 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2967 #else
2968 #define SH_ETH_PM_OPS NULL
2969 #endif
2970
2971 static struct platform_device_id sh_eth_id_table[] = {
2972         { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2973         { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2974         { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2975         { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2976         { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2977         { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2978         { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2979         { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2980         { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2981         { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2982         { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2983         { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2984         { }
2985 };
2986 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2987
2988 static struct platform_driver sh_eth_driver = {
2989         .probe = sh_eth_drv_probe,
2990         .remove = sh_eth_drv_remove,
2991         .id_table = sh_eth_id_table,
2992         .driver = {
2993                    .name = CARDNAME,
2994                    .pm = SH_ETH_PM_OPS,
2995                    .of_match_table = of_match_ptr(sh_eth_match_table),
2996         },
2997 };
2998
2999 module_platform_driver(sh_eth_driver);
3000
3001 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3002 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3003 MODULE_LICENSE("GPL v2");