1 /* SuperH Ethernet device driver
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2016 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
49 #define SH_ETH_DEF_MSG_ENABLE \
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
203 [TSU_CTRST] = 0x0004,
204 [TSU_VTAG0] = 0x0058,
205 [TSU_ADSBSY] = 0x0060,
207 [TSU_ADRH0] = 0x0100,
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 SH_ETH_OFFSET_DEFAULTS,
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 SH_ETH_OFFSET_DEFAULTS,
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 SH_ETH_OFFSET_DEFAULTS,
366 [TSU_CTRST] = 0x0004,
367 [TSU_FWEN0] = 0x0010,
368 [TSU_FWEN1] = 0x0014,
370 [TSU_BSYSL0] = 0x0020,
371 [TSU_BSYSL1] = 0x0024,
372 [TSU_PRISL0] = 0x0028,
373 [TSU_PRISL1] = 0x002c,
374 [TSU_FWSL0] = 0x0030,
375 [TSU_FWSL1] = 0x0034,
376 [TSU_FWSLC] = 0x0038,
377 [TSU_QTAGM0] = 0x0040,
378 [TSU_QTAGM1] = 0x0044,
379 [TSU_ADQT0] = 0x0048,
380 [TSU_ADQT1] = 0x004c,
382 [TSU_FWINMK] = 0x0054,
383 [TSU_ADSBSY] = 0x0060,
385 [TSU_POST1] = 0x0070,
386 [TSU_POST2] = 0x0074,
387 [TSU_POST3] = 0x0078,
388 [TSU_POST4] = 0x007c,
403 [TSU_ADRH0] = 0x0100,
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
411 struct sh_eth_private *mdp = netdev_priv(ndev);
412 u16 offset = mdp->reg_offset[enum_index];
414 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
417 iowrite32(data, mdp->addr + offset);
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
422 struct sh_eth_private *mdp = netdev_priv(ndev);
423 u16 offset = mdp->reg_offset[enum_index];
425 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
428 return ioread32(mdp->addr + offset);
431 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
434 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
438 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
440 return mdp->reg_offset == sh_eth_offset_gigabit;
443 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
445 return mdp->reg_offset == sh_eth_offset_fast_rz;
448 static void sh_eth_select_mii(struct net_device *ndev)
450 struct sh_eth_private *mdp = netdev_priv(ndev);
453 switch (mdp->phy_interface) {
454 case PHY_INTERFACE_MODE_GMII:
457 case PHY_INTERFACE_MODE_MII:
460 case PHY_INTERFACE_MODE_RMII:
465 "PHY interface mode was not setup. Set to MII.\n");
470 sh_eth_write(ndev, value, RMII_MII);
473 static void sh_eth_set_duplex(struct net_device *ndev)
475 struct sh_eth_private *mdp = netdev_priv(ndev);
477 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
480 static void sh_eth_chip_reset(struct net_device *ndev)
482 struct sh_eth_private *mdp = netdev_priv(ndev);
485 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
489 static void sh_eth_set_rate_gether(struct net_device *ndev)
491 struct sh_eth_private *mdp = netdev_priv(ndev);
493 switch (mdp->speed) {
494 case 10: /* 10BASE */
495 sh_eth_write(ndev, GECMR_10, GECMR);
497 case 100:/* 100BASE */
498 sh_eth_write(ndev, GECMR_100, GECMR);
500 case 1000: /* 1000BASE */
501 sh_eth_write(ndev, GECMR_1000, GECMR);
508 static struct sh_eth_cpu_data r7s72100_data = {
509 .chip_reset = sh_eth_chip_reset,
510 .set_duplex = sh_eth_set_duplex,
512 .register_type = SH_ETH_REG_FAST_RZ,
514 .ecsr_value = ECSR_ICD,
515 .ecsipr_value = ECSIPR_ICDIP,
516 .eesipr_value = 0xff7f009f,
518 .tx_check = EESR_TC1 | EESR_FTC,
519 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
520 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
522 .fdr_value = 0x0000070f,
530 .rpadir_value = 2 << 16,
538 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
540 sh_eth_chip_reset(ndev);
542 sh_eth_select_mii(ndev);
546 static struct sh_eth_cpu_data r8a7740_data = {
547 .chip_reset = sh_eth_chip_reset_r8a7740,
548 .set_duplex = sh_eth_set_duplex,
549 .set_rate = sh_eth_set_rate_gether,
551 .register_type = SH_ETH_REG_GIGABIT,
553 .ecsr_value = ECSR_ICD | ECSR_MPD,
554 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
555 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
557 .tx_check = EESR_TC1 | EESR_FTC,
558 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
559 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
561 .fdr_value = 0x0000070f,
569 .rpadir_value = 2 << 16,
577 /* There is CPU dependent code */
578 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
580 struct sh_eth_private *mdp = netdev_priv(ndev);
582 switch (mdp->speed) {
583 case 10: /* 10BASE */
584 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
586 case 100:/* 100BASE */
587 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
593 static struct sh_eth_cpu_data r8a777x_data = {
594 .set_duplex = sh_eth_set_duplex,
595 .set_rate = sh_eth_set_rate_r8a777x,
597 .register_type = SH_ETH_REG_FAST_RCAR,
599 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
600 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
601 .eesipr_value = 0x01ff009f,
603 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
604 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
605 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
607 .fdr_value = 0x00000f0f,
616 static struct sh_eth_cpu_data r8a779x_data = {
617 .set_duplex = sh_eth_set_duplex,
618 .set_rate = sh_eth_set_rate_r8a777x,
620 .register_type = SH_ETH_REG_FAST_RCAR,
622 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
623 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
624 .eesipr_value = 0x01ff009f,
626 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
627 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
628 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
630 .fdr_value = 0x00000f0f,
632 .trscer_err_mask = DESC_I_RINT8,
640 #endif /* CONFIG_OF */
642 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
644 struct sh_eth_private *mdp = netdev_priv(ndev);
646 switch (mdp->speed) {
647 case 10: /* 10BASE */
648 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
650 case 100:/* 100BASE */
651 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
657 static struct sh_eth_cpu_data sh7724_data = {
658 .set_duplex = sh_eth_set_duplex,
659 .set_rate = sh_eth_set_rate_sh7724,
661 .register_type = SH_ETH_REG_FAST_SH4,
663 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
664 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
665 .eesipr_value = 0x01ff009f,
667 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
668 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
669 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
677 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
680 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
682 struct sh_eth_private *mdp = netdev_priv(ndev);
684 switch (mdp->speed) {
685 case 10: /* 10BASE */
686 sh_eth_write(ndev, 0, RTRATE);
688 case 100:/* 100BASE */
689 sh_eth_write(ndev, 1, RTRATE);
695 static struct sh_eth_cpu_data sh7757_data = {
696 .set_duplex = sh_eth_set_duplex,
697 .set_rate = sh_eth_set_rate_sh7757,
699 .register_type = SH_ETH_REG_FAST_SH4,
701 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
703 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
704 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
705 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
708 .irq_flags = IRQF_SHARED,
715 .rpadir_value = 2 << 16,
719 #define SH_GIGA_ETH_BASE 0xfee00000UL
720 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
721 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
722 static void sh_eth_chip_reset_giga(struct net_device *ndev)
724 u32 mahr[2], malr[2];
727 /* save MAHR and MALR */
728 for (i = 0; i < 2; i++) {
729 malr[i] = ioread32((void *)GIGA_MALR(i));
730 mahr[i] = ioread32((void *)GIGA_MAHR(i));
733 sh_eth_chip_reset(ndev);
735 /* restore MAHR and MALR */
736 for (i = 0; i < 2; i++) {
737 iowrite32(malr[i], (void *)GIGA_MALR(i));
738 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
742 static void sh_eth_set_rate_giga(struct net_device *ndev)
744 struct sh_eth_private *mdp = netdev_priv(ndev);
746 switch (mdp->speed) {
747 case 10: /* 10BASE */
748 sh_eth_write(ndev, 0x00000000, GECMR);
750 case 100:/* 100BASE */
751 sh_eth_write(ndev, 0x00000010, GECMR);
753 case 1000: /* 1000BASE */
754 sh_eth_write(ndev, 0x00000020, GECMR);
759 /* SH7757(GETHERC) */
760 static struct sh_eth_cpu_data sh7757_data_giga = {
761 .chip_reset = sh_eth_chip_reset_giga,
762 .set_duplex = sh_eth_set_duplex,
763 .set_rate = sh_eth_set_rate_giga,
765 .register_type = SH_ETH_REG_GIGABIT,
767 .ecsr_value = ECSR_ICD | ECSR_MPD,
768 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
769 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
771 .tx_check = EESR_TC1 | EESR_FTC,
772 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
773 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
775 .fdr_value = 0x0000072f,
777 .irq_flags = IRQF_SHARED,
784 .rpadir_value = 2 << 16,
791 static struct sh_eth_cpu_data sh7734_data = {
792 .chip_reset = sh_eth_chip_reset,
793 .set_duplex = sh_eth_set_duplex,
794 .set_rate = sh_eth_set_rate_gether,
796 .register_type = SH_ETH_REG_GIGABIT,
798 .ecsr_value = ECSR_ICD | ECSR_MPD,
799 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
800 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
802 .tx_check = EESR_TC1 | EESR_FTC,
803 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
804 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
820 static struct sh_eth_cpu_data sh7763_data = {
821 .chip_reset = sh_eth_chip_reset,
822 .set_duplex = sh_eth_set_duplex,
823 .set_rate = sh_eth_set_rate_gether,
825 .register_type = SH_ETH_REG_GIGABIT,
827 .ecsr_value = ECSR_ICD | ECSR_MPD,
828 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
829 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
831 .tx_check = EESR_TC1 | EESR_FTC,
832 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
833 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
844 .irq_flags = IRQF_SHARED,
847 static struct sh_eth_cpu_data sh7619_data = {
848 .register_type = SH_ETH_REG_FAST_SH3_SH2,
850 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
858 static struct sh_eth_cpu_data sh771x_data = {
859 .register_type = SH_ETH_REG_FAST_SH3_SH2,
861 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
865 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
868 cd->ecsr_value = DEFAULT_ECSR_INIT;
870 if (!cd->ecsipr_value)
871 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
873 if (!cd->fcftr_value)
874 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
875 DEFAULT_FIFO_F_D_RFD;
878 cd->fdr_value = DEFAULT_FDR_INIT;
881 cd->tx_check = DEFAULT_TX_CHECK;
883 if (!cd->eesr_err_check)
884 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
886 if (!cd->trscer_err_mask)
887 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
890 static int sh_eth_check_reset(struct net_device *ndev)
896 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
902 netdev_err(ndev, "Device reset failed\n");
908 static int sh_eth_reset(struct net_device *ndev)
910 struct sh_eth_private *mdp = netdev_priv(ndev);
913 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
914 sh_eth_write(ndev, EDSR_ENALL, EDSR);
915 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
917 ret = sh_eth_check_reset(ndev);
922 sh_eth_write(ndev, 0x0, TDLAR);
923 sh_eth_write(ndev, 0x0, TDFAR);
924 sh_eth_write(ndev, 0x0, TDFXR);
925 sh_eth_write(ndev, 0x0, TDFFR);
926 sh_eth_write(ndev, 0x0, RDLAR);
927 sh_eth_write(ndev, 0x0, RDFAR);
928 sh_eth_write(ndev, 0x0, RDFXR);
929 sh_eth_write(ndev, 0x0, RDFFR);
931 /* Reset HW CRC register */
933 sh_eth_write(ndev, 0x0, CSMR);
935 /* Select MII mode */
936 if (mdp->cd->select_mii)
937 sh_eth_select_mii(ndev);
939 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
941 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
947 static void sh_eth_set_receive_align(struct sk_buff *skb)
949 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
952 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
955 /* Program the hardware MAC address from dev->dev_addr. */
956 static void update_mac_address(struct net_device *ndev)
959 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
960 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
962 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
965 /* Get MAC address from SuperH MAC address register
967 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
968 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
969 * When you want use this device, you must set MAC address in bootloader.
972 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
974 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
975 memcpy(ndev->dev_addr, mac, ETH_ALEN);
977 u32 mahr = sh_eth_read(ndev, MAHR);
978 u32 malr = sh_eth_read(ndev, MALR);
980 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
981 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
982 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
983 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
984 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
985 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
989 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
991 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
992 return EDTRR_TRNS_GETHER;
994 return EDTRR_TRNS_ETHER;
998 void (*set_gate)(void *addr);
999 struct mdiobb_ctrl ctrl;
1003 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1005 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1008 if (bitbang->set_gate)
1009 bitbang->set_gate(bitbang->addr);
1011 pir = ioread32(bitbang->addr);
1016 iowrite32(pir, bitbang->addr);
1019 /* Data I/O pin control */
1020 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1022 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1026 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1028 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1032 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1034 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1036 if (bitbang->set_gate)
1037 bitbang->set_gate(bitbang->addr);
1039 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1042 /* MDC pin control */
1043 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1045 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1048 /* mdio bus control struct */
1049 static struct mdiobb_ops bb_ops = {
1050 .owner = THIS_MODULE,
1051 .set_mdc = sh_mdc_ctrl,
1052 .set_mdio_dir = sh_mmd_ctrl,
1053 .set_mdio_data = sh_set_mdio,
1054 .get_mdio_data = sh_get_mdio,
1057 /* free skb and descriptor buffer */
1058 static void sh_eth_ring_free(struct net_device *ndev)
1060 struct sh_eth_private *mdp = netdev_priv(ndev);
1063 /* Free Rx skb ringbuffer */
1064 if (mdp->rx_skbuff) {
1065 for (i = 0; i < mdp->num_rx_ring; i++)
1066 dev_kfree_skb(mdp->rx_skbuff[i]);
1068 kfree(mdp->rx_skbuff);
1069 mdp->rx_skbuff = NULL;
1071 /* Free Tx skb ringbuffer */
1072 if (mdp->tx_skbuff) {
1073 for (i = 0; i < mdp->num_tx_ring; i++)
1074 dev_kfree_skb(mdp->tx_skbuff[i]);
1076 kfree(mdp->tx_skbuff);
1077 mdp->tx_skbuff = NULL;
1080 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1081 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1083 mdp->rx_ring = NULL;
1087 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1088 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1090 mdp->tx_ring = NULL;
1094 /* format skb and descriptor buffer */
1095 static void sh_eth_ring_format(struct net_device *ndev)
1097 struct sh_eth_private *mdp = netdev_priv(ndev);
1099 struct sk_buff *skb;
1100 struct sh_eth_rxdesc *rxdesc = NULL;
1101 struct sh_eth_txdesc *txdesc = NULL;
1102 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1103 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1104 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1105 dma_addr_t dma_addr;
1113 memset(mdp->rx_ring, 0, rx_ringsize);
1115 /* build Rx ring buffer */
1116 for (i = 0; i < mdp->num_rx_ring; i++) {
1118 mdp->rx_skbuff[i] = NULL;
1119 skb = netdev_alloc_skb(ndev, skbuff_size);
1122 sh_eth_set_receive_align(skb);
1124 /* The size of the buffer is a multiple of 32 bytes. */
1125 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1126 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1128 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1132 mdp->rx_skbuff[i] = skb;
1135 rxdesc = &mdp->rx_ring[i];
1136 rxdesc->len = cpu_to_le32(buf_len << 16);
1137 rxdesc->addr = cpu_to_le32(dma_addr);
1138 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1140 /* Rx descriptor address set */
1142 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1143 if (sh_eth_is_gether(mdp) ||
1144 sh_eth_is_rz_fast_ether(mdp))
1145 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1149 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1151 /* Mark the last entry as wrapping the ring. */
1153 rxdesc->status |= cpu_to_le32(RD_RDLE);
1155 memset(mdp->tx_ring, 0, tx_ringsize);
1157 /* build Tx ring buffer */
1158 for (i = 0; i < mdp->num_tx_ring; i++) {
1159 mdp->tx_skbuff[i] = NULL;
1160 txdesc = &mdp->tx_ring[i];
1161 txdesc->status = cpu_to_le32(TD_TFP);
1162 txdesc->len = cpu_to_le32(0);
1164 /* Tx descriptor address set */
1165 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1166 if (sh_eth_is_gether(mdp) ||
1167 sh_eth_is_rz_fast_ether(mdp))
1168 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1172 txdesc->status |= cpu_to_le32(TD_TDLE);
1175 /* Get skb and descriptor buffer */
1176 static int sh_eth_ring_init(struct net_device *ndev)
1178 struct sh_eth_private *mdp = netdev_priv(ndev);
1179 int rx_ringsize, tx_ringsize;
1181 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1182 * card needs room to do 8 byte alignment, +2 so we can reserve
1183 * the first 2 bytes, and +16 gets room for the status word from the
1186 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1187 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1188 if (mdp->cd->rpadir)
1189 mdp->rx_buf_sz += NET_IP_ALIGN;
1191 /* Allocate RX and TX skb rings */
1192 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1194 if (!mdp->rx_skbuff)
1197 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1199 if (!mdp->tx_skbuff)
1202 /* Allocate all Rx descriptors. */
1203 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1204 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1211 /* Allocate all Tx descriptors. */
1212 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1213 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1220 /* Free Rx and Tx skb ring buffer and DMA buffer */
1221 sh_eth_ring_free(ndev);
1226 static int sh_eth_dev_init(struct net_device *ndev)
1228 struct sh_eth_private *mdp = netdev_priv(ndev);
1232 ret = sh_eth_reset(ndev);
1236 if (mdp->cd->rmiimode)
1237 sh_eth_write(ndev, 0x1, RMIIMODE);
1239 /* Descriptor format */
1240 sh_eth_ring_format(ndev);
1241 if (mdp->cd->rpadir)
1242 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1244 /* all sh_eth int mask */
1245 sh_eth_write(ndev, 0, EESIPR);
1247 #if defined(__LITTLE_ENDIAN)
1248 if (mdp->cd->hw_swap)
1249 sh_eth_write(ndev, EDMR_EL, EDMR);
1252 sh_eth_write(ndev, 0, EDMR);
1255 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1256 sh_eth_write(ndev, 0, TFTR);
1258 /* Frame recv control (enable multiple-packets per rx irq) */
1259 sh_eth_write(ndev, RMCR_RNC, RMCR);
1261 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1264 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1266 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1268 if (!mdp->cd->no_trimd)
1269 sh_eth_write(ndev, 0, TRIMD);
1271 /* Recv frame limit set register */
1272 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1275 sh_eth_modify(ndev, EESR, 0, 0);
1276 mdp->irq_enabled = true;
1277 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1279 /* PAUSE Prohibition */
1280 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1281 ECMR_TE | ECMR_RE, ECMR);
1283 if (mdp->cd->set_rate)
1284 mdp->cd->set_rate(ndev);
1286 /* E-MAC Status Register clear */
1287 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1289 /* E-MAC Interrupt Enable register */
1290 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1292 /* Set MAC address */
1293 update_mac_address(ndev);
1297 sh_eth_write(ndev, APR_AP, APR);
1299 sh_eth_write(ndev, MPR_MP, MPR);
1300 if (mdp->cd->tpauser)
1301 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1303 /* Setting the Rx mode will start the Rx process. */
1304 sh_eth_write(ndev, EDRRR_R, EDRRR);
1309 static void sh_eth_dev_exit(struct net_device *ndev)
1311 struct sh_eth_private *mdp = netdev_priv(ndev);
1314 /* Deactivate all TX descriptors, so DMA should stop at next
1315 * packet boundary if it's currently running
1317 for (i = 0; i < mdp->num_tx_ring; i++)
1318 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1320 /* Disable TX FIFO egress to MAC */
1321 sh_eth_rcv_snd_disable(ndev);
1323 /* Stop RX DMA at next packet boundary */
1324 sh_eth_write(ndev, 0, EDRRR);
1326 /* Aside from TX DMA, we can't tell when the hardware is
1327 * really stopped, so we need to reset to make sure.
1328 * Before doing that, wait for long enough to *probably*
1329 * finish transmitting the last packet and poll stats.
1331 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1332 sh_eth_get_stats(ndev);
1335 /* Set MAC address again */
1336 update_mac_address(ndev);
1339 /* free Tx skb function */
1340 static int sh_eth_txfree(struct net_device *ndev)
1342 struct sh_eth_private *mdp = netdev_priv(ndev);
1343 struct sh_eth_txdesc *txdesc;
1347 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1348 entry = mdp->dirty_tx % mdp->num_tx_ring;
1349 txdesc = &mdp->tx_ring[entry];
1350 if (txdesc->status & cpu_to_le32(TD_TACT))
1352 /* TACT bit must be checked before all the following reads */
1354 netif_info(mdp, tx_done, ndev,
1355 "tx entry %d status 0x%08x\n",
1356 entry, le32_to_cpu(txdesc->status));
1357 /* Free the original skb. */
1358 if (mdp->tx_skbuff[entry]) {
1359 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1360 le32_to_cpu(txdesc->len) >> 16,
1362 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1363 mdp->tx_skbuff[entry] = NULL;
1366 txdesc->status = cpu_to_le32(TD_TFP);
1367 if (entry >= mdp->num_tx_ring - 1)
1368 txdesc->status |= cpu_to_le32(TD_TDLE);
1370 ndev->stats.tx_packets++;
1371 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1376 /* Packet receive function */
1377 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1379 struct sh_eth_private *mdp = netdev_priv(ndev);
1380 struct sh_eth_rxdesc *rxdesc;
1382 int entry = mdp->cur_rx % mdp->num_rx_ring;
1383 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1385 struct sk_buff *skb;
1387 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1388 dma_addr_t dma_addr;
1392 boguscnt = min(boguscnt, *quota);
1394 rxdesc = &mdp->rx_ring[entry];
1395 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1396 /* RACT bit must be checked before all the following reads */
1398 desc_status = le32_to_cpu(rxdesc->status);
1399 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1404 netif_info(mdp, rx_status, ndev,
1405 "rx entry %d status 0x%08x len %d\n",
1406 entry, desc_status, pkt_len);
1408 if (!(desc_status & RDFEND))
1409 ndev->stats.rx_length_errors++;
1411 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1412 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1413 * bit 0. However, in case of the R8A7740 and R7S72100
1414 * the RFS bits are from bit 25 to bit 16. So, the
1415 * driver needs right shifting by 16.
1417 if (mdp->cd->shift_rd0)
1420 skb = mdp->rx_skbuff[entry];
1421 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1422 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1423 ndev->stats.rx_errors++;
1424 if (desc_status & RD_RFS1)
1425 ndev->stats.rx_crc_errors++;
1426 if (desc_status & RD_RFS2)
1427 ndev->stats.rx_frame_errors++;
1428 if (desc_status & RD_RFS3)
1429 ndev->stats.rx_length_errors++;
1430 if (desc_status & RD_RFS4)
1431 ndev->stats.rx_length_errors++;
1432 if (desc_status & RD_RFS6)
1433 ndev->stats.rx_missed_errors++;
1434 if (desc_status & RD_RFS10)
1435 ndev->stats.rx_over_errors++;
1437 dma_addr = le32_to_cpu(rxdesc->addr);
1438 if (!mdp->cd->hw_swap)
1440 phys_to_virt(ALIGN(dma_addr, 4)),
1442 mdp->rx_skbuff[entry] = NULL;
1443 if (mdp->cd->rpadir)
1444 skb_reserve(skb, NET_IP_ALIGN);
1445 dma_unmap_single(&ndev->dev, dma_addr,
1446 ALIGN(mdp->rx_buf_sz, 32),
1448 skb_put(skb, pkt_len);
1449 skb->protocol = eth_type_trans(skb, ndev);
1450 netif_receive_skb(skb);
1451 ndev->stats.rx_packets++;
1452 ndev->stats.rx_bytes += pkt_len;
1453 if (desc_status & RD_RFS8)
1454 ndev->stats.multicast++;
1456 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1457 rxdesc = &mdp->rx_ring[entry];
1460 /* Refill the Rx ring buffers. */
1461 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1462 entry = mdp->dirty_rx % mdp->num_rx_ring;
1463 rxdesc = &mdp->rx_ring[entry];
1464 /* The size of the buffer is 32 byte boundary. */
1465 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1466 rxdesc->len = cpu_to_le32(buf_len << 16);
1468 if (mdp->rx_skbuff[entry] == NULL) {
1469 skb = netdev_alloc_skb(ndev, skbuff_size);
1471 break; /* Better luck next round. */
1472 sh_eth_set_receive_align(skb);
1473 dma_addr = dma_map_single(&ndev->dev, skb->data,
1474 buf_len, DMA_FROM_DEVICE);
1475 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1479 mdp->rx_skbuff[entry] = skb;
1481 skb_checksum_none_assert(skb);
1482 rxdesc->addr = cpu_to_le32(dma_addr);
1484 dma_wmb(); /* RACT bit must be set after all the above writes */
1485 if (entry >= mdp->num_rx_ring - 1)
1487 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1489 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1492 /* Restart Rx engine if stopped. */
1493 /* If we don't need to check status, don't. -KDU */
1494 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1495 /* fix the values for the next receiving if RDE is set */
1496 if (intr_status & EESR_RDE &&
1497 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1498 u32 count = (sh_eth_read(ndev, RDFAR) -
1499 sh_eth_read(ndev, RDLAR)) >> 4;
1501 mdp->cur_rx = count;
1502 mdp->dirty_rx = count;
1504 sh_eth_write(ndev, EDRRR_R, EDRRR);
1507 *quota -= limit - boguscnt - 1;
1512 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1514 /* disable tx and rx */
1515 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1518 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1520 /* enable tx and rx */
1521 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1524 /* error control function */
1525 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1527 struct sh_eth_private *mdp = netdev_priv(ndev);
1532 if (intr_status & EESR_ECI) {
1533 felic_stat = sh_eth_read(ndev, ECSR);
1534 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1535 if (felic_stat & ECSR_ICD)
1536 ndev->stats.tx_carrier_errors++;
1537 if (felic_stat & ECSR_LCHNG) {
1539 if (mdp->cd->no_psr || mdp->no_ether_link) {
1542 link_stat = (sh_eth_read(ndev, PSR));
1543 if (mdp->ether_link_active_low)
1544 link_stat = ~link_stat;
1546 if (!(link_stat & PHY_ST_LINK)) {
1547 sh_eth_rcv_snd_disable(ndev);
1550 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1552 sh_eth_modify(ndev, ECSR, 0, 0);
1553 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1555 /* enable tx and rx */
1556 sh_eth_rcv_snd_enable(ndev);
1562 if (intr_status & EESR_TWB) {
1563 /* Unused write back interrupt */
1564 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1565 ndev->stats.tx_aborted_errors++;
1566 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1570 if (intr_status & EESR_RABT) {
1571 /* Receive Abort int */
1572 if (intr_status & EESR_RFRMER) {
1573 /* Receive Frame Overflow int */
1574 ndev->stats.rx_frame_errors++;
1578 if (intr_status & EESR_TDE) {
1579 /* Transmit Descriptor Empty int */
1580 ndev->stats.tx_fifo_errors++;
1581 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1584 if (intr_status & EESR_TFE) {
1585 /* FIFO under flow */
1586 ndev->stats.tx_fifo_errors++;
1587 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1590 if (intr_status & EESR_RDE) {
1591 /* Receive Descriptor Empty int */
1592 ndev->stats.rx_over_errors++;
1595 if (intr_status & EESR_RFE) {
1596 /* Receive FIFO Overflow int */
1597 ndev->stats.rx_fifo_errors++;
1600 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1602 ndev->stats.tx_fifo_errors++;
1603 netif_err(mdp, tx_err, ndev, "Address Error\n");
1606 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1607 if (mdp->cd->no_ade)
1609 if (intr_status & mask) {
1611 u32 edtrr = sh_eth_read(ndev, EDTRR);
1614 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1615 intr_status, mdp->cur_tx, mdp->dirty_tx,
1616 (u32)ndev->state, edtrr);
1617 /* dirty buffer free */
1618 sh_eth_txfree(ndev);
1621 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1623 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1626 netif_wake_queue(ndev);
1630 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1632 struct net_device *ndev = netdev;
1633 struct sh_eth_private *mdp = netdev_priv(ndev);
1634 struct sh_eth_cpu_data *cd = mdp->cd;
1635 irqreturn_t ret = IRQ_NONE;
1636 u32 intr_status, intr_enable;
1638 spin_lock(&mdp->lock);
1640 /* Get interrupt status */
1641 intr_status = sh_eth_read(ndev, EESR);
1642 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1643 * enabled since it's the one that comes thru regardless of the mask,
1644 * and we need to fully handle it in sh_eth_error() in order to quench
1645 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1647 intr_enable = sh_eth_read(ndev, EESIPR);
1648 intr_status &= intr_enable | DMAC_M_ECI;
1649 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1654 if (!likely(mdp->irq_enabled)) {
1655 sh_eth_write(ndev, 0, EESIPR);
1659 if (intr_status & EESR_RX_CHECK) {
1660 if (napi_schedule_prep(&mdp->napi)) {
1661 /* Mask Rx interrupts */
1662 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1664 __napi_schedule(&mdp->napi);
1667 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1668 intr_status, intr_enable);
1673 if (intr_status & cd->tx_check) {
1674 /* Clear Tx interrupts */
1675 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1677 sh_eth_txfree(ndev);
1678 netif_wake_queue(ndev);
1681 if (intr_status & cd->eesr_err_check) {
1682 /* Clear error interrupts */
1683 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1685 sh_eth_error(ndev, intr_status);
1689 spin_unlock(&mdp->lock);
1694 static int sh_eth_poll(struct napi_struct *napi, int budget)
1696 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1698 struct net_device *ndev = napi->dev;
1703 intr_status = sh_eth_read(ndev, EESR);
1704 if (!(intr_status & EESR_RX_CHECK))
1706 /* Clear Rx interrupts */
1707 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1709 if (sh_eth_rx(ndev, intr_status, "a))
1713 napi_complete(napi);
1715 /* Reenable Rx interrupts */
1716 if (mdp->irq_enabled)
1717 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1719 return budget - quota;
1722 /* PHY state control function */
1723 static void sh_eth_adjust_link(struct net_device *ndev)
1725 struct sh_eth_private *mdp = netdev_priv(ndev);
1726 struct phy_device *phydev = mdp->phydev;
1730 if (phydev->duplex != mdp->duplex) {
1732 mdp->duplex = phydev->duplex;
1733 if (mdp->cd->set_duplex)
1734 mdp->cd->set_duplex(ndev);
1737 if (phydev->speed != mdp->speed) {
1739 mdp->speed = phydev->speed;
1740 if (mdp->cd->set_rate)
1741 mdp->cd->set_rate(ndev);
1744 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1746 mdp->link = phydev->link;
1747 if (mdp->cd->no_psr || mdp->no_ether_link)
1748 sh_eth_rcv_snd_enable(ndev);
1750 } else if (mdp->link) {
1755 if (mdp->cd->no_psr || mdp->no_ether_link)
1756 sh_eth_rcv_snd_disable(ndev);
1759 if (new_state && netif_msg_link(mdp))
1760 phy_print_status(phydev);
1763 /* PHY init function */
1764 static int sh_eth_phy_init(struct net_device *ndev)
1766 struct device_node *np = ndev->dev.parent->of_node;
1767 struct sh_eth_private *mdp = netdev_priv(ndev);
1768 struct phy_device *phydev;
1774 /* Try connect to PHY */
1776 struct device_node *pn;
1778 pn = of_parse_phandle(np, "phy-handle", 0);
1779 phydev = of_phy_connect(ndev, pn,
1780 sh_eth_adjust_link, 0,
1781 mdp->phy_interface);
1785 phydev = ERR_PTR(-ENOENT);
1787 char phy_id[MII_BUS_ID_SIZE + 3];
1789 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1790 mdp->mii_bus->id, mdp->phy_id);
1792 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1793 mdp->phy_interface);
1796 if (IS_ERR(phydev)) {
1797 netdev_err(ndev, "failed to connect PHY\n");
1798 return PTR_ERR(phydev);
1801 phy_attached_info(phydev);
1803 mdp->phydev = phydev;
1808 /* PHY control start function */
1809 static int sh_eth_phy_start(struct net_device *ndev)
1811 struct sh_eth_private *mdp = netdev_priv(ndev);
1814 ret = sh_eth_phy_init(ndev);
1818 phy_start(mdp->phydev);
1823 static int sh_eth_get_settings(struct net_device *ndev,
1824 struct ethtool_cmd *ecmd)
1826 struct sh_eth_private *mdp = netdev_priv(ndev);
1827 unsigned long flags;
1833 spin_lock_irqsave(&mdp->lock, flags);
1834 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1835 spin_unlock_irqrestore(&mdp->lock, flags);
1840 static int sh_eth_set_settings(struct net_device *ndev,
1841 struct ethtool_cmd *ecmd)
1843 struct sh_eth_private *mdp = netdev_priv(ndev);
1844 unsigned long flags;
1850 spin_lock_irqsave(&mdp->lock, flags);
1852 /* disable tx and rx */
1853 sh_eth_rcv_snd_disable(ndev);
1855 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1859 if (ecmd->duplex == DUPLEX_FULL)
1864 if (mdp->cd->set_duplex)
1865 mdp->cd->set_duplex(ndev);
1870 /* enable tx and rx */
1871 sh_eth_rcv_snd_enable(ndev);
1873 spin_unlock_irqrestore(&mdp->lock, flags);
1878 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1879 * version must be bumped as well. Just adding registers up to that
1880 * limit is fine, as long as the existing register indices don't
1883 #define SH_ETH_REG_DUMP_VERSION 1
1884 #define SH_ETH_REG_DUMP_MAX_REGS 256
1886 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1888 struct sh_eth_private *mdp = netdev_priv(ndev);
1889 struct sh_eth_cpu_data *cd = mdp->cd;
1893 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1895 /* Dump starts with a bitmap that tells ethtool which
1896 * registers are defined for this chip.
1898 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1906 /* Add a register to the dump, if it has a defined offset.
1907 * This automatically skips most undefined registers, but for
1908 * some it is also necessary to check a capability flag in
1909 * struct sh_eth_cpu_data.
1911 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1912 #define add_reg_from(reg, read_expr) do { \
1913 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
1915 mark_reg_valid(reg); \
1916 *buf++ = read_expr; \
1921 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1922 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1994 add_tsu_reg(TSU_CTRST);
1995 add_tsu_reg(TSU_FWEN0);
1996 add_tsu_reg(TSU_FWEN1);
1997 add_tsu_reg(TSU_FCM);
1998 add_tsu_reg(TSU_BSYSL0);
1999 add_tsu_reg(TSU_BSYSL1);
2000 add_tsu_reg(TSU_PRISL0);
2001 add_tsu_reg(TSU_PRISL1);
2002 add_tsu_reg(TSU_FWSL0);
2003 add_tsu_reg(TSU_FWSL1);
2004 add_tsu_reg(TSU_FWSLC);
2005 add_tsu_reg(TSU_QTAG0);
2006 add_tsu_reg(TSU_QTAG1);
2007 add_tsu_reg(TSU_QTAGM0);
2008 add_tsu_reg(TSU_QTAGM1);
2009 add_tsu_reg(TSU_FWSR);
2010 add_tsu_reg(TSU_FWINMK);
2011 add_tsu_reg(TSU_ADQT0);
2012 add_tsu_reg(TSU_ADQT1);
2013 add_tsu_reg(TSU_VTAG0);
2014 add_tsu_reg(TSU_VTAG1);
2015 add_tsu_reg(TSU_ADSBSY);
2016 add_tsu_reg(TSU_TEN);
2017 add_tsu_reg(TSU_POST1);
2018 add_tsu_reg(TSU_POST2);
2019 add_tsu_reg(TSU_POST3);
2020 add_tsu_reg(TSU_POST4);
2021 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2022 /* This is the start of a table, not just a single
2028 mark_reg_valid(TSU_ADRH0);
2029 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2032 mdp->reg_offset[TSU_ADRH0] +
2035 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2039 #undef mark_reg_valid
2047 static int sh_eth_get_regs_len(struct net_device *ndev)
2049 return __sh_eth_get_regs(ndev, NULL);
2052 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2055 struct sh_eth_private *mdp = netdev_priv(ndev);
2057 regs->version = SH_ETH_REG_DUMP_VERSION;
2059 pm_runtime_get_sync(&mdp->pdev->dev);
2060 __sh_eth_get_regs(ndev, buf);
2061 pm_runtime_put_sync(&mdp->pdev->dev);
2064 static int sh_eth_nway_reset(struct net_device *ndev)
2066 struct sh_eth_private *mdp = netdev_priv(ndev);
2067 unsigned long flags;
2073 spin_lock_irqsave(&mdp->lock, flags);
2074 ret = phy_start_aneg(mdp->phydev);
2075 spin_unlock_irqrestore(&mdp->lock, flags);
2080 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2082 struct sh_eth_private *mdp = netdev_priv(ndev);
2083 return mdp->msg_enable;
2086 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2088 struct sh_eth_private *mdp = netdev_priv(ndev);
2089 mdp->msg_enable = value;
2092 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2093 "rx_current", "tx_current",
2094 "rx_dirty", "tx_dirty",
2096 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2098 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2102 return SH_ETH_STATS_LEN;
2108 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2109 struct ethtool_stats *stats, u64 *data)
2111 struct sh_eth_private *mdp = netdev_priv(ndev);
2114 /* device-specific stats */
2115 data[i++] = mdp->cur_rx;
2116 data[i++] = mdp->cur_tx;
2117 data[i++] = mdp->dirty_rx;
2118 data[i++] = mdp->dirty_tx;
2121 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2123 switch (stringset) {
2125 memcpy(data, *sh_eth_gstrings_stats,
2126 sizeof(sh_eth_gstrings_stats));
2131 static void sh_eth_get_ringparam(struct net_device *ndev,
2132 struct ethtool_ringparam *ring)
2134 struct sh_eth_private *mdp = netdev_priv(ndev);
2136 ring->rx_max_pending = RX_RING_MAX;
2137 ring->tx_max_pending = TX_RING_MAX;
2138 ring->rx_pending = mdp->num_rx_ring;
2139 ring->tx_pending = mdp->num_tx_ring;
2142 static int sh_eth_set_ringparam(struct net_device *ndev,
2143 struct ethtool_ringparam *ring)
2145 struct sh_eth_private *mdp = netdev_priv(ndev);
2148 if (ring->tx_pending > TX_RING_MAX ||
2149 ring->rx_pending > RX_RING_MAX ||
2150 ring->tx_pending < TX_RING_MIN ||
2151 ring->rx_pending < RX_RING_MIN)
2153 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2156 if (netif_running(ndev)) {
2157 netif_device_detach(ndev);
2158 netif_tx_disable(ndev);
2160 /* Serialise with the interrupt handler and NAPI, then
2161 * disable interrupts. We have to clear the
2162 * irq_enabled flag first to ensure that interrupts
2163 * won't be re-enabled.
2165 mdp->irq_enabled = false;
2166 synchronize_irq(ndev->irq);
2167 napi_synchronize(&mdp->napi);
2168 sh_eth_write(ndev, 0x0000, EESIPR);
2170 sh_eth_dev_exit(ndev);
2172 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2173 sh_eth_ring_free(ndev);
2176 /* Set new parameters */
2177 mdp->num_rx_ring = ring->rx_pending;
2178 mdp->num_tx_ring = ring->tx_pending;
2180 if (netif_running(ndev)) {
2181 ret = sh_eth_ring_init(ndev);
2183 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2187 ret = sh_eth_dev_init(ndev);
2189 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2194 netif_device_attach(ndev);
2200 static const struct ethtool_ops sh_eth_ethtool_ops = {
2201 .get_settings = sh_eth_get_settings,
2202 .set_settings = sh_eth_set_settings,
2203 .get_regs_len = sh_eth_get_regs_len,
2204 .get_regs = sh_eth_get_regs,
2205 .nway_reset = sh_eth_nway_reset,
2206 .get_msglevel = sh_eth_get_msglevel,
2207 .set_msglevel = sh_eth_set_msglevel,
2208 .get_link = ethtool_op_get_link,
2209 .get_strings = sh_eth_get_strings,
2210 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2211 .get_sset_count = sh_eth_get_sset_count,
2212 .get_ringparam = sh_eth_get_ringparam,
2213 .set_ringparam = sh_eth_set_ringparam,
2216 /* network device open function */
2217 static int sh_eth_open(struct net_device *ndev)
2219 struct sh_eth_private *mdp = netdev_priv(ndev);
2222 pm_runtime_get_sync(&mdp->pdev->dev);
2224 napi_enable(&mdp->napi);
2226 ret = request_irq(ndev->irq, sh_eth_interrupt,
2227 mdp->cd->irq_flags, ndev->name, ndev);
2229 netdev_err(ndev, "Can not assign IRQ number\n");
2233 /* Descriptor set */
2234 ret = sh_eth_ring_init(ndev);
2239 ret = sh_eth_dev_init(ndev);
2243 /* PHY control start*/
2244 ret = sh_eth_phy_start(ndev);
2248 netif_start_queue(ndev);
2255 free_irq(ndev->irq, ndev);
2257 napi_disable(&mdp->napi);
2258 pm_runtime_put_sync(&mdp->pdev->dev);
2262 /* Timeout function */
2263 static void sh_eth_tx_timeout(struct net_device *ndev)
2265 struct sh_eth_private *mdp = netdev_priv(ndev);
2266 struct sh_eth_rxdesc *rxdesc;
2269 netif_stop_queue(ndev);
2271 netif_err(mdp, timer, ndev,
2272 "transmit timed out, status %8.8x, resetting...\n",
2273 sh_eth_read(ndev, EESR));
2275 /* tx_errors count up */
2276 ndev->stats.tx_errors++;
2278 /* Free all the skbuffs in the Rx queue. */
2279 for (i = 0; i < mdp->num_rx_ring; i++) {
2280 rxdesc = &mdp->rx_ring[i];
2281 rxdesc->status = cpu_to_le32(0);
2282 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2283 dev_kfree_skb(mdp->rx_skbuff[i]);
2284 mdp->rx_skbuff[i] = NULL;
2286 for (i = 0; i < mdp->num_tx_ring; i++) {
2287 dev_kfree_skb(mdp->tx_skbuff[i]);
2288 mdp->tx_skbuff[i] = NULL;
2292 sh_eth_dev_init(ndev);
2294 netif_start_queue(ndev);
2297 /* Packet transmit function */
2298 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2300 struct sh_eth_private *mdp = netdev_priv(ndev);
2301 struct sh_eth_txdesc *txdesc;
2302 dma_addr_t dma_addr;
2304 unsigned long flags;
2306 spin_lock_irqsave(&mdp->lock, flags);
2307 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2308 if (!sh_eth_txfree(ndev)) {
2309 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2310 netif_stop_queue(ndev);
2311 spin_unlock_irqrestore(&mdp->lock, flags);
2312 return NETDEV_TX_BUSY;
2315 spin_unlock_irqrestore(&mdp->lock, flags);
2317 if (skb_put_padto(skb, ETH_ZLEN))
2318 return NETDEV_TX_OK;
2320 entry = mdp->cur_tx % mdp->num_tx_ring;
2321 mdp->tx_skbuff[entry] = skb;
2322 txdesc = &mdp->tx_ring[entry];
2324 if (!mdp->cd->hw_swap)
2325 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2326 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2328 if (dma_mapping_error(&ndev->dev, dma_addr)) {
2330 return NETDEV_TX_OK;
2332 txdesc->addr = cpu_to_le32(dma_addr);
2333 txdesc->len = cpu_to_le32(skb->len << 16);
2335 dma_wmb(); /* TACT bit must be set after all the above writes */
2336 if (entry >= mdp->num_tx_ring - 1)
2337 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2339 txdesc->status |= cpu_to_le32(TD_TACT);
2343 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2344 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2346 return NETDEV_TX_OK;
2349 /* The statistics registers have write-clear behaviour, which means we
2350 * will lose any increment between the read and write. We mitigate
2351 * this by only clearing when we read a non-zero value, so we will
2352 * never falsely report a total of zero.
2355 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2357 u32 delta = sh_eth_read(ndev, reg);
2361 sh_eth_write(ndev, 0, reg);
2365 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2367 struct sh_eth_private *mdp = netdev_priv(ndev);
2369 if (sh_eth_is_rz_fast_ether(mdp))
2370 return &ndev->stats;
2372 if (!mdp->is_opened)
2373 return &ndev->stats;
2375 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2376 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2377 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2379 if (sh_eth_is_gether(mdp)) {
2380 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2382 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2385 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2389 return &ndev->stats;
2392 /* device close function */
2393 static int sh_eth_close(struct net_device *ndev)
2395 struct sh_eth_private *mdp = netdev_priv(ndev);
2397 netif_stop_queue(ndev);
2399 /* Serialise with the interrupt handler and NAPI, then disable
2400 * interrupts. We have to clear the irq_enabled flag first to
2401 * ensure that interrupts won't be re-enabled.
2403 mdp->irq_enabled = false;
2404 synchronize_irq(ndev->irq);
2405 napi_disable(&mdp->napi);
2406 sh_eth_write(ndev, 0x0000, EESIPR);
2408 sh_eth_dev_exit(ndev);
2410 /* PHY Disconnect */
2412 phy_stop(mdp->phydev);
2413 phy_disconnect(mdp->phydev);
2417 free_irq(ndev->irq, ndev);
2419 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2420 sh_eth_ring_free(ndev);
2422 pm_runtime_put_sync(&mdp->pdev->dev);
2429 /* ioctl to device function */
2430 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2432 struct sh_eth_private *mdp = netdev_priv(ndev);
2433 struct phy_device *phydev = mdp->phydev;
2435 if (!netif_running(ndev))
2441 return phy_mii_ioctl(phydev, rq, cmd);
2444 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2445 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2448 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2451 static u32 sh_eth_tsu_get_post_mask(int entry)
2453 return 0x0f << (28 - ((entry % 8) * 4));
2456 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2458 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2461 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2464 struct sh_eth_private *mdp = netdev_priv(ndev);
2468 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2469 tmp = ioread32(reg_offset);
2470 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2473 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2476 struct sh_eth_private *mdp = netdev_priv(ndev);
2477 u32 post_mask, ref_mask, tmp;
2480 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2481 post_mask = sh_eth_tsu_get_post_mask(entry);
2482 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2484 tmp = ioread32(reg_offset);
2485 iowrite32(tmp & ~post_mask, reg_offset);
2487 /* If other port enables, the function returns "true" */
2488 return tmp & ref_mask;
2491 static int sh_eth_tsu_busy(struct net_device *ndev)
2493 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2494 struct sh_eth_private *mdp = netdev_priv(ndev);
2496 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2500 netdev_err(ndev, "%s: timeout\n", __func__);
2508 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2513 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2514 iowrite32(val, reg);
2515 if (sh_eth_tsu_busy(ndev) < 0)
2518 val = addr[4] << 8 | addr[5];
2519 iowrite32(val, reg + 4);
2520 if (sh_eth_tsu_busy(ndev) < 0)
2526 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2530 val = ioread32(reg);
2531 addr[0] = (val >> 24) & 0xff;
2532 addr[1] = (val >> 16) & 0xff;
2533 addr[2] = (val >> 8) & 0xff;
2534 addr[3] = val & 0xff;
2535 val = ioread32(reg + 4);
2536 addr[4] = (val >> 8) & 0xff;
2537 addr[5] = val & 0xff;
2541 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2543 struct sh_eth_private *mdp = netdev_priv(ndev);
2544 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2546 u8 c_addr[ETH_ALEN];
2548 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2549 sh_eth_tsu_read_entry(reg_offset, c_addr);
2550 if (ether_addr_equal(addr, c_addr))
2557 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2562 memset(blank, 0, sizeof(blank));
2563 entry = sh_eth_tsu_find_entry(ndev, blank);
2564 return (entry < 0) ? -ENOMEM : entry;
2567 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2570 struct sh_eth_private *mdp = netdev_priv(ndev);
2571 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2575 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2576 ~(1 << (31 - entry)), TSU_TEN);
2578 memset(blank, 0, sizeof(blank));
2579 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2585 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2587 struct sh_eth_private *mdp = netdev_priv(ndev);
2588 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2594 i = sh_eth_tsu_find_entry(ndev, addr);
2596 /* No entry found, create one */
2597 i = sh_eth_tsu_find_empty(ndev);
2600 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2604 /* Enable the entry */
2605 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2606 (1 << (31 - i)), TSU_TEN);
2609 /* Entry found or created, enable POST */
2610 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2615 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2617 struct sh_eth_private *mdp = netdev_priv(ndev);
2623 i = sh_eth_tsu_find_entry(ndev, addr);
2626 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2629 /* Disable the entry if both ports was disabled */
2630 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2638 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2640 struct sh_eth_private *mdp = netdev_priv(ndev);
2646 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2647 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2650 /* Disable the entry if both ports was disabled */
2651 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2659 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2661 struct sh_eth_private *mdp = netdev_priv(ndev);
2663 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2669 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2670 sh_eth_tsu_read_entry(reg_offset, addr);
2671 if (is_multicast_ether_addr(addr))
2672 sh_eth_tsu_del_entry(ndev, addr);
2676 /* Update promiscuous flag and multicast filter */
2677 static void sh_eth_set_rx_mode(struct net_device *ndev)
2679 struct sh_eth_private *mdp = netdev_priv(ndev);
2682 unsigned long flags;
2684 spin_lock_irqsave(&mdp->lock, flags);
2685 /* Initial condition is MCT = 1, PRM = 0.
2686 * Depending on ndev->flags, set PRM or clear MCT
2688 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2690 ecmr_bits |= ECMR_MCT;
2692 if (!(ndev->flags & IFF_MULTICAST)) {
2693 sh_eth_tsu_purge_mcast(ndev);
2696 if (ndev->flags & IFF_ALLMULTI) {
2697 sh_eth_tsu_purge_mcast(ndev);
2698 ecmr_bits &= ~ECMR_MCT;
2702 if (ndev->flags & IFF_PROMISC) {
2703 sh_eth_tsu_purge_all(ndev);
2704 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2705 } else if (mdp->cd->tsu) {
2706 struct netdev_hw_addr *ha;
2707 netdev_for_each_mc_addr(ha, ndev) {
2708 if (mcast_all && is_multicast_ether_addr(ha->addr))
2711 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2713 sh_eth_tsu_purge_mcast(ndev);
2714 ecmr_bits &= ~ECMR_MCT;
2721 /* update the ethernet mode */
2722 sh_eth_write(ndev, ecmr_bits, ECMR);
2724 spin_unlock_irqrestore(&mdp->lock, flags);
2727 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2735 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2736 __be16 proto, u16 vid)
2738 struct sh_eth_private *mdp = netdev_priv(ndev);
2739 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2741 if (unlikely(!mdp->cd->tsu))
2744 /* No filtering if vid = 0 */
2748 mdp->vlan_num_ids++;
2750 /* The controller has one VLAN tag HW filter. So, if the filter is
2751 * already enabled, the driver disables it and the filte
2753 if (mdp->vlan_num_ids > 1) {
2754 /* disable VLAN filter */
2755 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2759 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2765 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2766 __be16 proto, u16 vid)
2768 struct sh_eth_private *mdp = netdev_priv(ndev);
2769 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2771 if (unlikely(!mdp->cd->tsu))
2774 /* No filtering if vid = 0 */
2778 mdp->vlan_num_ids--;
2779 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2784 /* SuperH's TSU register init function */
2785 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2787 if (sh_eth_is_rz_fast_ether(mdp)) {
2788 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2792 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2793 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2794 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2795 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2796 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2797 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2798 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2799 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2800 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2801 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2802 if (sh_eth_is_gether(mdp)) {
2803 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2804 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2806 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2807 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2809 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2810 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2811 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2812 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2813 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2814 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2815 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2818 /* MDIO bus release function */
2819 static int sh_mdio_release(struct sh_eth_private *mdp)
2821 /* unregister mdio bus */
2822 mdiobus_unregister(mdp->mii_bus);
2824 /* free bitbang info */
2825 free_mdio_bitbang(mdp->mii_bus);
2830 /* MDIO bus init function */
2831 static int sh_mdio_init(struct sh_eth_private *mdp,
2832 struct sh_eth_plat_data *pd)
2835 struct bb_info *bitbang;
2836 struct platform_device *pdev = mdp->pdev;
2837 struct device *dev = &mdp->pdev->dev;
2839 /* create bit control struct for PHY */
2840 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2845 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2846 bitbang->set_gate = pd->set_mdio_gate;
2847 bitbang->ctrl.ops = &bb_ops;
2849 /* MII controller setting */
2850 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2854 /* Hook up MII support for ethtool */
2855 mdp->mii_bus->name = "sh_mii";
2856 mdp->mii_bus->parent = dev;
2857 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2858 pdev->name, pdev->id);
2860 /* register MDIO bus */
2862 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2864 if (pd->phy_irq > 0)
2865 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2867 ret = mdiobus_register(mdp->mii_bus);
2876 free_mdio_bitbang(mdp->mii_bus);
2880 static const u16 *sh_eth_get_register_offset(int register_type)
2882 const u16 *reg_offset = NULL;
2884 switch (register_type) {
2885 case SH_ETH_REG_GIGABIT:
2886 reg_offset = sh_eth_offset_gigabit;
2888 case SH_ETH_REG_FAST_RZ:
2889 reg_offset = sh_eth_offset_fast_rz;
2891 case SH_ETH_REG_FAST_RCAR:
2892 reg_offset = sh_eth_offset_fast_rcar;
2894 case SH_ETH_REG_FAST_SH4:
2895 reg_offset = sh_eth_offset_fast_sh4;
2897 case SH_ETH_REG_FAST_SH3_SH2:
2898 reg_offset = sh_eth_offset_fast_sh3_sh2;
2905 static const struct net_device_ops sh_eth_netdev_ops = {
2906 .ndo_open = sh_eth_open,
2907 .ndo_stop = sh_eth_close,
2908 .ndo_start_xmit = sh_eth_start_xmit,
2909 .ndo_get_stats = sh_eth_get_stats,
2910 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2911 .ndo_tx_timeout = sh_eth_tx_timeout,
2912 .ndo_do_ioctl = sh_eth_do_ioctl,
2913 .ndo_validate_addr = eth_validate_addr,
2914 .ndo_set_mac_address = eth_mac_addr,
2915 .ndo_change_mtu = eth_change_mtu,
2918 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2919 .ndo_open = sh_eth_open,
2920 .ndo_stop = sh_eth_close,
2921 .ndo_start_xmit = sh_eth_start_xmit,
2922 .ndo_get_stats = sh_eth_get_stats,
2923 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2924 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2925 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2926 .ndo_tx_timeout = sh_eth_tx_timeout,
2927 .ndo_do_ioctl = sh_eth_do_ioctl,
2928 .ndo_validate_addr = eth_validate_addr,
2929 .ndo_set_mac_address = eth_mac_addr,
2930 .ndo_change_mtu = eth_change_mtu,
2934 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2936 struct device_node *np = dev->of_node;
2937 struct sh_eth_plat_data *pdata;
2938 const char *mac_addr;
2940 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2944 pdata->phy_interface = of_get_phy_mode(np);
2946 mac_addr = of_get_mac_address(np);
2948 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2950 pdata->no_ether_link =
2951 of_property_read_bool(np, "renesas,no-ether-link");
2952 pdata->ether_link_active_low =
2953 of_property_read_bool(np, "renesas,ether-link-active-low");
2958 static const struct of_device_id sh_eth_match_table[] = {
2959 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2960 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2961 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2962 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2963 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2964 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2965 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2966 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2969 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2971 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2977 static int sh_eth_drv_probe(struct platform_device *pdev)
2979 struct resource *res;
2980 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2981 const struct platform_device_id *id = platform_get_device_id(pdev);
2982 struct sh_eth_private *mdp;
2983 struct net_device *ndev;
2987 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2989 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2993 pm_runtime_enable(&pdev->dev);
2994 pm_runtime_get_sync(&pdev->dev);
3000 ret = platform_get_irq(pdev, 0);
3005 SET_NETDEV_DEV(ndev, &pdev->dev);
3007 mdp = netdev_priv(ndev);
3008 mdp->num_tx_ring = TX_RING_SIZE;
3009 mdp->num_rx_ring = RX_RING_SIZE;
3010 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3011 if (IS_ERR(mdp->addr)) {
3012 ret = PTR_ERR(mdp->addr);
3016 ndev->base_addr = res->start;
3018 spin_lock_init(&mdp->lock);
3021 if (pdev->dev.of_node)
3022 pd = sh_eth_parse_dt(&pdev->dev);
3024 dev_err(&pdev->dev, "no platform data\n");
3030 mdp->phy_id = pd->phy;
3031 mdp->phy_interface = pd->phy_interface;
3032 mdp->no_ether_link = pd->no_ether_link;
3033 mdp->ether_link_active_low = pd->ether_link_active_low;
3037 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3039 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3041 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3042 if (!mdp->reg_offset) {
3043 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3044 mdp->cd->register_type);
3048 sh_eth_set_default_cpu_data(mdp->cd);
3052 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3054 ndev->netdev_ops = &sh_eth_netdev_ops;
3055 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3056 ndev->watchdog_timeo = TX_TIMEOUT;
3058 /* debug message level */
3059 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3061 /* read and set MAC address */
3062 read_mac_address(ndev, pd->mac_addr);
3063 if (!is_valid_ether_addr(ndev->dev_addr)) {
3064 dev_warn(&pdev->dev,
3065 "no valid MAC address supplied, using a random one.\n");
3066 eth_hw_addr_random(ndev);
3069 /* ioremap the TSU registers */
3071 struct resource *rtsu;
3072 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3073 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3074 if (IS_ERR(mdp->tsu_addr)) {
3075 ret = PTR_ERR(mdp->tsu_addr);
3078 mdp->port = devno % 2;
3079 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3082 /* initialize first or needed device */
3083 if (!devno || pd->needs_init) {
3084 if (mdp->cd->chip_reset)
3085 mdp->cd->chip_reset(ndev);
3088 /* TSU init (Init only)*/
3089 sh_eth_tsu_init(mdp);
3093 if (mdp->cd->rmiimode)
3094 sh_eth_write(ndev, 0x1, RMIIMODE);
3097 ret = sh_mdio_init(mdp, pd);
3099 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3103 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3105 /* network device register */
3106 ret = register_netdev(ndev);
3110 /* print device information */
3111 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3112 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3114 pm_runtime_put(&pdev->dev);
3115 platform_set_drvdata(pdev, ndev);
3120 netif_napi_del(&mdp->napi);
3121 sh_mdio_release(mdp);
3128 pm_runtime_put(&pdev->dev);
3129 pm_runtime_disable(&pdev->dev);
3133 static int sh_eth_drv_remove(struct platform_device *pdev)
3135 struct net_device *ndev = platform_get_drvdata(pdev);
3136 struct sh_eth_private *mdp = netdev_priv(ndev);
3138 unregister_netdev(ndev);
3139 netif_napi_del(&mdp->napi);
3140 sh_mdio_release(mdp);
3141 pm_runtime_disable(&pdev->dev);
3148 #ifdef CONFIG_PM_SLEEP
3149 static int sh_eth_suspend(struct device *dev)
3151 struct net_device *ndev = dev_get_drvdata(dev);
3154 if (netif_running(ndev)) {
3155 netif_device_detach(ndev);
3156 ret = sh_eth_close(ndev);
3162 static int sh_eth_resume(struct device *dev)
3164 struct net_device *ndev = dev_get_drvdata(dev);
3167 if (netif_running(ndev)) {
3168 ret = sh_eth_open(ndev);
3171 netif_device_attach(ndev);
3178 static int sh_eth_runtime_nop(struct device *dev)
3180 /* Runtime PM callback shared between ->runtime_suspend()
3181 * and ->runtime_resume(). Simply returns success.
3183 * This driver re-initializes all registers after
3184 * pm_runtime_get_sync() anyway so there is no need
3185 * to save and restore registers here.
3190 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3191 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3192 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3194 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3196 #define SH_ETH_PM_OPS NULL
3199 static struct platform_device_id sh_eth_id_table[] = {
3200 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3201 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3202 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3203 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3204 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3205 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3206 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3209 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3211 static struct platform_driver sh_eth_driver = {
3212 .probe = sh_eth_drv_probe,
3213 .remove = sh_eth_drv_remove,
3214 .id_table = sh_eth_id_table,
3217 .pm = SH_ETH_PM_OPS,
3218 .of_match_table = of_match_ptr(sh_eth_match_table),
3222 module_platform_driver(sh_eth_driver);
3224 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3225 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3226 MODULE_LICENSE("GPL v2");