1 /* SuperH Ethernet device driver
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
49 #define SH_ETH_DEF_MSG_ENABLE \
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
203 [TSU_CTRST] = 0x0004,
204 [TSU_FWSLC] = 0x0038,
205 [TSU_VTAG0] = 0x0058,
206 [TSU_ADSBSY] = 0x0060,
208 [TSU_POST1] = 0x0070,
209 [TSU_POST2] = 0x0074,
210 [TSU_POST3] = 0x0078,
211 [TSU_POST4] = 0x007c,
212 [TSU_ADRH0] = 0x0100,
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 SH_ETH_OFFSET_DEFAULTS,
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 SH_ETH_OFFSET_DEFAULTS,
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 SH_ETH_OFFSET_DEFAULTS,
371 [TSU_CTRST] = 0x0004,
372 [TSU_FWEN0] = 0x0010,
373 [TSU_FWEN1] = 0x0014,
375 [TSU_BSYSL0] = 0x0020,
376 [TSU_BSYSL1] = 0x0024,
377 [TSU_PRISL0] = 0x0028,
378 [TSU_PRISL1] = 0x002c,
379 [TSU_FWSL0] = 0x0030,
380 [TSU_FWSL1] = 0x0034,
381 [TSU_FWSLC] = 0x0038,
382 [TSU_QTAGM0] = 0x0040,
383 [TSU_QTAGM1] = 0x0044,
384 [TSU_ADQT0] = 0x0048,
385 [TSU_ADQT1] = 0x004c,
387 [TSU_FWINMK] = 0x0054,
388 [TSU_ADSBSY] = 0x0060,
390 [TSU_POST1] = 0x0070,
391 [TSU_POST2] = 0x0074,
392 [TSU_POST3] = 0x0078,
393 [TSU_POST4] = 0x007c,
408 [TSU_ADRH0] = 0x0100,
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
416 struct sh_eth_private *mdp = netdev_priv(ndev);
417 u16 offset = mdp->reg_offset[enum_index];
419 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
422 iowrite32(data, mdp->addr + offset);
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
427 struct sh_eth_private *mdp = netdev_priv(ndev);
428 u16 offset = mdp->reg_offset[enum_index];
430 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
433 return ioread32(mdp->addr + offset);
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
439 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
445 return mdp->reg_offset == sh_eth_offset_gigabit;
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
450 return mdp->reg_offset == sh_eth_offset_fast_rz;
453 static void sh_eth_select_mii(struct net_device *ndev)
455 struct sh_eth_private *mdp = netdev_priv(ndev);
458 switch (mdp->phy_interface) {
459 case PHY_INTERFACE_MODE_GMII:
462 case PHY_INTERFACE_MODE_MII:
465 case PHY_INTERFACE_MODE_RMII:
470 "PHY interface mode was not setup. Set to MII.\n");
475 sh_eth_write(ndev, value, RMII_MII);
478 static void sh_eth_set_duplex(struct net_device *ndev)
480 struct sh_eth_private *mdp = netdev_priv(ndev);
482 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
485 static void sh_eth_chip_reset(struct net_device *ndev)
487 struct sh_eth_private *mdp = netdev_priv(ndev);
490 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
496 struct sh_eth_private *mdp = netdev_priv(ndev);
498 switch (mdp->speed) {
499 case 10: /* 10BASE */
500 sh_eth_write(ndev, GECMR_10, GECMR);
502 case 100:/* 100BASE */
503 sh_eth_write(ndev, GECMR_100, GECMR);
505 case 1000: /* 1000BASE */
506 sh_eth_write(ndev, GECMR_1000, GECMR);
513 static struct sh_eth_cpu_data r7s72100_data = {
514 .chip_reset = sh_eth_chip_reset,
515 .set_duplex = sh_eth_set_duplex,
517 .register_type = SH_ETH_REG_FAST_RZ,
519 .ecsr_value = ECSR_ICD,
520 .ecsipr_value = ECSIPR_ICDIP,
521 .eesipr_value = 0xe77f009f,
523 .tx_check = EESR_TC1 | EESR_FTC,
524 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
525 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
527 .fdr_value = 0x0000070f,
535 .rpadir_value = 2 << 16,
542 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
544 sh_eth_chip_reset(ndev);
546 sh_eth_select_mii(ndev);
550 static struct sh_eth_cpu_data r8a7740_data = {
551 .chip_reset = sh_eth_chip_reset_r8a7740,
552 .set_duplex = sh_eth_set_duplex,
553 .set_rate = sh_eth_set_rate_gether,
555 .register_type = SH_ETH_REG_GIGABIT,
557 .ecsr_value = ECSR_ICD | ECSR_MPD,
558 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
559 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
561 .tx_check = EESR_TC1 | EESR_FTC,
562 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
563 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
565 .fdr_value = 0x0000070f,
573 .rpadir_value = 2 << 16,
582 /* There is CPU dependent code */
583 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
585 struct sh_eth_private *mdp = netdev_priv(ndev);
587 switch (mdp->speed) {
588 case 10: /* 10BASE */
589 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
591 case 100:/* 100BASE */
592 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
598 static struct sh_eth_cpu_data r8a777x_data = {
599 .set_duplex = sh_eth_set_duplex,
600 .set_rate = sh_eth_set_rate_r8a777x,
602 .register_type = SH_ETH_REG_FAST_RCAR,
604 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
605 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
606 .eesipr_value = 0x01ff009f,
608 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
609 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
610 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
611 .fdr_value = 0x00000f0f,
620 static struct sh_eth_cpu_data r8a779x_data = {
621 .set_duplex = sh_eth_set_duplex,
622 .set_rate = sh_eth_set_rate_r8a777x,
624 .register_type = SH_ETH_REG_FAST_RCAR,
626 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
627 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
629 .eesipr_value = 0x01ff009f,
631 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
632 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
633 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
634 .fdr_value = 0x00000f0f,
636 .trscer_err_mask = DESC_I_RINT8,
645 #endif /* CONFIG_OF */
647 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
649 struct sh_eth_private *mdp = netdev_priv(ndev);
651 switch (mdp->speed) {
652 case 10: /* 10BASE */
653 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
655 case 100:/* 100BASE */
656 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
662 static struct sh_eth_cpu_data sh7724_data = {
663 .set_duplex = sh_eth_set_duplex,
664 .set_rate = sh_eth_set_rate_sh7724,
666 .register_type = SH_ETH_REG_FAST_SH4,
668 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
669 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
670 .eesipr_value = 0x01ff009f,
672 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
673 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
674 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
681 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
684 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
686 struct sh_eth_private *mdp = netdev_priv(ndev);
688 switch (mdp->speed) {
689 case 10: /* 10BASE */
690 sh_eth_write(ndev, 0, RTRATE);
692 case 100:/* 100BASE */
693 sh_eth_write(ndev, 1, RTRATE);
699 static struct sh_eth_cpu_data sh7757_data = {
700 .set_duplex = sh_eth_set_duplex,
701 .set_rate = sh_eth_set_rate_sh7757,
703 .register_type = SH_ETH_REG_FAST_SH4,
705 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
707 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
708 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
709 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
711 .irq_flags = IRQF_SHARED,
718 .rpadir_value = 2 << 16,
722 #define SH_GIGA_ETH_BASE 0xfee00000UL
723 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
724 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
725 static void sh_eth_chip_reset_giga(struct net_device *ndev)
727 u32 mahr[2], malr[2];
730 /* save MAHR and MALR */
731 for (i = 0; i < 2; i++) {
732 malr[i] = ioread32((void *)GIGA_MALR(i));
733 mahr[i] = ioread32((void *)GIGA_MAHR(i));
736 sh_eth_chip_reset(ndev);
738 /* restore MAHR and MALR */
739 for (i = 0; i < 2; i++) {
740 iowrite32(malr[i], (void *)GIGA_MALR(i));
741 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
745 static void sh_eth_set_rate_giga(struct net_device *ndev)
747 struct sh_eth_private *mdp = netdev_priv(ndev);
749 switch (mdp->speed) {
750 case 10: /* 10BASE */
751 sh_eth_write(ndev, 0x00000000, GECMR);
753 case 100:/* 100BASE */
754 sh_eth_write(ndev, 0x00000010, GECMR);
756 case 1000: /* 1000BASE */
757 sh_eth_write(ndev, 0x00000020, GECMR);
762 /* SH7757(GETHERC) */
763 static struct sh_eth_cpu_data sh7757_data_giga = {
764 .chip_reset = sh_eth_chip_reset_giga,
765 .set_duplex = sh_eth_set_duplex,
766 .set_rate = sh_eth_set_rate_giga,
768 .register_type = SH_ETH_REG_GIGABIT,
770 .ecsr_value = ECSR_ICD | ECSR_MPD,
771 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
772 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
774 .tx_check = EESR_TC1 | EESR_FTC,
775 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
776 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
778 .fdr_value = 0x0000072f,
780 .irq_flags = IRQF_SHARED,
787 .rpadir_value = 2 << 16,
794 static struct sh_eth_cpu_data sh7734_data = {
795 .chip_reset = sh_eth_chip_reset,
796 .set_duplex = sh_eth_set_duplex,
797 .set_rate = sh_eth_set_rate_gether,
799 .register_type = SH_ETH_REG_GIGABIT,
801 .ecsr_value = ECSR_ICD | ECSR_MPD,
802 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
803 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
805 .tx_check = EESR_TC1 | EESR_FTC,
806 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
807 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
824 static struct sh_eth_cpu_data sh7763_data = {
825 .chip_reset = sh_eth_chip_reset,
826 .set_duplex = sh_eth_set_duplex,
827 .set_rate = sh_eth_set_rate_gether,
829 .register_type = SH_ETH_REG_GIGABIT,
831 .ecsr_value = ECSR_ICD | ECSR_MPD,
832 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
833 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
835 .tx_check = EESR_TC1 | EESR_FTC,
836 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
837 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
847 .irq_flags = IRQF_SHARED,
850 static struct sh_eth_cpu_data sh7619_data = {
851 .register_type = SH_ETH_REG_FAST_SH3_SH2,
853 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
861 static struct sh_eth_cpu_data sh771x_data = {
862 .register_type = SH_ETH_REG_FAST_SH3_SH2,
864 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
868 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
871 cd->ecsr_value = DEFAULT_ECSR_INIT;
873 if (!cd->ecsipr_value)
874 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
876 if (!cd->fcftr_value)
877 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
878 DEFAULT_FIFO_F_D_RFD;
881 cd->fdr_value = DEFAULT_FDR_INIT;
884 cd->tx_check = DEFAULT_TX_CHECK;
886 if (!cd->eesr_err_check)
887 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
889 if (!cd->trscer_err_mask)
890 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
893 static int sh_eth_check_reset(struct net_device *ndev)
899 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
905 netdev_err(ndev, "Device reset failed\n");
911 static int sh_eth_reset(struct net_device *ndev)
913 struct sh_eth_private *mdp = netdev_priv(ndev);
916 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
917 sh_eth_write(ndev, EDSR_ENALL, EDSR);
918 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
920 ret = sh_eth_check_reset(ndev);
925 sh_eth_write(ndev, 0x0, TDLAR);
926 sh_eth_write(ndev, 0x0, TDFAR);
927 sh_eth_write(ndev, 0x0, TDFXR);
928 sh_eth_write(ndev, 0x0, TDFFR);
929 sh_eth_write(ndev, 0x0, RDLAR);
930 sh_eth_write(ndev, 0x0, RDFAR);
931 sh_eth_write(ndev, 0x0, RDFXR);
932 sh_eth_write(ndev, 0x0, RDFFR);
934 /* Reset HW CRC register */
935 if (mdp->cd->hw_checksum)
936 sh_eth_write(ndev, 0x0, CSMR);
938 /* Select MII mode */
939 if (mdp->cd->select_mii)
940 sh_eth_select_mii(ndev);
942 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
944 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
950 static void sh_eth_set_receive_align(struct sk_buff *skb)
952 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
955 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
958 /* Program the hardware MAC address from dev->dev_addr. */
959 static void update_mac_address(struct net_device *ndev)
962 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
963 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
965 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
968 /* Get MAC address from SuperH MAC address register
970 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
971 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
972 * When you want use this device, you must set MAC address in bootloader.
975 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
977 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
978 memcpy(ndev->dev_addr, mac, ETH_ALEN);
980 u32 mahr = sh_eth_read(ndev, MAHR);
981 u32 malr = sh_eth_read(ndev, MALR);
983 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
984 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
985 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
986 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
987 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
988 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
992 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
994 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
995 return EDTRR_TRNS_GETHER;
997 return EDTRR_TRNS_ETHER;
1001 void (*set_gate)(void *addr);
1002 struct mdiobb_ctrl ctrl;
1006 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1008 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1011 if (bitbang->set_gate)
1012 bitbang->set_gate(bitbang->addr);
1014 pir = ioread32(bitbang->addr);
1019 iowrite32(pir, bitbang->addr);
1022 /* Data I/O pin control */
1023 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1025 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1029 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1031 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1035 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1037 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1039 if (bitbang->set_gate)
1040 bitbang->set_gate(bitbang->addr);
1042 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1045 /* MDC pin control */
1046 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1048 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1051 /* mdio bus control struct */
1052 static struct mdiobb_ops bb_ops = {
1053 .owner = THIS_MODULE,
1054 .set_mdc = sh_mdc_ctrl,
1055 .set_mdio_dir = sh_mmd_ctrl,
1056 .set_mdio_data = sh_set_mdio,
1057 .get_mdio_data = sh_get_mdio,
1060 /* free skb and descriptor buffer */
1061 static void sh_eth_ring_free(struct net_device *ndev)
1063 struct sh_eth_private *mdp = netdev_priv(ndev);
1066 /* Free Rx skb ringbuffer */
1067 if (mdp->rx_skbuff) {
1068 for (i = 0; i < mdp->num_rx_ring; i++)
1069 dev_kfree_skb(mdp->rx_skbuff[i]);
1071 kfree(mdp->rx_skbuff);
1072 mdp->rx_skbuff = NULL;
1074 /* Free Tx skb ringbuffer */
1075 if (mdp->tx_skbuff) {
1076 for (i = 0; i < mdp->num_tx_ring; i++)
1077 dev_kfree_skb(mdp->tx_skbuff[i]);
1079 kfree(mdp->tx_skbuff);
1080 mdp->tx_skbuff = NULL;
1083 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1084 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1086 mdp->rx_ring = NULL;
1090 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1091 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1093 mdp->tx_ring = NULL;
1097 /* format skb and descriptor buffer */
1098 static void sh_eth_ring_format(struct net_device *ndev)
1100 struct sh_eth_private *mdp = netdev_priv(ndev);
1102 struct sk_buff *skb;
1103 struct sh_eth_rxdesc *rxdesc = NULL;
1104 struct sh_eth_txdesc *txdesc = NULL;
1105 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1106 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1107 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1108 dma_addr_t dma_addr;
1116 memset(mdp->rx_ring, 0, rx_ringsize);
1118 /* build Rx ring buffer */
1119 for (i = 0; i < mdp->num_rx_ring; i++) {
1121 mdp->rx_skbuff[i] = NULL;
1122 skb = netdev_alloc_skb(ndev, skbuff_size);
1125 sh_eth_set_receive_align(skb);
1127 /* The size of the buffer is a multiple of 32 bytes. */
1128 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1129 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1131 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1135 mdp->rx_skbuff[i] = skb;
1138 rxdesc = &mdp->rx_ring[i];
1139 rxdesc->len = cpu_to_le32(buf_len << 16);
1140 rxdesc->addr = cpu_to_le32(dma_addr);
1141 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1143 /* Rx descriptor address set */
1145 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1146 if (sh_eth_is_gether(mdp) ||
1147 sh_eth_is_rz_fast_ether(mdp))
1148 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1152 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1154 /* Mark the last entry as wrapping the ring. */
1156 rxdesc->status |= cpu_to_le32(RD_RDLE);
1158 memset(mdp->tx_ring, 0, tx_ringsize);
1160 /* build Tx ring buffer */
1161 for (i = 0; i < mdp->num_tx_ring; i++) {
1162 mdp->tx_skbuff[i] = NULL;
1163 txdesc = &mdp->tx_ring[i];
1164 txdesc->status = cpu_to_le32(TD_TFP);
1165 txdesc->len = cpu_to_le32(0);
1167 /* Tx descriptor address set */
1168 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1169 if (sh_eth_is_gether(mdp) ||
1170 sh_eth_is_rz_fast_ether(mdp))
1171 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1175 txdesc->status |= cpu_to_le32(TD_TDLE);
1178 /* Get skb and descriptor buffer */
1179 static int sh_eth_ring_init(struct net_device *ndev)
1181 struct sh_eth_private *mdp = netdev_priv(ndev);
1182 int rx_ringsize, tx_ringsize;
1184 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1185 * card needs room to do 8 byte alignment, +2 so we can reserve
1186 * the first 2 bytes, and +16 gets room for the status word from the
1189 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1190 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1191 if (mdp->cd->rpadir)
1192 mdp->rx_buf_sz += NET_IP_ALIGN;
1194 /* Allocate RX and TX skb rings */
1195 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1197 if (!mdp->rx_skbuff)
1200 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1202 if (!mdp->tx_skbuff)
1205 /* Allocate all Rx descriptors. */
1206 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1207 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1214 /* Allocate all Tx descriptors. */
1215 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1216 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1223 /* Free Rx and Tx skb ring buffer and DMA buffer */
1224 sh_eth_ring_free(ndev);
1229 static int sh_eth_dev_init(struct net_device *ndev)
1231 struct sh_eth_private *mdp = netdev_priv(ndev);
1235 ret = sh_eth_reset(ndev);
1239 if (mdp->cd->rmiimode)
1240 sh_eth_write(ndev, 0x1, RMIIMODE);
1242 /* Descriptor format */
1243 sh_eth_ring_format(ndev);
1244 if (mdp->cd->rpadir)
1245 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1247 /* all sh_eth int mask */
1248 sh_eth_write(ndev, 0, EESIPR);
1250 #if defined(__LITTLE_ENDIAN)
1251 if (mdp->cd->hw_swap)
1252 sh_eth_write(ndev, EDMR_EL, EDMR);
1255 sh_eth_write(ndev, 0, EDMR);
1258 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1259 sh_eth_write(ndev, 0, TFTR);
1261 /* Frame recv control (enable multiple-packets per rx irq) */
1262 sh_eth_write(ndev, RMCR_RNC, RMCR);
1264 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1267 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1269 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1271 if (!mdp->cd->no_trimd)
1272 sh_eth_write(ndev, 0, TRIMD);
1274 /* Recv frame limit set register */
1275 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1278 sh_eth_modify(ndev, EESR, 0, 0);
1279 mdp->irq_enabled = true;
1280 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1282 /* PAUSE Prohibition */
1283 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1284 ECMR_TE | ECMR_RE, ECMR);
1286 if (mdp->cd->set_rate)
1287 mdp->cd->set_rate(ndev);
1289 /* E-MAC Status Register clear */
1290 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1292 /* E-MAC Interrupt Enable register */
1293 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1295 /* Set MAC address */
1296 update_mac_address(ndev);
1300 sh_eth_write(ndev, APR_AP, APR);
1302 sh_eth_write(ndev, MPR_MP, MPR);
1303 if (mdp->cd->tpauser)
1304 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1306 /* Setting the Rx mode will start the Rx process. */
1307 sh_eth_write(ndev, EDRRR_R, EDRRR);
1312 static void sh_eth_dev_exit(struct net_device *ndev)
1314 struct sh_eth_private *mdp = netdev_priv(ndev);
1317 /* Deactivate all TX descriptors, so DMA should stop at next
1318 * packet boundary if it's currently running
1320 for (i = 0; i < mdp->num_tx_ring; i++)
1321 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1323 /* Disable TX FIFO egress to MAC */
1324 sh_eth_rcv_snd_disable(ndev);
1326 /* Stop RX DMA at next packet boundary */
1327 sh_eth_write(ndev, 0, EDRRR);
1329 /* Aside from TX DMA, we can't tell when the hardware is
1330 * really stopped, so we need to reset to make sure.
1331 * Before doing that, wait for long enough to *probably*
1332 * finish transmitting the last packet and poll stats.
1334 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1335 sh_eth_get_stats(ndev);
1338 /* Set MAC address again */
1339 update_mac_address(ndev);
1342 /* free Tx skb function */
1343 static int sh_eth_txfree(struct net_device *ndev)
1345 struct sh_eth_private *mdp = netdev_priv(ndev);
1346 struct sh_eth_txdesc *txdesc;
1350 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1351 entry = mdp->dirty_tx % mdp->num_tx_ring;
1352 txdesc = &mdp->tx_ring[entry];
1353 if (txdesc->status & cpu_to_le32(TD_TACT))
1355 /* TACT bit must be checked before all the following reads */
1357 netif_info(mdp, tx_done, ndev,
1358 "tx entry %d status 0x%08x\n",
1359 entry, le32_to_cpu(txdesc->status));
1360 /* Free the original skb. */
1361 if (mdp->tx_skbuff[entry]) {
1362 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1363 le32_to_cpu(txdesc->len) >> 16,
1365 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1366 mdp->tx_skbuff[entry] = NULL;
1369 txdesc->status = cpu_to_le32(TD_TFP);
1370 if (entry >= mdp->num_tx_ring - 1)
1371 txdesc->status |= cpu_to_le32(TD_TDLE);
1373 ndev->stats.tx_packets++;
1374 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1379 /* Packet receive function */
1380 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1382 struct sh_eth_private *mdp = netdev_priv(ndev);
1383 struct sh_eth_rxdesc *rxdesc;
1385 int entry = mdp->cur_rx % mdp->num_rx_ring;
1386 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1388 struct sk_buff *skb;
1390 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1391 dma_addr_t dma_addr;
1395 boguscnt = min(boguscnt, *quota);
1397 rxdesc = &mdp->rx_ring[entry];
1398 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1399 /* RACT bit must be checked before all the following reads */
1401 desc_status = le32_to_cpu(rxdesc->status);
1402 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1407 netif_info(mdp, rx_status, ndev,
1408 "rx entry %d status 0x%08x len %d\n",
1409 entry, desc_status, pkt_len);
1411 if (!(desc_status & RDFEND))
1412 ndev->stats.rx_length_errors++;
1414 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1415 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1416 * bit 0. However, in case of the R8A7740 and R7S72100
1417 * the RFS bits are from bit 25 to bit 16. So, the
1418 * driver needs right shifting by 16.
1420 if (mdp->cd->hw_checksum)
1423 skb = mdp->rx_skbuff[entry];
1424 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1425 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1426 ndev->stats.rx_errors++;
1427 if (desc_status & RD_RFS1)
1428 ndev->stats.rx_crc_errors++;
1429 if (desc_status & RD_RFS2)
1430 ndev->stats.rx_frame_errors++;
1431 if (desc_status & RD_RFS3)
1432 ndev->stats.rx_length_errors++;
1433 if (desc_status & RD_RFS4)
1434 ndev->stats.rx_length_errors++;
1435 if (desc_status & RD_RFS6)
1436 ndev->stats.rx_missed_errors++;
1437 if (desc_status & RD_RFS10)
1438 ndev->stats.rx_over_errors++;
1440 dma_addr = le32_to_cpu(rxdesc->addr);
1441 if (!mdp->cd->hw_swap)
1443 phys_to_virt(ALIGN(dma_addr, 4)),
1445 mdp->rx_skbuff[entry] = NULL;
1446 if (mdp->cd->rpadir)
1447 skb_reserve(skb, NET_IP_ALIGN);
1448 dma_unmap_single(&ndev->dev, dma_addr,
1449 ALIGN(mdp->rx_buf_sz, 32),
1451 skb_put(skb, pkt_len);
1452 skb->protocol = eth_type_trans(skb, ndev);
1453 netif_receive_skb(skb);
1454 ndev->stats.rx_packets++;
1455 ndev->stats.rx_bytes += pkt_len;
1456 if (desc_status & RD_RFS8)
1457 ndev->stats.multicast++;
1459 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1460 rxdesc = &mdp->rx_ring[entry];
1463 /* Refill the Rx ring buffers. */
1464 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1465 entry = mdp->dirty_rx % mdp->num_rx_ring;
1466 rxdesc = &mdp->rx_ring[entry];
1467 /* The size of the buffer is 32 byte boundary. */
1468 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1469 rxdesc->len = cpu_to_le32(buf_len << 16);
1471 if (mdp->rx_skbuff[entry] == NULL) {
1472 skb = netdev_alloc_skb(ndev, skbuff_size);
1474 break; /* Better luck next round. */
1475 sh_eth_set_receive_align(skb);
1476 dma_addr = dma_map_single(&ndev->dev, skb->data,
1477 buf_len, DMA_FROM_DEVICE);
1478 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1482 mdp->rx_skbuff[entry] = skb;
1484 skb_checksum_none_assert(skb);
1485 rxdesc->addr = cpu_to_le32(dma_addr);
1487 dma_wmb(); /* RACT bit must be set after all the above writes */
1488 if (entry >= mdp->num_rx_ring - 1)
1490 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1492 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1495 /* Restart Rx engine if stopped. */
1496 /* If we don't need to check status, don't. -KDU */
1497 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1498 /* fix the values for the next receiving if RDE is set */
1499 if (intr_status & EESR_RDE &&
1500 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1501 u32 count = (sh_eth_read(ndev, RDFAR) -
1502 sh_eth_read(ndev, RDLAR)) >> 4;
1504 mdp->cur_rx = count;
1505 mdp->dirty_rx = count;
1507 sh_eth_write(ndev, EDRRR_R, EDRRR);
1510 *quota -= limit - boguscnt - 1;
1515 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1517 /* disable tx and rx */
1518 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1521 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1523 /* enable tx and rx */
1524 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1527 /* E-MAC interrupt handler */
1528 static void sh_eth_emac_interrupt(struct net_device *ndev)
1530 struct sh_eth_private *mdp = netdev_priv(ndev);
1534 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1535 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1536 if (felic_stat & ECSR_ICD)
1537 ndev->stats.tx_carrier_errors++;
1538 if (felic_stat & ECSR_LCHNG) {
1540 if (mdp->cd->no_psr || mdp->no_ether_link)
1542 link_stat = sh_eth_read(ndev, PSR);
1543 if (mdp->ether_link_active_low)
1544 link_stat = ~link_stat;
1545 if (!(link_stat & PHY_ST_LINK)) {
1546 sh_eth_rcv_snd_disable(ndev);
1549 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1551 sh_eth_modify(ndev, ECSR, 0, 0);
1552 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, DMAC_M_ECI);
1553 /* enable tx and rx */
1554 sh_eth_rcv_snd_enable(ndev);
1557 if (felic_stat & ECSR_MPD)
1558 pm_wakeup_event(&mdp->pdev->dev, 0);
1561 /* error control function */
1562 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1564 struct sh_eth_private *mdp = netdev_priv(ndev);
1567 if (intr_status & EESR_TWB) {
1568 /* Unused write back interrupt */
1569 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1570 ndev->stats.tx_aborted_errors++;
1571 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1575 if (intr_status & EESR_RABT) {
1576 /* Receive Abort int */
1577 if (intr_status & EESR_RFRMER) {
1578 /* Receive Frame Overflow int */
1579 ndev->stats.rx_frame_errors++;
1583 if (intr_status & EESR_TDE) {
1584 /* Transmit Descriptor Empty int */
1585 ndev->stats.tx_fifo_errors++;
1586 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1589 if (intr_status & EESR_TFE) {
1590 /* FIFO under flow */
1591 ndev->stats.tx_fifo_errors++;
1592 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1595 if (intr_status & EESR_RDE) {
1596 /* Receive Descriptor Empty int */
1597 ndev->stats.rx_over_errors++;
1600 if (intr_status & EESR_RFE) {
1601 /* Receive FIFO Overflow int */
1602 ndev->stats.rx_fifo_errors++;
1605 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1607 ndev->stats.tx_fifo_errors++;
1608 netif_err(mdp, tx_err, ndev, "Address Error\n");
1611 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1612 if (mdp->cd->no_ade)
1614 if (intr_status & mask) {
1616 u32 edtrr = sh_eth_read(ndev, EDTRR);
1619 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1620 intr_status, mdp->cur_tx, mdp->dirty_tx,
1621 (u32)ndev->state, edtrr);
1622 /* dirty buffer free */
1623 sh_eth_txfree(ndev);
1626 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1628 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1631 netif_wake_queue(ndev);
1635 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1637 struct net_device *ndev = netdev;
1638 struct sh_eth_private *mdp = netdev_priv(ndev);
1639 struct sh_eth_cpu_data *cd = mdp->cd;
1640 irqreturn_t ret = IRQ_NONE;
1641 u32 intr_status, intr_enable;
1643 spin_lock(&mdp->lock);
1645 /* Get interrupt status */
1646 intr_status = sh_eth_read(ndev, EESR);
1647 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1648 * enabled since it's the one that comes thru regardless of the mask,
1649 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1650 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1653 intr_enable = sh_eth_read(ndev, EESIPR);
1654 intr_status &= intr_enable | DMAC_M_ECI;
1655 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1656 cd->eesr_err_check))
1661 if (unlikely(!mdp->irq_enabled)) {
1662 sh_eth_write(ndev, 0, EESIPR);
1666 if (intr_status & EESR_RX_CHECK) {
1667 if (napi_schedule_prep(&mdp->napi)) {
1668 /* Mask Rx interrupts */
1669 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1671 __napi_schedule(&mdp->napi);
1674 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1675 intr_status, intr_enable);
1680 if (intr_status & cd->tx_check) {
1681 /* Clear Tx interrupts */
1682 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1684 sh_eth_txfree(ndev);
1685 netif_wake_queue(ndev);
1688 /* E-MAC interrupt */
1689 if (intr_status & EESR_ECI)
1690 sh_eth_emac_interrupt(ndev);
1692 if (intr_status & cd->eesr_err_check) {
1693 /* Clear error interrupts */
1694 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1696 sh_eth_error(ndev, intr_status);
1700 spin_unlock(&mdp->lock);
1705 static int sh_eth_poll(struct napi_struct *napi, int budget)
1707 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1709 struct net_device *ndev = napi->dev;
1714 intr_status = sh_eth_read(ndev, EESR);
1715 if (!(intr_status & EESR_RX_CHECK))
1717 /* Clear Rx interrupts */
1718 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1720 if (sh_eth_rx(ndev, intr_status, "a))
1724 napi_complete(napi);
1726 /* Reenable Rx interrupts */
1727 if (mdp->irq_enabled)
1728 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1730 return budget - quota;
1733 /* PHY state control function */
1734 static void sh_eth_adjust_link(struct net_device *ndev)
1736 struct sh_eth_private *mdp = netdev_priv(ndev);
1737 struct phy_device *phydev = ndev->phydev;
1741 if (phydev->duplex != mdp->duplex) {
1743 mdp->duplex = phydev->duplex;
1744 if (mdp->cd->set_duplex)
1745 mdp->cd->set_duplex(ndev);
1748 if (phydev->speed != mdp->speed) {
1750 mdp->speed = phydev->speed;
1751 if (mdp->cd->set_rate)
1752 mdp->cd->set_rate(ndev);
1755 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1757 mdp->link = phydev->link;
1758 if (mdp->cd->no_psr || mdp->no_ether_link)
1759 sh_eth_rcv_snd_enable(ndev);
1761 } else if (mdp->link) {
1766 if (mdp->cd->no_psr || mdp->no_ether_link)
1767 sh_eth_rcv_snd_disable(ndev);
1770 if (new_state && netif_msg_link(mdp))
1771 phy_print_status(phydev);
1774 /* PHY init function */
1775 static int sh_eth_phy_init(struct net_device *ndev)
1777 struct device_node *np = ndev->dev.parent->of_node;
1778 struct sh_eth_private *mdp = netdev_priv(ndev);
1779 struct phy_device *phydev;
1785 /* Try connect to PHY */
1787 struct device_node *pn;
1789 pn = of_parse_phandle(np, "phy-handle", 0);
1790 phydev = of_phy_connect(ndev, pn,
1791 sh_eth_adjust_link, 0,
1792 mdp->phy_interface);
1796 phydev = ERR_PTR(-ENOENT);
1798 char phy_id[MII_BUS_ID_SIZE + 3];
1800 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1801 mdp->mii_bus->id, mdp->phy_id);
1803 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1804 mdp->phy_interface);
1807 if (IS_ERR(phydev)) {
1808 netdev_err(ndev, "failed to connect PHY\n");
1809 return PTR_ERR(phydev);
1812 phy_attached_info(phydev);
1817 /* PHY control start function */
1818 static int sh_eth_phy_start(struct net_device *ndev)
1822 ret = sh_eth_phy_init(ndev);
1826 phy_start(ndev->phydev);
1831 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1832 struct ethtool_link_ksettings *cmd)
1834 struct sh_eth_private *mdp = netdev_priv(ndev);
1835 unsigned long flags;
1841 spin_lock_irqsave(&mdp->lock, flags);
1842 ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1843 spin_unlock_irqrestore(&mdp->lock, flags);
1848 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1849 const struct ethtool_link_ksettings *cmd)
1851 struct sh_eth_private *mdp = netdev_priv(ndev);
1852 unsigned long flags;
1858 spin_lock_irqsave(&mdp->lock, flags);
1860 /* disable tx and rx */
1861 sh_eth_rcv_snd_disable(ndev);
1863 ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1867 if (cmd->base.duplex == DUPLEX_FULL)
1872 if (mdp->cd->set_duplex)
1873 mdp->cd->set_duplex(ndev);
1878 /* enable tx and rx */
1879 sh_eth_rcv_snd_enable(ndev);
1881 spin_unlock_irqrestore(&mdp->lock, flags);
1886 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1887 * version must be bumped as well. Just adding registers up to that
1888 * limit is fine, as long as the existing register indices don't
1891 #define SH_ETH_REG_DUMP_VERSION 1
1892 #define SH_ETH_REG_DUMP_MAX_REGS 256
1894 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1896 struct sh_eth_private *mdp = netdev_priv(ndev);
1897 struct sh_eth_cpu_data *cd = mdp->cd;
1901 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1903 /* Dump starts with a bitmap that tells ethtool which
1904 * registers are defined for this chip.
1906 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1914 /* Add a register to the dump, if it has a defined offset.
1915 * This automatically skips most undefined registers, but for
1916 * some it is also necessary to check a capability flag in
1917 * struct sh_eth_cpu_data.
1919 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1920 #define add_reg_from(reg, read_expr) do { \
1921 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
1923 mark_reg_valid(reg); \
1924 *buf++ = read_expr; \
1929 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1930 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1996 if (cd->hw_checksum)
2002 add_tsu_reg(TSU_CTRST);
2003 add_tsu_reg(TSU_FWEN0);
2004 add_tsu_reg(TSU_FWEN1);
2005 add_tsu_reg(TSU_FCM);
2006 add_tsu_reg(TSU_BSYSL0);
2007 add_tsu_reg(TSU_BSYSL1);
2008 add_tsu_reg(TSU_PRISL0);
2009 add_tsu_reg(TSU_PRISL1);
2010 add_tsu_reg(TSU_FWSL0);
2011 add_tsu_reg(TSU_FWSL1);
2012 add_tsu_reg(TSU_FWSLC);
2013 add_tsu_reg(TSU_QTAG0);
2014 add_tsu_reg(TSU_QTAG1);
2015 add_tsu_reg(TSU_QTAGM0);
2016 add_tsu_reg(TSU_QTAGM1);
2017 add_tsu_reg(TSU_FWSR);
2018 add_tsu_reg(TSU_FWINMK);
2019 add_tsu_reg(TSU_ADQT0);
2020 add_tsu_reg(TSU_ADQT1);
2021 add_tsu_reg(TSU_VTAG0);
2022 add_tsu_reg(TSU_VTAG1);
2023 add_tsu_reg(TSU_ADSBSY);
2024 add_tsu_reg(TSU_TEN);
2025 add_tsu_reg(TSU_POST1);
2026 add_tsu_reg(TSU_POST2);
2027 add_tsu_reg(TSU_POST3);
2028 add_tsu_reg(TSU_POST4);
2029 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2030 /* This is the start of a table, not just a single
2036 mark_reg_valid(TSU_ADRH0);
2037 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2040 mdp->reg_offset[TSU_ADRH0] +
2043 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2047 #undef mark_reg_valid
2055 static int sh_eth_get_regs_len(struct net_device *ndev)
2057 return __sh_eth_get_regs(ndev, NULL);
2060 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2063 struct sh_eth_private *mdp = netdev_priv(ndev);
2065 regs->version = SH_ETH_REG_DUMP_VERSION;
2067 pm_runtime_get_sync(&mdp->pdev->dev);
2068 __sh_eth_get_regs(ndev, buf);
2069 pm_runtime_put_sync(&mdp->pdev->dev);
2072 static int sh_eth_nway_reset(struct net_device *ndev)
2074 struct sh_eth_private *mdp = netdev_priv(ndev);
2075 unsigned long flags;
2081 spin_lock_irqsave(&mdp->lock, flags);
2082 ret = phy_start_aneg(ndev->phydev);
2083 spin_unlock_irqrestore(&mdp->lock, flags);
2088 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2090 struct sh_eth_private *mdp = netdev_priv(ndev);
2091 return mdp->msg_enable;
2094 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2096 struct sh_eth_private *mdp = netdev_priv(ndev);
2097 mdp->msg_enable = value;
2100 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2101 "rx_current", "tx_current",
2102 "rx_dirty", "tx_dirty",
2104 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2106 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2110 return SH_ETH_STATS_LEN;
2116 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2117 struct ethtool_stats *stats, u64 *data)
2119 struct sh_eth_private *mdp = netdev_priv(ndev);
2122 /* device-specific stats */
2123 data[i++] = mdp->cur_rx;
2124 data[i++] = mdp->cur_tx;
2125 data[i++] = mdp->dirty_rx;
2126 data[i++] = mdp->dirty_tx;
2129 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2131 switch (stringset) {
2133 memcpy(data, *sh_eth_gstrings_stats,
2134 sizeof(sh_eth_gstrings_stats));
2139 static void sh_eth_get_ringparam(struct net_device *ndev,
2140 struct ethtool_ringparam *ring)
2142 struct sh_eth_private *mdp = netdev_priv(ndev);
2144 ring->rx_max_pending = RX_RING_MAX;
2145 ring->tx_max_pending = TX_RING_MAX;
2146 ring->rx_pending = mdp->num_rx_ring;
2147 ring->tx_pending = mdp->num_tx_ring;
2150 static int sh_eth_set_ringparam(struct net_device *ndev,
2151 struct ethtool_ringparam *ring)
2153 struct sh_eth_private *mdp = netdev_priv(ndev);
2156 if (ring->tx_pending > TX_RING_MAX ||
2157 ring->rx_pending > RX_RING_MAX ||
2158 ring->tx_pending < TX_RING_MIN ||
2159 ring->rx_pending < RX_RING_MIN)
2161 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2164 if (netif_running(ndev)) {
2165 netif_device_detach(ndev);
2166 netif_tx_disable(ndev);
2168 /* Serialise with the interrupt handler and NAPI, then
2169 * disable interrupts. We have to clear the
2170 * irq_enabled flag first to ensure that interrupts
2171 * won't be re-enabled.
2173 mdp->irq_enabled = false;
2174 synchronize_irq(ndev->irq);
2175 napi_synchronize(&mdp->napi);
2176 sh_eth_write(ndev, 0x0000, EESIPR);
2178 sh_eth_dev_exit(ndev);
2180 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2181 sh_eth_ring_free(ndev);
2184 /* Set new parameters */
2185 mdp->num_rx_ring = ring->rx_pending;
2186 mdp->num_tx_ring = ring->tx_pending;
2188 if (netif_running(ndev)) {
2189 ret = sh_eth_ring_init(ndev);
2191 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2195 ret = sh_eth_dev_init(ndev);
2197 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2202 netif_device_attach(ndev);
2208 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2210 struct sh_eth_private *mdp = netdev_priv(ndev);
2215 if (mdp->cd->magic && mdp->clk) {
2216 wol->supported = WAKE_MAGIC;
2217 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2221 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2223 struct sh_eth_private *mdp = netdev_priv(ndev);
2225 if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC)
2228 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2230 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2235 static const struct ethtool_ops sh_eth_ethtool_ops = {
2236 .get_regs_len = sh_eth_get_regs_len,
2237 .get_regs = sh_eth_get_regs,
2238 .nway_reset = sh_eth_nway_reset,
2239 .get_msglevel = sh_eth_get_msglevel,
2240 .set_msglevel = sh_eth_set_msglevel,
2241 .get_link = ethtool_op_get_link,
2242 .get_strings = sh_eth_get_strings,
2243 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2244 .get_sset_count = sh_eth_get_sset_count,
2245 .get_ringparam = sh_eth_get_ringparam,
2246 .set_ringparam = sh_eth_set_ringparam,
2247 .get_link_ksettings = sh_eth_get_link_ksettings,
2248 .set_link_ksettings = sh_eth_set_link_ksettings,
2249 .get_wol = sh_eth_get_wol,
2250 .set_wol = sh_eth_set_wol,
2253 /* network device open function */
2254 static int sh_eth_open(struct net_device *ndev)
2256 struct sh_eth_private *mdp = netdev_priv(ndev);
2259 pm_runtime_get_sync(&mdp->pdev->dev);
2261 napi_enable(&mdp->napi);
2263 ret = request_irq(ndev->irq, sh_eth_interrupt,
2264 mdp->cd->irq_flags, ndev->name, ndev);
2266 netdev_err(ndev, "Can not assign IRQ number\n");
2270 /* Descriptor set */
2271 ret = sh_eth_ring_init(ndev);
2276 ret = sh_eth_dev_init(ndev);
2280 /* PHY control start*/
2281 ret = sh_eth_phy_start(ndev);
2285 netif_start_queue(ndev);
2292 free_irq(ndev->irq, ndev);
2294 napi_disable(&mdp->napi);
2295 pm_runtime_put_sync(&mdp->pdev->dev);
2299 /* Timeout function */
2300 static void sh_eth_tx_timeout(struct net_device *ndev)
2302 struct sh_eth_private *mdp = netdev_priv(ndev);
2303 struct sh_eth_rxdesc *rxdesc;
2306 netif_stop_queue(ndev);
2308 netif_err(mdp, timer, ndev,
2309 "transmit timed out, status %8.8x, resetting...\n",
2310 sh_eth_read(ndev, EESR));
2312 /* tx_errors count up */
2313 ndev->stats.tx_errors++;
2315 /* Free all the skbuffs in the Rx queue. */
2316 for (i = 0; i < mdp->num_rx_ring; i++) {
2317 rxdesc = &mdp->rx_ring[i];
2318 rxdesc->status = cpu_to_le32(0);
2319 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2320 dev_kfree_skb(mdp->rx_skbuff[i]);
2321 mdp->rx_skbuff[i] = NULL;
2323 for (i = 0; i < mdp->num_tx_ring; i++) {
2324 dev_kfree_skb(mdp->tx_skbuff[i]);
2325 mdp->tx_skbuff[i] = NULL;
2329 sh_eth_dev_init(ndev);
2331 netif_start_queue(ndev);
2334 /* Packet transmit function */
2335 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2337 struct sh_eth_private *mdp = netdev_priv(ndev);
2338 struct sh_eth_txdesc *txdesc;
2339 dma_addr_t dma_addr;
2341 unsigned long flags;
2343 spin_lock_irqsave(&mdp->lock, flags);
2344 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2345 if (!sh_eth_txfree(ndev)) {
2346 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2347 netif_stop_queue(ndev);
2348 spin_unlock_irqrestore(&mdp->lock, flags);
2349 return NETDEV_TX_BUSY;
2352 spin_unlock_irqrestore(&mdp->lock, flags);
2354 if (skb_put_padto(skb, ETH_ZLEN))
2355 return NETDEV_TX_OK;
2357 entry = mdp->cur_tx % mdp->num_tx_ring;
2358 mdp->tx_skbuff[entry] = skb;
2359 txdesc = &mdp->tx_ring[entry];
2361 if (!mdp->cd->hw_swap)
2362 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2363 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2365 if (dma_mapping_error(&ndev->dev, dma_addr)) {
2367 return NETDEV_TX_OK;
2369 txdesc->addr = cpu_to_le32(dma_addr);
2370 txdesc->len = cpu_to_le32(skb->len << 16);
2372 dma_wmb(); /* TACT bit must be set after all the above writes */
2373 if (entry >= mdp->num_tx_ring - 1)
2374 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2376 txdesc->status |= cpu_to_le32(TD_TACT);
2380 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2381 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2383 return NETDEV_TX_OK;
2386 /* The statistics registers have write-clear behaviour, which means we
2387 * will lose any increment between the read and write. We mitigate
2388 * this by only clearing when we read a non-zero value, so we will
2389 * never falsely report a total of zero.
2392 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2394 u32 delta = sh_eth_read(ndev, reg);
2398 sh_eth_write(ndev, 0, reg);
2402 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2404 struct sh_eth_private *mdp = netdev_priv(ndev);
2406 if (sh_eth_is_rz_fast_ether(mdp))
2407 return &ndev->stats;
2409 if (!mdp->is_opened)
2410 return &ndev->stats;
2412 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2413 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2414 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2416 if (sh_eth_is_gether(mdp)) {
2417 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2419 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2422 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2426 return &ndev->stats;
2429 /* device close function */
2430 static int sh_eth_close(struct net_device *ndev)
2432 struct sh_eth_private *mdp = netdev_priv(ndev);
2434 netif_stop_queue(ndev);
2436 /* Serialise with the interrupt handler and NAPI, then disable
2437 * interrupts. We have to clear the irq_enabled flag first to
2438 * ensure that interrupts won't be re-enabled.
2440 mdp->irq_enabled = false;
2441 synchronize_irq(ndev->irq);
2442 napi_disable(&mdp->napi);
2443 sh_eth_write(ndev, 0x0000, EESIPR);
2445 sh_eth_dev_exit(ndev);
2447 /* PHY Disconnect */
2449 phy_stop(ndev->phydev);
2450 phy_disconnect(ndev->phydev);
2453 free_irq(ndev->irq, ndev);
2455 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2456 sh_eth_ring_free(ndev);
2458 pm_runtime_put_sync(&mdp->pdev->dev);
2465 /* ioctl to device function */
2466 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2468 struct phy_device *phydev = ndev->phydev;
2470 if (!netif_running(ndev))
2476 return phy_mii_ioctl(phydev, rq, cmd);
2479 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2480 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2483 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2486 static u32 sh_eth_tsu_get_post_mask(int entry)
2488 return 0x0f << (28 - ((entry % 8) * 4));
2491 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2493 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2496 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2499 struct sh_eth_private *mdp = netdev_priv(ndev);
2503 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2504 tmp = ioread32(reg_offset);
2505 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2508 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2511 struct sh_eth_private *mdp = netdev_priv(ndev);
2512 u32 post_mask, ref_mask, tmp;
2515 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2516 post_mask = sh_eth_tsu_get_post_mask(entry);
2517 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2519 tmp = ioread32(reg_offset);
2520 iowrite32(tmp & ~post_mask, reg_offset);
2522 /* If other port enables, the function returns "true" */
2523 return tmp & ref_mask;
2526 static int sh_eth_tsu_busy(struct net_device *ndev)
2528 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2529 struct sh_eth_private *mdp = netdev_priv(ndev);
2531 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2535 netdev_err(ndev, "%s: timeout\n", __func__);
2543 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2548 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2549 iowrite32(val, reg);
2550 if (sh_eth_tsu_busy(ndev) < 0)
2553 val = addr[4] << 8 | addr[5];
2554 iowrite32(val, reg + 4);
2555 if (sh_eth_tsu_busy(ndev) < 0)
2561 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2565 val = ioread32(reg);
2566 addr[0] = (val >> 24) & 0xff;
2567 addr[1] = (val >> 16) & 0xff;
2568 addr[2] = (val >> 8) & 0xff;
2569 addr[3] = val & 0xff;
2570 val = ioread32(reg + 4);
2571 addr[4] = (val >> 8) & 0xff;
2572 addr[5] = val & 0xff;
2576 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2578 struct sh_eth_private *mdp = netdev_priv(ndev);
2579 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2581 u8 c_addr[ETH_ALEN];
2583 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2584 sh_eth_tsu_read_entry(reg_offset, c_addr);
2585 if (ether_addr_equal(addr, c_addr))
2592 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2597 memset(blank, 0, sizeof(blank));
2598 entry = sh_eth_tsu_find_entry(ndev, blank);
2599 return (entry < 0) ? -ENOMEM : entry;
2602 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2605 struct sh_eth_private *mdp = netdev_priv(ndev);
2606 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2610 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2611 ~(1 << (31 - entry)), TSU_TEN);
2613 memset(blank, 0, sizeof(blank));
2614 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2620 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2622 struct sh_eth_private *mdp = netdev_priv(ndev);
2623 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2629 i = sh_eth_tsu_find_entry(ndev, addr);
2631 /* No entry found, create one */
2632 i = sh_eth_tsu_find_empty(ndev);
2635 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2639 /* Enable the entry */
2640 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2641 (1 << (31 - i)), TSU_TEN);
2644 /* Entry found or created, enable POST */
2645 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2650 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2652 struct sh_eth_private *mdp = netdev_priv(ndev);
2658 i = sh_eth_tsu_find_entry(ndev, addr);
2661 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2664 /* Disable the entry if both ports was disabled */
2665 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2673 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2675 struct sh_eth_private *mdp = netdev_priv(ndev);
2681 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2682 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2685 /* Disable the entry if both ports was disabled */
2686 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2694 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2696 struct sh_eth_private *mdp = netdev_priv(ndev);
2698 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2704 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2705 sh_eth_tsu_read_entry(reg_offset, addr);
2706 if (is_multicast_ether_addr(addr))
2707 sh_eth_tsu_del_entry(ndev, addr);
2711 /* Update promiscuous flag and multicast filter */
2712 static void sh_eth_set_rx_mode(struct net_device *ndev)
2714 struct sh_eth_private *mdp = netdev_priv(ndev);
2717 unsigned long flags;
2719 spin_lock_irqsave(&mdp->lock, flags);
2720 /* Initial condition is MCT = 1, PRM = 0.
2721 * Depending on ndev->flags, set PRM or clear MCT
2723 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2725 ecmr_bits |= ECMR_MCT;
2727 if (!(ndev->flags & IFF_MULTICAST)) {
2728 sh_eth_tsu_purge_mcast(ndev);
2731 if (ndev->flags & IFF_ALLMULTI) {
2732 sh_eth_tsu_purge_mcast(ndev);
2733 ecmr_bits &= ~ECMR_MCT;
2737 if (ndev->flags & IFF_PROMISC) {
2738 sh_eth_tsu_purge_all(ndev);
2739 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2740 } else if (mdp->cd->tsu) {
2741 struct netdev_hw_addr *ha;
2742 netdev_for_each_mc_addr(ha, ndev) {
2743 if (mcast_all && is_multicast_ether_addr(ha->addr))
2746 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2748 sh_eth_tsu_purge_mcast(ndev);
2749 ecmr_bits &= ~ECMR_MCT;
2756 /* update the ethernet mode */
2757 sh_eth_write(ndev, ecmr_bits, ECMR);
2759 spin_unlock_irqrestore(&mdp->lock, flags);
2762 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2770 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2771 __be16 proto, u16 vid)
2773 struct sh_eth_private *mdp = netdev_priv(ndev);
2774 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2776 if (unlikely(!mdp->cd->tsu))
2779 /* No filtering if vid = 0 */
2783 mdp->vlan_num_ids++;
2785 /* The controller has one VLAN tag HW filter. So, if the filter is
2786 * already enabled, the driver disables it and the filte
2788 if (mdp->vlan_num_ids > 1) {
2789 /* disable VLAN filter */
2790 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2794 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2800 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2801 __be16 proto, u16 vid)
2803 struct sh_eth_private *mdp = netdev_priv(ndev);
2804 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2806 if (unlikely(!mdp->cd->tsu))
2809 /* No filtering if vid = 0 */
2813 mdp->vlan_num_ids--;
2814 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2819 /* SuperH's TSU register init function */
2820 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2822 if (sh_eth_is_rz_fast_ether(mdp)) {
2823 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2824 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2825 TSU_FWSLC); /* Enable POST registers */
2829 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2830 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2831 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2832 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2833 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2834 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2835 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2836 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2837 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2838 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2839 if (sh_eth_is_gether(mdp)) {
2840 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2841 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2843 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2844 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2846 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2847 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2848 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2849 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2850 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2851 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2852 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2855 /* MDIO bus release function */
2856 static int sh_mdio_release(struct sh_eth_private *mdp)
2858 /* unregister mdio bus */
2859 mdiobus_unregister(mdp->mii_bus);
2861 /* free bitbang info */
2862 free_mdio_bitbang(mdp->mii_bus);
2867 /* MDIO bus init function */
2868 static int sh_mdio_init(struct sh_eth_private *mdp,
2869 struct sh_eth_plat_data *pd)
2872 struct bb_info *bitbang;
2873 struct platform_device *pdev = mdp->pdev;
2874 struct device *dev = &mdp->pdev->dev;
2876 /* create bit control struct for PHY */
2877 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2882 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2883 bitbang->set_gate = pd->set_mdio_gate;
2884 bitbang->ctrl.ops = &bb_ops;
2886 /* MII controller setting */
2887 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2891 /* Hook up MII support for ethtool */
2892 mdp->mii_bus->name = "sh_mii";
2893 mdp->mii_bus->parent = dev;
2894 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2895 pdev->name, pdev->id);
2897 /* register MDIO bus */
2899 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2901 if (pd->phy_irq > 0)
2902 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2904 ret = mdiobus_register(mdp->mii_bus);
2913 free_mdio_bitbang(mdp->mii_bus);
2917 static const u16 *sh_eth_get_register_offset(int register_type)
2919 const u16 *reg_offset = NULL;
2921 switch (register_type) {
2922 case SH_ETH_REG_GIGABIT:
2923 reg_offset = sh_eth_offset_gigabit;
2925 case SH_ETH_REG_FAST_RZ:
2926 reg_offset = sh_eth_offset_fast_rz;
2928 case SH_ETH_REG_FAST_RCAR:
2929 reg_offset = sh_eth_offset_fast_rcar;
2931 case SH_ETH_REG_FAST_SH4:
2932 reg_offset = sh_eth_offset_fast_sh4;
2934 case SH_ETH_REG_FAST_SH3_SH2:
2935 reg_offset = sh_eth_offset_fast_sh3_sh2;
2942 static const struct net_device_ops sh_eth_netdev_ops = {
2943 .ndo_open = sh_eth_open,
2944 .ndo_stop = sh_eth_close,
2945 .ndo_start_xmit = sh_eth_start_xmit,
2946 .ndo_get_stats = sh_eth_get_stats,
2947 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2948 .ndo_tx_timeout = sh_eth_tx_timeout,
2949 .ndo_do_ioctl = sh_eth_do_ioctl,
2950 .ndo_validate_addr = eth_validate_addr,
2951 .ndo_set_mac_address = eth_mac_addr,
2954 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2955 .ndo_open = sh_eth_open,
2956 .ndo_stop = sh_eth_close,
2957 .ndo_start_xmit = sh_eth_start_xmit,
2958 .ndo_get_stats = sh_eth_get_stats,
2959 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2960 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2961 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2962 .ndo_tx_timeout = sh_eth_tx_timeout,
2963 .ndo_do_ioctl = sh_eth_do_ioctl,
2964 .ndo_validate_addr = eth_validate_addr,
2965 .ndo_set_mac_address = eth_mac_addr,
2969 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2971 struct device_node *np = dev->of_node;
2972 struct sh_eth_plat_data *pdata;
2973 const char *mac_addr;
2975 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2979 pdata->phy_interface = of_get_phy_mode(np);
2981 mac_addr = of_get_mac_address(np);
2983 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2985 pdata->no_ether_link =
2986 of_property_read_bool(np, "renesas,no-ether-link");
2987 pdata->ether_link_active_low =
2988 of_property_read_bool(np, "renesas,ether-link-active-low");
2993 static const struct of_device_id sh_eth_match_table[] = {
2994 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2995 { .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
2996 { .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
2997 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2998 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2999 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3000 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3001 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3002 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3003 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3006 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3008 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3014 static int sh_eth_drv_probe(struct platform_device *pdev)
3016 struct resource *res;
3017 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3018 const struct platform_device_id *id = platform_get_device_id(pdev);
3019 struct sh_eth_private *mdp;
3020 struct net_device *ndev;
3024 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3026 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3030 pm_runtime_enable(&pdev->dev);
3031 pm_runtime_get_sync(&pdev->dev);
3037 ret = platform_get_irq(pdev, 0);
3042 SET_NETDEV_DEV(ndev, &pdev->dev);
3044 mdp = netdev_priv(ndev);
3045 mdp->num_tx_ring = TX_RING_SIZE;
3046 mdp->num_rx_ring = RX_RING_SIZE;
3047 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3048 if (IS_ERR(mdp->addr)) {
3049 ret = PTR_ERR(mdp->addr);
3053 /* Get clock, if not found that's OK but Wake-On-Lan is unavailable */
3054 mdp->clk = devm_clk_get(&pdev->dev, NULL);
3055 if (IS_ERR(mdp->clk))
3058 ndev->base_addr = res->start;
3060 spin_lock_init(&mdp->lock);
3063 if (pdev->dev.of_node)
3064 pd = sh_eth_parse_dt(&pdev->dev);
3066 dev_err(&pdev->dev, "no platform data\n");
3072 mdp->phy_id = pd->phy;
3073 mdp->phy_interface = pd->phy_interface;
3074 mdp->no_ether_link = pd->no_ether_link;
3075 mdp->ether_link_active_low = pd->ether_link_active_low;
3079 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3081 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3083 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3084 if (!mdp->reg_offset) {
3085 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3086 mdp->cd->register_type);
3090 sh_eth_set_default_cpu_data(mdp->cd);
3094 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3096 ndev->netdev_ops = &sh_eth_netdev_ops;
3097 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3098 ndev->watchdog_timeo = TX_TIMEOUT;
3100 /* debug message level */
3101 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3103 /* read and set MAC address */
3104 read_mac_address(ndev, pd->mac_addr);
3105 if (!is_valid_ether_addr(ndev->dev_addr)) {
3106 dev_warn(&pdev->dev,
3107 "no valid MAC address supplied, using a random one.\n");
3108 eth_hw_addr_random(ndev);
3111 /* ioremap the TSU registers */
3113 struct resource *rtsu;
3114 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3115 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3116 if (IS_ERR(mdp->tsu_addr)) {
3117 ret = PTR_ERR(mdp->tsu_addr);
3120 mdp->port = devno % 2;
3121 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3124 /* initialize first or needed device */
3125 if (!devno || pd->needs_init) {
3126 if (mdp->cd->chip_reset)
3127 mdp->cd->chip_reset(ndev);
3130 /* TSU init (Init only)*/
3131 sh_eth_tsu_init(mdp);
3135 if (mdp->cd->rmiimode)
3136 sh_eth_write(ndev, 0x1, RMIIMODE);
3139 ret = sh_mdio_init(mdp, pd);
3141 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3145 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3147 /* network device register */
3148 ret = register_netdev(ndev);
3152 if (mdp->cd->magic && mdp->clk)
3153 device_set_wakeup_capable(&pdev->dev, 1);
3155 /* print device information */
3156 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3157 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3159 pm_runtime_put(&pdev->dev);
3160 platform_set_drvdata(pdev, ndev);
3165 netif_napi_del(&mdp->napi);
3166 sh_mdio_release(mdp);
3173 pm_runtime_put(&pdev->dev);
3174 pm_runtime_disable(&pdev->dev);
3178 static int sh_eth_drv_remove(struct platform_device *pdev)
3180 struct net_device *ndev = platform_get_drvdata(pdev);
3181 struct sh_eth_private *mdp = netdev_priv(ndev);
3183 unregister_netdev(ndev);
3184 netif_napi_del(&mdp->napi);
3185 sh_mdio_release(mdp);
3186 pm_runtime_disable(&pdev->dev);
3193 #ifdef CONFIG_PM_SLEEP
3194 static int sh_eth_wol_setup(struct net_device *ndev)
3196 struct sh_eth_private *mdp = netdev_priv(ndev);
3198 /* Only allow ECI interrupts */
3199 synchronize_irq(ndev->irq);
3200 napi_disable(&mdp->napi);
3201 sh_eth_write(ndev, DMAC_M_ECI, EESIPR);
3203 /* Enable MagicPacket */
3204 sh_eth_modify(ndev, ECMR, 0, ECMR_MPDE);
3206 /* Increased clock usage so device won't be suspended */
3207 clk_enable(mdp->clk);
3209 return enable_irq_wake(ndev->irq);
3212 static int sh_eth_wol_restore(struct net_device *ndev)
3214 struct sh_eth_private *mdp = netdev_priv(ndev);
3217 napi_enable(&mdp->napi);
3219 /* Disable MagicPacket */
3220 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3222 /* The device needs to be reset to restore MagicPacket logic
3223 * for next wakeup. If we close and open the device it will
3224 * both be reset and all registers restored. This is what
3225 * happens during suspend and resume without WoL enabled.
3227 ret = sh_eth_close(ndev);
3230 ret = sh_eth_open(ndev);
3234 /* Restore clock usage count */
3235 clk_disable(mdp->clk);
3237 return disable_irq_wake(ndev->irq);
3240 static int sh_eth_suspend(struct device *dev)
3242 struct net_device *ndev = dev_get_drvdata(dev);
3243 struct sh_eth_private *mdp = netdev_priv(ndev);
3246 if (!netif_running(ndev))
3249 netif_device_detach(ndev);
3251 if (mdp->wol_enabled)
3252 ret = sh_eth_wol_setup(ndev);
3254 ret = sh_eth_close(ndev);
3259 static int sh_eth_resume(struct device *dev)
3261 struct net_device *ndev = dev_get_drvdata(dev);
3262 struct sh_eth_private *mdp = netdev_priv(ndev);
3265 if (!netif_running(ndev))
3268 if (mdp->wol_enabled)
3269 ret = sh_eth_wol_restore(ndev);
3271 ret = sh_eth_open(ndev);
3276 netif_device_attach(ndev);
3282 static int sh_eth_runtime_nop(struct device *dev)
3284 /* Runtime PM callback shared between ->runtime_suspend()
3285 * and ->runtime_resume(). Simply returns success.
3287 * This driver re-initializes all registers after
3288 * pm_runtime_get_sync() anyway so there is no need
3289 * to save and restore registers here.
3294 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3295 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3296 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3298 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3300 #define SH_ETH_PM_OPS NULL
3303 static struct platform_device_id sh_eth_id_table[] = {
3304 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3305 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3306 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3307 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3308 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3309 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3310 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3313 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3315 static struct platform_driver sh_eth_driver = {
3316 .probe = sh_eth_drv_probe,
3317 .remove = sh_eth_drv_remove,
3318 .id_table = sh_eth_id_table,
3321 .pm = SH_ETH_PM_OPS,
3322 .of_match_table = of_match_ptr(sh_eth_match_table),
3326 module_platform_driver(sh_eth_driver);
3328 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3329 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3330 MODULE_LICENSE("GPL v2");