1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
42 static char version[] =
43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
53 static const struct qed_eth_ops *qed_ops;
55 #define CHIP_NUM_57980S_40 0x1634
56 #define CHIP_NUM_57980S_10 0x1666
57 #define CHIP_NUM_57980S_MF 0x1636
58 #define CHIP_NUM_57980S_100 0x1644
59 #define CHIP_NUM_57980S_50 0x1654
60 #define CHIP_NUM_57980S_25 0x1656
61 #define CHIP_NUM_57980S_IOV 0x1664
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
73 enum qede_pci_private {
78 static const struct pci_device_id qede_pci_tbl[] = {
79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
95 #define TX_TIMEOUT (5 * HZ)
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99 struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
105 struct qede_dev *edev = netdev_priv(ndev);
108 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
115 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
118 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
120 struct qede_dev *edev = netdev_priv(ndev);
122 DP_VERBOSE(edev, QED_MSG_IOV,
123 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
124 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
126 if (!is_valid_ether_addr(mac)) {
127 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
134 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
136 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
137 struct qed_dev_info *qed_info = &edev->dev_info.common;
140 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
142 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
144 /* Enable/Disable Tx switching for PF */
145 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
146 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
147 struct qed_update_vport_params params;
149 memset(¶ms, 0, sizeof(params));
151 params.update_tx_switching_flg = 1;
152 params.tx_switching_flg = num_vfs_param ? 1 : 0;
153 edev->ops->vport_update(edev->cdev, ¶ms);
160 static struct pci_driver qede_pci_driver = {
162 .id_table = qede_pci_tbl,
164 .remove = qede_remove,
165 #ifdef CONFIG_QED_SRIOV
166 .sriov_configure = qede_sriov_configure,
170 static void qede_force_mac(void *dev, u8 *mac)
172 struct qede_dev *edev = dev;
174 ether_addr_copy(edev->ndev->dev_addr, mac);
175 ether_addr_copy(edev->primary_mac, mac);
178 static struct qed_eth_cb_ops qede_ll_ops = {
180 .link_update = qede_link_update,
182 .force_mac = qede_force_mac,
185 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
188 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
189 struct ethtool_drvinfo drvinfo;
190 struct qede_dev *edev;
192 /* Currently only support name change */
193 if (event != NETDEV_CHANGENAME)
196 /* Check whether this is a qede device */
197 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
200 memset(&drvinfo, 0, sizeof(drvinfo));
201 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
202 if (strcmp(drvinfo.driver, "qede"))
204 edev = netdev_priv(ndev);
206 /* Notify qed of the name change */
207 if (!edev->ops || !edev->ops->common)
209 edev->ops->common->set_id(edev->cdev, edev->ndev->name,
216 static struct notifier_block qede_netdev_notifier = {
217 .notifier_call = qede_netdev_event,
221 int __init qede_init(void)
225 pr_notice("qede_init: %s\n", version);
227 qed_ops = qed_get_eth_ops();
229 pr_notice("Failed to get qed ethtool operations\n");
233 /* Must register notifier before pci ops, since we might miss
234 * interface rename after pci probe and netdev registeration.
236 ret = register_netdevice_notifier(&qede_netdev_notifier);
238 pr_notice("Failed to register netdevice_notifier\n");
243 ret = pci_register_driver(&qede_pci_driver);
245 pr_notice("Failed to register driver\n");
246 unregister_netdevice_notifier(&qede_netdev_notifier);
254 static void __exit qede_cleanup(void)
256 pr_notice("qede_cleanup called\n");
258 unregister_netdevice_notifier(&qede_netdev_notifier);
259 pci_unregister_driver(&qede_pci_driver);
263 module_init(qede_init);
264 module_exit(qede_cleanup);
266 /* -------------------------------------------------------------------------
268 * -------------------------------------------------------------------------
271 /* Unmap the data and free skb */
272 static int qede_free_tx_pkt(struct qede_dev *edev,
273 struct qede_tx_queue *txq,
276 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
277 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
278 struct eth_tx_1st_bd *first_bd;
279 struct eth_tx_bd *tx_data_bd;
280 int bds_consumed = 0;
282 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
283 int i, split_bd_len = 0;
285 if (unlikely(!skb)) {
287 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
288 idx, txq->sw_tx_cons, txq->sw_tx_prod);
294 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
298 nbds = first_bd->data.nbds;
301 struct eth_tx_bd *split = (struct eth_tx_bd *)
302 qed_chain_consume(&txq->tx_pbl);
303 split_bd_len = BD_UNMAP_LEN(split);
306 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
307 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
309 /* Unmap the data of the skb frags */
310 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
311 tx_data_bd = (struct eth_tx_bd *)
312 qed_chain_consume(&txq->tx_pbl);
313 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
314 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
317 while (bds_consumed++ < nbds)
318 qed_chain_consume(&txq->tx_pbl);
321 dev_kfree_skb_any(skb);
322 txq->sw_tx_ring[idx].skb = NULL;
323 txq->sw_tx_ring[idx].flags = 0;
328 /* Unmap the data and free skb when mapping failed during start_xmit */
329 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
330 struct qede_tx_queue *txq,
331 struct eth_tx_1st_bd *first_bd,
335 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
336 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
337 struct eth_tx_bd *tx_data_bd;
338 int i, split_bd_len = 0;
340 /* Return prod to its position before this skb was handled */
341 qed_chain_set_prod(&txq->tx_pbl,
342 le16_to_cpu(txq->tx_db.data.bd_prod),
345 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
348 struct eth_tx_bd *split = (struct eth_tx_bd *)
349 qed_chain_produce(&txq->tx_pbl);
350 split_bd_len = BD_UNMAP_LEN(split);
354 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
355 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
357 /* Unmap the data of the skb frags */
358 for (i = 0; i < nbd; i++) {
359 tx_data_bd = (struct eth_tx_bd *)
360 qed_chain_produce(&txq->tx_pbl);
361 if (tx_data_bd->nbytes)
362 dma_unmap_page(&edev->pdev->dev,
363 BD_UNMAP_ADDR(tx_data_bd),
364 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
367 /* Return again prod to its position before this skb was handled */
368 qed_chain_set_prod(&txq->tx_pbl,
369 le16_to_cpu(txq->tx_db.data.bd_prod),
373 dev_kfree_skb_any(skb);
374 txq->sw_tx_ring[idx].skb = NULL;
375 txq->sw_tx_ring[idx].flags = 0;
378 static u32 qede_xmit_type(struct qede_dev *edev,
382 u32 rc = XMIT_L4_CSUM;
385 if (skb->ip_summed != CHECKSUM_PARTIAL)
388 l3_proto = vlan_get_protocol(skb);
389 if (l3_proto == htons(ETH_P_IPV6) &&
390 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
393 if (skb->encapsulation)
402 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
403 struct eth_tx_2nd_bd *second_bd,
404 struct eth_tx_3rd_bd *third_bd)
407 u16 bd2_bits1 = 0, bd2_bits2 = 0;
409 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
411 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
412 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
413 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
415 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
416 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
418 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
419 l4_proto = ipv6_hdr(skb)->nexthdr;
421 l4_proto = ip_hdr(skb)->protocol;
423 if (l4_proto == IPPROTO_UDP)
424 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
427 third_bd->data.bitfields |=
428 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
429 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
430 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
432 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
433 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
436 static int map_frag_to_bd(struct qede_dev *edev,
438 struct eth_tx_bd *bd)
442 /* Map skb non-linear frag data for DMA */
443 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
446 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
447 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
451 /* Setup the data pointer of the frag data */
452 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
457 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
460 return (skb_inner_transport_header(skb) +
461 inner_tcp_hdrlen(skb) - skb->data);
463 return (skb_transport_header(skb) +
464 tcp_hdrlen(skb) - skb->data);
467 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
468 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
469 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
472 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
474 if (xmit_type & XMIT_LSO) {
477 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
479 /* linear payload would require its own BD */
480 if (skb_headlen(skb) > hlen)
484 return (skb_shinfo(skb)->nr_frags > allowed_frags);
488 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
490 /* wmb makes sure that the BDs data is updated before updating the
491 * producer, otherwise FW may read old data from the BDs.
495 writel(txq->tx_db.raw, txq->doorbell_addr);
497 /* mmiowb is needed to synchronize doorbell writes from more than one
498 * processor. It guarantees that the write arrives to the device before
499 * the queue lock is released and another start_xmit is called (possibly
500 * on another CPU). Without this barrier, the next doorbell can bypass
501 * this doorbell. This is applicable to IA64/Altix systems.
506 /* Main transmit function */
508 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
509 struct net_device *ndev)
511 struct qede_dev *edev = netdev_priv(ndev);
512 struct netdev_queue *netdev_txq;
513 struct qede_tx_queue *txq;
514 struct eth_tx_1st_bd *first_bd;
515 struct eth_tx_2nd_bd *second_bd = NULL;
516 struct eth_tx_3rd_bd *third_bd = NULL;
517 struct eth_tx_bd *tx_data_bd = NULL;
521 int rc, frag_idx = 0, ipv6_ext = 0;
525 bool data_split = false;
527 /* Get tx-queue context and netdev index */
528 txq_index = skb_get_queue_mapping(skb);
529 WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
530 txq = QEDE_TX_QUEUE(edev, txq_index);
531 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
533 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
534 (MAX_SKB_FRAGS + 1));
536 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
538 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
539 if (qede_pkt_req_lin(edev, skb, xmit_type)) {
540 if (skb_linearize(skb)) {
542 "SKB linearization failed - silently dropping this SKB\n");
543 dev_kfree_skb_any(skb);
549 /* Fill the entry in the SW ring and the BDs in the FW ring */
550 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
551 txq->sw_tx_ring[idx].skb = skb;
552 first_bd = (struct eth_tx_1st_bd *)
553 qed_chain_produce(&txq->tx_pbl);
554 memset(first_bd, 0, sizeof(*first_bd));
555 first_bd->data.bd_flags.bitfields =
556 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
558 /* Map skb linear data for DMA and set in the first BD */
559 mapping = dma_map_single(&edev->pdev->dev, skb->data,
560 skb_headlen(skb), DMA_TO_DEVICE);
561 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
562 DP_NOTICE(edev, "SKB mapping failed\n");
563 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
564 qede_update_tx_producer(txq);
568 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
570 /* In case there is IPv6 with extension headers or LSO we need 2nd and
573 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
574 second_bd = (struct eth_tx_2nd_bd *)
575 qed_chain_produce(&txq->tx_pbl);
576 memset(second_bd, 0, sizeof(*second_bd));
579 third_bd = (struct eth_tx_3rd_bd *)
580 qed_chain_produce(&txq->tx_pbl);
581 memset(third_bd, 0, sizeof(*third_bd));
584 /* We need to fill in additional data in second_bd... */
585 tx_data_bd = (struct eth_tx_bd *)second_bd;
588 if (skb_vlan_tag_present(skb)) {
589 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
590 first_bd->data.bd_flags.bitfields |=
591 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
594 /* Fill the parsing flags & params according to the requested offload */
595 if (xmit_type & XMIT_L4_CSUM) {
596 /* We don't re-calculate IP checksum as it is already done by
599 first_bd->data.bd_flags.bitfields |=
600 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
602 if (xmit_type & XMIT_ENC) {
603 first_bd->data.bd_flags.bitfields |=
604 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
605 first_bd->data.bitfields |=
606 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
609 /* If the packet is IPv6 with extension header, indicate that
610 * to FW and pass few params, since the device cracker doesn't
611 * support parsing IPv6 with extension header/s.
613 if (unlikely(ipv6_ext))
614 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
617 if (xmit_type & XMIT_LSO) {
618 first_bd->data.bd_flags.bitfields |=
619 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
620 third_bd->data.lso_mss =
621 cpu_to_le16(skb_shinfo(skb)->gso_size);
623 if (unlikely(xmit_type & XMIT_ENC)) {
624 first_bd->data.bd_flags.bitfields |=
625 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
626 hlen = qede_get_skb_hlen(skb, true);
628 first_bd->data.bd_flags.bitfields |=
629 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
630 hlen = qede_get_skb_hlen(skb, false);
633 /* @@@TBD - if will not be removed need to check */
634 third_bd->data.bitfields |=
635 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
637 /* Make life easier for FW guys who can't deal with header and
638 * data on same BD. If we need to split, use the second bd...
640 if (unlikely(skb_headlen(skb) > hlen)) {
641 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
642 "TSO split header size is %d (%x:%x)\n",
643 first_bd->nbytes, first_bd->addr.hi,
646 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
647 le32_to_cpu(first_bd->addr.lo)) +
650 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
651 le16_to_cpu(first_bd->nbytes) -
654 /* this marks the BD as one that has no
657 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
659 first_bd->nbytes = cpu_to_le16(hlen);
661 tx_data_bd = (struct eth_tx_bd *)third_bd;
665 first_bd->data.bitfields |=
666 (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
667 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
670 /* Handle fragmented skb */
671 /* special handle for frags inside 2nd and 3rd bds.. */
672 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
673 rc = map_frag_to_bd(edev,
674 &skb_shinfo(skb)->frags[frag_idx],
677 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
679 qede_update_tx_producer(txq);
683 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
684 tx_data_bd = (struct eth_tx_bd *)third_bd;
691 /* map last frags into 4th, 5th .... */
692 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
693 tx_data_bd = (struct eth_tx_bd *)
694 qed_chain_produce(&txq->tx_pbl);
696 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
698 rc = map_frag_to_bd(edev,
699 &skb_shinfo(skb)->frags[frag_idx],
702 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
704 qede_update_tx_producer(txq);
709 /* update the first BD with the actual num BDs */
710 first_bd->data.nbds = nbd;
712 netdev_tx_sent_queue(netdev_txq, skb->len);
714 skb_tx_timestamp(skb);
716 /* Advance packet producer only before sending the packet since mapping
721 /* 'next page' entries are counted in the producer value */
722 txq->tx_db.data.bd_prod =
723 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
725 if (!skb->xmit_more || netif_tx_queue_stopped(netdev_txq))
726 qede_update_tx_producer(txq);
728 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729 < (MAX_SKB_FRAGS + 1))) {
730 netif_tx_stop_queue(netdev_txq);
731 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
732 "Stop queue was called\n");
733 /* paired memory barrier is in qede_tx_int(), we have to keep
734 * ordering of set_bit() in netif_tx_stop_queue() and read of
739 if (qed_chain_get_elem_left(&txq->tx_pbl)
740 >= (MAX_SKB_FRAGS + 1) &&
741 (edev->state == QEDE_STATE_OPEN)) {
742 netif_tx_wake_queue(netdev_txq);
743 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
744 "Wake queue was called\n");
751 int qede_txq_has_work(struct qede_tx_queue *txq)
755 /* Tell compiler that consumer and producer can change */
757 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
758 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
761 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
764 static int qede_tx_int(struct qede_dev *edev,
765 struct qede_tx_queue *txq)
767 struct netdev_queue *netdev_txq;
769 unsigned int pkts_compl = 0, bytes_compl = 0;
772 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
774 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
777 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
780 rc = qede_free_tx_pkt(edev, txq, &len);
782 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
784 qed_chain_get_cons_idx(&txq->tx_pbl));
793 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
795 /* Need to make the tx_bd_cons update visible to start_xmit()
796 * before checking for netif_tx_queue_stopped(). Without the
797 * memory barrier, there is a small possibility that
798 * start_xmit() will miss it and cause the queue to be stopped
800 * On the other hand we need an rmb() here to ensure the proper
801 * ordering of bit testing in the following
802 * netif_tx_queue_stopped(txq) call.
806 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
807 /* Taking tx_lock is needed to prevent reenabling the queue
808 * while it's empty. This could have happen if rx_action() gets
809 * suspended in qede_tx_int() after the condition before
810 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
812 * stops the queue->sees fresh tx_bd_cons->releases the queue->
813 * sends some packets consuming the whole queue again->
817 __netif_tx_lock(netdev_txq, smp_processor_id());
819 if ((netif_tx_queue_stopped(netdev_txq)) &&
820 (edev->state == QEDE_STATE_OPEN) &&
821 (qed_chain_get_elem_left(&txq->tx_pbl)
822 >= (MAX_SKB_FRAGS + 1))) {
823 netif_tx_wake_queue(netdev_txq);
824 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
825 "Wake queue was called\n");
828 __netif_tx_unlock(netdev_txq);
834 bool qede_has_rx_work(struct qede_rx_queue *rxq)
836 u16 hw_comp_cons, sw_comp_cons;
838 /* Tell compiler that status block fields can change */
841 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
842 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
844 return hw_comp_cons != sw_comp_cons;
847 static bool qede_has_tx_work(struct qede_fastpath *fp)
851 for (tc = 0; tc < fp->edev->num_tc; tc++)
852 if (qede_txq_has_work(&fp->txqs[tc]))
857 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
859 qed_chain_consume(&rxq->rx_bd_ring);
863 /* This function reuses the buffer(from an offset) from
864 * consumer index to producer index in the bd ring
866 static inline void qede_reuse_page(struct qede_dev *edev,
867 struct qede_rx_queue *rxq,
868 struct sw_rx_data *curr_cons)
870 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
871 struct sw_rx_data *curr_prod;
872 dma_addr_t new_mapping;
874 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
875 *curr_prod = *curr_cons;
877 new_mapping = curr_prod->mapping + curr_prod->page_offset;
879 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
880 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
883 curr_cons->data = NULL;
886 /* In case of allocation failures reuse buffers
887 * from consumer index to produce buffers for firmware
889 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
890 struct qede_dev *edev, u8 count)
892 struct sw_rx_data *curr_cons;
894 for (; count > 0; count--) {
895 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
896 qede_reuse_page(edev, rxq, curr_cons);
897 qede_rx_bd_ring_consume(rxq);
901 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
902 struct qede_rx_queue *rxq,
903 struct sw_rx_data *curr_cons)
905 /* Move to the next segment in the page */
906 curr_cons->page_offset += rxq->rx_buf_seg_size;
908 if (curr_cons->page_offset == PAGE_SIZE) {
909 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
910 /* Since we failed to allocate new buffer
911 * current buffer can be used again.
913 curr_cons->page_offset -= rxq->rx_buf_seg_size;
918 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
919 PAGE_SIZE, DMA_FROM_DEVICE);
921 /* Increment refcount of the page as we don't want
922 * network stack to take the ownership of the page
923 * which can be recycled multiple times by the driver.
925 page_ref_inc(curr_cons->data);
926 qede_reuse_page(edev, rxq, curr_cons);
932 static inline void qede_update_rx_prod(struct qede_dev *edev,
933 struct qede_rx_queue *rxq)
935 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
936 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
937 struct eth_rx_prod_data rx_prods = {0};
939 /* Update producers */
940 rx_prods.bd_prod = cpu_to_le16(bd_prod);
941 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
943 /* Make sure that the BD and SGE data is updated before updating the
944 * producers since FW might read the BD/SGE right after the producer
949 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
952 /* mmiowb is needed to synchronize doorbell writes from more than one
953 * processor. It guarantees that the write arrives to the device before
954 * the napi lock is released and another qede_poll is called (possibly
955 * on another CPU). Without this barrier, the next doorbell can bypass
956 * this doorbell. This is applicable to IA64/Altix systems.
961 static u32 qede_get_rxhash(struct qede_dev *edev,
964 enum pkt_hash_types *rxhash_type)
966 enum rss_hash_type htype;
968 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
970 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
971 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
972 (htype == RSS_HASH_TYPE_IPV6)) ?
973 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
974 return le32_to_cpu(rss_hash);
976 *rxhash_type = PKT_HASH_TYPE_NONE;
980 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
982 skb_checksum_none_assert(skb);
984 if (csum_flag & QEDE_CSUM_UNNECESSARY)
985 skb->ip_summed = CHECKSUM_UNNECESSARY;
987 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
991 static inline void qede_skb_receive(struct qede_dev *edev,
992 struct qede_fastpath *fp,
997 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1000 napi_gro_receive(&fp->napi, skb);
1003 static void qede_set_gro_params(struct qede_dev *edev,
1004 struct sk_buff *skb,
1005 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1007 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1009 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1010 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1011 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1013 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1015 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1019 static int qede_fill_frag_skb(struct qede_dev *edev,
1020 struct qede_rx_queue *rxq,
1024 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1026 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1027 struct sk_buff *skb = tpa_info->skb;
1029 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1032 /* Add one frag and update the appropriate fields in the skb */
1033 skb_fill_page_desc(skb, tpa_info->frag_id++,
1034 current_bd->data, current_bd->page_offset,
1037 if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1038 /* Incr page ref count to reuse on allocation failure
1039 * so that it doesn't get freed while freeing SKB.
1041 page_ref_inc(current_bd->data);
1045 qed_chain_consume(&rxq->rx_bd_ring);
1048 skb->data_len += len_on_bd;
1049 skb->truesize += rxq->rx_buf_seg_size;
1050 skb->len += len_on_bd;
1055 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1056 qede_recycle_rx_bd_ring(rxq, edev, 1);
1060 static void qede_tpa_start(struct qede_dev *edev,
1061 struct qede_rx_queue *rxq,
1062 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1064 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1065 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1066 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1067 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1068 dma_addr_t mapping = tpa_info->replace_buf_mapping;
1069 struct sw_rx_data *sw_rx_data_cons;
1070 struct sw_rx_data *sw_rx_data_prod;
1071 enum pkt_hash_types rxhash_type;
1074 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1075 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1077 /* Use pre-allocated replacement buffer - we can't release the agg.
1078 * start until its over and we don't want to risk allocation failing
1079 * here, so re-allocate when aggregation will be over.
1081 sw_rx_data_prod->mapping = replace_buf->mapping;
1083 sw_rx_data_prod->data = replace_buf->data;
1084 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1085 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1086 sw_rx_data_prod->page_offset = replace_buf->page_offset;
1090 /* move partial skb from cons to pool (don't unmap yet)
1091 * save mapping, incase we drop the packet later on.
1093 tpa_info->start_buf = *sw_rx_data_cons;
1094 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1095 le32_to_cpu(rx_bd_cons->addr.lo));
1097 tpa_info->start_buf_mapping = mapping;
1100 /* set tpa state to start only if we are able to allocate skb
1101 * for this aggregation, otherwise mark as error and aggregation will
1104 tpa_info->skb = netdev_alloc_skb(edev->ndev,
1105 le16_to_cpu(cqe->len_on_first_bd));
1106 if (unlikely(!tpa_info->skb)) {
1107 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1108 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1112 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1113 memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1115 /* Start filling in the aggregation info */
1116 tpa_info->frag_id = 0;
1117 tpa_info->agg_state = QEDE_AGG_STATE_START;
1119 rxhash = qede_get_rxhash(edev, cqe->bitfields,
1120 cqe->rss_hash, &rxhash_type);
1121 skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1122 if ((le16_to_cpu(cqe->pars_flags.flags) >>
1123 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1124 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1125 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1127 tpa_info->vlan_tag = 0;
1129 /* This is needed in order to enable forwarding support */
1130 qede_set_gro_params(edev, tpa_info->skb, cqe);
1132 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1133 if (likely(cqe->ext_bd_len_list[0]))
1134 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1135 le16_to_cpu(cqe->ext_bd_len_list[0]));
1137 if (unlikely(cqe->ext_bd_len_list[1])) {
1139 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1140 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1145 static void qede_gro_ip_csum(struct sk_buff *skb)
1147 const struct iphdr *iph = ip_hdr(skb);
1150 skb_set_transport_header(skb, sizeof(struct iphdr));
1153 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1154 iph->saddr, iph->daddr, 0);
1156 tcp_gro_complete(skb);
1159 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1161 struct ipv6hdr *iph = ipv6_hdr(skb);
1164 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1167 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1168 &iph->saddr, &iph->daddr, 0);
1169 tcp_gro_complete(skb);
1173 static void qede_gro_receive(struct qede_dev *edev,
1174 struct qede_fastpath *fp,
1175 struct sk_buff *skb,
1178 /* FW can send a single MTU sized packet from gro flow
1179 * due to aggregation timeout/last segment etc. which
1180 * is not expected to be a gro packet. If a skb has zero
1181 * frags then simply push it in the stack as non gso skb.
1183 if (unlikely(!skb->data_len)) {
1184 skb_shinfo(skb)->gso_type = 0;
1185 skb_shinfo(skb)->gso_size = 0;
1190 if (skb_shinfo(skb)->gso_size) {
1191 skb_set_network_header(skb, 0);
1193 switch (skb->protocol) {
1194 case htons(ETH_P_IP):
1195 qede_gro_ip_csum(skb);
1197 case htons(ETH_P_IPV6):
1198 qede_gro_ipv6_csum(skb);
1202 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1203 ntohs(skb->protocol));
1209 skb_record_rx_queue(skb, fp->rss_id);
1210 qede_skb_receive(edev, fp, skb, vlan_tag);
1213 static inline void qede_tpa_cont(struct qede_dev *edev,
1214 struct qede_rx_queue *rxq,
1215 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1219 for (i = 0; cqe->len_list[i]; i++)
1220 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1221 le16_to_cpu(cqe->len_list[i]));
1223 if (unlikely(i > 1))
1225 "Strange - TPA cont with more than a single len_list entry\n");
1228 static void qede_tpa_end(struct qede_dev *edev,
1229 struct qede_fastpath *fp,
1230 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1232 struct qede_rx_queue *rxq = fp->rxq;
1233 struct qede_agg_info *tpa_info;
1234 struct sk_buff *skb;
1237 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1238 skb = tpa_info->skb;
1240 for (i = 0; cqe->len_list[i]; i++)
1241 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1242 le16_to_cpu(cqe->len_list[i]));
1243 if (unlikely(i > 1))
1245 "Strange - TPA emd with more than a single len_list entry\n");
1247 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1251 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1253 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1254 cqe->num_of_bds, tpa_info->frag_id);
1255 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1257 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1258 le16_to_cpu(cqe->total_packet_len), skb->len);
1261 page_address(tpa_info->start_buf.data) +
1262 tpa_info->start_cqe.placement_offset +
1263 tpa_info->start_buf.page_offset,
1264 le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1266 /* Recycle [mapped] start buffer for the next replacement */
1267 tpa_info->replace_buf = tpa_info->start_buf;
1268 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1270 /* Finalize the SKB */
1271 skb->protocol = eth_type_trans(skb, edev->ndev);
1272 skb->ip_summed = CHECKSUM_UNNECESSARY;
1274 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1275 * to skb_shinfo(skb)->gso_segs
1277 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1279 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1281 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1285 /* The BD starting the aggregation is still mapped; Re-use it for
1286 * future aggregations [as replacement buffer]
1288 memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1289 sizeof(struct sw_rx_data));
1290 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1291 tpa_info->start_buf.data = NULL;
1292 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1293 dev_kfree_skb_any(tpa_info->skb);
1294 tpa_info->skb = NULL;
1297 static bool qede_tunn_exist(u16 flag)
1299 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1300 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1303 static u8 qede_check_tunn_csum(u16 flag)
1308 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1309 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1310 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1311 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1313 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1314 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1315 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1316 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1317 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1320 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1321 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1322 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1323 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1325 if (csum_flag & flag)
1326 return QEDE_CSUM_ERROR;
1328 return QEDE_CSUM_UNNECESSARY | tcsum;
1331 static u8 qede_check_notunn_csum(u16 flag)
1336 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1337 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1338 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1339 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1340 csum = QEDE_CSUM_UNNECESSARY;
1343 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1344 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1346 if (csum_flag & flag)
1347 return QEDE_CSUM_ERROR;
1352 static u8 qede_check_csum(u16 flag)
1354 if (!qede_tunn_exist(flag))
1355 return qede_check_notunn_csum(flag);
1357 return qede_check_tunn_csum(flag);
1360 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1363 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1365 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1366 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1367 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1368 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1374 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1376 struct qede_dev *edev = fp->edev;
1377 struct qede_rx_queue *rxq = fp->rxq;
1379 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1383 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1384 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1386 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1387 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1388 * read before it is written by FW, then FW writes CQE and SB, and then
1389 * the CPU reads the hw_comp_cons, it will use an old CQE.
1393 /* Loop to complete all indicated BDs */
1394 while (sw_comp_cons != hw_comp_cons) {
1395 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1396 enum pkt_hash_types rxhash_type;
1397 enum eth_rx_cqe_type cqe_type;
1398 struct sw_rx_data *sw_rx_data;
1399 union eth_rx_cqe *cqe;
1400 struct sk_buff *skb;
1406 /* Get the CQE from the completion ring */
1407 cqe = (union eth_rx_cqe *)
1408 qed_chain_consume(&rxq->rx_comp_ring);
1409 cqe_type = cqe->fast_path_regular.type;
1411 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1412 edev->ops->eth_cqe_completion(
1413 edev->cdev, fp->rss_id,
1414 (struct eth_slow_path_rx_cqe *)cqe);
1418 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1420 case ETH_RX_CQE_TYPE_TPA_START:
1421 qede_tpa_start(edev, rxq,
1422 &cqe->fast_path_tpa_start);
1424 case ETH_RX_CQE_TYPE_TPA_CONT:
1425 qede_tpa_cont(edev, rxq,
1426 &cqe->fast_path_tpa_cont);
1428 case ETH_RX_CQE_TYPE_TPA_END:
1429 qede_tpa_end(edev, fp,
1430 &cqe->fast_path_tpa_end);
1437 /* Get the data from the SW ring */
1438 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1439 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1440 data = sw_rx_data->data;
1442 fp_cqe = &cqe->fast_path_regular;
1443 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1444 pad = fp_cqe->placement_offset;
1445 flags = cqe->fast_path_regular.pars_flags.flags;
1447 /* If this is an error packet then drop it */
1448 parse_flag = le16_to_cpu(flags);
1450 csum_flag = qede_check_csum(parse_flag);
1451 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1452 if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1459 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1460 sw_comp_cons, parse_flag);
1461 rxq->rx_hw_errors++;
1462 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1467 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1468 if (unlikely(!skb)) {
1470 "Build_skb failed, dropping incoming packet\n");
1471 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1472 rxq->rx_alloc_errors++;
1476 /* Copy data into SKB */
1477 if (len + pad <= edev->rx_copybreak) {
1478 memcpy(skb_put(skb, len),
1479 page_address(data) + pad +
1480 sw_rx_data->page_offset, len);
1481 qede_reuse_page(edev, rxq, sw_rx_data);
1483 struct skb_frag_struct *frag;
1484 unsigned int pull_len;
1487 frag = &skb_shinfo(skb)->frags[0];
1489 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1490 pad + sw_rx_data->page_offset,
1491 len, rxq->rx_buf_seg_size);
1493 va = skb_frag_address(frag);
1494 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1496 /* Align the pull_len to optimize memcpy */
1497 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1499 skb_frag_size_sub(frag, pull_len);
1500 frag->page_offset += pull_len;
1501 skb->data_len -= pull_len;
1502 skb->tail += pull_len;
1504 if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1506 DP_ERR(edev, "Failed to allocate rx buffer\n");
1507 /* Incr page ref count to reuse on allocation
1508 * failure so that it doesn't get freed while
1512 page_ref_inc(sw_rx_data->data);
1513 rxq->rx_alloc_errors++;
1514 qede_recycle_rx_bd_ring(rxq, edev,
1516 dev_kfree_skb_any(skb);
1521 qede_rx_bd_ring_consume(rxq);
1523 if (fp_cqe->bd_num != 1) {
1524 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1529 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1531 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1532 rxq->rx_buf_size : pkt_len;
1533 if (unlikely(!cur_size)) {
1535 "Still got %d BDs for mapping jumbo, but length became 0\n",
1537 qede_recycle_rx_bd_ring(rxq, edev,
1539 dev_kfree_skb_any(skb);
1543 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1544 qede_recycle_rx_bd_ring(rxq, edev,
1546 dev_kfree_skb_any(skb);
1550 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1551 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1552 qede_rx_bd_ring_consume(rxq);
1554 dma_unmap_page(&edev->pdev->dev,
1555 sw_rx_data->mapping,
1556 PAGE_SIZE, DMA_FROM_DEVICE);
1558 skb_fill_page_desc(skb,
1559 skb_shinfo(skb)->nr_frags++,
1560 sw_rx_data->data, 0,
1563 skb->truesize += PAGE_SIZE;
1564 skb->data_len += cur_size;
1565 skb->len += cur_size;
1566 pkt_len -= cur_size;
1569 if (unlikely(pkt_len))
1571 "Mapped all BDs of jumbo, but still have %d bytes\n",
1575 skb->protocol = eth_type_trans(skb, edev->ndev);
1577 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1581 skb_set_hash(skb, rx_hash, rxhash_type);
1583 qede_set_skb_csum(skb, csum_flag);
1585 skb_record_rx_queue(skb, fp->rss_id);
1587 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1591 next_cqe: /* don't consume bd rx buffer */
1592 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1593 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1594 /* CR TPA - revisit how to handle budget in TPA perhaps
1597 if (rx_pkt == budget)
1599 } /* repeat while sw_comp_cons != hw_comp_cons... */
1601 /* Update producers */
1602 qede_update_rx_prod(edev, rxq);
1607 static int qede_poll(struct napi_struct *napi, int budget)
1609 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1611 struct qede_dev *edev = fp->edev;
1612 int rx_work_done = 0;
1615 for (tc = 0; tc < edev->num_tc; tc++)
1616 if (qede_txq_has_work(&fp->txqs[tc]))
1617 qede_tx_int(edev, &fp->txqs[tc]);
1619 rx_work_done = qede_has_rx_work(fp->rxq) ?
1620 qede_rx_int(fp, budget) : 0;
1621 if (rx_work_done < budget) {
1622 qed_sb_update_sb_idx(fp->sb_info);
1623 /* *_has_*_work() reads the status block,
1624 * thus we need to ensure that status block indices
1625 * have been actually read (qed_sb_update_sb_idx)
1626 * prior to this check (*_has_*_work) so that
1627 * we won't write the "newer" value of the status block
1628 * to HW (if there was a DMA right after
1629 * qede_has_rx_work and if there is no rmb, the memory
1630 * reading (qed_sb_update_sb_idx) may be postponed
1631 * to right before *_ack_sb). In this case there
1632 * will never be another interrupt until there is
1633 * another update of the status block, while there
1634 * is still unhandled work.
1638 /* Fall out from the NAPI loop if needed */
1639 if (!(qede_has_rx_work(fp->rxq) ||
1640 qede_has_tx_work(fp))) {
1641 napi_complete(napi);
1643 /* Update and reenable interrupts */
1644 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1647 rx_work_done = budget;
1651 return rx_work_done;
1654 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1656 struct qede_fastpath *fp = fp_cookie;
1658 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1660 napi_schedule_irqoff(&fp->napi);
1664 /* -------------------------------------------------------------------------
1666 * -------------------------------------------------------------------------
1669 static int qede_open(struct net_device *ndev);
1670 static int qede_close(struct net_device *ndev);
1671 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1672 static void qede_set_rx_mode(struct net_device *ndev);
1673 static void qede_config_rx_mode(struct net_device *ndev);
1675 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1676 enum qed_filter_xcast_params_type opcode,
1677 unsigned char mac[ETH_ALEN])
1679 struct qed_filter_params filter_cmd;
1681 memset(&filter_cmd, 0, sizeof(filter_cmd));
1682 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1683 filter_cmd.filter.ucast.type = opcode;
1684 filter_cmd.filter.ucast.mac_valid = 1;
1685 ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1687 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1690 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1691 enum qed_filter_xcast_params_type opcode,
1694 struct qed_filter_params filter_cmd;
1696 memset(&filter_cmd, 0, sizeof(filter_cmd));
1697 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1698 filter_cmd.filter.ucast.type = opcode;
1699 filter_cmd.filter.ucast.vlan_valid = 1;
1700 filter_cmd.filter.ucast.vlan = vid;
1702 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1705 void qede_fill_by_demand_stats(struct qede_dev *edev)
1707 struct qed_eth_stats stats;
1709 edev->ops->get_vport_stats(edev->cdev, &stats);
1710 edev->stats.no_buff_discards = stats.no_buff_discards;
1711 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1712 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1713 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1714 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1715 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1716 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1717 edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1718 edev->stats.mac_filter_discards = stats.mac_filter_discards;
1720 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1721 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1722 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1723 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1724 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1725 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1726 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1727 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1728 edev->stats.coalesced_events = stats.tpa_coalesced_events;
1729 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1730 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1731 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1733 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1734 edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1735 edev->stats.rx_128_to_255_byte_packets =
1736 stats.rx_128_to_255_byte_packets;
1737 edev->stats.rx_256_to_511_byte_packets =
1738 stats.rx_256_to_511_byte_packets;
1739 edev->stats.rx_512_to_1023_byte_packets =
1740 stats.rx_512_to_1023_byte_packets;
1741 edev->stats.rx_1024_to_1518_byte_packets =
1742 stats.rx_1024_to_1518_byte_packets;
1743 edev->stats.rx_1519_to_1522_byte_packets =
1744 stats.rx_1519_to_1522_byte_packets;
1745 edev->stats.rx_1519_to_2047_byte_packets =
1746 stats.rx_1519_to_2047_byte_packets;
1747 edev->stats.rx_2048_to_4095_byte_packets =
1748 stats.rx_2048_to_4095_byte_packets;
1749 edev->stats.rx_4096_to_9216_byte_packets =
1750 stats.rx_4096_to_9216_byte_packets;
1751 edev->stats.rx_9217_to_16383_byte_packets =
1752 stats.rx_9217_to_16383_byte_packets;
1753 edev->stats.rx_crc_errors = stats.rx_crc_errors;
1754 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1755 edev->stats.rx_pause_frames = stats.rx_pause_frames;
1756 edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1757 edev->stats.rx_align_errors = stats.rx_align_errors;
1758 edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1759 edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1760 edev->stats.rx_jabbers = stats.rx_jabbers;
1761 edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1762 edev->stats.rx_fragments = stats.rx_fragments;
1763 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1764 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1765 edev->stats.tx_128_to_255_byte_packets =
1766 stats.tx_128_to_255_byte_packets;
1767 edev->stats.tx_256_to_511_byte_packets =
1768 stats.tx_256_to_511_byte_packets;
1769 edev->stats.tx_512_to_1023_byte_packets =
1770 stats.tx_512_to_1023_byte_packets;
1771 edev->stats.tx_1024_to_1518_byte_packets =
1772 stats.tx_1024_to_1518_byte_packets;
1773 edev->stats.tx_1519_to_2047_byte_packets =
1774 stats.tx_1519_to_2047_byte_packets;
1775 edev->stats.tx_2048_to_4095_byte_packets =
1776 stats.tx_2048_to_4095_byte_packets;
1777 edev->stats.tx_4096_to_9216_byte_packets =
1778 stats.tx_4096_to_9216_byte_packets;
1779 edev->stats.tx_9217_to_16383_byte_packets =
1780 stats.tx_9217_to_16383_byte_packets;
1781 edev->stats.tx_pause_frames = stats.tx_pause_frames;
1782 edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1783 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1784 edev->stats.tx_total_collisions = stats.tx_total_collisions;
1785 edev->stats.brb_truncates = stats.brb_truncates;
1786 edev->stats.brb_discards = stats.brb_discards;
1787 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1790 static struct rtnl_link_stats64 *qede_get_stats64(
1791 struct net_device *dev,
1792 struct rtnl_link_stats64 *stats)
1794 struct qede_dev *edev = netdev_priv(dev);
1796 qede_fill_by_demand_stats(edev);
1798 stats->rx_packets = edev->stats.rx_ucast_pkts +
1799 edev->stats.rx_mcast_pkts +
1800 edev->stats.rx_bcast_pkts;
1801 stats->tx_packets = edev->stats.tx_ucast_pkts +
1802 edev->stats.tx_mcast_pkts +
1803 edev->stats.tx_bcast_pkts;
1805 stats->rx_bytes = edev->stats.rx_ucast_bytes +
1806 edev->stats.rx_mcast_bytes +
1807 edev->stats.rx_bcast_bytes;
1809 stats->tx_bytes = edev->stats.tx_ucast_bytes +
1810 edev->stats.tx_mcast_bytes +
1811 edev->stats.tx_bcast_bytes;
1813 stats->tx_errors = edev->stats.tx_err_drop_pkts;
1814 stats->multicast = edev->stats.rx_mcast_pkts +
1815 edev->stats.rx_bcast_pkts;
1817 stats->rx_fifo_errors = edev->stats.no_buff_discards;
1819 stats->collisions = edev->stats.tx_total_collisions;
1820 stats->rx_crc_errors = edev->stats.rx_crc_errors;
1821 stats->rx_frame_errors = edev->stats.rx_align_errors;
1826 #ifdef CONFIG_QED_SRIOV
1827 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1828 struct ifla_vf_info *ivi)
1830 struct qede_dev *edev = netdev_priv(dev);
1835 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1838 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1839 int min_tx_rate, int max_tx_rate)
1841 struct qede_dev *edev = netdev_priv(dev);
1843 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1847 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1849 struct qede_dev *edev = netdev_priv(dev);
1854 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1857 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1860 struct qede_dev *edev = netdev_priv(dev);
1865 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1869 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1871 struct qed_update_vport_params params;
1874 /* Proceed only if action actually needs to be performed */
1875 if (edev->accept_any_vlan == action)
1878 memset(¶ms, 0, sizeof(params));
1880 params.vport_id = 0;
1881 params.accept_any_vlan = action;
1882 params.update_accept_any_vlan_flg = 1;
1884 rc = edev->ops->vport_update(edev->cdev, ¶ms);
1886 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1887 action ? "enable" : "disable");
1889 DP_INFO(edev, "%s accept-any-vlan\n",
1890 action ? "enabled" : "disabled");
1891 edev->accept_any_vlan = action;
1895 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1897 struct qede_dev *edev = netdev_priv(dev);
1898 struct qede_vlan *vlan, *tmp;
1901 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1903 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1905 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1908 INIT_LIST_HEAD(&vlan->list);
1910 vlan->configured = false;
1912 /* Verify vlan isn't already configured */
1913 list_for_each_entry(tmp, &edev->vlan_list, list) {
1914 if (tmp->vid == vlan->vid) {
1915 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1916 "vlan already configured\n");
1922 /* If interface is down, cache this VLAN ID and return */
1923 if (edev->state != QEDE_STATE_OPEN) {
1924 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1925 "Interface is down, VLAN %d will be configured when interface is up\n",
1928 edev->non_configured_vlans++;
1929 list_add(&vlan->list, &edev->vlan_list);
1934 /* Check for the filter limit.
1935 * Note - vlan0 has a reserved filter and can be added without
1936 * worrying about quota
1938 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1940 rc = qede_set_ucast_rx_vlan(edev,
1941 QED_FILTER_XCAST_TYPE_ADD,
1944 DP_ERR(edev, "Failed to configure VLAN %d\n",
1949 vlan->configured = true;
1951 /* vlan0 filter isn't consuming out of our quota */
1953 edev->configured_vlans++;
1955 /* Out of quota; Activate accept-any-VLAN mode */
1956 if (!edev->non_configured_vlans)
1957 qede_config_accept_any_vlan(edev, true);
1959 edev->non_configured_vlans++;
1962 list_add(&vlan->list, &edev->vlan_list);
1967 static void qede_del_vlan_from_list(struct qede_dev *edev,
1968 struct qede_vlan *vlan)
1970 /* vlan0 filter isn't consuming out of our quota */
1971 if (vlan->vid != 0) {
1972 if (vlan->configured)
1973 edev->configured_vlans--;
1975 edev->non_configured_vlans--;
1978 list_del(&vlan->list);
1982 static int qede_configure_vlan_filters(struct qede_dev *edev)
1984 int rc = 0, real_rc = 0, accept_any_vlan = 0;
1985 struct qed_dev_eth_info *dev_info;
1986 struct qede_vlan *vlan = NULL;
1988 if (list_empty(&edev->vlan_list))
1991 dev_info = &edev->dev_info;
1993 /* Configure non-configured vlans */
1994 list_for_each_entry(vlan, &edev->vlan_list, list) {
1995 if (vlan->configured)
1998 /* We have used all our credits, now enable accept_any_vlan */
1999 if ((vlan->vid != 0) &&
2000 (edev->configured_vlans == dev_info->num_vlan_filters)) {
2001 accept_any_vlan = 1;
2005 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2007 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2010 DP_ERR(edev, "Failed to configure VLAN %u\n",
2016 vlan->configured = true;
2017 /* vlan0 filter doesn't consume our VLAN filter's quota */
2018 if (vlan->vid != 0) {
2019 edev->non_configured_vlans--;
2020 edev->configured_vlans++;
2024 /* enable accept_any_vlan mode if we have more VLANs than credits,
2025 * or remove accept_any_vlan mode if we've actually removed
2026 * a non-configured vlan, and all remaining vlans are truly configured.
2029 if (accept_any_vlan)
2030 qede_config_accept_any_vlan(edev, true);
2031 else if (!edev->non_configured_vlans)
2032 qede_config_accept_any_vlan(edev, false);
2037 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2039 struct qede_dev *edev = netdev_priv(dev);
2040 struct qede_vlan *vlan = NULL;
2043 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2045 /* Find whether entry exists */
2046 list_for_each_entry(vlan, &edev->vlan_list, list)
2047 if (vlan->vid == vid)
2050 if (!vlan || (vlan->vid != vid)) {
2051 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2052 "Vlan isn't configured\n");
2056 if (edev->state != QEDE_STATE_OPEN) {
2057 /* As interface is already down, we don't have a VPORT
2058 * instance to remove vlan filter. So just update vlan list
2060 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2061 "Interface is down, removing VLAN from list only\n");
2062 qede_del_vlan_from_list(edev, vlan);
2067 if (vlan->configured) {
2068 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2071 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2076 qede_del_vlan_from_list(edev, vlan);
2078 /* We have removed a VLAN - try to see if we can
2079 * configure non-configured VLAN from the list.
2081 rc = qede_configure_vlan_filters(edev);
2086 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2088 struct qede_vlan *vlan = NULL;
2090 if (list_empty(&edev->vlan_list))
2093 list_for_each_entry(vlan, &edev->vlan_list, list) {
2094 if (!vlan->configured)
2097 vlan->configured = false;
2099 /* vlan0 filter isn't consuming out of our quota */
2100 if (vlan->vid != 0) {
2101 edev->non_configured_vlans++;
2102 edev->configured_vlans--;
2105 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2106 "marked vlan %d as non-configured\n",
2110 edev->accept_any_vlan = false;
2113 int qede_set_features(struct net_device *dev, netdev_features_t features)
2115 struct qede_dev *edev = netdev_priv(dev);
2116 netdev_features_t changes = features ^ dev->features;
2117 bool need_reload = false;
2119 /* No action needed if hardware GRO is disabled during driver load */
2120 if (changes & NETIF_F_GRO) {
2121 if (dev->features & NETIF_F_GRO)
2122 need_reload = !edev->gro_disable;
2124 need_reload = edev->gro_disable;
2127 if (need_reload && netif_running(edev->ndev)) {
2128 dev->features = features;
2129 qede_reload(edev, NULL, NULL);
2136 static void qede_udp_tunnel_add(struct net_device *dev,
2137 struct udp_tunnel_info *ti)
2139 struct qede_dev *edev = netdev_priv(dev);
2140 u16 t_port = ntohs(ti->port);
2143 case UDP_TUNNEL_TYPE_VXLAN:
2144 if (edev->vxlan_dst_port)
2147 edev->vxlan_dst_port = t_port;
2149 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d",
2152 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2154 case UDP_TUNNEL_TYPE_GENEVE:
2155 if (edev->geneve_dst_port)
2158 edev->geneve_dst_port = t_port;
2160 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d",
2162 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2168 schedule_delayed_work(&edev->sp_task, 0);
2171 static void qede_udp_tunnel_del(struct net_device *dev,
2172 struct udp_tunnel_info *ti)
2174 struct qede_dev *edev = netdev_priv(dev);
2175 u16 t_port = ntohs(ti->port);
2178 case UDP_TUNNEL_TYPE_VXLAN:
2179 if (t_port != edev->vxlan_dst_port)
2182 edev->vxlan_dst_port = 0;
2184 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d",
2187 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2189 case UDP_TUNNEL_TYPE_GENEVE:
2190 if (t_port != edev->geneve_dst_port)
2193 edev->geneve_dst_port = 0;
2195 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d",
2197 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2203 schedule_delayed_work(&edev->sp_task, 0);
2206 static const struct net_device_ops qede_netdev_ops = {
2207 .ndo_open = qede_open,
2208 .ndo_stop = qede_close,
2209 .ndo_start_xmit = qede_start_xmit,
2210 .ndo_set_rx_mode = qede_set_rx_mode,
2211 .ndo_set_mac_address = qede_set_mac_addr,
2212 .ndo_validate_addr = eth_validate_addr,
2213 .ndo_change_mtu = qede_change_mtu,
2214 #ifdef CONFIG_QED_SRIOV
2215 .ndo_set_vf_mac = qede_set_vf_mac,
2216 .ndo_set_vf_vlan = qede_set_vf_vlan,
2218 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2219 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2220 .ndo_set_features = qede_set_features,
2221 .ndo_get_stats64 = qede_get_stats64,
2222 #ifdef CONFIG_QED_SRIOV
2223 .ndo_set_vf_link_state = qede_set_vf_link_state,
2224 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2225 .ndo_get_vf_config = qede_get_vf_config,
2226 .ndo_set_vf_rate = qede_set_vf_rate,
2228 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
2229 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
2232 /* -------------------------------------------------------------------------
2233 * START OF PROBE / REMOVE
2234 * -------------------------------------------------------------------------
2237 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2238 struct pci_dev *pdev,
2239 struct qed_dev_eth_info *info,
2243 struct net_device *ndev;
2244 struct qede_dev *edev;
2246 ndev = alloc_etherdev_mqs(sizeof(*edev),
2250 pr_err("etherdev allocation failed\n");
2254 edev = netdev_priv(ndev);
2258 edev->dp_module = dp_module;
2259 edev->dp_level = dp_level;
2260 edev->ops = qed_ops;
2261 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2262 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2264 SET_NETDEV_DEV(ndev, &pdev->dev);
2266 memset(&edev->stats, 0, sizeof(edev->stats));
2267 memcpy(&edev->dev_info, info, sizeof(*info));
2269 edev->num_tc = edev->dev_info.num_tc;
2271 INIT_LIST_HEAD(&edev->vlan_list);
2276 static void qede_init_ndev(struct qede_dev *edev)
2278 struct net_device *ndev = edev->ndev;
2279 struct pci_dev *pdev = edev->pdev;
2282 pci_set_drvdata(pdev, ndev);
2284 ndev->mem_start = edev->dev_info.common.pci_mem_start;
2285 ndev->base_addr = ndev->mem_start;
2286 ndev->mem_end = edev->dev_info.common.pci_mem_end;
2287 ndev->irq = edev->dev_info.common.pci_irq;
2289 ndev->watchdog_timeo = TX_TIMEOUT;
2291 ndev->netdev_ops = &qede_netdev_ops;
2293 qede_set_ethtool_ops(ndev);
2295 /* user-changeble features */
2296 hw_features = NETIF_F_GRO | NETIF_F_SG |
2297 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2298 NETIF_F_TSO | NETIF_F_TSO6;
2301 hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2303 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2304 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2305 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2306 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2308 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2310 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2311 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2312 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2314 ndev->hw_features = hw_features;
2316 /* Set network device HW mac */
2317 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2320 /* This function converts from 32b param to two params of level and module
2321 * Input 32b decoding:
2322 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2323 * 'happy' flow, e.g. memory allocation failed.
2324 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2325 * and provide important parameters.
2326 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2327 * module. VERBOSE prints are for tracking the specific flow in low level.
2329 * Notice that the level should be that of the lowest required logs.
2331 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2333 *p_dp_level = QED_LEVEL_NOTICE;
2336 if (debug & QED_LOG_VERBOSE_MASK) {
2337 *p_dp_level = QED_LEVEL_VERBOSE;
2338 *p_dp_module = (debug & 0x3FFFFFFF);
2339 } else if (debug & QED_LOG_INFO_MASK) {
2340 *p_dp_level = QED_LEVEL_INFO;
2341 } else if (debug & QED_LOG_NOTICE_MASK) {
2342 *p_dp_level = QED_LEVEL_NOTICE;
2346 static void qede_free_fp_array(struct qede_dev *edev)
2348 if (edev->fp_array) {
2349 struct qede_fastpath *fp;
2353 fp = &edev->fp_array[i];
2359 kfree(edev->fp_array);
2364 static int qede_alloc_fp_array(struct qede_dev *edev)
2366 struct qede_fastpath *fp;
2369 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2370 sizeof(*edev->fp_array), GFP_KERNEL);
2371 if (!edev->fp_array) {
2372 DP_NOTICE(edev, "fp array allocation failed\n");
2377 fp = &edev->fp_array[i];
2379 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2381 DP_NOTICE(edev, "sb info struct allocation failed\n");
2385 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2387 DP_NOTICE(edev, "RXQ struct allocation failed\n");
2391 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2393 DP_NOTICE(edev, "TXQ array allocation failed\n");
2400 qede_free_fp_array(edev);
2404 static void qede_sp_task(struct work_struct *work)
2406 struct qede_dev *edev = container_of(work, struct qede_dev,
2408 struct qed_dev *cdev = edev->cdev;
2410 mutex_lock(&edev->qede_lock);
2412 if (edev->state == QEDE_STATE_OPEN) {
2413 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2414 qede_config_rx_mode(edev->ndev);
2417 if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2418 struct qed_tunn_params tunn_params;
2420 memset(&tunn_params, 0, sizeof(tunn_params));
2421 tunn_params.update_vxlan_port = 1;
2422 tunn_params.vxlan_port = edev->vxlan_dst_port;
2423 qed_ops->tunn_config(cdev, &tunn_params);
2426 if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2427 struct qed_tunn_params tunn_params;
2429 memset(&tunn_params, 0, sizeof(tunn_params));
2430 tunn_params.update_geneve_port = 1;
2431 tunn_params.geneve_port = edev->geneve_dst_port;
2432 qed_ops->tunn_config(cdev, &tunn_params);
2435 mutex_unlock(&edev->qede_lock);
2438 static void qede_update_pf_params(struct qed_dev *cdev)
2440 struct qed_pf_params pf_params;
2443 memset(&pf_params, 0, sizeof(struct qed_pf_params));
2444 pf_params.eth_pf_params.num_cons = 128;
2445 qed_ops->common->update_pf_params(cdev, &pf_params);
2448 enum qede_probe_mode {
2452 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2453 bool is_vf, enum qede_probe_mode mode)
2455 struct qed_probe_params probe_params;
2456 struct qed_slowpath_params params;
2457 struct qed_dev_eth_info dev_info;
2458 struct qede_dev *edev;
2459 struct qed_dev *cdev;
2462 if (unlikely(dp_level & QED_LEVEL_INFO))
2463 pr_notice("Starting qede probe\n");
2465 memset(&probe_params, 0, sizeof(probe_params));
2466 probe_params.protocol = QED_PROTOCOL_ETH;
2467 probe_params.dp_module = dp_module;
2468 probe_params.dp_level = dp_level;
2469 probe_params.is_vf = is_vf;
2470 cdev = qed_ops->common->probe(pdev, &probe_params);
2476 qede_update_pf_params(cdev);
2478 /* Start the Slowpath-process */
2479 memset(¶ms, 0, sizeof(struct qed_slowpath_params));
2480 params.int_mode = QED_INT_MODE_MSIX;
2481 params.drv_major = QEDE_MAJOR_VERSION;
2482 params.drv_minor = QEDE_MINOR_VERSION;
2483 params.drv_rev = QEDE_REVISION_VERSION;
2484 params.drv_eng = QEDE_ENGINEERING_VERSION;
2485 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2486 rc = qed_ops->common->slowpath_start(cdev, ¶ms);
2488 pr_notice("Cannot start slowpath\n");
2492 /* Learn information crucial for qede to progress */
2493 rc = qed_ops->fill_dev_info(cdev, &dev_info);
2497 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2505 edev->flags |= QEDE_FLAG_IS_VF;
2507 qede_init_ndev(edev);
2509 rc = register_netdev(edev->ndev);
2511 DP_NOTICE(edev, "Cannot register net-device\n");
2515 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2517 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2520 qede_set_dcbnl_ops(edev->ndev);
2523 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2524 mutex_init(&edev->qede_lock);
2525 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2527 DP_INFO(edev, "Ending successfully qede probe\n");
2532 free_netdev(edev->ndev);
2534 qed_ops->common->slowpath_stop(cdev);
2536 qed_ops->common->remove(cdev);
2541 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2547 switch ((enum qede_pci_private)id->driver_data) {
2548 case QEDE_PRIVATE_VF:
2549 if (debug & QED_LOG_VERBOSE_MASK)
2550 dev_err(&pdev->dev, "Probing a VF\n");
2554 if (debug & QED_LOG_VERBOSE_MASK)
2555 dev_err(&pdev->dev, "Probing a PF\n");
2558 qede_config_debug(debug, &dp_module, &dp_level);
2560 return __qede_probe(pdev, dp_module, dp_level, is_vf,
2564 enum qede_remove_mode {
2568 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2570 struct net_device *ndev = pci_get_drvdata(pdev);
2571 struct qede_dev *edev = netdev_priv(ndev);
2572 struct qed_dev *cdev = edev->cdev;
2574 DP_INFO(edev, "Starting qede_remove\n");
2576 cancel_delayed_work_sync(&edev->sp_task);
2577 unregister_netdev(ndev);
2579 edev->ops->common->set_power_state(cdev, PCI_D0);
2581 pci_set_drvdata(pdev, NULL);
2585 /* Use global ops since we've freed edev */
2586 qed_ops->common->slowpath_stop(cdev);
2587 qed_ops->common->remove(cdev);
2589 pr_notice("Ending successfully qede_remove\n");
2592 static void qede_remove(struct pci_dev *pdev)
2594 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2597 /* -------------------------------------------------------------------------
2598 * START OF LOAD / UNLOAD
2599 * -------------------------------------------------------------------------
2602 static int qede_set_num_queues(struct qede_dev *edev)
2607 /* Setup queues according to possible resources*/
2609 rss_num = edev->req_rss;
2611 rss_num = netif_get_num_default_rss_queues() *
2612 edev->dev_info.common.num_hwfns;
2614 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2616 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2618 /* Managed to request interrupts for our queues */
2620 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2621 QEDE_RSS_CNT(edev), rss_num);
2627 static void qede_free_mem_sb(struct qede_dev *edev,
2628 struct qed_sb_info *sb_info)
2630 if (sb_info->sb_virt)
2631 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2632 (void *)sb_info->sb_virt, sb_info->sb_phys);
2635 /* This function allocates fast-path status block memory */
2636 static int qede_alloc_mem_sb(struct qede_dev *edev,
2637 struct qed_sb_info *sb_info,
2640 struct status_block *sb_virt;
2644 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2646 &sb_phys, GFP_KERNEL);
2648 DP_ERR(edev, "Status block allocation failed\n");
2652 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2653 sb_virt, sb_phys, sb_id,
2654 QED_SB_TYPE_L2_QUEUE);
2656 DP_ERR(edev, "Status block initialization failed\n");
2657 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2665 static void qede_free_rx_buffers(struct qede_dev *edev,
2666 struct qede_rx_queue *rxq)
2670 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2671 struct sw_rx_data *rx_buf;
2674 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2675 data = rx_buf->data;
2677 dma_unmap_page(&edev->pdev->dev,
2679 PAGE_SIZE, DMA_FROM_DEVICE);
2681 rx_buf->data = NULL;
2686 static void qede_free_sge_mem(struct qede_dev *edev,
2687 struct qede_rx_queue *rxq) {
2690 if (edev->gro_disable)
2693 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2694 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2695 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2697 if (replace_buf->data) {
2698 dma_unmap_page(&edev->pdev->dev,
2699 replace_buf->mapping,
2700 PAGE_SIZE, DMA_FROM_DEVICE);
2701 __free_page(replace_buf->data);
2706 static void qede_free_mem_rxq(struct qede_dev *edev,
2707 struct qede_rx_queue *rxq)
2709 qede_free_sge_mem(edev, rxq);
2711 /* Free rx buffers */
2712 qede_free_rx_buffers(edev, rxq);
2714 /* Free the parallel SW ring */
2715 kfree(rxq->sw_rx_ring);
2717 /* Free the real RQ ring used by FW */
2718 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2719 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2722 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2723 struct qede_rx_queue *rxq)
2725 struct sw_rx_data *sw_rx_data;
2726 struct eth_rx_bd *rx_bd;
2731 rx_buf_size = rxq->rx_buf_size;
2733 data = alloc_pages(GFP_ATOMIC, 0);
2734 if (unlikely(!data)) {
2735 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2739 /* Map the entire page as it would be used
2740 * for multiple RX buffer segment size mapping.
2742 mapping = dma_map_page(&edev->pdev->dev, data, 0,
2743 PAGE_SIZE, DMA_FROM_DEVICE);
2744 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2746 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2750 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2751 sw_rx_data->page_offset = 0;
2752 sw_rx_data->data = data;
2753 sw_rx_data->mapping = mapping;
2755 /* Advance PROD and get BD pointer */
2756 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2758 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2759 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2766 static int qede_alloc_sge_mem(struct qede_dev *edev,
2767 struct qede_rx_queue *rxq)
2772 if (edev->gro_disable)
2775 if (edev->ndev->mtu > PAGE_SIZE) {
2776 edev->gro_disable = 1;
2780 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2781 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2782 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2784 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2785 if (unlikely(!replace_buf->data)) {
2787 "Failed to allocate TPA skb pool [replacement buffer]\n");
2791 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2792 rxq->rx_buf_size, DMA_FROM_DEVICE);
2793 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2795 "Failed to map TPA replacement buffer\n");
2799 replace_buf->mapping = mapping;
2800 tpa_info->replace_buf.page_offset = 0;
2802 tpa_info->replace_buf_mapping = mapping;
2803 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2808 qede_free_sge_mem(edev, rxq);
2809 edev->gro_disable = 1;
2813 /* This function allocates all memory needed per Rx queue */
2814 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2815 struct qede_rx_queue *rxq)
2819 rxq->num_rx_buffers = edev->q_num_rx_buffers;
2821 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2823 if (rxq->rx_buf_size > PAGE_SIZE)
2824 rxq->rx_buf_size = PAGE_SIZE;
2826 /* Segment size to spilt a page in multiple equal parts */
2827 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2829 /* Allocate the parallel driver ring for Rx buffers */
2830 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2831 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2832 if (!rxq->sw_rx_ring) {
2833 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2838 /* Allocate FW Rx ring */
2839 rc = edev->ops->common->chain_alloc(edev->cdev,
2840 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2841 QED_CHAIN_MODE_NEXT_PTR,
2842 QED_CHAIN_CNT_TYPE_U16,
2844 sizeof(struct eth_rx_bd),
2850 /* Allocate FW completion ring */
2851 rc = edev->ops->common->chain_alloc(edev->cdev,
2852 QED_CHAIN_USE_TO_CONSUME,
2854 QED_CHAIN_CNT_TYPE_U16,
2856 sizeof(union eth_rx_cqe),
2857 &rxq->rx_comp_ring);
2861 /* Allocate buffers for the Rx ring */
2862 for (i = 0; i < rxq->num_rx_buffers; i++) {
2863 rc = qede_alloc_rx_buffer(edev, rxq);
2866 "Rx buffers allocation failed at index %d\n", i);
2871 rc = qede_alloc_sge_mem(edev, rxq);
2876 static void qede_free_mem_txq(struct qede_dev *edev,
2877 struct qede_tx_queue *txq)
2879 /* Free the parallel SW ring */
2880 kfree(txq->sw_tx_ring);
2882 /* Free the real RQ ring used by FW */
2883 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2886 /* This function allocates all memory needed per Tx queue */
2887 static int qede_alloc_mem_txq(struct qede_dev *edev,
2888 struct qede_tx_queue *txq)
2891 union eth_tx_bd_types *p_virt;
2893 txq->num_tx_buffers = edev->q_num_tx_buffers;
2895 /* Allocate the parallel driver ring for Tx buffers */
2896 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2897 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2898 if (!txq->sw_tx_ring) {
2899 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2903 rc = edev->ops->common->chain_alloc(edev->cdev,
2904 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2906 QED_CHAIN_CNT_TYPE_U16,
2908 sizeof(*p_virt), &txq->tx_pbl);
2915 qede_free_mem_txq(edev, txq);
2919 /* This function frees all memory of a single fp */
2920 static void qede_free_mem_fp(struct qede_dev *edev,
2921 struct qede_fastpath *fp)
2925 qede_free_mem_sb(edev, fp->sb_info);
2927 qede_free_mem_rxq(edev, fp->rxq);
2929 for (tc = 0; tc < edev->num_tc; tc++)
2930 qede_free_mem_txq(edev, &fp->txqs[tc]);
2933 /* This function allocates all memory needed for a single fp (i.e. an entity
2934 * which contains status block, one rx queue and multiple per-TC tx queues.
2936 static int qede_alloc_mem_fp(struct qede_dev *edev,
2937 struct qede_fastpath *fp)
2941 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2945 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2949 for (tc = 0; tc < edev->num_tc; tc++) {
2950 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2960 static void qede_free_mem_load(struct qede_dev *edev)
2965 struct qede_fastpath *fp = &edev->fp_array[i];
2967 qede_free_mem_fp(edev, fp);
2971 /* This function allocates all qede memory at NIC load. */
2972 static int qede_alloc_mem_load(struct qede_dev *edev)
2976 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2977 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2979 rc = qede_alloc_mem_fp(edev, fp);
2982 "Failed to allocate memory for fastpath - rss id = %d\n",
2984 qede_free_mem_load(edev);
2992 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2993 static void qede_init_fp(struct qede_dev *edev)
2995 int rss_id, txq_index, tc;
2996 struct qede_fastpath *fp;
2998 for_each_rss(rss_id) {
2999 fp = &edev->fp_array[rss_id];
3002 fp->rss_id = rss_id;
3004 memset((void *)&fp->napi, 0, sizeof(fp->napi));
3006 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3008 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3009 fp->rxq->rxq_id = rss_id;
3011 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
3012 for (tc = 0; tc < edev->num_tc; tc++) {
3013 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
3014 fp->txqs[tc].index = txq_index;
3017 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3018 edev->ndev->name, rss_id);
3021 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3024 static int qede_set_real_num_queues(struct qede_dev *edev)
3028 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3030 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3033 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3035 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3042 static void qede_napi_disable_remove(struct qede_dev *edev)
3047 napi_disable(&edev->fp_array[i].napi);
3049 netif_napi_del(&edev->fp_array[i].napi);
3053 static void qede_napi_add_enable(struct qede_dev *edev)
3057 /* Add NAPI objects */
3059 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3060 qede_poll, NAPI_POLL_WEIGHT);
3061 napi_enable(&edev->fp_array[i].napi);
3065 static void qede_sync_free_irqs(struct qede_dev *edev)
3069 for (i = 0; i < edev->int_info.used_cnt; i++) {
3070 if (edev->int_info.msix_cnt) {
3071 synchronize_irq(edev->int_info.msix[i].vector);
3072 free_irq(edev->int_info.msix[i].vector,
3073 &edev->fp_array[i]);
3075 edev->ops->common->simd_handler_clean(edev->cdev, i);
3079 edev->int_info.used_cnt = 0;
3082 static int qede_req_msix_irqs(struct qede_dev *edev)
3086 /* Sanitize number of interrupts == number of prepared RSS queues */
3087 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3089 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3090 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3094 for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3095 rc = request_irq(edev->int_info.msix[i].vector,
3096 qede_msix_fp_int, 0, edev->fp_array[i].name,
3097 &edev->fp_array[i]);
3099 DP_ERR(edev, "Request fp %d irq failed\n", i);
3100 qede_sync_free_irqs(edev);
3103 DP_VERBOSE(edev, NETIF_MSG_INTR,
3104 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3105 edev->fp_array[i].name, i,
3106 &edev->fp_array[i]);
3107 edev->int_info.used_cnt++;
3113 static void qede_simd_fp_handler(void *cookie)
3115 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3117 napi_schedule_irqoff(&fp->napi);
3120 static int qede_setup_irqs(struct qede_dev *edev)
3124 /* Learn Interrupt configuration */
3125 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3129 if (edev->int_info.msix_cnt) {
3130 rc = qede_req_msix_irqs(edev);
3133 edev->ndev->irq = edev->int_info.msix[0].vector;
3135 const struct qed_common_ops *ops;
3137 /* qed should learn receive the RSS ids and callbacks */
3138 ops = edev->ops->common;
3139 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3140 ops->simd_handler_config(edev->cdev,
3141 &edev->fp_array[i], i,
3142 qede_simd_fp_handler);
3143 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3148 static int qede_drain_txq(struct qede_dev *edev,
3149 struct qede_tx_queue *txq,
3154 while (txq->sw_tx_cons != txq->sw_tx_prod) {
3158 "Tx queue[%d] is stuck, requesting MCP to drain\n",
3160 rc = edev->ops->common->drain(edev->cdev);
3163 return qede_drain_txq(edev, txq, false);
3166 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3167 txq->index, txq->sw_tx_prod,
3172 usleep_range(1000, 2000);
3176 /* FW finished processing, wait for HW to transmit all tx packets */
3177 usleep_range(1000, 2000);
3182 static int qede_stop_queues(struct qede_dev *edev)
3184 struct qed_update_vport_params vport_update_params;
3185 struct qed_dev *cdev = edev->cdev;
3188 /* Disable the vport */
3189 memset(&vport_update_params, 0, sizeof(vport_update_params));
3190 vport_update_params.vport_id = 0;
3191 vport_update_params.update_vport_active_flg = 1;
3192 vport_update_params.vport_active_flg = 0;
3193 vport_update_params.update_rss_flg = 0;
3195 rc = edev->ops->vport_update(cdev, &vport_update_params);
3197 DP_ERR(edev, "Failed to update vport\n");
3201 /* Flush Tx queues. If needed, request drain from MCP */
3203 struct qede_fastpath *fp = &edev->fp_array[i];
3205 for (tc = 0; tc < edev->num_tc; tc++) {
3206 struct qede_tx_queue *txq = &fp->txqs[tc];
3208 rc = qede_drain_txq(edev, txq, true);
3214 /* Stop all Queues in reverse order*/
3215 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3216 struct qed_stop_rxq_params rx_params;
3218 /* Stop the Tx Queue(s)*/
3219 for (tc = 0; tc < edev->num_tc; tc++) {
3220 struct qed_stop_txq_params tx_params;
3222 tx_params.rss_id = i;
3223 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3224 rc = edev->ops->q_tx_stop(cdev, &tx_params);
3226 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3227 tx_params.tx_queue_id);
3232 /* Stop the Rx Queue*/
3233 memset(&rx_params, 0, sizeof(rx_params));
3234 rx_params.rss_id = i;
3235 rx_params.rx_queue_id = i;
3237 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3239 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3244 /* Stop the vport */
3245 rc = edev->ops->vport_stop(cdev, 0);
3247 DP_ERR(edev, "Failed to stop VPORT\n");
3252 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3255 int vlan_removal_en = 1;
3256 struct qed_dev *cdev = edev->cdev;
3257 struct qed_update_vport_params vport_update_params;
3258 struct qed_queue_start_common_params q_params;
3259 struct qed_dev_info *qed_info = &edev->dev_info.common;
3260 struct qed_start_vport_params start = {0};
3261 bool reset_rss_indir = false;
3263 if (!edev->num_rss) {
3265 "Cannot update V-VPORT as active as there are no Rx queues\n");
3269 start.gro_enable = !edev->gro_disable;
3270 start.mtu = edev->ndev->mtu;
3272 start.drop_ttl0 = true;
3273 start.remove_inner_vlan = vlan_removal_en;
3274 start.clear_stats = clear_stats;
3276 rc = edev->ops->vport_start(cdev, &start);
3279 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3283 DP_VERBOSE(edev, NETIF_MSG_IFUP,
3284 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3285 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3288 struct qede_fastpath *fp = &edev->fp_array[i];
3289 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3291 memset(&q_params, 0, sizeof(q_params));
3292 q_params.rss_id = i;
3293 q_params.queue_id = i;
3294 q_params.vport_id = 0;
3295 q_params.sb = fp->sb_info->igu_sb_id;
3296 q_params.sb_idx = RX_PI;
3298 rc = edev->ops->q_rx_start(cdev, &q_params,
3299 fp->rxq->rx_buf_size,
3300 fp->rxq->rx_bd_ring.p_phys_addr,
3302 fp->rxq->rx_comp_ring.page_cnt,
3303 &fp->rxq->hw_rxq_prod_addr);
3305 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3309 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3311 qede_update_rx_prod(edev, fp->rxq);
3313 for (tc = 0; tc < edev->num_tc; tc++) {
3314 struct qede_tx_queue *txq = &fp->txqs[tc];
3315 int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3317 memset(&q_params, 0, sizeof(q_params));
3318 q_params.rss_id = i;
3319 q_params.queue_id = txq_index;
3320 q_params.vport_id = 0;
3321 q_params.sb = fp->sb_info->igu_sb_id;
3322 q_params.sb_idx = TX_PI(tc);
3324 rc = edev->ops->q_tx_start(cdev, &q_params,
3325 txq->tx_pbl.pbl.p_phys_table,
3326 txq->tx_pbl.page_cnt,
3327 &txq->doorbell_addr);
3329 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3335 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3336 SET_FIELD(txq->tx_db.data.params,
3337 ETH_DB_DATA_DEST, DB_DEST_XCM);
3338 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3340 SET_FIELD(txq->tx_db.data.params,
3341 ETH_DB_DATA_AGG_VAL_SEL,
3342 DQ_XCM_ETH_TX_BD_PROD_CMD);
3344 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3348 /* Prepare and send the vport enable */
3349 memset(&vport_update_params, 0, sizeof(vport_update_params));
3350 vport_update_params.vport_id = start.vport_id;
3351 vport_update_params.update_vport_active_flg = 1;
3352 vport_update_params.vport_active_flg = 1;
3354 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3355 qed_info->tx_switching) {
3356 vport_update_params.update_tx_switching_flg = 1;
3357 vport_update_params.tx_switching_flg = 1;
3360 /* Fill struct with RSS params */
3361 if (QEDE_RSS_CNT(edev) > 1) {
3362 vport_update_params.update_rss_flg = 1;
3364 /* Need to validate current RSS config uses valid entries */
3365 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3366 if (edev->rss_params.rss_ind_table[i] >=
3368 reset_rss_indir = true;
3373 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3377 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3380 val = QEDE_RSS_CNT(edev);
3381 indir_val = ethtool_rxfh_indir_default(i, val);
3382 edev->rss_params.rss_ind_table[i] = indir_val;
3384 edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3387 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3388 netdev_rss_key_fill(edev->rss_params.rss_key,
3389 sizeof(edev->rss_params.rss_key));
3390 edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3393 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3394 edev->rss_params.rss_caps = QED_RSS_IPV4 |
3398 edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3401 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3402 sizeof(vport_update_params.rss_params));
3404 memset(&vport_update_params.rss_params, 0,
3405 sizeof(vport_update_params.rss_params));
3408 rc = edev->ops->vport_update(cdev, &vport_update_params);
3410 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3417 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3418 enum qed_filter_xcast_params_type opcode,
3419 unsigned char *mac, int num_macs)
3421 struct qed_filter_params filter_cmd;
3424 memset(&filter_cmd, 0, sizeof(filter_cmd));
3425 filter_cmd.type = QED_FILTER_TYPE_MCAST;
3426 filter_cmd.filter.mcast.type = opcode;
3427 filter_cmd.filter.mcast.num = num_macs;
3429 for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3430 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3432 return edev->ops->filter_config(edev->cdev, &filter_cmd);
3435 enum qede_unload_mode {
3439 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3441 struct qed_link_params link_params;
3444 DP_INFO(edev, "Starting qede unload\n");
3446 mutex_lock(&edev->qede_lock);
3447 edev->state = QEDE_STATE_CLOSED;
3450 netif_tx_disable(edev->ndev);
3451 netif_carrier_off(edev->ndev);
3453 /* Reset the link */
3454 memset(&link_params, 0, sizeof(link_params));
3455 link_params.link_up = false;
3456 edev->ops->common->set_link(edev->cdev, &link_params);
3457 rc = qede_stop_queues(edev);
3459 qede_sync_free_irqs(edev);
3463 DP_INFO(edev, "Stopped Queues\n");
3465 qede_vlan_mark_nonconfigured(edev);
3466 edev->ops->fastpath_stop(edev->cdev);
3468 /* Release the interrupts */
3469 qede_sync_free_irqs(edev);
3470 edev->ops->common->set_fp_int(edev->cdev, 0);
3472 qede_napi_disable_remove(edev);
3474 qede_free_mem_load(edev);
3475 qede_free_fp_array(edev);
3478 mutex_unlock(&edev->qede_lock);
3479 DP_INFO(edev, "Ending qede unload\n");
3482 enum qede_load_mode {
3487 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3489 struct qed_link_params link_params;
3490 struct qed_link_output link_output;
3493 DP_INFO(edev, "Starting qede load\n");
3495 rc = qede_set_num_queues(edev);
3499 rc = qede_alloc_fp_array(edev);
3505 rc = qede_alloc_mem_load(edev);
3508 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3509 QEDE_RSS_CNT(edev), edev->num_tc);
3511 rc = qede_set_real_num_queues(edev);
3515 qede_napi_add_enable(edev);
3516 DP_INFO(edev, "Napi added and enabled\n");
3518 rc = qede_setup_irqs(edev);
3521 DP_INFO(edev, "Setup IRQs succeeded\n");
3523 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3526 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3528 /* Add primary mac and set Rx filters */
3529 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3531 mutex_lock(&edev->qede_lock);
3532 edev->state = QEDE_STATE_OPEN;
3533 mutex_unlock(&edev->qede_lock);
3535 /* Program un-configured VLANs */
3536 qede_configure_vlan_filters(edev);
3538 /* Ask for link-up using current configuration */
3539 memset(&link_params, 0, sizeof(link_params));
3540 link_params.link_up = true;
3541 edev->ops->common->set_link(edev->cdev, &link_params);
3543 /* Query whether link is already-up */
3544 memset(&link_output, 0, sizeof(link_output));
3545 edev->ops->common->get_link(edev->cdev, &link_output);
3546 qede_link_update(edev, &link_output);
3548 DP_INFO(edev, "Ending successfully qede load\n");
3553 qede_sync_free_irqs(edev);
3554 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3556 qede_napi_disable_remove(edev);
3558 qede_free_mem_load(edev);
3560 edev->ops->common->set_fp_int(edev->cdev, 0);
3561 qede_free_fp_array(edev);
3567 void qede_reload(struct qede_dev *edev,
3568 void (*func)(struct qede_dev *, union qede_reload_args *),
3569 union qede_reload_args *args)
3571 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3572 /* Call function handler to update parameters
3573 * needed for function load.
3578 qede_load(edev, QEDE_LOAD_RELOAD);
3580 mutex_lock(&edev->qede_lock);
3581 qede_config_rx_mode(edev->ndev);
3582 mutex_unlock(&edev->qede_lock);
3585 /* called with rtnl_lock */
3586 static int qede_open(struct net_device *ndev)
3588 struct qede_dev *edev = netdev_priv(ndev);
3591 netif_carrier_off(ndev);
3593 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3595 rc = qede_load(edev, QEDE_LOAD_NORMAL);
3600 udp_tunnel_get_rx_info(ndev);
3605 static int qede_close(struct net_device *ndev)
3607 struct qede_dev *edev = netdev_priv(ndev);
3609 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3614 static void qede_link_update(void *dev, struct qed_link_output *link)
3616 struct qede_dev *edev = dev;
3618 if (!netif_running(edev->ndev)) {
3619 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3623 if (link->link_up) {
3624 if (!netif_carrier_ok(edev->ndev)) {
3625 DP_NOTICE(edev, "Link is up\n");
3626 netif_tx_start_all_queues(edev->ndev);
3627 netif_carrier_on(edev->ndev);
3630 if (netif_carrier_ok(edev->ndev)) {
3631 DP_NOTICE(edev, "Link is down\n");
3632 netif_tx_disable(edev->ndev);
3633 netif_carrier_off(edev->ndev);
3638 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3640 struct qede_dev *edev = netdev_priv(ndev);
3641 struct sockaddr *addr = p;
3644 ASSERT_RTNL(); /* @@@TBD To be removed */
3646 DP_INFO(edev, "Set_mac_addr called\n");
3648 if (!is_valid_ether_addr(addr->sa_data)) {
3649 DP_NOTICE(edev, "The MAC address is not valid\n");
3653 if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3654 DP_NOTICE(edev, "qed prevents setting MAC\n");
3658 ether_addr_copy(ndev->dev_addr, addr->sa_data);
3660 if (!netif_running(ndev)) {
3661 DP_NOTICE(edev, "The device is currently down\n");
3665 /* Remove the previous primary mac */
3666 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3671 /* Add MAC filter according to the new unicast HW MAC address */
3672 ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3673 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3678 qede_configure_mcast_filtering(struct net_device *ndev,
3679 enum qed_filter_rx_mode_type *accept_flags)
3681 struct qede_dev *edev = netdev_priv(ndev);
3682 unsigned char *mc_macs, *temp;
3683 struct netdev_hw_addr *ha;
3684 int rc = 0, mc_count;
3687 size = 64 * ETH_ALEN;
3689 mc_macs = kzalloc(size, GFP_KERNEL);
3692 "Failed to allocate memory for multicast MACs\n");
3699 /* Remove all previously configured MAC filters */
3700 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3705 netif_addr_lock_bh(ndev);
3707 mc_count = netdev_mc_count(ndev);
3708 if (mc_count < 64) {
3709 netdev_for_each_mc_addr(ha, ndev) {
3710 ether_addr_copy(temp, ha->addr);
3715 netif_addr_unlock_bh(ndev);
3717 /* Check for all multicast @@@TBD resource allocation */
3718 if ((ndev->flags & IFF_ALLMULTI) ||
3720 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3721 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3723 /* Add all multicast MAC filters */
3724 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3733 static void qede_set_rx_mode(struct net_device *ndev)
3735 struct qede_dev *edev = netdev_priv(ndev);
3737 DP_INFO(edev, "qede_set_rx_mode called\n");
3739 if (edev->state != QEDE_STATE_OPEN) {
3741 "qede_set_rx_mode called while interface is down\n");
3743 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3744 schedule_delayed_work(&edev->sp_task, 0);
3748 /* Must be called with qede_lock held */
3749 static void qede_config_rx_mode(struct net_device *ndev)
3751 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3752 struct qede_dev *edev = netdev_priv(ndev);
3753 struct qed_filter_params rx_mode;
3754 unsigned char *uc_macs, *temp;
3755 struct netdev_hw_addr *ha;
3759 netif_addr_lock_bh(ndev);
3761 uc_count = netdev_uc_count(ndev);
3762 size = uc_count * ETH_ALEN;
3764 uc_macs = kzalloc(size, GFP_ATOMIC);
3766 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3767 netif_addr_unlock_bh(ndev);
3772 netdev_for_each_uc_addr(ha, ndev) {
3773 ether_addr_copy(temp, ha->addr);
3777 netif_addr_unlock_bh(ndev);
3779 /* Configure the struct for the Rx mode */
3780 memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3781 rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3783 /* Remove all previous unicast secondary macs and multicast macs
3784 * (configrue / leave the primary mac)
3786 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3791 /* Check for promiscuous */
3792 if ((ndev->flags & IFF_PROMISC) ||
3793 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3794 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3796 /* Add MAC filters according to the unicast secondary macs */
3800 for (i = 0; i < uc_count; i++) {
3801 rc = qede_set_ucast_rx_mac(edev,
3802 QED_FILTER_XCAST_TYPE_ADD,
3810 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3815 /* take care of VLAN mode */
3816 if (ndev->flags & IFF_PROMISC) {
3817 qede_config_accept_any_vlan(edev, true);
3818 } else if (!edev->non_configured_vlans) {
3819 /* It's possible that accept_any_vlan mode is set due to a
3820 * previous setting of IFF_PROMISC. If vlan credits are
3821 * sufficient, disable accept_any_vlan.
3823 qede_config_accept_any_vlan(edev, false);
3826 rx_mode.filter.accept_flags = accept_flags;
3827 edev->ops->filter_config(edev->cdev, &rx_mode);