selftests: drivers/dma-buf: Fix implicit declaration warns
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / netronome / nfp / flower / offload.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */
3
4 #include <linux/skbuff.h>
5 #include <net/devlink.h>
6 #include <net/pkt_cls.h>
7
8 #include "cmsg.h"
9 #include "main.h"
10 #include "conntrack.h"
11 #include "../nfpcore/nfp_cpp.h"
12 #include "../nfpcore/nfp_nsp.h"
13 #include "../nfp_app.h"
14 #include "../nfp_main.h"
15 #include "../nfp_net.h"
16 #include "../nfp_port.h"
17
18 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \
19         (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
20          TCPHDR_PSH | TCPHDR_URG)
21
22 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \
23         (FLOW_DIS_IS_FRAGMENT | \
24          FLOW_DIS_FIRST_FRAG)
25
26 #define NFP_FLOWER_WHITELIST_DISSECTOR \
27         (BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
28          BIT(FLOW_DISSECTOR_KEY_BASIC) | \
29          BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
30          BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
31          BIT(FLOW_DISSECTOR_KEY_TCP) | \
32          BIT(FLOW_DISSECTOR_KEY_PORTS) | \
33          BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
34          BIT(FLOW_DISSECTOR_KEY_VLAN) | \
35          BIT(FLOW_DISSECTOR_KEY_CVLAN) | \
36          BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
37          BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
38          BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
39          BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
40          BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
41          BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
42          BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \
43          BIT(FLOW_DISSECTOR_KEY_MPLS) | \
44          BIT(FLOW_DISSECTOR_KEY_CT) | \
45          BIT(FLOW_DISSECTOR_KEY_META) | \
46          BIT(FLOW_DISSECTOR_KEY_IP))
47
48 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
49         (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
50          BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
51          BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
52          BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
53          BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
54          BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
55          BIT(FLOW_DISSECTOR_KEY_ENC_IP))
56
57 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
58         (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
59          BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS))
60
61 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \
62         (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
63          BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS))
64
65 #define NFP_FLOWER_MERGE_FIELDS \
66         (NFP_FLOWER_LAYER_PORT | \
67          NFP_FLOWER_LAYER_MAC | \
68          NFP_FLOWER_LAYER_TP | \
69          NFP_FLOWER_LAYER_IPV4 | \
70          NFP_FLOWER_LAYER_IPV6)
71
72 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \
73         (NFP_FLOWER_LAYER_EXT_META | \
74          NFP_FLOWER_LAYER_PORT | \
75          NFP_FLOWER_LAYER_MAC | \
76          NFP_FLOWER_LAYER_IPV4 | \
77          NFP_FLOWER_LAYER_IPV6)
78
79 struct nfp_flower_merge_check {
80         union {
81                 struct {
82                         __be16 tci;
83                         struct nfp_flower_mac_mpls l2;
84                         struct nfp_flower_tp_ports l4;
85                         union {
86                                 struct nfp_flower_ipv4 ipv4;
87                                 struct nfp_flower_ipv6 ipv6;
88                         };
89                 };
90                 unsigned long vals[8];
91         };
92 };
93
94 int
95 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow,
96                      u8 mtype)
97 {
98         u32 meta_len, key_len, mask_len, act_len, tot_len;
99         struct sk_buff *skb;
100         unsigned char *msg;
101
102         meta_len =  sizeof(struct nfp_fl_rule_metadata);
103         key_len = nfp_flow->meta.key_len;
104         mask_len = nfp_flow->meta.mask_len;
105         act_len = nfp_flow->meta.act_len;
106
107         tot_len = meta_len + key_len + mask_len + act_len;
108
109         /* Convert to long words as firmware expects
110          * lengths in units of NFP_FL_LW_SIZ.
111          */
112         nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
113         nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
114         nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
115
116         skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL);
117         if (!skb)
118                 return -ENOMEM;
119
120         msg = nfp_flower_cmsg_get_data(skb);
121         memcpy(msg, &nfp_flow->meta, meta_len);
122         memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
123         memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
124         memcpy(&msg[meta_len + key_len + mask_len],
125                nfp_flow->action_data, act_len);
126
127         /* Convert back to bytes as software expects
128          * lengths in units of bytes.
129          */
130         nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
131         nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
132         nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
133
134         nfp_ctrl_tx(app->ctrl, skb);
135
136         return 0;
137 }
138
139 static bool nfp_flower_check_higher_than_mac(struct flow_rule *rule)
140 {
141         return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
142                flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
143                flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
144                flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
145 }
146
147 static bool nfp_flower_check_higher_than_l3(struct flow_rule *rule)
148 {
149         return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
150                flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
151 }
152
153 static int
154 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts,
155                           u32 *key_layer_two, int *key_size, bool ipv6,
156                           struct netlink_ext_ack *extack)
157 {
158         if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY ||
159             (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) {
160                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length");
161                 return -EOPNOTSUPP;
162         }
163
164         if (enc_opts->len > 0) {
165                 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP;
166                 *key_size += sizeof(struct nfp_flower_geneve_options);
167         }
168
169         return 0;
170 }
171
172 static int
173 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports,
174                               struct flow_dissector_key_enc_opts *enc_op,
175                               u32 *key_layer_two, u8 *key_layer, int *key_size,
176                               struct nfp_flower_priv *priv,
177                               enum nfp_flower_tun_type *tun_type, bool ipv6,
178                               struct netlink_ext_ack *extack)
179 {
180         int err;
181
182         switch (enc_ports->dst) {
183         case htons(IANA_VXLAN_UDP_PORT):
184                 *tun_type = NFP_FL_TUNNEL_VXLAN;
185                 *key_layer |= NFP_FLOWER_LAYER_VXLAN;
186
187                 if (ipv6) {
188                         *key_layer |= NFP_FLOWER_LAYER_EXT_META;
189                         *key_size += sizeof(struct nfp_flower_ext_meta);
190                         *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
191                         *key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
192                 } else {
193                         *key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
194                 }
195
196                 if (enc_op) {
197                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels");
198                         return -EOPNOTSUPP;
199                 }
200                 break;
201         case htons(GENEVE_UDP_PORT):
202                 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) {
203                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload");
204                         return -EOPNOTSUPP;
205                 }
206                 *tun_type = NFP_FL_TUNNEL_GENEVE;
207                 *key_layer |= NFP_FLOWER_LAYER_EXT_META;
208                 *key_size += sizeof(struct nfp_flower_ext_meta);
209                 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
210
211                 if (ipv6) {
212                         *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
213                         *key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
214                 } else {
215                         *key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
216                 }
217
218                 if (!enc_op)
219                         break;
220                 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) {
221                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload");
222                         return -EOPNOTSUPP;
223                 }
224                 err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size,
225                                                 ipv6, extack);
226                 if (err)
227                         return err;
228                 break;
229         default:
230                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown");
231                 return -EOPNOTSUPP;
232         }
233
234         return 0;
235 }
236
237 int
238 nfp_flower_calculate_key_layers(struct nfp_app *app,
239                                 struct net_device *netdev,
240                                 struct nfp_fl_key_ls *ret_key_ls,
241                                 struct flow_rule *rule,
242                                 enum nfp_flower_tun_type *tun_type,
243                                 struct netlink_ext_ack *extack)
244 {
245         struct flow_dissector *dissector = rule->match.dissector;
246         struct flow_match_basic basic = { NULL, NULL};
247         struct nfp_flower_priv *priv = app->priv;
248         u32 key_layer_two;
249         u8 key_layer;
250         int key_size;
251         int err;
252
253         if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) {
254                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported");
255                 return -EOPNOTSUPP;
256         }
257
258         /* If any tun dissector is used then the required set must be used. */
259         if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
260             (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R)
261             != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R &&
262             (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
263             != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) {
264                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported");
265                 return -EOPNOTSUPP;
266         }
267
268         key_layer_two = 0;
269         key_layer = NFP_FLOWER_LAYER_PORT;
270         key_size = sizeof(struct nfp_flower_meta_tci) +
271                    sizeof(struct nfp_flower_in_port);
272
273         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
274             flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) {
275                 key_layer |= NFP_FLOWER_LAYER_MAC;
276                 key_size += sizeof(struct nfp_flower_mac_mpls);
277         }
278
279         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
280                 struct flow_match_vlan vlan;
281
282                 flow_rule_match_vlan(rule, &vlan);
283                 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) &&
284                     vlan.key->vlan_priority) {
285                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload");
286                         return -EOPNOTSUPP;
287                 }
288                 if (priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ &&
289                     !(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
290                         key_layer |= NFP_FLOWER_LAYER_EXT_META;
291                         key_size += sizeof(struct nfp_flower_ext_meta);
292                         key_size += sizeof(struct nfp_flower_vlan);
293                         key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
294                 }
295         }
296
297         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) {
298                 struct flow_match_vlan cvlan;
299
300                 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
301                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN QinQ offload");
302                         return -EOPNOTSUPP;
303                 }
304
305                 flow_rule_match_vlan(rule, &cvlan);
306                 if (!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
307                         key_layer |= NFP_FLOWER_LAYER_EXT_META;
308                         key_size += sizeof(struct nfp_flower_ext_meta);
309                         key_size += sizeof(struct nfp_flower_vlan);
310                         key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
311                 }
312         }
313
314         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
315                 struct flow_match_enc_opts enc_op = { NULL, NULL };
316                 struct flow_match_ipv4_addrs ipv4_addrs;
317                 struct flow_match_ipv6_addrs ipv6_addrs;
318                 struct flow_match_control enc_ctl;
319                 struct flow_match_ports enc_ports;
320                 bool ipv6_tun = false;
321
322                 flow_rule_match_enc_control(rule, &enc_ctl);
323
324                 if (enc_ctl.mask->addr_type != 0xffff) {
325                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported");
326                         return -EOPNOTSUPP;
327                 }
328
329                 ipv6_tun = enc_ctl.key->addr_type ==
330                                 FLOW_DISSECTOR_KEY_IPV6_ADDRS;
331                 if (ipv6_tun &&
332                     !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) {
333                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels");
334                         return -EOPNOTSUPP;
335                 }
336
337                 if (!ipv6_tun &&
338                     enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
339                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6");
340                         return -EOPNOTSUPP;
341                 }
342
343                 if (ipv6_tun) {
344                         flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs);
345                         if (memchr_inv(&ipv6_addrs.mask->dst, 0xff,
346                                        sizeof(ipv6_addrs.mask->dst))) {
347                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported");
348                                 return -EOPNOTSUPP;
349                         }
350                 } else {
351                         flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs);
352                         if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) {
353                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported");
354                                 return -EOPNOTSUPP;
355                         }
356                 }
357
358                 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS))
359                         flow_rule_match_enc_opts(rule, &enc_op);
360
361                 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
362                         /* check if GRE, which has no enc_ports */
363                         if (!netif_is_gretap(netdev)) {
364                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels");
365                                 return -EOPNOTSUPP;
366                         }
367
368                         *tun_type = NFP_FL_TUNNEL_GRE;
369                         key_layer |= NFP_FLOWER_LAYER_EXT_META;
370                         key_size += sizeof(struct nfp_flower_ext_meta);
371                         key_layer_two |= NFP_FLOWER_LAYER2_GRE;
372
373                         if (ipv6_tun) {
374                                 key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
375                                 key_size +=
376                                         sizeof(struct nfp_flower_ipv6_udp_tun);
377                         } else {
378                                 key_size +=
379                                         sizeof(struct nfp_flower_ipv4_udp_tun);
380                         }
381
382                         if (enc_op.key) {
383                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels");
384                                 return -EOPNOTSUPP;
385                         }
386                 } else {
387                         flow_rule_match_enc_ports(rule, &enc_ports);
388                         if (enc_ports.mask->dst != cpu_to_be16(~0)) {
389                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported");
390                                 return -EOPNOTSUPP;
391                         }
392
393                         err = nfp_flower_calc_udp_tun_layer(enc_ports.key,
394                                                             enc_op.key,
395                                                             &key_layer_two,
396                                                             &key_layer,
397                                                             &key_size, priv,
398                                                             tun_type, ipv6_tun,
399                                                             extack);
400                         if (err)
401                                 return err;
402
403                         /* Ensure the ingress netdev matches the expected
404                          * tun type.
405                          */
406                         if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) {
407                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type");
408                                 return -EOPNOTSUPP;
409                         }
410                 }
411         }
412
413         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC))
414                 flow_rule_match_basic(rule, &basic);
415
416         if (basic.mask && basic.mask->n_proto) {
417                 /* Ethernet type is present in the key. */
418                 switch (basic.key->n_proto) {
419                 case cpu_to_be16(ETH_P_IP):
420                         key_layer |= NFP_FLOWER_LAYER_IPV4;
421                         key_size += sizeof(struct nfp_flower_ipv4);
422                         break;
423
424                 case cpu_to_be16(ETH_P_IPV6):
425                         key_layer |= NFP_FLOWER_LAYER_IPV6;
426                         key_size += sizeof(struct nfp_flower_ipv6);
427                         break;
428
429                 /* Currently we do not offload ARP
430                  * because we rely on it to get to the host.
431                  */
432                 case cpu_to_be16(ETH_P_ARP):
433                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported");
434                         return -EOPNOTSUPP;
435
436                 case cpu_to_be16(ETH_P_MPLS_UC):
437                 case cpu_to_be16(ETH_P_MPLS_MC):
438                         if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
439                                 key_layer |= NFP_FLOWER_LAYER_MAC;
440                                 key_size += sizeof(struct nfp_flower_mac_mpls);
441                         }
442                         break;
443
444                 /* Will be included in layer 2. */
445                 case cpu_to_be16(ETH_P_8021Q):
446                         break;
447
448                 default:
449                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported");
450                         return -EOPNOTSUPP;
451                 }
452         } else if (nfp_flower_check_higher_than_mac(rule)) {
453                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType");
454                 return -EOPNOTSUPP;
455         }
456
457         if (basic.mask && basic.mask->ip_proto) {
458                 switch (basic.key->ip_proto) {
459                 case IPPROTO_TCP:
460                 case IPPROTO_UDP:
461                 case IPPROTO_SCTP:
462                 case IPPROTO_ICMP:
463                 case IPPROTO_ICMPV6:
464                         key_layer |= NFP_FLOWER_LAYER_TP;
465                         key_size += sizeof(struct nfp_flower_tp_ports);
466                         break;
467                 }
468         }
469
470         if (!(key_layer & NFP_FLOWER_LAYER_TP) &&
471             nfp_flower_check_higher_than_l3(rule)) {
472                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type");
473                 return -EOPNOTSUPP;
474         }
475
476         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) {
477                 struct flow_match_tcp tcp;
478                 u32 tcp_flags;
479
480                 flow_rule_match_tcp(rule, &tcp);
481                 tcp_flags = be16_to_cpu(tcp.key->flags);
482
483                 if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) {
484                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags");
485                         return -EOPNOTSUPP;
486                 }
487
488                 /* We only support PSH and URG flags when either
489                  * FIN, SYN or RST is present as well.
490                  */
491                 if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) &&
492                     !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) {
493                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST");
494                         return -EOPNOTSUPP;
495                 }
496
497                 /* We need to store TCP flags in the either the IPv4 or IPv6 key
498                  * space, thus we need to ensure we include a IPv4/IPv6 key
499                  * layer if we have not done so already.
500                  */
501                 if (!basic.key) {
502                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol");
503                         return -EOPNOTSUPP;
504                 }
505
506                 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
507                     !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
508                         switch (basic.key->n_proto) {
509                         case cpu_to_be16(ETH_P_IP):
510                                 key_layer |= NFP_FLOWER_LAYER_IPV4;
511                                 key_size += sizeof(struct nfp_flower_ipv4);
512                                 break;
513
514                         case cpu_to_be16(ETH_P_IPV6):
515                                         key_layer |= NFP_FLOWER_LAYER_IPV6;
516                                 key_size += sizeof(struct nfp_flower_ipv6);
517                                 break;
518
519                         default:
520                                 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6");
521                                 return -EOPNOTSUPP;
522                         }
523                 }
524         }
525
526         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
527                 struct flow_match_control ctl;
528
529                 flow_rule_match_control(rule, &ctl);
530                 if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) {
531                         NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag");
532                         return -EOPNOTSUPP;
533                 }
534         }
535
536         ret_key_ls->key_layer = key_layer;
537         ret_key_ls->key_layer_two = key_layer_two;
538         ret_key_ls->key_size = key_size;
539
540         return 0;
541 }
542
543 struct nfp_fl_payload *
544 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
545 {
546         struct nfp_fl_payload *flow_pay;
547
548         flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
549         if (!flow_pay)
550                 return NULL;
551
552         flow_pay->meta.key_len = key_layer->key_size;
553         flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
554         if (!flow_pay->unmasked_data)
555                 goto err_free_flow;
556
557         flow_pay->meta.mask_len = key_layer->key_size;
558         flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
559         if (!flow_pay->mask_data)
560                 goto err_free_unmasked;
561
562         flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
563         if (!flow_pay->action_data)
564                 goto err_free_mask;
565
566         flow_pay->nfp_tun_ipv4_addr = 0;
567         flow_pay->nfp_tun_ipv6 = NULL;
568         flow_pay->meta.flags = 0;
569         INIT_LIST_HEAD(&flow_pay->linked_flows);
570         flow_pay->in_hw = false;
571         flow_pay->pre_tun_rule.dev = NULL;
572
573         return flow_pay;
574
575 err_free_mask:
576         kfree(flow_pay->mask_data);
577 err_free_unmasked:
578         kfree(flow_pay->unmasked_data);
579 err_free_flow:
580         kfree(flow_pay);
581         return NULL;
582 }
583
584 static int
585 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow,
586                                      struct nfp_flower_merge_check *merge,
587                                      u8 *last_act_id, int *act_out)
588 {
589         struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl;
590         struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos;
591         struct nfp_fl_set_ip4_addrs *ipv4_add;
592         struct nfp_fl_set_ipv6_addr *ipv6_add;
593         struct nfp_fl_push_vlan *push_vlan;
594         struct nfp_fl_pre_tunnel *pre_tun;
595         struct nfp_fl_set_tport *tport;
596         struct nfp_fl_set_eth *eth;
597         struct nfp_fl_act_head *a;
598         unsigned int act_off = 0;
599         bool ipv6_tun = false;
600         u8 act_id = 0;
601         u8 *ports;
602         int i;
603
604         while (act_off < flow->meta.act_len) {
605                 a = (struct nfp_fl_act_head *)&flow->action_data[act_off];
606                 act_id = a->jump_id;
607
608                 switch (act_id) {
609                 case NFP_FL_ACTION_OPCODE_OUTPUT:
610                         if (act_out)
611                                 (*act_out)++;
612                         break;
613                 case NFP_FL_ACTION_OPCODE_PUSH_VLAN:
614                         push_vlan = (struct nfp_fl_push_vlan *)a;
615                         if (push_vlan->vlan_tci)
616                                 merge->tci = cpu_to_be16(0xffff);
617                         break;
618                 case NFP_FL_ACTION_OPCODE_POP_VLAN:
619                         merge->tci = cpu_to_be16(0);
620                         break;
621                 case NFP_FL_ACTION_OPCODE_SET_TUNNEL:
622                         /* New tunnel header means l2 to l4 can be matched. */
623                         eth_broadcast_addr(&merge->l2.mac_dst[0]);
624                         eth_broadcast_addr(&merge->l2.mac_src[0]);
625                         memset(&merge->l4, 0xff,
626                                sizeof(struct nfp_flower_tp_ports));
627                         if (ipv6_tun)
628                                 memset(&merge->ipv6, 0xff,
629                                        sizeof(struct nfp_flower_ipv6));
630                         else
631                                 memset(&merge->ipv4, 0xff,
632                                        sizeof(struct nfp_flower_ipv4));
633                         break;
634                 case NFP_FL_ACTION_OPCODE_SET_ETHERNET:
635                         eth = (struct nfp_fl_set_eth *)a;
636                         for (i = 0; i < ETH_ALEN; i++)
637                                 merge->l2.mac_dst[i] |= eth->eth_addr_mask[i];
638                         for (i = 0; i < ETH_ALEN; i++)
639                                 merge->l2.mac_src[i] |=
640                                         eth->eth_addr_mask[ETH_ALEN + i];
641                         break;
642                 case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS:
643                         ipv4_add = (struct nfp_fl_set_ip4_addrs *)a;
644                         merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask;
645                         merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask;
646                         break;
647                 case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS:
648                         ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a;
649                         merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask;
650                         merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask;
651                         break;
652                 case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC:
653                         ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
654                         for (i = 0; i < 4; i++)
655                                 merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |=
656                                         ipv6_add->ipv6[i].mask;
657                         break;
658                 case NFP_FL_ACTION_OPCODE_SET_IPV6_DST:
659                         ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
660                         for (i = 0; i < 4; i++)
661                                 merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |=
662                                         ipv6_add->ipv6[i].mask;
663                         break;
664                 case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL:
665                         ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a;
666                         merge->ipv6.ip_ext.ttl |=
667                                 ipv6_tc_hl_fl->ipv6_hop_limit_mask;
668                         merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask;
669                         merge->ipv6.ipv6_flow_label_exthdr |=
670                                 ipv6_tc_hl_fl->ipv6_label_mask;
671                         break;
672                 case NFP_FL_ACTION_OPCODE_SET_UDP:
673                 case NFP_FL_ACTION_OPCODE_SET_TCP:
674                         tport = (struct nfp_fl_set_tport *)a;
675                         ports = (u8 *)&merge->l4.port_src;
676                         for (i = 0; i < 4; i++)
677                                 ports[i] |= tport->tp_port_mask[i];
678                         break;
679                 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
680                         pre_tun = (struct nfp_fl_pre_tunnel *)a;
681                         ipv6_tun = be16_to_cpu(pre_tun->flags) &
682                                         NFP_FL_PRE_TUN_IPV6;
683                         break;
684                 case NFP_FL_ACTION_OPCODE_PRE_LAG:
685                 case NFP_FL_ACTION_OPCODE_PUSH_GENEVE:
686                         break;
687                 default:
688                         return -EOPNOTSUPP;
689                 }
690
691                 act_off += a->len_lw << NFP_FL_LW_SIZ;
692         }
693
694         if (last_act_id)
695                 *last_act_id = act_id;
696
697         return 0;
698 }
699
700 static int
701 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow,
702                                 struct nfp_flower_merge_check *merge,
703                                 bool extra_fields)
704 {
705         struct nfp_flower_meta_tci *meta_tci;
706         u8 *mask = flow->mask_data;
707         u8 key_layer, match_size;
708
709         memset(merge, 0, sizeof(struct nfp_flower_merge_check));
710
711         meta_tci = (struct nfp_flower_meta_tci *)mask;
712         key_layer = meta_tci->nfp_flow_key_layer;
713
714         if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields)
715                 return -EOPNOTSUPP;
716
717         merge->tci = meta_tci->tci;
718         mask += sizeof(struct nfp_flower_meta_tci);
719
720         if (key_layer & NFP_FLOWER_LAYER_EXT_META)
721                 mask += sizeof(struct nfp_flower_ext_meta);
722
723         mask += sizeof(struct nfp_flower_in_port);
724
725         if (key_layer & NFP_FLOWER_LAYER_MAC) {
726                 match_size = sizeof(struct nfp_flower_mac_mpls);
727                 memcpy(&merge->l2, mask, match_size);
728                 mask += match_size;
729         }
730
731         if (key_layer & NFP_FLOWER_LAYER_TP) {
732                 match_size = sizeof(struct nfp_flower_tp_ports);
733                 memcpy(&merge->l4, mask, match_size);
734                 mask += match_size;
735         }
736
737         if (key_layer & NFP_FLOWER_LAYER_IPV4) {
738                 match_size = sizeof(struct nfp_flower_ipv4);
739                 memcpy(&merge->ipv4, mask, match_size);
740         }
741
742         if (key_layer & NFP_FLOWER_LAYER_IPV6) {
743                 match_size = sizeof(struct nfp_flower_ipv6);
744                 memcpy(&merge->ipv6, mask, match_size);
745         }
746
747         return 0;
748 }
749
750 static int
751 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1,
752                      struct nfp_fl_payload *sub_flow2)
753 {
754         /* Two flows can be merged if sub_flow2 only matches on bits that are
755          * either matched by sub_flow1 or set by a sub_flow1 action. This
756          * ensures that every packet that hits sub_flow1 and recirculates is
757          * guaranteed to hit sub_flow2.
758          */
759         struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge;
760         int err, act_out = 0;
761         u8 last_act_id = 0;
762
763         err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge,
764                                               true);
765         if (err)
766                 return err;
767
768         err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge,
769                                               false);
770         if (err)
771                 return err;
772
773         err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge,
774                                                    &last_act_id, &act_out);
775         if (err)
776                 return err;
777
778         /* Must only be 1 output action and it must be the last in sequence. */
779         if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT)
780                 return -EOPNOTSUPP;
781
782         /* Reject merge if sub_flow2 matches on something that is not matched
783          * on or set in an action by sub_flow1.
784          */
785         err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals,
786                             sub_flow1_merge.vals,
787                             sizeof(struct nfp_flower_merge_check) * 8);
788         if (err)
789                 return -EINVAL;
790
791         return 0;
792 }
793
794 static unsigned int
795 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len,
796                             bool *tunnel_act)
797 {
798         unsigned int act_off = 0, act_len;
799         struct nfp_fl_act_head *a;
800         u8 act_id = 0;
801
802         while (act_off < len) {
803                 a = (struct nfp_fl_act_head *)&act_src[act_off];
804                 act_len = a->len_lw << NFP_FL_LW_SIZ;
805                 act_id = a->jump_id;
806
807                 switch (act_id) {
808                 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
809                         if (tunnel_act)
810                                 *tunnel_act = true;
811                         fallthrough;
812                 case NFP_FL_ACTION_OPCODE_PRE_LAG:
813                         memcpy(act_dst + act_off, act_src + act_off, act_len);
814                         break;
815                 default:
816                         return act_off;
817                 }
818
819                 act_off += act_len;
820         }
821
822         return act_off;
823 }
824
825 static int
826 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan)
827 {
828         struct nfp_fl_act_head *a;
829         unsigned int act_off = 0;
830
831         while (act_off < len) {
832                 a = (struct nfp_fl_act_head *)&acts[act_off];
833
834                 if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off)
835                         *vlan = (struct nfp_fl_push_vlan *)a;
836                 else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT)
837                         return -EOPNOTSUPP;
838
839                 act_off += a->len_lw << NFP_FL_LW_SIZ;
840         }
841
842         /* Ensure any VLAN push also has an egress action. */
843         if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan))
844                 return -EOPNOTSUPP;
845
846         return 0;
847 }
848
849 static int
850 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan)
851 {
852         struct nfp_fl_set_tun *tun;
853         struct nfp_fl_act_head *a;
854         unsigned int act_off = 0;
855
856         while (act_off < len) {
857                 a = (struct nfp_fl_act_head *)&acts[act_off];
858
859                 if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) {
860                         tun = (struct nfp_fl_set_tun *)a;
861                         tun->outer_vlan_tpid = vlan->vlan_tpid;
862                         tun->outer_vlan_tci = vlan->vlan_tci;
863
864                         return 0;
865                 }
866
867                 act_off += a->len_lw << NFP_FL_LW_SIZ;
868         }
869
870         /* Return error if no tunnel action is found. */
871         return -EOPNOTSUPP;
872 }
873
874 static int
875 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1,
876                         struct nfp_fl_payload *sub_flow2,
877                         struct nfp_fl_payload *merge_flow)
878 {
879         unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2;
880         struct nfp_fl_push_vlan *post_tun_push_vlan = NULL;
881         bool tunnel_act = false;
882         char *merge_act;
883         int err;
884
885         /* The last action of sub_flow1 must be output - do not merge this. */
886         sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output);
887         sub2_act_len = sub_flow2->meta.act_len;
888
889         if (!sub2_act_len)
890                 return -EINVAL;
891
892         if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ)
893                 return -EINVAL;
894
895         /* A shortcut can only be applied if there is a single action. */
896         if (sub1_act_len)
897                 merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
898         else
899                 merge_flow->meta.shortcut = sub_flow2->meta.shortcut;
900
901         merge_flow->meta.act_len = sub1_act_len + sub2_act_len;
902         merge_act = merge_flow->action_data;
903
904         /* Copy any pre-actions to the start of merge flow action list. */
905         pre_off1 = nfp_flower_copy_pre_actions(merge_act,
906                                                sub_flow1->action_data,
907                                                sub1_act_len, &tunnel_act);
908         merge_act += pre_off1;
909         sub1_act_len -= pre_off1;
910         pre_off2 = nfp_flower_copy_pre_actions(merge_act,
911                                                sub_flow2->action_data,
912                                                sub2_act_len, NULL);
913         merge_act += pre_off2;
914         sub2_act_len -= pre_off2;
915
916         /* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes
917          * a tunnel, there are restrictions on what sub_flow 2 actions lead to a
918          * valid merge.
919          */
920         if (tunnel_act) {
921                 char *post_tun_acts = &sub_flow2->action_data[pre_off2];
922
923                 err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len,
924                                                   &post_tun_push_vlan);
925                 if (err)
926                         return err;
927
928                 if (post_tun_push_vlan) {
929                         pre_off2 += sizeof(*post_tun_push_vlan);
930                         sub2_act_len -= sizeof(*post_tun_push_vlan);
931                 }
932         }
933
934         /* Copy remaining actions from sub_flows 1 and 2. */
935         memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len);
936
937         if (post_tun_push_vlan) {
938                 /* Update tunnel action in merge to include VLAN push. */
939                 err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len,
940                                                  post_tun_push_vlan);
941                 if (err)
942                         return err;
943
944                 merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan);
945         }
946
947         merge_act += sub1_act_len;
948         memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len);
949
950         return 0;
951 }
952
953 /* Flow link code should only be accessed under RTNL. */
954 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link)
955 {
956         list_del(&link->merge_flow.list);
957         list_del(&link->sub_flow.list);
958         kfree(link);
959 }
960
961 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow,
962                                     struct nfp_fl_payload *sub_flow)
963 {
964         struct nfp_fl_payload_link *link;
965
966         list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list)
967                 if (link->sub_flow.flow == sub_flow) {
968                         nfp_flower_unlink_flow(link);
969                         return;
970                 }
971 }
972
973 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow,
974                                  struct nfp_fl_payload *sub_flow)
975 {
976         struct nfp_fl_payload_link *link;
977
978         link = kmalloc(sizeof(*link), GFP_KERNEL);
979         if (!link)
980                 return -ENOMEM;
981
982         link->merge_flow.flow = merge_flow;
983         list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows);
984         link->sub_flow.flow = sub_flow;
985         list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows);
986
987         return 0;
988 }
989
990 /**
991  * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow.
992  * @app:        Pointer to the APP handle
993  * @sub_flow1:  Initial flow matched to produce merge hint
994  * @sub_flow2:  Post recirculation flow matched in merge hint
995  *
996  * Combines 2 flows (if valid) to a single flow, removing the initial from hw
997  * and offloading the new, merged flow.
998  *
999  * Return: negative value on error, 0 in success.
1000  */
1001 int nfp_flower_merge_offloaded_flows(struct nfp_app *app,
1002                                      struct nfp_fl_payload *sub_flow1,
1003                                      struct nfp_fl_payload *sub_flow2)
1004 {
1005         struct nfp_flower_priv *priv = app->priv;
1006         struct nfp_fl_payload *merge_flow;
1007         struct nfp_fl_key_ls merge_key_ls;
1008         struct nfp_merge_info *merge_info;
1009         u64 parent_ctx = 0;
1010         int err;
1011
1012         ASSERT_RTNL();
1013
1014         if (sub_flow1 == sub_flow2 ||
1015             nfp_flower_is_merge_flow(sub_flow1) ||
1016             nfp_flower_is_merge_flow(sub_flow2))
1017                 return -EINVAL;
1018
1019         /* check if the two flows are already merged */
1020         parent_ctx = (u64)(be32_to_cpu(sub_flow1->meta.host_ctx_id)) << 32;
1021         parent_ctx |= (u64)(be32_to_cpu(sub_flow2->meta.host_ctx_id));
1022         if (rhashtable_lookup_fast(&priv->merge_table,
1023                                    &parent_ctx, merge_table_params)) {
1024                 nfp_flower_cmsg_warn(app, "The two flows are already merged.\n");
1025                 return 0;
1026         }
1027
1028         err = nfp_flower_can_merge(sub_flow1, sub_flow2);
1029         if (err)
1030                 return err;
1031
1032         merge_key_ls.key_size = sub_flow1->meta.key_len;
1033
1034         merge_flow = nfp_flower_allocate_new(&merge_key_ls);
1035         if (!merge_flow)
1036                 return -ENOMEM;
1037
1038         merge_flow->tc_flower_cookie = (unsigned long)merge_flow;
1039         merge_flow->ingress_dev = sub_flow1->ingress_dev;
1040
1041         memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data,
1042                sub_flow1->meta.key_len);
1043         memcpy(merge_flow->mask_data, sub_flow1->mask_data,
1044                sub_flow1->meta.mask_len);
1045
1046         err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow);
1047         if (err)
1048                 goto err_destroy_merge_flow;
1049
1050         err = nfp_flower_link_flows(merge_flow, sub_flow1);
1051         if (err)
1052                 goto err_destroy_merge_flow;
1053
1054         err = nfp_flower_link_flows(merge_flow, sub_flow2);
1055         if (err)
1056                 goto err_unlink_sub_flow1;
1057
1058         err = nfp_compile_flow_metadata(app, merge_flow->tc_flower_cookie, merge_flow,
1059                                         merge_flow->ingress_dev, NULL);
1060         if (err)
1061                 goto err_unlink_sub_flow2;
1062
1063         err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node,
1064                                      nfp_flower_table_params);
1065         if (err)
1066                 goto err_release_metadata;
1067
1068         merge_info = kmalloc(sizeof(*merge_info), GFP_KERNEL);
1069         if (!merge_info) {
1070                 err = -ENOMEM;
1071                 goto err_remove_rhash;
1072         }
1073         merge_info->parent_ctx = parent_ctx;
1074         err = rhashtable_insert_fast(&priv->merge_table, &merge_info->ht_node,
1075                                      merge_table_params);
1076         if (err)
1077                 goto err_destroy_merge_info;
1078
1079         err = nfp_flower_xmit_flow(app, merge_flow,
1080                                    NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1081         if (err)
1082                 goto err_remove_merge_info;
1083
1084         merge_flow->in_hw = true;
1085         sub_flow1->in_hw = false;
1086
1087         return 0;
1088
1089 err_remove_merge_info:
1090         WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
1091                                             &merge_info->ht_node,
1092                                             merge_table_params));
1093 err_destroy_merge_info:
1094         kfree(merge_info);
1095 err_remove_rhash:
1096         WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1097                                             &merge_flow->fl_node,
1098                                             nfp_flower_table_params));
1099 err_release_metadata:
1100         nfp_modify_flow_metadata(app, merge_flow);
1101 err_unlink_sub_flow2:
1102         nfp_flower_unlink_flows(merge_flow, sub_flow2);
1103 err_unlink_sub_flow1:
1104         nfp_flower_unlink_flows(merge_flow, sub_flow1);
1105 err_destroy_merge_flow:
1106         kfree(merge_flow->action_data);
1107         kfree(merge_flow->mask_data);
1108         kfree(merge_flow->unmasked_data);
1109         kfree(merge_flow);
1110         return err;
1111 }
1112
1113 /**
1114  * nfp_flower_validate_pre_tun_rule()
1115  * @app:        Pointer to the APP handle
1116  * @flow:       Pointer to NFP flow representation of rule
1117  * @key_ls:     Pointer to NFP key layers structure
1118  * @extack:     Netlink extended ACK report
1119  *
1120  * Verifies the flow as a pre-tunnel rule.
1121  *
1122  * Return: negative value on error, 0 if verified.
1123  */
1124 static int
1125 nfp_flower_validate_pre_tun_rule(struct nfp_app *app,
1126                                  struct nfp_fl_payload *flow,
1127                                  struct nfp_fl_key_ls *key_ls,
1128                                  struct netlink_ext_ack *extack)
1129 {
1130         struct nfp_flower_priv *priv = app->priv;
1131         struct nfp_flower_meta_tci *meta_tci;
1132         struct nfp_flower_mac_mpls *mac;
1133         u8 *ext = flow->unmasked_data;
1134         struct nfp_fl_act_head *act;
1135         u8 *mask = flow->mask_data;
1136         bool vlan = false;
1137         int act_offset;
1138         u8 key_layer;
1139
1140         meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data;
1141         key_layer = key_ls->key_layer;
1142         if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
1143                 if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) {
1144                         u16 vlan_tci = be16_to_cpu(meta_tci->tci);
1145
1146                         vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1147                         flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1148                         vlan = true;
1149                 } else {
1150                         flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1151                 }
1152         }
1153
1154         if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) {
1155                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields");
1156                 return -EOPNOTSUPP;
1157         } else if (key_ls->key_layer_two & ~NFP_FLOWER_LAYER2_QINQ) {
1158                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non-vlan in extended match fields");
1159                 return -EOPNOTSUPP;
1160         }
1161
1162         if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
1163                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required");
1164                 return -EOPNOTSUPP;
1165         }
1166
1167         if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
1168             !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
1169                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on ipv4/ipv6 eth_type must be present");
1170                 return -EOPNOTSUPP;
1171         }
1172
1173         /* Skip fields known to exist. */
1174         mask += sizeof(struct nfp_flower_meta_tci);
1175         ext += sizeof(struct nfp_flower_meta_tci);
1176         if (key_ls->key_layer_two) {
1177                 mask += sizeof(struct nfp_flower_ext_meta);
1178                 ext += sizeof(struct nfp_flower_ext_meta);
1179         }
1180         mask += sizeof(struct nfp_flower_in_port);
1181         ext += sizeof(struct nfp_flower_in_port);
1182
1183         /* Ensure destination MAC address matches pre_tun_dev. */
1184         mac = (struct nfp_flower_mac_mpls *)ext;
1185         if (memcmp(&mac->mac_dst[0], flow->pre_tun_rule.dev->dev_addr, 6)) {
1186                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC must match output dev MAC");
1187                 return -EOPNOTSUPP;
1188         }
1189
1190         /* Ensure destination MAC address is fully matched. */
1191         mac = (struct nfp_flower_mac_mpls *)mask;
1192         if (!is_broadcast_ether_addr(&mac->mac_dst[0])) {
1193                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked");
1194                 return -EOPNOTSUPP;
1195         }
1196
1197         if (mac->mpls_lse) {
1198                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MPLS not supported");
1199                 return -EOPNOTSUPP;
1200         }
1201
1202         mask += sizeof(struct nfp_flower_mac_mpls);
1203         ext += sizeof(struct nfp_flower_mac_mpls);
1204         if (key_layer & NFP_FLOWER_LAYER_IPV4 ||
1205             key_layer & NFP_FLOWER_LAYER_IPV6) {
1206                 /* Flags and proto fields have same offset in IPv4 and IPv6. */
1207                 int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags);
1208                 int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto);
1209                 int size;
1210                 int i;
1211
1212                 size = key_layer & NFP_FLOWER_LAYER_IPV4 ?
1213                         sizeof(struct nfp_flower_ipv4) :
1214                         sizeof(struct nfp_flower_ipv6);
1215
1216
1217                 /* Ensure proto and flags are the only IP layer fields. */
1218                 for (i = 0; i < size; i++)
1219                         if (mask[i] && i != ip_flags && i != ip_proto) {
1220                                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header");
1221                                 return -EOPNOTSUPP;
1222                         }
1223                 ext += size;
1224                 mask += size;
1225         }
1226
1227         if ((priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
1228                 if (key_ls->key_layer_two & NFP_FLOWER_LAYER2_QINQ) {
1229                         struct nfp_flower_vlan *vlan_tags;
1230                         u16 vlan_tci;
1231
1232                         vlan_tags = (struct nfp_flower_vlan *)ext;
1233
1234                         vlan_tci = be16_to_cpu(vlan_tags->outer_tci);
1235
1236                         vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1237                         flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1238                         vlan = true;
1239                 } else {
1240                         flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1241                 }
1242         }
1243
1244         /* Action must be a single egress or pop_vlan and egress. */
1245         act_offset = 0;
1246         act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1247         if (vlan) {
1248                 if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) {
1249                         NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action");
1250                         return -EOPNOTSUPP;
1251                 }
1252
1253                 act_offset += act->len_lw << NFP_FL_LW_SIZ;
1254                 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1255         }
1256
1257         if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) {
1258                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected");
1259                 return -EOPNOTSUPP;
1260         }
1261
1262         act_offset += act->len_lw << NFP_FL_LW_SIZ;
1263
1264         /* Ensure there are no more actions after egress. */
1265         if (act_offset != flow->meta.act_len) {
1266                 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action");
1267                 return -EOPNOTSUPP;
1268         }
1269
1270         return 0;
1271 }
1272
1273 static bool offload_pre_check(struct flow_cls_offload *flow)
1274 {
1275         struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
1276         struct flow_dissector *dissector = rule->match.dissector;
1277
1278         if (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CT))
1279                 return false;
1280
1281         if (flow->common.chain_index)
1282                 return false;
1283
1284         return true;
1285 }
1286
1287 /**
1288  * nfp_flower_add_offload() - Adds a new flow to hardware.
1289  * @app:        Pointer to the APP handle
1290  * @netdev:     netdev structure.
1291  * @flow:       TC flower classifier offload structure.
1292  *
1293  * Adds a new flow to the repeated hash structure and action payload.
1294  *
1295  * Return: negative value on error, 0 if configured successfully.
1296  */
1297 static int
1298 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
1299                        struct flow_cls_offload *flow)
1300 {
1301         struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
1302         enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
1303         struct nfp_flower_priv *priv = app->priv;
1304         struct netlink_ext_ack *extack = NULL;
1305         struct nfp_fl_payload *flow_pay;
1306         struct nfp_fl_key_ls *key_layer;
1307         struct nfp_port *port = NULL;
1308         int err;
1309
1310         extack = flow->common.extack;
1311         if (nfp_netdev_is_nfp_repr(netdev))
1312                 port = nfp_port_from_netdev(netdev);
1313
1314         if (is_pre_ct_flow(flow))
1315                 return nfp_fl_ct_handle_pre_ct(priv, netdev, flow, extack);
1316
1317         if (is_post_ct_flow(flow))
1318                 return nfp_fl_ct_handle_post_ct(priv, netdev, flow, extack);
1319
1320         if (!offload_pre_check(flow))
1321                 return -EOPNOTSUPP;
1322
1323         key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
1324         if (!key_layer)
1325                 return -ENOMEM;
1326
1327         err = nfp_flower_calculate_key_layers(app, netdev, key_layer, rule,
1328                                               &tun_type, extack);
1329         if (err)
1330                 goto err_free_key_ls;
1331
1332         flow_pay = nfp_flower_allocate_new(key_layer);
1333         if (!flow_pay) {
1334                 err = -ENOMEM;
1335                 goto err_free_key_ls;
1336         }
1337
1338         err = nfp_flower_compile_flow_match(app, rule, key_layer, netdev,
1339                                             flow_pay, tun_type, extack);
1340         if (err)
1341                 goto err_destroy_flow;
1342
1343         err = nfp_flower_compile_action(app, rule, netdev, flow_pay, extack);
1344         if (err)
1345                 goto err_destroy_flow;
1346
1347         if (flow_pay->pre_tun_rule.dev) {
1348                 err = nfp_flower_validate_pre_tun_rule(app, flow_pay, key_layer, extack);
1349                 if (err)
1350                         goto err_destroy_flow;
1351         }
1352
1353         err = nfp_compile_flow_metadata(app, flow->cookie, flow_pay, netdev, extack);
1354         if (err)
1355                 goto err_destroy_flow;
1356
1357         flow_pay->tc_flower_cookie = flow->cookie;
1358         err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
1359                                      nfp_flower_table_params);
1360         if (err) {
1361                 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads");
1362                 goto err_release_metadata;
1363         }
1364
1365         if (flow_pay->pre_tun_rule.dev)
1366                 err = nfp_flower_xmit_pre_tun_flow(app, flow_pay);
1367         else
1368                 err = nfp_flower_xmit_flow(app, flow_pay,
1369                                            NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
1370         if (err)
1371                 goto err_remove_rhash;
1372
1373         if (port)
1374                 port->tc_offload_cnt++;
1375
1376         flow_pay->in_hw = true;
1377
1378         /* Deallocate flow payload when flower rule has been destroyed. */
1379         kfree(key_layer);
1380
1381         return 0;
1382
1383 err_remove_rhash:
1384         WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1385                                             &flow_pay->fl_node,
1386                                             nfp_flower_table_params));
1387 err_release_metadata:
1388         nfp_modify_flow_metadata(app, flow_pay);
1389 err_destroy_flow:
1390         if (flow_pay->nfp_tun_ipv6)
1391                 nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6);
1392         kfree(flow_pay->action_data);
1393         kfree(flow_pay->mask_data);
1394         kfree(flow_pay->unmasked_data);
1395         kfree(flow_pay);
1396 err_free_key_ls:
1397         kfree(key_layer);
1398         return err;
1399 }
1400
1401 static void
1402 nfp_flower_remove_merge_flow(struct nfp_app *app,
1403                              struct nfp_fl_payload *del_sub_flow,
1404                              struct nfp_fl_payload *merge_flow)
1405 {
1406         struct nfp_flower_priv *priv = app->priv;
1407         struct nfp_fl_payload_link *link, *temp;
1408         struct nfp_merge_info *merge_info;
1409         struct nfp_fl_payload *origin;
1410         u64 parent_ctx = 0;
1411         bool mod = false;
1412         int err;
1413
1414         link = list_first_entry(&merge_flow->linked_flows,
1415                                 struct nfp_fl_payload_link, merge_flow.list);
1416         origin = link->sub_flow.flow;
1417
1418         /* Re-add rule the merge had overwritten if it has not been deleted. */
1419         if (origin != del_sub_flow)
1420                 mod = true;
1421
1422         err = nfp_modify_flow_metadata(app, merge_flow);
1423         if (err) {
1424                 nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n");
1425                 goto err_free_links;
1426         }
1427
1428         if (!mod) {
1429                 err = nfp_flower_xmit_flow(app, merge_flow,
1430                                            NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1431                 if (err) {
1432                         nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n");
1433                         goto err_free_links;
1434                 }
1435         } else {
1436                 __nfp_modify_flow_metadata(priv, origin);
1437                 err = nfp_flower_xmit_flow(app, origin,
1438                                            NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1439                 if (err)
1440                         nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n");
1441                 origin->in_hw = true;
1442         }
1443
1444 err_free_links:
1445         /* Clean any links connected with the merged flow. */
1446         list_for_each_entry_safe(link, temp, &merge_flow->linked_flows,
1447                                  merge_flow.list) {
1448                 u32 ctx_id = be32_to_cpu(link->sub_flow.flow->meta.host_ctx_id);
1449
1450                 parent_ctx = (parent_ctx << 32) | (u64)(ctx_id);
1451                 nfp_flower_unlink_flow(link);
1452         }
1453
1454         merge_info = rhashtable_lookup_fast(&priv->merge_table,
1455                                             &parent_ctx,
1456                                             merge_table_params);
1457         if (merge_info) {
1458                 WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
1459                                                     &merge_info->ht_node,
1460                                                     merge_table_params));
1461                 kfree(merge_info);
1462         }
1463
1464         kfree(merge_flow->action_data);
1465         kfree(merge_flow->mask_data);
1466         kfree(merge_flow->unmasked_data);
1467         WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1468                                             &merge_flow->fl_node,
1469                                             nfp_flower_table_params));
1470         kfree_rcu(merge_flow, rcu);
1471 }
1472
1473 void
1474 nfp_flower_del_linked_merge_flows(struct nfp_app *app,
1475                                   struct nfp_fl_payload *sub_flow)
1476 {
1477         struct nfp_fl_payload_link *link, *temp;
1478
1479         /* Remove any merge flow formed from the deleted sub_flow. */
1480         list_for_each_entry_safe(link, temp, &sub_flow->linked_flows,
1481                                  sub_flow.list)
1482                 nfp_flower_remove_merge_flow(app, sub_flow,
1483                                              link->merge_flow.flow);
1484 }
1485
1486 /**
1487  * nfp_flower_del_offload() - Removes a flow from hardware.
1488  * @app:        Pointer to the APP handle
1489  * @netdev:     netdev structure.
1490  * @flow:       TC flower classifier offload structure
1491  *
1492  * Removes a flow from the repeated hash structure and clears the
1493  * action payload. Any flows merged from this are also deleted.
1494  *
1495  * Return: negative value on error, 0 if removed successfully.
1496  */
1497 static int
1498 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
1499                        struct flow_cls_offload *flow)
1500 {
1501         struct nfp_flower_priv *priv = app->priv;
1502         struct nfp_fl_ct_map_entry *ct_map_ent;
1503         struct netlink_ext_ack *extack = NULL;
1504         struct nfp_fl_payload *nfp_flow;
1505         struct nfp_port *port = NULL;
1506         int err;
1507
1508         extack = flow->common.extack;
1509         if (nfp_netdev_is_nfp_repr(netdev))
1510                 port = nfp_port_from_netdev(netdev);
1511
1512         /* Check ct_map_table */
1513         ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
1514                                             nfp_ct_map_params);
1515         if (ct_map_ent) {
1516                 err = nfp_fl_ct_del_flow(ct_map_ent);
1517                 return err;
1518         }
1519
1520         nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1521         if (!nfp_flow) {
1522                 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist");
1523                 return -ENOENT;
1524         }
1525
1526         err = nfp_modify_flow_metadata(app, nfp_flow);
1527         if (err)
1528                 goto err_free_merge_flow;
1529
1530         if (nfp_flow->nfp_tun_ipv4_addr)
1531                 nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
1532
1533         if (nfp_flow->nfp_tun_ipv6)
1534                 nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6);
1535
1536         if (!nfp_flow->in_hw) {
1537                 err = 0;
1538                 goto err_free_merge_flow;
1539         }
1540
1541         if (nfp_flow->pre_tun_rule.dev)
1542                 err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow);
1543         else
1544                 err = nfp_flower_xmit_flow(app, nfp_flow,
1545                                            NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1546         /* Fall through on error. */
1547
1548 err_free_merge_flow:
1549         nfp_flower_del_linked_merge_flows(app, nfp_flow);
1550         if (port)
1551                 port->tc_offload_cnt--;
1552         kfree(nfp_flow->action_data);
1553         kfree(nfp_flow->mask_data);
1554         kfree(nfp_flow->unmasked_data);
1555         WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1556                                             &nfp_flow->fl_node,
1557                                             nfp_flower_table_params));
1558         kfree_rcu(nfp_flow, rcu);
1559         return err;
1560 }
1561
1562 static void
1563 __nfp_flower_update_merge_stats(struct nfp_app *app,
1564                                 struct nfp_fl_payload *merge_flow)
1565 {
1566         struct nfp_flower_priv *priv = app->priv;
1567         struct nfp_fl_payload_link *link;
1568         struct nfp_fl_payload *sub_flow;
1569         u64 pkts, bytes, used;
1570         u32 ctx_id;
1571
1572         ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id);
1573         pkts = priv->stats[ctx_id].pkts;
1574         /* Do not cycle subflows if no stats to distribute. */
1575         if (!pkts)
1576                 return;
1577         bytes = priv->stats[ctx_id].bytes;
1578         used = priv->stats[ctx_id].used;
1579
1580         /* Reset stats for the merge flow. */
1581         priv->stats[ctx_id].pkts = 0;
1582         priv->stats[ctx_id].bytes = 0;
1583
1584         /* The merge flow has received stats updates from firmware.
1585          * Distribute these stats to all subflows that form the merge.
1586          * The stats will collected from TC via the subflows.
1587          */
1588         list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) {
1589                 sub_flow = link->sub_flow.flow;
1590                 ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id);
1591                 priv->stats[ctx_id].pkts += pkts;
1592                 priv->stats[ctx_id].bytes += bytes;
1593                 priv->stats[ctx_id].used = max_t(u64, used,
1594                                                  priv->stats[ctx_id].used);
1595         }
1596 }
1597
1598 void
1599 nfp_flower_update_merge_stats(struct nfp_app *app,
1600                               struct nfp_fl_payload *sub_flow)
1601 {
1602         struct nfp_fl_payload_link *link;
1603
1604         /* Get merge flows that the subflow forms to distribute their stats. */
1605         list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list)
1606                 __nfp_flower_update_merge_stats(app, link->merge_flow.flow);
1607 }
1608
1609 /**
1610  * nfp_flower_get_stats() - Populates flow stats obtained from hardware.
1611  * @app:        Pointer to the APP handle
1612  * @netdev:     Netdev structure.
1613  * @flow:       TC flower classifier offload structure
1614  *
1615  * Populates a flow statistics structure which which corresponds to a
1616  * specific flow.
1617  *
1618  * Return: negative value on error, 0 if stats populated successfully.
1619  */
1620 static int
1621 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev,
1622                      struct flow_cls_offload *flow)
1623 {
1624         struct nfp_flower_priv *priv = app->priv;
1625         struct nfp_fl_ct_map_entry *ct_map_ent;
1626         struct netlink_ext_ack *extack = NULL;
1627         struct nfp_fl_payload *nfp_flow;
1628         u32 ctx_id;
1629
1630         /* Check ct_map table first */
1631         ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
1632                                             nfp_ct_map_params);
1633         if (ct_map_ent)
1634                 return nfp_fl_ct_stats(flow, ct_map_ent);
1635
1636         extack = flow->common.extack;
1637         nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1638         if (!nfp_flow) {
1639                 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist");
1640                 return -EINVAL;
1641         }
1642
1643         ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
1644
1645         spin_lock_bh(&priv->stats_lock);
1646         /* If request is for a sub_flow, update stats from merged flows. */
1647         if (!list_empty(&nfp_flow->linked_flows))
1648                 nfp_flower_update_merge_stats(app, nfp_flow);
1649
1650         flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes,
1651                           priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used,
1652                           FLOW_ACTION_HW_STATS_DELAYED);
1653
1654         priv->stats[ctx_id].pkts = 0;
1655         priv->stats[ctx_id].bytes = 0;
1656         spin_unlock_bh(&priv->stats_lock);
1657
1658         return 0;
1659 }
1660
1661 static int
1662 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
1663                         struct flow_cls_offload *flower)
1664 {
1665         if (!eth_proto_is_802_3(flower->common.protocol))
1666                 return -EOPNOTSUPP;
1667
1668         switch (flower->command) {
1669         case FLOW_CLS_REPLACE:
1670                 return nfp_flower_add_offload(app, netdev, flower);
1671         case FLOW_CLS_DESTROY:
1672                 return nfp_flower_del_offload(app, netdev, flower);
1673         case FLOW_CLS_STATS:
1674                 return nfp_flower_get_stats(app, netdev, flower);
1675         default:
1676                 return -EOPNOTSUPP;
1677         }
1678 }
1679
1680 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
1681                                         void *type_data, void *cb_priv)
1682 {
1683         struct flow_cls_common_offload *common = type_data;
1684         struct nfp_repr *repr = cb_priv;
1685
1686         if (!tc_can_offload_extack(repr->netdev, common->extack))
1687                 return -EOPNOTSUPP;
1688
1689         switch (type) {
1690         case TC_SETUP_CLSFLOWER:
1691                 return nfp_flower_repr_offload(repr->app, repr->netdev,
1692                                                type_data);
1693         case TC_SETUP_CLSMATCHALL:
1694                 return nfp_flower_setup_qos_offload(repr->app, repr->netdev,
1695                                                     type_data);
1696         default:
1697                 return -EOPNOTSUPP;
1698         }
1699 }
1700
1701 static LIST_HEAD(nfp_block_cb_list);
1702
1703 static int nfp_flower_setup_tc_block(struct net_device *netdev,
1704                                      struct flow_block_offload *f)
1705 {
1706         struct nfp_repr *repr = netdev_priv(netdev);
1707         struct nfp_flower_repr_priv *repr_priv;
1708         struct flow_block_cb *block_cb;
1709
1710         if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
1711                 return -EOPNOTSUPP;
1712
1713         repr_priv = repr->app_priv;
1714         repr_priv->block_shared = f->block_shared;
1715         f->driver_block_list = &nfp_block_cb_list;
1716
1717         switch (f->command) {
1718         case FLOW_BLOCK_BIND:
1719                 if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr,
1720                                           &nfp_block_cb_list))
1721                         return -EBUSY;
1722
1723                 block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb,
1724                                                repr, repr, NULL);
1725                 if (IS_ERR(block_cb))
1726                         return PTR_ERR(block_cb);
1727
1728                 flow_block_cb_add(block_cb, f);
1729                 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1730                 return 0;
1731         case FLOW_BLOCK_UNBIND:
1732                 block_cb = flow_block_cb_lookup(f->block,
1733                                                 nfp_flower_setup_tc_block_cb,
1734                                                 repr);
1735                 if (!block_cb)
1736                         return -ENOENT;
1737
1738                 flow_block_cb_remove(block_cb, f);
1739                 list_del(&block_cb->driver_list);
1740                 return 0;
1741         default:
1742                 return -EOPNOTSUPP;
1743         }
1744 }
1745
1746 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
1747                         enum tc_setup_type type, void *type_data)
1748 {
1749         switch (type) {
1750         case TC_SETUP_BLOCK:
1751                 return nfp_flower_setup_tc_block(netdev, type_data);
1752         default:
1753                 return -EOPNOTSUPP;
1754         }
1755 }
1756
1757 struct nfp_flower_indr_block_cb_priv {
1758         struct net_device *netdev;
1759         struct nfp_app *app;
1760         struct list_head list;
1761 };
1762
1763 static struct nfp_flower_indr_block_cb_priv *
1764 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app,
1765                                      struct net_device *netdev)
1766 {
1767         struct nfp_flower_indr_block_cb_priv *cb_priv;
1768         struct nfp_flower_priv *priv = app->priv;
1769
1770         /* All callback list access should be protected by RTNL. */
1771         ASSERT_RTNL();
1772
1773         list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list)
1774                 if (cb_priv->netdev == netdev)
1775                         return cb_priv;
1776
1777         return NULL;
1778 }
1779
1780 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type,
1781                                           void *type_data, void *cb_priv)
1782 {
1783         struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1784
1785         switch (type) {
1786         case TC_SETUP_CLSFLOWER:
1787                 return nfp_flower_repr_offload(priv->app, priv->netdev,
1788                                                type_data);
1789         default:
1790                 return -EOPNOTSUPP;
1791         }
1792 }
1793
1794 void nfp_flower_setup_indr_tc_release(void *cb_priv)
1795 {
1796         struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1797
1798         list_del(&priv->list);
1799         kfree(priv);
1800 }
1801
1802 static int
1803 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct Qdisc *sch, struct nfp_app *app,
1804                                struct flow_block_offload *f, void *data,
1805                                void (*cleanup)(struct flow_block_cb *block_cb))
1806 {
1807         struct nfp_flower_indr_block_cb_priv *cb_priv;
1808         struct nfp_flower_priv *priv = app->priv;
1809         struct flow_block_cb *block_cb;
1810
1811         if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
1812              !nfp_flower_internal_port_can_offload(app, netdev)) ||
1813             (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS &&
1814              nfp_flower_internal_port_can_offload(app, netdev)))
1815                 return -EOPNOTSUPP;
1816
1817         switch (f->command) {
1818         case FLOW_BLOCK_BIND:
1819                 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1820                 if (cb_priv &&
1821                     flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb,
1822                                           cb_priv,
1823                                           &nfp_block_cb_list))
1824                         return -EBUSY;
1825
1826                 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
1827                 if (!cb_priv)
1828                         return -ENOMEM;
1829
1830                 cb_priv->netdev = netdev;
1831                 cb_priv->app = app;
1832                 list_add(&cb_priv->list, &priv->indr_block_cb_priv);
1833
1834                 block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb,
1835                                                     cb_priv, cb_priv,
1836                                                     nfp_flower_setup_indr_tc_release,
1837                                                     f, netdev, sch, data, app, cleanup);
1838                 if (IS_ERR(block_cb)) {
1839                         list_del(&cb_priv->list);
1840                         kfree(cb_priv);
1841                         return PTR_ERR(block_cb);
1842                 }
1843
1844                 flow_block_cb_add(block_cb, f);
1845                 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1846                 return 0;
1847         case FLOW_BLOCK_UNBIND:
1848                 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1849                 if (!cb_priv)
1850                         return -ENOENT;
1851
1852                 block_cb = flow_block_cb_lookup(f->block,
1853                                                 nfp_flower_setup_indr_block_cb,
1854                                                 cb_priv);
1855                 if (!block_cb)
1856                         return -ENOENT;
1857
1858                 flow_indr_block_cb_remove(block_cb, f);
1859                 list_del(&block_cb->driver_list);
1860                 return 0;
1861         default:
1862                 return -EOPNOTSUPP;
1863         }
1864         return 0;
1865 }
1866
1867 int
1868 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv,
1869                             enum tc_setup_type type, void *type_data,
1870                             void *data,
1871                             void (*cleanup)(struct flow_block_cb *block_cb))
1872 {
1873         if (!nfp_fl_is_netdev_to_offload(netdev))
1874                 return -EOPNOTSUPP;
1875
1876         switch (type) {
1877         case TC_SETUP_BLOCK:
1878                 return nfp_flower_setup_indr_tc_block(netdev, sch, cb_priv,
1879                                                       type_data, data, cleanup);
1880         default:
1881                 return -EOPNOTSUPP;
1882         }
1883 }