1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
4 #define pr_fmt(fmt) "NFP net bpf: " fmt
8 #include <linux/filter.h>
9 #include <linux/kernel.h>
10 #include <linux/pkt_cls.h>
11 #include <linux/reciprocal_div.h>
12 #include <linux/unistd.h>
15 #include "../nfp_asm.h"
16 #include "../nfp_net_ctrl.h"
18 /* --- NFP prog --- */
19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
20 * It's safe to modify the next pointers (but not pos).
22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \
23 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 next = list_next_entry(pos, l); \
25 &(nfp_prog)->insns != &pos->l && \
26 &(nfp_prog)->insns != &next->l; \
27 pos = nfp_meta_next(pos), \
28 next = nfp_meta_next(pos))
30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \
31 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 next = list_next_entry(pos, l), \
33 next2 = list_next_entry(next, l); \
34 &(nfp_prog)->insns != &pos->l && \
35 &(nfp_prog)->insns != &next->l && \
36 &(nfp_prog)->insns != &next2->l; \
37 pos = nfp_meta_next(pos), \
38 next = nfp_meta_next(pos), \
39 next2 = nfp_meta_next(next))
42 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
44 return meta->l.prev != &nfp_prog->insns;
47 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
49 if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50 pr_warn("instruction limit reached (%u NFP instructions)\n",
52 nfp_prog->error = -ENOSPC;
56 nfp_prog->prog[nfp_prog->prog_len] = insn;
60 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
62 return nfp_prog->prog_len;
66 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
68 /* If there is a recorded error we may have dropped instructions;
69 * that doesn't have to be due to translator bug, and the translation
70 * will fail anyway, so just return OK.
74 return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
77 /* --- Emitters --- */
79 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80 u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
85 insn = FIELD_PREP(OP_CMD_A_SRC, areg) |
86 FIELD_PREP(OP_CMD_CTX, ctx) |
87 FIELD_PREP(OP_CMD_B_SRC, breg) |
88 FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89 FIELD_PREP(OP_CMD_XFER, xfer) |
90 FIELD_PREP(OP_CMD_CNT, size) |
91 FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92 FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93 FIELD_PREP(OP_CMD_INDIR, indir) |
94 FIELD_PREP(OP_CMD_MODE, mode);
96 nfp_prog_push(nfp_prog, insn);
100 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
103 struct nfp_insn_re_regs reg;
106 err = swreg_to_restricted(reg_none(), lreg, rreg, ®, false);
108 nfp_prog->error = err;
112 pr_err("cmd can't swap arguments\n");
113 nfp_prog->error = -EFAULT;
116 if (reg.dst_lmextn || reg.src_lmextn) {
117 pr_err("cmd can't use LMextn\n");
118 nfp_prog->error = -EFAULT;
122 __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
127 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
130 emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
134 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
137 emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
141 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142 enum br_ctx_signal_state css, u16 addr, u8 defer)
144 u16 addr_lo, addr_hi;
147 addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148 addr_hi = addr != addr_lo;
151 FIELD_PREP(OP_BR_MASK, mask) |
152 FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153 FIELD_PREP(OP_BR_CSS, css) |
154 FIELD_PREP(OP_BR_DEFBR, defer) |
155 FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156 FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
158 nfp_prog_push(nfp_prog, insn);
162 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163 enum nfp_relo_type relo)
165 if (mask == BR_UNC && defer > 2) {
166 pr_err("BUG: branch defer out of bounds %d\n", defer);
167 nfp_prog->error = -EFAULT;
171 __emit_br(nfp_prog, mask,
172 mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173 BR_CSS_NONE, addr, defer);
175 nfp_prog->prog[nfp_prog->prog_len - 1] |=
176 FIELD_PREP(OP_RELO_TYPE, relo);
180 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
182 emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
186 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187 bool set, bool src_lmextn)
189 u16 addr_lo, addr_hi;
192 addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193 addr_hi = addr != addr_lo;
195 insn = OP_BR_BIT_BASE |
196 FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197 FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198 FIELD_PREP(OP_BR_BIT_BV, set) |
199 FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200 FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201 FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202 FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
204 nfp_prog_push(nfp_prog, insn);
208 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209 u8 defer, bool set, enum nfp_relo_type relo)
211 struct nfp_insn_re_regs reg;
214 /* NOTE: The bit to test is specified as an rotation amount, such that
215 * the bit to test will be placed on the MSB of the result when
216 * doing a rotate right. For bit X, we need right rotate X + 1.
220 err = swreg_to_restricted(reg_none(), src, reg_imm(bit), ®, false);
222 nfp_prog->error = err;
226 __emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
229 nfp_prog->prog[nfp_prog->prog_len - 1] |=
230 FIELD_PREP(OP_RELO_TYPE, relo);
234 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
236 emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
240 __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241 u8 defer, bool dst_lmextn, bool src_lmextn)
245 insn = OP_BR_ALU_BASE |
246 FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247 FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248 FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249 FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250 FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251 FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
253 nfp_prog_push(nfp_prog, insn);
256 static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
258 struct nfp_insn_ur_regs reg;
261 err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), ®);
263 nfp_prog->error = err;
267 __emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
272 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273 enum immed_width width, bool invert,
274 enum immed_shift shift, bool wr_both,
275 bool dst_lmextn, bool src_lmextn)
279 insn = OP_IMMED_BASE |
280 FIELD_PREP(OP_IMMED_A_SRC, areg) |
281 FIELD_PREP(OP_IMMED_B_SRC, breg) |
282 FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283 FIELD_PREP(OP_IMMED_WIDTH, width) |
284 FIELD_PREP(OP_IMMED_INV, invert) |
285 FIELD_PREP(OP_IMMED_SHIFT, shift) |
286 FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287 FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288 FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
290 nfp_prog_push(nfp_prog, insn);
294 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295 enum immed_width width, bool invert, enum immed_shift shift)
297 struct nfp_insn_ur_regs reg;
300 if (swreg_type(dst) == NN_REG_IMM) {
301 nfp_prog->error = -EFAULT;
305 err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), ®);
307 nfp_prog->error = err;
311 /* Use reg.dst when destination is No-Dest. */
312 __emit_immed(nfp_prog,
313 swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
314 reg.breg, imm >> 8, width, invert, shift,
315 reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
319 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320 enum shf_sc sc, u8 shift,
321 u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322 bool dst_lmextn, bool src_lmextn)
326 if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327 nfp_prog->error = -EFAULT;
331 /* NFP shift instruction has something special. If shift direction is
332 * left then shift amount of 1 to 31 is specified as 32 minus the amount
335 * But no need to do this for indirect shift which has shift amount be
336 * 0. Even after we do this subtraction, shift amount 0 will be turned
337 * into 32 which will eventually be encoded the same as 0 because only
338 * low 5 bits are encoded, but shift amount be 32 will fail the
339 * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
342 if (sc == SHF_SC_L_SHF && shift)
346 FIELD_PREP(OP_SHF_A_SRC, areg) |
347 FIELD_PREP(OP_SHF_SC, sc) |
348 FIELD_PREP(OP_SHF_B_SRC, breg) |
349 FIELD_PREP(OP_SHF_I8, i8) |
350 FIELD_PREP(OP_SHF_SW, sw) |
351 FIELD_PREP(OP_SHF_DST, dst) |
352 FIELD_PREP(OP_SHF_SHIFT, shift) |
353 FIELD_PREP(OP_SHF_OP, op) |
354 FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
355 FIELD_PREP(OP_SHF_WR_AB, wr_both) |
356 FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
357 FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
359 nfp_prog_push(nfp_prog, insn);
363 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
364 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
366 struct nfp_insn_re_regs reg;
369 err = swreg_to_restricted(dst, lreg, rreg, ®, true);
371 nfp_prog->error = err;
375 __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
376 reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
377 reg.dst_lmextn, reg.src_lmextn);
381 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
382 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
384 if (sc == SHF_SC_R_ROT) {
385 pr_err("indirect shift is not allowed on rotation\n");
386 nfp_prog->error = -EFAULT;
390 emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
394 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
395 u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
396 bool dst_lmextn, bool src_lmextn)
401 FIELD_PREP(OP_ALU_A_SRC, areg) |
402 FIELD_PREP(OP_ALU_B_SRC, breg) |
403 FIELD_PREP(OP_ALU_DST, dst) |
404 FIELD_PREP(OP_ALU_SW, swap) |
405 FIELD_PREP(OP_ALU_OP, op) |
406 FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
407 FIELD_PREP(OP_ALU_WR_AB, wr_both) |
408 FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
409 FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
411 nfp_prog_push(nfp_prog, insn);
415 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
416 swreg lreg, enum alu_op op, swreg rreg)
418 struct nfp_insn_ur_regs reg;
421 err = swreg_to_unrestricted(dst, lreg, rreg, ®);
423 nfp_prog->error = err;
427 __emit_alu(nfp_prog, reg.dst, reg.dst_ab,
428 reg.areg, op, reg.breg, reg.swap, reg.wr_both,
429 reg.dst_lmextn, reg.src_lmextn);
433 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
434 enum mul_type type, enum mul_step step, u16 breg, bool swap,
435 bool wr_both, bool dst_lmextn, bool src_lmextn)
440 FIELD_PREP(OP_MUL_A_SRC, areg) |
441 FIELD_PREP(OP_MUL_B_SRC, breg) |
442 FIELD_PREP(OP_MUL_STEP, step) |
443 FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
444 FIELD_PREP(OP_MUL_SW, swap) |
445 FIELD_PREP(OP_MUL_TYPE, type) |
446 FIELD_PREP(OP_MUL_WR_AB, wr_both) |
447 FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
448 FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
450 nfp_prog_push(nfp_prog, insn);
454 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
455 enum mul_step step, swreg rreg)
457 struct nfp_insn_ur_regs reg;
461 if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
462 nfp_prog->error = -EINVAL;
466 if (step == MUL_LAST || step == MUL_LAST_2) {
467 /* When type is step and step Number is LAST or LAST2, left
468 * source is used as destination.
470 err = swreg_to_unrestricted(lreg, reg_none(), rreg, ®);
473 err = swreg_to_unrestricted(reg_none(), lreg, rreg, ®);
478 nfp_prog->error = err;
482 __emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
483 reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
487 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
488 u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
489 bool zero, bool swap, bool wr_both,
490 bool dst_lmextn, bool src_lmextn)
495 FIELD_PREP(OP_LDF_A_SRC, areg) |
496 FIELD_PREP(OP_LDF_SC, sc) |
497 FIELD_PREP(OP_LDF_B_SRC, breg) |
498 FIELD_PREP(OP_LDF_I8, imm8) |
499 FIELD_PREP(OP_LDF_SW, swap) |
500 FIELD_PREP(OP_LDF_ZF, zero) |
501 FIELD_PREP(OP_LDF_BMASK, bmask) |
502 FIELD_PREP(OP_LDF_SHF, shift) |
503 FIELD_PREP(OP_LDF_WR_AB, wr_both) |
504 FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
505 FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
507 nfp_prog_push(nfp_prog, insn);
511 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
512 enum shf_sc sc, u8 shift, bool zero)
514 struct nfp_insn_re_regs reg;
517 /* Note: ld_field is special as it uses one of the src regs as dst */
518 err = swreg_to_restricted(dst, dst, src, ®, true);
520 nfp_prog->error = err;
524 __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
525 reg.i8, zero, reg.swap, reg.wr_both,
526 reg.dst_lmextn, reg.src_lmextn);
530 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
531 enum shf_sc sc, u8 shift)
533 emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
537 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
538 bool dst_lmextn, bool src_lmextn)
542 insn = OP_LCSR_BASE |
543 FIELD_PREP(OP_LCSR_A_SRC, areg) |
544 FIELD_PREP(OP_LCSR_B_SRC, breg) |
545 FIELD_PREP(OP_LCSR_WRITE, wr) |
546 FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
547 FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
548 FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
550 nfp_prog_push(nfp_prog, insn);
553 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
555 struct nfp_insn_ur_regs reg;
558 /* This instruction takes immeds instead of reg_none() for the ignored
559 * operand, but we can't encode 2 immeds in one instr with our normal
560 * swreg infra so if param is an immed, we encode as reg_none() and
561 * copy the immed to both operands.
563 if (swreg_type(src) == NN_REG_IMM) {
564 err = swreg_to_unrestricted(reg_none(), src, reg_none(), ®);
567 err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), ®);
570 nfp_prog->error = err;
574 __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
575 false, reg.src_lmextn);
578 /* CSR value is read in following immed[gpr, 0] */
579 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
581 __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
584 static void emit_nop(struct nfp_prog *nfp_prog)
586 __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
589 /* --- Wrappers --- */
590 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
592 if (!(imm & 0xffff0000)) {
594 *shift = IMMED_SHIFT_0B;
595 } else if (!(imm & 0xff0000ff)) {
597 *shift = IMMED_SHIFT_1B;
598 } else if (!(imm & 0x0000ffff)) {
600 *shift = IMMED_SHIFT_2B;
608 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
610 enum immed_shift shift;
613 if (pack_immed(imm, &val, &shift)) {
614 emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
615 } else if (pack_immed(~imm, &val, &shift)) {
616 emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
618 emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
619 false, IMMED_SHIFT_0B);
620 emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
621 false, IMMED_SHIFT_2B);
626 wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst)
628 if (meta->flags & FLAG_INSN_DO_ZEXT)
629 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
633 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
634 enum nfp_relo_type relo)
637 pr_err("relocation of a large immediate!\n");
638 nfp_prog->error = -EFAULT;
641 emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
643 nfp_prog->prog[nfp_prog->prog_len - 1] |=
644 FIELD_PREP(OP_RELO_TYPE, relo);
647 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
648 * If the @imm is small enough encode it directly in operand and return
649 * otherwise load @imm to a spare register and return its encoding.
651 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
653 if (FIELD_FIT(UR_REG_IMM_MAX, imm))
656 wrp_immed(nfp_prog, tmp_reg, imm);
660 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
661 * If the @imm is small enough encode it directly in operand and return
662 * otherwise load @imm to a spare register and return its encoding.
664 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
666 if (FIELD_FIT(RE_REG_IMM_MAX, imm))
669 wrp_immed(nfp_prog, tmp_reg, imm);
673 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
679 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
681 emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
684 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
686 wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
689 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
690 * result to @dst from low end.
693 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
696 enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
697 u8 mask = (1 << field_len) - 1;
699 emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
702 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
703 * result to @dst from offset, there is no change on the other bits of @dst.
706 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
707 u8 field_len, u8 offset)
709 enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
710 u8 mask = ((1 << field_len) - 1) << offset;
712 emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
716 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
717 swreg *rega, swreg *regb)
719 if (offset == reg_imm(0)) {
720 *rega = reg_a(src_gpr);
721 *regb = reg_b(src_gpr + 1);
725 emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
726 emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
728 *rega = imm_a(nfp_prog);
729 *regb = imm_b(nfp_prog);
732 /* NFP has Command Push Pull bus which supports bluk memory operations. */
733 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
735 bool descending_seq = meta->ldst_gather_len < 0;
736 s16 len = abs(meta->ldst_gather_len);
742 off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
743 src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
744 src_base = reg_a(meta->insn.src_reg * 2);
745 xfer_num = round_up(len, 4) / 4;
748 addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
751 /* Setup PREV_ALU fields to override memory read length. */
753 wrp_immed(nfp_prog, reg_none(),
754 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
756 /* Memory read from source addr into transfer-in registers. */
757 emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
758 src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
759 src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
761 /* Move from transfer-in to transfer-out. */
762 for (i = 0; i < xfer_num; i++)
763 wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
765 off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
768 /* Use single direct_ref write8. */
769 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
770 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
772 } else if (len <= 32 && IS_ALIGNED(len, 4)) {
773 /* Use single direct_ref write32. */
774 emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
775 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
777 } else if (len <= 32) {
778 /* Use single indirect_ref write8. */
779 wrp_immed(nfp_prog, reg_none(),
780 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
781 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
782 reg_a(meta->paired_st->dst_reg * 2), off,
783 len - 1, CMD_CTX_SWAP);
784 } else if (IS_ALIGNED(len, 4)) {
785 /* Use single indirect_ref write32. */
786 wrp_immed(nfp_prog, reg_none(),
787 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
788 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
789 reg_a(meta->paired_st->dst_reg * 2), off,
790 xfer_num - 1, CMD_CTX_SWAP);
791 } else if (len <= 40) {
792 /* Use one direct_ref write32 to write the first 32-bytes, then
793 * another direct_ref write8 to write the remaining bytes.
795 emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
796 reg_a(meta->paired_st->dst_reg * 2), off, 7,
799 off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
801 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
802 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
805 /* Use one indirect_ref write32 to write 4-bytes aligned length,
806 * then another direct_ref write8 to write the remaining bytes.
810 wrp_immed(nfp_prog, reg_none(),
811 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
812 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
813 reg_a(meta->paired_st->dst_reg * 2), off,
814 xfer_num - 2, CMD_CTX_SWAP);
815 new_off = meta->paired_st->off + (xfer_num - 1) * 4;
816 off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
817 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
818 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
819 (len & 0x3) - 1, CMD_CTX_SWAP);
822 /* TODO: The following extra load is to make sure data flow be identical
823 * before and after we do memory copy optimization.
825 * The load destination register is not guaranteed to be dead, so we
826 * need to make sure it is loaded with the value the same as before
827 * this transformation.
829 * These extra loads could be removed once we have accurate register
834 else if (BPF_SIZE(meta->insn.code) != BPF_DW)
835 xfer_num = xfer_num - 1;
837 xfer_num = xfer_num - 2;
839 switch (BPF_SIZE(meta->insn.code)) {
841 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
842 reg_xfer(xfer_num), 1,
843 IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
846 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
847 reg_xfer(xfer_num), 2, (len & 3) ^ 2);
850 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
854 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
856 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
857 reg_xfer(xfer_num + 1));
861 if (BPF_SIZE(meta->insn.code) != BPF_DW)
862 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
868 data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset,
869 u8 dst_gpr, int size)
874 /* We load the value from the address indicated in @offset and then
875 * shift out the data we don't need. Note: this is big endian!
878 shift = size < 4 ? 4 - size : 0;
880 emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
881 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
885 emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
886 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
888 for (; i * 4 < size; i++)
889 wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
892 wrp_zext(nfp_prog, meta, dst_gpr);
898 data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
899 u8 dst_gpr, swreg lreg, swreg rreg, int size,
905 /* We load the value from the address indicated in rreg + lreg and then
906 * mask out the data we don't need. Note: this is little endian!
909 mask = size < 4 ? GENMASK(size - 1, 0) : 0;
911 emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
912 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
916 emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
917 reg_xfer(0), SHF_SC_NONE, 0, true);
919 for (; i * 4 < size; i++)
920 wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
923 wrp_zext(nfp_prog, meta, dst_gpr);
929 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
930 u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
932 return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr),
933 offset, size, CMD_MODE_32b);
937 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
938 u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
942 addr40_offset(nfp_prog, src_gpr, offset, ®a, ®b);
944 return data_ld_host_order(nfp_prog, meta, dst_gpr, rega, regb,
945 size, CMD_MODE_40b_BA);
949 construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
950 u16 offset, u16 src, u8 size)
954 /* Calculate the true offset (src_reg + imm) */
955 tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
956 emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
958 /* Check packet length (size guaranteed to fit b/c it's u8) */
959 emit_alu(nfp_prog, imm_a(nfp_prog),
960 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
961 emit_alu(nfp_prog, reg_none(),
962 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
963 emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
966 return data_ld(nfp_prog, meta, imm_b(nfp_prog), 0, size);
970 construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
975 /* Check packet length */
976 tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
977 emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
978 emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
981 tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
982 return data_ld(nfp_prog, meta, tmp_reg, 0, size);
986 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
991 for (i = 0; i * 4 < size; i++)
992 wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
994 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
995 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
1001 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
1004 wrp_immed(nfp_prog, reg_xfer(0), imm);
1006 wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
1008 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
1009 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
1015 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
1016 unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1020 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
1021 unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1024 bool should_inc = needs_inc && new_gpr && !last;
1031 if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1036 /* Move the entire word */
1038 wrp_mov(nfp_prog, reg_both(dst),
1039 should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1043 if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1048 mask = (1 << size) - 1;
1051 if (WARN_ON_ONCE(mask > 0xf))
1054 shf = abs(src_byte - dst_byte) * 8;
1055 if (src_byte == dst_byte) {
1057 } else if (src_byte < dst_byte) {
1064 /* ld_field can address fewer indexes, if offset too large do RMW.
1065 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1067 if (idx <= RE_REG_LM_IDX_MAX) {
1068 reg = reg_lm(lm3 ? 3 : 0, idx);
1070 reg = imm_a(nfp_prog);
1071 /* If it's not the first part of the load and we start a new GPR
1072 * that means we are loading a second part of the LMEM word into
1073 * a new GPR. IOW we've already looked that LMEM word and
1074 * therefore it has been loaded into imm_a().
1076 if (first || !new_gpr)
1077 wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1080 emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1083 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1089 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1090 unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1093 bool should_inc = needs_inc && new_gpr && !last;
1100 if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1105 /* Move the entire word */
1108 should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1113 if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1118 mask = (1 << size) - 1;
1121 if (WARN_ON_ONCE(mask > 0xf))
1124 shf = abs(src_byte - dst_byte) * 8;
1125 if (src_byte == dst_byte) {
1127 } else if (src_byte < dst_byte) {
1134 /* ld_field can address fewer indexes, if offset too large do RMW.
1135 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1137 if (idx <= RE_REG_LM_IDX_MAX) {
1138 reg = reg_lm(lm3 ? 3 : 0, idx);
1140 reg = imm_a(nfp_prog);
1141 /* Only first and last LMEM locations are going to need RMW,
1142 * the middle location will be overwritten fully.
1145 wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1148 emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1150 if (new_gpr || last) {
1151 if (idx > RE_REG_LM_IDX_MAX)
1152 wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1154 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1161 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1162 unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1163 bool clr_gpr, lmem_step step)
1165 s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1166 bool first = true, narrow_ld, last;
1167 bool needs_inc = false;
1168 swreg stack_off_reg;
1174 if (meta->ptr_not_const ||
1175 meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1176 /* Use of the last encountered ptr_off is OK, they all have
1177 * the same alignment. Depend on low bits of value being
1178 * discarded when written to LMaddr register.
1180 stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1181 stack_imm(nfp_prog));
1183 emit_alu(nfp_prog, imm_b(nfp_prog),
1184 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1187 } else if (off + size <= 64) {
1188 /* We can reach bottom 64B with LMaddr0 */
1190 } else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1191 /* We have to set up a new pointer. If we know the offset
1192 * and the entire access falls into a single 32 byte aligned
1193 * window we won't have to increment the LM pointer.
1194 * The 32 byte alignment is imporant because offset is ORed in
1195 * not added when doing *l$indexN[off].
1197 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1198 stack_imm(nfp_prog));
1199 emit_alu(nfp_prog, imm_b(nfp_prog),
1200 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1204 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1205 stack_imm(nfp_prog));
1207 emit_alu(nfp_prog, imm_b(nfp_prog),
1208 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1213 narrow_ld = clr_gpr && size < 8;
1216 unsigned int nop_cnt;
1218 emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1219 /* For size < 4 one slot will be filled by zeroing of upper,
1220 * but be careful, that zeroing could be eliminated by zext
1223 nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3;
1224 wrp_nops(nfp_prog, nop_cnt);
1228 wrp_zext(nfp_prog, meta, gpr);
1234 slice_size = min(size, 4 - gpr_byte);
1235 slice_end = min(off + slice_size, round_up(off + 1, 4));
1236 slice_size = slice_end - off;
1238 last = slice_size == size;
1243 ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1244 first, gpr != prev_gpr, last, lm3, needs_inc);
1251 gpr_byte += slice_size;
1252 if (gpr_byte >= 4) {
1265 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1269 if (alu_op == ALU_OP_AND) {
1271 wrp_immed(nfp_prog, reg_both(dst), 0);
1275 if (alu_op == ALU_OP_OR) {
1277 wrp_immed(nfp_prog, reg_both(dst), ~0U);
1281 if (alu_op == ALU_OP_XOR) {
1283 emit_alu(nfp_prog, reg_both(dst), reg_none(),
1284 ALU_OP_NOT, reg_b(dst));
1289 tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1290 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1294 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1295 enum alu_op alu_op, bool skip)
1297 const struct bpf_insn *insn = &meta->insn;
1298 u64 imm = insn->imm; /* sign extend */
1301 meta->flags |= FLAG_INSN_SKIP_NOOP;
1305 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1306 wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1312 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1315 u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1317 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1318 emit_alu(nfp_prog, reg_both(dst + 1),
1319 reg_a(dst + 1), alu_op, reg_b(src + 1));
1325 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1328 const struct bpf_insn *insn = &meta->insn;
1329 u8 dst = insn->dst_reg * 2;
1331 wrp_alu_imm(nfp_prog, dst, alu_op, insn->imm);
1332 wrp_zext(nfp_prog, meta, dst);
1338 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1341 u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1343 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1344 wrp_zext(nfp_prog, meta, dst);
1350 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1351 enum br_mask br_mask, u16 off)
1353 emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1354 emit_br(nfp_prog, br_mask, off, 0);
1358 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1359 enum alu_op alu_op, enum br_mask br_mask)
1361 const struct bpf_insn *insn = &meta->insn;
1363 wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1364 insn->src_reg * 2, br_mask, insn->off);
1365 if (is_mbpf_jmp64(meta))
1366 wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1367 insn->src_reg * 2 + 1, br_mask, insn->off);
1372 static const struct jmp_code_map {
1373 enum br_mask br_mask;
1375 } jmp_code_map[] = {
1376 [BPF_JGT >> 4] = { BR_BLO, true },
1377 [BPF_JGE >> 4] = { BR_BHS, false },
1378 [BPF_JLT >> 4] = { BR_BLO, false },
1379 [BPF_JLE >> 4] = { BR_BHS, true },
1380 [BPF_JSGT >> 4] = { BR_BLT, true },
1381 [BPF_JSGE >> 4] = { BR_BGE, false },
1382 [BPF_JSLT >> 4] = { BR_BLT, false },
1383 [BPF_JSLE >> 4] = { BR_BGE, true },
1386 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1390 op = BPF_OP(meta->insn.code) >> 4;
1391 /* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1392 if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1393 !jmp_code_map[op].br_mask,
1394 "no code found for jump instruction"))
1397 return &jmp_code_map[op];
1400 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1402 const struct bpf_insn *insn = &meta->insn;
1403 u64 imm = insn->imm; /* sign extend */
1404 const struct jmp_code_map *code;
1405 enum alu_op alu_op, carry_op;
1406 u8 reg = insn->dst_reg * 2;
1409 code = nfp_jmp_code_get(meta);
1413 alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1414 carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1416 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1418 emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1420 emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1422 if (is_mbpf_jmp64(meta)) {
1423 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1425 emit_alu(nfp_prog, reg_none(),
1426 reg_a(reg + 1), carry_op, tmp_reg);
1428 emit_alu(nfp_prog, reg_none(),
1429 tmp_reg, carry_op, reg_a(reg + 1));
1432 emit_br(nfp_prog, code->br_mask, insn->off, 0);
1437 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1439 const struct bpf_insn *insn = &meta->insn;
1440 const struct jmp_code_map *code;
1443 code = nfp_jmp_code_get(meta);
1447 areg = insn->dst_reg * 2;
1448 breg = insn->src_reg * 2;
1456 emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1457 if (is_mbpf_jmp64(meta))
1458 emit_alu(nfp_prog, reg_none(),
1459 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1460 emit_br(nfp_prog, code->br_mask, insn->off, 0);
1465 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1467 emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1469 emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1474 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1475 swreg rreg, bool gen_high_half)
1477 emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1478 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1479 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1480 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1481 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1482 emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1484 emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1487 wrp_immed(nfp_prog, dst_hi, 0);
1491 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1494 emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1495 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1496 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1497 emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1501 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1502 bool gen_high_half, bool ropnd_from_reg)
1504 swreg multiplier, multiplicand, dst_hi, dst_lo;
1505 const struct bpf_insn *insn = &meta->insn;
1506 u32 lopnd_max, ropnd_max;
1509 dst_reg = insn->dst_reg;
1510 multiplicand = reg_a(dst_reg * 2);
1511 dst_hi = reg_both(dst_reg * 2 + 1);
1512 dst_lo = reg_both(dst_reg * 2);
1513 lopnd_max = meta->umax_dst;
1514 if (ropnd_from_reg) {
1515 multiplier = reg_b(insn->src_reg * 2);
1516 ropnd_max = meta->umax_src;
1518 u32 imm = insn->imm;
1520 multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1523 if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1524 wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1527 wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1532 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1534 swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1535 struct reciprocal_value_adv rvalue;
1539 if (imm > U32_MAX) {
1540 wrp_immed(nfp_prog, dst_both, 0);
1544 /* NOTE: because we are using "reciprocal_value_adv" which doesn't
1545 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1546 * to handle such case which actually equals to the result of unsigned
1547 * comparison "dst >= imm" which could be calculated using the following
1550 * alu[--, dst, -, imm]
1552 * alu[dst, imm, +carry, 0]
1555 if (imm > 1U << 31) {
1556 swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1558 emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1559 wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1560 emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1565 rvalue = reciprocal_value_adv(imm, 32);
1567 if (rvalue.is_wide_m && !(imm & 1)) {
1568 pre_shift = fls(imm & -imm) - 1;
1569 rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1573 magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1574 if (imm == 1U << exp) {
1575 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1577 } else if (rvalue.is_wide_m) {
1578 wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1580 emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1582 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1584 emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1586 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1587 SHF_SC_R_SHF, rvalue.sh - 1);
1590 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1591 dst_b, SHF_SC_R_SHF, pre_shift);
1592 wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1593 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1594 dst_b, SHF_SC_R_SHF, rvalue.sh);
1600 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1602 swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1603 struct nfp_bpf_cap_adjust_head *adjust_head;
1604 u32 ret_einval, end;
1606 adjust_head = &nfp_prog->bpf->adjust_head;
1608 /* Optimized version - 5 vs 14 cycles */
1609 if (nfp_prog->adjust_head_location != UINT_MAX) {
1610 if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1613 emit_alu(nfp_prog, pptr_reg(nfp_prog),
1614 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1615 emit_alu(nfp_prog, plen_reg(nfp_prog),
1616 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1617 emit_alu(nfp_prog, pv_len(nfp_prog),
1618 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1620 wrp_immed(nfp_prog, reg_both(0), 0);
1621 wrp_immed(nfp_prog, reg_both(1), 0);
1623 /* TODO: when adjust head is guaranteed to succeed we can
1624 * also eliminate the following if (r0 == 0) branch.
1630 ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1631 end = ret_einval + 2;
1633 /* We need to use a temp because offset is just a part of the pkt ptr */
1634 emit_alu(nfp_prog, tmp,
1635 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1637 /* Validate result will fit within FW datapath constraints */
1638 emit_alu(nfp_prog, reg_none(),
1639 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1640 emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1641 emit_alu(nfp_prog, reg_none(),
1642 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1643 emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1645 /* Validate the length is at least ETH_HLEN */
1646 emit_alu(nfp_prog, tmp_len,
1647 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1648 emit_alu(nfp_prog, reg_none(),
1649 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1650 emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1652 /* Load the ret code */
1653 wrp_immed(nfp_prog, reg_both(0), 0);
1654 wrp_immed(nfp_prog, reg_both(1), 0);
1656 /* Modify the packet metadata */
1657 emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1659 /* Skip over the -EINVAL ret code (defer 2) */
1660 emit_br(nfp_prog, BR_UNC, end, 2);
1662 emit_alu(nfp_prog, plen_reg(nfp_prog),
1663 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1664 emit_alu(nfp_prog, pv_len(nfp_prog),
1665 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1667 /* return -EINVAL target */
1668 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1671 wrp_immed(nfp_prog, reg_both(0), -22);
1672 wrp_immed(nfp_prog, reg_both(1), ~0);
1674 if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1680 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1682 u32 ret_einval, end;
1685 BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1687 plen = imm_a(nfp_prog);
1688 delta = reg_a(2 * 2);
1690 ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1691 end = nfp_prog_current_offset(nfp_prog) + 11;
1693 /* Calculate resulting length */
1694 emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1695 /* delta == 0 is not allowed by the kernel, add must overflow to make
1698 emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1700 /* if (new_len < 14) then -EINVAL */
1701 emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1702 emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1704 emit_alu(nfp_prog, plen_reg(nfp_prog),
1705 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1706 emit_alu(nfp_prog, pv_len(nfp_prog),
1707 pv_len(nfp_prog), ALU_OP_ADD, delta);
1709 emit_br(nfp_prog, BR_UNC, end, 2);
1710 wrp_immed(nfp_prog, reg_both(0), 0);
1711 wrp_immed(nfp_prog, reg_both(1), 0);
1713 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1716 wrp_immed(nfp_prog, reg_both(0), -22);
1717 wrp_immed(nfp_prog, reg_both(1), ~0);
1719 if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1726 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1732 /* We only have to reload LM0 if the key is not at start of stack */
1733 lm_off = nfp_prog->stack_frame_depth;
1734 lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1735 load_lm_ptr = meta->arg2.var_off || lm_off;
1737 /* Set LM0 to start of key */
1739 emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1740 if (meta->func_id == BPF_FUNC_map_update_elem)
1741 emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1743 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1745 ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1747 /* Load map ID into A0 */
1748 wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1750 /* Load the return address into B0 */
1751 wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1753 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1756 /* Reset the LM0 pointer */
1760 emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1761 wrp_nops(nfp_prog, 3);
1767 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1769 __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1770 /* CSR value is read in following immed[gpr, 0] */
1771 emit_immed(nfp_prog, reg_both(0), 0,
1772 IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1773 emit_immed(nfp_prog, reg_both(1), 0,
1774 IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1779 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1784 ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1786 ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1788 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1791 /* Load ptr type into A1 */
1792 wrp_mov(nfp_prog, reg_a(1), ptr_type);
1794 /* Load the return address into B0 */
1795 wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1797 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1804 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1808 jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1810 /* Make sure the queue id fits into FW field */
1811 emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1812 ALU_OP_AND_NOT_B, reg_imm(0xff));
1813 emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1815 /* Set the 'queue selected' bit and the queue value */
1816 emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1817 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1818 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1819 emit_ld_field(nfp_prog,
1820 pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1822 /* Delay slots end here, we will jump over next instruction if queue
1823 * value fits into the field.
1825 emit_ld_field(nfp_prog,
1826 pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1829 if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1835 /* --- Callbacks --- */
1836 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1838 const struct bpf_insn *insn = &meta->insn;
1839 u8 dst = insn->dst_reg * 2;
1840 u8 src = insn->src_reg * 2;
1842 if (insn->src_reg == BPF_REG_10) {
1843 swreg stack_depth_reg;
1845 stack_depth_reg = ur_load_imm_any(nfp_prog,
1846 nfp_prog->stack_frame_depth,
1847 stack_imm(nfp_prog));
1848 emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1849 ALU_OP_ADD, stack_depth_reg);
1850 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1852 wrp_reg_mov(nfp_prog, dst, src);
1853 wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1859 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1861 u64 imm = meta->insn.imm; /* sign extend */
1863 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1864 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1869 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1871 return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1874 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1876 return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1879 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1881 return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1884 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1886 return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1889 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1891 return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1894 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1896 return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1899 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1901 const struct bpf_insn *insn = &meta->insn;
1903 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1904 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1905 reg_b(insn->src_reg * 2));
1906 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1907 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1908 reg_b(insn->src_reg * 2 + 1));
1913 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1915 const struct bpf_insn *insn = &meta->insn;
1916 u64 imm = insn->imm; /* sign extend */
1918 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1919 wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1924 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1926 const struct bpf_insn *insn = &meta->insn;
1928 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1929 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1930 reg_b(insn->src_reg * 2));
1931 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1932 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1933 reg_b(insn->src_reg * 2 + 1));
1938 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1940 const struct bpf_insn *insn = &meta->insn;
1941 u64 imm = insn->imm; /* sign extend */
1943 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1944 wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1949 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1951 return wrp_mul(nfp_prog, meta, true, true);
1954 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1956 return wrp_mul(nfp_prog, meta, true, false);
1959 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1961 const struct bpf_insn *insn = &meta->insn;
1963 return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1966 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1968 /* NOTE: verifier hook has rejected cases for which verifier doesn't
1969 * know whether the source operand is constant or not.
1971 return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1974 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1976 const struct bpf_insn *insn = &meta->insn;
1978 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1979 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1980 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1981 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1987 * if shift_amt >= 32
1988 * dst_high = dst_low << shift_amt[4:0]
1991 * dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1992 * dst_low = dst_low << shift_amt
1994 * The indirect shift will use the same logic at runtime.
1996 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2001 if (shift_amt < 32) {
2002 emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
2003 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
2005 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2006 reg_b(dst), SHF_SC_L_SHF, shift_amt);
2007 } else if (shift_amt == 32) {
2008 wrp_reg_mov(nfp_prog, dst + 1, dst);
2009 wrp_immed(nfp_prog, reg_both(dst), 0);
2010 } else if (shift_amt > 32) {
2011 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2012 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
2013 wrp_immed(nfp_prog, reg_both(dst), 0);
2019 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2021 const struct bpf_insn *insn = &meta->insn;
2022 u8 dst = insn->dst_reg * 2;
2024 return __shl_imm64(nfp_prog, dst, insn->imm);
2027 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2029 emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2031 emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2032 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2033 reg_b(dst), SHF_SC_R_DSHF);
2036 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
2037 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2039 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2040 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2041 reg_b(dst), SHF_SC_L_SHF);
2044 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2046 shl_reg64_lt32_high(nfp_prog, dst, src);
2047 shl_reg64_lt32_low(nfp_prog, dst, src);
2050 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2052 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2053 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2054 reg_b(dst), SHF_SC_L_SHF);
2055 wrp_immed(nfp_prog, reg_both(dst), 0);
2058 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2060 const struct bpf_insn *insn = &meta->insn;
2064 dst = insn->dst_reg * 2;
2065 umin = meta->umin_src;
2066 umax = meta->umax_src;
2068 return __shl_imm64(nfp_prog, dst, umin);
2070 src = insn->src_reg * 2;
2072 shl_reg64_lt32(nfp_prog, dst, src);
2073 } else if (umin >= 32) {
2074 shl_reg64_ge32(nfp_prog, dst, src);
2076 /* Generate different instruction sequences depending on runtime
2077 * value of shift amount.
2079 u16 label_ge32, label_end;
2081 label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2082 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2084 shl_reg64_lt32_high(nfp_prog, dst, src);
2085 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2086 emit_br(nfp_prog, BR_UNC, label_end, 2);
2087 /* shl_reg64_lt32_low packed in delay slot. */
2088 shl_reg64_lt32_low(nfp_prog, dst, src);
2090 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2092 shl_reg64_ge32(nfp_prog, dst, src);
2094 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2102 * if shift_amt >= 32
2104 * dst_low = dst_high >> shift_amt[4:0]
2106 * dst_high = dst_high >> shift_amt
2107 * dst_low = (dst_high, dst_low) >> shift_amt
2109 * The indirect shift will use the same logic at runtime.
2111 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2116 if (shift_amt < 32) {
2117 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2118 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2119 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2120 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2121 } else if (shift_amt == 32) {
2122 wrp_reg_mov(nfp_prog, dst, dst + 1);
2123 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2124 } else if (shift_amt > 32) {
2125 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2126 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2127 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2133 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2135 const struct bpf_insn *insn = &meta->insn;
2136 u8 dst = insn->dst_reg * 2;
2138 return __shr_imm64(nfp_prog, dst, insn->imm);
2141 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2142 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2144 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2145 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2146 reg_b(dst + 1), SHF_SC_R_SHF);
2149 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2151 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2152 emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2153 reg_b(dst), SHF_SC_R_DSHF);
2156 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2158 shr_reg64_lt32_low(nfp_prog, dst, src);
2159 shr_reg64_lt32_high(nfp_prog, dst, src);
2162 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2164 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2165 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2166 reg_b(dst + 1), SHF_SC_R_SHF);
2167 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2170 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2172 const struct bpf_insn *insn = &meta->insn;
2176 dst = insn->dst_reg * 2;
2177 umin = meta->umin_src;
2178 umax = meta->umax_src;
2180 return __shr_imm64(nfp_prog, dst, umin);
2182 src = insn->src_reg * 2;
2184 shr_reg64_lt32(nfp_prog, dst, src);
2185 } else if (umin >= 32) {
2186 shr_reg64_ge32(nfp_prog, dst, src);
2188 /* Generate different instruction sequences depending on runtime
2189 * value of shift amount.
2191 u16 label_ge32, label_end;
2193 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2194 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2195 shr_reg64_lt32_low(nfp_prog, dst, src);
2196 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2197 emit_br(nfp_prog, BR_UNC, label_end, 2);
2198 /* shr_reg64_lt32_high packed in delay slot. */
2199 shr_reg64_lt32_high(nfp_prog, dst, src);
2201 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2203 shr_reg64_ge32(nfp_prog, dst, src);
2205 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2212 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2213 * told through PREV_ALU result.
2215 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2220 if (shift_amt < 32) {
2221 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2222 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2223 /* Set signedness bit. */
2224 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2226 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2227 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2228 } else if (shift_amt == 32) {
2229 /* NOTE: this also helps setting signedness bit. */
2230 wrp_reg_mov(nfp_prog, dst, dst + 1);
2231 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2232 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2233 } else if (shift_amt > 32) {
2234 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2236 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2237 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2238 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2239 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2245 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2247 const struct bpf_insn *insn = &meta->insn;
2248 u8 dst = insn->dst_reg * 2;
2250 return __ashr_imm64(nfp_prog, dst, insn->imm);
2253 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2255 /* NOTE: the first insn will set both indirect shift amount (source A)
2256 * and signedness bit (MSB of result).
2258 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2259 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2260 reg_b(dst + 1), SHF_SC_R_SHF);
2263 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2265 /* NOTE: it is the same as logic shift because we don't need to shift in
2266 * signedness bit when the shift amount is less than 32.
2268 return shr_reg64_lt32_low(nfp_prog, dst, src);
2271 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2273 ashr_reg64_lt32_low(nfp_prog, dst, src);
2274 ashr_reg64_lt32_high(nfp_prog, dst, src);
2277 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2279 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2280 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2281 reg_b(dst + 1), SHF_SC_R_SHF);
2282 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2283 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2286 /* Like ashr_imm64, but need to use indirect shift. */
2287 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2289 const struct bpf_insn *insn = &meta->insn;
2293 dst = insn->dst_reg * 2;
2294 umin = meta->umin_src;
2295 umax = meta->umax_src;
2297 return __ashr_imm64(nfp_prog, dst, umin);
2299 src = insn->src_reg * 2;
2301 ashr_reg64_lt32(nfp_prog, dst, src);
2302 } else if (umin >= 32) {
2303 ashr_reg64_ge32(nfp_prog, dst, src);
2305 u16 label_ge32, label_end;
2307 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2308 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2309 ashr_reg64_lt32_low(nfp_prog, dst, src);
2310 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2311 emit_br(nfp_prog, BR_UNC, label_end, 2);
2312 /* ashr_reg64_lt32_high packed in delay slot. */
2313 ashr_reg64_lt32_high(nfp_prog, dst, src);
2315 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2317 ashr_reg64_ge32(nfp_prog, dst, src);
2319 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2326 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2328 const struct bpf_insn *insn = &meta->insn;
2330 wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2);
2331 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2336 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2338 const struct bpf_insn *insn = &meta->insn;
2340 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2341 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2346 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2348 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2351 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2353 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
2356 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2358 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2361 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2363 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
2366 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2368 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2371 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2373 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
2376 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2378 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2381 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2383 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
2386 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2388 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2391 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2393 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
2396 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2398 return wrp_mul(nfp_prog, meta, false, true);
2401 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2403 return wrp_mul(nfp_prog, meta, false, false);
2406 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2408 return div_reg64(nfp_prog, meta);
2411 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2413 return div_imm64(nfp_prog, meta);
2416 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2418 u8 dst = meta->insn.dst_reg * 2;
2420 emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2421 wrp_zext(nfp_prog, meta, dst);
2427 __ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2431 /* Set signedness bit (MSB of result). */
2432 emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2434 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2435 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2437 wrp_zext(nfp_prog, meta, dst);
2442 static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2444 const struct bpf_insn *insn = &meta->insn;
2448 dst = insn->dst_reg * 2;
2449 umin = meta->umin_src;
2450 umax = meta->umax_src;
2452 return __ashr_imm(nfp_prog, meta, dst, umin);
2454 src = insn->src_reg * 2;
2455 /* NOTE: the first insn will set both indirect shift amount (source A)
2456 * and signedness bit (MSB of result).
2458 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2459 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2460 reg_b(dst), SHF_SC_R_SHF);
2461 wrp_zext(nfp_prog, meta, dst);
2466 static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2468 const struct bpf_insn *insn = &meta->insn;
2469 u8 dst = insn->dst_reg * 2;
2471 return __ashr_imm(nfp_prog, meta, dst, insn->imm);
2475 __shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2479 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2480 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2481 wrp_zext(nfp_prog, meta, dst);
2485 static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2487 const struct bpf_insn *insn = &meta->insn;
2488 u8 dst = insn->dst_reg * 2;
2490 return __shr_imm(nfp_prog, meta, dst, insn->imm);
2493 static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2495 const struct bpf_insn *insn = &meta->insn;
2499 dst = insn->dst_reg * 2;
2500 umin = meta->umin_src;
2501 umax = meta->umax_src;
2503 return __shr_imm(nfp_prog, meta, dst, umin);
2505 src = insn->src_reg * 2;
2506 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2507 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2508 reg_b(dst), SHF_SC_R_SHF);
2509 wrp_zext(nfp_prog, meta, dst);
2514 __shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2518 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2519 reg_b(dst), SHF_SC_L_SHF, shift_amt);
2520 wrp_zext(nfp_prog, meta, dst);
2524 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2526 const struct bpf_insn *insn = &meta->insn;
2527 u8 dst = insn->dst_reg * 2;
2529 return __shl_imm(nfp_prog, meta, dst, insn->imm);
2532 static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2534 const struct bpf_insn *insn = &meta->insn;
2538 dst = insn->dst_reg * 2;
2539 umin = meta->umin_src;
2540 umax = meta->umax_src;
2542 return __shl_imm(nfp_prog, meta, dst, umin);
2544 src = insn->src_reg * 2;
2545 shl_reg64_lt32_low(nfp_prog, dst, src);
2546 wrp_zext(nfp_prog, meta, dst);
2550 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2552 const struct bpf_insn *insn = &meta->insn;
2553 u8 gpr = insn->dst_reg * 2;
2555 switch (insn->imm) {
2557 emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2559 emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2562 wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2565 wrp_end32(nfp_prog, reg_a(gpr), gpr);
2566 wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2569 wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2571 wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2572 wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2579 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2581 struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2585 dst = prev->insn.dst_reg * 2;
2586 imm_lo = prev->insn.imm;
2587 imm_hi = meta->insn.imm;
2589 wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2591 /* mov is always 1 insn, load imm may be two, so try to use mov */
2592 if (imm_hi == imm_lo)
2593 wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2595 wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2600 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2602 meta->double_cb = imm_ld8_part2;
2606 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2608 return construct_data_ld(nfp_prog, meta, meta->insn.imm, 1);
2611 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2613 return construct_data_ld(nfp_prog, meta, meta->insn.imm, 2);
2616 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2618 return construct_data_ld(nfp_prog, meta, meta->insn.imm, 4);
2621 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2623 return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2624 meta->insn.src_reg * 2, 1);
2627 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2629 return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2630 meta->insn.src_reg * 2, 2);
2633 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2635 return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2636 meta->insn.src_reg * 2, 4);
2640 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2641 unsigned int size, unsigned int ptr_off)
2643 return mem_op_stack(nfp_prog, meta, size, ptr_off,
2644 meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2645 true, wrp_lmem_load);
2648 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2651 swreg dst = reg_both(meta->insn.dst_reg * 2);
2653 switch (meta->insn.off) {
2654 case offsetof(struct __sk_buff, len):
2655 if (size != sizeof_field(struct __sk_buff, len))
2657 wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2659 case offsetof(struct __sk_buff, data):
2660 if (size != sizeof_field(struct __sk_buff, data))
2662 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2664 case offsetof(struct __sk_buff, data_end):
2665 if (size != sizeof_field(struct __sk_buff, data_end))
2667 emit_alu(nfp_prog, dst,
2668 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2674 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2679 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2682 swreg dst = reg_both(meta->insn.dst_reg * 2);
2684 switch (meta->insn.off) {
2685 case offsetof(struct xdp_md, data):
2686 if (size != sizeof_field(struct xdp_md, data))
2688 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2690 case offsetof(struct xdp_md, data_end):
2691 if (size != sizeof_field(struct xdp_md, data_end))
2693 emit_alu(nfp_prog, dst,
2694 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2700 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2706 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2711 tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2713 return data_ld_host_order_addr32(nfp_prog, meta, meta->insn.src_reg * 2,
2714 tmp_reg, meta->insn.dst_reg * 2, size);
2718 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2723 tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2725 return data_ld_host_order_addr40(nfp_prog, meta, meta->insn.src_reg * 2,
2726 tmp_reg, meta->insn.dst_reg * 2, size);
2730 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2731 struct nfp_insn_meta *meta)
2733 s16 range_start = meta->pkt_cache.range_start;
2734 s16 range_end = meta->pkt_cache.range_end;
2735 swreg src_base, off;
2739 off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2740 src_base = reg_a(meta->insn.src_reg * 2);
2741 len = range_end - range_start;
2742 xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2744 indir = len > 8 * REG_WIDTH;
2745 /* Setup PREV_ALU for indirect mode. */
2747 wrp_immed(nfp_prog, reg_none(),
2748 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2750 /* Cache memory into transfer-in registers. */
2751 emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2752 off, xfer_num - 1, CMD_CTX_SWAP, indir);
2756 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2757 struct nfp_insn_meta *meta,
2760 s16 range_start = meta->pkt_cache.range_start;
2761 s16 insn_off = meta->insn.off - range_start;
2762 swreg dst_lo, dst_hi, src_lo, src_mid;
2763 u8 dst_gpr = meta->insn.dst_reg * 2;
2764 u8 len_lo = size, len_mid = 0;
2765 u8 idx = insn_off / REG_WIDTH;
2766 u8 off = insn_off % REG_WIDTH;
2768 dst_hi = reg_both(dst_gpr + 1);
2769 dst_lo = reg_both(dst_gpr);
2770 src_lo = reg_xfer(idx);
2772 /* The read length could involve as many as three registers. */
2773 if (size > REG_WIDTH - off) {
2774 /* Calculate the part in the second register. */
2775 len_lo = REG_WIDTH - off;
2776 len_mid = size - len_lo;
2778 /* Calculate the part in the third register. */
2779 if (size > 2 * REG_WIDTH - off)
2780 len_mid = REG_WIDTH;
2783 wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2786 wrp_zext(nfp_prog, meta, dst_gpr);
2790 src_mid = reg_xfer(idx + 1);
2792 if (size <= REG_WIDTH) {
2793 wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2794 wrp_zext(nfp_prog, meta, dst_gpr);
2796 swreg src_hi = reg_xfer(idx + 2);
2798 wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2799 REG_WIDTH - len_lo, len_lo);
2800 wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2801 REG_WIDTH - len_lo);
2802 wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2810 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2811 struct nfp_insn_meta *meta,
2814 swreg dst_lo, dst_hi, src_lo;
2817 idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2818 dst_gpr = meta->insn.dst_reg * 2;
2819 dst_hi = reg_both(dst_gpr + 1);
2820 dst_lo = reg_both(dst_gpr);
2821 src_lo = reg_xfer(idx);
2823 if (size < REG_WIDTH) {
2824 wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2825 wrp_zext(nfp_prog, meta, dst_gpr);
2826 } else if (size == REG_WIDTH) {
2827 wrp_mov(nfp_prog, dst_lo, src_lo);
2828 wrp_zext(nfp_prog, meta, dst_gpr);
2830 swreg src_hi = reg_xfer(idx + 1);
2832 wrp_mov(nfp_prog, dst_lo, src_lo);
2833 wrp_mov(nfp_prog, dst_hi, src_hi);
2840 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2841 struct nfp_insn_meta *meta, unsigned int size)
2843 u8 off = meta->insn.off - meta->pkt_cache.range_start;
2845 if (IS_ALIGNED(off, REG_WIDTH))
2846 return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2848 return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2852 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2855 if (meta->ldst_gather_len)
2856 return nfp_cpp_memcpy(nfp_prog, meta);
2858 if (meta->ptr.type == PTR_TO_CTX) {
2859 if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2860 return mem_ldx_xdp(nfp_prog, meta, size);
2862 return mem_ldx_skb(nfp_prog, meta, size);
2865 if (meta->ptr.type == PTR_TO_PACKET) {
2866 if (meta->pkt_cache.range_end) {
2867 if (meta->pkt_cache.do_init)
2868 mem_ldx_data_init_pktcache(nfp_prog, meta);
2870 return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2872 return mem_ldx_data(nfp_prog, meta, size);
2876 if (meta->ptr.type == PTR_TO_STACK)
2877 return mem_ldx_stack(nfp_prog, meta, size,
2878 meta->ptr.off + meta->ptr.var_off.value);
2880 if (meta->ptr.type == PTR_TO_MAP_VALUE)
2881 return mem_ldx_emem(nfp_prog, meta, size);
2886 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2888 return mem_ldx(nfp_prog, meta, 1);
2891 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2893 return mem_ldx(nfp_prog, meta, 2);
2896 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2898 return mem_ldx(nfp_prog, meta, 4);
2901 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2903 return mem_ldx(nfp_prog, meta, 8);
2907 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2910 u64 imm = meta->insn.imm; /* sign extend */
2913 off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2915 return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2919 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2922 if (meta->ptr.type == PTR_TO_PACKET)
2923 return mem_st_data(nfp_prog, meta, size);
2928 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2930 return mem_st(nfp_prog, meta, 1);
2933 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2935 return mem_st(nfp_prog, meta, 2);
2938 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2940 return mem_st(nfp_prog, meta, 4);
2943 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2945 return mem_st(nfp_prog, meta, 8);
2949 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2954 off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2956 return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2957 meta->insn.src_reg * 2, size);
2961 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2962 unsigned int size, unsigned int ptr_off)
2964 return mem_op_stack(nfp_prog, meta, size, ptr_off,
2965 meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2966 false, wrp_lmem_store);
2969 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2971 switch (meta->insn.off) {
2972 case offsetof(struct xdp_md, rx_queue_index):
2973 return nfp_queue_select(nfp_prog, meta);
2976 WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2981 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2984 if (meta->ptr.type == PTR_TO_PACKET)
2985 return mem_stx_data(nfp_prog, meta, size);
2987 if (meta->ptr.type == PTR_TO_STACK)
2988 return mem_stx_stack(nfp_prog, meta, size,
2989 meta->ptr.off + meta->ptr.var_off.value);
2994 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2996 return mem_stx(nfp_prog, meta, 1);
2999 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3001 return mem_stx(nfp_prog, meta, 2);
3004 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3006 if (meta->ptr.type == PTR_TO_CTX)
3007 if (nfp_prog->type == BPF_PROG_TYPE_XDP)
3008 return mem_stx_xdp(nfp_prog, meta);
3009 return mem_stx(nfp_prog, meta, 4);
3012 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3014 return mem_stx(nfp_prog, meta, 8);
3018 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
3020 u8 dst_gpr = meta->insn.dst_reg * 2;
3021 u8 src_gpr = meta->insn.src_reg * 2;
3022 unsigned int full_add, out;
3023 swreg addra, addrb, off;
3025 off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
3027 /* We can fit 16 bits into command immediate, if we know the immediate
3028 * is guaranteed to either always or never fit into 16 bit we only
3029 * generate code to handle that particular case, otherwise generate
3032 out = nfp_prog_current_offset(nfp_prog);
3033 full_add = nfp_prog_current_offset(nfp_prog);
3035 if (meta->insn.off) {
3039 if (meta->xadd_maybe_16bit) {
3043 if (meta->xadd_over_16bit)
3045 if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3050 /* Generate the branch for choosing add_imm vs add */
3051 if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3052 swreg max_imm = imm_a(nfp_prog);
3054 wrp_immed(nfp_prog, max_imm, 0xffff);
3055 emit_alu(nfp_prog, reg_none(),
3056 max_imm, ALU_OP_SUB, reg_b(src_gpr));
3057 emit_alu(nfp_prog, reg_none(),
3058 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
3059 emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
3063 /* If insn has an offset add to the address */
3064 if (!meta->insn.off) {
3065 addra = reg_a(dst_gpr);
3066 addrb = reg_b(dst_gpr + 1);
3068 emit_alu(nfp_prog, imma_a(nfp_prog),
3069 reg_a(dst_gpr), ALU_OP_ADD, off);
3070 emit_alu(nfp_prog, imma_b(nfp_prog),
3071 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
3072 addra = imma_a(nfp_prog);
3073 addrb = imma_b(nfp_prog);
3076 /* Generate the add_imm if 16 bits are possible */
3077 if (meta->xadd_maybe_16bit) {
3078 swreg prev_alu = imm_a(nfp_prog);
3080 wrp_immed(nfp_prog, prev_alu,
3081 FIELD_PREP(CMD_OVE_DATA, 2) |
3083 FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3084 wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
3085 emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
3086 addra, addrb, 0, CMD_CTX_NO_SWAP);
3088 if (meta->xadd_over_16bit)
3089 emit_br(nfp_prog, BR_UNC, out, 0);
3092 if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3095 /* Generate the add if 16 bits are not guaranteed */
3096 if (meta->xadd_over_16bit) {
3097 emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3098 addra, addrb, is64 << 2,
3099 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3101 wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3103 wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3106 if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3112 static int mem_atomic4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3114 if (meta->insn.imm != BPF_ADD)
3117 return mem_xadd(nfp_prog, meta, false);
3120 static int mem_atomic8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3122 if (meta->insn.imm != BPF_ADD)
3125 return mem_xadd(nfp_prog, meta, true);
3128 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3130 emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3135 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3137 const struct bpf_insn *insn = &meta->insn;
3138 u64 imm = insn->imm; /* sign extend */
3139 swreg or1, or2, tmp_reg;
3141 or1 = reg_a(insn->dst_reg * 2);
3142 or2 = reg_b(insn->dst_reg * 2 + 1);
3145 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3146 emit_alu(nfp_prog, imm_a(nfp_prog),
3147 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3148 or1 = imm_a(nfp_prog);
3152 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3153 emit_alu(nfp_prog, imm_b(nfp_prog),
3154 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3155 or2 = imm_b(nfp_prog);
3158 emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3159 emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3164 static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3166 const struct bpf_insn *insn = &meta->insn;
3169 tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3170 emit_alu(nfp_prog, reg_none(),
3171 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3172 emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3177 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3179 const struct bpf_insn *insn = &meta->insn;
3180 u64 imm = insn->imm; /* sign extend */
3181 u8 dst_gpr = insn->dst_reg * 2;
3184 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3185 emit_alu(nfp_prog, imm_b(nfp_prog),
3186 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3187 /* Upper word of the mask can only be 0 or ~0 from sign extension,
3188 * so either ignore it or OR the whole thing in.
3190 if (is_mbpf_jmp64(meta) && imm >> 32) {
3191 emit_alu(nfp_prog, reg_none(),
3192 reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3194 emit_br(nfp_prog, BR_BNE, insn->off, 0);
3199 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3201 const struct bpf_insn *insn = &meta->insn;
3202 u64 imm = insn->imm; /* sign extend */
3203 bool is_jmp32 = is_mbpf_jmp32(meta);
3208 emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3209 reg_b(insn->dst_reg * 2));
3211 emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3212 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3213 emit_br(nfp_prog, BR_BNE, insn->off, 0);
3217 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3218 emit_alu(nfp_prog, reg_none(),
3219 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3220 emit_br(nfp_prog, BR_BNE, insn->off, 0);
3225 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3226 emit_alu(nfp_prog, reg_none(),
3227 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3228 emit_br(nfp_prog, BR_BNE, insn->off, 0);
3233 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3235 const struct bpf_insn *insn = &meta->insn;
3237 emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3238 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3239 if (is_mbpf_jmp64(meta)) {
3240 emit_alu(nfp_prog, imm_b(nfp_prog),
3241 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3242 reg_b(insn->src_reg * 2 + 1));
3243 emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3246 emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3251 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3253 return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3256 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3258 return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3262 bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3264 u32 ret_tgt, stack_depth, offset_br;
3267 stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3268 /* Space for saving the return address is accounted for by the callee,
3269 * so stack_depth can be zero for the main function.
3272 tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3273 stack_imm(nfp_prog));
3274 emit_alu(nfp_prog, stack_reg(nfp_prog),
3275 stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3276 emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3277 NFP_CSR_ACT_LM_ADDR0);
3280 /* Two cases for jumping to the callee:
3282 * - If callee uses and needs to save R6~R9 then:
3283 * 1. Put the start offset of the callee into imm_b(). This will
3284 * require a fixup step, as we do not necessarily know this
3286 * 2. Put the return address from the callee to the caller into
3287 * register ret_reg().
3288 * 3. (After defer slots are consumed) Jump to the subroutine that
3289 * pushes the registers to the stack.
3290 * The subroutine acts as a trampoline, and returns to the address in
3291 * imm_b(), i.e. jumps to the callee.
3293 * - If callee does not need to save R6~R9 then just load return
3294 * address to the caller in ret_reg(), and jump to the callee
3297 * Using ret_reg() to pass the return address to the callee is set here
3298 * as a convention. The callee can then push this address onto its
3299 * stack frame in its prologue. The advantages of passing the return
3300 * address through ret_reg(), instead of pushing it to the stack right
3301 * here, are the following:
3302 * - It looks cleaner.
3303 * - If the called function is called multiple time, we get a lower
3305 * - We save two no-op instructions that should be added just before
3306 * the emit_br() when stack depth is not null otherwise.
3307 * - If we ever find a register to hold the return address during whole
3308 * execution of the callee, we will not have to push the return
3309 * address to the stack for leaf functions.
3311 if (!meta->jmp_dst) {
3312 pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3315 if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3316 ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3317 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3318 RELO_BR_GO_CALL_PUSH_REGS);
3319 offset_br = nfp_prog_current_offset(nfp_prog);
3320 wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3322 ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3323 emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3324 offset_br = nfp_prog_current_offset(nfp_prog);
3326 wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3328 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3332 tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3333 stack_imm(nfp_prog));
3334 emit_alu(nfp_prog, stack_reg(nfp_prog),
3335 stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3336 emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3337 NFP_CSR_ACT_LM_ADDR0);
3338 wrp_nops(nfp_prog, 3);
3341 meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3342 meta->num_insns_after_br -= offset_br;
3347 static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3349 switch (meta->insn.imm) {
3350 case BPF_FUNC_xdp_adjust_head:
3351 return adjust_head(nfp_prog, meta);
3352 case BPF_FUNC_xdp_adjust_tail:
3353 return adjust_tail(nfp_prog, meta);
3354 case BPF_FUNC_map_lookup_elem:
3355 case BPF_FUNC_map_update_elem:
3356 case BPF_FUNC_map_delete_elem:
3357 return map_call_stack_common(nfp_prog, meta);
3358 case BPF_FUNC_get_prandom_u32:
3359 return nfp_get_prandom_u32(nfp_prog, meta);
3360 case BPF_FUNC_perf_event_output:
3361 return nfp_perf_event_output(nfp_prog, meta);
3363 WARN_ONCE(1, "verifier allowed unsupported function\n");
3368 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3370 if (is_mbpf_pseudo_call(meta))
3371 return bpf_to_bpf_call(nfp_prog, meta);
3373 return helper_call(nfp_prog, meta);
3376 static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3378 return meta->subprog_idx == 0;
3381 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3383 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3389 nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3391 if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3392 /* Pop R6~R9 to the stack via related subroutine.
3393 * We loaded the return address to the caller into ret_reg().
3394 * This means that the subroutine does not come back here, we
3395 * make it jump back to the subprogram caller directly!
3397 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3398 RELO_BR_GO_CALL_POP_REGS);
3399 /* Pop return address from the stack. */
3400 wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3402 /* Pop return address from the stack. */
3403 wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3404 /* Jump back to caller if no callee-saved registers were used
3405 * by the subprogram.
3407 emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3413 static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3415 if (nfp_is_main_function(meta))
3416 return goto_out(nfp_prog, meta);
3418 return nfp_subprog_epilogue(nfp_prog, meta);
3421 static const instr_cb_t instr_cb[256] = {
3422 [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64,
3423 [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64,
3424 [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64,
3425 [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64,
3426 [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64,
3427 [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64,
3428 [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64,
3429 [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64,
3430 [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64,
3431 [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64,
3432 [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64,
3433 [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64,
3434 [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64,
3435 [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64,
3436 [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64,
3437 [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64,
3438 [BPF_ALU64 | BPF_NEG] = neg_reg64,
3439 [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64,
3440 [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64,
3441 [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64,
3442 [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64,
3443 [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3444 [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3445 [BPF_ALU | BPF_MOV | BPF_X] = mov_reg,
3446 [BPF_ALU | BPF_MOV | BPF_K] = mov_imm,
3447 [BPF_ALU | BPF_XOR | BPF_X] = xor_reg,
3448 [BPF_ALU | BPF_XOR | BPF_K] = xor_imm,
3449 [BPF_ALU | BPF_AND | BPF_X] = and_reg,
3450 [BPF_ALU | BPF_AND | BPF_K] = and_imm,
3451 [BPF_ALU | BPF_OR | BPF_X] = or_reg,
3452 [BPF_ALU | BPF_OR | BPF_K] = or_imm,
3453 [BPF_ALU | BPF_ADD | BPF_X] = add_reg,
3454 [BPF_ALU | BPF_ADD | BPF_K] = add_imm,
3455 [BPF_ALU | BPF_SUB | BPF_X] = sub_reg,
3456 [BPF_ALU | BPF_SUB | BPF_K] = sub_imm,
3457 [BPF_ALU | BPF_MUL | BPF_X] = mul_reg,
3458 [BPF_ALU | BPF_MUL | BPF_K] = mul_imm,
3459 [BPF_ALU | BPF_DIV | BPF_X] = div_reg,
3460 [BPF_ALU | BPF_DIV | BPF_K] = div_imm,
3461 [BPF_ALU | BPF_NEG] = neg_reg,
3462 [BPF_ALU | BPF_LSH | BPF_X] = shl_reg,
3463 [BPF_ALU | BPF_LSH | BPF_K] = shl_imm,
3464 [BPF_ALU | BPF_RSH | BPF_X] = shr_reg,
3465 [BPF_ALU | BPF_RSH | BPF_K] = shr_imm,
3466 [BPF_ALU | BPF_ARSH | BPF_X] = ashr_reg,
3467 [BPF_ALU | BPF_ARSH | BPF_K] = ashr_imm,
3468 [BPF_ALU | BPF_END | BPF_X] = end_reg32,
3469 [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8,
3470 [BPF_LD | BPF_ABS | BPF_B] = data_ld1,
3471 [BPF_LD | BPF_ABS | BPF_H] = data_ld2,
3472 [BPF_LD | BPF_ABS | BPF_W] = data_ld4,
3473 [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1,
3474 [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2,
3475 [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4,
3476 [BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1,
3477 [BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2,
3478 [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4,
3479 [BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8,
3480 [BPF_STX | BPF_MEM | BPF_B] = mem_stx1,
3481 [BPF_STX | BPF_MEM | BPF_H] = mem_stx2,
3482 [BPF_STX | BPF_MEM | BPF_W] = mem_stx4,
3483 [BPF_STX | BPF_MEM | BPF_DW] = mem_stx8,
3484 [BPF_STX | BPF_ATOMIC | BPF_W] = mem_atomic4,
3485 [BPF_STX | BPF_ATOMIC | BPF_DW] = mem_atomic8,
3486 [BPF_ST | BPF_MEM | BPF_B] = mem_st1,
3487 [BPF_ST | BPF_MEM | BPF_H] = mem_st2,
3488 [BPF_ST | BPF_MEM | BPF_W] = mem_st4,
3489 [BPF_ST | BPF_MEM | BPF_DW] = mem_st8,
3490 [BPF_JMP | BPF_JA | BPF_K] = jump,
3491 [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm,
3492 [BPF_JMP | BPF_JGT | BPF_K] = cmp_imm,
3493 [BPF_JMP | BPF_JGE | BPF_K] = cmp_imm,
3494 [BPF_JMP | BPF_JLT | BPF_K] = cmp_imm,
3495 [BPF_JMP | BPF_JLE | BPF_K] = cmp_imm,
3496 [BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm,
3497 [BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm,
3498 [BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm,
3499 [BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm,
3500 [BPF_JMP | BPF_JSET | BPF_K] = jset_imm,
3501 [BPF_JMP | BPF_JNE | BPF_K] = jne_imm,
3502 [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg,
3503 [BPF_JMP | BPF_JGT | BPF_X] = cmp_reg,
3504 [BPF_JMP | BPF_JGE | BPF_X] = cmp_reg,
3505 [BPF_JMP | BPF_JLT | BPF_X] = cmp_reg,
3506 [BPF_JMP | BPF_JLE | BPF_X] = cmp_reg,
3507 [BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg,
3508 [BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg,
3509 [BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg,
3510 [BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg,
3511 [BPF_JMP | BPF_JSET | BPF_X] = jset_reg,
3512 [BPF_JMP | BPF_JNE | BPF_X] = jne_reg,
3513 [BPF_JMP32 | BPF_JEQ | BPF_K] = jeq32_imm,
3514 [BPF_JMP32 | BPF_JGT | BPF_K] = cmp_imm,
3515 [BPF_JMP32 | BPF_JGE | BPF_K] = cmp_imm,
3516 [BPF_JMP32 | BPF_JLT | BPF_K] = cmp_imm,
3517 [BPF_JMP32 | BPF_JLE | BPF_K] = cmp_imm,
3518 [BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3519 [BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3520 [BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3521 [BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3522 [BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3523 [BPF_JMP32 | BPF_JNE | BPF_K] = jne_imm,
3524 [BPF_JMP32 | BPF_JEQ | BPF_X] = jeq_reg,
3525 [BPF_JMP32 | BPF_JGT | BPF_X] = cmp_reg,
3526 [BPF_JMP32 | BPF_JGE | BPF_X] = cmp_reg,
3527 [BPF_JMP32 | BPF_JLT | BPF_X] = cmp_reg,
3528 [BPF_JMP32 | BPF_JLE | BPF_X] = cmp_reg,
3529 [BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3530 [BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3531 [BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3532 [BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3533 [BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3534 [BPF_JMP32 | BPF_JNE | BPF_X] = jne_reg,
3535 [BPF_JMP | BPF_CALL] = call,
3536 [BPF_JMP | BPF_EXIT] = jmp_exit,
3539 /* --- Assembler logic --- */
3541 nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3542 struct nfp_insn_meta *jmp_dst, u32 br_idx)
3544 if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3545 pr_err("BUG: failed to fix up callee register saving\n");
3549 immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3554 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3556 struct nfp_insn_meta *meta, *jmp_dst;
3560 list_for_each_entry(meta, &nfp_prog->insns, l) {
3561 if (meta->flags & FLAG_INSN_SKIP_MASK)
3563 if (!is_mbpf_jmp(meta))
3565 if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3566 !nfp_is_main_function(meta))
3568 if (is_mbpf_helper_call(meta))
3571 if (list_is_last(&meta->l, &nfp_prog->insns))
3572 br_idx = nfp_prog->last_bpf_off;
3574 br_idx = list_next_entry(meta, l)->off - 1;
3576 /* For BPF-to-BPF function call, a stack adjustment sequence is
3577 * generated after the return instruction. Therefore, we must
3578 * withdraw the length of this sequence to have br_idx pointing
3579 * to where the "branch" NFP instruction is expected to be.
3581 if (is_mbpf_pseudo_call(meta))
3582 br_idx -= meta->num_insns_after_br;
3584 if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3585 pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3586 br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3590 if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3593 /* Leave special branches for later */
3594 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3595 RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3598 if (!meta->jmp_dst) {
3599 pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3603 jmp_dst = meta->jmp_dst;
3605 if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3606 pr_err("Branch landing on removed instruction!!\n");
3610 if (is_mbpf_pseudo_call(meta) &&
3611 nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3612 err = nfp_fixup_immed_relo(nfp_prog, meta,
3618 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3622 for (idx = meta->off; idx <= br_idx; idx++) {
3623 if (!nfp_is_br(nfp_prog->prog[idx]))
3625 br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3632 static void nfp_intro(struct nfp_prog *nfp_prog)
3634 wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3635 emit_alu(nfp_prog, plen_reg(nfp_prog),
3636 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3640 nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3642 /* Save return address into the stack. */
3643 wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3647 nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3649 unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3651 nfp_prog->stack_frame_depth = round_up(depth, 4);
3652 nfp_subprog_prologue(nfp_prog, meta);
3655 bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3657 return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3660 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3662 /* TC direct-action mode:
3663 * 0,1 ok NOT SUPPORTED[1]
3664 * 2 drop 0x22 -> drop, count as stat1
3665 * 4,5 nuke 0x02 -> drop
3666 * 7 redir 0x44 -> redir, count as stat2
3667 * * unspec 0x11 -> pass, count as stat0
3669 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3670 * the exact decision made. We are forced to support UNSPEC
3671 * to handle aborts so that's the only one we handle for passing
3672 * packets up the stack.
3674 /* Target for aborts */
3675 nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3677 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3679 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3680 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3682 /* Target for normal exits */
3683 nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3685 /* if R0 > 7 jump to abort */
3686 emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3687 emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3688 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3690 wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3691 wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3693 emit_shf(nfp_prog, reg_a(1),
3694 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3696 emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3697 emit_shf(nfp_prog, reg_a(2),
3698 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3700 emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3701 emit_shf(nfp_prog, reg_b(2),
3702 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3704 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3706 emit_shf(nfp_prog, reg_b(2),
3707 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3708 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3711 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3713 /* XDP return codes:
3714 * 0 aborted 0x82 -> drop, count as stat3
3715 * 1 drop 0x22 -> drop, count as stat1
3716 * 2 pass 0x11 -> pass, count as stat0
3717 * 3 tx 0x44 -> redir, count as stat2
3718 * * unknown 0x82 -> drop, count as stat3
3720 /* Target for aborts */
3721 nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3723 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3725 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3726 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3728 /* Target for normal exits */
3729 nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3731 /* if R0 > 3 jump to abort */
3732 emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3733 emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3735 wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3737 emit_shf(nfp_prog, reg_a(1),
3738 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3740 emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3741 emit_shf(nfp_prog, reg_b(2),
3742 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3744 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3746 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3747 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3750 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3754 for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3755 if (nfp_prog->subprog[idx].needs_reg_push)
3761 static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3765 /* Subroutine: Save all callee saved registers (R6 ~ R9).
3766 * imm_b() holds the return address.
3768 nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3769 for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3770 u8 adj = (reg - BPF_REG_0) * 2;
3771 u8 idx = (reg - BPF_REG_6) * 2;
3773 /* The first slot in the stack frame is used to push the return
3774 * address in bpf_to_bpf_call(), start just after.
3776 wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3778 if (reg == BPF_REG_8)
3779 /* Prepare to jump back, last 3 insns use defer slots */
3780 emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3782 wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3786 static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3790 /* Subroutine: Restore all callee saved registers (R6 ~ R9).
3791 * ret_reg() holds the return address.
3793 nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3794 for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3795 u8 adj = (reg - BPF_REG_0) * 2;
3796 u8 idx = (reg - BPF_REG_6) * 2;
3798 /* The first slot in the stack frame holds the return address,
3799 * start popping just after that.
3801 wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3803 if (reg == BPF_REG_8)
3804 /* Prepare to jump back, last 3 insns use defer slots */
3805 emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3807 wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3811 static void nfp_outro(struct nfp_prog *nfp_prog)
3813 switch (nfp_prog->type) {
3814 case BPF_PROG_TYPE_SCHED_CLS:
3815 nfp_outro_tc_da(nfp_prog);
3817 case BPF_PROG_TYPE_XDP:
3818 nfp_outro_xdp(nfp_prog);
3824 if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3827 nfp_push_callee_registers(nfp_prog);
3828 nfp_pop_callee_registers(nfp_prog);
3831 static int nfp_translate(struct nfp_prog *nfp_prog)
3833 struct nfp_insn_meta *meta;
3837 depth = nfp_prog->subprog[0].stack_depth;
3838 nfp_prog->stack_frame_depth = round_up(depth, 4);
3840 nfp_intro(nfp_prog);
3841 if (nfp_prog->error)
3842 return nfp_prog->error;
3844 list_for_each_entry(meta, &nfp_prog->insns, l) {
3845 instr_cb_t cb = instr_cb[meta->insn.code];
3847 meta->off = nfp_prog_current_offset(nfp_prog);
3849 if (nfp_is_subprog_start(meta)) {
3850 nfp_start_subprog(nfp_prog, meta);
3851 if (nfp_prog->error)
3852 return nfp_prog->error;
3855 if (meta->flags & FLAG_INSN_SKIP_MASK) {
3856 nfp_prog->n_translated++;
3860 if (nfp_meta_has_prev(nfp_prog, meta) &&
3861 nfp_meta_prev(meta)->double_cb)
3862 cb = nfp_meta_prev(meta)->double_cb;
3865 err = cb(nfp_prog, meta);
3868 if (nfp_prog->error)
3869 return nfp_prog->error;
3871 nfp_prog->n_translated++;
3874 nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3876 nfp_outro(nfp_prog);
3877 if (nfp_prog->error)
3878 return nfp_prog->error;
3880 wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3881 if (nfp_prog->error)
3882 return nfp_prog->error;
3884 return nfp_fixup_branches(nfp_prog);
3887 /* --- Optimizations --- */
3888 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3890 struct nfp_insn_meta *meta;
3892 list_for_each_entry(meta, &nfp_prog->insns, l) {
3893 struct bpf_insn insn = meta->insn;
3895 /* Programs converted from cBPF start with register xoring */
3896 if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3897 insn.src_reg == insn.dst_reg)
3900 /* Programs start with R6 = R1 but we ignore the skb pointer */
3901 if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3902 insn.src_reg == 1 && insn.dst_reg == 6)
3903 meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3905 /* Return as soon as something doesn't match */
3906 if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3911 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3912 * convert add/sub of a negative number into a sub/add of a positive one.
3914 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3916 struct nfp_insn_meta *meta;
3918 list_for_each_entry(meta, &nfp_prog->insns, l) {
3919 struct bpf_insn insn = meta->insn;
3921 if (meta->flags & FLAG_INSN_SKIP_MASK)
3924 if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3926 if (BPF_SRC(insn.code) != BPF_K)
3931 if (is_mbpf_jmp(meta)) {
3932 switch (BPF_OP(insn.code)) {
3937 meta->jump_neg_op = true;
3943 if (BPF_OP(insn.code) == BPF_ADD)
3944 insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3945 else if (BPF_OP(insn.code) == BPF_SUB)
3946 insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3950 meta->insn.code = insn.code | BPF_K;
3953 meta->insn.imm = -insn.imm;
3957 /* Remove masking after load since our load guarantees this is not needed */
3958 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3960 struct nfp_insn_meta *meta1, *meta2;
3961 static const s32 exp_mask[] = {
3962 [BPF_B] = 0x000000ffU,
3963 [BPF_H] = 0x0000ffffU,
3964 [BPF_W] = 0xffffffffU,
3967 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3968 struct bpf_insn insn, next;
3973 if (BPF_CLASS(insn.code) != BPF_LD)
3975 if (BPF_MODE(insn.code) != BPF_ABS &&
3976 BPF_MODE(insn.code) != BPF_IND)
3979 if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3982 if (!exp_mask[BPF_SIZE(insn.code)])
3984 if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3987 if (next.src_reg || next.dst_reg)
3990 if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3993 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3997 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3999 struct nfp_insn_meta *meta1, *meta2, *meta3;
4001 nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
4002 struct bpf_insn insn, next1, next2;
4005 next1 = meta2->insn;
4006 next2 = meta3->insn;
4008 if (BPF_CLASS(insn.code) != BPF_LD)
4010 if (BPF_MODE(insn.code) != BPF_ABS &&
4011 BPF_MODE(insn.code) != BPF_IND)
4013 if (BPF_SIZE(insn.code) != BPF_W)
4016 if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
4017 next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
4018 !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
4019 next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
4022 if (next1.src_reg || next1.dst_reg ||
4023 next2.src_reg || next2.dst_reg)
4026 if (next1.imm != 0x20 || next2.imm != 0x20)
4029 if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
4030 meta3->flags & FLAG_INSN_IS_JUMP_DST)
4033 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4034 meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4038 /* load/store pair that forms memory copy sould look like the following:
4040 * ld_width R, [addr_src + offset_src]
4041 * st_width [addr_dest + offset_dest], R
4043 * The destination register of load and source register of store should
4044 * be the same, load and store should also perform at the same width.
4045 * If either of addr_src or addr_dest is stack pointer, we don't do the
4046 * CPP optimization as stack is modelled by registers on NFP.
4049 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4050 struct nfp_insn_meta *st_meta)
4052 struct bpf_insn *ld = &ld_meta->insn;
4053 struct bpf_insn *st = &st_meta->insn;
4055 if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
4058 if (ld_meta->ptr.type != PTR_TO_PACKET &&
4059 ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4062 if (st_meta->ptr.type != PTR_TO_PACKET)
4065 if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4068 if (ld->dst_reg != st->src_reg)
4071 /* There is jump to the store insn in this pair. */
4072 if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4078 /* Currently, we only support chaining load/store pairs if:
4080 * - Their address base registers are the same.
4081 * - Their address offsets are in the same order.
4082 * - They operate at the same memory width.
4083 * - There is no jump into the middle of them.
4086 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4087 struct nfp_insn_meta *st_meta,
4088 struct bpf_insn *prev_ld,
4089 struct bpf_insn *prev_st)
4091 u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4092 struct bpf_insn *ld = &ld_meta->insn;
4093 struct bpf_insn *st = &st_meta->insn;
4094 s16 prev_ld_off, prev_st_off;
4096 /* This pair is the start pair. */
4100 prev_size = BPF_LDST_BYTES(prev_ld);
4101 curr_size = BPF_LDST_BYTES(ld);
4102 prev_ld_base = prev_ld->src_reg;
4103 prev_st_base = prev_st->dst_reg;
4104 prev_ld_dst = prev_ld->dst_reg;
4105 prev_ld_off = prev_ld->off;
4106 prev_st_off = prev_st->off;
4108 if (ld->dst_reg != prev_ld_dst)
4111 if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4114 if (curr_size != prev_size)
4117 /* There is jump to the head of this pair. */
4118 if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4121 /* Both in ascending order. */
4122 if (prev_ld_off + prev_size == ld->off &&
4123 prev_st_off + prev_size == st->off)
4126 /* Both in descending order. */
4127 if (ld->off + curr_size == prev_ld_off &&
4128 st->off + curr_size == prev_st_off)
4134 /* Return TRUE if cross memory access happens. Cross memory access means
4135 * store area is overlapping with load area that a later load might load
4136 * the value from previous store, for this case we can't treat the sequence
4137 * as an memory copy.
4140 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4141 struct nfp_insn_meta *head_st_meta)
4143 s16 head_ld_off, head_st_off, ld_off;
4145 /* Different pointer types does not overlap. */
4146 if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4149 /* load and store are both PTR_TO_PACKET, check ID info. */
4150 if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4153 /* Canonicalize the offsets. Turn all of them against the original
4156 head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4157 head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4158 ld_off = ld->off + head_ld_meta->ptr.off;
4160 /* Ascending order cross. */
4161 if (ld_off > head_ld_off &&
4162 head_ld_off < head_st_off && ld_off >= head_st_off)
4165 /* Descending order cross. */
4166 if (ld_off < head_ld_off &&
4167 head_ld_off > head_st_off && ld_off <= head_st_off)
4173 /* This pass try to identify the following instructoin sequences.
4175 * load R, [regA + offA]
4176 * store [regB + offB], R
4177 * load R, [regA + offA + const_imm_A]
4178 * store [regB + offB + const_imm_A], R
4179 * load R, [regA + offA + 2 * const_imm_A]
4180 * store [regB + offB + 2 * const_imm_A], R
4183 * Above sequence is typically generated by compiler when lowering
4184 * memcpy. NFP prefer using CPP instructions to accelerate it.
4186 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4188 struct nfp_insn_meta *head_ld_meta = NULL;
4189 struct nfp_insn_meta *head_st_meta = NULL;
4190 struct nfp_insn_meta *meta1, *meta2;
4191 struct bpf_insn *prev_ld = NULL;
4192 struct bpf_insn *prev_st = NULL;
4195 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4196 struct bpf_insn *ld = &meta1->insn;
4197 struct bpf_insn *st = &meta2->insn;
4199 /* Reset record status if any of the following if true:
4200 * - The current insn pair is not load/store.
4201 * - The load/store pair doesn't chain with previous one.
4202 * - The chained load/store pair crossed with previous pair.
4203 * - The chained load/store pair has a total size of memory
4204 * copy beyond 128 bytes which is the maximum length a
4205 * single NFP CPP command can transfer.
4207 if (!curr_pair_is_memcpy(meta1, meta2) ||
4208 !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4210 (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4212 head_ld_meta->ldst_gather_len >= 128))) {
4217 s16 prev_ld_off = prev_ld->off;
4218 s16 prev_st_off = prev_st->off;
4219 s16 head_ld_off = head_ld_meta->insn.off;
4221 if (prev_ld_off < head_ld_off) {
4222 head_ld_meta->insn.off = prev_ld_off;
4223 head_st_meta->insn.off = prev_st_off;
4224 head_ld_meta->ldst_gather_len =
4225 -head_ld_meta->ldst_gather_len;
4228 head_ld_meta->paired_st = &head_st_meta->insn;
4229 head_st_meta->flags |=
4230 FLAG_INSN_SKIP_PREC_DEPENDENT;
4232 head_ld_meta->ldst_gather_len = 0;
4235 /* If the chain is ended by an load/store pair then this
4236 * could serve as the new head of the next chain.
4238 if (curr_pair_is_memcpy(meta1, meta2)) {
4239 head_ld_meta = meta1;
4240 head_st_meta = meta2;
4241 head_ld_meta->ldst_gather_len =
4243 meta1 = nfp_meta_next(meta1);
4244 meta2 = nfp_meta_next(meta2);
4249 head_ld_meta = NULL;
4250 head_st_meta = NULL;
4259 if (!head_ld_meta) {
4260 head_ld_meta = meta1;
4261 head_st_meta = meta2;
4263 meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4264 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4267 head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4268 meta1 = nfp_meta_next(meta1);
4269 meta2 = nfp_meta_next(meta2);
4276 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4278 struct nfp_insn_meta *meta, *range_node = NULL;
4279 s16 range_start = 0, range_end = 0;
4280 bool cache_avail = false;
4281 struct bpf_insn *insn;
4282 s32 range_ptr_off = 0;
4283 u32 range_ptr_id = 0;
4285 list_for_each_entry(meta, &nfp_prog->insns, l) {
4286 if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4287 cache_avail = false;
4289 if (meta->flags & FLAG_INSN_SKIP_MASK)
4294 if (is_mbpf_store_pkt(meta) ||
4295 insn->code == (BPF_JMP | BPF_CALL) ||
4296 is_mbpf_classic_store_pkt(meta) ||
4297 is_mbpf_classic_load(meta)) {
4298 cache_avail = false;
4302 if (!is_mbpf_load(meta))
4305 if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4306 cache_avail = false;
4313 goto end_current_then_start_new;
4317 /* Check ID to make sure two reads share the same
4318 * variable offset against PTR_TO_PACKET, and check OFF
4319 * to make sure they also share the same constant
4322 * OFFs don't really need to be the same, because they
4323 * are the constant offsets against PTR_TO_PACKET, so
4324 * for different OFFs, we could canonicalize them to
4325 * offsets against original packet pointer. We don't
4328 if (meta->ptr.id == range_ptr_id &&
4329 meta->ptr.off == range_ptr_off) {
4330 s16 new_start = range_start;
4331 s16 end, off = insn->off;
4332 s16 new_end = range_end;
4333 bool changed = false;
4335 if (off < range_start) {
4340 end = off + BPF_LDST_BYTES(insn);
4341 if (end > range_end) {
4349 if (new_end - new_start <= 64) {
4350 /* Install new range. */
4351 range_start = new_start;
4352 range_end = new_end;
4357 end_current_then_start_new:
4358 range_node->pkt_cache.range_start = range_start;
4359 range_node->pkt_cache.range_end = range_end;
4362 range_node->pkt_cache.do_init = true;
4363 range_ptr_id = range_node->ptr.id;
4364 range_ptr_off = range_node->ptr.off;
4365 range_start = insn->off;
4366 range_end = insn->off + BPF_LDST_BYTES(insn);
4370 range_node->pkt_cache.range_start = range_start;
4371 range_node->pkt_cache.range_end = range_end;
4374 list_for_each_entry(meta, &nfp_prog->insns, l) {
4375 if (meta->flags & FLAG_INSN_SKIP_MASK)
4378 if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4379 if (meta->pkt_cache.do_init) {
4380 range_start = meta->pkt_cache.range_start;
4381 range_end = meta->pkt_cache.range_end;
4383 meta->pkt_cache.range_start = range_start;
4384 meta->pkt_cache.range_end = range_end;
4390 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4392 nfp_bpf_opt_reg_init(nfp_prog);
4394 nfp_bpf_opt_neg_add_sub(nfp_prog);
4395 nfp_bpf_opt_ld_mask(nfp_prog);
4396 nfp_bpf_opt_ld_shift(nfp_prog);
4397 nfp_bpf_opt_ldst_gather(nfp_prog);
4398 nfp_bpf_opt_pkt_cache(nfp_prog);
4403 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4405 struct nfp_insn_meta *meta1, *meta2;
4406 struct nfp_bpf_map *nfp_map;
4407 struct bpf_map *map;
4410 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4411 if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4412 meta2->flags & FLAG_INSN_SKIP_MASK)
4415 if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4416 meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4419 map = (void *)(unsigned long)((u32)meta1->insn.imm |
4420 (u64)meta2->insn.imm << 32);
4421 if (bpf_map_offload_neutral(map)) {
4424 nfp_map = map_to_offmap(map)->dev_priv;
4428 meta1->insn.imm = id;
4429 meta2->insn.imm = 0;
4435 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4437 __le64 *ustore = (__force __le64 *)prog;
4440 for (i = 0; i < len; i++) {
4443 err = nfp_ustore_check_valid_no_ecc(prog[i]);
4447 ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4453 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4457 prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4461 nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4462 memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4463 kvfree(nfp_prog->prog);
4464 nfp_prog->prog = prog;
4467 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4471 ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4475 ret = nfp_bpf_optimize(nfp_prog);
4479 ret = nfp_translate(nfp_prog);
4481 pr_err("Translation failed with error %d (translated: %u)\n",
4482 ret, nfp_prog->n_translated);
4486 nfp_bpf_prog_trim(nfp_prog);
4491 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4493 struct nfp_insn_meta *meta;
4495 /* Another pass to record jump information. */
4496 list_for_each_entry(meta, &nfp_prog->insns, l) {
4497 struct nfp_insn_meta *dst_meta;
4498 u64 code = meta->insn.code;
4499 unsigned int dst_idx;
4502 if (!is_mbpf_jmp(meta))
4504 if (BPF_OP(code) == BPF_EXIT)
4506 if (is_mbpf_helper_call(meta))
4509 /* If opcode is BPF_CALL at this point, this can only be a
4510 * BPF-to-BPF call (a.k.a pseudo call).
4512 pseudo_call = BPF_OP(code) == BPF_CALL;
4515 dst_idx = meta->n + 1 + meta->insn.imm;
4517 dst_idx = meta->n + 1 + meta->insn.off;
4519 dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4522 dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4524 dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4525 meta->jmp_dst = dst_meta;
4529 bool nfp_bpf_supported_opcode(u8 code)
4531 return !!instr_cb[code];
4534 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4540 prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4543 return ERR_PTR(-ENOMEM);
4545 for (i = 0; i < nfp_prog->prog_len; i++) {
4546 enum nfp_relo_type special;
4550 special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4555 br_add_offset(&prog[i], bv->start_off);
4557 case RELO_BR_GO_OUT:
4558 br_set_offset(&prog[i],
4559 nfp_prog->tgt_out + bv->start_off);
4561 case RELO_BR_GO_ABORT:
4562 br_set_offset(&prog[i],
4563 nfp_prog->tgt_abort + bv->start_off);
4565 case RELO_BR_GO_CALL_PUSH_REGS:
4566 if (!nfp_prog->tgt_call_push_regs) {
4567 pr_err("BUG: failed to detect subprogram registers needs\n");
4571 off = nfp_prog->tgt_call_push_regs + bv->start_off;
4572 br_set_offset(&prog[i], off);
4574 case RELO_BR_GO_CALL_POP_REGS:
4575 if (!nfp_prog->tgt_call_pop_regs) {
4576 pr_err("BUG: failed to detect subprogram registers needs\n");
4580 off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4581 br_set_offset(&prog[i], off);
4583 case RELO_BR_NEXT_PKT:
4584 br_set_offset(&prog[i], bv->tgt_done);
4586 case RELO_BR_HELPER:
4587 val = br_get_offset(prog[i]);
4590 case BPF_FUNC_map_lookup_elem:
4591 val = nfp_prog->bpf->helpers.map_lookup;
4593 case BPF_FUNC_map_update_elem:
4594 val = nfp_prog->bpf->helpers.map_update;
4596 case BPF_FUNC_map_delete_elem:
4597 val = nfp_prog->bpf->helpers.map_delete;
4599 case BPF_FUNC_perf_event_output:
4600 val = nfp_prog->bpf->helpers.perf_event_output;
4603 pr_err("relocation of unknown helper %d\n",
4608 br_set_offset(&prog[i], val);
4610 case RELO_IMMED_REL:
4611 immed_add_value(&prog[i], bv->start_off);
4615 prog[i] &= ~OP_RELO_TYPE;
4618 err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4626 return ERR_PTR(err);