Merge tag 'fixes-for-rmk' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm...
[profile/ivi/kernel-x86-ivi.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/sctp.h>
46 #include <linux/ipv6.h>
47 #include <linux/slab.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/ethtool.h>
51 #include <linux/if.h>
52 #include <linux/if_vlan.h>
53 #include <linux/prefetch.h>
54
55 #include "ixgbevf.h"
56
57 const char ixgbevf_driver_name[] = "ixgbevf";
58 static const char ixgbevf_driver_string[] =
59         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
60
61 #define DRV_VERSION "2.6.0-k"
62 const char ixgbevf_driver_version[] = DRV_VERSION;
63 static char ixgbevf_copyright[] =
64         "Copyright (c) 2009 - 2012 Intel Corporation.";
65
66 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
67         [board_82599_vf] = &ixgbevf_82599_vf_info,
68         [board_X540_vf]  = &ixgbevf_X540_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72  *
73  * Wildcard entries (PCI_ANY_ID) should come last
74  * Last entry must be all 0s
75  *
76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77  *   Class, Class Mask, private data (not used) }
78  */
79 static struct pci_device_id ixgbevf_pci_tbl[] = {
80         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
81         board_82599_vf},
82         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
83         board_X540_vf},
84
85         /* required last entry */
86         {0, }
87 };
88 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
89
90 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
91 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(DRV_VERSION);
94
95 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
96 static int debug = -1;
97 module_param(debug, int, 0);
98 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
99
100 /* forward decls */
101 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
102
103 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
104                                            struct ixgbevf_ring *rx_ring,
105                                            u32 val)
106 {
107         /*
108          * Force memory writes to complete before letting h/w
109          * know there are new descriptors to fetch.  (Only
110          * applicable for weak-ordered memory model archs,
111          * such as IA-64).
112          */
113         wmb();
114         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
115 }
116
117 /**
118  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
119  * @adapter: pointer to adapter struct
120  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
121  * @queue: queue to map the corresponding interrupt to
122  * @msix_vector: the vector to map to the corresponding queue
123  *
124  */
125 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
126                              u8 queue, u8 msix_vector)
127 {
128         u32 ivar, index;
129         struct ixgbe_hw *hw = &adapter->hw;
130         if (direction == -1) {
131                 /* other causes */
132                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
133                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
134                 ivar &= ~0xFF;
135                 ivar |= msix_vector;
136                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
137         } else {
138                 /* tx or rx causes */
139                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
140                 index = ((16 * (queue & 1)) + (8 * direction));
141                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
142                 ivar &= ~(0xFF << index);
143                 ivar |= (msix_vector << index);
144                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
145         }
146 }
147
148 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
149                                                struct ixgbevf_tx_buffer
150                                                *tx_buffer_info)
151 {
152         if (tx_buffer_info->dma) {
153                 if (tx_buffer_info->mapped_as_page)
154                         dma_unmap_page(tx_ring->dev,
155                                        tx_buffer_info->dma,
156                                        tx_buffer_info->length,
157                                        DMA_TO_DEVICE);
158                 else
159                         dma_unmap_single(tx_ring->dev,
160                                          tx_buffer_info->dma,
161                                          tx_buffer_info->length,
162                                          DMA_TO_DEVICE);
163                 tx_buffer_info->dma = 0;
164         }
165         if (tx_buffer_info->skb) {
166                 dev_kfree_skb_any(tx_buffer_info->skb);
167                 tx_buffer_info->skb = NULL;
168         }
169         tx_buffer_info->time_stamp = 0;
170         /* tx_buffer_info must be completely set up in the transmit path */
171 }
172
173 #define IXGBE_MAX_TXD_PWR       14
174 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
175
176 /* Tx Descriptors needed, worst case */
177 #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IXGBE_MAX_DATA_PER_TXD)
178 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
179
180 static void ixgbevf_tx_timeout(struct net_device *netdev);
181
182 /**
183  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
184  * @q_vector: board private structure
185  * @tx_ring: tx ring to clean
186  **/
187 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
188                                  struct ixgbevf_ring *tx_ring)
189 {
190         struct ixgbevf_adapter *adapter = q_vector->adapter;
191         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
192         struct ixgbevf_tx_buffer *tx_buffer_info;
193         unsigned int i, eop, count = 0;
194         unsigned int total_bytes = 0, total_packets = 0;
195
196         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
197                 return true;
198
199         i = tx_ring->next_to_clean;
200         eop = tx_ring->tx_buffer_info[i].next_to_watch;
201         eop_desc = IXGBEVF_TX_DESC(tx_ring, eop);
202
203         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
204                (count < tx_ring->count)) {
205                 bool cleaned = false;
206                 rmb(); /* read buffer_info after eop_desc */
207                 /* eop could change between read and DD-check */
208                 if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
209                         goto cont_loop;
210                 for ( ; !cleaned; count++) {
211                         struct sk_buff *skb;
212                         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
213                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
214                         cleaned = (i == eop);
215                         skb = tx_buffer_info->skb;
216
217                         if (cleaned && skb) {
218                                 unsigned int segs, bytecount;
219
220                                 /* gso_segs is currently only valid for tcp */
221                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
222                                 /* multiply data chunks by size of headers */
223                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
224                                             skb->len;
225                                 total_packets += segs;
226                                 total_bytes += bytecount;
227                         }
228
229                         ixgbevf_unmap_and_free_tx_resource(tx_ring,
230                                                            tx_buffer_info);
231
232                         tx_desc->wb.status = 0;
233
234                         i++;
235                         if (i == tx_ring->count)
236                                 i = 0;
237                 }
238
239 cont_loop:
240                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
241                 eop_desc = IXGBEVF_TX_DESC(tx_ring, eop);
242         }
243
244         tx_ring->next_to_clean = i;
245
246 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
247         if (unlikely(count && netif_carrier_ok(tx_ring->netdev) &&
248                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
249                 /* Make sure that anybody stopping the queue after this
250                  * sees the new next_to_clean.
251                  */
252                 smp_mb();
253                 if (__netif_subqueue_stopped(tx_ring->netdev,
254                                              tx_ring->queue_index) &&
255                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
256                         netif_wake_subqueue(tx_ring->netdev,
257                                             tx_ring->queue_index);
258                         ++adapter->restart_queue;
259                 }
260         }
261
262         u64_stats_update_begin(&tx_ring->syncp);
263         tx_ring->total_bytes += total_bytes;
264         tx_ring->total_packets += total_packets;
265         u64_stats_update_end(&tx_ring->syncp);
266         q_vector->tx.total_bytes += total_bytes;
267         q_vector->tx.total_packets += total_packets;
268
269         return count < tx_ring->count;
270 }
271
272 /**
273  * ixgbevf_receive_skb - Send a completed packet up the stack
274  * @q_vector: structure containing interrupt and ring information
275  * @skb: packet to send up
276  * @status: hardware indication of status of receive
277  * @rx_desc: rx descriptor
278  **/
279 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
280                                 struct sk_buff *skb, u8 status,
281                                 union ixgbe_adv_rx_desc *rx_desc)
282 {
283         struct ixgbevf_adapter *adapter = q_vector->adapter;
284         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
285         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
286
287         if (is_vlan && test_bit(tag & VLAN_VID_MASK, adapter->active_vlans))
288                 __vlan_hwaccel_put_tag(skb, tag);
289
290         napi_gro_receive(&q_vector->napi, skb);
291 }
292
293 /**
294  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
295  * @adapter: address of board private structure
296  * @status_err: hardware indication of status of receive
297  * @skb: skb currently being received and modified
298  **/
299 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
300                                        struct ixgbevf_ring *ring,
301                                        u32 status_err, struct sk_buff *skb)
302 {
303         skb_checksum_none_assert(skb);
304
305         /* Rx csum disabled */
306         if (!(ring->netdev->features & NETIF_F_RXCSUM))
307                 return;
308
309         /* if IP and error */
310         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
311             (status_err & IXGBE_RXDADV_ERR_IPE)) {
312                 adapter->hw_csum_rx_error++;
313                 return;
314         }
315
316         if (!(status_err & IXGBE_RXD_STAT_L4CS))
317                 return;
318
319         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
320                 adapter->hw_csum_rx_error++;
321                 return;
322         }
323
324         /* It must be a TCP or UDP packet with a valid checksum */
325         skb->ip_summed = CHECKSUM_UNNECESSARY;
326         adapter->hw_csum_rx_good++;
327 }
328
329 /**
330  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
331  * @adapter: address of board private structure
332  **/
333 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
334                                      struct ixgbevf_ring *rx_ring,
335                                      int cleaned_count)
336 {
337         struct pci_dev *pdev = adapter->pdev;
338         union ixgbe_adv_rx_desc *rx_desc;
339         struct ixgbevf_rx_buffer *bi;
340         struct sk_buff *skb;
341         unsigned int i = rx_ring->next_to_use;
342
343         bi = &rx_ring->rx_buffer_info[i];
344
345         while (cleaned_count--) {
346                 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
347                 skb = bi->skb;
348                 if (!skb) {
349                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
350                                                         rx_ring->rx_buf_len);
351                         if (!skb) {
352                                 adapter->alloc_rx_buff_failed++;
353                                 goto no_buffers;
354                         }
355                         bi->skb = skb;
356                 }
357                 if (!bi->dma) {
358                         bi->dma = dma_map_single(&pdev->dev, skb->data,
359                                                  rx_ring->rx_buf_len,
360                                                  DMA_FROM_DEVICE);
361                 }
362                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
363
364                 i++;
365                 if (i == rx_ring->count)
366                         i = 0;
367                 bi = &rx_ring->rx_buffer_info[i];
368         }
369
370 no_buffers:
371         if (rx_ring->next_to_use != i) {
372                 rx_ring->next_to_use = i;
373
374                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
375         }
376 }
377
378 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
379                                              u32 qmask)
380 {
381         struct ixgbe_hw *hw = &adapter->hw;
382
383         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
384 }
385
386 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
387                                  struct ixgbevf_ring *rx_ring,
388                                  int budget)
389 {
390         struct ixgbevf_adapter *adapter = q_vector->adapter;
391         struct pci_dev *pdev = adapter->pdev;
392         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
393         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
394         struct sk_buff *skb;
395         unsigned int i;
396         u32 len, staterr;
397         int cleaned_count = 0;
398         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
399
400         i = rx_ring->next_to_clean;
401         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
402         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
403         rx_buffer_info = &rx_ring->rx_buffer_info[i];
404
405         while (staterr & IXGBE_RXD_STAT_DD) {
406                 if (!budget)
407                         break;
408                 budget--;
409
410                 rmb(); /* read descriptor and rx_buffer_info after status DD */
411                 len = le16_to_cpu(rx_desc->wb.upper.length);
412                 skb = rx_buffer_info->skb;
413                 prefetch(skb->data - NET_IP_ALIGN);
414                 rx_buffer_info->skb = NULL;
415
416                 if (rx_buffer_info->dma) {
417                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
418                                          rx_ring->rx_buf_len,
419                                          DMA_FROM_DEVICE);
420                         rx_buffer_info->dma = 0;
421                         skb_put(skb, len);
422                 }
423
424                 i++;
425                 if (i == rx_ring->count)
426                         i = 0;
427
428                 next_rxd = IXGBEVF_RX_DESC(rx_ring, i);
429                 prefetch(next_rxd);
430                 cleaned_count++;
431
432                 next_buffer = &rx_ring->rx_buffer_info[i];
433
434                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
435                         skb->next = next_buffer->skb;
436                         IXGBE_CB(skb->next)->prev = skb;
437                         adapter->non_eop_descs++;
438                         goto next_desc;
439                 }
440
441                 /* we should not be chaining buffers, if we did drop the skb */
442                 if (IXGBE_CB(skb)->prev) {
443                         do {
444                                 struct sk_buff *this = skb;
445                                 skb = IXGBE_CB(skb)->prev;
446                                 dev_kfree_skb(this);
447                         } while (skb);
448                         goto next_desc;
449                 }
450
451                 /* ERR_MASK will only have valid bits if EOP set */
452                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
453                         dev_kfree_skb_irq(skb);
454                         goto next_desc;
455                 }
456
457                 ixgbevf_rx_checksum(adapter, rx_ring, staterr, skb);
458
459                 /* probably a little skewed due to removing CRC */
460                 total_rx_bytes += skb->len;
461                 total_rx_packets++;
462
463                 /*
464                  * Work around issue of some types of VM to VM loop back
465                  * packets not getting split correctly
466                  */
467                 if (staterr & IXGBE_RXD_STAT_LB) {
468                         u32 header_fixup_len = skb_headlen(skb);
469                         if (header_fixup_len < 14)
470                                 skb_push(skb, header_fixup_len);
471                 }
472                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
473
474                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_desc);
475
476 next_desc:
477                 rx_desc->wb.upper.status_error = 0;
478
479                 /* return some buffers to hardware, one at a time is too slow */
480                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
481                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
482                                                  cleaned_count);
483                         cleaned_count = 0;
484                 }
485
486                 /* use prefetched values */
487                 rx_desc = next_rxd;
488                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
489
490                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
491         }
492
493         rx_ring->next_to_clean = i;
494         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
495
496         if (cleaned_count)
497                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
498
499         u64_stats_update_begin(&rx_ring->syncp);
500         rx_ring->total_packets += total_rx_packets;
501         rx_ring->total_bytes += total_rx_bytes;
502         u64_stats_update_end(&rx_ring->syncp);
503         q_vector->rx.total_packets += total_rx_packets;
504         q_vector->rx.total_bytes += total_rx_bytes;
505
506         return !!budget;
507 }
508
509 /**
510  * ixgbevf_poll - NAPI polling calback
511  * @napi: napi struct with our devices info in it
512  * @budget: amount of work driver is allowed to do this pass, in packets
513  *
514  * This function will clean more than one or more rings associated with a
515  * q_vector.
516  **/
517 static int ixgbevf_poll(struct napi_struct *napi, int budget)
518 {
519         struct ixgbevf_q_vector *q_vector =
520                 container_of(napi, struct ixgbevf_q_vector, napi);
521         struct ixgbevf_adapter *adapter = q_vector->adapter;
522         struct ixgbevf_ring *ring;
523         int per_ring_budget;
524         bool clean_complete = true;
525
526         ixgbevf_for_each_ring(ring, q_vector->tx)
527                 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
528
529         /* attempt to distribute budget to each queue fairly, but don't allow
530          * the budget to go below 1 because we'll exit polling */
531         if (q_vector->rx.count > 1)
532                 per_ring_budget = max(budget/q_vector->rx.count, 1);
533         else
534                 per_ring_budget = budget;
535
536         ixgbevf_for_each_ring(ring, q_vector->rx)
537                 clean_complete &= ixgbevf_clean_rx_irq(q_vector, ring,
538                                                        per_ring_budget);
539
540         /* If all work not completed, return budget and keep polling */
541         if (!clean_complete)
542                 return budget;
543         /* all work done, exit the polling mode */
544         napi_complete(napi);
545         if (adapter->rx_itr_setting & 1)
546                 ixgbevf_set_itr(q_vector);
547         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
548                 ixgbevf_irq_enable_queues(adapter,
549                                           1 << q_vector->v_idx);
550
551         return 0;
552 }
553
554 /**
555  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
556  * @q_vector: structure containing interrupt and ring information
557  */
558 static void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
559 {
560         struct ixgbevf_adapter *adapter = q_vector->adapter;
561         struct ixgbe_hw *hw = &adapter->hw;
562         int v_idx = q_vector->v_idx;
563         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
564
565         /*
566          * set the WDIS bit to not clear the timer bits and cause an
567          * immediate assertion of the interrupt
568          */
569         itr_reg |= IXGBE_EITR_CNT_WDIS;
570
571         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
572 }
573
574 /**
575  * ixgbevf_configure_msix - Configure MSI-X hardware
576  * @adapter: board private structure
577  *
578  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
579  * interrupts.
580  **/
581 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
582 {
583         struct ixgbevf_q_vector *q_vector;
584         int q_vectors, v_idx;
585
586         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
587         adapter->eims_enable_mask = 0;
588
589         /*
590          * Populate the IVAR table and set the ITR values to the
591          * corresponding register.
592          */
593         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
594                 struct ixgbevf_ring *ring;
595                 q_vector = adapter->q_vector[v_idx];
596
597                 ixgbevf_for_each_ring(ring, q_vector->rx)
598                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
599
600                 ixgbevf_for_each_ring(ring, q_vector->tx)
601                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
602
603                 if (q_vector->tx.ring && !q_vector->rx.ring) {
604                         /* tx only vector */
605                         if (adapter->tx_itr_setting == 1)
606                                 q_vector->itr = IXGBE_10K_ITR;
607                         else
608                                 q_vector->itr = adapter->tx_itr_setting;
609                 } else {
610                         /* rx or rx/tx vector */
611                         if (adapter->rx_itr_setting == 1)
612                                 q_vector->itr = IXGBE_20K_ITR;
613                         else
614                                 q_vector->itr = adapter->rx_itr_setting;
615                 }
616
617                 /* add q_vector eims value to global eims_enable_mask */
618                 adapter->eims_enable_mask |= 1 << v_idx;
619
620                 ixgbevf_write_eitr(q_vector);
621         }
622
623         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
624         /* setup eims_other and add value to global eims_enable_mask */
625         adapter->eims_other = 1 << v_idx;
626         adapter->eims_enable_mask |= adapter->eims_other;
627 }
628
629 enum latency_range {
630         lowest_latency = 0,
631         low_latency = 1,
632         bulk_latency = 2,
633         latency_invalid = 255
634 };
635
636 /**
637  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
638  * @q_vector: structure containing interrupt and ring information
639  * @ring_container: structure containing ring performance data
640  *
641  *      Stores a new ITR value based on packets and byte
642  *      counts during the last interrupt.  The advantage of per interrupt
643  *      computation is faster updates and more accurate ITR for the current
644  *      traffic pattern.  Constants in this function were computed
645  *      based on theoretical maximum wire speed and thresholds were set based
646  *      on testing data as well as attempting to minimize response time
647  *      while increasing bulk throughput.
648  **/
649 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
650                                struct ixgbevf_ring_container *ring_container)
651 {
652         int bytes = ring_container->total_bytes;
653         int packets = ring_container->total_packets;
654         u32 timepassed_us;
655         u64 bytes_perint;
656         u8 itr_setting = ring_container->itr;
657
658         if (packets == 0)
659                 return;
660
661         /* simple throttlerate management
662          *    0-20MB/s lowest (100000 ints/s)
663          *   20-100MB/s low   (20000 ints/s)
664          *  100-1249MB/s bulk (8000 ints/s)
665          */
666         /* what was last interrupt timeslice? */
667         timepassed_us = q_vector->itr >> 2;
668         bytes_perint = bytes / timepassed_us; /* bytes/usec */
669
670         switch (itr_setting) {
671         case lowest_latency:
672                 if (bytes_perint > 10)
673                         itr_setting = low_latency;
674                 break;
675         case low_latency:
676                 if (bytes_perint > 20)
677                         itr_setting = bulk_latency;
678                 else if (bytes_perint <= 10)
679                         itr_setting = lowest_latency;
680                 break;
681         case bulk_latency:
682                 if (bytes_perint <= 20)
683                         itr_setting = low_latency;
684                 break;
685         }
686
687         /* clear work counters since we have the values we need */
688         ring_container->total_bytes = 0;
689         ring_container->total_packets = 0;
690
691         /* write updated itr to ring container */
692         ring_container->itr = itr_setting;
693 }
694
695 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
696 {
697         u32 new_itr = q_vector->itr;
698         u8 current_itr;
699
700         ixgbevf_update_itr(q_vector, &q_vector->tx);
701         ixgbevf_update_itr(q_vector, &q_vector->rx);
702
703         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
704
705         switch (current_itr) {
706         /* counts and packets in update_itr are dependent on these numbers */
707         case lowest_latency:
708                 new_itr = IXGBE_100K_ITR;
709                 break;
710         case low_latency:
711                 new_itr = IXGBE_20K_ITR;
712                 break;
713         case bulk_latency:
714         default:
715                 new_itr = IXGBE_8K_ITR;
716                 break;
717         }
718
719         if (new_itr != q_vector->itr) {
720                 /* do an exponential smoothing */
721                 new_itr = (10 * new_itr * q_vector->itr) /
722                           ((9 * new_itr) + q_vector->itr);
723
724                 /* save the algorithm value here */
725                 q_vector->itr = new_itr;
726
727                 ixgbevf_write_eitr(q_vector);
728         }
729 }
730
731 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
732 {
733         struct ixgbevf_adapter *adapter = data;
734         struct ixgbe_hw *hw = &adapter->hw;
735
736         hw->mac.get_link_status = 1;
737
738         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
739                 mod_timer(&adapter->watchdog_timer, jiffies);
740
741         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
742
743         return IRQ_HANDLED;
744 }
745
746
747 /**
748  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
749  * @irq: unused
750  * @data: pointer to our q_vector struct for this interrupt vector
751  **/
752 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
753 {
754         struct ixgbevf_q_vector *q_vector = data;
755
756         /* EIAM disabled interrupts (on this vector) for us */
757         if (q_vector->rx.ring || q_vector->tx.ring)
758                 napi_schedule(&q_vector->napi);
759
760         return IRQ_HANDLED;
761 }
762
763 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
764                                      int r_idx)
765 {
766         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
767
768         a->rx_ring[r_idx].next = q_vector->rx.ring;
769         q_vector->rx.ring = &a->rx_ring[r_idx];
770         q_vector->rx.count++;
771 }
772
773 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
774                                      int t_idx)
775 {
776         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
777
778         a->tx_ring[t_idx].next = q_vector->tx.ring;
779         q_vector->tx.ring = &a->tx_ring[t_idx];
780         q_vector->tx.count++;
781 }
782
783 /**
784  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
785  * @adapter: board private structure to initialize
786  *
787  * This function maps descriptor rings to the queue-specific vectors
788  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
789  * one vector per ring/queue, but on a constrained vector budget, we
790  * group the rings as "efficiently" as possible.  You would add new
791  * mapping configurations in here.
792  **/
793 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
794 {
795         int q_vectors;
796         int v_start = 0;
797         int rxr_idx = 0, txr_idx = 0;
798         int rxr_remaining = adapter->num_rx_queues;
799         int txr_remaining = adapter->num_tx_queues;
800         int i, j;
801         int rqpv, tqpv;
802         int err = 0;
803
804         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
805
806         /*
807          * The ideal configuration...
808          * We have enough vectors to map one per queue.
809          */
810         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
811                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
812                         map_vector_to_rxq(adapter, v_start, rxr_idx);
813
814                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
815                         map_vector_to_txq(adapter, v_start, txr_idx);
816                 goto out;
817         }
818
819         /*
820          * If we don't have enough vectors for a 1-to-1
821          * mapping, we'll have to group them so there are
822          * multiple queues per vector.
823          */
824         /* Re-adjusting *qpv takes care of the remainder. */
825         for (i = v_start; i < q_vectors; i++) {
826                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
827                 for (j = 0; j < rqpv; j++) {
828                         map_vector_to_rxq(adapter, i, rxr_idx);
829                         rxr_idx++;
830                         rxr_remaining--;
831                 }
832         }
833         for (i = v_start; i < q_vectors; i++) {
834                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
835                 for (j = 0; j < tqpv; j++) {
836                         map_vector_to_txq(adapter, i, txr_idx);
837                         txr_idx++;
838                         txr_remaining--;
839                 }
840         }
841
842 out:
843         return err;
844 }
845
846 /**
847  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
848  * @adapter: board private structure
849  *
850  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
851  * interrupts from the kernel.
852  **/
853 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
854 {
855         struct net_device *netdev = adapter->netdev;
856         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
857         int vector, err;
858         int ri = 0, ti = 0;
859
860         for (vector = 0; vector < q_vectors; vector++) {
861                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
862                 struct msix_entry *entry = &adapter->msix_entries[vector];
863
864                 if (q_vector->tx.ring && q_vector->rx.ring) {
865                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
866                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
867                         ti++;
868                 } else if (q_vector->rx.ring) {
869                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
870                                  "%s-%s-%d", netdev->name, "rx", ri++);
871                 } else if (q_vector->tx.ring) {
872                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
873                                  "%s-%s-%d", netdev->name, "tx", ti++);
874                 } else {
875                         /* skip this unused q_vector */
876                         continue;
877                 }
878                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
879                                   q_vector->name, q_vector);
880                 if (err) {
881                         hw_dbg(&adapter->hw,
882                                "request_irq failed for MSIX interrupt "
883                                "Error: %d\n", err);
884                         goto free_queue_irqs;
885                 }
886         }
887
888         err = request_irq(adapter->msix_entries[vector].vector,
889                           &ixgbevf_msix_other, 0, netdev->name, adapter);
890         if (err) {
891                 hw_dbg(&adapter->hw,
892                        "request_irq for msix_other failed: %d\n", err);
893                 goto free_queue_irqs;
894         }
895
896         return 0;
897
898 free_queue_irqs:
899         while (vector) {
900                 vector--;
901                 free_irq(adapter->msix_entries[vector].vector,
902                          adapter->q_vector[vector]);
903         }
904         pci_disable_msix(adapter->pdev);
905         kfree(adapter->msix_entries);
906         adapter->msix_entries = NULL;
907         return err;
908 }
909
910 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
911 {
912         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
913
914         for (i = 0; i < q_vectors; i++) {
915                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
916                 q_vector->rx.ring = NULL;
917                 q_vector->tx.ring = NULL;
918                 q_vector->rx.count = 0;
919                 q_vector->tx.count = 0;
920         }
921 }
922
923 /**
924  * ixgbevf_request_irq - initialize interrupts
925  * @adapter: board private structure
926  *
927  * Attempts to configure interrupts using the best available
928  * capabilities of the hardware and kernel.
929  **/
930 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
931 {
932         int err = 0;
933
934         err = ixgbevf_request_msix_irqs(adapter);
935
936         if (err)
937                 hw_dbg(&adapter->hw,
938                        "request_irq failed, Error %d\n", err);
939
940         return err;
941 }
942
943 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
944 {
945         int i, q_vectors;
946
947         q_vectors = adapter->num_msix_vectors;
948         i = q_vectors - 1;
949
950         free_irq(adapter->msix_entries[i].vector, adapter);
951         i--;
952
953         for (; i >= 0; i--) {
954                 /* free only the irqs that were actually requested */
955                 if (!adapter->q_vector[i]->rx.ring &&
956                     !adapter->q_vector[i]->tx.ring)
957                         continue;
958
959                 free_irq(adapter->msix_entries[i].vector,
960                          adapter->q_vector[i]);
961         }
962
963         ixgbevf_reset_q_vectors(adapter);
964 }
965
966 /**
967  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
968  * @adapter: board private structure
969  **/
970 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
971 {
972         struct ixgbe_hw *hw = &adapter->hw;
973         int i;
974
975         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
976         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
977         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
978
979         IXGBE_WRITE_FLUSH(hw);
980
981         for (i = 0; i < adapter->num_msix_vectors; i++)
982                 synchronize_irq(adapter->msix_entries[i].vector);
983 }
984
985 /**
986  * ixgbevf_irq_enable - Enable default interrupt generation settings
987  * @adapter: board private structure
988  **/
989 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
990 {
991         struct ixgbe_hw *hw = &adapter->hw;
992
993         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
994         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
995         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
996 }
997
998 /**
999  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1000  * @adapter: board private structure
1001  *
1002  * Configure the Tx unit of the MAC after a reset.
1003  **/
1004 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1005 {
1006         u64 tdba;
1007         struct ixgbe_hw *hw = &adapter->hw;
1008         u32 i, j, tdlen, txctrl;
1009
1010         /* Setup the HW Tx Head and Tail descriptor pointers */
1011         for (i = 0; i < adapter->num_tx_queues; i++) {
1012                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1013                 j = ring->reg_idx;
1014                 tdba = ring->dma;
1015                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1016                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1017                                 (tdba & DMA_BIT_MASK(32)));
1018                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1019                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1020                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1021                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1022                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1023                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1024                 /* Disable Tx Head Writeback RO bit, since this hoses
1025                  * bookkeeping if things aren't delivered in order.
1026                  */
1027                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1028                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1029                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1030         }
1031 }
1032
1033 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1034
1035 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1036 {
1037         struct ixgbevf_ring *rx_ring;
1038         struct ixgbe_hw *hw = &adapter->hw;
1039         u32 srrctl;
1040
1041         rx_ring = &adapter->rx_ring[index];
1042
1043         srrctl = IXGBE_SRRCTL_DROP_EN;
1044
1045         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1046
1047         srrctl |= ALIGN(rx_ring->rx_buf_len, 1024) >>
1048                   IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1049
1050         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1051 }
1052
1053 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter)
1054 {
1055         struct ixgbe_hw *hw = &adapter->hw;
1056         struct net_device *netdev = adapter->netdev;
1057         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1058         int i;
1059         u16 rx_buf_len;
1060
1061         /* notify the PF of our intent to use this size of frame */
1062         ixgbevf_rlpml_set_vf(hw, max_frame);
1063
1064         /* PF will allow an extra 4 bytes past for vlan tagged frames */
1065         max_frame += VLAN_HLEN;
1066
1067         /*
1068          * Make best use of allocation by using all but 1K of a
1069          * power of 2 allocation that will be used for skb->head.
1070          */
1071         if ((hw->mac.type == ixgbe_mac_X540_vf) &&
1072             (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE))
1073                 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1074         else if (max_frame <= IXGBEVF_RXBUFFER_3K)
1075                 rx_buf_len = IXGBEVF_RXBUFFER_3K;
1076         else if (max_frame <= IXGBEVF_RXBUFFER_7K)
1077                 rx_buf_len = IXGBEVF_RXBUFFER_7K;
1078         else if (max_frame <= IXGBEVF_RXBUFFER_15K)
1079                 rx_buf_len = IXGBEVF_RXBUFFER_15K;
1080         else
1081                 rx_buf_len = IXGBEVF_MAX_RXBUFFER;
1082
1083         for (i = 0; i < adapter->num_rx_queues; i++)
1084                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1085 }
1086
1087 /**
1088  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1089  * @adapter: board private structure
1090  *
1091  * Configure the Rx unit of the MAC after a reset.
1092  **/
1093 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1094 {
1095         u64 rdba;
1096         struct ixgbe_hw *hw = &adapter->hw;
1097         int i, j;
1098         u32 rdlen;
1099
1100         /* PSRTYPE must be initialized in 82599 */
1101         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1102
1103         /* set_rx_buffer_len must be called before ring initialization */
1104         ixgbevf_set_rx_buffer_len(adapter);
1105
1106         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1107         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1108          * the Base and Length of the Rx Descriptor Ring */
1109         for (i = 0; i < adapter->num_rx_queues; i++) {
1110                 rdba = adapter->rx_ring[i].dma;
1111                 j = adapter->rx_ring[i].reg_idx;
1112                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1113                                 (rdba & DMA_BIT_MASK(32)));
1114                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1115                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1116                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1117                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1118                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1119                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1120
1121                 ixgbevf_configure_srrctl(adapter, j);
1122         }
1123 }
1124
1125 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1126 {
1127         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1128         struct ixgbe_hw *hw = &adapter->hw;
1129         int err;
1130
1131         if (!hw->mac.ops.set_vfta)
1132                 return -EOPNOTSUPP;
1133
1134         spin_lock(&adapter->mbx_lock);
1135
1136         /* add VID to filter table */
1137         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1138
1139         spin_unlock(&adapter->mbx_lock);
1140
1141         /* translate error return types so error makes sense */
1142         if (err == IXGBE_ERR_MBX)
1143                 return -EIO;
1144
1145         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1146                 return -EACCES;
1147
1148         set_bit(vid, adapter->active_vlans);
1149
1150         return err;
1151 }
1152
1153 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1154 {
1155         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1156         struct ixgbe_hw *hw = &adapter->hw;
1157         int err = -EOPNOTSUPP;
1158
1159         spin_lock(&adapter->mbx_lock);
1160
1161         /* remove VID from filter table */
1162         if (hw->mac.ops.set_vfta)
1163                 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1164
1165         spin_unlock(&adapter->mbx_lock);
1166
1167         clear_bit(vid, adapter->active_vlans);
1168
1169         return err;
1170 }
1171
1172 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1173 {
1174         u16 vid;
1175
1176         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1177                 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1178 }
1179
1180 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1181 {
1182         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1183         struct ixgbe_hw *hw = &adapter->hw;
1184         int count = 0;
1185
1186         if ((netdev_uc_count(netdev)) > 10) {
1187                 pr_err("Too many unicast filters - No Space\n");
1188                 return -ENOSPC;
1189         }
1190
1191         if (!netdev_uc_empty(netdev)) {
1192                 struct netdev_hw_addr *ha;
1193                 netdev_for_each_uc_addr(ha, netdev) {
1194                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1195                         udelay(200);
1196                 }
1197         } else {
1198                 /*
1199                  * If the list is empty then send message to PF driver to
1200                  * clear all macvlans on this VF.
1201                  */
1202                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1203         }
1204
1205         return count;
1206 }
1207
1208 /**
1209  * ixgbevf_set_rx_mode - Multicast set
1210  * @netdev: network interface device structure
1211  *
1212  * The set_rx_method entry point is called whenever the multicast address
1213  * list or the network interface flags are updated.  This routine is
1214  * responsible for configuring the hardware for proper multicast mode.
1215  **/
1216 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1217 {
1218         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1219         struct ixgbe_hw *hw = &adapter->hw;
1220
1221         spin_lock(&adapter->mbx_lock);
1222
1223         /* reprogram multicast list */
1224         if (hw->mac.ops.update_mc_addr_list)
1225                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1226
1227         ixgbevf_write_uc_addr_list(netdev);
1228
1229         spin_unlock(&adapter->mbx_lock);
1230 }
1231
1232 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1233 {
1234         int q_idx;
1235         struct ixgbevf_q_vector *q_vector;
1236         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1237
1238         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1239                 q_vector = adapter->q_vector[q_idx];
1240                 napi_enable(&q_vector->napi);
1241         }
1242 }
1243
1244 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1245 {
1246         int q_idx;
1247         struct ixgbevf_q_vector *q_vector;
1248         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1249
1250         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1251                 q_vector = adapter->q_vector[q_idx];
1252                 napi_disable(&q_vector->napi);
1253         }
1254 }
1255
1256 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1257 {
1258         struct net_device *netdev = adapter->netdev;
1259         int i;
1260
1261         ixgbevf_set_rx_mode(netdev);
1262
1263         ixgbevf_restore_vlan(adapter);
1264
1265         ixgbevf_configure_tx(adapter);
1266         ixgbevf_configure_rx(adapter);
1267         for (i = 0; i < adapter->num_rx_queues; i++) {
1268                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1269                 ixgbevf_alloc_rx_buffers(adapter, ring,
1270                                          IXGBE_DESC_UNUSED(ring));
1271         }
1272 }
1273
1274 #define IXGBE_MAX_RX_DESC_POLL 10
1275 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1276                                                 int rxr)
1277 {
1278         struct ixgbe_hw *hw = &adapter->hw;
1279         int j = adapter->rx_ring[rxr].reg_idx;
1280         int k;
1281
1282         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1283                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1284                         break;
1285                 else
1286                         msleep(1);
1287         }
1288         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1289                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1290                        "not set within the polling period\n", rxr);
1291         }
1292
1293         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1294                                 (adapter->rx_ring[rxr].count - 1));
1295 }
1296
1297 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1298 {
1299         /* Only save pre-reset stats if there are some */
1300         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1301                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1302                         adapter->stats.base_vfgprc;
1303                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1304                         adapter->stats.base_vfgptc;
1305                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1306                         adapter->stats.base_vfgorc;
1307                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1308                         adapter->stats.base_vfgotc;
1309                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1310                         adapter->stats.base_vfmprc;
1311         }
1312 }
1313
1314 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1315 {
1316         struct ixgbe_hw *hw = &adapter->hw;
1317
1318         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1319         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1320         adapter->stats.last_vfgorc |=
1321                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1322         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1323         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1324         adapter->stats.last_vfgotc |=
1325                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1326         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1327
1328         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1329         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1330         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1331         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1332         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1333 }
1334
1335 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
1336 {
1337         struct ixgbe_hw *hw = &adapter->hw;
1338         int api[] = { ixgbe_mbox_api_10,
1339                       ixgbe_mbox_api_unknown };
1340         int err = 0, idx = 0;
1341
1342         spin_lock(&adapter->mbx_lock);
1343
1344         while (api[idx] != ixgbe_mbox_api_unknown) {
1345                 err = ixgbevf_negotiate_api_version(hw, api[idx]);
1346                 if (!err)
1347                         break;
1348                 idx++;
1349         }
1350
1351         spin_unlock(&adapter->mbx_lock);
1352 }
1353
1354 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1355 {
1356         struct net_device *netdev = adapter->netdev;
1357         struct ixgbe_hw *hw = &adapter->hw;
1358         int i, j = 0;
1359         int num_rx_rings = adapter->num_rx_queues;
1360         u32 txdctl, rxdctl;
1361
1362         for (i = 0; i < adapter->num_tx_queues; i++) {
1363                 j = adapter->tx_ring[i].reg_idx;
1364                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1365                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1366                 txdctl |= (8 << 16);
1367                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1368         }
1369
1370         for (i = 0; i < adapter->num_tx_queues; i++) {
1371                 j = adapter->tx_ring[i].reg_idx;
1372                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1373                 txdctl |= IXGBE_TXDCTL_ENABLE;
1374                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1375         }
1376
1377         for (i = 0; i < num_rx_rings; i++) {
1378                 j = adapter->rx_ring[i].reg_idx;
1379                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1380                 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1381                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1382                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1383                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1384                                    IXGBE_RXDCTL_RLPML_EN);
1385                 }
1386                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1387                 ixgbevf_rx_desc_queue_enable(adapter, i);
1388         }
1389
1390         ixgbevf_configure_msix(adapter);
1391
1392         spin_lock(&adapter->mbx_lock);
1393
1394         if (hw->mac.ops.set_rar) {
1395                 if (is_valid_ether_addr(hw->mac.addr))
1396                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1397                 else
1398                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1399         }
1400
1401         spin_unlock(&adapter->mbx_lock);
1402
1403         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1404         ixgbevf_napi_enable_all(adapter);
1405
1406         /* enable transmits */
1407         netif_tx_start_all_queues(netdev);
1408
1409         ixgbevf_save_reset_stats(adapter);
1410         ixgbevf_init_last_counter_stats(adapter);
1411
1412         hw->mac.get_link_status = 1;
1413         mod_timer(&adapter->watchdog_timer, jiffies);
1414 }
1415
1416 void ixgbevf_up(struct ixgbevf_adapter *adapter)
1417 {
1418         struct ixgbe_hw *hw = &adapter->hw;
1419
1420         ixgbevf_negotiate_api(adapter);
1421
1422         ixgbevf_configure(adapter);
1423
1424         ixgbevf_up_complete(adapter);
1425
1426         /* clear any pending interrupts, may auto mask */
1427         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1428
1429         ixgbevf_irq_enable(adapter);
1430 }
1431
1432 /**
1433  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1434  * @adapter: board private structure
1435  * @rx_ring: ring to free buffers from
1436  **/
1437 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1438                                   struct ixgbevf_ring *rx_ring)
1439 {
1440         struct pci_dev *pdev = adapter->pdev;
1441         unsigned long size;
1442         unsigned int i;
1443
1444         if (!rx_ring->rx_buffer_info)
1445                 return;
1446
1447         /* Free all the Rx ring sk_buffs */
1448         for (i = 0; i < rx_ring->count; i++) {
1449                 struct ixgbevf_rx_buffer *rx_buffer_info;
1450
1451                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1452                 if (rx_buffer_info->dma) {
1453                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1454                                          rx_ring->rx_buf_len,
1455                                          DMA_FROM_DEVICE);
1456                         rx_buffer_info->dma = 0;
1457                 }
1458                 if (rx_buffer_info->skb) {
1459                         struct sk_buff *skb = rx_buffer_info->skb;
1460                         rx_buffer_info->skb = NULL;
1461                         do {
1462                                 struct sk_buff *this = skb;
1463                                 skb = IXGBE_CB(skb)->prev;
1464                                 dev_kfree_skb(this);
1465                         } while (skb);
1466                 }
1467         }
1468
1469         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1470         memset(rx_ring->rx_buffer_info, 0, size);
1471
1472         /* Zero out the descriptor ring */
1473         memset(rx_ring->desc, 0, rx_ring->size);
1474
1475         rx_ring->next_to_clean = 0;
1476         rx_ring->next_to_use = 0;
1477
1478         if (rx_ring->head)
1479                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1480         if (rx_ring->tail)
1481                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1482 }
1483
1484 /**
1485  * ixgbevf_clean_tx_ring - Free Tx Buffers
1486  * @adapter: board private structure
1487  * @tx_ring: ring to be cleaned
1488  **/
1489 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1490                                   struct ixgbevf_ring *tx_ring)
1491 {
1492         struct ixgbevf_tx_buffer *tx_buffer_info;
1493         unsigned long size;
1494         unsigned int i;
1495
1496         if (!tx_ring->tx_buffer_info)
1497                 return;
1498
1499         /* Free all the Tx ring sk_buffs */
1500
1501         for (i = 0; i < tx_ring->count; i++) {
1502                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1503                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1504         }
1505
1506         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1507         memset(tx_ring->tx_buffer_info, 0, size);
1508
1509         memset(tx_ring->desc, 0, tx_ring->size);
1510
1511         tx_ring->next_to_use = 0;
1512         tx_ring->next_to_clean = 0;
1513
1514         if (tx_ring->head)
1515                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1516         if (tx_ring->tail)
1517                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1518 }
1519
1520 /**
1521  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1522  * @adapter: board private structure
1523  **/
1524 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1525 {
1526         int i;
1527
1528         for (i = 0; i < adapter->num_rx_queues; i++)
1529                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1530 }
1531
1532 /**
1533  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1534  * @adapter: board private structure
1535  **/
1536 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1537 {
1538         int i;
1539
1540         for (i = 0; i < adapter->num_tx_queues; i++)
1541                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1542 }
1543
1544 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1545 {
1546         struct net_device *netdev = adapter->netdev;
1547         struct ixgbe_hw *hw = &adapter->hw;
1548         u32 txdctl;
1549         int i, j;
1550
1551         /* signal that we are down to the interrupt handler */
1552         set_bit(__IXGBEVF_DOWN, &adapter->state);
1553         /* disable receives */
1554
1555         netif_tx_disable(netdev);
1556
1557         msleep(10);
1558
1559         netif_tx_stop_all_queues(netdev);
1560
1561         ixgbevf_irq_disable(adapter);
1562
1563         ixgbevf_napi_disable_all(adapter);
1564
1565         del_timer_sync(&adapter->watchdog_timer);
1566         /* can't call flush scheduled work here because it can deadlock
1567          * if linkwatch_event tries to acquire the rtnl_lock which we are
1568          * holding */
1569         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1570                 msleep(1);
1571
1572         /* disable transmits in the hardware now that interrupts are off */
1573         for (i = 0; i < adapter->num_tx_queues; i++) {
1574                 j = adapter->tx_ring[i].reg_idx;
1575                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1576                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1577                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1578         }
1579
1580         netif_carrier_off(netdev);
1581
1582         if (!pci_channel_offline(adapter->pdev))
1583                 ixgbevf_reset(adapter);
1584
1585         ixgbevf_clean_all_tx_rings(adapter);
1586         ixgbevf_clean_all_rx_rings(adapter);
1587 }
1588
1589 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1590 {
1591         WARN_ON(in_interrupt());
1592
1593         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1594                 msleep(1);
1595
1596         /*
1597          * Check if PF is up before re-init.  If not then skip until
1598          * later when the PF is up and ready to service requests from
1599          * the VF via mailbox.  If the VF is up and running then the
1600          * watchdog task will continue to schedule reset tasks until
1601          * the PF is up and running.
1602          */
1603         ixgbevf_down(adapter);
1604         ixgbevf_up(adapter);
1605
1606         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1607 }
1608
1609 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1610 {
1611         struct ixgbe_hw *hw = &adapter->hw;
1612         struct net_device *netdev = adapter->netdev;
1613
1614         spin_lock(&adapter->mbx_lock);
1615
1616         if (hw->mac.ops.reset_hw(hw))
1617                 hw_dbg(hw, "PF still resetting\n");
1618         else
1619                 hw->mac.ops.init_hw(hw);
1620
1621         spin_unlock(&adapter->mbx_lock);
1622
1623         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1624                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1625                        netdev->addr_len);
1626                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1627                        netdev->addr_len);
1628         }
1629 }
1630
1631 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1632                                          int vectors)
1633 {
1634         int err, vector_threshold;
1635
1636         /* We'll want at least 2 (vector_threshold):
1637          * 1) TxQ[0] + RxQ[0] handler
1638          * 2) Other (Link Status Change, etc.)
1639          */
1640         vector_threshold = MIN_MSIX_COUNT;
1641
1642         /* The more we get, the more we will assign to Tx/Rx Cleanup
1643          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1644          * Right now, we simply care about how many we'll get; we'll
1645          * set them up later while requesting irq's.
1646          */
1647         while (vectors >= vector_threshold) {
1648                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1649                                       vectors);
1650                 if (!err) /* Success in acquiring all requested vectors. */
1651                         break;
1652                 else if (err < 0)
1653                         vectors = 0; /* Nasty failure, quit now */
1654                 else /* err == number of vectors we should try again with */
1655                         vectors = err;
1656         }
1657
1658         if (vectors < vector_threshold) {
1659                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1660                  * This just means we'll go with either a single MSI
1661                  * vector or fall back to legacy interrupts.
1662                  */
1663                 hw_dbg(&adapter->hw,
1664                        "Unable to allocate MSI-X interrupts\n");
1665                 kfree(adapter->msix_entries);
1666                 adapter->msix_entries = NULL;
1667         } else {
1668                 /*
1669                  * Adjust for only the vectors we'll use, which is minimum
1670                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1671                  * vectors we were allocated.
1672                  */
1673                 adapter->num_msix_vectors = vectors;
1674         }
1675 }
1676
1677 /**
1678  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
1679  * @adapter: board private structure to initialize
1680  *
1681  * This is the top level queue allocation routine.  The order here is very
1682  * important, starting with the "most" number of features turned on at once,
1683  * and ending with the smallest set of features.  This way large combinations
1684  * can be allocated if they're turned on, and smaller combinations are the
1685  * fallthrough conditions.
1686  *
1687  **/
1688 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1689 {
1690         /* Start with base case */
1691         adapter->num_rx_queues = 1;
1692         adapter->num_tx_queues = 1;
1693 }
1694
1695 /**
1696  * ixgbevf_alloc_queues - Allocate memory for all rings
1697  * @adapter: board private structure to initialize
1698  *
1699  * We allocate one ring per queue at run-time since we don't know the
1700  * number of queues at compile-time.  The polling_netdev array is
1701  * intended for Multiqueue, but should work fine with a single queue.
1702  **/
1703 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1704 {
1705         int i;
1706
1707         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1708                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1709         if (!adapter->tx_ring)
1710                 goto err_tx_ring_allocation;
1711
1712         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1713                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1714         if (!adapter->rx_ring)
1715                 goto err_rx_ring_allocation;
1716
1717         for (i = 0; i < adapter->num_tx_queues; i++) {
1718                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1719                 adapter->tx_ring[i].queue_index = i;
1720                 adapter->tx_ring[i].reg_idx = i;
1721                 adapter->tx_ring[i].dev = &adapter->pdev->dev;
1722                 adapter->tx_ring[i].netdev = adapter->netdev;
1723         }
1724
1725         for (i = 0; i < adapter->num_rx_queues; i++) {
1726                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1727                 adapter->rx_ring[i].queue_index = i;
1728                 adapter->rx_ring[i].reg_idx = i;
1729                 adapter->rx_ring[i].dev = &adapter->pdev->dev;
1730                 adapter->rx_ring[i].netdev = adapter->netdev;
1731         }
1732
1733         return 0;
1734
1735 err_rx_ring_allocation:
1736         kfree(adapter->tx_ring);
1737 err_tx_ring_allocation:
1738         return -ENOMEM;
1739 }
1740
1741 /**
1742  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1743  * @adapter: board private structure to initialize
1744  *
1745  * Attempt to configure the interrupts using the best available
1746  * capabilities of the hardware and the kernel.
1747  **/
1748 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1749 {
1750         struct net_device *netdev = adapter->netdev;
1751         int err = 0;
1752         int vector, v_budget;
1753
1754         /*
1755          * It's easy to be greedy for MSI-X vectors, but it really
1756          * doesn't do us much good if we have a lot more vectors
1757          * than CPU's.  So let's be conservative and only ask for
1758          * (roughly) the same number of vectors as there are CPU's.
1759          * The default is to use pairs of vectors.
1760          */
1761         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
1762         v_budget = min_t(int, v_budget, num_online_cpus());
1763         v_budget += NON_Q_VECTORS;
1764
1765         /* A failure in MSI-X entry allocation isn't fatal, but it does
1766          * mean we disable MSI-X capabilities of the adapter. */
1767         adapter->msix_entries = kcalloc(v_budget,
1768                                         sizeof(struct msix_entry), GFP_KERNEL);
1769         if (!adapter->msix_entries) {
1770                 err = -ENOMEM;
1771                 goto out;
1772         }
1773
1774         for (vector = 0; vector < v_budget; vector++)
1775                 adapter->msix_entries[vector].entry = vector;
1776
1777         ixgbevf_acquire_msix_vectors(adapter, v_budget);
1778
1779         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
1780         if (err)
1781                 goto out;
1782
1783         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
1784
1785 out:
1786         return err;
1787 }
1788
1789 /**
1790  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
1791  * @adapter: board private structure to initialize
1792  *
1793  * We allocate one q_vector per queue interrupt.  If allocation fails we
1794  * return -ENOMEM.
1795  **/
1796 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
1797 {
1798         int q_idx, num_q_vectors;
1799         struct ixgbevf_q_vector *q_vector;
1800
1801         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1802
1803         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1804                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
1805                 if (!q_vector)
1806                         goto err_out;
1807                 q_vector->adapter = adapter;
1808                 q_vector->v_idx = q_idx;
1809                 netif_napi_add(adapter->netdev, &q_vector->napi,
1810                                ixgbevf_poll, 64);
1811                 adapter->q_vector[q_idx] = q_vector;
1812         }
1813
1814         return 0;
1815
1816 err_out:
1817         while (q_idx) {
1818                 q_idx--;
1819                 q_vector = adapter->q_vector[q_idx];
1820                 netif_napi_del(&q_vector->napi);
1821                 kfree(q_vector);
1822                 adapter->q_vector[q_idx] = NULL;
1823         }
1824         return -ENOMEM;
1825 }
1826
1827 /**
1828  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
1829  * @adapter: board private structure to initialize
1830  *
1831  * This function frees the memory allocated to the q_vectors.  In addition if
1832  * NAPI is enabled it will delete any references to the NAPI struct prior
1833  * to freeing the q_vector.
1834  **/
1835 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
1836 {
1837         int q_idx, num_q_vectors;
1838         int napi_vectors;
1839
1840         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1841         napi_vectors = adapter->num_rx_queues;
1842
1843         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1844                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
1845
1846                 adapter->q_vector[q_idx] = NULL;
1847                 if (q_idx < napi_vectors)
1848                         netif_napi_del(&q_vector->napi);
1849                 kfree(q_vector);
1850         }
1851 }
1852
1853 /**
1854  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
1855  * @adapter: board private structure
1856  *
1857  **/
1858 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
1859 {
1860         pci_disable_msix(adapter->pdev);
1861         kfree(adapter->msix_entries);
1862         adapter->msix_entries = NULL;
1863 }
1864
1865 /**
1866  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
1867  * @adapter: board private structure to initialize
1868  *
1869  **/
1870 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
1871 {
1872         int err;
1873
1874         /* Number of supported queues */
1875         ixgbevf_set_num_queues(adapter);
1876
1877         err = ixgbevf_set_interrupt_capability(adapter);
1878         if (err) {
1879                 hw_dbg(&adapter->hw,
1880                        "Unable to setup interrupt capabilities\n");
1881                 goto err_set_interrupt;
1882         }
1883
1884         err = ixgbevf_alloc_q_vectors(adapter);
1885         if (err) {
1886                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
1887                        "vectors\n");
1888                 goto err_alloc_q_vectors;
1889         }
1890
1891         err = ixgbevf_alloc_queues(adapter);
1892         if (err) {
1893                 pr_err("Unable to allocate memory for queues\n");
1894                 goto err_alloc_queues;
1895         }
1896
1897         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
1898                "Tx Queue count = %u\n",
1899                (adapter->num_rx_queues > 1) ? "Enabled" :
1900                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
1901
1902         set_bit(__IXGBEVF_DOWN, &adapter->state);
1903
1904         return 0;
1905 err_alloc_queues:
1906         ixgbevf_free_q_vectors(adapter);
1907 err_alloc_q_vectors:
1908         ixgbevf_reset_interrupt_capability(adapter);
1909 err_set_interrupt:
1910         return err;
1911 }
1912
1913 /**
1914  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
1915  * @adapter: board private structure to clear interrupt scheme on
1916  *
1917  * We go through and clear interrupt specific resources and reset the structure
1918  * to pre-load conditions
1919  **/
1920 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
1921 {
1922         adapter->num_tx_queues = 0;
1923         adapter->num_rx_queues = 0;
1924
1925         ixgbevf_free_q_vectors(adapter);
1926         ixgbevf_reset_interrupt_capability(adapter);
1927 }
1928
1929 /**
1930  * ixgbevf_sw_init - Initialize general software structures
1931  * (struct ixgbevf_adapter)
1932  * @adapter: board private structure to initialize
1933  *
1934  * ixgbevf_sw_init initializes the Adapter private data structure.
1935  * Fields are initialized based on PCI device information and
1936  * OS network device settings (MTU size).
1937  **/
1938 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
1939 {
1940         struct ixgbe_hw *hw = &adapter->hw;
1941         struct pci_dev *pdev = adapter->pdev;
1942         int err;
1943
1944         /* PCI config space info */
1945
1946         hw->vendor_id = pdev->vendor;
1947         hw->device_id = pdev->device;
1948         hw->revision_id = pdev->revision;
1949         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1950         hw->subsystem_device_id = pdev->subsystem_device;
1951
1952         hw->mbx.ops.init_params(hw);
1953         hw->mac.max_tx_queues = MAX_TX_QUEUES;
1954         hw->mac.max_rx_queues = MAX_RX_QUEUES;
1955         err = hw->mac.ops.reset_hw(hw);
1956         if (err) {
1957                 dev_info(&pdev->dev,
1958                          "PF still in reset state, assigning new address\n");
1959                 eth_hw_addr_random(adapter->netdev);
1960                 memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
1961                         adapter->netdev->addr_len);
1962         } else {
1963                 err = hw->mac.ops.init_hw(hw);
1964                 if (err) {
1965                         pr_err("init_shared_code failed: %d\n", err);
1966                         goto out;
1967                 }
1968                 memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
1969                         adapter->netdev->addr_len);
1970         }
1971
1972         /* lock to protect mailbox accesses */
1973         spin_lock_init(&adapter->mbx_lock);
1974
1975         /* Enable dynamic interrupt throttling rates */
1976         adapter->rx_itr_setting = 1;
1977         adapter->tx_itr_setting = 1;
1978
1979         /* set default ring sizes */
1980         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
1981         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
1982
1983         set_bit(__IXGBEVF_DOWN, &adapter->state);
1984         return 0;
1985
1986 out:
1987         return err;
1988 }
1989
1990 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
1991         {                                                       \
1992                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
1993                 if (current_counter < last_counter)             \
1994                         counter += 0x100000000LL;               \
1995                 last_counter = current_counter;                 \
1996                 counter &= 0xFFFFFFFF00000000LL;                \
1997                 counter |= current_counter;                     \
1998         }
1999
2000 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2001         {                                                                \
2002                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2003                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2004                 u64 current_counter = (current_counter_msb << 32) |      \
2005                         current_counter_lsb;                             \
2006                 if (current_counter < last_counter)                      \
2007                         counter += 0x1000000000LL;                       \
2008                 last_counter = current_counter;                          \
2009                 counter &= 0xFFFFFFF000000000LL;                         \
2010                 counter |= current_counter;                              \
2011         }
2012 /**
2013  * ixgbevf_update_stats - Update the board statistics counters.
2014  * @adapter: board private structure
2015  **/
2016 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2017 {
2018         struct ixgbe_hw *hw = &adapter->hw;
2019
2020         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2021                                 adapter->stats.vfgprc);
2022         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2023                                 adapter->stats.vfgptc);
2024         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2025                                 adapter->stats.last_vfgorc,
2026                                 adapter->stats.vfgorc);
2027         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2028                                 adapter->stats.last_vfgotc,
2029                                 adapter->stats.vfgotc);
2030         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2031                                 adapter->stats.vfmprc);
2032 }
2033
2034 /**
2035  * ixgbevf_watchdog - Timer Call-back
2036  * @data: pointer to adapter cast into an unsigned long
2037  **/
2038 static void ixgbevf_watchdog(unsigned long data)
2039 {
2040         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2041         struct ixgbe_hw *hw = &adapter->hw;
2042         u32 eics = 0;
2043         int i;
2044
2045         /*
2046          * Do the watchdog outside of interrupt context due to the lovely
2047          * delays that some of the newer hardware requires
2048          */
2049
2050         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2051                 goto watchdog_short_circuit;
2052
2053         /* get one bit for every active tx/rx interrupt vector */
2054         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2055                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2056                 if (qv->rx.ring || qv->tx.ring)
2057                         eics |= 1 << i;
2058         }
2059
2060         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2061
2062 watchdog_short_circuit:
2063         schedule_work(&adapter->watchdog_task);
2064 }
2065
2066 /**
2067  * ixgbevf_tx_timeout - Respond to a Tx Hang
2068  * @netdev: network interface device structure
2069  **/
2070 static void ixgbevf_tx_timeout(struct net_device *netdev)
2071 {
2072         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2073
2074         /* Do the reset outside of interrupt context */
2075         schedule_work(&adapter->reset_task);
2076 }
2077
2078 static void ixgbevf_reset_task(struct work_struct *work)
2079 {
2080         struct ixgbevf_adapter *adapter;
2081         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2082
2083         /* If we're already down or resetting, just bail */
2084         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2085             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2086                 return;
2087
2088         adapter->tx_timeout_count++;
2089
2090         ixgbevf_reinit_locked(adapter);
2091 }
2092
2093 /**
2094  * ixgbevf_watchdog_task - worker thread to bring link up
2095  * @work: pointer to work_struct containing our data
2096  **/
2097 static void ixgbevf_watchdog_task(struct work_struct *work)
2098 {
2099         struct ixgbevf_adapter *adapter = container_of(work,
2100                                                        struct ixgbevf_adapter,
2101                                                        watchdog_task);
2102         struct net_device *netdev = adapter->netdev;
2103         struct ixgbe_hw *hw = &adapter->hw;
2104         u32 link_speed = adapter->link_speed;
2105         bool link_up = adapter->link_up;
2106
2107         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2108
2109         /*
2110          * Always check the link on the watchdog because we have
2111          * no LSC interrupt
2112          */
2113         if (hw->mac.ops.check_link) {
2114                 s32 need_reset;
2115
2116                 spin_lock(&adapter->mbx_lock);
2117
2118                 need_reset = hw->mac.ops.check_link(hw, &link_speed,
2119                                                     &link_up, false);
2120
2121                 spin_unlock(&adapter->mbx_lock);
2122
2123                 if (need_reset) {
2124                         adapter->link_up = link_up;
2125                         adapter->link_speed = link_speed;
2126                         netif_carrier_off(netdev);
2127                         netif_tx_stop_all_queues(netdev);
2128                         schedule_work(&adapter->reset_task);
2129                         goto pf_has_reset;
2130                 }
2131         } else {
2132                 /* always assume link is up, if no check link
2133                  * function */
2134                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2135                 link_up = true;
2136         }
2137         adapter->link_up = link_up;
2138         adapter->link_speed = link_speed;
2139
2140         if (link_up) {
2141                 if (!netif_carrier_ok(netdev)) {
2142                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2143                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2144                                10 : 1);
2145                         netif_carrier_on(netdev);
2146                         netif_tx_wake_all_queues(netdev);
2147                 }
2148         } else {
2149                 adapter->link_up = false;
2150                 adapter->link_speed = 0;
2151                 if (netif_carrier_ok(netdev)) {
2152                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2153                         netif_carrier_off(netdev);
2154                         netif_tx_stop_all_queues(netdev);
2155                 }
2156         }
2157
2158         ixgbevf_update_stats(adapter);
2159
2160 pf_has_reset:
2161         /* Reset the timer */
2162         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2163                 mod_timer(&adapter->watchdog_timer,
2164                           round_jiffies(jiffies + (2 * HZ)));
2165
2166         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2167 }
2168
2169 /**
2170  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2171  * @adapter: board private structure
2172  * @tx_ring: Tx descriptor ring for a specific queue
2173  *
2174  * Free all transmit software resources
2175  **/
2176 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2177                                struct ixgbevf_ring *tx_ring)
2178 {
2179         struct pci_dev *pdev = adapter->pdev;
2180
2181         ixgbevf_clean_tx_ring(adapter, tx_ring);
2182
2183         vfree(tx_ring->tx_buffer_info);
2184         tx_ring->tx_buffer_info = NULL;
2185
2186         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2187                           tx_ring->dma);
2188
2189         tx_ring->desc = NULL;
2190 }
2191
2192 /**
2193  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2194  * @adapter: board private structure
2195  *
2196  * Free all transmit software resources
2197  **/
2198 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2199 {
2200         int i;
2201
2202         for (i = 0; i < adapter->num_tx_queues; i++)
2203                 if (adapter->tx_ring[i].desc)
2204                         ixgbevf_free_tx_resources(adapter,
2205                                                   &adapter->tx_ring[i]);
2206
2207 }
2208
2209 /**
2210  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2211  * @adapter: board private structure
2212  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2213  *
2214  * Return 0 on success, negative on failure
2215  **/
2216 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2217                                struct ixgbevf_ring *tx_ring)
2218 {
2219         struct pci_dev *pdev = adapter->pdev;
2220         int size;
2221
2222         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2223         tx_ring->tx_buffer_info = vzalloc(size);
2224         if (!tx_ring->tx_buffer_info)
2225                 goto err;
2226
2227         /* round up to nearest 4K */
2228         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2229         tx_ring->size = ALIGN(tx_ring->size, 4096);
2230
2231         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2232                                            &tx_ring->dma, GFP_KERNEL);
2233         if (!tx_ring->desc)
2234                 goto err;
2235
2236         tx_ring->next_to_use = 0;
2237         tx_ring->next_to_clean = 0;
2238         return 0;
2239
2240 err:
2241         vfree(tx_ring->tx_buffer_info);
2242         tx_ring->tx_buffer_info = NULL;
2243         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2244                "descriptor ring\n");
2245         return -ENOMEM;
2246 }
2247
2248 /**
2249  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2250  * @adapter: board private structure
2251  *
2252  * If this function returns with an error, then it's possible one or
2253  * more of the rings is populated (while the rest are not).  It is the
2254  * callers duty to clean those orphaned rings.
2255  *
2256  * Return 0 on success, negative on failure
2257  **/
2258 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2259 {
2260         int i, err = 0;
2261
2262         for (i = 0; i < adapter->num_tx_queues; i++) {
2263                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2264                 if (!err)
2265                         continue;
2266                 hw_dbg(&adapter->hw,
2267                        "Allocation for Tx Queue %u failed\n", i);
2268                 break;
2269         }
2270
2271         return err;
2272 }
2273
2274 /**
2275  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2276  * @adapter: board private structure
2277  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2278  *
2279  * Returns 0 on success, negative on failure
2280  **/
2281 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2282                                struct ixgbevf_ring *rx_ring)
2283 {
2284         struct pci_dev *pdev = adapter->pdev;
2285         int size;
2286
2287         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2288         rx_ring->rx_buffer_info = vzalloc(size);
2289         if (!rx_ring->rx_buffer_info)
2290                 goto alloc_failed;
2291
2292         /* Round up to nearest 4K */
2293         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2294         rx_ring->size = ALIGN(rx_ring->size, 4096);
2295
2296         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2297                                            &rx_ring->dma, GFP_KERNEL);
2298
2299         if (!rx_ring->desc) {
2300                 hw_dbg(&adapter->hw,
2301                        "Unable to allocate memory for "
2302                        "the receive descriptor ring\n");
2303                 vfree(rx_ring->rx_buffer_info);
2304                 rx_ring->rx_buffer_info = NULL;
2305                 goto alloc_failed;
2306         }
2307
2308         rx_ring->next_to_clean = 0;
2309         rx_ring->next_to_use = 0;
2310
2311         return 0;
2312 alloc_failed:
2313         return -ENOMEM;
2314 }
2315
2316 /**
2317  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2318  * @adapter: board private structure
2319  *
2320  * If this function returns with an error, then it's possible one or
2321  * more of the rings is populated (while the rest are not).  It is the
2322  * callers duty to clean those orphaned rings.
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
2326 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2327 {
2328         int i, err = 0;
2329
2330         for (i = 0; i < adapter->num_rx_queues; i++) {
2331                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2332                 if (!err)
2333                         continue;
2334                 hw_dbg(&adapter->hw,
2335                        "Allocation for Rx Queue %u failed\n", i);
2336                 break;
2337         }
2338         return err;
2339 }
2340
2341 /**
2342  * ixgbevf_free_rx_resources - Free Rx Resources
2343  * @adapter: board private structure
2344  * @rx_ring: ring to clean the resources from
2345  *
2346  * Free all receive software resources
2347  **/
2348 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2349                                struct ixgbevf_ring *rx_ring)
2350 {
2351         struct pci_dev *pdev = adapter->pdev;
2352
2353         ixgbevf_clean_rx_ring(adapter, rx_ring);
2354
2355         vfree(rx_ring->rx_buffer_info);
2356         rx_ring->rx_buffer_info = NULL;
2357
2358         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2359                           rx_ring->dma);
2360
2361         rx_ring->desc = NULL;
2362 }
2363
2364 /**
2365  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2366  * @adapter: board private structure
2367  *
2368  * Free all receive software resources
2369  **/
2370 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2371 {
2372         int i;
2373
2374         for (i = 0; i < adapter->num_rx_queues; i++)
2375                 if (adapter->rx_ring[i].desc)
2376                         ixgbevf_free_rx_resources(adapter,
2377                                                   &adapter->rx_ring[i]);
2378 }
2379
2380 /**
2381  * ixgbevf_open - Called when a network interface is made active
2382  * @netdev: network interface device structure
2383  *
2384  * Returns 0 on success, negative value on failure
2385  *
2386  * The open entry point is called when a network interface is made
2387  * active by the system (IFF_UP).  At this point all resources needed
2388  * for transmit and receive operations are allocated, the interrupt
2389  * handler is registered with the OS, the watchdog timer is started,
2390  * and the stack is notified that the interface is ready.
2391  **/
2392 static int ixgbevf_open(struct net_device *netdev)
2393 {
2394         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2395         struct ixgbe_hw *hw = &adapter->hw;
2396         int err;
2397
2398         /* disallow open during test */
2399         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2400                 return -EBUSY;
2401
2402         if (hw->adapter_stopped) {
2403                 ixgbevf_reset(adapter);
2404                 /* if adapter is still stopped then PF isn't up and
2405                  * the vf can't start. */
2406                 if (hw->adapter_stopped) {
2407                         err = IXGBE_ERR_MBX;
2408                         pr_err("Unable to start - perhaps the PF Driver isn't "
2409                                "up yet\n");
2410                         goto err_setup_reset;
2411                 }
2412         }
2413
2414         ixgbevf_negotiate_api(adapter);
2415
2416         /* allocate transmit descriptors */
2417         err = ixgbevf_setup_all_tx_resources(adapter);
2418         if (err)
2419                 goto err_setup_tx;
2420
2421         /* allocate receive descriptors */
2422         err = ixgbevf_setup_all_rx_resources(adapter);
2423         if (err)
2424                 goto err_setup_rx;
2425
2426         ixgbevf_configure(adapter);
2427
2428         /*
2429          * Map the Tx/Rx rings to the vectors we were allotted.
2430          * if request_irq will be called in this function map_rings
2431          * must be called *before* up_complete
2432          */
2433         ixgbevf_map_rings_to_vectors(adapter);
2434
2435         ixgbevf_up_complete(adapter);
2436
2437         /* clear any pending interrupts, may auto mask */
2438         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2439         err = ixgbevf_request_irq(adapter);
2440         if (err)
2441                 goto err_req_irq;
2442
2443         ixgbevf_irq_enable(adapter);
2444
2445         return 0;
2446
2447 err_req_irq:
2448         ixgbevf_down(adapter);
2449         ixgbevf_free_irq(adapter);
2450 err_setup_rx:
2451         ixgbevf_free_all_rx_resources(adapter);
2452 err_setup_tx:
2453         ixgbevf_free_all_tx_resources(adapter);
2454         ixgbevf_reset(adapter);
2455
2456 err_setup_reset:
2457
2458         return err;
2459 }
2460
2461 /**
2462  * ixgbevf_close - Disables a network interface
2463  * @netdev: network interface device structure
2464  *
2465  * Returns 0, this is not allowed to fail
2466  *
2467  * The close entry point is called when an interface is de-activated
2468  * by the OS.  The hardware is still under the drivers control, but
2469  * needs to be disabled.  A global MAC reset is issued to stop the
2470  * hardware, and all transmit and receive resources are freed.
2471  **/
2472 static int ixgbevf_close(struct net_device *netdev)
2473 {
2474         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2475
2476         ixgbevf_down(adapter);
2477         ixgbevf_free_irq(adapter);
2478
2479         ixgbevf_free_all_tx_resources(adapter);
2480         ixgbevf_free_all_rx_resources(adapter);
2481
2482         return 0;
2483 }
2484
2485 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
2486                                 u32 vlan_macip_lens, u32 type_tucmd,
2487                                 u32 mss_l4len_idx)
2488 {
2489         struct ixgbe_adv_tx_context_desc *context_desc;
2490         u16 i = tx_ring->next_to_use;
2491
2492         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
2493
2494         i++;
2495         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2496
2497         /* set bits to identify this as an advanced context descriptor */
2498         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
2499
2500         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
2501         context_desc->seqnum_seed       = 0;
2502         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
2503         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
2504 }
2505
2506 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
2507                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2508 {
2509         u32 vlan_macip_lens, type_tucmd;
2510         u32 mss_l4len_idx, l4len;
2511
2512         if (!skb_is_gso(skb))
2513                 return 0;
2514
2515         if (skb_header_cloned(skb)) {
2516                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2517                 if (err)
2518                         return err;
2519         }
2520
2521         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2522         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
2523
2524         if (skb->protocol == htons(ETH_P_IP)) {
2525                 struct iphdr *iph = ip_hdr(skb);
2526                 iph->tot_len = 0;
2527                 iph->check = 0;
2528                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2529                                                          iph->daddr, 0,
2530                                                          IPPROTO_TCP,
2531                                                          0);
2532                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2533         } else if (skb_is_gso_v6(skb)) {
2534                 ipv6_hdr(skb)->payload_len = 0;
2535                 tcp_hdr(skb)->check =
2536                     ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2537                                      &ipv6_hdr(skb)->daddr,
2538                                      0, IPPROTO_TCP, 0);
2539         }
2540
2541         /* compute header lengths */
2542         l4len = tcp_hdrlen(skb);
2543         *hdr_len += l4len;
2544         *hdr_len = skb_transport_offset(skb) + l4len;
2545
2546         /* mss_l4len_id: use 1 as index for TSO */
2547         mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
2548         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
2549         mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
2550
2551         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
2552         vlan_macip_lens = skb_network_header_len(skb);
2553         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2554         vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2555
2556         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2557                             type_tucmd, mss_l4len_idx);
2558
2559         return 1;
2560 }
2561
2562 static bool ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
2563                             struct sk_buff *skb, u32 tx_flags)
2564 {
2565
2566
2567
2568         u32 vlan_macip_lens = 0;
2569         u32 mss_l4len_idx = 0;
2570         u32 type_tucmd = 0;
2571
2572         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2573                 u8 l4_hdr = 0;
2574                 switch (skb->protocol) {
2575                 case __constant_htons(ETH_P_IP):
2576                         vlan_macip_lens |= skb_network_header_len(skb);
2577                         type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2578                         l4_hdr = ip_hdr(skb)->protocol;
2579                         break;
2580                 case __constant_htons(ETH_P_IPV6):
2581                         vlan_macip_lens |= skb_network_header_len(skb);
2582                         l4_hdr = ipv6_hdr(skb)->nexthdr;
2583                         break;
2584                 default:
2585                         if (unlikely(net_ratelimit())) {
2586                                 dev_warn(tx_ring->dev,
2587                                  "partial checksum but proto=%x!\n",
2588                                  skb->protocol);
2589                         }
2590                         break;
2591                 }
2592
2593                 switch (l4_hdr) {
2594                 case IPPROTO_TCP:
2595                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2596                         mss_l4len_idx = tcp_hdrlen(skb) <<
2597                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2598                         break;
2599                 case IPPROTO_SCTP:
2600                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
2601                         mss_l4len_idx = sizeof(struct sctphdr) <<
2602                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2603                         break;
2604                 case IPPROTO_UDP:
2605                         mss_l4len_idx = sizeof(struct udphdr) <<
2606                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2607                         break;
2608                 default:
2609                         if (unlikely(net_ratelimit())) {
2610                                 dev_warn(tx_ring->dev,
2611                                  "partial checksum but l4 proto=%x!\n",
2612                                  l4_hdr);
2613                         }
2614                         break;
2615                 }
2616         }
2617
2618         /* vlan_macip_lens: MACLEN, VLAN tag */
2619         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2620         vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2621
2622         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2623                             type_tucmd, mss_l4len_idx);
2624
2625         return (skb->ip_summed == CHECKSUM_PARTIAL);
2626 }
2627
2628 static int ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
2629                           struct sk_buff *skb, u32 tx_flags,
2630                           unsigned int first)
2631 {
2632         struct ixgbevf_tx_buffer *tx_buffer_info;
2633         unsigned int len;
2634         unsigned int total = skb->len;
2635         unsigned int offset = 0, size;
2636         int count = 0;
2637         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2638         unsigned int f;
2639         int i;
2640
2641         i = tx_ring->next_to_use;
2642
2643         len = min(skb_headlen(skb), total);
2644         while (len) {
2645                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2646                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2647
2648                 tx_buffer_info->length = size;
2649                 tx_buffer_info->mapped_as_page = false;
2650                 tx_buffer_info->dma = dma_map_single(tx_ring->dev,
2651                                                      skb->data + offset,
2652                                                      size, DMA_TO_DEVICE);
2653                 if (dma_mapping_error(tx_ring->dev, tx_buffer_info->dma))
2654                         goto dma_error;
2655                 tx_buffer_info->next_to_watch = i;
2656
2657                 len -= size;
2658                 total -= size;
2659                 offset += size;
2660                 count++;
2661                 i++;
2662                 if (i == tx_ring->count)
2663                         i = 0;
2664         }
2665
2666         for (f = 0; f < nr_frags; f++) {
2667                 const struct skb_frag_struct *frag;
2668
2669                 frag = &skb_shinfo(skb)->frags[f];
2670                 len = min((unsigned int)skb_frag_size(frag), total);
2671                 offset = 0;
2672
2673                 while (len) {
2674                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2675                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2676
2677                         tx_buffer_info->length = size;
2678                         tx_buffer_info->dma =
2679                                 skb_frag_dma_map(tx_ring->dev, frag,
2680                                                  offset, size, DMA_TO_DEVICE);
2681                         tx_buffer_info->mapped_as_page = true;
2682                         if (dma_mapping_error(tx_ring->dev,
2683                                               tx_buffer_info->dma))
2684                                 goto dma_error;
2685                         tx_buffer_info->next_to_watch = i;
2686
2687                         len -= size;
2688                         total -= size;
2689                         offset += size;
2690                         count++;
2691                         i++;
2692                         if (i == tx_ring->count)
2693                                 i = 0;
2694                 }
2695                 if (total == 0)
2696                         break;
2697         }
2698
2699         if (i == 0)
2700                 i = tx_ring->count - 1;
2701         else
2702                 i = i - 1;
2703         tx_ring->tx_buffer_info[i].skb = skb;
2704         tx_ring->tx_buffer_info[first].next_to_watch = i;
2705         tx_ring->tx_buffer_info[first].time_stamp = jiffies;
2706
2707         return count;
2708
2709 dma_error:
2710         dev_err(tx_ring->dev, "TX DMA map failed\n");
2711
2712         /* clear timestamp and dma mappings for failed tx_buffer_info map */
2713         tx_buffer_info->dma = 0;
2714         tx_buffer_info->next_to_watch = 0;
2715         count--;
2716
2717         /* clear timestamp and dma mappings for remaining portion of packet */
2718         while (count >= 0) {
2719                 count--;
2720                 i--;
2721                 if (i < 0)
2722                         i += tx_ring->count;
2723                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2724                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2725         }
2726
2727         return count;
2728 }
2729
2730 static void ixgbevf_tx_queue(struct ixgbevf_ring *tx_ring, int tx_flags,
2731                              int count, u32 paylen, u8 hdr_len)
2732 {
2733         union ixgbe_adv_tx_desc *tx_desc = NULL;
2734         struct ixgbevf_tx_buffer *tx_buffer_info;
2735         u32 olinfo_status = 0, cmd_type_len = 0;
2736         unsigned int i;
2737
2738         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2739
2740         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2741
2742         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2743
2744         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2745                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2746
2747         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
2748                 olinfo_status |= IXGBE_ADVTXD_POPTS_TXSM;
2749
2750         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2751                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2752
2753                 /* use index 1 context for tso */
2754                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2755                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
2756                         olinfo_status |= IXGBE_ADVTXD_POPTS_IXSM;
2757
2758         }
2759
2760         /*
2761          * Check Context must be set if Tx switch is enabled, which it
2762          * always is for case where virtual functions are running
2763          */
2764         olinfo_status |= IXGBE_ADVTXD_CC;
2765
2766         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
2767
2768         i = tx_ring->next_to_use;
2769         while (count--) {
2770                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2771                 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2772                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
2773                 tx_desc->read.cmd_type_len =
2774                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
2775                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2776                 i++;
2777                 if (i == tx_ring->count)
2778                         i = 0;
2779         }
2780
2781         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
2782
2783         tx_ring->next_to_use = i;
2784 }
2785
2786 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
2787 {
2788         struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
2789
2790         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2791         /* Herbert's original patch had:
2792          *  smp_mb__after_netif_stop_queue();
2793          * but since that doesn't exist yet, just open code it. */
2794         smp_mb();
2795
2796         /* We need to check again in a case another CPU has just
2797          * made room available. */
2798         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
2799                 return -EBUSY;
2800
2801         /* A reprieve! - use start_queue because it doesn't call schedule */
2802         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2803         ++adapter->restart_queue;
2804         return 0;
2805 }
2806
2807 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
2808 {
2809         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
2810                 return 0;
2811         return __ixgbevf_maybe_stop_tx(tx_ring, size);
2812 }
2813
2814 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2815 {
2816         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2817         struct ixgbevf_ring *tx_ring;
2818         unsigned int first;
2819         unsigned int tx_flags = 0;
2820         u8 hdr_len = 0;
2821         int r_idx = 0, tso;
2822         u16 count = TXD_USE_COUNT(skb_headlen(skb));
2823 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
2824         unsigned short f;
2825 #endif
2826
2827         tx_ring = &adapter->tx_ring[r_idx];
2828
2829         /*
2830          * need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
2831          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
2832          *       + 2 desc gap to keep tail from touching head,
2833          *       + 1 desc for context descriptor,
2834          * otherwise try next time
2835          */
2836 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
2837         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2838                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2839 #else
2840         count += skb_shinfo(skb)->nr_frags;
2841 #endif
2842         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
2843                 adapter->tx_busy++;
2844                 return NETDEV_TX_BUSY;
2845         }
2846
2847         if (vlan_tx_tag_present(skb)) {
2848                 tx_flags |= vlan_tx_tag_get(skb);
2849                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
2850                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
2851         }
2852
2853         first = tx_ring->next_to_use;
2854
2855         if (skb->protocol == htons(ETH_P_IP))
2856                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
2857         tso = ixgbevf_tso(tx_ring, skb, tx_flags, &hdr_len);
2858         if (tso < 0) {
2859                 dev_kfree_skb_any(skb);
2860                 return NETDEV_TX_OK;
2861         }
2862
2863         if (tso)
2864                 tx_flags |= IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_CSUM;
2865         else if (ixgbevf_tx_csum(tx_ring, skb, tx_flags))
2866                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
2867
2868         ixgbevf_tx_queue(tx_ring, tx_flags,
2869                          ixgbevf_tx_map(tx_ring, skb, tx_flags, first),
2870                          skb->len, hdr_len);
2871         /*
2872          * Force memory writes to complete before letting h/w
2873          * know there are new descriptors to fetch.  (Only
2874          * applicable for weak-ordered memory model archs,
2875          * such as IA-64).
2876          */
2877         wmb();
2878
2879         writel(tx_ring->next_to_use, adapter->hw.hw_addr + tx_ring->tail);
2880
2881         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2882
2883         return NETDEV_TX_OK;
2884 }
2885
2886 /**
2887  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
2888  * @netdev: network interface device structure
2889  * @p: pointer to an address structure
2890  *
2891  * Returns 0 on success, negative on failure
2892  **/
2893 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
2894 {
2895         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2896         struct ixgbe_hw *hw = &adapter->hw;
2897         struct sockaddr *addr = p;
2898
2899         if (!is_valid_ether_addr(addr->sa_data))
2900                 return -EADDRNOTAVAIL;
2901
2902         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2903         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2904
2905         spin_lock(&adapter->mbx_lock);
2906
2907         if (hw->mac.ops.set_rar)
2908                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2909
2910         spin_unlock(&adapter->mbx_lock);
2911
2912         return 0;
2913 }
2914
2915 /**
2916  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
2917  * @netdev: network interface device structure
2918  * @new_mtu: new value for maximum frame size
2919  *
2920  * Returns 0 on success, negative on failure
2921  **/
2922 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
2923 {
2924         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2925         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2926         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
2927
2928         if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
2929                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
2930
2931         /* MTU < 68 is an error and causes problems on some kernels */
2932         if ((new_mtu < 68) || (max_frame > max_possible_frame))
2933                 return -EINVAL;
2934
2935         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
2936                netdev->mtu, new_mtu);
2937         /* must set new MTU before calling down or up */
2938         netdev->mtu = new_mtu;
2939
2940         if (netif_running(netdev))
2941                 ixgbevf_reinit_locked(adapter);
2942
2943         return 0;
2944 }
2945
2946 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
2947 {
2948         struct net_device *netdev = pci_get_drvdata(pdev);
2949         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2950 #ifdef CONFIG_PM
2951         int retval = 0;
2952 #endif
2953
2954         netif_device_detach(netdev);
2955
2956         if (netif_running(netdev)) {
2957                 rtnl_lock();
2958                 ixgbevf_down(adapter);
2959                 ixgbevf_free_irq(adapter);
2960                 ixgbevf_free_all_tx_resources(adapter);
2961                 ixgbevf_free_all_rx_resources(adapter);
2962                 rtnl_unlock();
2963         }
2964
2965         ixgbevf_clear_interrupt_scheme(adapter);
2966
2967 #ifdef CONFIG_PM
2968         retval = pci_save_state(pdev);
2969         if (retval)
2970                 return retval;
2971
2972 #endif
2973         pci_disable_device(pdev);
2974
2975         return 0;
2976 }
2977
2978 #ifdef CONFIG_PM
2979 static int ixgbevf_resume(struct pci_dev *pdev)
2980 {
2981         struct ixgbevf_adapter *adapter = pci_get_drvdata(pdev);
2982         struct net_device *netdev = adapter->netdev;
2983         u32 err;
2984
2985         pci_set_power_state(pdev, PCI_D0);
2986         pci_restore_state(pdev);
2987         /*
2988          * pci_restore_state clears dev->state_saved so call
2989          * pci_save_state to restore it.
2990          */
2991         pci_save_state(pdev);
2992
2993         err = pci_enable_device_mem(pdev);
2994         if (err) {
2995                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2996                 return err;
2997         }
2998         pci_set_master(pdev);
2999
3000         rtnl_lock();
3001         err = ixgbevf_init_interrupt_scheme(adapter);
3002         rtnl_unlock();
3003         if (err) {
3004                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3005                 return err;
3006         }
3007
3008         ixgbevf_reset(adapter);
3009
3010         if (netif_running(netdev)) {
3011                 err = ixgbevf_open(netdev);
3012                 if (err)
3013                         return err;
3014         }
3015
3016         netif_device_attach(netdev);
3017
3018         return err;
3019 }
3020
3021 #endif /* CONFIG_PM */
3022 static void ixgbevf_shutdown(struct pci_dev *pdev)
3023 {
3024         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3025 }
3026
3027 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3028                                                 struct rtnl_link_stats64 *stats)
3029 {
3030         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3031         unsigned int start;
3032         u64 bytes, packets;
3033         const struct ixgbevf_ring *ring;
3034         int i;
3035
3036         ixgbevf_update_stats(adapter);
3037
3038         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3039
3040         for (i = 0; i < adapter->num_rx_queues; i++) {
3041                 ring = &adapter->rx_ring[i];
3042                 do {
3043                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3044                         bytes = ring->total_bytes;
3045                         packets = ring->total_packets;
3046                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3047                 stats->rx_bytes += bytes;
3048                 stats->rx_packets += packets;
3049         }
3050
3051         for (i = 0; i < adapter->num_tx_queues; i++) {
3052                 ring = &adapter->tx_ring[i];
3053                 do {
3054                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3055                         bytes = ring->total_bytes;
3056                         packets = ring->total_packets;
3057                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3058                 stats->tx_bytes += bytes;
3059                 stats->tx_packets += packets;
3060         }
3061
3062         return stats;
3063 }
3064
3065 static const struct net_device_ops ixgbevf_netdev_ops = {
3066         .ndo_open               = ixgbevf_open,
3067         .ndo_stop               = ixgbevf_close,
3068         .ndo_start_xmit         = ixgbevf_xmit_frame,
3069         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3070         .ndo_get_stats64        = ixgbevf_get_stats,
3071         .ndo_validate_addr      = eth_validate_addr,
3072         .ndo_set_mac_address    = ixgbevf_set_mac,
3073         .ndo_change_mtu         = ixgbevf_change_mtu,
3074         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3075         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3076         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3077 };
3078
3079 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3080 {
3081         dev->netdev_ops = &ixgbevf_netdev_ops;
3082         ixgbevf_set_ethtool_ops(dev);
3083         dev->watchdog_timeo = 5 * HZ;
3084 }
3085
3086 /**
3087  * ixgbevf_probe - Device Initialization Routine
3088  * @pdev: PCI device information struct
3089  * @ent: entry in ixgbevf_pci_tbl
3090  *
3091  * Returns 0 on success, negative on failure
3092  *
3093  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3094  * The OS initialization, configuring of the adapter private structure,
3095  * and a hardware reset occur.
3096  **/
3097 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3098                                    const struct pci_device_id *ent)
3099 {
3100         struct net_device *netdev;
3101         struct ixgbevf_adapter *adapter = NULL;
3102         struct ixgbe_hw *hw = NULL;
3103         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3104         static int cards_found;
3105         int err, pci_using_dac;
3106
3107         err = pci_enable_device(pdev);
3108         if (err)
3109                 return err;
3110
3111         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3112             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3113                 pci_using_dac = 1;
3114         } else {
3115                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3116                 if (err) {
3117                         err = dma_set_coherent_mask(&pdev->dev,
3118                                                     DMA_BIT_MASK(32));
3119                         if (err) {
3120                                 dev_err(&pdev->dev, "No usable DMA "
3121                                         "configuration, aborting\n");
3122                                 goto err_dma;
3123                         }
3124                 }
3125                 pci_using_dac = 0;
3126         }
3127
3128         err = pci_request_regions(pdev, ixgbevf_driver_name);
3129         if (err) {
3130                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3131                 goto err_pci_reg;
3132         }
3133
3134         pci_set_master(pdev);
3135
3136         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3137                                    MAX_TX_QUEUES);
3138         if (!netdev) {
3139                 err = -ENOMEM;
3140                 goto err_alloc_etherdev;
3141         }
3142
3143         SET_NETDEV_DEV(netdev, &pdev->dev);
3144
3145         pci_set_drvdata(pdev, netdev);
3146         adapter = netdev_priv(netdev);
3147
3148         adapter->netdev = netdev;
3149         adapter->pdev = pdev;
3150         hw = &adapter->hw;
3151         hw->back = adapter;
3152         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3153
3154         /*
3155          * call save state here in standalone driver because it relies on
3156          * adapter struct to exist, and needs to call netdev_priv
3157          */
3158         pci_save_state(pdev);
3159
3160         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3161                               pci_resource_len(pdev, 0));
3162         if (!hw->hw_addr) {
3163                 err = -EIO;
3164                 goto err_ioremap;
3165         }
3166
3167         ixgbevf_assign_netdev_ops(netdev);
3168
3169         adapter->bd_number = cards_found;
3170
3171         /* Setup hw api */
3172         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3173         hw->mac.type  = ii->mac;
3174
3175         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3176                sizeof(struct ixgbe_mbx_operations));
3177
3178         /* setup the private structure */
3179         err = ixgbevf_sw_init(adapter);
3180         if (err)
3181                 goto err_sw_init;
3182
3183         /* The HW MAC address was set and/or determined in sw_init */
3184         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3185
3186         if (!is_valid_ether_addr(netdev->dev_addr)) {
3187                 pr_err("invalid MAC address\n");
3188                 err = -EIO;
3189                 goto err_sw_init;
3190         }
3191
3192         netdev->hw_features = NETIF_F_SG |
3193                            NETIF_F_IP_CSUM |
3194                            NETIF_F_IPV6_CSUM |
3195                            NETIF_F_TSO |
3196                            NETIF_F_TSO6 |
3197                            NETIF_F_RXCSUM;
3198
3199         netdev->features = netdev->hw_features |
3200                            NETIF_F_HW_VLAN_TX |
3201                            NETIF_F_HW_VLAN_RX |
3202                            NETIF_F_HW_VLAN_FILTER;
3203
3204         netdev->vlan_features |= NETIF_F_TSO;
3205         netdev->vlan_features |= NETIF_F_TSO6;
3206         netdev->vlan_features |= NETIF_F_IP_CSUM;
3207         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3208         netdev->vlan_features |= NETIF_F_SG;
3209
3210         if (pci_using_dac)
3211                 netdev->features |= NETIF_F_HIGHDMA;
3212
3213         netdev->priv_flags |= IFF_UNICAST_FLT;
3214
3215         init_timer(&adapter->watchdog_timer);
3216         adapter->watchdog_timer.function = ixgbevf_watchdog;
3217         adapter->watchdog_timer.data = (unsigned long)adapter;
3218
3219         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3220         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3221
3222         err = ixgbevf_init_interrupt_scheme(adapter);
3223         if (err)
3224                 goto err_sw_init;
3225
3226         /* pick up the PCI bus settings for reporting later */
3227         if (hw->mac.ops.get_bus_info)
3228                 hw->mac.ops.get_bus_info(hw);
3229
3230         strcpy(netdev->name, "eth%d");
3231
3232         err = register_netdev(netdev);
3233         if (err)
3234                 goto err_register;
3235
3236         netif_carrier_off(netdev);
3237
3238         ixgbevf_init_last_counter_stats(adapter);
3239
3240         /* print the MAC address */
3241         hw_dbg(hw, "%pM\n", netdev->dev_addr);
3242
3243         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3244
3245         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3246         cards_found++;
3247         return 0;
3248
3249 err_register:
3250         ixgbevf_clear_interrupt_scheme(adapter);
3251 err_sw_init:
3252         ixgbevf_reset_interrupt_capability(adapter);
3253         iounmap(hw->hw_addr);
3254 err_ioremap:
3255         free_netdev(netdev);
3256 err_alloc_etherdev:
3257         pci_release_regions(pdev);
3258 err_pci_reg:
3259 err_dma:
3260         pci_disable_device(pdev);
3261         return err;
3262 }
3263
3264 /**
3265  * ixgbevf_remove - Device Removal Routine
3266  * @pdev: PCI device information struct
3267  *
3268  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3269  * that it should release a PCI device.  The could be caused by a
3270  * Hot-Plug event, or because the driver is going to be removed from
3271  * memory.
3272  **/
3273 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3274 {
3275         struct net_device *netdev = pci_get_drvdata(pdev);
3276         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3277
3278         set_bit(__IXGBEVF_DOWN, &adapter->state);
3279
3280         del_timer_sync(&adapter->watchdog_timer);
3281
3282         cancel_work_sync(&adapter->reset_task);
3283         cancel_work_sync(&adapter->watchdog_task);
3284
3285         if (netdev->reg_state == NETREG_REGISTERED)
3286                 unregister_netdev(netdev);
3287
3288         ixgbevf_clear_interrupt_scheme(adapter);
3289         ixgbevf_reset_interrupt_capability(adapter);
3290
3291         iounmap(adapter->hw.hw_addr);
3292         pci_release_regions(pdev);
3293
3294         hw_dbg(&adapter->hw, "Remove complete\n");
3295
3296         kfree(adapter->tx_ring);
3297         kfree(adapter->rx_ring);
3298
3299         free_netdev(netdev);
3300
3301         pci_disable_device(pdev);
3302 }
3303
3304 /**
3305  * ixgbevf_io_error_detected - called when PCI error is detected
3306  * @pdev: Pointer to PCI device
3307  * @state: The current pci connection state
3308  *
3309  * This function is called after a PCI bus error affecting
3310  * this device has been detected.
3311  */
3312 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
3313                                                   pci_channel_state_t state)
3314 {
3315         struct net_device *netdev = pci_get_drvdata(pdev);
3316         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3317
3318         netif_device_detach(netdev);
3319
3320         if (state == pci_channel_io_perm_failure)
3321                 return PCI_ERS_RESULT_DISCONNECT;
3322
3323         if (netif_running(netdev))
3324                 ixgbevf_down(adapter);
3325
3326         pci_disable_device(pdev);
3327
3328         /* Request a slot slot reset. */
3329         return PCI_ERS_RESULT_NEED_RESET;
3330 }
3331
3332 /**
3333  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
3334  * @pdev: Pointer to PCI device
3335  *
3336  * Restart the card from scratch, as if from a cold-boot. Implementation
3337  * resembles the first-half of the ixgbevf_resume routine.
3338  */
3339 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
3340 {
3341         struct net_device *netdev = pci_get_drvdata(pdev);
3342         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3343
3344         if (pci_enable_device_mem(pdev)) {
3345                 dev_err(&pdev->dev,
3346                         "Cannot re-enable PCI device after reset.\n");
3347                 return PCI_ERS_RESULT_DISCONNECT;
3348         }
3349
3350         pci_set_master(pdev);
3351
3352         ixgbevf_reset(adapter);
3353
3354         return PCI_ERS_RESULT_RECOVERED;
3355 }
3356
3357 /**
3358  * ixgbevf_io_resume - called when traffic can start flowing again.
3359  * @pdev: Pointer to PCI device
3360  *
3361  * This callback is called when the error recovery driver tells us that
3362  * its OK to resume normal operation. Implementation resembles the
3363  * second-half of the ixgbevf_resume routine.
3364  */
3365 static void ixgbevf_io_resume(struct pci_dev *pdev)
3366 {
3367         struct net_device *netdev = pci_get_drvdata(pdev);
3368         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3369
3370         if (netif_running(netdev))
3371                 ixgbevf_up(adapter);
3372
3373         netif_device_attach(netdev);
3374 }
3375
3376 /* PCI Error Recovery (ERS) */
3377 static const struct pci_error_handlers ixgbevf_err_handler = {
3378         .error_detected = ixgbevf_io_error_detected,
3379         .slot_reset = ixgbevf_io_slot_reset,
3380         .resume = ixgbevf_io_resume,
3381 };
3382
3383 static struct pci_driver ixgbevf_driver = {
3384         .name     = ixgbevf_driver_name,
3385         .id_table = ixgbevf_pci_tbl,
3386         .probe    = ixgbevf_probe,
3387         .remove   = __devexit_p(ixgbevf_remove),
3388 #ifdef CONFIG_PM
3389         /* Power Management Hooks */
3390         .suspend  = ixgbevf_suspend,
3391         .resume   = ixgbevf_resume,
3392 #endif
3393         .shutdown = ixgbevf_shutdown,
3394         .err_handler = &ixgbevf_err_handler
3395 };
3396
3397 /**
3398  * ixgbevf_init_module - Driver Registration Routine
3399  *
3400  * ixgbevf_init_module is the first routine called when the driver is
3401  * loaded. All it does is register with the PCI subsystem.
3402  **/
3403 static int __init ixgbevf_init_module(void)
3404 {
3405         int ret;
3406         pr_info("%s - version %s\n", ixgbevf_driver_string,
3407                 ixgbevf_driver_version);
3408
3409         pr_info("%s\n", ixgbevf_copyright);
3410
3411         ret = pci_register_driver(&ixgbevf_driver);
3412         return ret;
3413 }
3414
3415 module_init(ixgbevf_init_module);
3416
3417 /**
3418  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3419  *
3420  * ixgbevf_exit_module is called just before the driver is removed
3421  * from memory.
3422  **/
3423 static void __exit ixgbevf_exit_module(void)
3424 {
3425         pci_unregister_driver(&ixgbevf_driver);
3426 }
3427
3428 #ifdef DEBUG
3429 /**
3430  * ixgbevf_get_hw_dev_name - return device name string
3431  * used by hardware layer to print debugging information
3432  **/
3433 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3434 {
3435         struct ixgbevf_adapter *adapter = hw->back;
3436         return adapter->netdev->name;
3437 }
3438
3439 #endif
3440 module_exit(ixgbevf_exit_module);
3441
3442 /* ixgbevf_main.c */