netvm: propagate page->pfmemalloc from skb_alloc_page to skb
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/sctp.h>
46 #include <linux/ipv6.h>
47 #include <linux/slab.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/ethtool.h>
51 #include <linux/if.h>
52 #include <linux/if_vlan.h>
53 #include <linux/prefetch.h>
54
55 #include "ixgbevf.h"
56
57 const char ixgbevf_driver_name[] = "ixgbevf";
58 static const char ixgbevf_driver_string[] =
59         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
60
61 #define DRV_VERSION "2.6.0-k"
62 const char ixgbevf_driver_version[] = DRV_VERSION;
63 static char ixgbevf_copyright[] =
64         "Copyright (c) 2009 - 2012 Intel Corporation.";
65
66 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
67         [board_82599_vf] = &ixgbevf_82599_vf_info,
68         [board_X540_vf]  = &ixgbevf_X540_vf_info,
69 };
70
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72  *
73  * Wildcard entries (PCI_ANY_ID) should come last
74  * Last entry must be all 0s
75  *
76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77  *   Class, Class Mask, private data (not used) }
78  */
79 static struct pci_device_id ixgbevf_pci_tbl[] = {
80         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
81         board_82599_vf},
82         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
83         board_X540_vf},
84
85         /* required last entry */
86         {0, }
87 };
88 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
89
90 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
91 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
92 MODULE_LICENSE("GPL");
93 MODULE_VERSION(DRV_VERSION);
94
95 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
96 static int debug = -1;
97 module_param(debug, int, 0);
98 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
99
100 /* forward decls */
101 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
102
103 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
104                                            struct ixgbevf_ring *rx_ring,
105                                            u32 val)
106 {
107         /*
108          * Force memory writes to complete before letting h/w
109          * know there are new descriptors to fetch.  (Only
110          * applicable for weak-ordered memory model archs,
111          * such as IA-64).
112          */
113         wmb();
114         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
115 }
116
117 /**
118  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
119  * @adapter: pointer to adapter struct
120  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
121  * @queue: queue to map the corresponding interrupt to
122  * @msix_vector: the vector to map to the corresponding queue
123  *
124  */
125 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
126                              u8 queue, u8 msix_vector)
127 {
128         u32 ivar, index;
129         struct ixgbe_hw *hw = &adapter->hw;
130         if (direction == -1) {
131                 /* other causes */
132                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
133                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
134                 ivar &= ~0xFF;
135                 ivar |= msix_vector;
136                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
137         } else {
138                 /* tx or rx causes */
139                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
140                 index = ((16 * (queue & 1)) + (8 * direction));
141                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
142                 ivar &= ~(0xFF << index);
143                 ivar |= (msix_vector << index);
144                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
145         }
146 }
147
148 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
149                                                struct ixgbevf_tx_buffer
150                                                *tx_buffer_info)
151 {
152         if (tx_buffer_info->dma) {
153                 if (tx_buffer_info->mapped_as_page)
154                         dma_unmap_page(tx_ring->dev,
155                                        tx_buffer_info->dma,
156                                        tx_buffer_info->length,
157                                        DMA_TO_DEVICE);
158                 else
159                         dma_unmap_single(tx_ring->dev,
160                                          tx_buffer_info->dma,
161                                          tx_buffer_info->length,
162                                          DMA_TO_DEVICE);
163                 tx_buffer_info->dma = 0;
164         }
165         if (tx_buffer_info->skb) {
166                 dev_kfree_skb_any(tx_buffer_info->skb);
167                 tx_buffer_info->skb = NULL;
168         }
169         tx_buffer_info->time_stamp = 0;
170         /* tx_buffer_info must be completely set up in the transmit path */
171 }
172
173 #define IXGBE_MAX_TXD_PWR       14
174 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
175
176 /* Tx Descriptors needed, worst case */
177 #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IXGBE_MAX_DATA_PER_TXD)
178 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
179
180 static void ixgbevf_tx_timeout(struct net_device *netdev);
181
182 /**
183  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
184  * @q_vector: board private structure
185  * @tx_ring: tx ring to clean
186  **/
187 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
188                                  struct ixgbevf_ring *tx_ring)
189 {
190         struct ixgbevf_adapter *adapter = q_vector->adapter;
191         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
192         struct ixgbevf_tx_buffer *tx_buffer_info;
193         unsigned int i, eop, count = 0;
194         unsigned int total_bytes = 0, total_packets = 0;
195
196         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
197                 return true;
198
199         i = tx_ring->next_to_clean;
200         eop = tx_ring->tx_buffer_info[i].next_to_watch;
201         eop_desc = IXGBEVF_TX_DESC(tx_ring, eop);
202
203         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
204                (count < tx_ring->count)) {
205                 bool cleaned = false;
206                 rmb(); /* read buffer_info after eop_desc */
207                 /* eop could change between read and DD-check */
208                 if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
209                         goto cont_loop;
210                 for ( ; !cleaned; count++) {
211                         struct sk_buff *skb;
212                         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
213                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
214                         cleaned = (i == eop);
215                         skb = tx_buffer_info->skb;
216
217                         if (cleaned && skb) {
218                                 unsigned int segs, bytecount;
219
220                                 /* gso_segs is currently only valid for tcp */
221                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
222                                 /* multiply data chunks by size of headers */
223                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
224                                             skb->len;
225                                 total_packets += segs;
226                                 total_bytes += bytecount;
227                         }
228
229                         ixgbevf_unmap_and_free_tx_resource(tx_ring,
230                                                            tx_buffer_info);
231
232                         tx_desc->wb.status = 0;
233
234                         i++;
235                         if (i == tx_ring->count)
236                                 i = 0;
237                 }
238
239 cont_loop:
240                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
241                 eop_desc = IXGBEVF_TX_DESC(tx_ring, eop);
242         }
243
244         tx_ring->next_to_clean = i;
245
246 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
247         if (unlikely(count && netif_carrier_ok(tx_ring->netdev) &&
248                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
249                 /* Make sure that anybody stopping the queue after this
250                  * sees the new next_to_clean.
251                  */
252                 smp_mb();
253                 if (__netif_subqueue_stopped(tx_ring->netdev,
254                                              tx_ring->queue_index) &&
255                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
256                         netif_wake_subqueue(tx_ring->netdev,
257                                             tx_ring->queue_index);
258                         ++adapter->restart_queue;
259                 }
260         }
261
262         u64_stats_update_begin(&tx_ring->syncp);
263         tx_ring->total_bytes += total_bytes;
264         tx_ring->total_packets += total_packets;
265         u64_stats_update_end(&tx_ring->syncp);
266
267         return count < tx_ring->count;
268 }
269
270 /**
271  * ixgbevf_receive_skb - Send a completed packet up the stack
272  * @q_vector: structure containing interrupt and ring information
273  * @skb: packet to send up
274  * @status: hardware indication of status of receive
275  * @rx_ring: rx descriptor ring (for a specific queue) to setup
276  * @rx_desc: rx descriptor
277  **/
278 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
279                                 struct sk_buff *skb, u8 status,
280                                 struct ixgbevf_ring *ring,
281                                 union ixgbe_adv_rx_desc *rx_desc)
282 {
283         struct ixgbevf_adapter *adapter = q_vector->adapter;
284         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
285         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
286
287         if (is_vlan && test_bit(tag & VLAN_VID_MASK, adapter->active_vlans))
288                 __vlan_hwaccel_put_tag(skb, tag);
289
290         napi_gro_receive(&q_vector->napi, skb);
291 }
292
293 /**
294  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
295  * @adapter: address of board private structure
296  * @status_err: hardware indication of status of receive
297  * @skb: skb currently being received and modified
298  **/
299 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
300                                        struct ixgbevf_ring *ring,
301                                        u32 status_err, struct sk_buff *skb)
302 {
303         skb_checksum_none_assert(skb);
304
305         /* Rx csum disabled */
306         if (!(ring->netdev->features & NETIF_F_RXCSUM))
307                 return;
308
309         /* if IP and error */
310         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
311             (status_err & IXGBE_RXDADV_ERR_IPE)) {
312                 adapter->hw_csum_rx_error++;
313                 return;
314         }
315
316         if (!(status_err & IXGBE_RXD_STAT_L4CS))
317                 return;
318
319         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
320                 adapter->hw_csum_rx_error++;
321                 return;
322         }
323
324         /* It must be a TCP or UDP packet with a valid checksum */
325         skb->ip_summed = CHECKSUM_UNNECESSARY;
326         adapter->hw_csum_rx_good++;
327 }
328
329 /**
330  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
331  * @adapter: address of board private structure
332  **/
333 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
334                                      struct ixgbevf_ring *rx_ring,
335                                      int cleaned_count)
336 {
337         struct pci_dev *pdev = adapter->pdev;
338         union ixgbe_adv_rx_desc *rx_desc;
339         struct ixgbevf_rx_buffer *bi;
340         struct sk_buff *skb;
341         unsigned int i = rx_ring->next_to_use;
342
343         bi = &rx_ring->rx_buffer_info[i];
344
345         while (cleaned_count--) {
346                 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
347                 skb = bi->skb;
348                 if (!skb) {
349                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
350                                                         rx_ring->rx_buf_len);
351                         if (!skb) {
352                                 adapter->alloc_rx_buff_failed++;
353                                 goto no_buffers;
354                         }
355                         bi->skb = skb;
356                 }
357                 if (!bi->dma) {
358                         bi->dma = dma_map_single(&pdev->dev, skb->data,
359                                                  rx_ring->rx_buf_len,
360                                                  DMA_FROM_DEVICE);
361                 }
362                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
363
364                 i++;
365                 if (i == rx_ring->count)
366                         i = 0;
367                 bi = &rx_ring->rx_buffer_info[i];
368         }
369
370 no_buffers:
371         if (rx_ring->next_to_use != i) {
372                 rx_ring->next_to_use = i;
373
374                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
375         }
376 }
377
378 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
379                                              u32 qmask)
380 {
381         struct ixgbe_hw *hw = &adapter->hw;
382
383         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
384 }
385
386 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
387                                  struct ixgbevf_ring *rx_ring,
388                                  int budget)
389 {
390         struct ixgbevf_adapter *adapter = q_vector->adapter;
391         struct pci_dev *pdev = adapter->pdev;
392         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
393         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
394         struct sk_buff *skb;
395         unsigned int i;
396         u32 len, staterr;
397         int cleaned_count = 0;
398         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
399
400         i = rx_ring->next_to_clean;
401         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
402         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
403         rx_buffer_info = &rx_ring->rx_buffer_info[i];
404
405         while (staterr & IXGBE_RXD_STAT_DD) {
406                 if (!budget)
407                         break;
408                 budget--;
409
410                 rmb(); /* read descriptor and rx_buffer_info after status DD */
411                 len = le16_to_cpu(rx_desc->wb.upper.length);
412                 skb = rx_buffer_info->skb;
413                 prefetch(skb->data - NET_IP_ALIGN);
414                 rx_buffer_info->skb = NULL;
415
416                 if (rx_buffer_info->dma) {
417                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
418                                          rx_ring->rx_buf_len,
419                                          DMA_FROM_DEVICE);
420                         rx_buffer_info->dma = 0;
421                         skb_put(skb, len);
422                 }
423
424                 i++;
425                 if (i == rx_ring->count)
426                         i = 0;
427
428                 next_rxd = IXGBEVF_RX_DESC(rx_ring, i);
429                 prefetch(next_rxd);
430                 cleaned_count++;
431
432                 next_buffer = &rx_ring->rx_buffer_info[i];
433
434                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
435                         skb->next = next_buffer->skb;
436                         skb->next->prev = skb;
437                         adapter->non_eop_descs++;
438                         goto next_desc;
439                 }
440
441                 /* ERR_MASK will only have valid bits if EOP set */
442                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
443                         dev_kfree_skb_irq(skb);
444                         goto next_desc;
445                 }
446
447                 ixgbevf_rx_checksum(adapter, rx_ring, staterr, skb);
448
449                 /* probably a little skewed due to removing CRC */
450                 total_rx_bytes += skb->len;
451                 total_rx_packets++;
452
453                 /*
454                  * Work around issue of some types of VM to VM loop back
455                  * packets not getting split correctly
456                  */
457                 if (staterr & IXGBE_RXD_STAT_LB) {
458                         u32 header_fixup_len = skb_headlen(skb);
459                         if (header_fixup_len < 14)
460                                 skb_push(skb, header_fixup_len);
461                 }
462                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
463
464                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
465
466 next_desc:
467                 rx_desc->wb.upper.status_error = 0;
468
469                 /* return some buffers to hardware, one at a time is too slow */
470                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
471                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
472                                                  cleaned_count);
473                         cleaned_count = 0;
474                 }
475
476                 /* use prefetched values */
477                 rx_desc = next_rxd;
478                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
479
480                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
481         }
482
483         rx_ring->next_to_clean = i;
484         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
485
486         if (cleaned_count)
487                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
488
489         u64_stats_update_begin(&rx_ring->syncp);
490         rx_ring->total_packets += total_rx_packets;
491         rx_ring->total_bytes += total_rx_bytes;
492         u64_stats_update_end(&rx_ring->syncp);
493
494         return !!budget;
495 }
496
497 /**
498  * ixgbevf_poll - NAPI polling calback
499  * @napi: napi struct with our devices info in it
500  * @budget: amount of work driver is allowed to do this pass, in packets
501  *
502  * This function will clean more than one or more rings associated with a
503  * q_vector.
504  **/
505 static int ixgbevf_poll(struct napi_struct *napi, int budget)
506 {
507         struct ixgbevf_q_vector *q_vector =
508                 container_of(napi, struct ixgbevf_q_vector, napi);
509         struct ixgbevf_adapter *adapter = q_vector->adapter;
510         struct ixgbevf_ring *ring;
511         int per_ring_budget;
512         bool clean_complete = true;
513
514         ixgbevf_for_each_ring(ring, q_vector->tx)
515                 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
516
517         /* attempt to distribute budget to each queue fairly, but don't allow
518          * the budget to go below 1 because we'll exit polling */
519         if (q_vector->rx.count > 1)
520                 per_ring_budget = max(budget/q_vector->rx.count, 1);
521         else
522                 per_ring_budget = budget;
523
524         ixgbevf_for_each_ring(ring, q_vector->rx)
525                 clean_complete &= ixgbevf_clean_rx_irq(q_vector, ring,
526                                                        per_ring_budget);
527
528         /* If all work not completed, return budget and keep polling */
529         if (!clean_complete)
530                 return budget;
531         /* all work done, exit the polling mode */
532         napi_complete(napi);
533         if (adapter->rx_itr_setting & 1)
534                 ixgbevf_set_itr(q_vector);
535         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
536                 ixgbevf_irq_enable_queues(adapter,
537                                           1 << q_vector->v_idx);
538
539         return 0;
540 }
541
542 /**
543  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
544  * @q_vector: structure containing interrupt and ring information
545  */
546 static void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
547 {
548         struct ixgbevf_adapter *adapter = q_vector->adapter;
549         struct ixgbe_hw *hw = &adapter->hw;
550         int v_idx = q_vector->v_idx;
551         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
552
553         /*
554          * set the WDIS bit to not clear the timer bits and cause an
555          * immediate assertion of the interrupt
556          */
557         itr_reg |= IXGBE_EITR_CNT_WDIS;
558
559         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
560 }
561
562 /**
563  * ixgbevf_configure_msix - Configure MSI-X hardware
564  * @adapter: board private structure
565  *
566  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
567  * interrupts.
568  **/
569 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
570 {
571         struct ixgbevf_q_vector *q_vector;
572         int q_vectors, v_idx;
573
574         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
575         adapter->eims_enable_mask = 0;
576
577         /*
578          * Populate the IVAR table and set the ITR values to the
579          * corresponding register.
580          */
581         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
582                 struct ixgbevf_ring *ring;
583                 q_vector = adapter->q_vector[v_idx];
584
585                 ixgbevf_for_each_ring(ring, q_vector->rx)
586                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
587
588                 ixgbevf_for_each_ring(ring, q_vector->tx)
589                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
590
591                 if (q_vector->tx.ring && !q_vector->rx.ring) {
592                         /* tx only vector */
593                         if (adapter->tx_itr_setting == 1)
594                                 q_vector->itr = IXGBE_10K_ITR;
595                         else
596                                 q_vector->itr = adapter->tx_itr_setting;
597                 } else {
598                         /* rx or rx/tx vector */
599                         if (adapter->rx_itr_setting == 1)
600                                 q_vector->itr = IXGBE_20K_ITR;
601                         else
602                                 q_vector->itr = adapter->rx_itr_setting;
603                 }
604
605                 /* add q_vector eims value to global eims_enable_mask */
606                 adapter->eims_enable_mask |= 1 << v_idx;
607
608                 ixgbevf_write_eitr(q_vector);
609         }
610
611         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
612         /* setup eims_other and add value to global eims_enable_mask */
613         adapter->eims_other = 1 << v_idx;
614         adapter->eims_enable_mask |= adapter->eims_other;
615 }
616
617 enum latency_range {
618         lowest_latency = 0,
619         low_latency = 1,
620         bulk_latency = 2,
621         latency_invalid = 255
622 };
623
624 /**
625  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
626  * @q_vector: structure containing interrupt and ring information
627  * @ring_container: structure containing ring performance data
628  *
629  *      Stores a new ITR value based on packets and byte
630  *      counts during the last interrupt.  The advantage of per interrupt
631  *      computation is faster updates and more accurate ITR for the current
632  *      traffic pattern.  Constants in this function were computed
633  *      based on theoretical maximum wire speed and thresholds were set based
634  *      on testing data as well as attempting to minimize response time
635  *      while increasing bulk throughput.
636  **/
637 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
638                                struct ixgbevf_ring_container *ring_container)
639 {
640         int bytes = ring_container->total_bytes;
641         int packets = ring_container->total_packets;
642         u32 timepassed_us;
643         u64 bytes_perint;
644         u8 itr_setting = ring_container->itr;
645
646         if (packets == 0)
647                 return;
648
649         /* simple throttlerate management
650          *    0-20MB/s lowest (100000 ints/s)
651          *   20-100MB/s low   (20000 ints/s)
652          *  100-1249MB/s bulk (8000 ints/s)
653          */
654         /* what was last interrupt timeslice? */
655         timepassed_us = q_vector->itr >> 2;
656         bytes_perint = bytes / timepassed_us; /* bytes/usec */
657
658         switch (itr_setting) {
659         case lowest_latency:
660                 if (bytes_perint > 10)
661                         itr_setting = low_latency;
662                 break;
663         case low_latency:
664                 if (bytes_perint > 20)
665                         itr_setting = bulk_latency;
666                 else if (bytes_perint <= 10)
667                         itr_setting = lowest_latency;
668                 break;
669         case bulk_latency:
670                 if (bytes_perint <= 20)
671                         itr_setting = low_latency;
672                 break;
673         }
674
675         /* clear work counters since we have the values we need */
676         ring_container->total_bytes = 0;
677         ring_container->total_packets = 0;
678
679         /* write updated itr to ring container */
680         ring_container->itr = itr_setting;
681 }
682
683 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
684 {
685         u32 new_itr = q_vector->itr;
686         u8 current_itr;
687
688         ixgbevf_update_itr(q_vector, &q_vector->tx);
689         ixgbevf_update_itr(q_vector, &q_vector->rx);
690
691         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
692
693         switch (current_itr) {
694         /* counts and packets in update_itr are dependent on these numbers */
695         case lowest_latency:
696                 new_itr = IXGBE_100K_ITR;
697                 break;
698         case low_latency:
699                 new_itr = IXGBE_20K_ITR;
700                 break;
701         case bulk_latency:
702         default:
703                 new_itr = IXGBE_8K_ITR;
704                 break;
705         }
706
707         if (new_itr != q_vector->itr) {
708                 /* do an exponential smoothing */
709                 new_itr = (10 * new_itr * q_vector->itr) /
710                           ((9 * new_itr) + q_vector->itr);
711
712                 /* save the algorithm value here */
713                 q_vector->itr = new_itr;
714
715                 ixgbevf_write_eitr(q_vector);
716         }
717 }
718
719 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
720 {
721         struct ixgbevf_adapter *adapter = data;
722         struct ixgbe_hw *hw = &adapter->hw;
723         u32 msg;
724         bool got_ack = false;
725
726         if (!hw->mbx.ops.check_for_ack(hw))
727                 got_ack = true;
728
729         if (!hw->mbx.ops.check_for_msg(hw)) {
730                 hw->mbx.ops.read(hw, &msg, 1);
731
732                 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
733                         mod_timer(&adapter->watchdog_timer,
734                                   round_jiffies(jiffies + 1));
735
736                 if (msg & IXGBE_VT_MSGTYPE_NACK)
737                         pr_warn("Last Request of type %2.2x to PF Nacked\n",
738                                 msg & 0xFF);
739                 /*
740                  * Restore the PFSTS bit in case someone is polling for a
741                  * return message from the PF
742                  */
743                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
744         }
745
746         /*
747          * checking for the ack clears the PFACK bit.  Place
748          * it back in the v2p_mailbox cache so that anyone
749          * polling for an ack will not miss it
750          */
751         if (got_ack)
752                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
753
754         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
755
756         return IRQ_HANDLED;
757 }
758
759
760 /**
761  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
762  * @irq: unused
763  * @data: pointer to our q_vector struct for this interrupt vector
764  **/
765 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
766 {
767         struct ixgbevf_q_vector *q_vector = data;
768
769         /* EIAM disabled interrupts (on this vector) for us */
770         if (q_vector->rx.ring || q_vector->tx.ring)
771                 napi_schedule(&q_vector->napi);
772
773         return IRQ_HANDLED;
774 }
775
776 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
777                                      int r_idx)
778 {
779         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
780
781         a->rx_ring[r_idx].next = q_vector->rx.ring;
782         q_vector->rx.ring = &a->rx_ring[r_idx];
783         q_vector->rx.count++;
784 }
785
786 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
787                                      int t_idx)
788 {
789         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
790
791         a->tx_ring[t_idx].next = q_vector->tx.ring;
792         q_vector->tx.ring = &a->tx_ring[t_idx];
793         q_vector->tx.count++;
794 }
795
796 /**
797  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
798  * @adapter: board private structure to initialize
799  *
800  * This function maps descriptor rings to the queue-specific vectors
801  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
802  * one vector per ring/queue, but on a constrained vector budget, we
803  * group the rings as "efficiently" as possible.  You would add new
804  * mapping configurations in here.
805  **/
806 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
807 {
808         int q_vectors;
809         int v_start = 0;
810         int rxr_idx = 0, txr_idx = 0;
811         int rxr_remaining = adapter->num_rx_queues;
812         int txr_remaining = adapter->num_tx_queues;
813         int i, j;
814         int rqpv, tqpv;
815         int err = 0;
816
817         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
818
819         /*
820          * The ideal configuration...
821          * We have enough vectors to map one per queue.
822          */
823         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
824                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
825                         map_vector_to_rxq(adapter, v_start, rxr_idx);
826
827                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
828                         map_vector_to_txq(adapter, v_start, txr_idx);
829                 goto out;
830         }
831
832         /*
833          * If we don't have enough vectors for a 1-to-1
834          * mapping, we'll have to group them so there are
835          * multiple queues per vector.
836          */
837         /* Re-adjusting *qpv takes care of the remainder. */
838         for (i = v_start; i < q_vectors; i++) {
839                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
840                 for (j = 0; j < rqpv; j++) {
841                         map_vector_to_rxq(adapter, i, rxr_idx);
842                         rxr_idx++;
843                         rxr_remaining--;
844                 }
845         }
846         for (i = v_start; i < q_vectors; i++) {
847                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
848                 for (j = 0; j < tqpv; j++) {
849                         map_vector_to_txq(adapter, i, txr_idx);
850                         txr_idx++;
851                         txr_remaining--;
852                 }
853         }
854
855 out:
856         return err;
857 }
858
859 /**
860  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
861  * @adapter: board private structure
862  *
863  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
864  * interrupts from the kernel.
865  **/
866 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
867 {
868         struct net_device *netdev = adapter->netdev;
869         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
870         int vector, err;
871         int ri = 0, ti = 0;
872
873         for (vector = 0; vector < q_vectors; vector++) {
874                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
875                 struct msix_entry *entry = &adapter->msix_entries[vector];
876
877                 if (q_vector->tx.ring && q_vector->rx.ring) {
878                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
879                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
880                         ti++;
881                 } else if (q_vector->rx.ring) {
882                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
883                                  "%s-%s-%d", netdev->name, "rx", ri++);
884                 } else if (q_vector->tx.ring) {
885                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
886                                  "%s-%s-%d", netdev->name, "tx", ti++);
887                 } else {
888                         /* skip this unused q_vector */
889                         continue;
890                 }
891                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
892                                   q_vector->name, q_vector);
893                 if (err) {
894                         hw_dbg(&adapter->hw,
895                                "request_irq failed for MSIX interrupt "
896                                "Error: %d\n", err);
897                         goto free_queue_irqs;
898                 }
899         }
900
901         err = request_irq(adapter->msix_entries[vector].vector,
902                           &ixgbevf_msix_mbx, 0, netdev->name, adapter);
903         if (err) {
904                 hw_dbg(&adapter->hw,
905                        "request_irq for msix_mbx failed: %d\n", err);
906                 goto free_queue_irqs;
907         }
908
909         return 0;
910
911 free_queue_irqs:
912         while (vector) {
913                 vector--;
914                 free_irq(adapter->msix_entries[vector].vector,
915                          adapter->q_vector[vector]);
916         }
917         pci_disable_msix(adapter->pdev);
918         kfree(adapter->msix_entries);
919         adapter->msix_entries = NULL;
920         return err;
921 }
922
923 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
924 {
925         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
926
927         for (i = 0; i < q_vectors; i++) {
928                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
929                 q_vector->rx.ring = NULL;
930                 q_vector->tx.ring = NULL;
931                 q_vector->rx.count = 0;
932                 q_vector->tx.count = 0;
933         }
934 }
935
936 /**
937  * ixgbevf_request_irq - initialize interrupts
938  * @adapter: board private structure
939  *
940  * Attempts to configure interrupts using the best available
941  * capabilities of the hardware and kernel.
942  **/
943 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
944 {
945         int err = 0;
946
947         err = ixgbevf_request_msix_irqs(adapter);
948
949         if (err)
950                 hw_dbg(&adapter->hw,
951                        "request_irq failed, Error %d\n", err);
952
953         return err;
954 }
955
956 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
957 {
958         int i, q_vectors;
959
960         q_vectors = adapter->num_msix_vectors;
961         i = q_vectors - 1;
962
963         free_irq(adapter->msix_entries[i].vector, adapter);
964         i--;
965
966         for (; i >= 0; i--) {
967                 /* free only the irqs that were actually requested */
968                 if (!adapter->q_vector[i]->rx.ring &&
969                     !adapter->q_vector[i]->tx.ring)
970                         continue;
971
972                 free_irq(adapter->msix_entries[i].vector,
973                          adapter->q_vector[i]);
974         }
975
976         ixgbevf_reset_q_vectors(adapter);
977 }
978
979 /**
980  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
981  * @adapter: board private structure
982  **/
983 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
984 {
985         struct ixgbe_hw *hw = &adapter->hw;
986         int i;
987
988         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
989         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
990         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
991
992         IXGBE_WRITE_FLUSH(hw);
993
994         for (i = 0; i < adapter->num_msix_vectors; i++)
995                 synchronize_irq(adapter->msix_entries[i].vector);
996 }
997
998 /**
999  * ixgbevf_irq_enable - Enable default interrupt generation settings
1000  * @adapter: board private structure
1001  **/
1002 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1003 {
1004         struct ixgbe_hw *hw = &adapter->hw;
1005
1006         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1007         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1008         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1009 }
1010
1011 /**
1012  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1013  * @adapter: board private structure
1014  *
1015  * Configure the Tx unit of the MAC after a reset.
1016  **/
1017 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1018 {
1019         u64 tdba;
1020         struct ixgbe_hw *hw = &adapter->hw;
1021         u32 i, j, tdlen, txctrl;
1022
1023         /* Setup the HW Tx Head and Tail descriptor pointers */
1024         for (i = 0; i < adapter->num_tx_queues; i++) {
1025                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1026                 j = ring->reg_idx;
1027                 tdba = ring->dma;
1028                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1029                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1030                                 (tdba & DMA_BIT_MASK(32)));
1031                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1032                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1033                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1034                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1035                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1036                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1037                 /* Disable Tx Head Writeback RO bit, since this hoses
1038                  * bookkeeping if things aren't delivered in order.
1039                  */
1040                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1041                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1042                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1043         }
1044 }
1045
1046 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1047
1048 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1049 {
1050         struct ixgbevf_ring *rx_ring;
1051         struct ixgbe_hw *hw = &adapter->hw;
1052         u32 srrctl;
1053
1054         rx_ring = &adapter->rx_ring[index];
1055
1056         srrctl = IXGBE_SRRCTL_DROP_EN;
1057
1058         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1059
1060         if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1061                 srrctl |= IXGBEVF_RXBUFFER_2048 >>
1062                         IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1063         else
1064                 srrctl |= rx_ring->rx_buf_len >>
1065                         IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1066         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1067 }
1068
1069 /**
1070  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1071  * @adapter: board private structure
1072  *
1073  * Configure the Rx unit of the MAC after a reset.
1074  **/
1075 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1076 {
1077         u64 rdba;
1078         struct ixgbe_hw *hw = &adapter->hw;
1079         struct net_device *netdev = adapter->netdev;
1080         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1081         int i, j;
1082         u32 rdlen;
1083         int rx_buf_len;
1084
1085         /* PSRTYPE must be initialized in 82599 */
1086         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1087         if (netdev->mtu <= ETH_DATA_LEN)
1088                 rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1089         else
1090                 rx_buf_len = ALIGN(max_frame, 1024);
1091
1092         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1093         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1094          * the Base and Length of the Rx Descriptor Ring */
1095         for (i = 0; i < adapter->num_rx_queues; i++) {
1096                 rdba = adapter->rx_ring[i].dma;
1097                 j = adapter->rx_ring[i].reg_idx;
1098                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1099                                 (rdba & DMA_BIT_MASK(32)));
1100                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1101                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1102                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1103                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1104                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1105                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1106                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1107
1108                 ixgbevf_configure_srrctl(adapter, j);
1109         }
1110 }
1111
1112 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1113 {
1114         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1115         struct ixgbe_hw *hw = &adapter->hw;
1116
1117         spin_lock(&adapter->mbx_lock);
1118
1119         /* add VID to filter table */
1120         if (hw->mac.ops.set_vfta)
1121                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1122
1123         spin_unlock(&adapter->mbx_lock);
1124
1125         set_bit(vid, adapter->active_vlans);
1126
1127         return 0;
1128 }
1129
1130 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1131 {
1132         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1133         struct ixgbe_hw *hw = &adapter->hw;
1134
1135         spin_lock(&adapter->mbx_lock);
1136
1137         /* remove VID from filter table */
1138         if (hw->mac.ops.set_vfta)
1139                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1140
1141         spin_unlock(&adapter->mbx_lock);
1142
1143         clear_bit(vid, adapter->active_vlans);
1144
1145         return 0;
1146 }
1147
1148 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1149 {
1150         u16 vid;
1151
1152         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1153                 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1154 }
1155
1156 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1157 {
1158         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1159         struct ixgbe_hw *hw = &adapter->hw;
1160         int count = 0;
1161
1162         if ((netdev_uc_count(netdev)) > 10) {
1163                 pr_err("Too many unicast filters - No Space\n");
1164                 return -ENOSPC;
1165         }
1166
1167         if (!netdev_uc_empty(netdev)) {
1168                 struct netdev_hw_addr *ha;
1169                 netdev_for_each_uc_addr(ha, netdev) {
1170                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1171                         udelay(200);
1172                 }
1173         } else {
1174                 /*
1175                  * If the list is empty then send message to PF driver to
1176                  * clear all macvlans on this VF.
1177                  */
1178                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1179         }
1180
1181         return count;
1182 }
1183
1184 /**
1185  * ixgbevf_set_rx_mode - Multicast set
1186  * @netdev: network interface device structure
1187  *
1188  * The set_rx_method entry point is called whenever the multicast address
1189  * list or the network interface flags are updated.  This routine is
1190  * responsible for configuring the hardware for proper multicast mode.
1191  **/
1192 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1193 {
1194         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1195         struct ixgbe_hw *hw = &adapter->hw;
1196
1197         spin_lock(&adapter->mbx_lock);
1198
1199         /* reprogram multicast list */
1200         if (hw->mac.ops.update_mc_addr_list)
1201                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1202
1203         ixgbevf_write_uc_addr_list(netdev);
1204
1205         spin_unlock(&adapter->mbx_lock);
1206 }
1207
1208 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1209 {
1210         int q_idx;
1211         struct ixgbevf_q_vector *q_vector;
1212         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1213
1214         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1215                 q_vector = adapter->q_vector[q_idx];
1216                 napi_enable(&q_vector->napi);
1217         }
1218 }
1219
1220 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1221 {
1222         int q_idx;
1223         struct ixgbevf_q_vector *q_vector;
1224         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1225
1226         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1227                 q_vector = adapter->q_vector[q_idx];
1228                 napi_disable(&q_vector->napi);
1229         }
1230 }
1231
1232 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1233 {
1234         struct net_device *netdev = adapter->netdev;
1235         int i;
1236
1237         ixgbevf_set_rx_mode(netdev);
1238
1239         ixgbevf_restore_vlan(adapter);
1240
1241         ixgbevf_configure_tx(adapter);
1242         ixgbevf_configure_rx(adapter);
1243         for (i = 0; i < adapter->num_rx_queues; i++) {
1244                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1245                 ixgbevf_alloc_rx_buffers(adapter, ring,
1246                                          IXGBE_DESC_UNUSED(ring));
1247         }
1248 }
1249
1250 #define IXGBE_MAX_RX_DESC_POLL 10
1251 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1252                                                 int rxr)
1253 {
1254         struct ixgbe_hw *hw = &adapter->hw;
1255         int j = adapter->rx_ring[rxr].reg_idx;
1256         int k;
1257
1258         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1259                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1260                         break;
1261                 else
1262                         msleep(1);
1263         }
1264         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1265                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1266                        "not set within the polling period\n", rxr);
1267         }
1268
1269         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1270                                 (adapter->rx_ring[rxr].count - 1));
1271 }
1272
1273 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1274 {
1275         /* Only save pre-reset stats if there are some */
1276         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1277                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1278                         adapter->stats.base_vfgprc;
1279                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1280                         adapter->stats.base_vfgptc;
1281                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1282                         adapter->stats.base_vfgorc;
1283                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1284                         adapter->stats.base_vfgotc;
1285                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1286                         adapter->stats.base_vfmprc;
1287         }
1288 }
1289
1290 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1291 {
1292         struct ixgbe_hw *hw = &adapter->hw;
1293
1294         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1295         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1296         adapter->stats.last_vfgorc |=
1297                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1298         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1299         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1300         adapter->stats.last_vfgotc |=
1301                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1302         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1303
1304         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1305         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1306         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1307         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1308         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1309 }
1310
1311 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1312 {
1313         struct net_device *netdev = adapter->netdev;
1314         struct ixgbe_hw *hw = &adapter->hw;
1315         int i, j = 0;
1316         int num_rx_rings = adapter->num_rx_queues;
1317         u32 txdctl, rxdctl;
1318         u32 msg[2];
1319
1320         for (i = 0; i < adapter->num_tx_queues; i++) {
1321                 j = adapter->tx_ring[i].reg_idx;
1322                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1323                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1324                 txdctl |= (8 << 16);
1325                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1326         }
1327
1328         for (i = 0; i < adapter->num_tx_queues; i++) {
1329                 j = adapter->tx_ring[i].reg_idx;
1330                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1331                 txdctl |= IXGBE_TXDCTL_ENABLE;
1332                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1333         }
1334
1335         for (i = 0; i < num_rx_rings; i++) {
1336                 j = adapter->rx_ring[i].reg_idx;
1337                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1338                 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1339                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1340                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1341                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1342                                    IXGBE_RXDCTL_RLPML_EN);
1343                 }
1344                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1345                 ixgbevf_rx_desc_queue_enable(adapter, i);
1346         }
1347
1348         ixgbevf_configure_msix(adapter);
1349
1350         spin_lock(&adapter->mbx_lock);
1351
1352         if (hw->mac.ops.set_rar) {
1353                 if (is_valid_ether_addr(hw->mac.addr))
1354                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1355                 else
1356                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1357         }
1358
1359         msg[0] = IXGBE_VF_SET_LPE;
1360         msg[1] = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1361         hw->mbx.ops.write_posted(hw, msg, 2);
1362
1363         spin_unlock(&adapter->mbx_lock);
1364
1365         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1366         ixgbevf_napi_enable_all(adapter);
1367
1368         /* enable transmits */
1369         netif_tx_start_all_queues(netdev);
1370
1371         ixgbevf_save_reset_stats(adapter);
1372         ixgbevf_init_last_counter_stats(adapter);
1373
1374         mod_timer(&adapter->watchdog_timer, jiffies);
1375 }
1376
1377 void ixgbevf_up(struct ixgbevf_adapter *adapter)
1378 {
1379         struct ixgbe_hw *hw = &adapter->hw;
1380
1381         ixgbevf_configure(adapter);
1382
1383         ixgbevf_up_complete(adapter);
1384
1385         /* clear any pending interrupts, may auto mask */
1386         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1387
1388         ixgbevf_irq_enable(adapter);
1389 }
1390
1391 /**
1392  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1393  * @adapter: board private structure
1394  * @rx_ring: ring to free buffers from
1395  **/
1396 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1397                                   struct ixgbevf_ring *rx_ring)
1398 {
1399         struct pci_dev *pdev = adapter->pdev;
1400         unsigned long size;
1401         unsigned int i;
1402
1403         if (!rx_ring->rx_buffer_info)
1404                 return;
1405
1406         /* Free all the Rx ring sk_buffs */
1407         for (i = 0; i < rx_ring->count; i++) {
1408                 struct ixgbevf_rx_buffer *rx_buffer_info;
1409
1410                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1411                 if (rx_buffer_info->dma) {
1412                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1413                                          rx_ring->rx_buf_len,
1414                                          DMA_FROM_DEVICE);
1415                         rx_buffer_info->dma = 0;
1416                 }
1417                 if (rx_buffer_info->skb) {
1418                         struct sk_buff *skb = rx_buffer_info->skb;
1419                         rx_buffer_info->skb = NULL;
1420                         do {
1421                                 struct sk_buff *this = skb;
1422                                 skb = skb->prev;
1423                                 dev_kfree_skb(this);
1424                         } while (skb);
1425                 }
1426         }
1427
1428         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1429         memset(rx_ring->rx_buffer_info, 0, size);
1430
1431         /* Zero out the descriptor ring */
1432         memset(rx_ring->desc, 0, rx_ring->size);
1433
1434         rx_ring->next_to_clean = 0;
1435         rx_ring->next_to_use = 0;
1436
1437         if (rx_ring->head)
1438                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1439         if (rx_ring->tail)
1440                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1441 }
1442
1443 /**
1444  * ixgbevf_clean_tx_ring - Free Tx Buffers
1445  * @adapter: board private structure
1446  * @tx_ring: ring to be cleaned
1447  **/
1448 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1449                                   struct ixgbevf_ring *tx_ring)
1450 {
1451         struct ixgbevf_tx_buffer *tx_buffer_info;
1452         unsigned long size;
1453         unsigned int i;
1454
1455         if (!tx_ring->tx_buffer_info)
1456                 return;
1457
1458         /* Free all the Tx ring sk_buffs */
1459
1460         for (i = 0; i < tx_ring->count; i++) {
1461                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1462                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1463         }
1464
1465         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1466         memset(tx_ring->tx_buffer_info, 0, size);
1467
1468         memset(tx_ring->desc, 0, tx_ring->size);
1469
1470         tx_ring->next_to_use = 0;
1471         tx_ring->next_to_clean = 0;
1472
1473         if (tx_ring->head)
1474                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1475         if (tx_ring->tail)
1476                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1477 }
1478
1479 /**
1480  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1481  * @adapter: board private structure
1482  **/
1483 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1484 {
1485         int i;
1486
1487         for (i = 0; i < adapter->num_rx_queues; i++)
1488                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1489 }
1490
1491 /**
1492  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1493  * @adapter: board private structure
1494  **/
1495 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1496 {
1497         int i;
1498
1499         for (i = 0; i < adapter->num_tx_queues; i++)
1500                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1501 }
1502
1503 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1504 {
1505         struct net_device *netdev = adapter->netdev;
1506         struct ixgbe_hw *hw = &adapter->hw;
1507         u32 txdctl;
1508         int i, j;
1509
1510         /* signal that we are down to the interrupt handler */
1511         set_bit(__IXGBEVF_DOWN, &adapter->state);
1512         /* disable receives */
1513
1514         netif_tx_disable(netdev);
1515
1516         msleep(10);
1517
1518         netif_tx_stop_all_queues(netdev);
1519
1520         ixgbevf_irq_disable(adapter);
1521
1522         ixgbevf_napi_disable_all(adapter);
1523
1524         del_timer_sync(&adapter->watchdog_timer);
1525         /* can't call flush scheduled work here because it can deadlock
1526          * if linkwatch_event tries to acquire the rtnl_lock which we are
1527          * holding */
1528         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1529                 msleep(1);
1530
1531         /* disable transmits in the hardware now that interrupts are off */
1532         for (i = 0; i < adapter->num_tx_queues; i++) {
1533                 j = adapter->tx_ring[i].reg_idx;
1534                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1535                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1536                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1537         }
1538
1539         netif_carrier_off(netdev);
1540
1541         if (!pci_channel_offline(adapter->pdev))
1542                 ixgbevf_reset(adapter);
1543
1544         ixgbevf_clean_all_tx_rings(adapter);
1545         ixgbevf_clean_all_rx_rings(adapter);
1546 }
1547
1548 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1549 {
1550         struct ixgbe_hw *hw = &adapter->hw;
1551
1552         WARN_ON(in_interrupt());
1553
1554         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1555                 msleep(1);
1556
1557         /*
1558          * Check if PF is up before re-init.  If not then skip until
1559          * later when the PF is up and ready to service requests from
1560          * the VF via mailbox.  If the VF is up and running then the
1561          * watchdog task will continue to schedule reset tasks until
1562          * the PF is up and running.
1563          */
1564         if (!hw->mac.ops.reset_hw(hw)) {
1565                 ixgbevf_down(adapter);
1566                 ixgbevf_up(adapter);
1567         }
1568
1569         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1570 }
1571
1572 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1573 {
1574         struct ixgbe_hw *hw = &adapter->hw;
1575         struct net_device *netdev = adapter->netdev;
1576
1577         spin_lock(&adapter->mbx_lock);
1578
1579         if (hw->mac.ops.reset_hw(hw))
1580                 hw_dbg(hw, "PF still resetting\n");
1581         else
1582                 hw->mac.ops.init_hw(hw);
1583
1584         spin_unlock(&adapter->mbx_lock);
1585
1586         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1587                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1588                        netdev->addr_len);
1589                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1590                        netdev->addr_len);
1591         }
1592 }
1593
1594 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1595                                          int vectors)
1596 {
1597         int err, vector_threshold;
1598
1599         /* We'll want at least 2 (vector_threshold):
1600          * 1) TxQ[0] + RxQ[0] handler
1601          * 2) Other (Link Status Change, etc.)
1602          */
1603         vector_threshold = MIN_MSIX_COUNT;
1604
1605         /* The more we get, the more we will assign to Tx/Rx Cleanup
1606          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1607          * Right now, we simply care about how many we'll get; we'll
1608          * set them up later while requesting irq's.
1609          */
1610         while (vectors >= vector_threshold) {
1611                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1612                                       vectors);
1613                 if (!err) /* Success in acquiring all requested vectors. */
1614                         break;
1615                 else if (err < 0)
1616                         vectors = 0; /* Nasty failure, quit now */
1617                 else /* err == number of vectors we should try again with */
1618                         vectors = err;
1619         }
1620
1621         if (vectors < vector_threshold) {
1622                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1623                  * This just means we'll go with either a single MSI
1624                  * vector or fall back to legacy interrupts.
1625                  */
1626                 hw_dbg(&adapter->hw,
1627                        "Unable to allocate MSI-X interrupts\n");
1628                 kfree(adapter->msix_entries);
1629                 adapter->msix_entries = NULL;
1630         } else {
1631                 /*
1632                  * Adjust for only the vectors we'll use, which is minimum
1633                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1634                  * vectors we were allocated.
1635                  */
1636                 adapter->num_msix_vectors = vectors;
1637         }
1638 }
1639
1640 /**
1641  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
1642  * @adapter: board private structure to initialize
1643  *
1644  * This is the top level queue allocation routine.  The order here is very
1645  * important, starting with the "most" number of features turned on at once,
1646  * and ending with the smallest set of features.  This way large combinations
1647  * can be allocated if they're turned on, and smaller combinations are the
1648  * fallthrough conditions.
1649  *
1650  **/
1651 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1652 {
1653         /* Start with base case */
1654         adapter->num_rx_queues = 1;
1655         adapter->num_tx_queues = 1;
1656 }
1657
1658 /**
1659  * ixgbevf_alloc_queues - Allocate memory for all rings
1660  * @adapter: board private structure to initialize
1661  *
1662  * We allocate one ring per queue at run-time since we don't know the
1663  * number of queues at compile-time.  The polling_netdev array is
1664  * intended for Multiqueue, but should work fine with a single queue.
1665  **/
1666 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1667 {
1668         int i;
1669
1670         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1671                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1672         if (!adapter->tx_ring)
1673                 goto err_tx_ring_allocation;
1674
1675         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1676                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1677         if (!adapter->rx_ring)
1678                 goto err_rx_ring_allocation;
1679
1680         for (i = 0; i < adapter->num_tx_queues; i++) {
1681                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1682                 adapter->tx_ring[i].queue_index = i;
1683                 adapter->tx_ring[i].reg_idx = i;
1684                 adapter->tx_ring[i].dev = &adapter->pdev->dev;
1685                 adapter->tx_ring[i].netdev = adapter->netdev;
1686         }
1687
1688         for (i = 0; i < adapter->num_rx_queues; i++) {
1689                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1690                 adapter->rx_ring[i].queue_index = i;
1691                 adapter->rx_ring[i].reg_idx = i;
1692                 adapter->rx_ring[i].dev = &adapter->pdev->dev;
1693                 adapter->rx_ring[i].netdev = adapter->netdev;
1694         }
1695
1696         return 0;
1697
1698 err_rx_ring_allocation:
1699         kfree(adapter->tx_ring);
1700 err_tx_ring_allocation:
1701         return -ENOMEM;
1702 }
1703
1704 /**
1705  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1706  * @adapter: board private structure to initialize
1707  *
1708  * Attempt to configure the interrupts using the best available
1709  * capabilities of the hardware and the kernel.
1710  **/
1711 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1712 {
1713         int err = 0;
1714         int vector, v_budget;
1715
1716         /*
1717          * It's easy to be greedy for MSI-X vectors, but it really
1718          * doesn't do us much good if we have a lot more vectors
1719          * than CPU's.  So let's be conservative and only ask for
1720          * (roughly) the same number of vectors as there are CPU's.
1721          * The default is to use pairs of vectors.
1722          */
1723         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
1724         v_budget = min_t(int, v_budget, num_online_cpus());
1725         v_budget += NON_Q_VECTORS;
1726
1727         /* A failure in MSI-X entry allocation isn't fatal, but it does
1728          * mean we disable MSI-X capabilities of the adapter. */
1729         adapter->msix_entries = kcalloc(v_budget,
1730                                         sizeof(struct msix_entry), GFP_KERNEL);
1731         if (!adapter->msix_entries) {
1732                 err = -ENOMEM;
1733                 goto out;
1734         }
1735
1736         for (vector = 0; vector < v_budget; vector++)
1737                 adapter->msix_entries[vector].entry = vector;
1738
1739         ixgbevf_acquire_msix_vectors(adapter, v_budget);
1740
1741 out:
1742         return err;
1743 }
1744
1745 /**
1746  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
1747  * @adapter: board private structure to initialize
1748  *
1749  * We allocate one q_vector per queue interrupt.  If allocation fails we
1750  * return -ENOMEM.
1751  **/
1752 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
1753 {
1754         int q_idx, num_q_vectors;
1755         struct ixgbevf_q_vector *q_vector;
1756
1757         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1758
1759         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1760                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
1761                 if (!q_vector)
1762                         goto err_out;
1763                 q_vector->adapter = adapter;
1764                 q_vector->v_idx = q_idx;
1765                 netif_napi_add(adapter->netdev, &q_vector->napi,
1766                                ixgbevf_poll, 64);
1767                 adapter->q_vector[q_idx] = q_vector;
1768         }
1769
1770         return 0;
1771
1772 err_out:
1773         while (q_idx) {
1774                 q_idx--;
1775                 q_vector = adapter->q_vector[q_idx];
1776                 netif_napi_del(&q_vector->napi);
1777                 kfree(q_vector);
1778                 adapter->q_vector[q_idx] = NULL;
1779         }
1780         return -ENOMEM;
1781 }
1782
1783 /**
1784  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
1785  * @adapter: board private structure to initialize
1786  *
1787  * This function frees the memory allocated to the q_vectors.  In addition if
1788  * NAPI is enabled it will delete any references to the NAPI struct prior
1789  * to freeing the q_vector.
1790  **/
1791 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
1792 {
1793         int q_idx, num_q_vectors;
1794         int napi_vectors;
1795
1796         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1797         napi_vectors = adapter->num_rx_queues;
1798
1799         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1800                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
1801
1802                 adapter->q_vector[q_idx] = NULL;
1803                 if (q_idx < napi_vectors)
1804                         netif_napi_del(&q_vector->napi);
1805                 kfree(q_vector);
1806         }
1807 }
1808
1809 /**
1810  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
1811  * @adapter: board private structure
1812  *
1813  **/
1814 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
1815 {
1816         pci_disable_msix(adapter->pdev);
1817         kfree(adapter->msix_entries);
1818         adapter->msix_entries = NULL;
1819 }
1820
1821 /**
1822  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
1823  * @adapter: board private structure to initialize
1824  *
1825  **/
1826 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
1827 {
1828         int err;
1829
1830         /* Number of supported queues */
1831         ixgbevf_set_num_queues(adapter);
1832
1833         err = ixgbevf_set_interrupt_capability(adapter);
1834         if (err) {
1835                 hw_dbg(&adapter->hw,
1836                        "Unable to setup interrupt capabilities\n");
1837                 goto err_set_interrupt;
1838         }
1839
1840         err = ixgbevf_alloc_q_vectors(adapter);
1841         if (err) {
1842                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
1843                        "vectors\n");
1844                 goto err_alloc_q_vectors;
1845         }
1846
1847         err = ixgbevf_alloc_queues(adapter);
1848         if (err) {
1849                 pr_err("Unable to allocate memory for queues\n");
1850                 goto err_alloc_queues;
1851         }
1852
1853         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
1854                "Tx Queue count = %u\n",
1855                (adapter->num_rx_queues > 1) ? "Enabled" :
1856                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
1857
1858         set_bit(__IXGBEVF_DOWN, &adapter->state);
1859
1860         return 0;
1861 err_alloc_queues:
1862         ixgbevf_free_q_vectors(adapter);
1863 err_alloc_q_vectors:
1864         ixgbevf_reset_interrupt_capability(adapter);
1865 err_set_interrupt:
1866         return err;
1867 }
1868
1869 /**
1870  * ixgbevf_sw_init - Initialize general software structures
1871  * (struct ixgbevf_adapter)
1872  * @adapter: board private structure to initialize
1873  *
1874  * ixgbevf_sw_init initializes the Adapter private data structure.
1875  * Fields are initialized based on PCI device information and
1876  * OS network device settings (MTU size).
1877  **/
1878 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
1879 {
1880         struct ixgbe_hw *hw = &adapter->hw;
1881         struct pci_dev *pdev = adapter->pdev;
1882         int err;
1883
1884         /* PCI config space info */
1885
1886         hw->vendor_id = pdev->vendor;
1887         hw->device_id = pdev->device;
1888         hw->revision_id = pdev->revision;
1889         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1890         hw->subsystem_device_id = pdev->subsystem_device;
1891
1892         hw->mbx.ops.init_params(hw);
1893         hw->mac.max_tx_queues = MAX_TX_QUEUES;
1894         hw->mac.max_rx_queues = MAX_RX_QUEUES;
1895         err = hw->mac.ops.reset_hw(hw);
1896         if (err) {
1897                 dev_info(&pdev->dev,
1898                          "PF still in reset state, assigning new address\n");
1899                 eth_hw_addr_random(adapter->netdev);
1900                 memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
1901                         adapter->netdev->addr_len);
1902         } else {
1903                 err = hw->mac.ops.init_hw(hw);
1904                 if (err) {
1905                         pr_err("init_shared_code failed: %d\n", err);
1906                         goto out;
1907                 }
1908                 memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
1909                         adapter->netdev->addr_len);
1910         }
1911
1912         /* lock to protect mailbox accesses */
1913         spin_lock_init(&adapter->mbx_lock);
1914
1915         /* Enable dynamic interrupt throttling rates */
1916         adapter->rx_itr_setting = 1;
1917         adapter->tx_itr_setting = 1;
1918
1919         /* set default ring sizes */
1920         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
1921         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
1922
1923         set_bit(__IXGBEVF_DOWN, &adapter->state);
1924         return 0;
1925
1926 out:
1927         return err;
1928 }
1929
1930 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
1931         {                                                       \
1932                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
1933                 if (current_counter < last_counter)             \
1934                         counter += 0x100000000LL;               \
1935                 last_counter = current_counter;                 \
1936                 counter &= 0xFFFFFFFF00000000LL;                \
1937                 counter |= current_counter;                     \
1938         }
1939
1940 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
1941         {                                                                \
1942                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
1943                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
1944                 u64 current_counter = (current_counter_msb << 32) |      \
1945                         current_counter_lsb;                             \
1946                 if (current_counter < last_counter)                      \
1947                         counter += 0x1000000000LL;                       \
1948                 last_counter = current_counter;                          \
1949                 counter &= 0xFFFFFFF000000000LL;                         \
1950                 counter |= current_counter;                              \
1951         }
1952 /**
1953  * ixgbevf_update_stats - Update the board statistics counters.
1954  * @adapter: board private structure
1955  **/
1956 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
1957 {
1958         struct ixgbe_hw *hw = &adapter->hw;
1959
1960         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
1961                                 adapter->stats.vfgprc);
1962         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
1963                                 adapter->stats.vfgptc);
1964         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
1965                                 adapter->stats.last_vfgorc,
1966                                 adapter->stats.vfgorc);
1967         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
1968                                 adapter->stats.last_vfgotc,
1969                                 adapter->stats.vfgotc);
1970         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
1971                                 adapter->stats.vfmprc);
1972 }
1973
1974 /**
1975  * ixgbevf_watchdog - Timer Call-back
1976  * @data: pointer to adapter cast into an unsigned long
1977  **/
1978 static void ixgbevf_watchdog(unsigned long data)
1979 {
1980         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
1981         struct ixgbe_hw *hw = &adapter->hw;
1982         u32 eics = 0;
1983         int i;
1984
1985         /*
1986          * Do the watchdog outside of interrupt context due to the lovely
1987          * delays that some of the newer hardware requires
1988          */
1989
1990         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1991                 goto watchdog_short_circuit;
1992
1993         /* get one bit for every active tx/rx interrupt vector */
1994         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
1995                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
1996                 if (qv->rx.ring || qv->tx.ring)
1997                         eics |= 1 << i;
1998         }
1999
2000         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2001
2002 watchdog_short_circuit:
2003         schedule_work(&adapter->watchdog_task);
2004 }
2005
2006 /**
2007  * ixgbevf_tx_timeout - Respond to a Tx Hang
2008  * @netdev: network interface device structure
2009  **/
2010 static void ixgbevf_tx_timeout(struct net_device *netdev)
2011 {
2012         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2013
2014         /* Do the reset outside of interrupt context */
2015         schedule_work(&adapter->reset_task);
2016 }
2017
2018 static void ixgbevf_reset_task(struct work_struct *work)
2019 {
2020         struct ixgbevf_adapter *adapter;
2021         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2022
2023         /* If we're already down or resetting, just bail */
2024         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2025             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2026                 return;
2027
2028         adapter->tx_timeout_count++;
2029
2030         ixgbevf_reinit_locked(adapter);
2031 }
2032
2033 /**
2034  * ixgbevf_watchdog_task - worker thread to bring link up
2035  * @work: pointer to work_struct containing our data
2036  **/
2037 static void ixgbevf_watchdog_task(struct work_struct *work)
2038 {
2039         struct ixgbevf_adapter *adapter = container_of(work,
2040                                                        struct ixgbevf_adapter,
2041                                                        watchdog_task);
2042         struct net_device *netdev = adapter->netdev;
2043         struct ixgbe_hw *hw = &adapter->hw;
2044         u32 link_speed = adapter->link_speed;
2045         bool link_up = adapter->link_up;
2046
2047         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2048
2049         /*
2050          * Always check the link on the watchdog because we have
2051          * no LSC interrupt
2052          */
2053         if (hw->mac.ops.check_link) {
2054                 s32 need_reset;
2055
2056                 spin_lock(&adapter->mbx_lock);
2057
2058                 need_reset = hw->mac.ops.check_link(hw, &link_speed,
2059                                                     &link_up, false);
2060
2061                 spin_unlock(&adapter->mbx_lock);
2062
2063                 if (need_reset) {
2064                         adapter->link_up = link_up;
2065                         adapter->link_speed = link_speed;
2066                         netif_carrier_off(netdev);
2067                         netif_tx_stop_all_queues(netdev);
2068                         schedule_work(&adapter->reset_task);
2069                         goto pf_has_reset;
2070                 }
2071         } else {
2072                 /* always assume link is up, if no check link
2073                  * function */
2074                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2075                 link_up = true;
2076         }
2077         adapter->link_up = link_up;
2078         adapter->link_speed = link_speed;
2079
2080         if (link_up) {
2081                 if (!netif_carrier_ok(netdev)) {
2082                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2083                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2084                                10 : 1);
2085                         netif_carrier_on(netdev);
2086                         netif_tx_wake_all_queues(netdev);
2087                 }
2088         } else {
2089                 adapter->link_up = false;
2090                 adapter->link_speed = 0;
2091                 if (netif_carrier_ok(netdev)) {
2092                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2093                         netif_carrier_off(netdev);
2094                         netif_tx_stop_all_queues(netdev);
2095                 }
2096         }
2097
2098         ixgbevf_update_stats(adapter);
2099
2100 pf_has_reset:
2101         /* Reset the timer */
2102         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2103                 mod_timer(&adapter->watchdog_timer,
2104                           round_jiffies(jiffies + (2 * HZ)));
2105
2106         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2107 }
2108
2109 /**
2110  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2111  * @adapter: board private structure
2112  * @tx_ring: Tx descriptor ring for a specific queue
2113  *
2114  * Free all transmit software resources
2115  **/
2116 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2117                                struct ixgbevf_ring *tx_ring)
2118 {
2119         struct pci_dev *pdev = adapter->pdev;
2120
2121         ixgbevf_clean_tx_ring(adapter, tx_ring);
2122
2123         vfree(tx_ring->tx_buffer_info);
2124         tx_ring->tx_buffer_info = NULL;
2125
2126         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2127                           tx_ring->dma);
2128
2129         tx_ring->desc = NULL;
2130 }
2131
2132 /**
2133  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2134  * @adapter: board private structure
2135  *
2136  * Free all transmit software resources
2137  **/
2138 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2139 {
2140         int i;
2141
2142         for (i = 0; i < adapter->num_tx_queues; i++)
2143                 if (adapter->tx_ring[i].desc)
2144                         ixgbevf_free_tx_resources(adapter,
2145                                                   &adapter->tx_ring[i]);
2146
2147 }
2148
2149 /**
2150  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2151  * @adapter: board private structure
2152  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2153  *
2154  * Return 0 on success, negative on failure
2155  **/
2156 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2157                                struct ixgbevf_ring *tx_ring)
2158 {
2159         struct pci_dev *pdev = adapter->pdev;
2160         int size;
2161
2162         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2163         tx_ring->tx_buffer_info = vzalloc(size);
2164         if (!tx_ring->tx_buffer_info)
2165                 goto err;
2166
2167         /* round up to nearest 4K */
2168         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2169         tx_ring->size = ALIGN(tx_ring->size, 4096);
2170
2171         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2172                                            &tx_ring->dma, GFP_KERNEL);
2173         if (!tx_ring->desc)
2174                 goto err;
2175
2176         tx_ring->next_to_use = 0;
2177         tx_ring->next_to_clean = 0;
2178         return 0;
2179
2180 err:
2181         vfree(tx_ring->tx_buffer_info);
2182         tx_ring->tx_buffer_info = NULL;
2183         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2184                "descriptor ring\n");
2185         return -ENOMEM;
2186 }
2187
2188 /**
2189  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2190  * @adapter: board private structure
2191  *
2192  * If this function returns with an error, then it's possible one or
2193  * more of the rings is populated (while the rest are not).  It is the
2194  * callers duty to clean those orphaned rings.
2195  *
2196  * Return 0 on success, negative on failure
2197  **/
2198 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2199 {
2200         int i, err = 0;
2201
2202         for (i = 0; i < adapter->num_tx_queues; i++) {
2203                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2204                 if (!err)
2205                         continue;
2206                 hw_dbg(&adapter->hw,
2207                        "Allocation for Tx Queue %u failed\n", i);
2208                 break;
2209         }
2210
2211         return err;
2212 }
2213
2214 /**
2215  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2216  * @adapter: board private structure
2217  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2218  *
2219  * Returns 0 on success, negative on failure
2220  **/
2221 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2222                                struct ixgbevf_ring *rx_ring)
2223 {
2224         struct pci_dev *pdev = adapter->pdev;
2225         int size;
2226
2227         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2228         rx_ring->rx_buffer_info = vzalloc(size);
2229         if (!rx_ring->rx_buffer_info)
2230                 goto alloc_failed;
2231
2232         /* Round up to nearest 4K */
2233         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2234         rx_ring->size = ALIGN(rx_ring->size, 4096);
2235
2236         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2237                                            &rx_ring->dma, GFP_KERNEL);
2238
2239         if (!rx_ring->desc) {
2240                 hw_dbg(&adapter->hw,
2241                        "Unable to allocate memory for "
2242                        "the receive descriptor ring\n");
2243                 vfree(rx_ring->rx_buffer_info);
2244                 rx_ring->rx_buffer_info = NULL;
2245                 goto alloc_failed;
2246         }
2247
2248         rx_ring->next_to_clean = 0;
2249         rx_ring->next_to_use = 0;
2250
2251         return 0;
2252 alloc_failed:
2253         return -ENOMEM;
2254 }
2255
2256 /**
2257  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2258  * @adapter: board private structure
2259  *
2260  * If this function returns with an error, then it's possible one or
2261  * more of the rings is populated (while the rest are not).  It is the
2262  * callers duty to clean those orphaned rings.
2263  *
2264  * Return 0 on success, negative on failure
2265  **/
2266 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2267 {
2268         int i, err = 0;
2269
2270         for (i = 0; i < adapter->num_rx_queues; i++) {
2271                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2272                 if (!err)
2273                         continue;
2274                 hw_dbg(&adapter->hw,
2275                        "Allocation for Rx Queue %u failed\n", i);
2276                 break;
2277         }
2278         return err;
2279 }
2280
2281 /**
2282  * ixgbevf_free_rx_resources - Free Rx Resources
2283  * @adapter: board private structure
2284  * @rx_ring: ring to clean the resources from
2285  *
2286  * Free all receive software resources
2287  **/
2288 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2289                                struct ixgbevf_ring *rx_ring)
2290 {
2291         struct pci_dev *pdev = adapter->pdev;
2292
2293         ixgbevf_clean_rx_ring(adapter, rx_ring);
2294
2295         vfree(rx_ring->rx_buffer_info);
2296         rx_ring->rx_buffer_info = NULL;
2297
2298         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2299                           rx_ring->dma);
2300
2301         rx_ring->desc = NULL;
2302 }
2303
2304 /**
2305  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2306  * @adapter: board private structure
2307  *
2308  * Free all receive software resources
2309  **/
2310 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2311 {
2312         int i;
2313
2314         for (i = 0; i < adapter->num_rx_queues; i++)
2315                 if (adapter->rx_ring[i].desc)
2316                         ixgbevf_free_rx_resources(adapter,
2317                                                   &adapter->rx_ring[i]);
2318 }
2319
2320 /**
2321  * ixgbevf_open - Called when a network interface is made active
2322  * @netdev: network interface device structure
2323  *
2324  * Returns 0 on success, negative value on failure
2325  *
2326  * The open entry point is called when a network interface is made
2327  * active by the system (IFF_UP).  At this point all resources needed
2328  * for transmit and receive operations are allocated, the interrupt
2329  * handler is registered with the OS, the watchdog timer is started,
2330  * and the stack is notified that the interface is ready.
2331  **/
2332 static int ixgbevf_open(struct net_device *netdev)
2333 {
2334         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2335         struct ixgbe_hw *hw = &adapter->hw;
2336         int err;
2337
2338         /* disallow open during test */
2339         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2340                 return -EBUSY;
2341
2342         if (hw->adapter_stopped) {
2343                 ixgbevf_reset(adapter);
2344                 /* if adapter is still stopped then PF isn't up and
2345                  * the vf can't start. */
2346                 if (hw->adapter_stopped) {
2347                         err = IXGBE_ERR_MBX;
2348                         pr_err("Unable to start - perhaps the PF Driver isn't "
2349                                "up yet\n");
2350                         goto err_setup_reset;
2351                 }
2352         }
2353
2354         /* allocate transmit descriptors */
2355         err = ixgbevf_setup_all_tx_resources(adapter);
2356         if (err)
2357                 goto err_setup_tx;
2358
2359         /* allocate receive descriptors */
2360         err = ixgbevf_setup_all_rx_resources(adapter);
2361         if (err)
2362                 goto err_setup_rx;
2363
2364         ixgbevf_configure(adapter);
2365
2366         /*
2367          * Map the Tx/Rx rings to the vectors we were allotted.
2368          * if request_irq will be called in this function map_rings
2369          * must be called *before* up_complete
2370          */
2371         ixgbevf_map_rings_to_vectors(adapter);
2372
2373         ixgbevf_up_complete(adapter);
2374
2375         /* clear any pending interrupts, may auto mask */
2376         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2377         err = ixgbevf_request_irq(adapter);
2378         if (err)
2379                 goto err_req_irq;
2380
2381         ixgbevf_irq_enable(adapter);
2382
2383         return 0;
2384
2385 err_req_irq:
2386         ixgbevf_down(adapter);
2387         ixgbevf_free_irq(adapter);
2388 err_setup_rx:
2389         ixgbevf_free_all_rx_resources(adapter);
2390 err_setup_tx:
2391         ixgbevf_free_all_tx_resources(adapter);
2392         ixgbevf_reset(adapter);
2393
2394 err_setup_reset:
2395
2396         return err;
2397 }
2398
2399 /**
2400  * ixgbevf_close - Disables a network interface
2401  * @netdev: network interface device structure
2402  *
2403  * Returns 0, this is not allowed to fail
2404  *
2405  * The close entry point is called when an interface is de-activated
2406  * by the OS.  The hardware is still under the drivers control, but
2407  * needs to be disabled.  A global MAC reset is issued to stop the
2408  * hardware, and all transmit and receive resources are freed.
2409  **/
2410 static int ixgbevf_close(struct net_device *netdev)
2411 {
2412         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2413
2414         ixgbevf_down(adapter);
2415         ixgbevf_free_irq(adapter);
2416
2417         ixgbevf_free_all_tx_resources(adapter);
2418         ixgbevf_free_all_rx_resources(adapter);
2419
2420         return 0;
2421 }
2422
2423 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
2424                                 u32 vlan_macip_lens, u32 type_tucmd,
2425                                 u32 mss_l4len_idx)
2426 {
2427         struct ixgbe_adv_tx_context_desc *context_desc;
2428         u16 i = tx_ring->next_to_use;
2429
2430         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
2431
2432         i++;
2433         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2434
2435         /* set bits to identify this as an advanced context descriptor */
2436         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
2437
2438         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
2439         context_desc->seqnum_seed       = 0;
2440         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
2441         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
2442 }
2443
2444 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
2445                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2446 {
2447         u32 vlan_macip_lens, type_tucmd;
2448         u32 mss_l4len_idx, l4len;
2449
2450         if (!skb_is_gso(skb))
2451                 return 0;
2452
2453         if (skb_header_cloned(skb)) {
2454                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2455                 if (err)
2456                         return err;
2457         }
2458
2459         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2460         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
2461
2462         if (skb->protocol == htons(ETH_P_IP)) {
2463                 struct iphdr *iph = ip_hdr(skb);
2464                 iph->tot_len = 0;
2465                 iph->check = 0;
2466                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2467                                                          iph->daddr, 0,
2468                                                          IPPROTO_TCP,
2469                                                          0);
2470                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2471         } else if (skb_is_gso_v6(skb)) {
2472                 ipv6_hdr(skb)->payload_len = 0;
2473                 tcp_hdr(skb)->check =
2474                     ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2475                                      &ipv6_hdr(skb)->daddr,
2476                                      0, IPPROTO_TCP, 0);
2477         }
2478
2479         /* compute header lengths */
2480         l4len = tcp_hdrlen(skb);
2481         *hdr_len += l4len;
2482         *hdr_len = skb_transport_offset(skb) + l4len;
2483
2484         /* mss_l4len_id: use 1 as index for TSO */
2485         mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
2486         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
2487         mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
2488
2489         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
2490         vlan_macip_lens = skb_network_header_len(skb);
2491         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2492         vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2493
2494         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2495                             type_tucmd, mss_l4len_idx);
2496
2497         return 1;
2498 }
2499
2500 static bool ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
2501                             struct sk_buff *skb, u32 tx_flags)
2502 {
2503
2504
2505
2506         u32 vlan_macip_lens = 0;
2507         u32 mss_l4len_idx = 0;
2508         u32 type_tucmd = 0;
2509
2510         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2511                 u8 l4_hdr = 0;
2512                 switch (skb->protocol) {
2513                 case __constant_htons(ETH_P_IP):
2514                         vlan_macip_lens |= skb_network_header_len(skb);
2515                         type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
2516                         l4_hdr = ip_hdr(skb)->protocol;
2517                         break;
2518                 case __constant_htons(ETH_P_IPV6):
2519                         vlan_macip_lens |= skb_network_header_len(skb);
2520                         l4_hdr = ipv6_hdr(skb)->nexthdr;
2521                         break;
2522                 default:
2523                         if (unlikely(net_ratelimit())) {
2524                                 dev_warn(tx_ring->dev,
2525                                  "partial checksum but proto=%x!\n",
2526                                  skb->protocol);
2527                         }
2528                         break;
2529                 }
2530
2531                 switch (l4_hdr) {
2532                 case IPPROTO_TCP:
2533                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2534                         mss_l4len_idx = tcp_hdrlen(skb) <<
2535                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2536                         break;
2537                 case IPPROTO_SCTP:
2538                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
2539                         mss_l4len_idx = sizeof(struct sctphdr) <<
2540                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2541                         break;
2542                 case IPPROTO_UDP:
2543                         mss_l4len_idx = sizeof(struct udphdr) <<
2544                                         IXGBE_ADVTXD_L4LEN_SHIFT;
2545                         break;
2546                 default:
2547                         if (unlikely(net_ratelimit())) {
2548                                 dev_warn(tx_ring->dev,
2549                                  "partial checksum but l4 proto=%x!\n",
2550                                  l4_hdr);
2551                         }
2552                         break;
2553                 }
2554         }
2555
2556         /* vlan_macip_lens: MACLEN, VLAN tag */
2557         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
2558         vlan_macip_lens |= tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
2559
2560         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
2561                             type_tucmd, mss_l4len_idx);
2562
2563         return (skb->ip_summed == CHECKSUM_PARTIAL);
2564 }
2565
2566 static int ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
2567                           struct sk_buff *skb, u32 tx_flags,
2568                           unsigned int first)
2569 {
2570         struct ixgbevf_tx_buffer *tx_buffer_info;
2571         unsigned int len;
2572         unsigned int total = skb->len;
2573         unsigned int offset = 0, size;
2574         int count = 0;
2575         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2576         unsigned int f;
2577         int i;
2578
2579         i = tx_ring->next_to_use;
2580
2581         len = min(skb_headlen(skb), total);
2582         while (len) {
2583                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2584                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2585
2586                 tx_buffer_info->length = size;
2587                 tx_buffer_info->mapped_as_page = false;
2588                 tx_buffer_info->dma = dma_map_single(tx_ring->dev,
2589                                                      skb->data + offset,
2590                                                      size, DMA_TO_DEVICE);
2591                 if (dma_mapping_error(tx_ring->dev, tx_buffer_info->dma))
2592                         goto dma_error;
2593                 tx_buffer_info->next_to_watch = i;
2594
2595                 len -= size;
2596                 total -= size;
2597                 offset += size;
2598                 count++;
2599                 i++;
2600                 if (i == tx_ring->count)
2601                         i = 0;
2602         }
2603
2604         for (f = 0; f < nr_frags; f++) {
2605                 const struct skb_frag_struct *frag;
2606
2607                 frag = &skb_shinfo(skb)->frags[f];
2608                 len = min((unsigned int)skb_frag_size(frag), total);
2609                 offset = 0;
2610
2611                 while (len) {
2612                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2613                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2614
2615                         tx_buffer_info->length = size;
2616                         tx_buffer_info->dma =
2617                                 skb_frag_dma_map(tx_ring->dev, frag,
2618                                                  offset, size, DMA_TO_DEVICE);
2619                         tx_buffer_info->mapped_as_page = true;
2620                         if (dma_mapping_error(tx_ring->dev,
2621                                               tx_buffer_info->dma))
2622                                 goto dma_error;
2623                         tx_buffer_info->next_to_watch = i;
2624
2625                         len -= size;
2626                         total -= size;
2627                         offset += size;
2628                         count++;
2629                         i++;
2630                         if (i == tx_ring->count)
2631                                 i = 0;
2632                 }
2633                 if (total == 0)
2634                         break;
2635         }
2636
2637         if (i == 0)
2638                 i = tx_ring->count - 1;
2639         else
2640                 i = i - 1;
2641         tx_ring->tx_buffer_info[i].skb = skb;
2642         tx_ring->tx_buffer_info[first].next_to_watch = i;
2643         tx_ring->tx_buffer_info[first].time_stamp = jiffies;
2644
2645         return count;
2646
2647 dma_error:
2648         dev_err(tx_ring->dev, "TX DMA map failed\n");
2649
2650         /* clear timestamp and dma mappings for failed tx_buffer_info map */
2651         tx_buffer_info->dma = 0;
2652         tx_buffer_info->next_to_watch = 0;
2653         count--;
2654
2655         /* clear timestamp and dma mappings for remaining portion of packet */
2656         while (count >= 0) {
2657                 count--;
2658                 i--;
2659                 if (i < 0)
2660                         i += tx_ring->count;
2661                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2662                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2663         }
2664
2665         return count;
2666 }
2667
2668 static void ixgbevf_tx_queue(struct ixgbevf_ring *tx_ring, int tx_flags,
2669                              int count, u32 paylen, u8 hdr_len)
2670 {
2671         union ixgbe_adv_tx_desc *tx_desc = NULL;
2672         struct ixgbevf_tx_buffer *tx_buffer_info;
2673         u32 olinfo_status = 0, cmd_type_len = 0;
2674         unsigned int i;
2675
2676         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2677
2678         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2679
2680         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2681
2682         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2683                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2684
2685         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
2686                 olinfo_status |= IXGBE_ADVTXD_POPTS_TXSM;
2687
2688         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2689                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2690
2691                 /* use index 1 context for tso */
2692                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2693                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
2694                         olinfo_status |= IXGBE_ADVTXD_POPTS_IXSM;
2695
2696         }
2697
2698         /*
2699          * Check Context must be set if Tx switch is enabled, which it
2700          * always is for case where virtual functions are running
2701          */
2702         olinfo_status |= IXGBE_ADVTXD_CC;
2703
2704         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
2705
2706         i = tx_ring->next_to_use;
2707         while (count--) {
2708                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2709                 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2710                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
2711                 tx_desc->read.cmd_type_len =
2712                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
2713                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2714                 i++;
2715                 if (i == tx_ring->count)
2716                         i = 0;
2717         }
2718
2719         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
2720
2721         tx_ring->next_to_use = i;
2722 }
2723
2724 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
2725 {
2726         struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
2727
2728         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2729         /* Herbert's original patch had:
2730          *  smp_mb__after_netif_stop_queue();
2731          * but since that doesn't exist yet, just open code it. */
2732         smp_mb();
2733
2734         /* We need to check again in a case another CPU has just
2735          * made room available. */
2736         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
2737                 return -EBUSY;
2738
2739         /* A reprieve! - use start_queue because it doesn't call schedule */
2740         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2741         ++adapter->restart_queue;
2742         return 0;
2743 }
2744
2745 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
2746 {
2747         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
2748                 return 0;
2749         return __ixgbevf_maybe_stop_tx(tx_ring, size);
2750 }
2751
2752 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2753 {
2754         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2755         struct ixgbevf_ring *tx_ring;
2756         unsigned int first;
2757         unsigned int tx_flags = 0;
2758         u8 hdr_len = 0;
2759         int r_idx = 0, tso;
2760         u16 count = TXD_USE_COUNT(skb_headlen(skb));
2761 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
2762         unsigned short f;
2763 #endif
2764
2765         tx_ring = &adapter->tx_ring[r_idx];
2766
2767         /*
2768          * need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
2769          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
2770          *       + 2 desc gap to keep tail from touching head,
2771          *       + 1 desc for context descriptor,
2772          * otherwise try next time
2773          */
2774 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
2775         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2776                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2777 #else
2778         count += skb_shinfo(skb)->nr_frags;
2779 #endif
2780         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
2781                 adapter->tx_busy++;
2782                 return NETDEV_TX_BUSY;
2783         }
2784
2785         if (vlan_tx_tag_present(skb)) {
2786                 tx_flags |= vlan_tx_tag_get(skb);
2787                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
2788                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
2789         }
2790
2791         first = tx_ring->next_to_use;
2792
2793         if (skb->protocol == htons(ETH_P_IP))
2794                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
2795         tso = ixgbevf_tso(tx_ring, skb, tx_flags, &hdr_len);
2796         if (tso < 0) {
2797                 dev_kfree_skb_any(skb);
2798                 return NETDEV_TX_OK;
2799         }
2800
2801         if (tso)
2802                 tx_flags |= IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_CSUM;
2803         else if (ixgbevf_tx_csum(tx_ring, skb, tx_flags))
2804                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
2805
2806         ixgbevf_tx_queue(tx_ring, tx_flags,
2807                          ixgbevf_tx_map(tx_ring, skb, tx_flags, first),
2808                          skb->len, hdr_len);
2809         /*
2810          * Force memory writes to complete before letting h/w
2811          * know there are new descriptors to fetch.  (Only
2812          * applicable for weak-ordered memory model archs,
2813          * such as IA-64).
2814          */
2815         wmb();
2816
2817         writel(tx_ring->next_to_use, adapter->hw.hw_addr + tx_ring->tail);
2818
2819         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2820
2821         return NETDEV_TX_OK;
2822 }
2823
2824 /**
2825  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
2826  * @netdev: network interface device structure
2827  * @p: pointer to an address structure
2828  *
2829  * Returns 0 on success, negative on failure
2830  **/
2831 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
2832 {
2833         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2834         struct ixgbe_hw *hw = &adapter->hw;
2835         struct sockaddr *addr = p;
2836
2837         if (!is_valid_ether_addr(addr->sa_data))
2838                 return -EADDRNOTAVAIL;
2839
2840         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2841         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2842
2843         spin_lock(&adapter->mbx_lock);
2844
2845         if (hw->mac.ops.set_rar)
2846                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2847
2848         spin_unlock(&adapter->mbx_lock);
2849
2850         return 0;
2851 }
2852
2853 /**
2854  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
2855  * @netdev: network interface device structure
2856  * @new_mtu: new value for maximum frame size
2857  *
2858  * Returns 0 on success, negative on failure
2859  **/
2860 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
2861 {
2862         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2863         struct ixgbe_hw *hw = &adapter->hw;
2864         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2865         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
2866         u32 msg[2];
2867
2868         if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
2869                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
2870
2871         /* MTU < 68 is an error and causes problems on some kernels */
2872         if ((new_mtu < 68) || (max_frame > max_possible_frame))
2873                 return -EINVAL;
2874
2875         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
2876                netdev->mtu, new_mtu);
2877         /* must set new MTU before calling down or up */
2878         netdev->mtu = new_mtu;
2879
2880         if (!netif_running(netdev)) {
2881                 msg[0] = IXGBE_VF_SET_LPE;
2882                 msg[1] = max_frame;
2883                 hw->mbx.ops.write_posted(hw, msg, 2);
2884         }
2885
2886         if (netif_running(netdev))
2887                 ixgbevf_reinit_locked(adapter);
2888
2889         return 0;
2890 }
2891
2892 static void ixgbevf_shutdown(struct pci_dev *pdev)
2893 {
2894         struct net_device *netdev = pci_get_drvdata(pdev);
2895         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2896
2897         netif_device_detach(netdev);
2898
2899         if (netif_running(netdev)) {
2900                 ixgbevf_down(adapter);
2901                 ixgbevf_free_irq(adapter);
2902                 ixgbevf_free_all_tx_resources(adapter);
2903                 ixgbevf_free_all_rx_resources(adapter);
2904         }
2905
2906         pci_save_state(pdev);
2907
2908         pci_disable_device(pdev);
2909 }
2910
2911 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
2912                                                 struct rtnl_link_stats64 *stats)
2913 {
2914         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2915         unsigned int start;
2916         u64 bytes, packets;
2917         const struct ixgbevf_ring *ring;
2918         int i;
2919
2920         ixgbevf_update_stats(adapter);
2921
2922         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
2923
2924         for (i = 0; i < adapter->num_rx_queues; i++) {
2925                 ring = &adapter->rx_ring[i];
2926                 do {
2927                         start = u64_stats_fetch_begin_bh(&ring->syncp);
2928                         bytes = ring->total_bytes;
2929                         packets = ring->total_packets;
2930                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
2931                 stats->rx_bytes += bytes;
2932                 stats->rx_packets += packets;
2933         }
2934
2935         for (i = 0; i < adapter->num_tx_queues; i++) {
2936                 ring = &adapter->tx_ring[i];
2937                 do {
2938                         start = u64_stats_fetch_begin_bh(&ring->syncp);
2939                         bytes = ring->total_bytes;
2940                         packets = ring->total_packets;
2941                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
2942                 stats->tx_bytes += bytes;
2943                 stats->tx_packets += packets;
2944         }
2945
2946         return stats;
2947 }
2948
2949 static const struct net_device_ops ixgbe_netdev_ops = {
2950         .ndo_open               = ixgbevf_open,
2951         .ndo_stop               = ixgbevf_close,
2952         .ndo_start_xmit         = ixgbevf_xmit_frame,
2953         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
2954         .ndo_get_stats64        = ixgbevf_get_stats,
2955         .ndo_validate_addr      = eth_validate_addr,
2956         .ndo_set_mac_address    = ixgbevf_set_mac,
2957         .ndo_change_mtu         = ixgbevf_change_mtu,
2958         .ndo_tx_timeout         = ixgbevf_tx_timeout,
2959         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
2960         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
2961 };
2962
2963 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
2964 {
2965         dev->netdev_ops = &ixgbe_netdev_ops;
2966         ixgbevf_set_ethtool_ops(dev);
2967         dev->watchdog_timeo = 5 * HZ;
2968 }
2969
2970 /**
2971  * ixgbevf_probe - Device Initialization Routine
2972  * @pdev: PCI device information struct
2973  * @ent: entry in ixgbevf_pci_tbl
2974  *
2975  * Returns 0 on success, negative on failure
2976  *
2977  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
2978  * The OS initialization, configuring of the adapter private structure,
2979  * and a hardware reset occur.
2980  **/
2981 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
2982                                    const struct pci_device_id *ent)
2983 {
2984         struct net_device *netdev;
2985         struct ixgbevf_adapter *adapter = NULL;
2986         struct ixgbe_hw *hw = NULL;
2987         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
2988         static int cards_found;
2989         int err, pci_using_dac;
2990
2991         err = pci_enable_device(pdev);
2992         if (err)
2993                 return err;
2994
2995         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
2996             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2997                 pci_using_dac = 1;
2998         } else {
2999                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3000                 if (err) {
3001                         err = dma_set_coherent_mask(&pdev->dev,
3002                                                     DMA_BIT_MASK(32));
3003                         if (err) {
3004                                 dev_err(&pdev->dev, "No usable DMA "
3005                                         "configuration, aborting\n");
3006                                 goto err_dma;
3007                         }
3008                 }
3009                 pci_using_dac = 0;
3010         }
3011
3012         err = pci_request_regions(pdev, ixgbevf_driver_name);
3013         if (err) {
3014                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3015                 goto err_pci_reg;
3016         }
3017
3018         pci_set_master(pdev);
3019
3020         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3021                                    MAX_TX_QUEUES);
3022         if (!netdev) {
3023                 err = -ENOMEM;
3024                 goto err_alloc_etherdev;
3025         }
3026
3027         SET_NETDEV_DEV(netdev, &pdev->dev);
3028
3029         pci_set_drvdata(pdev, netdev);
3030         adapter = netdev_priv(netdev);
3031
3032         adapter->netdev = netdev;
3033         adapter->pdev = pdev;
3034         hw = &adapter->hw;
3035         hw->back = adapter;
3036         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3037
3038         /*
3039          * call save state here in standalone driver because it relies on
3040          * adapter struct to exist, and needs to call netdev_priv
3041          */
3042         pci_save_state(pdev);
3043
3044         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3045                               pci_resource_len(pdev, 0));
3046         if (!hw->hw_addr) {
3047                 err = -EIO;
3048                 goto err_ioremap;
3049         }
3050
3051         ixgbevf_assign_netdev_ops(netdev);
3052
3053         adapter->bd_number = cards_found;
3054
3055         /* Setup hw api */
3056         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3057         hw->mac.type  = ii->mac;
3058
3059         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3060                sizeof(struct ixgbe_mbx_operations));
3061
3062         /* setup the private structure */
3063         err = ixgbevf_sw_init(adapter);
3064         if (err)
3065                 goto err_sw_init;
3066
3067         /* The HW MAC address was set and/or determined in sw_init */
3068         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3069
3070         if (!is_valid_ether_addr(netdev->dev_addr)) {
3071                 pr_err("invalid MAC address\n");
3072                 err = -EIO;
3073                 goto err_sw_init;
3074         }
3075
3076         netdev->hw_features = NETIF_F_SG |
3077                            NETIF_F_IP_CSUM |
3078                            NETIF_F_IPV6_CSUM |
3079                            NETIF_F_TSO |
3080                            NETIF_F_TSO6 |
3081                            NETIF_F_RXCSUM;
3082
3083         netdev->features = netdev->hw_features |
3084                            NETIF_F_HW_VLAN_TX |
3085                            NETIF_F_HW_VLAN_RX |
3086                            NETIF_F_HW_VLAN_FILTER;
3087
3088         netdev->vlan_features |= NETIF_F_TSO;
3089         netdev->vlan_features |= NETIF_F_TSO6;
3090         netdev->vlan_features |= NETIF_F_IP_CSUM;
3091         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3092         netdev->vlan_features |= NETIF_F_SG;
3093
3094         if (pci_using_dac)
3095                 netdev->features |= NETIF_F_HIGHDMA;
3096
3097         netdev->priv_flags |= IFF_UNICAST_FLT;
3098
3099         init_timer(&adapter->watchdog_timer);
3100         adapter->watchdog_timer.function = ixgbevf_watchdog;
3101         adapter->watchdog_timer.data = (unsigned long)adapter;
3102
3103         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3104         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3105
3106         err = ixgbevf_init_interrupt_scheme(adapter);
3107         if (err)
3108                 goto err_sw_init;
3109
3110         /* pick up the PCI bus settings for reporting later */
3111         if (hw->mac.ops.get_bus_info)
3112                 hw->mac.ops.get_bus_info(hw);
3113
3114         strcpy(netdev->name, "eth%d");
3115
3116         err = register_netdev(netdev);
3117         if (err)
3118                 goto err_register;
3119
3120         netif_carrier_off(netdev);
3121
3122         ixgbevf_init_last_counter_stats(adapter);
3123
3124         /* print the MAC address */
3125         hw_dbg(hw, "%pM\n", netdev->dev_addr);
3126
3127         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3128
3129         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3130         cards_found++;
3131         return 0;
3132
3133 err_register:
3134 err_sw_init:
3135         ixgbevf_reset_interrupt_capability(adapter);
3136         iounmap(hw->hw_addr);
3137 err_ioremap:
3138         free_netdev(netdev);
3139 err_alloc_etherdev:
3140         pci_release_regions(pdev);
3141 err_pci_reg:
3142 err_dma:
3143         pci_disable_device(pdev);
3144         return err;
3145 }
3146
3147 /**
3148  * ixgbevf_remove - Device Removal Routine
3149  * @pdev: PCI device information struct
3150  *
3151  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3152  * that it should release a PCI device.  The could be caused by a
3153  * Hot-Plug event, or because the driver is going to be removed from
3154  * memory.
3155  **/
3156 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3157 {
3158         struct net_device *netdev = pci_get_drvdata(pdev);
3159         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3160
3161         set_bit(__IXGBEVF_DOWN, &adapter->state);
3162
3163         del_timer_sync(&adapter->watchdog_timer);
3164
3165         cancel_work_sync(&adapter->reset_task);
3166         cancel_work_sync(&adapter->watchdog_task);
3167
3168         if (netdev->reg_state == NETREG_REGISTERED)
3169                 unregister_netdev(netdev);
3170
3171         ixgbevf_reset_interrupt_capability(adapter);
3172
3173         iounmap(adapter->hw.hw_addr);
3174         pci_release_regions(pdev);
3175
3176         hw_dbg(&adapter->hw, "Remove complete\n");
3177
3178         kfree(adapter->tx_ring);
3179         kfree(adapter->rx_ring);
3180
3181         free_netdev(netdev);
3182
3183         pci_disable_device(pdev);
3184 }
3185
3186 /**
3187  * ixgbevf_io_error_detected - called when PCI error is detected
3188  * @pdev: Pointer to PCI device
3189  * @state: The current pci connection state
3190  *
3191  * This function is called after a PCI bus error affecting
3192  * this device has been detected.
3193  */
3194 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
3195                                                   pci_channel_state_t state)
3196 {
3197         struct net_device *netdev = pci_get_drvdata(pdev);
3198         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3199
3200         netif_device_detach(netdev);
3201
3202         if (state == pci_channel_io_perm_failure)
3203                 return PCI_ERS_RESULT_DISCONNECT;
3204
3205         if (netif_running(netdev))
3206                 ixgbevf_down(adapter);
3207
3208         pci_disable_device(pdev);
3209
3210         /* Request a slot slot reset. */
3211         return PCI_ERS_RESULT_NEED_RESET;
3212 }
3213
3214 /**
3215  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
3216  * @pdev: Pointer to PCI device
3217  *
3218  * Restart the card from scratch, as if from a cold-boot. Implementation
3219  * resembles the first-half of the ixgbevf_resume routine.
3220  */
3221 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
3222 {
3223         struct net_device *netdev = pci_get_drvdata(pdev);
3224         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3225
3226         if (pci_enable_device_mem(pdev)) {
3227                 dev_err(&pdev->dev,
3228                         "Cannot re-enable PCI device after reset.\n");
3229                 return PCI_ERS_RESULT_DISCONNECT;
3230         }
3231
3232         pci_set_master(pdev);
3233
3234         ixgbevf_reset(adapter);
3235
3236         return PCI_ERS_RESULT_RECOVERED;
3237 }
3238
3239 /**
3240  * ixgbevf_io_resume - called when traffic can start flowing again.
3241  * @pdev: Pointer to PCI device
3242  *
3243  * This callback is called when the error recovery driver tells us that
3244  * its OK to resume normal operation. Implementation resembles the
3245  * second-half of the ixgbevf_resume routine.
3246  */
3247 static void ixgbevf_io_resume(struct pci_dev *pdev)
3248 {
3249         struct net_device *netdev = pci_get_drvdata(pdev);
3250         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3251
3252         if (netif_running(netdev))
3253                 ixgbevf_up(adapter);
3254
3255         netif_device_attach(netdev);
3256 }
3257
3258 /* PCI Error Recovery (ERS) */
3259 static struct pci_error_handlers ixgbevf_err_handler = {
3260         .error_detected = ixgbevf_io_error_detected,
3261         .slot_reset = ixgbevf_io_slot_reset,
3262         .resume = ixgbevf_io_resume,
3263 };
3264
3265 static struct pci_driver ixgbevf_driver = {
3266         .name     = ixgbevf_driver_name,
3267         .id_table = ixgbevf_pci_tbl,
3268         .probe    = ixgbevf_probe,
3269         .remove   = __devexit_p(ixgbevf_remove),
3270         .shutdown = ixgbevf_shutdown,
3271         .err_handler = &ixgbevf_err_handler
3272 };
3273
3274 /**
3275  * ixgbevf_init_module - Driver Registration Routine
3276  *
3277  * ixgbevf_init_module is the first routine called when the driver is
3278  * loaded. All it does is register with the PCI subsystem.
3279  **/
3280 static int __init ixgbevf_init_module(void)
3281 {
3282         int ret;
3283         pr_info("%s - version %s\n", ixgbevf_driver_string,
3284                 ixgbevf_driver_version);
3285
3286         pr_info("%s\n", ixgbevf_copyright);
3287
3288         ret = pci_register_driver(&ixgbevf_driver);
3289         return ret;
3290 }
3291
3292 module_init(ixgbevf_init_module);
3293
3294 /**
3295  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3296  *
3297  * ixgbevf_exit_module is called just before the driver is removed
3298  * from memory.
3299  **/
3300 static void __exit ixgbevf_exit_module(void)
3301 {
3302         pci_unregister_driver(&ixgbevf_driver);
3303 }
3304
3305 #ifdef DEBUG
3306 /**
3307  * ixgbevf_get_hw_dev_name - return device name string
3308  * used by hardware layer to print debugging information
3309  **/
3310 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3311 {
3312         struct ixgbevf_adapter *adapter = hw->back;
3313         return adapter->netdev->name;
3314 }
3315
3316 #endif
3317 module_exit(ixgbevf_exit_module);
3318
3319 /* ixgbevf_main.c */