drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15
16 #include <net/ipv6.h>
17
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22
23 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
24
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26
27 #define IGC_XDP_PASS            0
28 #define IGC_XDP_CONSUMED        BIT(0)
29 #define IGC_XDP_TX              BIT(1)
30 #define IGC_XDP_REDIRECT        BIT(2)
31
32 static int debug = -1;
33
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43         "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46         [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66         /* required last entry */
67         {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73         lowest_latency = 0,
74         low_latency = 1,
75         bulk_latency = 2,
76         latency_invalid = 255
77 };
78
79 void igc_reset(struct igc_adapter *adapter)
80 {
81         struct net_device *dev = adapter->netdev;
82         struct igc_hw *hw = &adapter->hw;
83         struct igc_fc_info *fc = &hw->fc;
84         u32 pba, hwm;
85
86         /* Repartition PBA for greater than 9k MTU if required */
87         pba = IGC_PBA_34K;
88
89         /* flow control settings
90          * The high water mark must be low enough to fit one full frame
91          * after transmitting the pause frame.  As such we must have enough
92          * space to allow for us to complete our current transmit and then
93          * receive the frame that is in progress from the link partner.
94          * Set it to:
95          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96          */
97         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
100         fc->low_water = fc->high_water - 16;
101         fc->pause_time = 0xFFFF;
102         fc->send_xon = 1;
103         fc->current_mode = fc->requested_mode;
104
105         hw->mac.ops.reset_hw(hw);
106
107         if (hw->mac.ops.init_hw(hw))
108                 netdev_err(dev, "Error on hardware initialization\n");
109
110         /* Re-establish EEE setting */
111         igc_set_eee_i225(hw, true, true, true);
112
113         if (!netif_running(adapter->netdev))
114                 igc_power_down_phy_copper_base(&adapter->hw);
115
116         /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117         wr32(IGC_VET, ETH_P_8021Q);
118
119         /* Re-enable PTP, where applicable. */
120         igc_ptp_reset(adapter);
121
122         /* Re-enable TSN offloading, where applicable. */
123         igc_tsn_reset(adapter);
124
125         igc_get_phy_info(hw);
126 }
127
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134         igc_reset_phy(&adapter->hw);
135
136         igc_power_up_phy_copper(&adapter->hw);
137
138         igc_setup_link(&adapter->hw);
139 }
140
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151         struct igc_hw *hw = &adapter->hw;
152         u32 ctrl_ext;
153
154         if (!pci_device_is_present(adapter->pdev))
155                 return;
156
157         /* Let firmware take over control of h/w */
158         ctrl_ext = rd32(IGC_CTRL_EXT);
159         wr32(IGC_CTRL_EXT,
160              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173         struct igc_hw *hw = &adapter->hw;
174         u32 ctrl_ext;
175
176         /* Let firmware know the driver has taken over */
177         ctrl_ext = rd32(IGC_CTRL_EXT);
178         wr32(IGC_CTRL_EXT,
179              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184         dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185                          dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187         dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196         u16 i = tx_ring->next_to_clean;
197         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198         u32 xsk_frames = 0;
199
200         while (i != tx_ring->next_to_use) {
201                 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203                 switch (tx_buffer->type) {
204                 case IGC_TX_BUFFER_TYPE_XSK:
205                         xsk_frames++;
206                         break;
207                 case IGC_TX_BUFFER_TYPE_XDP:
208                         xdp_return_frame(tx_buffer->xdpf);
209                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210                         break;
211                 case IGC_TX_BUFFER_TYPE_SKB:
212                         dev_kfree_skb_any(tx_buffer->skb);
213                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214                         break;
215                 default:
216                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217                         break;
218                 }
219
220                 /* check for eop_desc to determine the end of the packet */
221                 eop_desc = tx_buffer->next_to_watch;
222                 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224                 /* unmap remaining buffers */
225                 while (tx_desc != eop_desc) {
226                         tx_buffer++;
227                         tx_desc++;
228                         i++;
229                         if (unlikely(i == tx_ring->count)) {
230                                 i = 0;
231                                 tx_buffer = tx_ring->tx_buffer_info;
232                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
233                         }
234
235                         /* unmap any remaining paged data */
236                         if (dma_unmap_len(tx_buffer, len))
237                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238                 }
239
240                 tx_buffer->next_to_watch = NULL;
241
242                 /* move us one more past the eop_desc for start of next pkt */
243                 tx_buffer++;
244                 i++;
245                 if (unlikely(i == tx_ring->count)) {
246                         i = 0;
247                         tx_buffer = tx_ring->tx_buffer_info;
248                 }
249         }
250
251         if (tx_ring->xsk_pool && xsk_frames)
252                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254         /* reset BQL for queue */
255         netdev_tx_reset_queue(txring_txq(tx_ring));
256
257         /* Zero out the buffer ring */
258         memset(tx_ring->tx_buffer_info, 0,
259                sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261         /* Zero out the descriptor ring */
262         memset(tx_ring->desc, 0, tx_ring->size);
263
264         /* reset next_to_use and next_to_clean */
265         tx_ring->next_to_use = 0;
266         tx_ring->next_to_clean = 0;
267 }
268
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277         igc_disable_tx_ring(tx_ring);
278
279         vfree(tx_ring->tx_buffer_info);
280         tx_ring->tx_buffer_info = NULL;
281
282         /* if not set, then don't free */
283         if (!tx_ring->desc)
284                 return;
285
286         dma_free_coherent(tx_ring->dev, tx_ring->size,
287                           tx_ring->desc, tx_ring->dma);
288
289         tx_ring->desc = NULL;
290 }
291
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300         int i;
301
302         for (i = 0; i < adapter->num_tx_queues; i++)
303                 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312         int i;
313
314         for (i = 0; i < adapter->num_tx_queues; i++)
315                 if (adapter->tx_ring[i])
316                         igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
319 /**
320  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
321  * @tx_ring: tx descriptor ring (for a specific queue) to setup
322  *
323  * Return 0 on success, negative on failure
324  */
325 int igc_setup_tx_resources(struct igc_ring *tx_ring)
326 {
327         struct net_device *ndev = tx_ring->netdev;
328         struct device *dev = tx_ring->dev;
329         int size = 0;
330
331         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
332         tx_ring->tx_buffer_info = vzalloc(size);
333         if (!tx_ring->tx_buffer_info)
334                 goto err;
335
336         /* round up to nearest 4K */
337         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
338         tx_ring->size = ALIGN(tx_ring->size, 4096);
339
340         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
341                                            &tx_ring->dma, GFP_KERNEL);
342
343         if (!tx_ring->desc)
344                 goto err;
345
346         tx_ring->next_to_use = 0;
347         tx_ring->next_to_clean = 0;
348
349         return 0;
350
351 err:
352         vfree(tx_ring->tx_buffer_info);
353         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
354         return -ENOMEM;
355 }
356
357 /**
358  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
359  * @adapter: board private structure
360  *
361  * Return 0 on success, negative on failure
362  */
363 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
364 {
365         struct net_device *dev = adapter->netdev;
366         int i, err = 0;
367
368         for (i = 0; i < adapter->num_tx_queues; i++) {
369                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
370                 if (err) {
371                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
372                         for (i--; i >= 0; i--)
373                                 igc_free_tx_resources(adapter->tx_ring[i]);
374                         break;
375                 }
376         }
377
378         return err;
379 }
380
381 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
382 {
383         u16 i = rx_ring->next_to_clean;
384
385         dev_kfree_skb(rx_ring->skb);
386         rx_ring->skb = NULL;
387
388         /* Free all the Rx ring sk_buffs */
389         while (i != rx_ring->next_to_alloc) {
390                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
391
392                 /* Invalidate cache lines that may have been written to by
393                  * device so that we avoid corrupting memory.
394                  */
395                 dma_sync_single_range_for_cpu(rx_ring->dev,
396                                               buffer_info->dma,
397                                               buffer_info->page_offset,
398                                               igc_rx_bufsz(rx_ring),
399                                               DMA_FROM_DEVICE);
400
401                 /* free resources associated with mapping */
402                 dma_unmap_page_attrs(rx_ring->dev,
403                                      buffer_info->dma,
404                                      igc_rx_pg_size(rx_ring),
405                                      DMA_FROM_DEVICE,
406                                      IGC_RX_DMA_ATTR);
407                 __page_frag_cache_drain(buffer_info->page,
408                                         buffer_info->pagecnt_bias);
409
410                 i++;
411                 if (i == rx_ring->count)
412                         i = 0;
413         }
414 }
415
416 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
417 {
418         struct igc_rx_buffer *bi;
419         u16 i;
420
421         for (i = 0; i < ring->count; i++) {
422                 bi = &ring->rx_buffer_info[i];
423                 if (!bi->xdp)
424                         continue;
425
426                 xsk_buff_free(bi->xdp);
427                 bi->xdp = NULL;
428         }
429 }
430
431 /**
432  * igc_clean_rx_ring - Free Rx Buffers per Queue
433  * @ring: ring to free buffers from
434  */
435 static void igc_clean_rx_ring(struct igc_ring *ring)
436 {
437         if (ring->xsk_pool)
438                 igc_clean_rx_ring_xsk_pool(ring);
439         else
440                 igc_clean_rx_ring_page_shared(ring);
441
442         clear_ring_uses_large_buffer(ring);
443
444         ring->next_to_alloc = 0;
445         ring->next_to_clean = 0;
446         ring->next_to_use = 0;
447 }
448
449 /**
450  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
451  * @adapter: board private structure
452  */
453 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
454 {
455         int i;
456
457         for (i = 0; i < adapter->num_rx_queues; i++)
458                 if (adapter->rx_ring[i])
459                         igc_clean_rx_ring(adapter->rx_ring[i]);
460 }
461
462 /**
463  * igc_free_rx_resources - Free Rx Resources
464  * @rx_ring: ring to clean the resources from
465  *
466  * Free all receive software resources
467  */
468 void igc_free_rx_resources(struct igc_ring *rx_ring)
469 {
470         igc_clean_rx_ring(rx_ring);
471
472         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
473
474         vfree(rx_ring->rx_buffer_info);
475         rx_ring->rx_buffer_info = NULL;
476
477         /* if not set, then don't free */
478         if (!rx_ring->desc)
479                 return;
480
481         dma_free_coherent(rx_ring->dev, rx_ring->size,
482                           rx_ring->desc, rx_ring->dma);
483
484         rx_ring->desc = NULL;
485 }
486
487 /**
488  * igc_free_all_rx_resources - Free Rx Resources for All Queues
489  * @adapter: board private structure
490  *
491  * Free all receive software resources
492  */
493 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
494 {
495         int i;
496
497         for (i = 0; i < adapter->num_rx_queues; i++)
498                 igc_free_rx_resources(adapter->rx_ring[i]);
499 }
500
501 /**
502  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
503  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
504  *
505  * Returns 0 on success, negative on failure
506  */
507 int igc_setup_rx_resources(struct igc_ring *rx_ring)
508 {
509         struct net_device *ndev = rx_ring->netdev;
510         struct device *dev = rx_ring->dev;
511         u8 index = rx_ring->queue_index;
512         int size, desc_len, res;
513
514         /* XDP RX-queue info */
515         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
516                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
517         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
518                                rx_ring->q_vector->napi.napi_id);
519         if (res < 0) {
520                 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
521                            index);
522                 return res;
523         }
524
525         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
526         rx_ring->rx_buffer_info = vzalloc(size);
527         if (!rx_ring->rx_buffer_info)
528                 goto err;
529
530         desc_len = sizeof(union igc_adv_rx_desc);
531
532         /* Round up to nearest 4K */
533         rx_ring->size = rx_ring->count * desc_len;
534         rx_ring->size = ALIGN(rx_ring->size, 4096);
535
536         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
537                                            &rx_ring->dma, GFP_KERNEL);
538
539         if (!rx_ring->desc)
540                 goto err;
541
542         rx_ring->next_to_alloc = 0;
543         rx_ring->next_to_clean = 0;
544         rx_ring->next_to_use = 0;
545
546         return 0;
547
548 err:
549         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
550         vfree(rx_ring->rx_buffer_info);
551         rx_ring->rx_buffer_info = NULL;
552         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
553         return -ENOMEM;
554 }
555
556 /**
557  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
558  *                                (Descriptors) for all queues
559  * @adapter: board private structure
560  *
561  * Return 0 on success, negative on failure
562  */
563 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
564 {
565         struct net_device *dev = adapter->netdev;
566         int i, err = 0;
567
568         for (i = 0; i < adapter->num_rx_queues; i++) {
569                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
570                 if (err) {
571                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
572                         for (i--; i >= 0; i--)
573                                 igc_free_rx_resources(adapter->rx_ring[i]);
574                         break;
575                 }
576         }
577
578         return err;
579 }
580
581 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
582                                               struct igc_ring *ring)
583 {
584         if (!igc_xdp_is_enabled(adapter) ||
585             !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
586                 return NULL;
587
588         return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
589 }
590
591 /**
592  * igc_configure_rx_ring - Configure a receive ring after Reset
593  * @adapter: board private structure
594  * @ring: receive ring to be configured
595  *
596  * Configure the Rx unit of the MAC after a reset.
597  */
598 static void igc_configure_rx_ring(struct igc_adapter *adapter,
599                                   struct igc_ring *ring)
600 {
601         struct igc_hw *hw = &adapter->hw;
602         union igc_adv_rx_desc *rx_desc;
603         int reg_idx = ring->reg_idx;
604         u32 srrctl = 0, rxdctl = 0;
605         u64 rdba = ring->dma;
606         u32 buf_size;
607
608         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
609         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
610         if (ring->xsk_pool) {
611                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
612                                                    MEM_TYPE_XSK_BUFF_POOL,
613                                                    NULL));
614                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
615         } else {
616                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
617                                                    MEM_TYPE_PAGE_SHARED,
618                                                    NULL));
619         }
620
621         if (igc_xdp_is_enabled(adapter))
622                 set_ring_uses_large_buffer(ring);
623
624         /* disable the queue */
625         wr32(IGC_RXDCTL(reg_idx), 0);
626
627         /* Set DMA base address registers */
628         wr32(IGC_RDBAL(reg_idx),
629              rdba & 0x00000000ffffffffULL);
630         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
631         wr32(IGC_RDLEN(reg_idx),
632              ring->count * sizeof(union igc_adv_rx_desc));
633
634         /* initialize head and tail */
635         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
636         wr32(IGC_RDH(reg_idx), 0);
637         writel(0, ring->tail);
638
639         /* reset next-to- use/clean to place SW in sync with hardware */
640         ring->next_to_clean = 0;
641         ring->next_to_use = 0;
642
643         if (ring->xsk_pool)
644                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
645         else if (ring_uses_large_buffer(ring))
646                 buf_size = IGC_RXBUFFER_3072;
647         else
648                 buf_size = IGC_RXBUFFER_2048;
649
650         srrctl = rd32(IGC_SRRCTL(reg_idx));
651         srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
652                     IGC_SRRCTL_DESCTYPE_MASK);
653         srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
654         srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
655         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
656
657         wr32(IGC_SRRCTL(reg_idx), srrctl);
658
659         rxdctl |= IGC_RX_PTHRESH;
660         rxdctl |= IGC_RX_HTHRESH << 8;
661         rxdctl |= IGC_RX_WTHRESH << 16;
662
663         /* initialize rx_buffer_info */
664         memset(ring->rx_buffer_info, 0,
665                sizeof(struct igc_rx_buffer) * ring->count);
666
667         /* initialize Rx descriptor 0 */
668         rx_desc = IGC_RX_DESC(ring, 0);
669         rx_desc->wb.upper.length = 0;
670
671         /* enable receive descriptor fetching */
672         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
673
674         wr32(IGC_RXDCTL(reg_idx), rxdctl);
675 }
676
677 /**
678  * igc_configure_rx - Configure receive Unit after Reset
679  * @adapter: board private structure
680  *
681  * Configure the Rx unit of the MAC after a reset.
682  */
683 static void igc_configure_rx(struct igc_adapter *adapter)
684 {
685         int i;
686
687         /* Setup the HW Rx Head and Tail Descriptor Pointers and
688          * the Base and Length of the Rx Descriptor Ring
689          */
690         for (i = 0; i < adapter->num_rx_queues; i++)
691                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
692 }
693
694 /**
695  * igc_configure_tx_ring - Configure transmit ring after Reset
696  * @adapter: board private structure
697  * @ring: tx ring to configure
698  *
699  * Configure a transmit ring after a reset.
700  */
701 static void igc_configure_tx_ring(struct igc_adapter *adapter,
702                                   struct igc_ring *ring)
703 {
704         struct igc_hw *hw = &adapter->hw;
705         int reg_idx = ring->reg_idx;
706         u64 tdba = ring->dma;
707         u32 txdctl = 0;
708
709         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
710
711         /* disable the queue */
712         wr32(IGC_TXDCTL(reg_idx), 0);
713         wrfl();
714
715         wr32(IGC_TDLEN(reg_idx),
716              ring->count * sizeof(union igc_adv_tx_desc));
717         wr32(IGC_TDBAL(reg_idx),
718              tdba & 0x00000000ffffffffULL);
719         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
720
721         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
722         wr32(IGC_TDH(reg_idx), 0);
723         writel(0, ring->tail);
724
725         txdctl |= IGC_TX_PTHRESH;
726         txdctl |= IGC_TX_HTHRESH << 8;
727         txdctl |= IGC_TX_WTHRESH << 16;
728
729         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
730         wr32(IGC_TXDCTL(reg_idx), txdctl);
731 }
732
733 /**
734  * igc_configure_tx - Configure transmit Unit after Reset
735  * @adapter: board private structure
736  *
737  * Configure the Tx unit of the MAC after a reset.
738  */
739 static void igc_configure_tx(struct igc_adapter *adapter)
740 {
741         int i;
742
743         for (i = 0; i < adapter->num_tx_queues; i++)
744                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
745 }
746
747 /**
748  * igc_setup_mrqc - configure the multiple receive queue control registers
749  * @adapter: Board private structure
750  */
751 static void igc_setup_mrqc(struct igc_adapter *adapter)
752 {
753         struct igc_hw *hw = &adapter->hw;
754         u32 j, num_rx_queues;
755         u32 mrqc, rxcsum;
756         u32 rss_key[10];
757
758         netdev_rss_key_fill(rss_key, sizeof(rss_key));
759         for (j = 0; j < 10; j++)
760                 wr32(IGC_RSSRK(j), rss_key[j]);
761
762         num_rx_queues = adapter->rss_queues;
763
764         if (adapter->rss_indir_tbl_init != num_rx_queues) {
765                 for (j = 0; j < IGC_RETA_SIZE; j++)
766                         adapter->rss_indir_tbl[j] =
767                         (j * num_rx_queues) / IGC_RETA_SIZE;
768                 adapter->rss_indir_tbl_init = num_rx_queues;
769         }
770         igc_write_rss_indir_tbl(adapter);
771
772         /* Disable raw packet checksumming so that RSS hash is placed in
773          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
774          * offloads as they are enabled by default
775          */
776         rxcsum = rd32(IGC_RXCSUM);
777         rxcsum |= IGC_RXCSUM_PCSD;
778
779         /* Enable Receive Checksum Offload for SCTP */
780         rxcsum |= IGC_RXCSUM_CRCOFL;
781
782         /* Don't need to set TUOFL or IPOFL, they default to 1 */
783         wr32(IGC_RXCSUM, rxcsum);
784
785         /* Generate RSS hash based on packet types, TCP/UDP
786          * port numbers and/or IPv4/v6 src and dst addresses
787          */
788         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
789                IGC_MRQC_RSS_FIELD_IPV4_TCP |
790                IGC_MRQC_RSS_FIELD_IPV6 |
791                IGC_MRQC_RSS_FIELD_IPV6_TCP |
792                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
793
794         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
795                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
796         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
797                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
798
799         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
800
801         wr32(IGC_MRQC, mrqc);
802 }
803
804 /**
805  * igc_setup_rctl - configure the receive control registers
806  * @adapter: Board private structure
807  */
808 static void igc_setup_rctl(struct igc_adapter *adapter)
809 {
810         struct igc_hw *hw = &adapter->hw;
811         u32 rctl;
812
813         rctl = rd32(IGC_RCTL);
814
815         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
816         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
817
818         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
819                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
820
821         /* enable stripping of CRC. Newer features require
822          * that the HW strips the CRC.
823          */
824         rctl |= IGC_RCTL_SECRC;
825
826         /* disable store bad packets and clear size bits. */
827         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
828
829         /* enable LPE to allow for reception of jumbo frames */
830         rctl |= IGC_RCTL_LPE;
831
832         /* disable queue 0 to prevent tail write w/o re-config */
833         wr32(IGC_RXDCTL(0), 0);
834
835         /* This is useful for sniffing bad packets. */
836         if (adapter->netdev->features & NETIF_F_RXALL) {
837                 /* UPE and MPE will be handled by normal PROMISC logic
838                  * in set_rx_mode
839                  */
840                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
841                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
842                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
843
844                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
845                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
846         }
847
848         wr32(IGC_RCTL, rctl);
849 }
850
851 /**
852  * igc_setup_tctl - configure the transmit control registers
853  * @adapter: Board private structure
854  */
855 static void igc_setup_tctl(struct igc_adapter *adapter)
856 {
857         struct igc_hw *hw = &adapter->hw;
858         u32 tctl;
859
860         /* disable queue 0 which icould be enabled by default */
861         wr32(IGC_TXDCTL(0), 0);
862
863         /* Program the Transmit Control Register */
864         tctl = rd32(IGC_TCTL);
865         tctl &= ~IGC_TCTL_CT;
866         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
867                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
868
869         /* Enable transmits */
870         tctl |= IGC_TCTL_EN;
871
872         wr32(IGC_TCTL, tctl);
873 }
874
875 /**
876  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
877  * @adapter: Pointer to adapter where the filter should be set
878  * @index: Filter index
879  * @type: MAC address filter type (source or destination)
880  * @addr: MAC address
881  * @queue: If non-negative, queue assignment feature is enabled and frames
882  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
883  *         assignment is disabled.
884  */
885 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
886                                   enum igc_mac_filter_type type,
887                                   const u8 *addr, int queue)
888 {
889         struct net_device *dev = adapter->netdev;
890         struct igc_hw *hw = &adapter->hw;
891         u32 ral, rah;
892
893         if (WARN_ON(index >= hw->mac.rar_entry_count))
894                 return;
895
896         ral = le32_to_cpup((__le32 *)(addr));
897         rah = le16_to_cpup((__le16 *)(addr + 4));
898
899         if (type == IGC_MAC_FILTER_TYPE_SRC) {
900                 rah &= ~IGC_RAH_ASEL_MASK;
901                 rah |= IGC_RAH_ASEL_SRC_ADDR;
902         }
903
904         if (queue >= 0) {
905                 rah &= ~IGC_RAH_QSEL_MASK;
906                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
907                 rah |= IGC_RAH_QSEL_ENABLE;
908         }
909
910         rah |= IGC_RAH_AV;
911
912         wr32(IGC_RAL(index), ral);
913         wr32(IGC_RAH(index), rah);
914
915         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
916 }
917
918 /**
919  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
920  * @adapter: Pointer to adapter where the filter should be cleared
921  * @index: Filter index
922  */
923 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
924 {
925         struct net_device *dev = adapter->netdev;
926         struct igc_hw *hw = &adapter->hw;
927
928         if (WARN_ON(index >= hw->mac.rar_entry_count))
929                 return;
930
931         wr32(IGC_RAL(index), 0);
932         wr32(IGC_RAH(index), 0);
933
934         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
935 }
936
937 /* Set default MAC address for the PF in the first RAR entry */
938 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
939 {
940         struct net_device *dev = adapter->netdev;
941         u8 *addr = adapter->hw.mac.addr;
942
943         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
944
945         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
946 }
947
948 /**
949  * igc_set_mac - Change the Ethernet Address of the NIC
950  * @netdev: network interface device structure
951  * @p: pointer to an address structure
952  *
953  * Returns 0 on success, negative on failure
954  */
955 static int igc_set_mac(struct net_device *netdev, void *p)
956 {
957         struct igc_adapter *adapter = netdev_priv(netdev);
958         struct igc_hw *hw = &adapter->hw;
959         struct sockaddr *addr = p;
960
961         if (!is_valid_ether_addr(addr->sa_data))
962                 return -EADDRNOTAVAIL;
963
964         eth_hw_addr_set(netdev, addr->sa_data);
965         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
966
967         /* set the correct pool for the new PF MAC address in entry 0 */
968         igc_set_default_mac_filter(adapter);
969
970         return 0;
971 }
972
973 /**
974  *  igc_write_mc_addr_list - write multicast addresses to MTA
975  *  @netdev: network interface device structure
976  *
977  *  Writes multicast address list to the MTA hash table.
978  *  Returns: -ENOMEM on failure
979  *           0 on no addresses written
980  *           X on writing X addresses to MTA
981  **/
982 static int igc_write_mc_addr_list(struct net_device *netdev)
983 {
984         struct igc_adapter *adapter = netdev_priv(netdev);
985         struct igc_hw *hw = &adapter->hw;
986         struct netdev_hw_addr *ha;
987         u8  *mta_list;
988         int i;
989
990         if (netdev_mc_empty(netdev)) {
991                 /* nothing to program, so clear mc list */
992                 igc_update_mc_addr_list(hw, NULL, 0);
993                 return 0;
994         }
995
996         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
997         if (!mta_list)
998                 return -ENOMEM;
999
1000         /* The shared function expects a packed array of only addresses. */
1001         i = 0;
1002         netdev_for_each_mc_addr(ha, netdev)
1003                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1004
1005         igc_update_mc_addr_list(hw, mta_list, i);
1006         kfree(mta_list);
1007
1008         return netdev_mc_count(netdev);
1009 }
1010
1011 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1012                                 bool *first_flag, bool *insert_empty)
1013 {
1014         struct igc_adapter *adapter = netdev_priv(ring->netdev);
1015         ktime_t cycle_time = adapter->cycle_time;
1016         ktime_t base_time = adapter->base_time;
1017         ktime_t now = ktime_get_clocktai();
1018         ktime_t baset_est, end_of_cycle;
1019         s32 launchtime;
1020         s64 n;
1021
1022         n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1023
1024         baset_est = ktime_add_ns(base_time, cycle_time * (n));
1025         end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1026
1027         if (ktime_compare(txtime, end_of_cycle) >= 0) {
1028                 if (baset_est != ring->last_ff_cycle) {
1029                         *first_flag = true;
1030                         ring->last_ff_cycle = baset_est;
1031
1032                         if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1033                                 *insert_empty = true;
1034                 }
1035         }
1036
1037         /* Introducing a window at end of cycle on which packets
1038          * potentially not honor launchtime. Window of 5us chosen
1039          * considering software update the tail pointer and packets
1040          * are dma'ed to packet buffer.
1041          */
1042         if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1043                 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1044                             txtime);
1045
1046         ring->last_tx_cycle = end_of_cycle;
1047
1048         launchtime = ktime_sub_ns(txtime, baset_est);
1049         if (launchtime > 0)
1050                 div_s64_rem(launchtime, cycle_time, &launchtime);
1051         else
1052                 launchtime = 0;
1053
1054         return cpu_to_le32(launchtime);
1055 }
1056
1057 static int igc_init_empty_frame(struct igc_ring *ring,
1058                                 struct igc_tx_buffer *buffer,
1059                                 struct sk_buff *skb)
1060 {
1061         unsigned int size;
1062         dma_addr_t dma;
1063
1064         size = skb_headlen(skb);
1065
1066         dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1067         if (dma_mapping_error(ring->dev, dma)) {
1068                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1069                 return -ENOMEM;
1070         }
1071
1072         buffer->skb = skb;
1073         buffer->protocol = 0;
1074         buffer->bytecount = skb->len;
1075         buffer->gso_segs = 1;
1076         buffer->time_stamp = jiffies;
1077         dma_unmap_len_set(buffer, len, skb->len);
1078         dma_unmap_addr_set(buffer, dma, dma);
1079
1080         return 0;
1081 }
1082
1083 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1084                                         struct sk_buff *skb,
1085                                         struct igc_tx_buffer *first)
1086 {
1087         union igc_adv_tx_desc *desc;
1088         u32 cmd_type, olinfo_status;
1089         int err;
1090
1091         if (!igc_desc_unused(ring))
1092                 return -EBUSY;
1093
1094         err = igc_init_empty_frame(ring, first, skb);
1095         if (err)
1096                 return err;
1097
1098         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1099                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1100                    first->bytecount;
1101         olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1102
1103         desc = IGC_TX_DESC(ring, ring->next_to_use);
1104         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1105         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1106         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1107
1108         netdev_tx_sent_queue(txring_txq(ring), skb->len);
1109
1110         first->next_to_watch = desc;
1111
1112         ring->next_to_use++;
1113         if (ring->next_to_use == ring->count)
1114                 ring->next_to_use = 0;
1115
1116         return 0;
1117 }
1118
1119 #define IGC_EMPTY_FRAME_SIZE 60
1120
1121 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1122                             __le32 launch_time, bool first_flag,
1123                             u32 vlan_macip_lens, u32 type_tucmd,
1124                             u32 mss_l4len_idx)
1125 {
1126         struct igc_adv_tx_context_desc *context_desc;
1127         u16 i = tx_ring->next_to_use;
1128
1129         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1130
1131         i++;
1132         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1133
1134         /* set bits to identify this as an advanced context descriptor */
1135         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1136
1137         /* For i225, context index must be unique per ring. */
1138         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1139                 mss_l4len_idx |= tx_ring->reg_idx << 4;
1140
1141         if (first_flag)
1142                 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1143
1144         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1145         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1146         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1147         context_desc->launch_time       = launch_time;
1148 }
1149
1150 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1151                         __le32 launch_time, bool first_flag)
1152 {
1153         struct sk_buff *skb = first->skb;
1154         u32 vlan_macip_lens = 0;
1155         u32 type_tucmd = 0;
1156
1157         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1158 csum_failed:
1159                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1160                     !tx_ring->launchtime_enable)
1161                         return;
1162                 goto no_csum;
1163         }
1164
1165         switch (skb->csum_offset) {
1166         case offsetof(struct tcphdr, check):
1167                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1168                 fallthrough;
1169         case offsetof(struct udphdr, check):
1170                 break;
1171         case offsetof(struct sctphdr, checksum):
1172                 /* validate that this is actually an SCTP request */
1173                 if (skb_csum_is_sctp(skb)) {
1174                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1175                         break;
1176                 }
1177                 fallthrough;
1178         default:
1179                 skb_checksum_help(skb);
1180                 goto csum_failed;
1181         }
1182
1183         /* update TX checksum flag */
1184         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1185         vlan_macip_lens = skb_checksum_start_offset(skb) -
1186                           skb_network_offset(skb);
1187 no_csum:
1188         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1189         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1190
1191         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1192                         vlan_macip_lens, type_tucmd, 0);
1193 }
1194
1195 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1196 {
1197         struct net_device *netdev = tx_ring->netdev;
1198
1199         netif_stop_subqueue(netdev, tx_ring->queue_index);
1200
1201         /* memory barriier comment */
1202         smp_mb();
1203
1204         /* We need to check again in a case another CPU has just
1205          * made room available.
1206          */
1207         if (igc_desc_unused(tx_ring) < size)
1208                 return -EBUSY;
1209
1210         /* A reprieve! */
1211         netif_wake_subqueue(netdev, tx_ring->queue_index);
1212
1213         u64_stats_update_begin(&tx_ring->tx_syncp2);
1214         tx_ring->tx_stats.restart_queue2++;
1215         u64_stats_update_end(&tx_ring->tx_syncp2);
1216
1217         return 0;
1218 }
1219
1220 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1221 {
1222         if (igc_desc_unused(tx_ring) >= size)
1223                 return 0;
1224         return __igc_maybe_stop_tx(tx_ring, size);
1225 }
1226
1227 #define IGC_SET_FLAG(_input, _flag, _result) \
1228         (((_flag) <= (_result)) ?                               \
1229          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1230          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1231
1232 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1233 {
1234         /* set type for advanced descriptor with frame checksum insertion */
1235         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1236                        IGC_ADVTXD_DCMD_DEXT |
1237                        IGC_ADVTXD_DCMD_IFCS;
1238
1239         /* set HW vlan bit if vlan is present */
1240         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1241                                  IGC_ADVTXD_DCMD_VLE);
1242
1243         /* set segmentation bits for TSO */
1244         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1245                                  (IGC_ADVTXD_DCMD_TSE));
1246
1247         /* set timestamp bit if present */
1248         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1249                                  (IGC_ADVTXD_MAC_TSTAMP));
1250
1251         /* insert frame checksum */
1252         cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1253
1254         return cmd_type;
1255 }
1256
1257 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1258                                  union igc_adv_tx_desc *tx_desc,
1259                                  u32 tx_flags, unsigned int paylen)
1260 {
1261         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1262
1263         /* insert L4 checksum */
1264         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1265                           ((IGC_TXD_POPTS_TXSM << 8) /
1266                           IGC_TX_FLAGS_CSUM);
1267
1268         /* insert IPv4 checksum */
1269         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1270                           (((IGC_TXD_POPTS_IXSM << 8)) /
1271                           IGC_TX_FLAGS_IPV4);
1272
1273         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1274 }
1275
1276 static int igc_tx_map(struct igc_ring *tx_ring,
1277                       struct igc_tx_buffer *first,
1278                       const u8 hdr_len)
1279 {
1280         struct sk_buff *skb = first->skb;
1281         struct igc_tx_buffer *tx_buffer;
1282         union igc_adv_tx_desc *tx_desc;
1283         u32 tx_flags = first->tx_flags;
1284         skb_frag_t *frag;
1285         u16 i = tx_ring->next_to_use;
1286         unsigned int data_len, size;
1287         dma_addr_t dma;
1288         u32 cmd_type;
1289
1290         cmd_type = igc_tx_cmd_type(skb, tx_flags);
1291         tx_desc = IGC_TX_DESC(tx_ring, i);
1292
1293         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1294
1295         size = skb_headlen(skb);
1296         data_len = skb->data_len;
1297
1298         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1299
1300         tx_buffer = first;
1301
1302         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1303                 if (dma_mapping_error(tx_ring->dev, dma))
1304                         goto dma_error;
1305
1306                 /* record length, and DMA address */
1307                 dma_unmap_len_set(tx_buffer, len, size);
1308                 dma_unmap_addr_set(tx_buffer, dma, dma);
1309
1310                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1311
1312                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1313                         tx_desc->read.cmd_type_len =
1314                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1315
1316                         i++;
1317                         tx_desc++;
1318                         if (i == tx_ring->count) {
1319                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1320                                 i = 0;
1321                         }
1322                         tx_desc->read.olinfo_status = 0;
1323
1324                         dma += IGC_MAX_DATA_PER_TXD;
1325                         size -= IGC_MAX_DATA_PER_TXD;
1326
1327                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1328                 }
1329
1330                 if (likely(!data_len))
1331                         break;
1332
1333                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1334
1335                 i++;
1336                 tx_desc++;
1337                 if (i == tx_ring->count) {
1338                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1339                         i = 0;
1340                 }
1341                 tx_desc->read.olinfo_status = 0;
1342
1343                 size = skb_frag_size(frag);
1344                 data_len -= size;
1345
1346                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1347                                        size, DMA_TO_DEVICE);
1348
1349                 tx_buffer = &tx_ring->tx_buffer_info[i];
1350         }
1351
1352         /* write last descriptor with RS and EOP bits */
1353         cmd_type |= size | IGC_TXD_DCMD;
1354         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1355
1356         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1357
1358         /* set the timestamp */
1359         first->time_stamp = jiffies;
1360
1361         skb_tx_timestamp(skb);
1362
1363         /* Force memory writes to complete before letting h/w know there
1364          * are new descriptors to fetch.  (Only applicable for weak-ordered
1365          * memory model archs, such as IA-64).
1366          *
1367          * We also need this memory barrier to make certain all of the
1368          * status bits have been updated before next_to_watch is written.
1369          */
1370         wmb();
1371
1372         /* set next_to_watch value indicating a packet is present */
1373         first->next_to_watch = tx_desc;
1374
1375         i++;
1376         if (i == tx_ring->count)
1377                 i = 0;
1378
1379         tx_ring->next_to_use = i;
1380
1381         /* Make sure there is space in the ring for the next send. */
1382         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1383
1384         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1385                 writel(i, tx_ring->tail);
1386         }
1387
1388         return 0;
1389 dma_error:
1390         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1391         tx_buffer = &tx_ring->tx_buffer_info[i];
1392
1393         /* clear dma mappings for failed tx_buffer_info map */
1394         while (tx_buffer != first) {
1395                 if (dma_unmap_len(tx_buffer, len))
1396                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1397
1398                 if (i-- == 0)
1399                         i += tx_ring->count;
1400                 tx_buffer = &tx_ring->tx_buffer_info[i];
1401         }
1402
1403         if (dma_unmap_len(tx_buffer, len))
1404                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1405
1406         dev_kfree_skb_any(tx_buffer->skb);
1407         tx_buffer->skb = NULL;
1408
1409         tx_ring->next_to_use = i;
1410
1411         return -1;
1412 }
1413
1414 static int igc_tso(struct igc_ring *tx_ring,
1415                    struct igc_tx_buffer *first,
1416                    __le32 launch_time, bool first_flag,
1417                    u8 *hdr_len)
1418 {
1419         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1420         struct sk_buff *skb = first->skb;
1421         union {
1422                 struct iphdr *v4;
1423                 struct ipv6hdr *v6;
1424                 unsigned char *hdr;
1425         } ip;
1426         union {
1427                 struct tcphdr *tcp;
1428                 struct udphdr *udp;
1429                 unsigned char *hdr;
1430         } l4;
1431         u32 paylen, l4_offset;
1432         int err;
1433
1434         if (skb->ip_summed != CHECKSUM_PARTIAL)
1435                 return 0;
1436
1437         if (!skb_is_gso(skb))
1438                 return 0;
1439
1440         err = skb_cow_head(skb, 0);
1441         if (err < 0)
1442                 return err;
1443
1444         ip.hdr = skb_network_header(skb);
1445         l4.hdr = skb_checksum_start(skb);
1446
1447         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1448         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1449
1450         /* initialize outer IP header fields */
1451         if (ip.v4->version == 4) {
1452                 unsigned char *csum_start = skb_checksum_start(skb);
1453                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1454
1455                 /* IP header will have to cancel out any data that
1456                  * is not a part of the outer IP header
1457                  */
1458                 ip.v4->check = csum_fold(csum_partial(trans_start,
1459                                                       csum_start - trans_start,
1460                                                       0));
1461                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1462
1463                 ip.v4->tot_len = 0;
1464                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1465                                    IGC_TX_FLAGS_CSUM |
1466                                    IGC_TX_FLAGS_IPV4;
1467         } else {
1468                 ip.v6->payload_len = 0;
1469                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1470                                    IGC_TX_FLAGS_CSUM;
1471         }
1472
1473         /* determine offset of inner transport header */
1474         l4_offset = l4.hdr - skb->data;
1475
1476         /* remove payload length from inner checksum */
1477         paylen = skb->len - l4_offset;
1478         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1479                 /* compute length of segmentation header */
1480                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1481                 csum_replace_by_diff(&l4.tcp->check,
1482                                      (__force __wsum)htonl(paylen));
1483         } else {
1484                 /* compute length of segmentation header */
1485                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1486                 csum_replace_by_diff(&l4.udp->check,
1487                                      (__force __wsum)htonl(paylen));
1488         }
1489
1490         /* update gso size and bytecount with header size */
1491         first->gso_segs = skb_shinfo(skb)->gso_segs;
1492         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1493
1494         /* MSS L4LEN IDX */
1495         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1496         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1497
1498         /* VLAN MACLEN IPLEN */
1499         vlan_macip_lens = l4.hdr - ip.hdr;
1500         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1501         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1502
1503         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1504                         vlan_macip_lens, type_tucmd, mss_l4len_idx);
1505
1506         return 1;
1507 }
1508
1509 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1510                                        struct igc_ring *tx_ring)
1511 {
1512         struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1513         bool first_flag = false, insert_empty = false;
1514         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1515         __be16 protocol = vlan_get_protocol(skb);
1516         struct igc_tx_buffer *first;
1517         __le32 launch_time = 0;
1518         u32 tx_flags = 0;
1519         unsigned short f;
1520         ktime_t txtime;
1521         u8 hdr_len = 0;
1522         int tso = 0;
1523
1524         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1525          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1526          *      + 2 desc gap to keep tail from touching head,
1527          *      + 1 desc for context descriptor,
1528          * otherwise try next time
1529          */
1530         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1531                 count += TXD_USE_COUNT(skb_frag_size(
1532                                                 &skb_shinfo(skb)->frags[f]));
1533
1534         if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1535                 /* this is a hard error */
1536                 return NETDEV_TX_BUSY;
1537         }
1538
1539         if (!tx_ring->launchtime_enable)
1540                 goto done;
1541
1542         txtime = skb->tstamp;
1543         skb->tstamp = ktime_set(0, 0);
1544         launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1545
1546         if (insert_empty) {
1547                 struct igc_tx_buffer *empty_info;
1548                 struct sk_buff *empty;
1549                 void *data;
1550
1551                 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1552                 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1553                 if (!empty)
1554                         goto done;
1555
1556                 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1557                 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1558
1559                 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1560
1561                 if (igc_init_tx_empty_descriptor(tx_ring,
1562                                                  empty,
1563                                                  empty_info) < 0)
1564                         dev_kfree_skb_any(empty);
1565         }
1566
1567 done:
1568         /* record the location of the first descriptor for this packet */
1569         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1570         first->type = IGC_TX_BUFFER_TYPE_SKB;
1571         first->skb = skb;
1572         first->bytecount = skb->len;
1573         first->gso_segs = 1;
1574
1575         if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1576                 goto out_drop;
1577
1578         if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1579                 adapter->stats.txdrop++;
1580                 goto out_drop;
1581         }
1582
1583         if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1584                      skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1585                 /* FIXME: add support for retrieving timestamps from
1586                  * the other timer registers before skipping the
1587                  * timestamping request.
1588                  */
1589                 unsigned long flags;
1590
1591                 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1592                 if (!adapter->ptp_tx_skb) {
1593                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1594                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1595
1596                         adapter->ptp_tx_skb = skb_get(skb);
1597                         adapter->ptp_tx_start = jiffies;
1598                 } else {
1599                         adapter->tx_hwtstamp_skipped++;
1600                 }
1601
1602                 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1603         }
1604
1605         if (skb_vlan_tag_present(skb)) {
1606                 tx_flags |= IGC_TX_FLAGS_VLAN;
1607                 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1608         }
1609
1610         /* record initial flags and protocol */
1611         first->tx_flags = tx_flags;
1612         first->protocol = protocol;
1613
1614         tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1615         if (tso < 0)
1616                 goto out_drop;
1617         else if (!tso)
1618                 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1619
1620         igc_tx_map(tx_ring, first, hdr_len);
1621
1622         return NETDEV_TX_OK;
1623
1624 out_drop:
1625         dev_kfree_skb_any(first->skb);
1626         first->skb = NULL;
1627
1628         return NETDEV_TX_OK;
1629 }
1630
1631 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1632                                                     struct sk_buff *skb)
1633 {
1634         unsigned int r_idx = skb->queue_mapping;
1635
1636         if (r_idx >= adapter->num_tx_queues)
1637                 r_idx = r_idx % adapter->num_tx_queues;
1638
1639         return adapter->tx_ring[r_idx];
1640 }
1641
1642 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1643                                   struct net_device *netdev)
1644 {
1645         struct igc_adapter *adapter = netdev_priv(netdev);
1646
1647         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1648          * in order to meet this minimum size requirement.
1649          */
1650         if (skb->len < 17) {
1651                 if (skb_padto(skb, 17))
1652                         return NETDEV_TX_OK;
1653                 skb->len = 17;
1654         }
1655
1656         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1657 }
1658
1659 static void igc_rx_checksum(struct igc_ring *ring,
1660                             union igc_adv_rx_desc *rx_desc,
1661                             struct sk_buff *skb)
1662 {
1663         skb_checksum_none_assert(skb);
1664
1665         /* Ignore Checksum bit is set */
1666         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1667                 return;
1668
1669         /* Rx checksum disabled via ethtool */
1670         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1671                 return;
1672
1673         /* TCP/UDP checksum error bit is set */
1674         if (igc_test_staterr(rx_desc,
1675                              IGC_RXDEXT_STATERR_L4E |
1676                              IGC_RXDEXT_STATERR_IPE)) {
1677                 /* work around errata with sctp packets where the TCPE aka
1678                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1679                  * packets (aka let the stack check the crc32c)
1680                  */
1681                 if (!(skb->len == 60 &&
1682                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1683                         u64_stats_update_begin(&ring->rx_syncp);
1684                         ring->rx_stats.csum_err++;
1685                         u64_stats_update_end(&ring->rx_syncp);
1686                 }
1687                 /* let the stack verify checksum errors */
1688                 return;
1689         }
1690         /* It must be a TCP or UDP packet with a valid checksum */
1691         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1692                                       IGC_RXD_STAT_UDPCS))
1693                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1694
1695         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1696                    le32_to_cpu(rx_desc->wb.upper.status_error));
1697 }
1698
1699 /* Mapping HW RSS Type to enum pkt_hash_types */
1700 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1701         [IGC_RSS_TYPE_NO_HASH]          = PKT_HASH_TYPE_L2,
1702         [IGC_RSS_TYPE_HASH_TCP_IPV4]    = PKT_HASH_TYPE_L4,
1703         [IGC_RSS_TYPE_HASH_IPV4]        = PKT_HASH_TYPE_L3,
1704         [IGC_RSS_TYPE_HASH_TCP_IPV6]    = PKT_HASH_TYPE_L4,
1705         [IGC_RSS_TYPE_HASH_IPV6_EX]     = PKT_HASH_TYPE_L3,
1706         [IGC_RSS_TYPE_HASH_IPV6]        = PKT_HASH_TYPE_L3,
1707         [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1708         [IGC_RSS_TYPE_HASH_UDP_IPV4]    = PKT_HASH_TYPE_L4,
1709         [IGC_RSS_TYPE_HASH_UDP_IPV6]    = PKT_HASH_TYPE_L4,
1710         [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1711         [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1712         [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1713         [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1714         [13] = PKT_HASH_TYPE_NONE,
1715         [14] = PKT_HASH_TYPE_NONE,
1716         [15] = PKT_HASH_TYPE_NONE,
1717 };
1718
1719 static inline void igc_rx_hash(struct igc_ring *ring,
1720                                union igc_adv_rx_desc *rx_desc,
1721                                struct sk_buff *skb)
1722 {
1723         if (ring->netdev->features & NETIF_F_RXHASH) {
1724                 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1725                 u32 rss_type = igc_rss_type(rx_desc);
1726
1727                 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1728         }
1729 }
1730
1731 static void igc_rx_vlan(struct igc_ring *rx_ring,
1732                         union igc_adv_rx_desc *rx_desc,
1733                         struct sk_buff *skb)
1734 {
1735         struct net_device *dev = rx_ring->netdev;
1736         u16 vid;
1737
1738         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1739             igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1740                 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1741                     test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1742                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1743                 else
1744                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1745
1746                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1747         }
1748 }
1749
1750 /**
1751  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1752  * @rx_ring: rx descriptor ring packet is being transacted on
1753  * @rx_desc: pointer to the EOP Rx descriptor
1754  * @skb: pointer to current skb being populated
1755  *
1756  * This function checks the ring, descriptor, and packet information in order
1757  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1758  * skb.
1759  */
1760 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1761                                    union igc_adv_rx_desc *rx_desc,
1762                                    struct sk_buff *skb)
1763 {
1764         igc_rx_hash(rx_ring, rx_desc, skb);
1765
1766         igc_rx_checksum(rx_ring, rx_desc, skb);
1767
1768         igc_rx_vlan(rx_ring, rx_desc, skb);
1769
1770         skb_record_rx_queue(skb, rx_ring->queue_index);
1771
1772         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1773 }
1774
1775 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1776 {
1777         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1778         struct igc_adapter *adapter = netdev_priv(netdev);
1779         struct igc_hw *hw = &adapter->hw;
1780         u32 ctrl;
1781
1782         ctrl = rd32(IGC_CTRL);
1783
1784         if (enable) {
1785                 /* enable VLAN tag insert/strip */
1786                 ctrl |= IGC_CTRL_VME;
1787         } else {
1788                 /* disable VLAN tag insert/strip */
1789                 ctrl &= ~IGC_CTRL_VME;
1790         }
1791         wr32(IGC_CTRL, ctrl);
1792 }
1793
1794 static void igc_restore_vlan(struct igc_adapter *adapter)
1795 {
1796         igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1797 }
1798
1799 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1800                                                const unsigned int size,
1801                                                int *rx_buffer_pgcnt)
1802 {
1803         struct igc_rx_buffer *rx_buffer;
1804
1805         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1806         *rx_buffer_pgcnt =
1807 #if (PAGE_SIZE < 8192)
1808                 page_count(rx_buffer->page);
1809 #else
1810                 0;
1811 #endif
1812         prefetchw(rx_buffer->page);
1813
1814         /* we are reusing so sync this buffer for CPU use */
1815         dma_sync_single_range_for_cpu(rx_ring->dev,
1816                                       rx_buffer->dma,
1817                                       rx_buffer->page_offset,
1818                                       size,
1819                                       DMA_FROM_DEVICE);
1820
1821         rx_buffer->pagecnt_bias--;
1822
1823         return rx_buffer;
1824 }
1825
1826 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1827                                unsigned int truesize)
1828 {
1829 #if (PAGE_SIZE < 8192)
1830         buffer->page_offset ^= truesize;
1831 #else
1832         buffer->page_offset += truesize;
1833 #endif
1834 }
1835
1836 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1837                                               unsigned int size)
1838 {
1839         unsigned int truesize;
1840
1841 #if (PAGE_SIZE < 8192)
1842         truesize = igc_rx_pg_size(ring) / 2;
1843 #else
1844         truesize = ring_uses_build_skb(ring) ?
1845                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1846                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1847                    SKB_DATA_ALIGN(size);
1848 #endif
1849         return truesize;
1850 }
1851
1852 /**
1853  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1854  * @rx_ring: rx descriptor ring to transact packets on
1855  * @rx_buffer: buffer containing page to add
1856  * @skb: sk_buff to place the data into
1857  * @size: size of buffer to be added
1858  *
1859  * This function will add the data contained in rx_buffer->page to the skb.
1860  */
1861 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1862                             struct igc_rx_buffer *rx_buffer,
1863                             struct sk_buff *skb,
1864                             unsigned int size)
1865 {
1866         unsigned int truesize;
1867
1868 #if (PAGE_SIZE < 8192)
1869         truesize = igc_rx_pg_size(rx_ring) / 2;
1870 #else
1871         truesize = ring_uses_build_skb(rx_ring) ?
1872                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1873                    SKB_DATA_ALIGN(size);
1874 #endif
1875         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1876                         rx_buffer->page_offset, size, truesize);
1877
1878         igc_rx_buffer_flip(rx_buffer, truesize);
1879 }
1880
1881 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1882                                      struct igc_rx_buffer *rx_buffer,
1883                                      struct xdp_buff *xdp)
1884 {
1885         unsigned int size = xdp->data_end - xdp->data;
1886         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1887         unsigned int metasize = xdp->data - xdp->data_meta;
1888         struct sk_buff *skb;
1889
1890         /* prefetch first cache line of first page */
1891         net_prefetch(xdp->data_meta);
1892
1893         /* build an skb around the page buffer */
1894         skb = napi_build_skb(xdp->data_hard_start, truesize);
1895         if (unlikely(!skb))
1896                 return NULL;
1897
1898         /* update pointers within the skb to store the data */
1899         skb_reserve(skb, xdp->data - xdp->data_hard_start);
1900         __skb_put(skb, size);
1901         if (metasize)
1902                 skb_metadata_set(skb, metasize);
1903
1904         igc_rx_buffer_flip(rx_buffer, truesize);
1905         return skb;
1906 }
1907
1908 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1909                                          struct igc_rx_buffer *rx_buffer,
1910                                          struct xdp_buff *xdp,
1911                                          ktime_t timestamp)
1912 {
1913         unsigned int metasize = xdp->data - xdp->data_meta;
1914         unsigned int size = xdp->data_end - xdp->data;
1915         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1916         void *va = xdp->data;
1917         unsigned int headlen;
1918         struct sk_buff *skb;
1919
1920         /* prefetch first cache line of first page */
1921         net_prefetch(xdp->data_meta);
1922
1923         /* allocate a skb to store the frags */
1924         skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1925                              IGC_RX_HDR_LEN + metasize);
1926         if (unlikely(!skb))
1927                 return NULL;
1928
1929         if (timestamp)
1930                 skb_hwtstamps(skb)->hwtstamp = timestamp;
1931
1932         /* Determine available headroom for copy */
1933         headlen = size;
1934         if (headlen > IGC_RX_HDR_LEN)
1935                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1936
1937         /* align pull length to size of long to optimize memcpy performance */
1938         memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1939                ALIGN(headlen + metasize, sizeof(long)));
1940
1941         if (metasize) {
1942                 skb_metadata_set(skb, metasize);
1943                 __skb_pull(skb, metasize);
1944         }
1945
1946         /* update all of the pointers */
1947         size -= headlen;
1948         if (size) {
1949                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1950                                 (va + headlen) - page_address(rx_buffer->page),
1951                                 size, truesize);
1952                 igc_rx_buffer_flip(rx_buffer, truesize);
1953         } else {
1954                 rx_buffer->pagecnt_bias++;
1955         }
1956
1957         return skb;
1958 }
1959
1960 /**
1961  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1962  * @rx_ring: rx descriptor ring to store buffers on
1963  * @old_buff: donor buffer to have page reused
1964  *
1965  * Synchronizes page for reuse by the adapter
1966  */
1967 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1968                               struct igc_rx_buffer *old_buff)
1969 {
1970         u16 nta = rx_ring->next_to_alloc;
1971         struct igc_rx_buffer *new_buff;
1972
1973         new_buff = &rx_ring->rx_buffer_info[nta];
1974
1975         /* update, and store next to alloc */
1976         nta++;
1977         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1978
1979         /* Transfer page from old buffer to new buffer.
1980          * Move each member individually to avoid possible store
1981          * forwarding stalls.
1982          */
1983         new_buff->dma           = old_buff->dma;
1984         new_buff->page          = old_buff->page;
1985         new_buff->page_offset   = old_buff->page_offset;
1986         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1987 }
1988
1989 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1990                                   int rx_buffer_pgcnt)
1991 {
1992         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1993         struct page *page = rx_buffer->page;
1994
1995         /* avoid re-using remote and pfmemalloc pages */
1996         if (!dev_page_is_reusable(page))
1997                 return false;
1998
1999 #if (PAGE_SIZE < 8192)
2000         /* if we are only owner of page we can reuse it */
2001         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2002                 return false;
2003 #else
2004 #define IGC_LAST_OFFSET \
2005         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2006
2007         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2008                 return false;
2009 #endif
2010
2011         /* If we have drained the page fragment pool we need to update
2012          * the pagecnt_bias and page count so that we fully restock the
2013          * number of references the driver holds.
2014          */
2015         if (unlikely(pagecnt_bias == 1)) {
2016                 page_ref_add(page, USHRT_MAX - 1);
2017                 rx_buffer->pagecnt_bias = USHRT_MAX;
2018         }
2019
2020         return true;
2021 }
2022
2023 /**
2024  * igc_is_non_eop - process handling of non-EOP buffers
2025  * @rx_ring: Rx ring being processed
2026  * @rx_desc: Rx descriptor for current buffer
2027  *
2028  * This function updates next to clean.  If the buffer is an EOP buffer
2029  * this function exits returning false, otherwise it will place the
2030  * sk_buff in the next buffer to be chained and return true indicating
2031  * that this is in fact a non-EOP buffer.
2032  */
2033 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2034                            union igc_adv_rx_desc *rx_desc)
2035 {
2036         u32 ntc = rx_ring->next_to_clean + 1;
2037
2038         /* fetch, update, and store next to clean */
2039         ntc = (ntc < rx_ring->count) ? ntc : 0;
2040         rx_ring->next_to_clean = ntc;
2041
2042         prefetch(IGC_RX_DESC(rx_ring, ntc));
2043
2044         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2045                 return false;
2046
2047         return true;
2048 }
2049
2050 /**
2051  * igc_cleanup_headers - Correct corrupted or empty headers
2052  * @rx_ring: rx descriptor ring packet is being transacted on
2053  * @rx_desc: pointer to the EOP Rx descriptor
2054  * @skb: pointer to current skb being fixed
2055  *
2056  * Address the case where we are pulling data in on pages only
2057  * and as such no data is present in the skb header.
2058  *
2059  * In addition if skb is not at least 60 bytes we need to pad it so that
2060  * it is large enough to qualify as a valid Ethernet frame.
2061  *
2062  * Returns true if an error was encountered and skb was freed.
2063  */
2064 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2065                                 union igc_adv_rx_desc *rx_desc,
2066                                 struct sk_buff *skb)
2067 {
2068         /* XDP packets use error pointer so abort at this point */
2069         if (IS_ERR(skb))
2070                 return true;
2071
2072         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2073                 struct net_device *netdev = rx_ring->netdev;
2074
2075                 if (!(netdev->features & NETIF_F_RXALL)) {
2076                         dev_kfree_skb_any(skb);
2077                         return true;
2078                 }
2079         }
2080
2081         /* if eth_skb_pad returns an error the skb was freed */
2082         if (eth_skb_pad(skb))
2083                 return true;
2084
2085         return false;
2086 }
2087
2088 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2089                               struct igc_rx_buffer *rx_buffer,
2090                               int rx_buffer_pgcnt)
2091 {
2092         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2093                 /* hand second half of page back to the ring */
2094                 igc_reuse_rx_page(rx_ring, rx_buffer);
2095         } else {
2096                 /* We are not reusing the buffer so unmap it and free
2097                  * any references we are holding to it
2098                  */
2099                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2100                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2101                                      IGC_RX_DMA_ATTR);
2102                 __page_frag_cache_drain(rx_buffer->page,
2103                                         rx_buffer->pagecnt_bias);
2104         }
2105
2106         /* clear contents of rx_buffer */
2107         rx_buffer->page = NULL;
2108 }
2109
2110 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2111 {
2112         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2113
2114         if (ring_uses_build_skb(rx_ring))
2115                 return IGC_SKB_PAD;
2116         if (igc_xdp_is_enabled(adapter))
2117                 return XDP_PACKET_HEADROOM;
2118
2119         return 0;
2120 }
2121
2122 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2123                                   struct igc_rx_buffer *bi)
2124 {
2125         struct page *page = bi->page;
2126         dma_addr_t dma;
2127
2128         /* since we are recycling buffers we should seldom need to alloc */
2129         if (likely(page))
2130                 return true;
2131
2132         /* alloc new page for storage */
2133         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2134         if (unlikely(!page)) {
2135                 rx_ring->rx_stats.alloc_failed++;
2136                 return false;
2137         }
2138
2139         /* map page for use */
2140         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2141                                  igc_rx_pg_size(rx_ring),
2142                                  DMA_FROM_DEVICE,
2143                                  IGC_RX_DMA_ATTR);
2144
2145         /* if mapping failed free memory back to system since
2146          * there isn't much point in holding memory we can't use
2147          */
2148         if (dma_mapping_error(rx_ring->dev, dma)) {
2149                 __free_page(page);
2150
2151                 rx_ring->rx_stats.alloc_failed++;
2152                 return false;
2153         }
2154
2155         bi->dma = dma;
2156         bi->page = page;
2157         bi->page_offset = igc_rx_offset(rx_ring);
2158         page_ref_add(page, USHRT_MAX - 1);
2159         bi->pagecnt_bias = USHRT_MAX;
2160
2161         return true;
2162 }
2163
2164 /**
2165  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2166  * @rx_ring: rx descriptor ring
2167  * @cleaned_count: number of buffers to clean
2168  */
2169 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2170 {
2171         union igc_adv_rx_desc *rx_desc;
2172         u16 i = rx_ring->next_to_use;
2173         struct igc_rx_buffer *bi;
2174         u16 bufsz;
2175
2176         /* nothing to do */
2177         if (!cleaned_count)
2178                 return;
2179
2180         rx_desc = IGC_RX_DESC(rx_ring, i);
2181         bi = &rx_ring->rx_buffer_info[i];
2182         i -= rx_ring->count;
2183
2184         bufsz = igc_rx_bufsz(rx_ring);
2185
2186         do {
2187                 if (!igc_alloc_mapped_page(rx_ring, bi))
2188                         break;
2189
2190                 /* sync the buffer for use by the device */
2191                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2192                                                  bi->page_offset, bufsz,
2193                                                  DMA_FROM_DEVICE);
2194
2195                 /* Refresh the desc even if buffer_addrs didn't change
2196                  * because each write-back erases this info.
2197                  */
2198                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2199
2200                 rx_desc++;
2201                 bi++;
2202                 i++;
2203                 if (unlikely(!i)) {
2204                         rx_desc = IGC_RX_DESC(rx_ring, 0);
2205                         bi = rx_ring->rx_buffer_info;
2206                         i -= rx_ring->count;
2207                 }
2208
2209                 /* clear the length for the next_to_use descriptor */
2210                 rx_desc->wb.upper.length = 0;
2211
2212                 cleaned_count--;
2213         } while (cleaned_count);
2214
2215         i += rx_ring->count;
2216
2217         if (rx_ring->next_to_use != i) {
2218                 /* record the next descriptor to use */
2219                 rx_ring->next_to_use = i;
2220
2221                 /* update next to alloc since we have filled the ring */
2222                 rx_ring->next_to_alloc = i;
2223
2224                 /* Force memory writes to complete before letting h/w
2225                  * know there are new descriptors to fetch.  (Only
2226                  * applicable for weak-ordered memory model archs,
2227                  * such as IA-64).
2228                  */
2229                 wmb();
2230                 writel(i, rx_ring->tail);
2231         }
2232 }
2233
2234 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2235 {
2236         union igc_adv_rx_desc *desc;
2237         u16 i = ring->next_to_use;
2238         struct igc_rx_buffer *bi;
2239         dma_addr_t dma;
2240         bool ok = true;
2241
2242         if (!count)
2243                 return ok;
2244
2245         XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2246
2247         desc = IGC_RX_DESC(ring, i);
2248         bi = &ring->rx_buffer_info[i];
2249         i -= ring->count;
2250
2251         do {
2252                 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2253                 if (!bi->xdp) {
2254                         ok = false;
2255                         break;
2256                 }
2257
2258                 dma = xsk_buff_xdp_get_dma(bi->xdp);
2259                 desc->read.pkt_addr = cpu_to_le64(dma);
2260
2261                 desc++;
2262                 bi++;
2263                 i++;
2264                 if (unlikely(!i)) {
2265                         desc = IGC_RX_DESC(ring, 0);
2266                         bi = ring->rx_buffer_info;
2267                         i -= ring->count;
2268                 }
2269
2270                 /* Clear the length for the next_to_use descriptor. */
2271                 desc->wb.upper.length = 0;
2272
2273                 count--;
2274         } while (count);
2275
2276         i += ring->count;
2277
2278         if (ring->next_to_use != i) {
2279                 ring->next_to_use = i;
2280
2281                 /* Force memory writes to complete before letting h/w
2282                  * know there are new descriptors to fetch.  (Only
2283                  * applicable for weak-ordered memory model archs,
2284                  * such as IA-64).
2285                  */
2286                 wmb();
2287                 writel(i, ring->tail);
2288         }
2289
2290         return ok;
2291 }
2292
2293 /* This function requires __netif_tx_lock is held by the caller. */
2294 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2295                                       struct xdp_frame *xdpf)
2296 {
2297         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2298         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2299         u16 count, index = ring->next_to_use;
2300         struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2301         struct igc_tx_buffer *buffer = head;
2302         union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2303         u32 olinfo_status, len = xdpf->len, cmd_type;
2304         void *data = xdpf->data;
2305         u16 i;
2306
2307         count = TXD_USE_COUNT(len);
2308         for (i = 0; i < nr_frags; i++)
2309                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2310
2311         if (igc_maybe_stop_tx(ring, count + 3)) {
2312                 /* this is a hard error */
2313                 return -EBUSY;
2314         }
2315
2316         i = 0;
2317         head->bytecount = xdp_get_frame_len(xdpf);
2318         head->type = IGC_TX_BUFFER_TYPE_XDP;
2319         head->gso_segs = 1;
2320         head->xdpf = xdpf;
2321
2322         olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2323         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2324
2325         for (;;) {
2326                 dma_addr_t dma;
2327
2328                 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2329                 if (dma_mapping_error(ring->dev, dma)) {
2330                         netdev_err_once(ring->netdev,
2331                                         "Failed to map DMA for TX\n");
2332                         goto unmap;
2333                 }
2334
2335                 dma_unmap_len_set(buffer, len, len);
2336                 dma_unmap_addr_set(buffer, dma, dma);
2337
2338                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2339                            IGC_ADVTXD_DCMD_IFCS | len;
2340
2341                 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2342                 desc->read.buffer_addr = cpu_to_le64(dma);
2343
2344                 buffer->protocol = 0;
2345
2346                 if (++index == ring->count)
2347                         index = 0;
2348
2349                 if (i == nr_frags)
2350                         break;
2351
2352                 buffer = &ring->tx_buffer_info[index];
2353                 desc = IGC_TX_DESC(ring, index);
2354                 desc->read.olinfo_status = 0;
2355
2356                 data = skb_frag_address(&sinfo->frags[i]);
2357                 len = skb_frag_size(&sinfo->frags[i]);
2358                 i++;
2359         }
2360         desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2361
2362         netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2363         /* set the timestamp */
2364         head->time_stamp = jiffies;
2365         /* set next_to_watch value indicating a packet is present */
2366         head->next_to_watch = desc;
2367         ring->next_to_use = index;
2368
2369         return 0;
2370
2371 unmap:
2372         for (;;) {
2373                 buffer = &ring->tx_buffer_info[index];
2374                 if (dma_unmap_len(buffer, len))
2375                         dma_unmap_page(ring->dev,
2376                                        dma_unmap_addr(buffer, dma),
2377                                        dma_unmap_len(buffer, len),
2378                                        DMA_TO_DEVICE);
2379                 dma_unmap_len_set(buffer, len, 0);
2380                 if (buffer == head)
2381                         break;
2382
2383                 if (!index)
2384                         index += ring->count;
2385                 index--;
2386         }
2387
2388         return -ENOMEM;
2389 }
2390
2391 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2392                                             int cpu)
2393 {
2394         int index = cpu;
2395
2396         if (unlikely(index < 0))
2397                 index = 0;
2398
2399         while (index >= adapter->num_tx_queues)
2400                 index -= adapter->num_tx_queues;
2401
2402         return adapter->tx_ring[index];
2403 }
2404
2405 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2406 {
2407         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2408         int cpu = smp_processor_id();
2409         struct netdev_queue *nq;
2410         struct igc_ring *ring;
2411         int res;
2412
2413         if (unlikely(!xdpf))
2414                 return -EFAULT;
2415
2416         ring = igc_xdp_get_tx_ring(adapter, cpu);
2417         nq = txring_txq(ring);
2418
2419         __netif_tx_lock(nq, cpu);
2420         /* Avoid transmit queue timeout since we share it with the slow path */
2421         txq_trans_cond_update(nq);
2422         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2423         __netif_tx_unlock(nq);
2424         return res;
2425 }
2426
2427 /* This function assumes rcu_read_lock() is held by the caller. */
2428 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2429                               struct bpf_prog *prog,
2430                               struct xdp_buff *xdp)
2431 {
2432         u32 act = bpf_prog_run_xdp(prog, xdp);
2433
2434         switch (act) {
2435         case XDP_PASS:
2436                 return IGC_XDP_PASS;
2437         case XDP_TX:
2438                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2439                         goto out_failure;
2440                 return IGC_XDP_TX;
2441         case XDP_REDIRECT:
2442                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2443                         goto out_failure;
2444                 return IGC_XDP_REDIRECT;
2445                 break;
2446         default:
2447                 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2448                 fallthrough;
2449         case XDP_ABORTED:
2450 out_failure:
2451                 trace_xdp_exception(adapter->netdev, prog, act);
2452                 fallthrough;
2453         case XDP_DROP:
2454                 return IGC_XDP_CONSUMED;
2455         }
2456 }
2457
2458 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2459                                         struct xdp_buff *xdp)
2460 {
2461         struct bpf_prog *prog;
2462         int res;
2463
2464         prog = READ_ONCE(adapter->xdp_prog);
2465         if (!prog) {
2466                 res = IGC_XDP_PASS;
2467                 goto out;
2468         }
2469
2470         res = __igc_xdp_run_prog(adapter, prog, xdp);
2471
2472 out:
2473         return ERR_PTR(-res);
2474 }
2475
2476 /* This function assumes __netif_tx_lock is held by the caller. */
2477 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2478 {
2479         /* Once tail pointer is updated, hardware can fetch the descriptors
2480          * any time so we issue a write membar here to ensure all memory
2481          * writes are complete before the tail pointer is updated.
2482          */
2483         wmb();
2484         writel(ring->next_to_use, ring->tail);
2485 }
2486
2487 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2488 {
2489         int cpu = smp_processor_id();
2490         struct netdev_queue *nq;
2491         struct igc_ring *ring;
2492
2493         if (status & IGC_XDP_TX) {
2494                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2495                 nq = txring_txq(ring);
2496
2497                 __netif_tx_lock(nq, cpu);
2498                 igc_flush_tx_descriptors(ring);
2499                 __netif_tx_unlock(nq);
2500         }
2501
2502         if (status & IGC_XDP_REDIRECT)
2503                 xdp_do_flush();
2504 }
2505
2506 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2507                                 unsigned int packets, unsigned int bytes)
2508 {
2509         struct igc_ring *ring = q_vector->rx.ring;
2510
2511         u64_stats_update_begin(&ring->rx_syncp);
2512         ring->rx_stats.packets += packets;
2513         ring->rx_stats.bytes += bytes;
2514         u64_stats_update_end(&ring->rx_syncp);
2515
2516         q_vector->rx.total_packets += packets;
2517         q_vector->rx.total_bytes += bytes;
2518 }
2519
2520 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2521 {
2522         unsigned int total_bytes = 0, total_packets = 0;
2523         struct igc_adapter *adapter = q_vector->adapter;
2524         struct igc_ring *rx_ring = q_vector->rx.ring;
2525         struct sk_buff *skb = rx_ring->skb;
2526         u16 cleaned_count = igc_desc_unused(rx_ring);
2527         int xdp_status = 0, rx_buffer_pgcnt;
2528
2529         while (likely(total_packets < budget)) {
2530                 union igc_adv_rx_desc *rx_desc;
2531                 struct igc_rx_buffer *rx_buffer;
2532                 unsigned int size, truesize;
2533                 struct igc_xdp_buff ctx;
2534                 ktime_t timestamp = 0;
2535                 int pkt_offset = 0;
2536                 void *pktbuf;
2537
2538                 /* return some buffers to hardware, one at a time is too slow */
2539                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2540                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2541                         cleaned_count = 0;
2542                 }
2543
2544                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2545                 size = le16_to_cpu(rx_desc->wb.upper.length);
2546                 if (!size)
2547                         break;
2548
2549                 /* This memory barrier is needed to keep us from reading
2550                  * any other fields out of the rx_desc until we know the
2551                  * descriptor has been written back
2552                  */
2553                 dma_rmb();
2554
2555                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2556                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2557
2558                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2559
2560                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2561                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2562                                                         pktbuf);
2563                         ctx.rx_ts = timestamp;
2564                         pkt_offset = IGC_TS_HDR_LEN;
2565                         size -= IGC_TS_HDR_LEN;
2566                 }
2567
2568                 if (!skb) {
2569                         xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2570                         xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2571                                          igc_rx_offset(rx_ring) + pkt_offset,
2572                                          size, true);
2573                         xdp_buff_clear_frags_flag(&ctx.xdp);
2574                         ctx.rx_desc = rx_desc;
2575
2576                         skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2577                 }
2578
2579                 if (IS_ERR(skb)) {
2580                         unsigned int xdp_res = -PTR_ERR(skb);
2581
2582                         switch (xdp_res) {
2583                         case IGC_XDP_CONSUMED:
2584                                 rx_buffer->pagecnt_bias++;
2585                                 break;
2586                         case IGC_XDP_TX:
2587                         case IGC_XDP_REDIRECT:
2588                                 igc_rx_buffer_flip(rx_buffer, truesize);
2589                                 xdp_status |= xdp_res;
2590                                 break;
2591                         }
2592
2593                         total_packets++;
2594                         total_bytes += size;
2595                 } else if (skb)
2596                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2597                 else if (ring_uses_build_skb(rx_ring))
2598                         skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2599                 else
2600                         skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2601                                                 timestamp);
2602
2603                 /* exit if we failed to retrieve a buffer */
2604                 if (!skb) {
2605                         rx_ring->rx_stats.alloc_failed++;
2606                         rx_buffer->pagecnt_bias++;
2607                         break;
2608                 }
2609
2610                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2611                 cleaned_count++;
2612
2613                 /* fetch next buffer in frame if non-eop */
2614                 if (igc_is_non_eop(rx_ring, rx_desc))
2615                         continue;
2616
2617                 /* verify the packet layout is correct */
2618                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2619                         skb = NULL;
2620                         continue;
2621                 }
2622
2623                 /* probably a little skewed due to removing CRC */
2624                 total_bytes += skb->len;
2625
2626                 /* populate checksum, VLAN, and protocol */
2627                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2628
2629                 napi_gro_receive(&q_vector->napi, skb);
2630
2631                 /* reset skb pointer */
2632                 skb = NULL;
2633
2634                 /* update budget accounting */
2635                 total_packets++;
2636         }
2637
2638         if (xdp_status)
2639                 igc_finalize_xdp(adapter, xdp_status);
2640
2641         /* place incomplete frames back on ring for completion */
2642         rx_ring->skb = skb;
2643
2644         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2645
2646         if (cleaned_count)
2647                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2648
2649         return total_packets;
2650 }
2651
2652 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2653                                             struct xdp_buff *xdp)
2654 {
2655         unsigned int totalsize = xdp->data_end - xdp->data_meta;
2656         unsigned int metasize = xdp->data - xdp->data_meta;
2657         struct sk_buff *skb;
2658
2659         net_prefetch(xdp->data_meta);
2660
2661         skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2662                                GFP_ATOMIC | __GFP_NOWARN);
2663         if (unlikely(!skb))
2664                 return NULL;
2665
2666         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2667                ALIGN(totalsize, sizeof(long)));
2668
2669         if (metasize) {
2670                 skb_metadata_set(skb, metasize);
2671                 __skb_pull(skb, metasize);
2672         }
2673
2674         return skb;
2675 }
2676
2677 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2678                                 union igc_adv_rx_desc *desc,
2679                                 struct xdp_buff *xdp,
2680                                 ktime_t timestamp)
2681 {
2682         struct igc_ring *ring = q_vector->rx.ring;
2683         struct sk_buff *skb;
2684
2685         skb = igc_construct_skb_zc(ring, xdp);
2686         if (!skb) {
2687                 ring->rx_stats.alloc_failed++;
2688                 return;
2689         }
2690
2691         if (timestamp)
2692                 skb_hwtstamps(skb)->hwtstamp = timestamp;
2693
2694         if (igc_cleanup_headers(ring, desc, skb))
2695                 return;
2696
2697         igc_process_skb_fields(ring, desc, skb);
2698         napi_gro_receive(&q_vector->napi, skb);
2699 }
2700
2701 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2702 {
2703         /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2704          * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2705          * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2706          */
2707        return (struct igc_xdp_buff *)xdp;
2708 }
2709
2710 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2711 {
2712         struct igc_adapter *adapter = q_vector->adapter;
2713         struct igc_ring *ring = q_vector->rx.ring;
2714         u16 cleaned_count = igc_desc_unused(ring);
2715         int total_bytes = 0, total_packets = 0;
2716         u16 ntc = ring->next_to_clean;
2717         struct bpf_prog *prog;
2718         bool failure = false;
2719         int xdp_status = 0;
2720
2721         rcu_read_lock();
2722
2723         prog = READ_ONCE(adapter->xdp_prog);
2724
2725         while (likely(total_packets < budget)) {
2726                 union igc_adv_rx_desc *desc;
2727                 struct igc_rx_buffer *bi;
2728                 struct igc_xdp_buff *ctx;
2729                 ktime_t timestamp = 0;
2730                 unsigned int size;
2731                 int res;
2732
2733                 desc = IGC_RX_DESC(ring, ntc);
2734                 size = le16_to_cpu(desc->wb.upper.length);
2735                 if (!size)
2736                         break;
2737
2738                 /* This memory barrier is needed to keep us from reading
2739                  * any other fields out of the rx_desc until we know the
2740                  * descriptor has been written back
2741                  */
2742                 dma_rmb();
2743
2744                 bi = &ring->rx_buffer_info[ntc];
2745
2746                 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2747                 ctx->rx_desc = desc;
2748
2749                 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2750                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2751                                                         bi->xdp->data);
2752                         ctx->rx_ts = timestamp;
2753
2754                         bi->xdp->data += IGC_TS_HDR_LEN;
2755
2756                         /* HW timestamp has been copied into local variable. Metadata
2757                          * length when XDP program is called should be 0.
2758                          */
2759                         bi->xdp->data_meta += IGC_TS_HDR_LEN;
2760                         size -= IGC_TS_HDR_LEN;
2761                 }
2762
2763                 bi->xdp->data_end = bi->xdp->data + size;
2764                 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2765
2766                 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2767                 switch (res) {
2768                 case IGC_XDP_PASS:
2769                         igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2770                         fallthrough;
2771                 case IGC_XDP_CONSUMED:
2772                         xsk_buff_free(bi->xdp);
2773                         break;
2774                 case IGC_XDP_TX:
2775                 case IGC_XDP_REDIRECT:
2776                         xdp_status |= res;
2777                         break;
2778                 }
2779
2780                 bi->xdp = NULL;
2781                 total_bytes += size;
2782                 total_packets++;
2783                 cleaned_count++;
2784                 ntc++;
2785                 if (ntc == ring->count)
2786                         ntc = 0;
2787         }
2788
2789         ring->next_to_clean = ntc;
2790         rcu_read_unlock();
2791
2792         if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2793                 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2794
2795         if (xdp_status)
2796                 igc_finalize_xdp(adapter, xdp_status);
2797
2798         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2799
2800         if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2801                 if (failure || ring->next_to_clean == ring->next_to_use)
2802                         xsk_set_rx_need_wakeup(ring->xsk_pool);
2803                 else
2804                         xsk_clear_rx_need_wakeup(ring->xsk_pool);
2805                 return total_packets;
2806         }
2807
2808         return failure ? budget : total_packets;
2809 }
2810
2811 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2812                                 unsigned int packets, unsigned int bytes)
2813 {
2814         struct igc_ring *ring = q_vector->tx.ring;
2815
2816         u64_stats_update_begin(&ring->tx_syncp);
2817         ring->tx_stats.bytes += bytes;
2818         ring->tx_stats.packets += packets;
2819         u64_stats_update_end(&ring->tx_syncp);
2820
2821         q_vector->tx.total_bytes += bytes;
2822         q_vector->tx.total_packets += packets;
2823 }
2824
2825 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2826 {
2827         struct xsk_buff_pool *pool = ring->xsk_pool;
2828         struct netdev_queue *nq = txring_txq(ring);
2829         union igc_adv_tx_desc *tx_desc = NULL;
2830         int cpu = smp_processor_id();
2831         u16 ntu = ring->next_to_use;
2832         struct xdp_desc xdp_desc;
2833         u16 budget;
2834
2835         if (!netif_carrier_ok(ring->netdev))
2836                 return;
2837
2838         __netif_tx_lock(nq, cpu);
2839
2840         /* Avoid transmit queue timeout since we share it with the slow path */
2841         txq_trans_cond_update(nq);
2842
2843         budget = igc_desc_unused(ring);
2844
2845         while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2846                 u32 cmd_type, olinfo_status;
2847                 struct igc_tx_buffer *bi;
2848                 dma_addr_t dma;
2849
2850                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2851                            IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2852                            xdp_desc.len;
2853                 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2854
2855                 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2856                 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2857
2858                 tx_desc = IGC_TX_DESC(ring, ntu);
2859                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2860                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2861                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2862
2863                 bi = &ring->tx_buffer_info[ntu];
2864                 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2865                 bi->protocol = 0;
2866                 bi->bytecount = xdp_desc.len;
2867                 bi->gso_segs = 1;
2868                 bi->time_stamp = jiffies;
2869                 bi->next_to_watch = tx_desc;
2870
2871                 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2872
2873                 ntu++;
2874                 if (ntu == ring->count)
2875                         ntu = 0;
2876         }
2877
2878         ring->next_to_use = ntu;
2879         if (tx_desc) {
2880                 igc_flush_tx_descriptors(ring);
2881                 xsk_tx_release(pool);
2882         }
2883
2884         __netif_tx_unlock(nq);
2885 }
2886
2887 /**
2888  * igc_clean_tx_irq - Reclaim resources after transmit completes
2889  * @q_vector: pointer to q_vector containing needed info
2890  * @napi_budget: Used to determine if we are in netpoll
2891  *
2892  * returns true if ring is completely cleaned
2893  */
2894 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2895 {
2896         struct igc_adapter *adapter = q_vector->adapter;
2897         unsigned int total_bytes = 0, total_packets = 0;
2898         unsigned int budget = q_vector->tx.work_limit;
2899         struct igc_ring *tx_ring = q_vector->tx.ring;
2900         unsigned int i = tx_ring->next_to_clean;
2901         struct igc_tx_buffer *tx_buffer;
2902         union igc_adv_tx_desc *tx_desc;
2903         u32 xsk_frames = 0;
2904
2905         if (test_bit(__IGC_DOWN, &adapter->state))
2906                 return true;
2907
2908         tx_buffer = &tx_ring->tx_buffer_info[i];
2909         tx_desc = IGC_TX_DESC(tx_ring, i);
2910         i -= tx_ring->count;
2911
2912         do {
2913                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2914
2915                 /* if next_to_watch is not set then there is no work pending */
2916                 if (!eop_desc)
2917                         break;
2918
2919                 /* prevent any other reads prior to eop_desc */
2920                 smp_rmb();
2921
2922                 /* if DD is not set pending work has not been completed */
2923                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2924                         break;
2925
2926                 /* clear next_to_watch to prevent false hangs */
2927                 tx_buffer->next_to_watch = NULL;
2928
2929                 /* update the statistics for this packet */
2930                 total_bytes += tx_buffer->bytecount;
2931                 total_packets += tx_buffer->gso_segs;
2932
2933                 switch (tx_buffer->type) {
2934                 case IGC_TX_BUFFER_TYPE_XSK:
2935                         xsk_frames++;
2936                         break;
2937                 case IGC_TX_BUFFER_TYPE_XDP:
2938                         xdp_return_frame(tx_buffer->xdpf);
2939                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2940                         break;
2941                 case IGC_TX_BUFFER_TYPE_SKB:
2942                         napi_consume_skb(tx_buffer->skb, napi_budget);
2943                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2944                         break;
2945                 default:
2946                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2947                         break;
2948                 }
2949
2950                 /* clear last DMA location and unmap remaining buffers */
2951                 while (tx_desc != eop_desc) {
2952                         tx_buffer++;
2953                         tx_desc++;
2954                         i++;
2955                         if (unlikely(!i)) {
2956                                 i -= tx_ring->count;
2957                                 tx_buffer = tx_ring->tx_buffer_info;
2958                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2959                         }
2960
2961                         /* unmap any remaining paged data */
2962                         if (dma_unmap_len(tx_buffer, len))
2963                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2964                 }
2965
2966                 /* move us one more past the eop_desc for start of next pkt */
2967                 tx_buffer++;
2968                 tx_desc++;
2969                 i++;
2970                 if (unlikely(!i)) {
2971                         i -= tx_ring->count;
2972                         tx_buffer = tx_ring->tx_buffer_info;
2973                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2974                 }
2975
2976                 /* issue prefetch for next Tx descriptor */
2977                 prefetch(tx_desc);
2978
2979                 /* update budget accounting */
2980                 budget--;
2981         } while (likely(budget));
2982
2983         netdev_tx_completed_queue(txring_txq(tx_ring),
2984                                   total_packets, total_bytes);
2985
2986         i += tx_ring->count;
2987         tx_ring->next_to_clean = i;
2988
2989         igc_update_tx_stats(q_vector, total_packets, total_bytes);
2990
2991         if (tx_ring->xsk_pool) {
2992                 if (xsk_frames)
2993                         xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2994                 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2995                         xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2996                 igc_xdp_xmit_zc(tx_ring);
2997         }
2998
2999         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3000                 struct igc_hw *hw = &adapter->hw;
3001
3002                 /* Detect a transmit hang in hardware, this serializes the
3003                  * check with the clearing of time_stamp and movement of i
3004                  */
3005                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3006                 if (tx_buffer->next_to_watch &&
3007                     time_after(jiffies, tx_buffer->time_stamp +
3008                     (adapter->tx_timeout_factor * HZ)) &&
3009                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3010                     (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3011                     !tx_ring->oper_gate_closed) {
3012                         /* detected Tx unit hang */
3013                         netdev_err(tx_ring->netdev,
3014                                    "Detected Tx Unit Hang\n"
3015                                    "  Tx Queue             <%d>\n"
3016                                    "  TDH                  <%x>\n"
3017                                    "  TDT                  <%x>\n"
3018                                    "  next_to_use          <%x>\n"
3019                                    "  next_to_clean        <%x>\n"
3020                                    "buffer_info[next_to_clean]\n"
3021                                    "  time_stamp           <%lx>\n"
3022                                    "  next_to_watch        <%p>\n"
3023                                    "  jiffies              <%lx>\n"
3024                                    "  desc.status          <%x>\n",
3025                                    tx_ring->queue_index,
3026                                    rd32(IGC_TDH(tx_ring->reg_idx)),
3027                                    readl(tx_ring->tail),
3028                                    tx_ring->next_to_use,
3029                                    tx_ring->next_to_clean,
3030                                    tx_buffer->time_stamp,
3031                                    tx_buffer->next_to_watch,
3032                                    jiffies,
3033                                    tx_buffer->next_to_watch->wb.status);
3034                         netif_stop_subqueue(tx_ring->netdev,
3035                                             tx_ring->queue_index);
3036
3037                         /* we are about to reset, no point in enabling stuff */
3038                         return true;
3039                 }
3040         }
3041
3042 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3043         if (unlikely(total_packets &&
3044                      netif_carrier_ok(tx_ring->netdev) &&
3045                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3046                 /* Make sure that anybody stopping the queue after this
3047                  * sees the new next_to_clean.
3048                  */
3049                 smp_mb();
3050                 if (__netif_subqueue_stopped(tx_ring->netdev,
3051                                              tx_ring->queue_index) &&
3052                     !(test_bit(__IGC_DOWN, &adapter->state))) {
3053                         netif_wake_subqueue(tx_ring->netdev,
3054                                             tx_ring->queue_index);
3055
3056                         u64_stats_update_begin(&tx_ring->tx_syncp);
3057                         tx_ring->tx_stats.restart_queue++;
3058                         u64_stats_update_end(&tx_ring->tx_syncp);
3059                 }
3060         }
3061
3062         return !!budget;
3063 }
3064
3065 static int igc_find_mac_filter(struct igc_adapter *adapter,
3066                                enum igc_mac_filter_type type, const u8 *addr)
3067 {
3068         struct igc_hw *hw = &adapter->hw;
3069         int max_entries = hw->mac.rar_entry_count;
3070         u32 ral, rah;
3071         int i;
3072
3073         for (i = 0; i < max_entries; i++) {
3074                 ral = rd32(IGC_RAL(i));
3075                 rah = rd32(IGC_RAH(i));
3076
3077                 if (!(rah & IGC_RAH_AV))
3078                         continue;
3079                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3080                         continue;
3081                 if ((rah & IGC_RAH_RAH_MASK) !=
3082                     le16_to_cpup((__le16 *)(addr + 4)))
3083                         continue;
3084                 if (ral != le32_to_cpup((__le32 *)(addr)))
3085                         continue;
3086
3087                 return i;
3088         }
3089
3090         return -1;
3091 }
3092
3093 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3094 {
3095         struct igc_hw *hw = &adapter->hw;
3096         int max_entries = hw->mac.rar_entry_count;
3097         u32 rah;
3098         int i;
3099
3100         for (i = 0; i < max_entries; i++) {
3101                 rah = rd32(IGC_RAH(i));
3102
3103                 if (!(rah & IGC_RAH_AV))
3104                         return i;
3105         }
3106
3107         return -1;
3108 }
3109
3110 /**
3111  * igc_add_mac_filter() - Add MAC address filter
3112  * @adapter: Pointer to adapter where the filter should be added
3113  * @type: MAC address filter type (source or destination)
3114  * @addr: MAC address
3115  * @queue: If non-negative, queue assignment feature is enabled and frames
3116  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3117  *         assignment is disabled.
3118  *
3119  * Return: 0 in case of success, negative errno code otherwise.
3120  */
3121 static int igc_add_mac_filter(struct igc_adapter *adapter,
3122                               enum igc_mac_filter_type type, const u8 *addr,
3123                               int queue)
3124 {
3125         struct net_device *dev = adapter->netdev;
3126         int index;
3127
3128         index = igc_find_mac_filter(adapter, type, addr);
3129         if (index >= 0)
3130                 goto update_filter;
3131
3132         index = igc_get_avail_mac_filter_slot(adapter);
3133         if (index < 0)
3134                 return -ENOSPC;
3135
3136         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3137                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3138                    addr, queue);
3139
3140 update_filter:
3141         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3142         return 0;
3143 }
3144
3145 /**
3146  * igc_del_mac_filter() - Delete MAC address filter
3147  * @adapter: Pointer to adapter where the filter should be deleted from
3148  * @type: MAC address filter type (source or destination)
3149  * @addr: MAC address
3150  */
3151 static void igc_del_mac_filter(struct igc_adapter *adapter,
3152                                enum igc_mac_filter_type type, const u8 *addr)
3153 {
3154         struct net_device *dev = adapter->netdev;
3155         int index;
3156
3157         index = igc_find_mac_filter(adapter, type, addr);
3158         if (index < 0)
3159                 return;
3160
3161         if (index == 0) {
3162                 /* If this is the default filter, we don't actually delete it.
3163                  * We just reset to its default value i.e. disable queue
3164                  * assignment.
3165                  */
3166                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3167
3168                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3169         } else {
3170                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3171                            index,
3172                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3173                            addr);
3174
3175                 igc_clear_mac_filter_hw(adapter, index);
3176         }
3177 }
3178
3179 /**
3180  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3181  * @adapter: Pointer to adapter where the filter should be added
3182  * @prio: VLAN priority value
3183  * @queue: Queue number which matching frames are assigned to
3184  *
3185  * Return: 0 in case of success, negative errno code otherwise.
3186  */
3187 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3188                                     int queue)
3189 {
3190         struct net_device *dev = adapter->netdev;
3191         struct igc_hw *hw = &adapter->hw;
3192         u32 vlanpqf;
3193
3194         vlanpqf = rd32(IGC_VLANPQF);
3195
3196         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3197                 netdev_dbg(dev, "VLAN priority filter already in use\n");
3198                 return -EEXIST;
3199         }
3200
3201         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3202         vlanpqf |= IGC_VLANPQF_VALID(prio);
3203
3204         wr32(IGC_VLANPQF, vlanpqf);
3205
3206         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3207                    prio, queue);
3208         return 0;
3209 }
3210
3211 /**
3212  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3213  * @adapter: Pointer to adapter where the filter should be deleted from
3214  * @prio: VLAN priority value
3215  */
3216 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3217 {
3218         struct igc_hw *hw = &adapter->hw;
3219         u32 vlanpqf;
3220
3221         vlanpqf = rd32(IGC_VLANPQF);
3222
3223         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3224         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3225
3226         wr32(IGC_VLANPQF, vlanpqf);
3227
3228         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3229                    prio);
3230 }
3231
3232 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3233 {
3234         struct igc_hw *hw = &adapter->hw;
3235         int i;
3236
3237         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3238                 u32 etqf = rd32(IGC_ETQF(i));
3239
3240                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3241                         return i;
3242         }
3243
3244         return -1;
3245 }
3246
3247 /**
3248  * igc_add_etype_filter() - Add ethertype filter
3249  * @adapter: Pointer to adapter where the filter should be added
3250  * @etype: Ethertype value
3251  * @queue: If non-negative, queue assignment feature is enabled and frames
3252  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3253  *         assignment is disabled.
3254  *
3255  * Return: 0 in case of success, negative errno code otherwise.
3256  */
3257 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3258                                 int queue)
3259 {
3260         struct igc_hw *hw = &adapter->hw;
3261         int index;
3262         u32 etqf;
3263
3264         index = igc_get_avail_etype_filter_slot(adapter);
3265         if (index < 0)
3266                 return -ENOSPC;
3267
3268         etqf = rd32(IGC_ETQF(index));
3269
3270         etqf &= ~IGC_ETQF_ETYPE_MASK;
3271         etqf |= etype;
3272
3273         if (queue >= 0) {
3274                 etqf &= ~IGC_ETQF_QUEUE_MASK;
3275                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3276                 etqf |= IGC_ETQF_QUEUE_ENABLE;
3277         }
3278
3279         etqf |= IGC_ETQF_FILTER_ENABLE;
3280
3281         wr32(IGC_ETQF(index), etqf);
3282
3283         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3284                    etype, queue);
3285         return 0;
3286 }
3287
3288 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3289 {
3290         struct igc_hw *hw = &adapter->hw;
3291         int i;
3292
3293         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3294                 u32 etqf = rd32(IGC_ETQF(i));
3295
3296                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3297                         return i;
3298         }
3299
3300         return -1;
3301 }
3302
3303 /**
3304  * igc_del_etype_filter() - Delete ethertype filter
3305  * @adapter: Pointer to adapter where the filter should be deleted from
3306  * @etype: Ethertype value
3307  */
3308 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3309 {
3310         struct igc_hw *hw = &adapter->hw;
3311         int index;
3312
3313         index = igc_find_etype_filter(adapter, etype);
3314         if (index < 0)
3315                 return;
3316
3317         wr32(IGC_ETQF(index), 0);
3318
3319         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3320                    etype);
3321 }
3322
3323 static int igc_flex_filter_select(struct igc_adapter *adapter,
3324                                   struct igc_flex_filter *input,
3325                                   u32 *fhft)
3326 {
3327         struct igc_hw *hw = &adapter->hw;
3328         u8 fhft_index;
3329         u32 fhftsl;
3330
3331         if (input->index >= MAX_FLEX_FILTER) {
3332                 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3333                 return -EINVAL;
3334         }
3335
3336         /* Indirect table select register */
3337         fhftsl = rd32(IGC_FHFTSL);
3338         fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3339         switch (input->index) {
3340         case 0 ... 7:
3341                 fhftsl |= 0x00;
3342                 break;
3343         case 8 ... 15:
3344                 fhftsl |= 0x01;
3345                 break;
3346         case 16 ... 23:
3347                 fhftsl |= 0x02;
3348                 break;
3349         case 24 ... 31:
3350                 fhftsl |= 0x03;
3351                 break;
3352         }
3353         wr32(IGC_FHFTSL, fhftsl);
3354
3355         /* Normalize index down to host table register */
3356         fhft_index = input->index % 8;
3357
3358         *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3359                 IGC_FHFT_EXT(fhft_index - 4);
3360
3361         return 0;
3362 }
3363
3364 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3365                                     struct igc_flex_filter *input)
3366 {
3367         struct device *dev = &adapter->pdev->dev;
3368         struct igc_hw *hw = &adapter->hw;
3369         u8 *data = input->data;
3370         u8 *mask = input->mask;
3371         u32 queuing;
3372         u32 fhft;
3373         u32 wufc;
3374         int ret;
3375         int i;
3376
3377         /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3378          * out early to avoid surprises later.
3379          */
3380         if (input->length % 8 != 0) {
3381                 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3382                 return -EINVAL;
3383         }
3384
3385         /* Select corresponding flex filter register and get base for host table. */
3386         ret = igc_flex_filter_select(adapter, input, &fhft);
3387         if (ret)
3388                 return ret;
3389
3390         /* When adding a filter globally disable flex filter feature. That is
3391          * recommended within the datasheet.
3392          */
3393         wufc = rd32(IGC_WUFC);
3394         wufc &= ~IGC_WUFC_FLEX_HQ;
3395         wr32(IGC_WUFC, wufc);
3396
3397         /* Configure filter */
3398         queuing = input->length & IGC_FHFT_LENGTH_MASK;
3399         queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3400         queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3401
3402         if (input->immediate_irq)
3403                 queuing |= IGC_FHFT_IMM_INT;
3404
3405         if (input->drop)
3406                 queuing |= IGC_FHFT_DROP;
3407
3408         wr32(fhft + 0xFC, queuing);
3409
3410         /* Write data (128 byte) and mask (128 bit) */
3411         for (i = 0; i < 16; ++i) {
3412                 const size_t data_idx = i * 8;
3413                 const size_t row_idx = i * 16;
3414                 u32 dw0 =
3415                         (data[data_idx + 0] << 0) |
3416                         (data[data_idx + 1] << 8) |
3417                         (data[data_idx + 2] << 16) |
3418                         (data[data_idx + 3] << 24);
3419                 u32 dw1 =
3420                         (data[data_idx + 4] << 0) |
3421                         (data[data_idx + 5] << 8) |
3422                         (data[data_idx + 6] << 16) |
3423                         (data[data_idx + 7] << 24);
3424                 u32 tmp;
3425
3426                 /* Write row: dw0, dw1 and mask */
3427                 wr32(fhft + row_idx, dw0);
3428                 wr32(fhft + row_idx + 4, dw1);
3429
3430                 /* mask is only valid for MASK(7, 0) */
3431                 tmp = rd32(fhft + row_idx + 8);
3432                 tmp &= ~GENMASK(7, 0);
3433                 tmp |= mask[i];
3434                 wr32(fhft + row_idx + 8, tmp);
3435         }
3436
3437         /* Enable filter. */
3438         wufc |= IGC_WUFC_FLEX_HQ;
3439         if (input->index > 8) {
3440                 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3441                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3442
3443                 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3444
3445                 wr32(IGC_WUFC_EXT, wufc_ext);
3446         } else {
3447                 wufc |= (IGC_WUFC_FLX0 << input->index);
3448         }
3449         wr32(IGC_WUFC, wufc);
3450
3451         dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3452                 input->index);
3453
3454         return 0;
3455 }
3456
3457 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3458                                       const void *src, unsigned int offset,
3459                                       size_t len, const void *mask)
3460 {
3461         int i;
3462
3463         /* data */
3464         memcpy(&flex->data[offset], src, len);
3465
3466         /* mask */
3467         for (i = 0; i < len; ++i) {
3468                 const unsigned int idx = i + offset;
3469                 const u8 *ptr = mask;
3470
3471                 if (mask) {
3472                         if (ptr[i] & 0xff)
3473                                 flex->mask[idx / 8] |= BIT(idx % 8);
3474
3475                         continue;
3476                 }
3477
3478                 flex->mask[idx / 8] |= BIT(idx % 8);
3479         }
3480 }
3481
3482 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3483 {
3484         struct igc_hw *hw = &adapter->hw;
3485         u32 wufc, wufc_ext;
3486         int i;
3487
3488         wufc = rd32(IGC_WUFC);
3489         wufc_ext = rd32(IGC_WUFC_EXT);
3490
3491         for (i = 0; i < MAX_FLEX_FILTER; i++) {
3492                 if (i < 8) {
3493                         if (!(wufc & (IGC_WUFC_FLX0 << i)))
3494                                 return i;
3495                 } else {
3496                         if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3497                                 return i;
3498                 }
3499         }
3500
3501         return -ENOSPC;
3502 }
3503
3504 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3505 {
3506         struct igc_hw *hw = &adapter->hw;
3507         u32 wufc, wufc_ext;
3508
3509         wufc = rd32(IGC_WUFC);
3510         wufc_ext = rd32(IGC_WUFC_EXT);
3511
3512         if (wufc & IGC_WUFC_FILTER_MASK)
3513                 return true;
3514
3515         if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3516                 return true;
3517
3518         return false;
3519 }
3520
3521 static int igc_add_flex_filter(struct igc_adapter *adapter,
3522                                struct igc_nfc_rule *rule)
3523 {
3524         struct igc_flex_filter flex = { };
3525         struct igc_nfc_filter *filter = &rule->filter;
3526         unsigned int eth_offset, user_offset;
3527         int ret, index;
3528         bool vlan;
3529
3530         index = igc_find_avail_flex_filter_slot(adapter);
3531         if (index < 0)
3532                 return -ENOSPC;
3533
3534         /* Construct the flex filter:
3535          *  -> dest_mac [6]
3536          *  -> src_mac [6]
3537          *  -> tpid [2]
3538          *  -> vlan tci [2]
3539          *  -> ether type [2]
3540          *  -> user data [8]
3541          *  -> = 26 bytes => 32 length
3542          */
3543         flex.index    = index;
3544         flex.length   = 32;
3545         flex.rx_queue = rule->action;
3546
3547         vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3548         eth_offset = vlan ? 16 : 12;
3549         user_offset = vlan ? 18 : 14;
3550
3551         /* Add destination MAC  */
3552         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3553                 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3554                                           ETH_ALEN, NULL);
3555
3556         /* Add source MAC */
3557         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3558                 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3559                                           ETH_ALEN, NULL);
3560
3561         /* Add VLAN etype */
3562         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3563                 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3564                                           sizeof(filter->vlan_etype),
3565                                           NULL);
3566
3567         /* Add VLAN TCI */
3568         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3569                 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3570                                           sizeof(filter->vlan_tci), NULL);
3571
3572         /* Add Ether type */
3573         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3574                 __be16 etype = cpu_to_be16(filter->etype);
3575
3576                 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3577                                           sizeof(etype), NULL);
3578         }
3579
3580         /* Add user data */
3581         if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3582                 igc_flex_filter_add_field(&flex, &filter->user_data,
3583                                           user_offset,
3584                                           sizeof(filter->user_data),
3585                                           filter->user_mask);
3586
3587         /* Add it down to the hardware and enable it. */
3588         ret = igc_write_flex_filter_ll(adapter, &flex);
3589         if (ret)
3590                 return ret;
3591
3592         filter->flex_index = index;
3593
3594         return 0;
3595 }
3596
3597 static void igc_del_flex_filter(struct igc_adapter *adapter,
3598                                 u16 reg_index)
3599 {
3600         struct igc_hw *hw = &adapter->hw;
3601         u32 wufc;
3602
3603         /* Just disable the filter. The filter table itself is kept
3604          * intact. Another flex_filter_add() should override the "old" data
3605          * then.
3606          */
3607         if (reg_index > 8) {
3608                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3609
3610                 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3611                 wr32(IGC_WUFC_EXT, wufc_ext);
3612         } else {
3613                 wufc = rd32(IGC_WUFC);
3614
3615                 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3616                 wr32(IGC_WUFC, wufc);
3617         }
3618
3619         if (igc_flex_filter_in_use(adapter))
3620                 return;
3621
3622         /* No filters are in use, we may disable flex filters */
3623         wufc = rd32(IGC_WUFC);
3624         wufc &= ~IGC_WUFC_FLEX_HQ;
3625         wr32(IGC_WUFC, wufc);
3626 }
3627
3628 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3629                                struct igc_nfc_rule *rule)
3630 {
3631         int err;
3632
3633         if (rule->flex) {
3634                 return igc_add_flex_filter(adapter, rule);
3635         }
3636
3637         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3638                 err = igc_add_etype_filter(adapter, rule->filter.etype,
3639                                            rule->action);
3640                 if (err)
3641                         return err;
3642         }
3643
3644         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3645                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3646                                          rule->filter.src_addr, rule->action);
3647                 if (err)
3648                         return err;
3649         }
3650
3651         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3652                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3653                                          rule->filter.dst_addr, rule->action);
3654                 if (err)
3655                         return err;
3656         }
3657
3658         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3659                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3660                            VLAN_PRIO_SHIFT;
3661
3662                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3663                 if (err)
3664                         return err;
3665         }
3666
3667         return 0;
3668 }
3669
3670 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3671                                  const struct igc_nfc_rule *rule)
3672 {
3673         if (rule->flex) {
3674                 igc_del_flex_filter(adapter, rule->filter.flex_index);
3675                 return;
3676         }
3677
3678         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3679                 igc_del_etype_filter(adapter, rule->filter.etype);
3680
3681         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3682                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3683                            VLAN_PRIO_SHIFT;
3684
3685                 igc_del_vlan_prio_filter(adapter, prio);
3686         }
3687
3688         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3689                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3690                                    rule->filter.src_addr);
3691
3692         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3693                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3694                                    rule->filter.dst_addr);
3695 }
3696
3697 /**
3698  * igc_get_nfc_rule() - Get NFC rule
3699  * @adapter: Pointer to adapter
3700  * @location: Rule location
3701  *
3702  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3703  *
3704  * Return: Pointer to NFC rule at @location. If not found, NULL.
3705  */
3706 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3707                                       u32 location)
3708 {
3709         struct igc_nfc_rule *rule;
3710
3711         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3712                 if (rule->location == location)
3713                         return rule;
3714                 if (rule->location > location)
3715                         break;
3716         }
3717
3718         return NULL;
3719 }
3720
3721 /**
3722  * igc_del_nfc_rule() - Delete NFC rule
3723  * @adapter: Pointer to adapter
3724  * @rule: Pointer to rule to be deleted
3725  *
3726  * Disable NFC rule in hardware and delete it from adapter.
3727  *
3728  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3729  */
3730 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3731 {
3732         igc_disable_nfc_rule(adapter, rule);
3733
3734         list_del(&rule->list);
3735         adapter->nfc_rule_count--;
3736
3737         kfree(rule);
3738 }
3739
3740 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3741 {
3742         struct igc_nfc_rule *rule, *tmp;
3743
3744         mutex_lock(&adapter->nfc_rule_lock);
3745
3746         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3747                 igc_del_nfc_rule(adapter, rule);
3748
3749         mutex_unlock(&adapter->nfc_rule_lock);
3750 }
3751
3752 /**
3753  * igc_add_nfc_rule() - Add NFC rule
3754  * @adapter: Pointer to adapter
3755  * @rule: Pointer to rule to be added
3756  *
3757  * Enable NFC rule in hardware and add it to adapter.
3758  *
3759  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3760  *
3761  * Return: 0 on success, negative errno on failure.
3762  */
3763 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3764 {
3765         struct igc_nfc_rule *pred, *cur;
3766         int err;
3767
3768         err = igc_enable_nfc_rule(adapter, rule);
3769         if (err)
3770                 return err;
3771
3772         pred = NULL;
3773         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3774                 if (cur->location >= rule->location)
3775                         break;
3776                 pred = cur;
3777         }
3778
3779         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3780         adapter->nfc_rule_count++;
3781         return 0;
3782 }
3783
3784 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3785 {
3786         struct igc_nfc_rule *rule;
3787
3788         mutex_lock(&adapter->nfc_rule_lock);
3789
3790         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3791                 igc_enable_nfc_rule(adapter, rule);
3792
3793         mutex_unlock(&adapter->nfc_rule_lock);
3794 }
3795
3796 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3797 {
3798         struct igc_adapter *adapter = netdev_priv(netdev);
3799
3800         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3801 }
3802
3803 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3804 {
3805         struct igc_adapter *adapter = netdev_priv(netdev);
3806
3807         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3808         return 0;
3809 }
3810
3811 /**
3812  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3813  * @netdev: network interface device structure
3814  *
3815  * The set_rx_mode entry point is called whenever the unicast or multicast
3816  * address lists or the network interface flags are updated.  This routine is
3817  * responsible for configuring the hardware for proper unicast, multicast,
3818  * promiscuous mode, and all-multi behavior.
3819  */
3820 static void igc_set_rx_mode(struct net_device *netdev)
3821 {
3822         struct igc_adapter *adapter = netdev_priv(netdev);
3823         struct igc_hw *hw = &adapter->hw;
3824         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3825         int count;
3826
3827         /* Check for Promiscuous and All Multicast modes */
3828         if (netdev->flags & IFF_PROMISC) {
3829                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3830         } else {
3831                 if (netdev->flags & IFF_ALLMULTI) {
3832                         rctl |= IGC_RCTL_MPE;
3833                 } else {
3834                         /* Write addresses to the MTA, if the attempt fails
3835                          * then we should just turn on promiscuous mode so
3836                          * that we can at least receive multicast traffic
3837                          */
3838                         count = igc_write_mc_addr_list(netdev);
3839                         if (count < 0)
3840                                 rctl |= IGC_RCTL_MPE;
3841                 }
3842         }
3843
3844         /* Write addresses to available RAR registers, if there is not
3845          * sufficient space to store all the addresses then enable
3846          * unicast promiscuous mode
3847          */
3848         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3849                 rctl |= IGC_RCTL_UPE;
3850
3851         /* update state of unicast and multicast */
3852         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3853         wr32(IGC_RCTL, rctl);
3854
3855 #if (PAGE_SIZE < 8192)
3856         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3857                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3858 #endif
3859         wr32(IGC_RLPML, rlpml);
3860 }
3861
3862 /**
3863  * igc_configure - configure the hardware for RX and TX
3864  * @adapter: private board structure
3865  */
3866 static void igc_configure(struct igc_adapter *adapter)
3867 {
3868         struct net_device *netdev = adapter->netdev;
3869         int i = 0;
3870
3871         igc_get_hw_control(adapter);
3872         igc_set_rx_mode(netdev);
3873
3874         igc_restore_vlan(adapter);
3875
3876         igc_setup_tctl(adapter);
3877         igc_setup_mrqc(adapter);
3878         igc_setup_rctl(adapter);
3879
3880         igc_set_default_mac_filter(adapter);
3881         igc_restore_nfc_rules(adapter);
3882
3883         igc_configure_tx(adapter);
3884         igc_configure_rx(adapter);
3885
3886         igc_rx_fifo_flush_base(&adapter->hw);
3887
3888         /* call igc_desc_unused which always leaves
3889          * at least 1 descriptor unused to make sure
3890          * next_to_use != next_to_clean
3891          */
3892         for (i = 0; i < adapter->num_rx_queues; i++) {
3893                 struct igc_ring *ring = adapter->rx_ring[i];
3894
3895                 if (ring->xsk_pool)
3896                         igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3897                 else
3898                         igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3899         }
3900 }
3901
3902 /**
3903  * igc_write_ivar - configure ivar for given MSI-X vector
3904  * @hw: pointer to the HW structure
3905  * @msix_vector: vector number we are allocating to a given ring
3906  * @index: row index of IVAR register to write within IVAR table
3907  * @offset: column offset of in IVAR, should be multiple of 8
3908  *
3909  * The IVAR table consists of 2 columns,
3910  * each containing an cause allocation for an Rx and Tx ring, and a
3911  * variable number of rows depending on the number of queues supported.
3912  */
3913 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3914                            int index, int offset)
3915 {
3916         u32 ivar = array_rd32(IGC_IVAR0, index);
3917
3918         /* clear any bits that are currently set */
3919         ivar &= ~((u32)0xFF << offset);
3920
3921         /* write vector and valid bit */
3922         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3923
3924         array_wr32(IGC_IVAR0, index, ivar);
3925 }
3926
3927 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3928 {
3929         struct igc_adapter *adapter = q_vector->adapter;
3930         struct igc_hw *hw = &adapter->hw;
3931         int rx_queue = IGC_N0_QUEUE;
3932         int tx_queue = IGC_N0_QUEUE;
3933
3934         if (q_vector->rx.ring)
3935                 rx_queue = q_vector->rx.ring->reg_idx;
3936         if (q_vector->tx.ring)
3937                 tx_queue = q_vector->tx.ring->reg_idx;
3938
3939         switch (hw->mac.type) {
3940         case igc_i225:
3941                 if (rx_queue > IGC_N0_QUEUE)
3942                         igc_write_ivar(hw, msix_vector,
3943                                        rx_queue >> 1,
3944                                        (rx_queue & 0x1) << 4);
3945                 if (tx_queue > IGC_N0_QUEUE)
3946                         igc_write_ivar(hw, msix_vector,
3947                                        tx_queue >> 1,
3948                                        ((tx_queue & 0x1) << 4) + 8);
3949                 q_vector->eims_value = BIT(msix_vector);
3950                 break;
3951         default:
3952                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3953                 break;
3954         }
3955
3956         /* add q_vector eims value to global eims_enable_mask */
3957         adapter->eims_enable_mask |= q_vector->eims_value;
3958
3959         /* configure q_vector to set itr on first interrupt */
3960         q_vector->set_itr = 1;
3961 }
3962
3963 /**
3964  * igc_configure_msix - Configure MSI-X hardware
3965  * @adapter: Pointer to adapter structure
3966  *
3967  * igc_configure_msix sets up the hardware to properly
3968  * generate MSI-X interrupts.
3969  */
3970 static void igc_configure_msix(struct igc_adapter *adapter)
3971 {
3972         struct igc_hw *hw = &adapter->hw;
3973         int i, vector = 0;
3974         u32 tmp;
3975
3976         adapter->eims_enable_mask = 0;
3977
3978         /* set vector for other causes, i.e. link changes */
3979         switch (hw->mac.type) {
3980         case igc_i225:
3981                 /* Turn on MSI-X capability first, or our settings
3982                  * won't stick.  And it will take days to debug.
3983                  */
3984                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3985                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
3986                      IGC_GPIE_NSICR);
3987
3988                 /* enable msix_other interrupt */
3989                 adapter->eims_other = BIT(vector);
3990                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3991
3992                 wr32(IGC_IVAR_MISC, tmp);
3993                 break;
3994         default:
3995                 /* do nothing, since nothing else supports MSI-X */
3996                 break;
3997         } /* switch (hw->mac.type) */
3998
3999         adapter->eims_enable_mask |= adapter->eims_other;
4000
4001         for (i = 0; i < adapter->num_q_vectors; i++)
4002                 igc_assign_vector(adapter->q_vector[i], vector++);
4003
4004         wrfl();
4005 }
4006
4007 /**
4008  * igc_irq_enable - Enable default interrupt generation settings
4009  * @adapter: board private structure
4010  */
4011 static void igc_irq_enable(struct igc_adapter *adapter)
4012 {
4013         struct igc_hw *hw = &adapter->hw;
4014
4015         if (adapter->msix_entries) {
4016                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4017                 u32 regval = rd32(IGC_EIAC);
4018
4019                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4020                 regval = rd32(IGC_EIAM);
4021                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4022                 wr32(IGC_EIMS, adapter->eims_enable_mask);
4023                 wr32(IGC_IMS, ims);
4024         } else {
4025                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4026                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4027         }
4028 }
4029
4030 /**
4031  * igc_irq_disable - Mask off interrupt generation on the NIC
4032  * @adapter: board private structure
4033  */
4034 static void igc_irq_disable(struct igc_adapter *adapter)
4035 {
4036         struct igc_hw *hw = &adapter->hw;
4037
4038         if (adapter->msix_entries) {
4039                 u32 regval = rd32(IGC_EIAM);
4040
4041                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4042                 wr32(IGC_EIMC, adapter->eims_enable_mask);
4043                 regval = rd32(IGC_EIAC);
4044                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4045         }
4046
4047         wr32(IGC_IAM, 0);
4048         wr32(IGC_IMC, ~0);
4049         wrfl();
4050
4051         if (adapter->msix_entries) {
4052                 int vector = 0, i;
4053
4054                 synchronize_irq(adapter->msix_entries[vector++].vector);
4055
4056                 for (i = 0; i < adapter->num_q_vectors; i++)
4057                         synchronize_irq(adapter->msix_entries[vector++].vector);
4058         } else {
4059                 synchronize_irq(adapter->pdev->irq);
4060         }
4061 }
4062
4063 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4064                               const u32 max_rss_queues)
4065 {
4066         /* Determine if we need to pair queues. */
4067         /* If rss_queues > half of max_rss_queues, pair the queues in
4068          * order to conserve interrupts due to limited supply.
4069          */
4070         if (adapter->rss_queues > (max_rss_queues / 2))
4071                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4072         else
4073                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4074 }
4075
4076 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4077 {
4078         return IGC_MAX_RX_QUEUES;
4079 }
4080
4081 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4082 {
4083         u32 max_rss_queues;
4084
4085         max_rss_queues = igc_get_max_rss_queues(adapter);
4086         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4087
4088         igc_set_flag_queue_pairs(adapter, max_rss_queues);
4089 }
4090
4091 /**
4092  * igc_reset_q_vector - Reset config for interrupt vector
4093  * @adapter: board private structure to initialize
4094  * @v_idx: Index of vector to be reset
4095  *
4096  * If NAPI is enabled it will delete any references to the
4097  * NAPI struct. This is preparation for igc_free_q_vector.
4098  */
4099 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4100 {
4101         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4102
4103         /* if we're coming from igc_set_interrupt_capability, the vectors are
4104          * not yet allocated
4105          */
4106         if (!q_vector)
4107                 return;
4108
4109         if (q_vector->tx.ring)
4110                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4111
4112         if (q_vector->rx.ring)
4113                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4114
4115         netif_napi_del(&q_vector->napi);
4116 }
4117
4118 /**
4119  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4120  * @adapter: board private structure to initialize
4121  * @v_idx: Index of vector to be freed
4122  *
4123  * This function frees the memory allocated to the q_vector.
4124  */
4125 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4126 {
4127         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4128
4129         adapter->q_vector[v_idx] = NULL;
4130
4131         /* igc_get_stats64() might access the rings on this vector,
4132          * we must wait a grace period before freeing it.
4133          */
4134         if (q_vector)
4135                 kfree_rcu(q_vector, rcu);
4136 }
4137
4138 /**
4139  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4140  * @adapter: board private structure to initialize
4141  *
4142  * This function frees the memory allocated to the q_vectors.  In addition if
4143  * NAPI is enabled it will delete any references to the NAPI struct prior
4144  * to freeing the q_vector.
4145  */
4146 static void igc_free_q_vectors(struct igc_adapter *adapter)
4147 {
4148         int v_idx = adapter->num_q_vectors;
4149
4150         adapter->num_tx_queues = 0;
4151         adapter->num_rx_queues = 0;
4152         adapter->num_q_vectors = 0;
4153
4154         while (v_idx--) {
4155                 igc_reset_q_vector(adapter, v_idx);
4156                 igc_free_q_vector(adapter, v_idx);
4157         }
4158 }
4159
4160 /**
4161  * igc_update_itr - update the dynamic ITR value based on statistics
4162  * @q_vector: pointer to q_vector
4163  * @ring_container: ring info to update the itr for
4164  *
4165  * Stores a new ITR value based on packets and byte
4166  * counts during the last interrupt.  The advantage of per interrupt
4167  * computation is faster updates and more accurate ITR for the current
4168  * traffic pattern.  Constants in this function were computed
4169  * based on theoretical maximum wire speed and thresholds were set based
4170  * on testing data as well as attempting to minimize response time
4171  * while increasing bulk throughput.
4172  * NOTE: These calculations are only valid when operating in a single-
4173  * queue environment.
4174  */
4175 static void igc_update_itr(struct igc_q_vector *q_vector,
4176                            struct igc_ring_container *ring_container)
4177 {
4178         unsigned int packets = ring_container->total_packets;
4179         unsigned int bytes = ring_container->total_bytes;
4180         u8 itrval = ring_container->itr;
4181
4182         /* no packets, exit with status unchanged */
4183         if (packets == 0)
4184                 return;
4185
4186         switch (itrval) {
4187         case lowest_latency:
4188                 /* handle TSO and jumbo frames */
4189                 if (bytes / packets > 8000)
4190                         itrval = bulk_latency;
4191                 else if ((packets < 5) && (bytes > 512))
4192                         itrval = low_latency;
4193                 break;
4194         case low_latency:  /* 50 usec aka 20000 ints/s */
4195                 if (bytes > 10000) {
4196                         /* this if handles the TSO accounting */
4197                         if (bytes / packets > 8000)
4198                                 itrval = bulk_latency;
4199                         else if ((packets < 10) || ((bytes / packets) > 1200))
4200                                 itrval = bulk_latency;
4201                         else if ((packets > 35))
4202                                 itrval = lowest_latency;
4203                 } else if (bytes / packets > 2000) {
4204                         itrval = bulk_latency;
4205                 } else if (packets <= 2 && bytes < 512) {
4206                         itrval = lowest_latency;
4207                 }
4208                 break;
4209         case bulk_latency: /* 250 usec aka 4000 ints/s */
4210                 if (bytes > 25000) {
4211                         if (packets > 35)
4212                                 itrval = low_latency;
4213                 } else if (bytes < 1500) {
4214                         itrval = low_latency;
4215                 }
4216                 break;
4217         }
4218
4219         /* clear work counters since we have the values we need */
4220         ring_container->total_bytes = 0;
4221         ring_container->total_packets = 0;
4222
4223         /* write updated itr to ring container */
4224         ring_container->itr = itrval;
4225 }
4226
4227 static void igc_set_itr(struct igc_q_vector *q_vector)
4228 {
4229         struct igc_adapter *adapter = q_vector->adapter;
4230         u32 new_itr = q_vector->itr_val;
4231         u8 current_itr = 0;
4232
4233         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4234         switch (adapter->link_speed) {
4235         case SPEED_10:
4236         case SPEED_100:
4237                 current_itr = 0;
4238                 new_itr = IGC_4K_ITR;
4239                 goto set_itr_now;
4240         default:
4241                 break;
4242         }
4243
4244         igc_update_itr(q_vector, &q_vector->tx);
4245         igc_update_itr(q_vector, &q_vector->rx);
4246
4247         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4248
4249         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4250         if (current_itr == lowest_latency &&
4251             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4252             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4253                 current_itr = low_latency;
4254
4255         switch (current_itr) {
4256         /* counts and packets in update_itr are dependent on these numbers */
4257         case lowest_latency:
4258                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4259                 break;
4260         case low_latency:
4261                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4262                 break;
4263         case bulk_latency:
4264                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4265                 break;
4266         default:
4267                 break;
4268         }
4269
4270 set_itr_now:
4271         if (new_itr != q_vector->itr_val) {
4272                 /* this attempts to bias the interrupt rate towards Bulk
4273                  * by adding intermediate steps when interrupt rate is
4274                  * increasing
4275                  */
4276                 new_itr = new_itr > q_vector->itr_val ?
4277                           max((new_itr * q_vector->itr_val) /
4278                           (new_itr + (q_vector->itr_val >> 2)),
4279                           new_itr) : new_itr;
4280                 /* Don't write the value here; it resets the adapter's
4281                  * internal timer, and causes us to delay far longer than
4282                  * we should between interrupts.  Instead, we write the ITR
4283                  * value at the beginning of the next interrupt so the timing
4284                  * ends up being correct.
4285                  */
4286                 q_vector->itr_val = new_itr;
4287                 q_vector->set_itr = 1;
4288         }
4289 }
4290
4291 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4292 {
4293         int v_idx = adapter->num_q_vectors;
4294
4295         if (adapter->msix_entries) {
4296                 pci_disable_msix(adapter->pdev);
4297                 kfree(adapter->msix_entries);
4298                 adapter->msix_entries = NULL;
4299         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4300                 pci_disable_msi(adapter->pdev);
4301         }
4302
4303         while (v_idx--)
4304                 igc_reset_q_vector(adapter, v_idx);
4305 }
4306
4307 /**
4308  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4309  * @adapter: Pointer to adapter structure
4310  * @msix: boolean value for MSI-X capability
4311  *
4312  * Attempt to configure interrupts using the best available
4313  * capabilities of the hardware and kernel.
4314  */
4315 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4316                                          bool msix)
4317 {
4318         int numvecs, i;
4319         int err;
4320
4321         if (!msix)
4322                 goto msi_only;
4323         adapter->flags |= IGC_FLAG_HAS_MSIX;
4324
4325         /* Number of supported queues. */
4326         adapter->num_rx_queues = adapter->rss_queues;
4327
4328         adapter->num_tx_queues = adapter->rss_queues;
4329
4330         /* start with one vector for every Rx queue */
4331         numvecs = adapter->num_rx_queues;
4332
4333         /* if Tx handler is separate add 1 for every Tx queue */
4334         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4335                 numvecs += adapter->num_tx_queues;
4336
4337         /* store the number of vectors reserved for queues */
4338         adapter->num_q_vectors = numvecs;
4339
4340         /* add 1 vector for link status interrupts */
4341         numvecs++;
4342
4343         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4344                                         GFP_KERNEL);
4345
4346         if (!adapter->msix_entries)
4347                 return;
4348
4349         /* populate entry values */
4350         for (i = 0; i < numvecs; i++)
4351                 adapter->msix_entries[i].entry = i;
4352
4353         err = pci_enable_msix_range(adapter->pdev,
4354                                     adapter->msix_entries,
4355                                     numvecs,
4356                                     numvecs);
4357         if (err > 0)
4358                 return;
4359
4360         kfree(adapter->msix_entries);
4361         adapter->msix_entries = NULL;
4362
4363         igc_reset_interrupt_capability(adapter);
4364
4365 msi_only:
4366         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4367
4368         adapter->rss_queues = 1;
4369         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4370         adapter->num_rx_queues = 1;
4371         adapter->num_tx_queues = 1;
4372         adapter->num_q_vectors = 1;
4373         if (!pci_enable_msi(adapter->pdev))
4374                 adapter->flags |= IGC_FLAG_HAS_MSI;
4375 }
4376
4377 /**
4378  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4379  * @q_vector: pointer to q_vector
4380  *
4381  * Stores a new ITR value based on strictly on packet size.  This
4382  * algorithm is less sophisticated than that used in igc_update_itr,
4383  * due to the difficulty of synchronizing statistics across multiple
4384  * receive rings.  The divisors and thresholds used by this function
4385  * were determined based on theoretical maximum wire speed and testing
4386  * data, in order to minimize response time while increasing bulk
4387  * throughput.
4388  * NOTE: This function is called only when operating in a multiqueue
4389  * receive environment.
4390  */
4391 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4392 {
4393         struct igc_adapter *adapter = q_vector->adapter;
4394         int new_val = q_vector->itr_val;
4395         int avg_wire_size = 0;
4396         unsigned int packets;
4397
4398         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4399          * ints/sec - ITR timer value of 120 ticks.
4400          */
4401         switch (adapter->link_speed) {
4402         case SPEED_10:
4403         case SPEED_100:
4404                 new_val = IGC_4K_ITR;
4405                 goto set_itr_val;
4406         default:
4407                 break;
4408         }
4409
4410         packets = q_vector->rx.total_packets;
4411         if (packets)
4412                 avg_wire_size = q_vector->rx.total_bytes / packets;
4413
4414         packets = q_vector->tx.total_packets;
4415         if (packets)
4416                 avg_wire_size = max_t(u32, avg_wire_size,
4417                                       q_vector->tx.total_bytes / packets);
4418
4419         /* if avg_wire_size isn't set no work was done */
4420         if (!avg_wire_size)
4421                 goto clear_counts;
4422
4423         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4424         avg_wire_size += 24;
4425
4426         /* Don't starve jumbo frames */
4427         avg_wire_size = min(avg_wire_size, 3000);
4428
4429         /* Give a little boost to mid-size frames */
4430         if (avg_wire_size > 300 && avg_wire_size < 1200)
4431                 new_val = avg_wire_size / 3;
4432         else
4433                 new_val = avg_wire_size / 2;
4434
4435         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4436         if (new_val < IGC_20K_ITR &&
4437             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4438             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4439                 new_val = IGC_20K_ITR;
4440
4441 set_itr_val:
4442         if (new_val != q_vector->itr_val) {
4443                 q_vector->itr_val = new_val;
4444                 q_vector->set_itr = 1;
4445         }
4446 clear_counts:
4447         q_vector->rx.total_bytes = 0;
4448         q_vector->rx.total_packets = 0;
4449         q_vector->tx.total_bytes = 0;
4450         q_vector->tx.total_packets = 0;
4451 }
4452
4453 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4454 {
4455         struct igc_adapter *adapter = q_vector->adapter;
4456         struct igc_hw *hw = &adapter->hw;
4457
4458         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4459             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4460                 if (adapter->num_q_vectors == 1)
4461                         igc_set_itr(q_vector);
4462                 else
4463                         igc_update_ring_itr(q_vector);
4464         }
4465
4466         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4467                 if (adapter->msix_entries)
4468                         wr32(IGC_EIMS, q_vector->eims_value);
4469                 else
4470                         igc_irq_enable(adapter);
4471         }
4472 }
4473
4474 static void igc_add_ring(struct igc_ring *ring,
4475                          struct igc_ring_container *head)
4476 {
4477         head->ring = ring;
4478         head->count++;
4479 }
4480
4481 /**
4482  * igc_cache_ring_register - Descriptor ring to register mapping
4483  * @adapter: board private structure to initialize
4484  *
4485  * Once we know the feature-set enabled for the device, we'll cache
4486  * the register offset the descriptor ring is assigned to.
4487  */
4488 static void igc_cache_ring_register(struct igc_adapter *adapter)
4489 {
4490         int i = 0, j = 0;
4491
4492         switch (adapter->hw.mac.type) {
4493         case igc_i225:
4494         default:
4495                 for (; i < adapter->num_rx_queues; i++)
4496                         adapter->rx_ring[i]->reg_idx = i;
4497                 for (; j < adapter->num_tx_queues; j++)
4498                         adapter->tx_ring[j]->reg_idx = j;
4499                 break;
4500         }
4501 }
4502
4503 /**
4504  * igc_poll - NAPI Rx polling callback
4505  * @napi: napi polling structure
4506  * @budget: count of how many packets we should handle
4507  */
4508 static int igc_poll(struct napi_struct *napi, int budget)
4509 {
4510         struct igc_q_vector *q_vector = container_of(napi,
4511                                                      struct igc_q_vector,
4512                                                      napi);
4513         struct igc_ring *rx_ring = q_vector->rx.ring;
4514         bool clean_complete = true;
4515         int work_done = 0;
4516
4517         if (q_vector->tx.ring)
4518                 clean_complete = igc_clean_tx_irq(q_vector, budget);
4519
4520         if (rx_ring) {
4521                 int cleaned = rx_ring->xsk_pool ?
4522                               igc_clean_rx_irq_zc(q_vector, budget) :
4523                               igc_clean_rx_irq(q_vector, budget);
4524
4525                 work_done += cleaned;
4526                 if (cleaned >= budget)
4527                         clean_complete = false;
4528         }
4529
4530         /* If all work not completed, return budget and keep polling */
4531         if (!clean_complete)
4532                 return budget;
4533
4534         /* Exit the polling mode, but don't re-enable interrupts if stack might
4535          * poll us due to busy-polling
4536          */
4537         if (likely(napi_complete_done(napi, work_done)))
4538                 igc_ring_irq_enable(q_vector);
4539
4540         return min(work_done, budget - 1);
4541 }
4542
4543 /**
4544  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4545  * @adapter: board private structure to initialize
4546  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4547  * @v_idx: index of vector in adapter struct
4548  * @txr_count: total number of Tx rings to allocate
4549  * @txr_idx: index of first Tx ring to allocate
4550  * @rxr_count: total number of Rx rings to allocate
4551  * @rxr_idx: index of first Rx ring to allocate
4552  *
4553  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4554  */
4555 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4556                               unsigned int v_count, unsigned int v_idx,
4557                               unsigned int txr_count, unsigned int txr_idx,
4558                               unsigned int rxr_count, unsigned int rxr_idx)
4559 {
4560         struct igc_q_vector *q_vector;
4561         struct igc_ring *ring;
4562         int ring_count;
4563
4564         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4565         if (txr_count > 1 || rxr_count > 1)
4566                 return -ENOMEM;
4567
4568         ring_count = txr_count + rxr_count;
4569
4570         /* allocate q_vector and rings */
4571         q_vector = adapter->q_vector[v_idx];
4572         if (!q_vector)
4573                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4574                                    GFP_KERNEL);
4575         else
4576                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4577         if (!q_vector)
4578                 return -ENOMEM;
4579
4580         /* initialize NAPI */
4581         netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4582
4583         /* tie q_vector and adapter together */
4584         adapter->q_vector[v_idx] = q_vector;
4585         q_vector->adapter = adapter;
4586
4587         /* initialize work limits */
4588         q_vector->tx.work_limit = adapter->tx_work_limit;
4589
4590         /* initialize ITR configuration */
4591         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4592         q_vector->itr_val = IGC_START_ITR;
4593
4594         /* initialize pointer to rings */
4595         ring = q_vector->ring;
4596
4597         /* initialize ITR */
4598         if (rxr_count) {
4599                 /* rx or rx/tx vector */
4600                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4601                         q_vector->itr_val = adapter->rx_itr_setting;
4602         } else {
4603                 /* tx only vector */
4604                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4605                         q_vector->itr_val = adapter->tx_itr_setting;
4606         }
4607
4608         if (txr_count) {
4609                 /* assign generic ring traits */
4610                 ring->dev = &adapter->pdev->dev;
4611                 ring->netdev = adapter->netdev;
4612
4613                 /* configure backlink on ring */
4614                 ring->q_vector = q_vector;
4615
4616                 /* update q_vector Tx values */
4617                 igc_add_ring(ring, &q_vector->tx);
4618
4619                 /* apply Tx specific ring traits */
4620                 ring->count = adapter->tx_ring_count;
4621                 ring->queue_index = txr_idx;
4622
4623                 /* assign ring to adapter */
4624                 adapter->tx_ring[txr_idx] = ring;
4625
4626                 /* push pointer to next ring */
4627                 ring++;
4628         }
4629
4630         if (rxr_count) {
4631                 /* assign generic ring traits */
4632                 ring->dev = &adapter->pdev->dev;
4633                 ring->netdev = adapter->netdev;
4634
4635                 /* configure backlink on ring */
4636                 ring->q_vector = q_vector;
4637
4638                 /* update q_vector Rx values */
4639                 igc_add_ring(ring, &q_vector->rx);
4640
4641                 /* apply Rx specific ring traits */
4642                 ring->count = adapter->rx_ring_count;
4643                 ring->queue_index = rxr_idx;
4644
4645                 /* assign ring to adapter */
4646                 adapter->rx_ring[rxr_idx] = ring;
4647         }
4648
4649         return 0;
4650 }
4651
4652 /**
4653  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4654  * @adapter: board private structure to initialize
4655  *
4656  * We allocate one q_vector per queue interrupt.  If allocation fails we
4657  * return -ENOMEM.
4658  */
4659 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4660 {
4661         int rxr_remaining = adapter->num_rx_queues;
4662         int txr_remaining = adapter->num_tx_queues;
4663         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4664         int q_vectors = adapter->num_q_vectors;
4665         int err;
4666
4667         if (q_vectors >= (rxr_remaining + txr_remaining)) {
4668                 for (; rxr_remaining; v_idx++) {
4669                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4670                                                  0, 0, 1, rxr_idx);
4671
4672                         if (err)
4673                                 goto err_out;
4674
4675                         /* update counts and index */
4676                         rxr_remaining--;
4677                         rxr_idx++;
4678                 }
4679         }
4680
4681         for (; v_idx < q_vectors; v_idx++) {
4682                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4683                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4684
4685                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4686                                          tqpv, txr_idx, rqpv, rxr_idx);
4687
4688                 if (err)
4689                         goto err_out;
4690
4691                 /* update counts and index */
4692                 rxr_remaining -= rqpv;
4693                 txr_remaining -= tqpv;
4694                 rxr_idx++;
4695                 txr_idx++;
4696         }
4697
4698         return 0;
4699
4700 err_out:
4701         adapter->num_tx_queues = 0;
4702         adapter->num_rx_queues = 0;
4703         adapter->num_q_vectors = 0;
4704
4705         while (v_idx--)
4706                 igc_free_q_vector(adapter, v_idx);
4707
4708         return -ENOMEM;
4709 }
4710
4711 /**
4712  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4713  * @adapter: Pointer to adapter structure
4714  * @msix: boolean for MSI-X capability
4715  *
4716  * This function initializes the interrupts and allocates all of the queues.
4717  */
4718 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4719 {
4720         struct net_device *dev = adapter->netdev;
4721         int err = 0;
4722
4723         igc_set_interrupt_capability(adapter, msix);
4724
4725         err = igc_alloc_q_vectors(adapter);
4726         if (err) {
4727                 netdev_err(dev, "Unable to allocate memory for vectors\n");
4728                 goto err_alloc_q_vectors;
4729         }
4730
4731         igc_cache_ring_register(adapter);
4732
4733         return 0;
4734
4735 err_alloc_q_vectors:
4736         igc_reset_interrupt_capability(adapter);
4737         return err;
4738 }
4739
4740 /**
4741  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4742  * @adapter: board private structure to initialize
4743  *
4744  * igc_sw_init initializes the Adapter private data structure.
4745  * Fields are initialized based on PCI device information and
4746  * OS network device settings (MTU size).
4747  */
4748 static int igc_sw_init(struct igc_adapter *adapter)
4749 {
4750         struct net_device *netdev = adapter->netdev;
4751         struct pci_dev *pdev = adapter->pdev;
4752         struct igc_hw *hw = &adapter->hw;
4753
4754         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4755
4756         /* set default ring sizes */
4757         adapter->tx_ring_count = IGC_DEFAULT_TXD;
4758         adapter->rx_ring_count = IGC_DEFAULT_RXD;
4759
4760         /* set default ITR values */
4761         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4762         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4763
4764         /* set default work limits */
4765         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4766
4767         /* adjust max frame to be at least the size of a standard frame */
4768         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4769                                 VLAN_HLEN;
4770         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4771
4772         mutex_init(&adapter->nfc_rule_lock);
4773         INIT_LIST_HEAD(&adapter->nfc_rule_list);
4774         adapter->nfc_rule_count = 0;
4775
4776         spin_lock_init(&adapter->stats64_lock);
4777         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4778         adapter->flags |= IGC_FLAG_HAS_MSIX;
4779
4780         igc_init_queue_configuration(adapter);
4781
4782         /* This call may decrease the number of queues */
4783         if (igc_init_interrupt_scheme(adapter, true)) {
4784                 netdev_err(netdev, "Unable to allocate memory for queues\n");
4785                 return -ENOMEM;
4786         }
4787
4788         /* Explicitly disable IRQ since the NIC can be in any state. */
4789         igc_irq_disable(adapter);
4790
4791         set_bit(__IGC_DOWN, &adapter->state);
4792
4793         return 0;
4794 }
4795
4796 /**
4797  * igc_up - Open the interface and prepare it to handle traffic
4798  * @adapter: board private structure
4799  */
4800 void igc_up(struct igc_adapter *adapter)
4801 {
4802         struct igc_hw *hw = &adapter->hw;
4803         int i = 0;
4804
4805         /* hardware has been reset, we need to reload some things */
4806         igc_configure(adapter);
4807
4808         clear_bit(__IGC_DOWN, &adapter->state);
4809
4810         for (i = 0; i < adapter->num_q_vectors; i++)
4811                 napi_enable(&adapter->q_vector[i]->napi);
4812
4813         if (adapter->msix_entries)
4814                 igc_configure_msix(adapter);
4815         else
4816                 igc_assign_vector(adapter->q_vector[0], 0);
4817
4818         /* Clear any pending interrupts. */
4819         rd32(IGC_ICR);
4820         igc_irq_enable(adapter);
4821
4822         netif_tx_start_all_queues(adapter->netdev);
4823
4824         /* start the watchdog. */
4825         hw->mac.get_link_status = true;
4826         schedule_work(&adapter->watchdog_task);
4827 }
4828
4829 /**
4830  * igc_update_stats - Update the board statistics counters
4831  * @adapter: board private structure
4832  */
4833 void igc_update_stats(struct igc_adapter *adapter)
4834 {
4835         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4836         struct pci_dev *pdev = adapter->pdev;
4837         struct igc_hw *hw = &adapter->hw;
4838         u64 _bytes, _packets;
4839         u64 bytes, packets;
4840         unsigned int start;
4841         u32 mpc;
4842         int i;
4843
4844         /* Prevent stats update while adapter is being reset, or if the pci
4845          * connection is down.
4846          */
4847         if (adapter->link_speed == 0)
4848                 return;
4849         if (pci_channel_offline(pdev))
4850                 return;
4851
4852         packets = 0;
4853         bytes = 0;
4854
4855         rcu_read_lock();
4856         for (i = 0; i < adapter->num_rx_queues; i++) {
4857                 struct igc_ring *ring = adapter->rx_ring[i];
4858                 u32 rqdpc = rd32(IGC_RQDPC(i));
4859
4860                 if (hw->mac.type >= igc_i225)
4861                         wr32(IGC_RQDPC(i), 0);
4862
4863                 if (rqdpc) {
4864                         ring->rx_stats.drops += rqdpc;
4865                         net_stats->rx_fifo_errors += rqdpc;
4866                 }
4867
4868                 do {
4869                         start = u64_stats_fetch_begin(&ring->rx_syncp);
4870                         _bytes = ring->rx_stats.bytes;
4871                         _packets = ring->rx_stats.packets;
4872                 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4873                 bytes += _bytes;
4874                 packets += _packets;
4875         }
4876
4877         net_stats->rx_bytes = bytes;
4878         net_stats->rx_packets = packets;
4879
4880         packets = 0;
4881         bytes = 0;
4882         for (i = 0; i < adapter->num_tx_queues; i++) {
4883                 struct igc_ring *ring = adapter->tx_ring[i];
4884
4885                 do {
4886                         start = u64_stats_fetch_begin(&ring->tx_syncp);
4887                         _bytes = ring->tx_stats.bytes;
4888                         _packets = ring->tx_stats.packets;
4889                 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4890                 bytes += _bytes;
4891                 packets += _packets;
4892         }
4893         net_stats->tx_bytes = bytes;
4894         net_stats->tx_packets = packets;
4895         rcu_read_unlock();
4896
4897         /* read stats registers */
4898         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4899         adapter->stats.gprc += rd32(IGC_GPRC);
4900         adapter->stats.gorc += rd32(IGC_GORCL);
4901         rd32(IGC_GORCH); /* clear GORCL */
4902         adapter->stats.bprc += rd32(IGC_BPRC);
4903         adapter->stats.mprc += rd32(IGC_MPRC);
4904         adapter->stats.roc += rd32(IGC_ROC);
4905
4906         adapter->stats.prc64 += rd32(IGC_PRC64);
4907         adapter->stats.prc127 += rd32(IGC_PRC127);
4908         adapter->stats.prc255 += rd32(IGC_PRC255);
4909         adapter->stats.prc511 += rd32(IGC_PRC511);
4910         adapter->stats.prc1023 += rd32(IGC_PRC1023);
4911         adapter->stats.prc1522 += rd32(IGC_PRC1522);
4912         adapter->stats.tlpic += rd32(IGC_TLPIC);
4913         adapter->stats.rlpic += rd32(IGC_RLPIC);
4914         adapter->stats.hgptc += rd32(IGC_HGPTC);
4915
4916         mpc = rd32(IGC_MPC);
4917         adapter->stats.mpc += mpc;
4918         net_stats->rx_fifo_errors += mpc;
4919         adapter->stats.scc += rd32(IGC_SCC);
4920         adapter->stats.ecol += rd32(IGC_ECOL);
4921         adapter->stats.mcc += rd32(IGC_MCC);
4922         adapter->stats.latecol += rd32(IGC_LATECOL);
4923         adapter->stats.dc += rd32(IGC_DC);
4924         adapter->stats.rlec += rd32(IGC_RLEC);
4925         adapter->stats.xonrxc += rd32(IGC_XONRXC);
4926         adapter->stats.xontxc += rd32(IGC_XONTXC);
4927         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4928         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4929         adapter->stats.fcruc += rd32(IGC_FCRUC);
4930         adapter->stats.gptc += rd32(IGC_GPTC);
4931         adapter->stats.gotc += rd32(IGC_GOTCL);
4932         rd32(IGC_GOTCH); /* clear GOTCL */
4933         adapter->stats.rnbc += rd32(IGC_RNBC);
4934         adapter->stats.ruc += rd32(IGC_RUC);
4935         adapter->stats.rfc += rd32(IGC_RFC);
4936         adapter->stats.rjc += rd32(IGC_RJC);
4937         adapter->stats.tor += rd32(IGC_TORH);
4938         adapter->stats.tot += rd32(IGC_TOTH);
4939         adapter->stats.tpr += rd32(IGC_TPR);
4940
4941         adapter->stats.ptc64 += rd32(IGC_PTC64);
4942         adapter->stats.ptc127 += rd32(IGC_PTC127);
4943         adapter->stats.ptc255 += rd32(IGC_PTC255);
4944         adapter->stats.ptc511 += rd32(IGC_PTC511);
4945         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4946         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4947
4948         adapter->stats.mptc += rd32(IGC_MPTC);
4949         adapter->stats.bptc += rd32(IGC_BPTC);
4950
4951         adapter->stats.tpt += rd32(IGC_TPT);
4952         adapter->stats.colc += rd32(IGC_COLC);
4953         adapter->stats.colc += rd32(IGC_RERC);
4954
4955         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4956
4957         adapter->stats.tsctc += rd32(IGC_TSCTC);
4958
4959         adapter->stats.iac += rd32(IGC_IAC);
4960
4961         /* Fill out the OS statistics structure */
4962         net_stats->multicast = adapter->stats.mprc;
4963         net_stats->collisions = adapter->stats.colc;
4964
4965         /* Rx Errors */
4966
4967         /* RLEC on some newer hardware can be incorrect so build
4968          * our own version based on RUC and ROC
4969          */
4970         net_stats->rx_errors = adapter->stats.rxerrc +
4971                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4972                 adapter->stats.ruc + adapter->stats.roc +
4973                 adapter->stats.cexterr;
4974         net_stats->rx_length_errors = adapter->stats.ruc +
4975                                       adapter->stats.roc;
4976         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4977         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4978         net_stats->rx_missed_errors = adapter->stats.mpc;
4979
4980         /* Tx Errors */
4981         net_stats->tx_errors = adapter->stats.ecol +
4982                                adapter->stats.latecol;
4983         net_stats->tx_aborted_errors = adapter->stats.ecol;
4984         net_stats->tx_window_errors = adapter->stats.latecol;
4985         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4986
4987         /* Tx Dropped */
4988         net_stats->tx_dropped = adapter->stats.txdrop;
4989
4990         /* Management Stats */
4991         adapter->stats.mgptc += rd32(IGC_MGTPTC);
4992         adapter->stats.mgprc += rd32(IGC_MGTPRC);
4993         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4994 }
4995
4996 /**
4997  * igc_down - Close the interface
4998  * @adapter: board private structure
4999  */
5000 void igc_down(struct igc_adapter *adapter)
5001 {
5002         struct net_device *netdev = adapter->netdev;
5003         struct igc_hw *hw = &adapter->hw;
5004         u32 tctl, rctl;
5005         int i = 0;
5006
5007         set_bit(__IGC_DOWN, &adapter->state);
5008
5009         igc_ptp_suspend(adapter);
5010
5011         if (pci_device_is_present(adapter->pdev)) {
5012                 /* disable receives in the hardware */
5013                 rctl = rd32(IGC_RCTL);
5014                 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5015                 /* flush and sleep below */
5016         }
5017         /* set trans_start so we don't get spurious watchdogs during reset */
5018         netif_trans_update(netdev);
5019
5020         netif_carrier_off(netdev);
5021         netif_tx_stop_all_queues(netdev);
5022
5023         if (pci_device_is_present(adapter->pdev)) {
5024                 /* disable transmits in the hardware */
5025                 tctl = rd32(IGC_TCTL);
5026                 tctl &= ~IGC_TCTL_EN;
5027                 wr32(IGC_TCTL, tctl);
5028                 /* flush both disables and wait for them to finish */
5029                 wrfl();
5030                 usleep_range(10000, 20000);
5031
5032                 igc_irq_disable(adapter);
5033         }
5034
5035         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5036
5037         for (i = 0; i < adapter->num_q_vectors; i++) {
5038                 if (adapter->q_vector[i]) {
5039                         napi_synchronize(&adapter->q_vector[i]->napi);
5040                         napi_disable(&adapter->q_vector[i]->napi);
5041                 }
5042         }
5043
5044         del_timer_sync(&adapter->watchdog_timer);
5045         del_timer_sync(&adapter->phy_info_timer);
5046
5047         /* record the stats before reset*/
5048         spin_lock(&adapter->stats64_lock);
5049         igc_update_stats(adapter);
5050         spin_unlock(&adapter->stats64_lock);
5051
5052         adapter->link_speed = 0;
5053         adapter->link_duplex = 0;
5054
5055         if (!pci_channel_offline(adapter->pdev))
5056                 igc_reset(adapter);
5057
5058         /* clear VLAN promisc flag so VFTA will be updated if necessary */
5059         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5060
5061         igc_clean_all_tx_rings(adapter);
5062         igc_clean_all_rx_rings(adapter);
5063 }
5064
5065 void igc_reinit_locked(struct igc_adapter *adapter)
5066 {
5067         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5068                 usleep_range(1000, 2000);
5069         igc_down(adapter);
5070         igc_up(adapter);
5071         clear_bit(__IGC_RESETTING, &adapter->state);
5072 }
5073
5074 static void igc_reset_task(struct work_struct *work)
5075 {
5076         struct igc_adapter *adapter;
5077
5078         adapter = container_of(work, struct igc_adapter, reset_task);
5079
5080         rtnl_lock();
5081         /* If we're already down or resetting, just bail */
5082         if (test_bit(__IGC_DOWN, &adapter->state) ||
5083             test_bit(__IGC_RESETTING, &adapter->state)) {
5084                 rtnl_unlock();
5085                 return;
5086         }
5087
5088         igc_rings_dump(adapter);
5089         igc_regs_dump(adapter);
5090         netdev_err(adapter->netdev, "Reset adapter\n");
5091         igc_reinit_locked(adapter);
5092         rtnl_unlock();
5093 }
5094
5095 /**
5096  * igc_change_mtu - Change the Maximum Transfer Unit
5097  * @netdev: network interface device structure
5098  * @new_mtu: new value for maximum frame size
5099  *
5100  * Returns 0 on success, negative on failure
5101  */
5102 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5103 {
5104         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5105         struct igc_adapter *adapter = netdev_priv(netdev);
5106
5107         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5108                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5109                 return -EINVAL;
5110         }
5111
5112         /* adjust max frame to be at least the size of a standard frame */
5113         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5114                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5115
5116         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5117                 usleep_range(1000, 2000);
5118
5119         /* igc_down has a dependency on max_frame_size */
5120         adapter->max_frame_size = max_frame;
5121
5122         if (netif_running(netdev))
5123                 igc_down(adapter);
5124
5125         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5126         netdev->mtu = new_mtu;
5127
5128         if (netif_running(netdev))
5129                 igc_up(adapter);
5130         else
5131                 igc_reset(adapter);
5132
5133         clear_bit(__IGC_RESETTING, &adapter->state);
5134
5135         return 0;
5136 }
5137
5138 /**
5139  * igc_tx_timeout - Respond to a Tx Hang
5140  * @netdev: network interface device structure
5141  * @txqueue: queue number that timed out
5142  **/
5143 static void igc_tx_timeout(struct net_device *netdev,
5144                            unsigned int __always_unused txqueue)
5145 {
5146         struct igc_adapter *adapter = netdev_priv(netdev);
5147         struct igc_hw *hw = &adapter->hw;
5148
5149         /* Do the reset outside of interrupt context */
5150         adapter->tx_timeout_count++;
5151         schedule_work(&adapter->reset_task);
5152         wr32(IGC_EICS,
5153              (adapter->eims_enable_mask & ~adapter->eims_other));
5154 }
5155
5156 /**
5157  * igc_get_stats64 - Get System Network Statistics
5158  * @netdev: network interface device structure
5159  * @stats: rtnl_link_stats64 pointer
5160  *
5161  * Returns the address of the device statistics structure.
5162  * The statistics are updated here and also from the timer callback.
5163  */
5164 static void igc_get_stats64(struct net_device *netdev,
5165                             struct rtnl_link_stats64 *stats)
5166 {
5167         struct igc_adapter *adapter = netdev_priv(netdev);
5168
5169         spin_lock(&adapter->stats64_lock);
5170         if (!test_bit(__IGC_RESETTING, &adapter->state))
5171                 igc_update_stats(adapter);
5172         memcpy(stats, &adapter->stats64, sizeof(*stats));
5173         spin_unlock(&adapter->stats64_lock);
5174 }
5175
5176 static netdev_features_t igc_fix_features(struct net_device *netdev,
5177                                           netdev_features_t features)
5178 {
5179         /* Since there is no support for separate Rx/Tx vlan accel
5180          * enable/disable make sure Tx flag is always in same state as Rx.
5181          */
5182         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5183                 features |= NETIF_F_HW_VLAN_CTAG_TX;
5184         else
5185                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5186
5187         return features;
5188 }
5189
5190 static int igc_set_features(struct net_device *netdev,
5191                             netdev_features_t features)
5192 {
5193         netdev_features_t changed = netdev->features ^ features;
5194         struct igc_adapter *adapter = netdev_priv(netdev);
5195
5196         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5197                 igc_vlan_mode(netdev, features);
5198
5199         /* Add VLAN support */
5200         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5201                 return 0;
5202
5203         if (!(features & NETIF_F_NTUPLE))
5204                 igc_flush_nfc_rules(adapter);
5205
5206         netdev->features = features;
5207
5208         if (netif_running(netdev))
5209                 igc_reinit_locked(adapter);
5210         else
5211                 igc_reset(adapter);
5212
5213         return 1;
5214 }
5215
5216 static netdev_features_t
5217 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5218                    netdev_features_t features)
5219 {
5220         unsigned int network_hdr_len, mac_hdr_len;
5221
5222         /* Make certain the headers can be described by a context descriptor */
5223         mac_hdr_len = skb_network_header(skb) - skb->data;
5224         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5225                 return features & ~(NETIF_F_HW_CSUM |
5226                                     NETIF_F_SCTP_CRC |
5227                                     NETIF_F_HW_VLAN_CTAG_TX |
5228                                     NETIF_F_TSO |
5229                                     NETIF_F_TSO6);
5230
5231         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5232         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5233                 return features & ~(NETIF_F_HW_CSUM |
5234                                     NETIF_F_SCTP_CRC |
5235                                     NETIF_F_TSO |
5236                                     NETIF_F_TSO6);
5237
5238         /* We can only support IPv4 TSO in tunnels if we can mangle the
5239          * inner IP ID field, so strip TSO if MANGLEID is not supported.
5240          */
5241         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5242                 features &= ~NETIF_F_TSO;
5243
5244         return features;
5245 }
5246
5247 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5248 {
5249         u32 ack, tsauxc, sec, nsec, tsicr;
5250         struct igc_hw *hw = &adapter->hw;
5251         struct ptp_clock_event event;
5252         struct timespec64 ts;
5253
5254         tsicr = rd32(IGC_TSICR);
5255         ack = 0;
5256
5257         if (tsicr & IGC_TSICR_SYS_WRAP) {
5258                 event.type = PTP_CLOCK_PPS;
5259                 if (adapter->ptp_caps.pps)
5260                         ptp_clock_event(adapter->ptp_clock, &event);
5261                 ack |= IGC_TSICR_SYS_WRAP;
5262         }
5263
5264         if (tsicr & IGC_TSICR_TXTS) {
5265                 /* retrieve hardware timestamp */
5266                 igc_ptp_tx_tstamp_event(adapter);
5267                 ack |= IGC_TSICR_TXTS;
5268         }
5269
5270         if (tsicr & IGC_TSICR_TT0) {
5271                 spin_lock(&adapter->tmreg_lock);
5272                 ts = timespec64_add(adapter->perout[0].start,
5273                                     adapter->perout[0].period);
5274                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5275                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5276                 tsauxc = rd32(IGC_TSAUXC);
5277                 tsauxc |= IGC_TSAUXC_EN_TT0;
5278                 wr32(IGC_TSAUXC, tsauxc);
5279                 adapter->perout[0].start = ts;
5280                 spin_unlock(&adapter->tmreg_lock);
5281                 ack |= IGC_TSICR_TT0;
5282         }
5283
5284         if (tsicr & IGC_TSICR_TT1) {
5285                 spin_lock(&adapter->tmreg_lock);
5286                 ts = timespec64_add(adapter->perout[1].start,
5287                                     adapter->perout[1].period);
5288                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5289                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5290                 tsauxc = rd32(IGC_TSAUXC);
5291                 tsauxc |= IGC_TSAUXC_EN_TT1;
5292                 wr32(IGC_TSAUXC, tsauxc);
5293                 adapter->perout[1].start = ts;
5294                 spin_unlock(&adapter->tmreg_lock);
5295                 ack |= IGC_TSICR_TT1;
5296         }
5297
5298         if (tsicr & IGC_TSICR_AUTT0) {
5299                 nsec = rd32(IGC_AUXSTMPL0);
5300                 sec  = rd32(IGC_AUXSTMPH0);
5301                 event.type = PTP_CLOCK_EXTTS;
5302                 event.index = 0;
5303                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5304                 ptp_clock_event(adapter->ptp_clock, &event);
5305                 ack |= IGC_TSICR_AUTT0;
5306         }
5307
5308         if (tsicr & IGC_TSICR_AUTT1) {
5309                 nsec = rd32(IGC_AUXSTMPL1);
5310                 sec  = rd32(IGC_AUXSTMPH1);
5311                 event.type = PTP_CLOCK_EXTTS;
5312                 event.index = 1;
5313                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5314                 ptp_clock_event(adapter->ptp_clock, &event);
5315                 ack |= IGC_TSICR_AUTT1;
5316         }
5317
5318         /* acknowledge the interrupts */
5319         wr32(IGC_TSICR, ack);
5320 }
5321
5322 /**
5323  * igc_msix_other - msix other interrupt handler
5324  * @irq: interrupt number
5325  * @data: pointer to a q_vector
5326  */
5327 static irqreturn_t igc_msix_other(int irq, void *data)
5328 {
5329         struct igc_adapter *adapter = data;
5330         struct igc_hw *hw = &adapter->hw;
5331         u32 icr = rd32(IGC_ICR);
5332
5333         /* reading ICR causes bit 31 of EICR to be cleared */
5334         if (icr & IGC_ICR_DRSTA)
5335                 schedule_work(&adapter->reset_task);
5336
5337         if (icr & IGC_ICR_DOUTSYNC) {
5338                 /* HW is reporting DMA is out of sync */
5339                 adapter->stats.doosync++;
5340         }
5341
5342         if (icr & IGC_ICR_LSC) {
5343                 hw->mac.get_link_status = true;
5344                 /* guard against interrupt when we're going down */
5345                 if (!test_bit(__IGC_DOWN, &adapter->state))
5346                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5347         }
5348
5349         if (icr & IGC_ICR_TS)
5350                 igc_tsync_interrupt(adapter);
5351
5352         wr32(IGC_EIMS, adapter->eims_other);
5353
5354         return IRQ_HANDLED;
5355 }
5356
5357 static void igc_write_itr(struct igc_q_vector *q_vector)
5358 {
5359         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5360
5361         if (!q_vector->set_itr)
5362                 return;
5363
5364         if (!itr_val)
5365                 itr_val = IGC_ITR_VAL_MASK;
5366
5367         itr_val |= IGC_EITR_CNT_IGNR;
5368
5369         writel(itr_val, q_vector->itr_register);
5370         q_vector->set_itr = 0;
5371 }
5372
5373 static irqreturn_t igc_msix_ring(int irq, void *data)
5374 {
5375         struct igc_q_vector *q_vector = data;
5376
5377         /* Write the ITR value calculated from the previous interrupt. */
5378         igc_write_itr(q_vector);
5379
5380         napi_schedule(&q_vector->napi);
5381
5382         return IRQ_HANDLED;
5383 }
5384
5385 /**
5386  * igc_request_msix - Initialize MSI-X interrupts
5387  * @adapter: Pointer to adapter structure
5388  *
5389  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5390  * kernel.
5391  */
5392 static int igc_request_msix(struct igc_adapter *adapter)
5393 {
5394         unsigned int num_q_vectors = adapter->num_q_vectors;
5395         int i = 0, err = 0, vector = 0, free_vector = 0;
5396         struct net_device *netdev = adapter->netdev;
5397
5398         err = request_irq(adapter->msix_entries[vector].vector,
5399                           &igc_msix_other, 0, netdev->name, adapter);
5400         if (err)
5401                 goto err_out;
5402
5403         if (num_q_vectors > MAX_Q_VECTORS) {
5404                 num_q_vectors = MAX_Q_VECTORS;
5405                 dev_warn(&adapter->pdev->dev,
5406                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5407                          adapter->num_q_vectors, MAX_Q_VECTORS);
5408         }
5409         for (i = 0; i < num_q_vectors; i++) {
5410                 struct igc_q_vector *q_vector = adapter->q_vector[i];
5411
5412                 vector++;
5413
5414                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5415
5416                 if (q_vector->rx.ring && q_vector->tx.ring)
5417                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5418                                 q_vector->rx.ring->queue_index);
5419                 else if (q_vector->tx.ring)
5420                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5421                                 q_vector->tx.ring->queue_index);
5422                 else if (q_vector->rx.ring)
5423                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5424                                 q_vector->rx.ring->queue_index);
5425                 else
5426                         sprintf(q_vector->name, "%s-unused", netdev->name);
5427
5428                 err = request_irq(adapter->msix_entries[vector].vector,
5429                                   igc_msix_ring, 0, q_vector->name,
5430                                   q_vector);
5431                 if (err)
5432                         goto err_free;
5433         }
5434
5435         igc_configure_msix(adapter);
5436         return 0;
5437
5438 err_free:
5439         /* free already assigned IRQs */
5440         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5441
5442         vector--;
5443         for (i = 0; i < vector; i++) {
5444                 free_irq(adapter->msix_entries[free_vector++].vector,
5445                          adapter->q_vector[i]);
5446         }
5447 err_out:
5448         return err;
5449 }
5450
5451 /**
5452  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5453  * @adapter: Pointer to adapter structure
5454  *
5455  * This function resets the device so that it has 0 rx queues, tx queues, and
5456  * MSI-X interrupts allocated.
5457  */
5458 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5459 {
5460         igc_free_q_vectors(adapter);
5461         igc_reset_interrupt_capability(adapter);
5462 }
5463
5464 /* Need to wait a few seconds after link up to get diagnostic information from
5465  * the phy
5466  */
5467 static void igc_update_phy_info(struct timer_list *t)
5468 {
5469         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5470
5471         igc_get_phy_info(&adapter->hw);
5472 }
5473
5474 /**
5475  * igc_has_link - check shared code for link and determine up/down
5476  * @adapter: pointer to driver private info
5477  */
5478 bool igc_has_link(struct igc_adapter *adapter)
5479 {
5480         struct igc_hw *hw = &adapter->hw;
5481         bool link_active = false;
5482
5483         /* get_link_status is set on LSC (link status) interrupt or
5484          * rx sequence error interrupt.  get_link_status will stay
5485          * false until the igc_check_for_link establishes link
5486          * for copper adapters ONLY
5487          */
5488         if (!hw->mac.get_link_status)
5489                 return true;
5490         hw->mac.ops.check_for_link(hw);
5491         link_active = !hw->mac.get_link_status;
5492
5493         if (hw->mac.type == igc_i225) {
5494                 if (!netif_carrier_ok(adapter->netdev)) {
5495                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5496                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5497                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5498                         adapter->link_check_timeout = jiffies;
5499                 }
5500         }
5501
5502         return link_active;
5503 }
5504
5505 /**
5506  * igc_watchdog - Timer Call-back
5507  * @t: timer for the watchdog
5508  */
5509 static void igc_watchdog(struct timer_list *t)
5510 {
5511         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5512         /* Do the rest outside of interrupt context */
5513         schedule_work(&adapter->watchdog_task);
5514 }
5515
5516 static void igc_watchdog_task(struct work_struct *work)
5517 {
5518         struct igc_adapter *adapter = container_of(work,
5519                                                    struct igc_adapter,
5520                                                    watchdog_task);
5521         struct net_device *netdev = adapter->netdev;
5522         struct igc_hw *hw = &adapter->hw;
5523         struct igc_phy_info *phy = &hw->phy;
5524         u16 phy_data, retry_count = 20;
5525         u32 link;
5526         int i;
5527
5528         link = igc_has_link(adapter);
5529
5530         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5531                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5532                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5533                 else
5534                         link = false;
5535         }
5536
5537         if (link) {
5538                 /* Cancel scheduled suspend requests. */
5539                 pm_runtime_resume(netdev->dev.parent);
5540
5541                 if (!netif_carrier_ok(netdev)) {
5542                         u32 ctrl;
5543
5544                         hw->mac.ops.get_speed_and_duplex(hw,
5545                                                          &adapter->link_speed,
5546                                                          &adapter->link_duplex);
5547
5548                         ctrl = rd32(IGC_CTRL);
5549                         /* Link status message must follow this format */
5550                         netdev_info(netdev,
5551                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5552                                     adapter->link_speed,
5553                                     adapter->link_duplex == FULL_DUPLEX ?
5554                                     "Full" : "Half",
5555                                     (ctrl & IGC_CTRL_TFCE) &&
5556                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5557                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5558                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5559
5560                         /* disable EEE if enabled */
5561                         if ((adapter->flags & IGC_FLAG_EEE) &&
5562                             adapter->link_duplex == HALF_DUPLEX) {
5563                                 netdev_info(netdev,
5564                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5565                                 adapter->hw.dev_spec._base.eee_enable = false;
5566                                 adapter->flags &= ~IGC_FLAG_EEE;
5567                         }
5568
5569                         /* check if SmartSpeed worked */
5570                         igc_check_downshift(hw);
5571                         if (phy->speed_downgraded)
5572                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5573
5574                         /* adjust timeout factor according to speed/duplex */
5575                         adapter->tx_timeout_factor = 1;
5576                         switch (adapter->link_speed) {
5577                         case SPEED_10:
5578                                 adapter->tx_timeout_factor = 14;
5579                                 break;
5580                         case SPEED_100:
5581                         case SPEED_1000:
5582                         case SPEED_2500:
5583                                 adapter->tx_timeout_factor = 1;
5584                                 break;
5585                         }
5586
5587                         /* Once the launch time has been set on the wire, there
5588                          * is a delay before the link speed can be determined
5589                          * based on link-up activity. Write into the register
5590                          * as soon as we know the correct link speed.
5591                          */
5592                         igc_tsn_adjust_txtime_offset(adapter);
5593
5594                         if (adapter->link_speed != SPEED_1000)
5595                                 goto no_wait;
5596
5597                         /* wait for Remote receiver status OK */
5598 retry_read_status:
5599                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5600                                               &phy_data)) {
5601                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5602                                     retry_count) {
5603                                         msleep(100);
5604                                         retry_count--;
5605                                         goto retry_read_status;
5606                                 } else if (!retry_count) {
5607                                         netdev_err(netdev, "exceed max 2 second\n");
5608                                 }
5609                         } else {
5610                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5611                         }
5612 no_wait:
5613                         netif_carrier_on(netdev);
5614
5615                         /* link state has changed, schedule phy info update */
5616                         if (!test_bit(__IGC_DOWN, &adapter->state))
5617                                 mod_timer(&adapter->phy_info_timer,
5618                                           round_jiffies(jiffies + 2 * HZ));
5619                 }
5620         } else {
5621                 if (netif_carrier_ok(netdev)) {
5622                         adapter->link_speed = 0;
5623                         adapter->link_duplex = 0;
5624
5625                         /* Links status message must follow this format */
5626                         netdev_info(netdev, "NIC Link is Down\n");
5627                         netif_carrier_off(netdev);
5628
5629                         /* link state has changed, schedule phy info update */
5630                         if (!test_bit(__IGC_DOWN, &adapter->state))
5631                                 mod_timer(&adapter->phy_info_timer,
5632                                           round_jiffies(jiffies + 2 * HZ));
5633
5634                         pm_schedule_suspend(netdev->dev.parent,
5635                                             MSEC_PER_SEC * 5);
5636                 }
5637         }
5638
5639         spin_lock(&adapter->stats64_lock);
5640         igc_update_stats(adapter);
5641         spin_unlock(&adapter->stats64_lock);
5642
5643         for (i = 0; i < adapter->num_tx_queues; i++) {
5644                 struct igc_ring *tx_ring = adapter->tx_ring[i];
5645
5646                 if (!netif_carrier_ok(netdev)) {
5647                         /* We've lost link, so the controller stops DMA,
5648                          * but we've got queued Tx work that's never going
5649                          * to get done, so reset controller to flush Tx.
5650                          * (Do the reset outside of interrupt context).
5651                          */
5652                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5653                                 adapter->tx_timeout_count++;
5654                                 schedule_work(&adapter->reset_task);
5655                                 /* return immediately since reset is imminent */
5656                                 return;
5657                         }
5658                 }
5659
5660                 /* Force detection of hung controller every watchdog period */
5661                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5662         }
5663
5664         /* Cause software interrupt to ensure Rx ring is cleaned */
5665         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5666                 u32 eics = 0;
5667
5668                 for (i = 0; i < adapter->num_q_vectors; i++)
5669                         eics |= adapter->q_vector[i]->eims_value;
5670                 wr32(IGC_EICS, eics);
5671         } else {
5672                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5673         }
5674
5675         igc_ptp_tx_hang(adapter);
5676
5677         /* Reset the timer */
5678         if (!test_bit(__IGC_DOWN, &adapter->state)) {
5679                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5680                         mod_timer(&adapter->watchdog_timer,
5681                                   round_jiffies(jiffies +  HZ));
5682                 else
5683                         mod_timer(&adapter->watchdog_timer,
5684                                   round_jiffies(jiffies + 2 * HZ));
5685         }
5686 }
5687
5688 /**
5689  * igc_intr_msi - Interrupt Handler
5690  * @irq: interrupt number
5691  * @data: pointer to a network interface device structure
5692  */
5693 static irqreturn_t igc_intr_msi(int irq, void *data)
5694 {
5695         struct igc_adapter *adapter = data;
5696         struct igc_q_vector *q_vector = adapter->q_vector[0];
5697         struct igc_hw *hw = &adapter->hw;
5698         /* read ICR disables interrupts using IAM */
5699         u32 icr = rd32(IGC_ICR);
5700
5701         igc_write_itr(q_vector);
5702
5703         if (icr & IGC_ICR_DRSTA)
5704                 schedule_work(&adapter->reset_task);
5705
5706         if (icr & IGC_ICR_DOUTSYNC) {
5707                 /* HW is reporting DMA is out of sync */
5708                 adapter->stats.doosync++;
5709         }
5710
5711         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5712                 hw->mac.get_link_status = true;
5713                 if (!test_bit(__IGC_DOWN, &adapter->state))
5714                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5715         }
5716
5717         if (icr & IGC_ICR_TS)
5718                 igc_tsync_interrupt(adapter);
5719
5720         napi_schedule(&q_vector->napi);
5721
5722         return IRQ_HANDLED;
5723 }
5724
5725 /**
5726  * igc_intr - Legacy Interrupt Handler
5727  * @irq: interrupt number
5728  * @data: pointer to a network interface device structure
5729  */
5730 static irqreturn_t igc_intr(int irq, void *data)
5731 {
5732         struct igc_adapter *adapter = data;
5733         struct igc_q_vector *q_vector = adapter->q_vector[0];
5734         struct igc_hw *hw = &adapter->hw;
5735         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5736          * need for the IMC write
5737          */
5738         u32 icr = rd32(IGC_ICR);
5739
5740         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5741          * not set, then the adapter didn't send an interrupt
5742          */
5743         if (!(icr & IGC_ICR_INT_ASSERTED))
5744                 return IRQ_NONE;
5745
5746         igc_write_itr(q_vector);
5747
5748         if (icr & IGC_ICR_DRSTA)
5749                 schedule_work(&adapter->reset_task);
5750
5751         if (icr & IGC_ICR_DOUTSYNC) {
5752                 /* HW is reporting DMA is out of sync */
5753                 adapter->stats.doosync++;
5754         }
5755
5756         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5757                 hw->mac.get_link_status = true;
5758                 /* guard against interrupt when we're going down */
5759                 if (!test_bit(__IGC_DOWN, &adapter->state))
5760                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5761         }
5762
5763         if (icr & IGC_ICR_TS)
5764                 igc_tsync_interrupt(adapter);
5765
5766         napi_schedule(&q_vector->napi);
5767
5768         return IRQ_HANDLED;
5769 }
5770
5771 static void igc_free_irq(struct igc_adapter *adapter)
5772 {
5773         if (adapter->msix_entries) {
5774                 int vector = 0, i;
5775
5776                 free_irq(adapter->msix_entries[vector++].vector, adapter);
5777
5778                 for (i = 0; i < adapter->num_q_vectors; i++)
5779                         free_irq(adapter->msix_entries[vector++].vector,
5780                                  adapter->q_vector[i]);
5781         } else {
5782                 free_irq(adapter->pdev->irq, adapter);
5783         }
5784 }
5785
5786 /**
5787  * igc_request_irq - initialize interrupts
5788  * @adapter: Pointer to adapter structure
5789  *
5790  * Attempts to configure interrupts using the best available
5791  * capabilities of the hardware and kernel.
5792  */
5793 static int igc_request_irq(struct igc_adapter *adapter)
5794 {
5795         struct net_device *netdev = adapter->netdev;
5796         struct pci_dev *pdev = adapter->pdev;
5797         int err = 0;
5798
5799         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5800                 err = igc_request_msix(adapter);
5801                 if (!err)
5802                         goto request_done;
5803                 /* fall back to MSI */
5804                 igc_free_all_tx_resources(adapter);
5805                 igc_free_all_rx_resources(adapter);
5806
5807                 igc_clear_interrupt_scheme(adapter);
5808                 err = igc_init_interrupt_scheme(adapter, false);
5809                 if (err)
5810                         goto request_done;
5811                 igc_setup_all_tx_resources(adapter);
5812                 igc_setup_all_rx_resources(adapter);
5813                 igc_configure(adapter);
5814         }
5815
5816         igc_assign_vector(adapter->q_vector[0], 0);
5817
5818         if (adapter->flags & IGC_FLAG_HAS_MSI) {
5819                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5820                                   netdev->name, adapter);
5821                 if (!err)
5822                         goto request_done;
5823
5824                 /* fall back to legacy interrupts */
5825                 igc_reset_interrupt_capability(adapter);
5826                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5827         }
5828
5829         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5830                           netdev->name, adapter);
5831
5832         if (err)
5833                 netdev_err(netdev, "Error %d getting interrupt\n", err);
5834
5835 request_done:
5836         return err;
5837 }
5838
5839 /**
5840  * __igc_open - Called when a network interface is made active
5841  * @netdev: network interface device structure
5842  * @resuming: boolean indicating if the device is resuming
5843  *
5844  * Returns 0 on success, negative value on failure
5845  *
5846  * The open entry point is called when a network interface is made
5847  * active by the system (IFF_UP).  At this point all resources needed
5848  * for transmit and receive operations are allocated, the interrupt
5849  * handler is registered with the OS, the watchdog timer is started,
5850  * and the stack is notified that the interface is ready.
5851  */
5852 static int __igc_open(struct net_device *netdev, bool resuming)
5853 {
5854         struct igc_adapter *adapter = netdev_priv(netdev);
5855         struct pci_dev *pdev = adapter->pdev;
5856         struct igc_hw *hw = &adapter->hw;
5857         int err = 0;
5858         int i = 0;
5859
5860         /* disallow open during test */
5861
5862         if (test_bit(__IGC_TESTING, &adapter->state)) {
5863                 WARN_ON(resuming);
5864                 return -EBUSY;
5865         }
5866
5867         if (!resuming)
5868                 pm_runtime_get_sync(&pdev->dev);
5869
5870         netif_carrier_off(netdev);
5871
5872         /* allocate transmit descriptors */
5873         err = igc_setup_all_tx_resources(adapter);
5874         if (err)
5875                 goto err_setup_tx;
5876
5877         /* allocate receive descriptors */
5878         err = igc_setup_all_rx_resources(adapter);
5879         if (err)
5880                 goto err_setup_rx;
5881
5882         igc_power_up_link(adapter);
5883
5884         igc_configure(adapter);
5885
5886         err = igc_request_irq(adapter);
5887         if (err)
5888                 goto err_req_irq;
5889
5890         /* Notify the stack of the actual queue counts. */
5891         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5892         if (err)
5893                 goto err_set_queues;
5894
5895         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5896         if (err)
5897                 goto err_set_queues;
5898
5899         clear_bit(__IGC_DOWN, &adapter->state);
5900
5901         for (i = 0; i < adapter->num_q_vectors; i++)
5902                 napi_enable(&adapter->q_vector[i]->napi);
5903
5904         /* Clear any pending interrupts. */
5905         rd32(IGC_ICR);
5906         igc_irq_enable(adapter);
5907
5908         if (!resuming)
5909                 pm_runtime_put(&pdev->dev);
5910
5911         netif_tx_start_all_queues(netdev);
5912
5913         /* start the watchdog. */
5914         hw->mac.get_link_status = true;
5915         schedule_work(&adapter->watchdog_task);
5916
5917         return IGC_SUCCESS;
5918
5919 err_set_queues:
5920         igc_free_irq(adapter);
5921 err_req_irq:
5922         igc_release_hw_control(adapter);
5923         igc_power_down_phy_copper_base(&adapter->hw);
5924         igc_free_all_rx_resources(adapter);
5925 err_setup_rx:
5926         igc_free_all_tx_resources(adapter);
5927 err_setup_tx:
5928         igc_reset(adapter);
5929         if (!resuming)
5930                 pm_runtime_put(&pdev->dev);
5931
5932         return err;
5933 }
5934
5935 int igc_open(struct net_device *netdev)
5936 {
5937         return __igc_open(netdev, false);
5938 }
5939
5940 /**
5941  * __igc_close - Disables a network interface
5942  * @netdev: network interface device structure
5943  * @suspending: boolean indicating the device is suspending
5944  *
5945  * Returns 0, this is not allowed to fail
5946  *
5947  * The close entry point is called when an interface is de-activated
5948  * by the OS.  The hardware is still under the driver's control, but
5949  * needs to be disabled.  A global MAC reset is issued to stop the
5950  * hardware, and all transmit and receive resources are freed.
5951  */
5952 static int __igc_close(struct net_device *netdev, bool suspending)
5953 {
5954         struct igc_adapter *adapter = netdev_priv(netdev);
5955         struct pci_dev *pdev = adapter->pdev;
5956
5957         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5958
5959         if (!suspending)
5960                 pm_runtime_get_sync(&pdev->dev);
5961
5962         igc_down(adapter);
5963
5964         igc_release_hw_control(adapter);
5965
5966         igc_free_irq(adapter);
5967
5968         igc_free_all_tx_resources(adapter);
5969         igc_free_all_rx_resources(adapter);
5970
5971         if (!suspending)
5972                 pm_runtime_put_sync(&pdev->dev);
5973
5974         return 0;
5975 }
5976
5977 int igc_close(struct net_device *netdev)
5978 {
5979         if (netif_device_present(netdev) || netdev->dismantle)
5980                 return __igc_close(netdev, false);
5981         return 0;
5982 }
5983
5984 /**
5985  * igc_ioctl - Access the hwtstamp interface
5986  * @netdev: network interface device structure
5987  * @ifr: interface request data
5988  * @cmd: ioctl command
5989  **/
5990 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5991 {
5992         switch (cmd) {
5993         case SIOCGHWTSTAMP:
5994                 return igc_ptp_get_ts_config(netdev, ifr);
5995         case SIOCSHWTSTAMP:
5996                 return igc_ptp_set_ts_config(netdev, ifr);
5997         default:
5998                 return -EOPNOTSUPP;
5999         }
6000 }
6001
6002 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6003                                       bool enable)
6004 {
6005         struct igc_ring *ring;
6006
6007         if (queue < 0 || queue >= adapter->num_tx_queues)
6008                 return -EINVAL;
6009
6010         ring = adapter->tx_ring[queue];
6011         ring->launchtime_enable = enable;
6012
6013         return 0;
6014 }
6015
6016 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6017 {
6018         struct timespec64 b;
6019
6020         b = ktime_to_timespec64(base_time);
6021
6022         return timespec64_compare(now, &b) > 0;
6023 }
6024
6025 static bool validate_schedule(struct igc_adapter *adapter,
6026                               const struct tc_taprio_qopt_offload *qopt)
6027 {
6028         int queue_uses[IGC_MAX_TX_QUEUES] = { };
6029         struct igc_hw *hw = &adapter->hw;
6030         struct timespec64 now;
6031         size_t n;
6032
6033         if (qopt->cycle_time_extension)
6034                 return false;
6035
6036         igc_ptp_read(adapter, &now);
6037
6038         /* If we program the controller's BASET registers with a time
6039          * in the future, it will hold all the packets until that
6040          * time, causing a lot of TX Hangs, so to avoid that, we
6041          * reject schedules that would start in the future.
6042          * Note: Limitation above is no longer in i226.
6043          */
6044         if (!is_base_time_past(qopt->base_time, &now) &&
6045             igc_is_device_id_i225(hw))
6046                 return false;
6047
6048         for (n = 0; n < qopt->num_entries; n++) {
6049                 const struct tc_taprio_sched_entry *e, *prev;
6050                 int i;
6051
6052                 prev = n ? &qopt->entries[n - 1] : NULL;
6053                 e = &qopt->entries[n];
6054
6055                 /* i225 only supports "global" frame preemption
6056                  * settings.
6057                  */
6058                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6059                         return false;
6060
6061                 for (i = 0; i < adapter->num_tx_queues; i++)
6062                         if (e->gate_mask & BIT(i)) {
6063                                 queue_uses[i]++;
6064
6065                                 /* There are limitations: A single queue cannot
6066                                  * be opened and closed multiple times per cycle
6067                                  * unless the gate stays open. Check for it.
6068                                  */
6069                                 if (queue_uses[i] > 1 &&
6070                                     !(prev->gate_mask & BIT(i)))
6071                                         return false;
6072                         }
6073         }
6074
6075         return true;
6076 }
6077
6078 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6079                                      struct tc_etf_qopt_offload *qopt)
6080 {
6081         struct igc_hw *hw = &adapter->hw;
6082         int err;
6083
6084         if (hw->mac.type != igc_i225)
6085                 return -EOPNOTSUPP;
6086
6087         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6088         if (err)
6089                 return err;
6090
6091         return igc_tsn_offload_apply(adapter);
6092 }
6093
6094 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6095 {
6096         int i;
6097
6098         adapter->base_time = 0;
6099         adapter->cycle_time = NSEC_PER_SEC;
6100         adapter->taprio_offload_enable = false;
6101         adapter->qbv_config_change_errors = 0;
6102         adapter->qbv_transition = false;
6103         adapter->qbv_count = 0;
6104
6105         for (i = 0; i < adapter->num_tx_queues; i++) {
6106                 struct igc_ring *ring = adapter->tx_ring[i];
6107
6108                 ring->start_time = 0;
6109                 ring->end_time = NSEC_PER_SEC;
6110                 ring->max_sdu = 0;
6111                 ring->oper_gate_closed = false;
6112                 ring->admin_gate_closed = false;
6113         }
6114
6115         return 0;
6116 }
6117
6118 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6119                                  struct tc_taprio_qopt_offload *qopt)
6120 {
6121         bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6122         struct igc_hw *hw = &adapter->hw;
6123         u32 start_time = 0, end_time = 0;
6124         struct timespec64 now;
6125         size_t n;
6126         int i;
6127
6128         if (qopt->cmd == TAPRIO_CMD_DESTROY)
6129                 return igc_tsn_clear_schedule(adapter);
6130
6131         if (qopt->cmd != TAPRIO_CMD_REPLACE)
6132                 return -EOPNOTSUPP;
6133
6134         if (qopt->base_time < 0)
6135                 return -ERANGE;
6136
6137         if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6138                 return -EALREADY;
6139
6140         if (!validate_schedule(adapter, qopt))
6141                 return -EINVAL;
6142
6143         adapter->cycle_time = qopt->cycle_time;
6144         adapter->base_time = qopt->base_time;
6145         adapter->taprio_offload_enable = true;
6146
6147         igc_ptp_read(adapter, &now);
6148
6149         for (n = 0; n < qopt->num_entries; n++) {
6150                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6151
6152                 end_time += e->interval;
6153
6154                 /* If any of the conditions below are true, we need to manually
6155                  * control the end time of the cycle.
6156                  * 1. Qbv users can specify a cycle time that is not equal
6157                  * to the total GCL intervals. Hence, recalculation is
6158                  * necessary here to exclude the time interval that
6159                  * exceeds the cycle time.
6160                  * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6161                  * once the end of the list is reached, it will switch
6162                  * to the END_OF_CYCLE state and leave the gates in the
6163                  * same state until the next cycle is started.
6164                  */
6165                 if (end_time > adapter->cycle_time ||
6166                     n + 1 == qopt->num_entries)
6167                         end_time = adapter->cycle_time;
6168
6169                 for (i = 0; i < adapter->num_tx_queues; i++) {
6170                         struct igc_ring *ring = adapter->tx_ring[i];
6171
6172                         if (!(e->gate_mask & BIT(i)))
6173                                 continue;
6174
6175                         /* Check whether a queue stays open for more than one
6176                          * entry. If so, keep the start and advance the end
6177                          * time.
6178                          */
6179                         if (!queue_configured[i])
6180                                 ring->start_time = start_time;
6181                         ring->end_time = end_time;
6182
6183                         if (ring->start_time >= adapter->cycle_time)
6184                                 queue_configured[i] = false;
6185                         else
6186                                 queue_configured[i] = true;
6187                 }
6188
6189                 start_time += e->interval;
6190         }
6191
6192         /* Check whether a queue gets configured.
6193          * If not, set the start and end time to be end time.
6194          */
6195         for (i = 0; i < adapter->num_tx_queues; i++) {
6196                 struct igc_ring *ring = adapter->tx_ring[i];
6197
6198                 if (!is_base_time_past(qopt->base_time, &now)) {
6199                         ring->admin_gate_closed = false;
6200                 } else {
6201                         ring->oper_gate_closed = false;
6202                         ring->admin_gate_closed = false;
6203                 }
6204
6205                 if (!queue_configured[i]) {
6206                         if (!is_base_time_past(qopt->base_time, &now))
6207                                 ring->admin_gate_closed = true;
6208                         else
6209                                 ring->oper_gate_closed = true;
6210
6211                         ring->start_time = end_time;
6212                         ring->end_time = end_time;
6213                 }
6214         }
6215
6216         for (i = 0; i < adapter->num_tx_queues; i++) {
6217                 struct igc_ring *ring = adapter->tx_ring[i];
6218                 struct net_device *dev = adapter->netdev;
6219
6220                 if (qopt->max_sdu[i])
6221                         ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6222                 else
6223                         ring->max_sdu = 0;
6224         }
6225
6226         return 0;
6227 }
6228
6229 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6230                                          struct tc_taprio_qopt_offload *qopt)
6231 {
6232         struct igc_hw *hw = &adapter->hw;
6233         int err;
6234
6235         if (hw->mac.type != igc_i225)
6236                 return -EOPNOTSUPP;
6237
6238         err = igc_save_qbv_schedule(adapter, qopt);
6239         if (err)
6240                 return err;
6241
6242         return igc_tsn_offload_apply(adapter);
6243 }
6244
6245 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6246                                bool enable, int idleslope, int sendslope,
6247                                int hicredit, int locredit)
6248 {
6249         bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6250         struct net_device *netdev = adapter->netdev;
6251         struct igc_ring *ring;
6252         int i;
6253
6254         /* i225 has two sets of credit-based shaper logic.
6255          * Supporting it only on the top two priority queues
6256          */
6257         if (queue < 0 || queue > 1)
6258                 return -EINVAL;
6259
6260         ring = adapter->tx_ring[queue];
6261
6262         for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6263                 if (adapter->tx_ring[i])
6264                         cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6265
6266         /* CBS should be enabled on the highest priority queue first in order
6267          * for the CBS algorithm to operate as intended.
6268          */
6269         if (enable) {
6270                 if (queue == 1 && !cbs_status[0]) {
6271                         netdev_err(netdev,
6272                                    "Enabling CBS on queue1 before queue0\n");
6273                         return -EINVAL;
6274                 }
6275         } else {
6276                 if (queue == 0 && cbs_status[1]) {
6277                         netdev_err(netdev,
6278                                    "Disabling CBS on queue0 before queue1\n");
6279                         return -EINVAL;
6280                 }
6281         }
6282
6283         ring->cbs_enable = enable;
6284         ring->idleslope = idleslope;
6285         ring->sendslope = sendslope;
6286         ring->hicredit = hicredit;
6287         ring->locredit = locredit;
6288
6289         return 0;
6290 }
6291
6292 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6293                               struct tc_cbs_qopt_offload *qopt)
6294 {
6295         struct igc_hw *hw = &adapter->hw;
6296         int err;
6297
6298         if (hw->mac.type != igc_i225)
6299                 return -EOPNOTSUPP;
6300
6301         if (qopt->queue < 0 || qopt->queue > 1)
6302                 return -EINVAL;
6303
6304         err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6305                                   qopt->idleslope, qopt->sendslope,
6306                                   qopt->hicredit, qopt->locredit);
6307         if (err)
6308                 return err;
6309
6310         return igc_tsn_offload_apply(adapter);
6311 }
6312
6313 static int igc_tc_query_caps(struct igc_adapter *adapter,
6314                              struct tc_query_caps_base *base)
6315 {
6316         struct igc_hw *hw = &adapter->hw;
6317
6318         switch (base->type) {
6319         case TC_SETUP_QDISC_TAPRIO: {
6320                 struct tc_taprio_caps *caps = base->caps;
6321
6322                 caps->broken_mqprio = true;
6323
6324                 if (hw->mac.type == igc_i225) {
6325                         caps->supports_queue_max_sdu = true;
6326                         caps->gate_mask_per_txq = true;
6327                 }
6328
6329                 return 0;
6330         }
6331         default:
6332                 return -EOPNOTSUPP;
6333         }
6334 }
6335
6336 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6337                         void *type_data)
6338 {
6339         struct igc_adapter *adapter = netdev_priv(dev);
6340
6341         adapter->tc_setup_type = type;
6342
6343         switch (type) {
6344         case TC_QUERY_CAPS:
6345                 return igc_tc_query_caps(adapter, type_data);
6346         case TC_SETUP_QDISC_TAPRIO:
6347                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6348
6349         case TC_SETUP_QDISC_ETF:
6350                 return igc_tsn_enable_launchtime(adapter, type_data);
6351
6352         case TC_SETUP_QDISC_CBS:
6353                 return igc_tsn_enable_cbs(adapter, type_data);
6354
6355         default:
6356                 return -EOPNOTSUPP;
6357         }
6358 }
6359
6360 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6361 {
6362         struct igc_adapter *adapter = netdev_priv(dev);
6363
6364         switch (bpf->command) {
6365         case XDP_SETUP_PROG:
6366                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6367         case XDP_SETUP_XSK_POOL:
6368                 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6369                                           bpf->xsk.queue_id);
6370         default:
6371                 return -EOPNOTSUPP;
6372         }
6373 }
6374
6375 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6376                         struct xdp_frame **frames, u32 flags)
6377 {
6378         struct igc_adapter *adapter = netdev_priv(dev);
6379         int cpu = smp_processor_id();
6380         struct netdev_queue *nq;
6381         struct igc_ring *ring;
6382         int i, drops;
6383
6384         if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6385                 return -ENETDOWN;
6386
6387         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6388                 return -EINVAL;
6389
6390         ring = igc_xdp_get_tx_ring(adapter, cpu);
6391         nq = txring_txq(ring);
6392
6393         __netif_tx_lock(nq, cpu);
6394
6395         /* Avoid transmit queue timeout since we share it with the slow path */
6396         txq_trans_cond_update(nq);
6397
6398         drops = 0;
6399         for (i = 0; i < num_frames; i++) {
6400                 int err;
6401                 struct xdp_frame *xdpf = frames[i];
6402
6403                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6404                 if (err) {
6405                         xdp_return_frame_rx_napi(xdpf);
6406                         drops++;
6407                 }
6408         }
6409
6410         if (flags & XDP_XMIT_FLUSH)
6411                 igc_flush_tx_descriptors(ring);
6412
6413         __netif_tx_unlock(nq);
6414
6415         return num_frames - drops;
6416 }
6417
6418 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6419                                         struct igc_q_vector *q_vector)
6420 {
6421         struct igc_hw *hw = &adapter->hw;
6422         u32 eics = 0;
6423
6424         eics |= q_vector->eims_value;
6425         wr32(IGC_EICS, eics);
6426 }
6427
6428 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6429 {
6430         struct igc_adapter *adapter = netdev_priv(dev);
6431         struct igc_q_vector *q_vector;
6432         struct igc_ring *ring;
6433
6434         if (test_bit(__IGC_DOWN, &adapter->state))
6435                 return -ENETDOWN;
6436
6437         if (!igc_xdp_is_enabled(adapter))
6438                 return -ENXIO;
6439
6440         if (queue_id >= adapter->num_rx_queues)
6441                 return -EINVAL;
6442
6443         ring = adapter->rx_ring[queue_id];
6444
6445         if (!ring->xsk_pool)
6446                 return -ENXIO;
6447
6448         q_vector = adapter->q_vector[queue_id];
6449         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6450                 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6451
6452         return 0;
6453 }
6454
6455 static const struct net_device_ops igc_netdev_ops = {
6456         .ndo_open               = igc_open,
6457         .ndo_stop               = igc_close,
6458         .ndo_start_xmit         = igc_xmit_frame,
6459         .ndo_set_rx_mode        = igc_set_rx_mode,
6460         .ndo_set_mac_address    = igc_set_mac,
6461         .ndo_change_mtu         = igc_change_mtu,
6462         .ndo_tx_timeout         = igc_tx_timeout,
6463         .ndo_get_stats64        = igc_get_stats64,
6464         .ndo_fix_features       = igc_fix_features,
6465         .ndo_set_features       = igc_set_features,
6466         .ndo_features_check     = igc_features_check,
6467         .ndo_eth_ioctl          = igc_ioctl,
6468         .ndo_setup_tc           = igc_setup_tc,
6469         .ndo_bpf                = igc_bpf,
6470         .ndo_xdp_xmit           = igc_xdp_xmit,
6471         .ndo_xsk_wakeup         = igc_xsk_wakeup,
6472 };
6473
6474 /* PCIe configuration access */
6475 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6476 {
6477         struct igc_adapter *adapter = hw->back;
6478
6479         pci_read_config_word(adapter->pdev, reg, value);
6480 }
6481
6482 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6483 {
6484         struct igc_adapter *adapter = hw->back;
6485
6486         pci_write_config_word(adapter->pdev, reg, *value);
6487 }
6488
6489 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6490 {
6491         struct igc_adapter *adapter = hw->back;
6492
6493         if (!pci_is_pcie(adapter->pdev))
6494                 return -IGC_ERR_CONFIG;
6495
6496         pcie_capability_read_word(adapter->pdev, reg, value);
6497
6498         return IGC_SUCCESS;
6499 }
6500
6501 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6502 {
6503         struct igc_adapter *adapter = hw->back;
6504
6505         if (!pci_is_pcie(adapter->pdev))
6506                 return -IGC_ERR_CONFIG;
6507
6508         pcie_capability_write_word(adapter->pdev, reg, *value);
6509
6510         return IGC_SUCCESS;
6511 }
6512
6513 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6514 {
6515         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6516         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6517         u32 value = 0;
6518
6519         if (IGC_REMOVED(hw_addr))
6520                 return ~value;
6521
6522         value = readl(&hw_addr[reg]);
6523
6524         /* reads should not return all F's */
6525         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6526                 struct net_device *netdev = igc->netdev;
6527
6528                 hw->hw_addr = NULL;
6529                 netif_device_detach(netdev);
6530                 netdev_err(netdev, "PCIe link lost, device now detached\n");
6531                 WARN(pci_device_is_present(igc->pdev),
6532                      "igc: Failed to read reg 0x%x!\n", reg);
6533         }
6534
6535         return value;
6536 }
6537
6538 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6539 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6540         [IGC_RSS_TYPE_NO_HASH]          = XDP_RSS_TYPE_L2,
6541         [IGC_RSS_TYPE_HASH_TCP_IPV4]    = XDP_RSS_TYPE_L4_IPV4_TCP,
6542         [IGC_RSS_TYPE_HASH_IPV4]        = XDP_RSS_TYPE_L3_IPV4,
6543         [IGC_RSS_TYPE_HASH_TCP_IPV6]    = XDP_RSS_TYPE_L4_IPV6_TCP,
6544         [IGC_RSS_TYPE_HASH_IPV6_EX]     = XDP_RSS_TYPE_L3_IPV6_EX,
6545         [IGC_RSS_TYPE_HASH_IPV6]        = XDP_RSS_TYPE_L3_IPV6,
6546         [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6547         [IGC_RSS_TYPE_HASH_UDP_IPV4]    = XDP_RSS_TYPE_L4_IPV4_UDP,
6548         [IGC_RSS_TYPE_HASH_UDP_IPV6]    = XDP_RSS_TYPE_L4_IPV6_UDP,
6549         [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6550         [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6551         [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6552         [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6553         [13] = XDP_RSS_TYPE_NONE,
6554         [14] = XDP_RSS_TYPE_NONE,
6555         [15] = XDP_RSS_TYPE_NONE,
6556 };
6557
6558 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6559                            enum xdp_rss_hash_type *rss_type)
6560 {
6561         const struct igc_xdp_buff *ctx = (void *)_ctx;
6562
6563         if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6564                 return -ENODATA;
6565
6566         *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6567         *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6568
6569         return 0;
6570 }
6571
6572 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6573 {
6574         const struct igc_xdp_buff *ctx = (void *)_ctx;
6575
6576         if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6577                 *timestamp = ctx->rx_ts;
6578
6579                 return 0;
6580         }
6581
6582         return -ENODATA;
6583 }
6584
6585 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6586         .xmo_rx_hash                    = igc_xdp_rx_hash,
6587         .xmo_rx_timestamp               = igc_xdp_rx_timestamp,
6588 };
6589
6590 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6591 {
6592         struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6593                                                    hrtimer);
6594         unsigned int i;
6595
6596         adapter->qbv_transition = true;
6597         for (i = 0; i < adapter->num_tx_queues; i++) {
6598                 struct igc_ring *tx_ring = adapter->tx_ring[i];
6599
6600                 if (tx_ring->admin_gate_closed) {
6601                         tx_ring->admin_gate_closed = false;
6602                         tx_ring->oper_gate_closed = true;
6603                 } else {
6604                         tx_ring->oper_gate_closed = false;
6605                 }
6606         }
6607         adapter->qbv_transition = false;
6608         return HRTIMER_NORESTART;
6609 }
6610
6611 /**
6612  * igc_probe - Device Initialization Routine
6613  * @pdev: PCI device information struct
6614  * @ent: entry in igc_pci_tbl
6615  *
6616  * Returns 0 on success, negative on failure
6617  *
6618  * igc_probe initializes an adapter identified by a pci_dev structure.
6619  * The OS initialization, configuring the adapter private structure,
6620  * and a hardware reset occur.
6621  */
6622 static int igc_probe(struct pci_dev *pdev,
6623                      const struct pci_device_id *ent)
6624 {
6625         struct igc_adapter *adapter;
6626         struct net_device *netdev;
6627         struct igc_hw *hw;
6628         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6629         int err;
6630
6631         err = pci_enable_device_mem(pdev);
6632         if (err)
6633                 return err;
6634
6635         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6636         if (err) {
6637                 dev_err(&pdev->dev,
6638                         "No usable DMA configuration, aborting\n");
6639                 goto err_dma;
6640         }
6641
6642         err = pci_request_mem_regions(pdev, igc_driver_name);
6643         if (err)
6644                 goto err_pci_reg;
6645
6646         err = pci_enable_ptm(pdev, NULL);
6647         if (err < 0)
6648                 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6649
6650         pci_set_master(pdev);
6651
6652         err = -ENOMEM;
6653         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6654                                    IGC_MAX_TX_QUEUES);
6655
6656         if (!netdev)
6657                 goto err_alloc_etherdev;
6658
6659         SET_NETDEV_DEV(netdev, &pdev->dev);
6660
6661         pci_set_drvdata(pdev, netdev);
6662         adapter = netdev_priv(netdev);
6663         adapter->netdev = netdev;
6664         adapter->pdev = pdev;
6665         hw = &adapter->hw;
6666         hw->back = adapter;
6667         adapter->port_num = hw->bus.func;
6668         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6669
6670         err = pci_save_state(pdev);
6671         if (err)
6672                 goto err_ioremap;
6673
6674         err = -EIO;
6675         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6676                                    pci_resource_len(pdev, 0));
6677         if (!adapter->io_addr)
6678                 goto err_ioremap;
6679
6680         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6681         hw->hw_addr = adapter->io_addr;
6682
6683         netdev->netdev_ops = &igc_netdev_ops;
6684         netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6685         igc_ethtool_set_ops(netdev);
6686         netdev->watchdog_timeo = 5 * HZ;
6687
6688         netdev->mem_start = pci_resource_start(pdev, 0);
6689         netdev->mem_end = pci_resource_end(pdev, 0);
6690
6691         /* PCI config space info */
6692         hw->vendor_id = pdev->vendor;
6693         hw->device_id = pdev->device;
6694         hw->revision_id = pdev->revision;
6695         hw->subsystem_vendor_id = pdev->subsystem_vendor;
6696         hw->subsystem_device_id = pdev->subsystem_device;
6697
6698         /* Copy the default MAC and PHY function pointers */
6699         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6700         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6701
6702         /* Initialize skew-specific constants */
6703         err = ei->get_invariants(hw);
6704         if (err)
6705                 goto err_sw_init;
6706
6707         /* Add supported features to the features list*/
6708         netdev->features |= NETIF_F_SG;
6709         netdev->features |= NETIF_F_TSO;
6710         netdev->features |= NETIF_F_TSO6;
6711         netdev->features |= NETIF_F_TSO_ECN;
6712         netdev->features |= NETIF_F_RXHASH;
6713         netdev->features |= NETIF_F_RXCSUM;
6714         netdev->features |= NETIF_F_HW_CSUM;
6715         netdev->features |= NETIF_F_SCTP_CRC;
6716         netdev->features |= NETIF_F_HW_TC;
6717
6718 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6719                                   NETIF_F_GSO_GRE_CSUM | \
6720                                   NETIF_F_GSO_IPXIP4 | \
6721                                   NETIF_F_GSO_IPXIP6 | \
6722                                   NETIF_F_GSO_UDP_TUNNEL | \
6723                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
6724
6725         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6726         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6727
6728         /* setup the private structure */
6729         err = igc_sw_init(adapter);
6730         if (err)
6731                 goto err_sw_init;
6732
6733         /* copy netdev features into list of user selectable features */
6734         netdev->hw_features |= NETIF_F_NTUPLE;
6735         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6736         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6737         netdev->hw_features |= netdev->features;
6738
6739         netdev->features |= NETIF_F_HIGHDMA;
6740
6741         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6742         netdev->mpls_features |= NETIF_F_HW_CSUM;
6743         netdev->hw_enc_features |= netdev->vlan_features;
6744
6745         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6746                                NETDEV_XDP_ACT_XSK_ZEROCOPY;
6747
6748         /* MTU range: 68 - 9216 */
6749         netdev->min_mtu = ETH_MIN_MTU;
6750         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6751
6752         /* before reading the NVM, reset the controller to put the device in a
6753          * known good starting state
6754          */
6755         hw->mac.ops.reset_hw(hw);
6756
6757         if (igc_get_flash_presence_i225(hw)) {
6758                 if (hw->nvm.ops.validate(hw) < 0) {
6759                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6760                         err = -EIO;
6761                         goto err_eeprom;
6762                 }
6763         }
6764
6765         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6766                 /* copy the MAC address out of the NVM */
6767                 if (hw->mac.ops.read_mac_addr(hw))
6768                         dev_err(&pdev->dev, "NVM Read Error\n");
6769         }
6770
6771         eth_hw_addr_set(netdev, hw->mac.addr);
6772
6773         if (!is_valid_ether_addr(netdev->dev_addr)) {
6774                 dev_err(&pdev->dev, "Invalid MAC Address\n");
6775                 err = -EIO;
6776                 goto err_eeprom;
6777         }
6778
6779         /* configure RXPBSIZE and TXPBSIZE */
6780         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6781         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6782
6783         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6784         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6785
6786         INIT_WORK(&adapter->reset_task, igc_reset_task);
6787         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6788
6789         hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6790         adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6791
6792         /* Initialize link properties that are user-changeable */
6793         adapter->fc_autoneg = true;
6794         hw->mac.autoneg = true;
6795         hw->phy.autoneg_advertised = 0xaf;
6796
6797         hw->fc.requested_mode = igc_fc_default;
6798         hw->fc.current_mode = igc_fc_default;
6799
6800         /* By default, support wake on port A */
6801         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6802
6803         /* initialize the wol settings based on the eeprom settings */
6804         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6805                 adapter->wol |= IGC_WUFC_MAG;
6806
6807         device_set_wakeup_enable(&adapter->pdev->dev,
6808                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6809
6810         igc_ptp_init(adapter);
6811
6812         igc_tsn_clear_schedule(adapter);
6813
6814         /* reset the hardware with the new settings */
6815         igc_reset(adapter);
6816
6817         /* let the f/w know that the h/w is now under the control of the
6818          * driver.
6819          */
6820         igc_get_hw_control(adapter);
6821
6822         strncpy(netdev->name, "eth%d", IFNAMSIZ);
6823         err = register_netdev(netdev);
6824         if (err)
6825                 goto err_register;
6826
6827          /* carrier off reporting is important to ethtool even BEFORE open */
6828         netif_carrier_off(netdev);
6829
6830         /* Check if Media Autosense is enabled */
6831         adapter->ei = *ei;
6832
6833         /* print pcie link status and MAC address */
6834         pcie_print_link_status(pdev);
6835         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6836
6837         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6838         /* Disable EEE for internal PHY devices */
6839         hw->dev_spec._base.eee_enable = false;
6840         adapter->flags &= ~IGC_FLAG_EEE;
6841         igc_set_eee_i225(hw, false, false, false);
6842
6843         pm_runtime_put_noidle(&pdev->dev);
6844
6845         return 0;
6846
6847 err_register:
6848         igc_release_hw_control(adapter);
6849 err_eeprom:
6850         if (!igc_check_reset_block(hw))
6851                 igc_reset_phy(hw);
6852 err_sw_init:
6853         igc_clear_interrupt_scheme(adapter);
6854         iounmap(adapter->io_addr);
6855 err_ioremap:
6856         free_netdev(netdev);
6857 err_alloc_etherdev:
6858         pci_release_mem_regions(pdev);
6859 err_pci_reg:
6860 err_dma:
6861         pci_disable_device(pdev);
6862         return err;
6863 }
6864
6865 /**
6866  * igc_remove - Device Removal Routine
6867  * @pdev: PCI device information struct
6868  *
6869  * igc_remove is called by the PCI subsystem to alert the driver
6870  * that it should release a PCI device.  This could be caused by a
6871  * Hot-Plug event, or because the driver is going to be removed from
6872  * memory.
6873  */
6874 static void igc_remove(struct pci_dev *pdev)
6875 {
6876         struct net_device *netdev = pci_get_drvdata(pdev);
6877         struct igc_adapter *adapter = netdev_priv(netdev);
6878
6879         pm_runtime_get_noresume(&pdev->dev);
6880
6881         igc_flush_nfc_rules(adapter);
6882
6883         igc_ptp_stop(adapter);
6884
6885         pci_disable_ptm(pdev);
6886         pci_clear_master(pdev);
6887
6888         set_bit(__IGC_DOWN, &adapter->state);
6889
6890         del_timer_sync(&adapter->watchdog_timer);
6891         del_timer_sync(&adapter->phy_info_timer);
6892
6893         cancel_work_sync(&adapter->reset_task);
6894         cancel_work_sync(&adapter->watchdog_task);
6895         hrtimer_cancel(&adapter->hrtimer);
6896
6897         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6898          * would have already happened in close and is redundant.
6899          */
6900         igc_release_hw_control(adapter);
6901         unregister_netdev(netdev);
6902
6903         igc_clear_interrupt_scheme(adapter);
6904         pci_iounmap(pdev, adapter->io_addr);
6905         pci_release_mem_regions(pdev);
6906
6907         free_netdev(netdev);
6908
6909         pci_disable_device(pdev);
6910 }
6911
6912 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6913                           bool runtime)
6914 {
6915         struct net_device *netdev = pci_get_drvdata(pdev);
6916         struct igc_adapter *adapter = netdev_priv(netdev);
6917         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6918         struct igc_hw *hw = &adapter->hw;
6919         u32 ctrl, rctl, status;
6920         bool wake;
6921
6922         rtnl_lock();
6923         netif_device_detach(netdev);
6924
6925         if (netif_running(netdev))
6926                 __igc_close(netdev, true);
6927
6928         igc_ptp_suspend(adapter);
6929
6930         igc_clear_interrupt_scheme(adapter);
6931         rtnl_unlock();
6932
6933         status = rd32(IGC_STATUS);
6934         if (status & IGC_STATUS_LU)
6935                 wufc &= ~IGC_WUFC_LNKC;
6936
6937         if (wufc) {
6938                 igc_setup_rctl(adapter);
6939                 igc_set_rx_mode(netdev);
6940
6941                 /* turn on all-multi mode if wake on multicast is enabled */
6942                 if (wufc & IGC_WUFC_MC) {
6943                         rctl = rd32(IGC_RCTL);
6944                         rctl |= IGC_RCTL_MPE;
6945                         wr32(IGC_RCTL, rctl);
6946                 }
6947
6948                 ctrl = rd32(IGC_CTRL);
6949                 ctrl |= IGC_CTRL_ADVD3WUC;
6950                 wr32(IGC_CTRL, ctrl);
6951
6952                 /* Allow time for pending master requests to run */
6953                 igc_disable_pcie_master(hw);
6954
6955                 wr32(IGC_WUC, IGC_WUC_PME_EN);
6956                 wr32(IGC_WUFC, wufc);
6957         } else {
6958                 wr32(IGC_WUC, 0);
6959                 wr32(IGC_WUFC, 0);
6960         }
6961
6962         wake = wufc || adapter->en_mng_pt;
6963         if (!wake)
6964                 igc_power_down_phy_copper_base(&adapter->hw);
6965         else
6966                 igc_power_up_link(adapter);
6967
6968         if (enable_wake)
6969                 *enable_wake = wake;
6970
6971         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6972          * would have already happened in close and is redundant.
6973          */
6974         igc_release_hw_control(adapter);
6975
6976         pci_disable_device(pdev);
6977
6978         return 0;
6979 }
6980
6981 #ifdef CONFIG_PM
6982 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6983 {
6984         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6985 }
6986
6987 static void igc_deliver_wake_packet(struct net_device *netdev)
6988 {
6989         struct igc_adapter *adapter = netdev_priv(netdev);
6990         struct igc_hw *hw = &adapter->hw;
6991         struct sk_buff *skb;
6992         u32 wupl;
6993
6994         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6995
6996         /* WUPM stores only the first 128 bytes of the wake packet.
6997          * Read the packet only if we have the whole thing.
6998          */
6999         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7000                 return;
7001
7002         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7003         if (!skb)
7004                 return;
7005
7006         skb_put(skb, wupl);
7007
7008         /* Ensure reads are 32-bit aligned */
7009         wupl = roundup(wupl, 4);
7010
7011         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7012
7013         skb->protocol = eth_type_trans(skb, netdev);
7014         netif_rx(skb);
7015 }
7016
7017 static int __maybe_unused igc_resume(struct device *dev)
7018 {
7019         struct pci_dev *pdev = to_pci_dev(dev);
7020         struct net_device *netdev = pci_get_drvdata(pdev);
7021         struct igc_adapter *adapter = netdev_priv(netdev);
7022         struct igc_hw *hw = &adapter->hw;
7023         u32 err, val;
7024
7025         pci_set_power_state(pdev, PCI_D0);
7026         pci_restore_state(pdev);
7027         pci_save_state(pdev);
7028
7029         if (!pci_device_is_present(pdev))
7030                 return -ENODEV;
7031         err = pci_enable_device_mem(pdev);
7032         if (err) {
7033                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7034                 return err;
7035         }
7036         pci_set_master(pdev);
7037
7038         pci_enable_wake(pdev, PCI_D3hot, 0);
7039         pci_enable_wake(pdev, PCI_D3cold, 0);
7040
7041         if (igc_init_interrupt_scheme(adapter, true)) {
7042                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7043                 return -ENOMEM;
7044         }
7045
7046         igc_reset(adapter);
7047
7048         /* let the f/w know that the h/w is now under the control of the
7049          * driver.
7050          */
7051         igc_get_hw_control(adapter);
7052
7053         val = rd32(IGC_WUS);
7054         if (val & WAKE_PKT_WUS)
7055                 igc_deliver_wake_packet(netdev);
7056
7057         wr32(IGC_WUS, ~0);
7058
7059         rtnl_lock();
7060         if (!err && netif_running(netdev))
7061                 err = __igc_open(netdev, true);
7062
7063         if (!err)
7064                 netif_device_attach(netdev);
7065         rtnl_unlock();
7066
7067         return err;
7068 }
7069
7070 static int __maybe_unused igc_runtime_resume(struct device *dev)
7071 {
7072         return igc_resume(dev);
7073 }
7074
7075 static int __maybe_unused igc_suspend(struct device *dev)
7076 {
7077         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7078 }
7079
7080 static int __maybe_unused igc_runtime_idle(struct device *dev)
7081 {
7082         struct net_device *netdev = dev_get_drvdata(dev);
7083         struct igc_adapter *adapter = netdev_priv(netdev);
7084
7085         if (!igc_has_link(adapter))
7086                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7087
7088         return -EBUSY;
7089 }
7090 #endif /* CONFIG_PM */
7091
7092 static void igc_shutdown(struct pci_dev *pdev)
7093 {
7094         bool wake;
7095
7096         __igc_shutdown(pdev, &wake, 0);
7097
7098         if (system_state == SYSTEM_POWER_OFF) {
7099                 pci_wake_from_d3(pdev, wake);
7100                 pci_set_power_state(pdev, PCI_D3hot);
7101         }
7102 }
7103
7104 /**
7105  *  igc_io_error_detected - called when PCI error is detected
7106  *  @pdev: Pointer to PCI device
7107  *  @state: The current PCI connection state
7108  *
7109  *  This function is called after a PCI bus error affecting
7110  *  this device has been detected.
7111  **/
7112 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7113                                               pci_channel_state_t state)
7114 {
7115         struct net_device *netdev = pci_get_drvdata(pdev);
7116         struct igc_adapter *adapter = netdev_priv(netdev);
7117
7118         netif_device_detach(netdev);
7119
7120         if (state == pci_channel_io_perm_failure)
7121                 return PCI_ERS_RESULT_DISCONNECT;
7122
7123         if (netif_running(netdev))
7124                 igc_down(adapter);
7125         pci_disable_device(pdev);
7126
7127         /* Request a slot reset. */
7128         return PCI_ERS_RESULT_NEED_RESET;
7129 }
7130
7131 /**
7132  *  igc_io_slot_reset - called after the PCI bus has been reset.
7133  *  @pdev: Pointer to PCI device
7134  *
7135  *  Restart the card from scratch, as if from a cold-boot. Implementation
7136  *  resembles the first-half of the igc_resume routine.
7137  **/
7138 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7139 {
7140         struct net_device *netdev = pci_get_drvdata(pdev);
7141         struct igc_adapter *adapter = netdev_priv(netdev);
7142         struct igc_hw *hw = &adapter->hw;
7143         pci_ers_result_t result;
7144
7145         if (pci_enable_device_mem(pdev)) {
7146                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7147                 result = PCI_ERS_RESULT_DISCONNECT;
7148         } else {
7149                 pci_set_master(pdev);
7150                 pci_restore_state(pdev);
7151                 pci_save_state(pdev);
7152
7153                 pci_enable_wake(pdev, PCI_D3hot, 0);
7154                 pci_enable_wake(pdev, PCI_D3cold, 0);
7155
7156                 /* In case of PCI error, adapter loses its HW address
7157                  * so we should re-assign it here.
7158                  */
7159                 hw->hw_addr = adapter->io_addr;
7160
7161                 igc_reset(adapter);
7162                 wr32(IGC_WUS, ~0);
7163                 result = PCI_ERS_RESULT_RECOVERED;
7164         }
7165
7166         return result;
7167 }
7168
7169 /**
7170  *  igc_io_resume - called when traffic can start to flow again.
7171  *  @pdev: Pointer to PCI device
7172  *
7173  *  This callback is called when the error recovery driver tells us that
7174  *  its OK to resume normal operation. Implementation resembles the
7175  *  second-half of the igc_resume routine.
7176  */
7177 static void igc_io_resume(struct pci_dev *pdev)
7178 {
7179         struct net_device *netdev = pci_get_drvdata(pdev);
7180         struct igc_adapter *adapter = netdev_priv(netdev);
7181
7182         rtnl_lock();
7183         if (netif_running(netdev)) {
7184                 if (igc_open(netdev)) {
7185                         netdev_err(netdev, "igc_open failed after reset\n");
7186                         return;
7187                 }
7188         }
7189
7190         netif_device_attach(netdev);
7191
7192         /* let the f/w know that the h/w is now under the control of the
7193          * driver.
7194          */
7195         igc_get_hw_control(adapter);
7196         rtnl_unlock();
7197 }
7198
7199 static const struct pci_error_handlers igc_err_handler = {
7200         .error_detected = igc_io_error_detected,
7201         .slot_reset = igc_io_slot_reset,
7202         .resume = igc_io_resume,
7203 };
7204
7205 #ifdef CONFIG_PM
7206 static const struct dev_pm_ops igc_pm_ops = {
7207         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7208         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7209                            igc_runtime_idle)
7210 };
7211 #endif
7212
7213 static struct pci_driver igc_driver = {
7214         .name     = igc_driver_name,
7215         .id_table = igc_pci_tbl,
7216         .probe    = igc_probe,
7217         .remove   = igc_remove,
7218 #ifdef CONFIG_PM
7219         .driver.pm = &igc_pm_ops,
7220 #endif
7221         .shutdown = igc_shutdown,
7222         .err_handler = &igc_err_handler,
7223 };
7224
7225 /**
7226  * igc_reinit_queues - return error
7227  * @adapter: pointer to adapter structure
7228  */
7229 int igc_reinit_queues(struct igc_adapter *adapter)
7230 {
7231         struct net_device *netdev = adapter->netdev;
7232         int err = 0;
7233
7234         if (netif_running(netdev))
7235                 igc_close(netdev);
7236
7237         igc_reset_interrupt_capability(adapter);
7238
7239         if (igc_init_interrupt_scheme(adapter, true)) {
7240                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7241                 return -ENOMEM;
7242         }
7243
7244         if (netif_running(netdev))
7245                 err = igc_open(netdev);
7246
7247         return err;
7248 }
7249
7250 /**
7251  * igc_get_hw_dev - return device
7252  * @hw: pointer to hardware structure
7253  *
7254  * used by hardware layer to print debugging information
7255  */
7256 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7257 {
7258         struct igc_adapter *adapter = hw->back;
7259
7260         return adapter->netdev;
7261 }
7262
7263 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7264 {
7265         struct igc_hw *hw = &ring->q_vector->adapter->hw;
7266         u8 idx = ring->reg_idx;
7267         u32 rxdctl;
7268
7269         rxdctl = rd32(IGC_RXDCTL(idx));
7270         rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7271         rxdctl |= IGC_RXDCTL_SWFLUSH;
7272         wr32(IGC_RXDCTL(idx), rxdctl);
7273 }
7274
7275 void igc_disable_rx_ring(struct igc_ring *ring)
7276 {
7277         igc_disable_rx_ring_hw(ring);
7278         igc_clean_rx_ring(ring);
7279 }
7280
7281 void igc_enable_rx_ring(struct igc_ring *ring)
7282 {
7283         struct igc_adapter *adapter = ring->q_vector->adapter;
7284
7285         igc_configure_rx_ring(adapter, ring);
7286
7287         if (ring->xsk_pool)
7288                 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7289         else
7290                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7291 }
7292
7293 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
7294 {
7295         struct igc_hw *hw = &ring->q_vector->adapter->hw;
7296         u8 idx = ring->reg_idx;
7297         u32 txdctl;
7298
7299         txdctl = rd32(IGC_TXDCTL(idx));
7300         txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
7301         txdctl |= IGC_TXDCTL_SWFLUSH;
7302         wr32(IGC_TXDCTL(idx), txdctl);
7303 }
7304
7305 void igc_disable_tx_ring(struct igc_ring *ring)
7306 {
7307         igc_disable_tx_ring_hw(ring);
7308         igc_clean_tx_ring(ring);
7309 }
7310
7311 void igc_enable_tx_ring(struct igc_ring *ring)
7312 {
7313         struct igc_adapter *adapter = ring->q_vector->adapter;
7314
7315         igc_configure_tx_ring(adapter, ring);
7316 }
7317
7318 /**
7319  * igc_init_module - Driver Registration Routine
7320  *
7321  * igc_init_module is the first routine called when the driver is
7322  * loaded. All it does is register with the PCI subsystem.
7323  */
7324 static int __init igc_init_module(void)
7325 {
7326         int ret;
7327
7328         pr_info("%s\n", igc_driver_string);
7329         pr_info("%s\n", igc_copyright);
7330
7331         ret = pci_register_driver(&igc_driver);
7332         return ret;
7333 }
7334
7335 module_init(igc_init_module);
7336
7337 /**
7338  * igc_exit_module - Driver Exit Cleanup Routine
7339  *
7340  * igc_exit_module is called just before the driver is removed
7341  * from memory.
7342  */
7343 static void __exit igc_exit_module(void)
7344 {
7345         pci_unregister_driver(&igc_driver);
7346 }
7347
7348 module_exit(igc_exit_module);
7349 /* igc_main.c */