4992cca4029ddc88c2e422cd91636fdc90619aea
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS            0
29 #define IGC_XDP_CONSUMED        BIT(0)
30 #define IGC_XDP_TX              BIT(1)
31 #define IGC_XDP_REDIRECT        BIT(2)
32
33 static int debug = -1;
34
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44         "Copyright(c) 2018 Intel Corporation.";
45
46 static const struct igc_info *igc_info_tbl[] = {
47         [board_base] = &igc_base_info,
48 };
49
50 static const struct pci_device_id igc_pci_tbl[] = {
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67         /* required last entry */
68         {0, }
69 };
70
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72
73 enum latency_range {
74         lowest_latency = 0,
75         low_latency = 1,
76         bulk_latency = 2,
77         latency_invalid = 255
78 };
79
80 void igc_reset(struct igc_adapter *adapter)
81 {
82         struct net_device *dev = adapter->netdev;
83         struct igc_hw *hw = &adapter->hw;
84         struct igc_fc_info *fc = &hw->fc;
85         u32 pba, hwm;
86
87         /* Repartition PBA for greater than 9k MTU if required */
88         pba = IGC_PBA_34K;
89
90         /* flow control settings
91          * The high water mark must be low enough to fit one full frame
92          * after transmitting the pause frame.  As such we must have enough
93          * space to allow for us to complete our current transmit and then
94          * receive the frame that is in progress from the link partner.
95          * Set it to:
96          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97          */
98         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99
100         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
101         fc->low_water = fc->high_water - 16;
102         fc->pause_time = 0xFFFF;
103         fc->send_xon = 1;
104         fc->current_mode = fc->requested_mode;
105
106         hw->mac.ops.reset_hw(hw);
107
108         if (hw->mac.ops.init_hw(hw))
109                 netdev_err(dev, "Error on hardware initialization\n");
110
111         /* Re-establish EEE setting */
112         igc_set_eee_i225(hw, true, true, true);
113
114         if (!netif_running(adapter->netdev))
115                 igc_power_down_phy_copper_base(&adapter->hw);
116
117         /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118         wr32(IGC_VET, ETH_P_8021Q);
119
120         /* Re-enable PTP, where applicable. */
121         igc_ptp_reset(adapter);
122
123         /* Re-enable TSN offloading, where applicable. */
124         igc_tsn_reset(adapter);
125
126         igc_get_phy_info(hw);
127 }
128
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135         igc_reset_phy(&adapter->hw);
136
137         igc_power_up_phy_copper(&adapter->hw);
138
139         igc_setup_link(&adapter->hw);
140 }
141
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152         struct igc_hw *hw = &adapter->hw;
153         u32 ctrl_ext;
154
155         if (!pci_device_is_present(adapter->pdev))
156                 return;
157
158         /* Let firmware take over control of h/w */
159         ctrl_ext = rd32(IGC_CTRL_EXT);
160         wr32(IGC_CTRL_EXT,
161              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174         struct igc_hw *hw = &adapter->hw;
175         u32 ctrl_ext;
176
177         /* Let firmware know the driver has taken over */
178         ctrl_ext = rd32(IGC_CTRL_EXT);
179         wr32(IGC_CTRL_EXT,
180              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182
183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185         dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186                          dma_unmap_len(buf, len), DMA_TO_DEVICE);
187
188         dma_unmap_len_set(buf, len, 0);
189 }
190
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197         u16 i = tx_ring->next_to_clean;
198         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199         u32 xsk_frames = 0;
200
201         while (i != tx_ring->next_to_use) {
202                 union igc_adv_tx_desc *eop_desc, *tx_desc;
203
204                 switch (tx_buffer->type) {
205                 case IGC_TX_BUFFER_TYPE_XSK:
206                         xsk_frames++;
207                         break;
208                 case IGC_TX_BUFFER_TYPE_XDP:
209                         xdp_return_frame(tx_buffer->xdpf);
210                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211                         break;
212                 case IGC_TX_BUFFER_TYPE_SKB:
213                         dev_kfree_skb_any(tx_buffer->skb);
214                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215                         break;
216                 default:
217                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218                         break;
219                 }
220
221                 /* check for eop_desc to determine the end of the packet */
222                 eop_desc = tx_buffer->next_to_watch;
223                 tx_desc = IGC_TX_DESC(tx_ring, i);
224
225                 /* unmap remaining buffers */
226                 while (tx_desc != eop_desc) {
227                         tx_buffer++;
228                         tx_desc++;
229                         i++;
230                         if (unlikely(i == tx_ring->count)) {
231                                 i = 0;
232                                 tx_buffer = tx_ring->tx_buffer_info;
233                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
234                         }
235
236                         /* unmap any remaining paged data */
237                         if (dma_unmap_len(tx_buffer, len))
238                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239                 }
240
241                 tx_buffer->next_to_watch = NULL;
242
243                 /* move us one more past the eop_desc for start of next pkt */
244                 tx_buffer++;
245                 i++;
246                 if (unlikely(i == tx_ring->count)) {
247                         i = 0;
248                         tx_buffer = tx_ring->tx_buffer_info;
249                 }
250         }
251
252         if (tx_ring->xsk_pool && xsk_frames)
253                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254
255         /* reset BQL for queue */
256         netdev_tx_reset_queue(txring_txq(tx_ring));
257
258         /* reset next_to_use and next_to_clean */
259         tx_ring->next_to_use = 0;
260         tx_ring->next_to_clean = 0;
261 }
262
263 /**
264  * igc_free_tx_resources - Free Tx Resources per Queue
265  * @tx_ring: Tx descriptor ring for a specific queue
266  *
267  * Free all transmit software resources
268  */
269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271         igc_clean_tx_ring(tx_ring);
272
273         vfree(tx_ring->tx_buffer_info);
274         tx_ring->tx_buffer_info = NULL;
275
276         /* if not set, then don't free */
277         if (!tx_ring->desc)
278                 return;
279
280         dma_free_coherent(tx_ring->dev, tx_ring->size,
281                           tx_ring->desc, tx_ring->dma);
282
283         tx_ring->desc = NULL;
284 }
285
286 /**
287  * igc_free_all_tx_resources - Free Tx Resources for All Queues
288  * @adapter: board private structure
289  *
290  * Free all transmit software resources
291  */
292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294         int i;
295
296         for (i = 0; i < adapter->num_tx_queues; i++)
297                 igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299
300 /**
301  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302  * @adapter: board private structure
303  */
304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306         int i;
307
308         for (i = 0; i < adapter->num_tx_queues; i++)
309                 if (adapter->tx_ring[i])
310                         igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312
313 /**
314  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315  * @tx_ring: tx descriptor ring (for a specific queue) to setup
316  *
317  * Return 0 on success, negative on failure
318  */
319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321         struct net_device *ndev = tx_ring->netdev;
322         struct device *dev = tx_ring->dev;
323         int size = 0;
324
325         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326         tx_ring->tx_buffer_info = vzalloc(size);
327         if (!tx_ring->tx_buffer_info)
328                 goto err;
329
330         /* round up to nearest 4K */
331         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332         tx_ring->size = ALIGN(tx_ring->size, 4096);
333
334         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335                                            &tx_ring->dma, GFP_KERNEL);
336
337         if (!tx_ring->desc)
338                 goto err;
339
340         tx_ring->next_to_use = 0;
341         tx_ring->next_to_clean = 0;
342
343         return 0;
344
345 err:
346         vfree(tx_ring->tx_buffer_info);
347         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348         return -ENOMEM;
349 }
350
351 /**
352  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353  * @adapter: board private structure
354  *
355  * Return 0 on success, negative on failure
356  */
357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359         struct net_device *dev = adapter->netdev;
360         int i, err = 0;
361
362         for (i = 0; i < adapter->num_tx_queues; i++) {
363                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
364                 if (err) {
365                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
366                         for (i--; i >= 0; i--)
367                                 igc_free_tx_resources(adapter->tx_ring[i]);
368                         break;
369                 }
370         }
371
372         return err;
373 }
374
375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377         u16 i = rx_ring->next_to_clean;
378
379         dev_kfree_skb(rx_ring->skb);
380         rx_ring->skb = NULL;
381
382         /* Free all the Rx ring sk_buffs */
383         while (i != rx_ring->next_to_alloc) {
384                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385
386                 /* Invalidate cache lines that may have been written to by
387                  * device so that we avoid corrupting memory.
388                  */
389                 dma_sync_single_range_for_cpu(rx_ring->dev,
390                                               buffer_info->dma,
391                                               buffer_info->page_offset,
392                                               igc_rx_bufsz(rx_ring),
393                                               DMA_FROM_DEVICE);
394
395                 /* free resources associated with mapping */
396                 dma_unmap_page_attrs(rx_ring->dev,
397                                      buffer_info->dma,
398                                      igc_rx_pg_size(rx_ring),
399                                      DMA_FROM_DEVICE,
400                                      IGC_RX_DMA_ATTR);
401                 __page_frag_cache_drain(buffer_info->page,
402                                         buffer_info->pagecnt_bias);
403
404                 i++;
405                 if (i == rx_ring->count)
406                         i = 0;
407         }
408 }
409
410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412         struct igc_rx_buffer *bi;
413         u16 i;
414
415         for (i = 0; i < ring->count; i++) {
416                 bi = &ring->rx_buffer_info[i];
417                 if (!bi->xdp)
418                         continue;
419
420                 xsk_buff_free(bi->xdp);
421                 bi->xdp = NULL;
422         }
423 }
424
425 /**
426  * igc_clean_rx_ring - Free Rx Buffers per Queue
427  * @ring: ring to free buffers from
428  */
429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431         if (ring->xsk_pool)
432                 igc_clean_rx_ring_xsk_pool(ring);
433         else
434                 igc_clean_rx_ring_page_shared(ring);
435
436         clear_ring_uses_large_buffer(ring);
437
438         ring->next_to_alloc = 0;
439         ring->next_to_clean = 0;
440         ring->next_to_use = 0;
441 }
442
443 /**
444  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445  * @adapter: board private structure
446  */
447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449         int i;
450
451         for (i = 0; i < adapter->num_rx_queues; i++)
452                 if (adapter->rx_ring[i])
453                         igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455
456 /**
457  * igc_free_rx_resources - Free Rx Resources
458  * @rx_ring: ring to clean the resources from
459  *
460  * Free all receive software resources
461  */
462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464         igc_clean_rx_ring(rx_ring);
465
466         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467
468         vfree(rx_ring->rx_buffer_info);
469         rx_ring->rx_buffer_info = NULL;
470
471         /* if not set, then don't free */
472         if (!rx_ring->desc)
473                 return;
474
475         dma_free_coherent(rx_ring->dev, rx_ring->size,
476                           rx_ring->desc, rx_ring->dma);
477
478         rx_ring->desc = NULL;
479 }
480
481 /**
482  * igc_free_all_rx_resources - Free Rx Resources for All Queues
483  * @adapter: board private structure
484  *
485  * Free all receive software resources
486  */
487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489         int i;
490
491         for (i = 0; i < adapter->num_rx_queues; i++)
492                 igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494
495 /**
496  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
498  *
499  * Returns 0 on success, negative on failure
500  */
501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503         struct net_device *ndev = rx_ring->netdev;
504         struct device *dev = rx_ring->dev;
505         u8 index = rx_ring->queue_index;
506         int size, desc_len, res;
507
508         /* XDP RX-queue info */
509         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
510                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
511         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
512                                rx_ring->q_vector->napi.napi_id);
513         if (res < 0) {
514                 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
515                            index);
516                 return res;
517         }
518
519         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
520         rx_ring->rx_buffer_info = vzalloc(size);
521         if (!rx_ring->rx_buffer_info)
522                 goto err;
523
524         desc_len = sizeof(union igc_adv_rx_desc);
525
526         /* Round up to nearest 4K */
527         rx_ring->size = rx_ring->count * desc_len;
528         rx_ring->size = ALIGN(rx_ring->size, 4096);
529
530         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
531                                            &rx_ring->dma, GFP_KERNEL);
532
533         if (!rx_ring->desc)
534                 goto err;
535
536         rx_ring->next_to_alloc = 0;
537         rx_ring->next_to_clean = 0;
538         rx_ring->next_to_use = 0;
539
540         return 0;
541
542 err:
543         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544         vfree(rx_ring->rx_buffer_info);
545         rx_ring->rx_buffer_info = NULL;
546         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
547         return -ENOMEM;
548 }
549
550 /**
551  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
552  *                                (Descriptors) for all queues
553  * @adapter: board private structure
554  *
555  * Return 0 on success, negative on failure
556  */
557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
558 {
559         struct net_device *dev = adapter->netdev;
560         int i, err = 0;
561
562         for (i = 0; i < adapter->num_rx_queues; i++) {
563                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
564                 if (err) {
565                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
566                         for (i--; i >= 0; i--)
567                                 igc_free_rx_resources(adapter->rx_ring[i]);
568                         break;
569                 }
570         }
571
572         return err;
573 }
574
575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
576                                               struct igc_ring *ring)
577 {
578         if (!igc_xdp_is_enabled(adapter) ||
579             !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
580                 return NULL;
581
582         return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
583 }
584
585 /**
586  * igc_configure_rx_ring - Configure a receive ring after Reset
587  * @adapter: board private structure
588  * @ring: receive ring to be configured
589  *
590  * Configure the Rx unit of the MAC after a reset.
591  */
592 static void igc_configure_rx_ring(struct igc_adapter *adapter,
593                                   struct igc_ring *ring)
594 {
595         struct igc_hw *hw = &adapter->hw;
596         union igc_adv_rx_desc *rx_desc;
597         int reg_idx = ring->reg_idx;
598         u32 srrctl = 0, rxdctl = 0;
599         u64 rdba = ring->dma;
600         u32 buf_size;
601
602         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
603         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
604         if (ring->xsk_pool) {
605                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
606                                                    MEM_TYPE_XSK_BUFF_POOL,
607                                                    NULL));
608                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
609         } else {
610                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
611                                                    MEM_TYPE_PAGE_SHARED,
612                                                    NULL));
613         }
614
615         if (igc_xdp_is_enabled(adapter))
616                 set_ring_uses_large_buffer(ring);
617
618         /* disable the queue */
619         wr32(IGC_RXDCTL(reg_idx), 0);
620
621         /* Set DMA base address registers */
622         wr32(IGC_RDBAL(reg_idx),
623              rdba & 0x00000000ffffffffULL);
624         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
625         wr32(IGC_RDLEN(reg_idx),
626              ring->count * sizeof(union igc_adv_rx_desc));
627
628         /* initialize head and tail */
629         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
630         wr32(IGC_RDH(reg_idx), 0);
631         writel(0, ring->tail);
632
633         /* reset next-to- use/clean to place SW in sync with hardware */
634         ring->next_to_clean = 0;
635         ring->next_to_use = 0;
636
637         if (ring->xsk_pool)
638                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
639         else if (ring_uses_large_buffer(ring))
640                 buf_size = IGC_RXBUFFER_3072;
641         else
642                 buf_size = IGC_RXBUFFER_2048;
643
644         srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
645         srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
646         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
647
648         wr32(IGC_SRRCTL(reg_idx), srrctl);
649
650         rxdctl |= IGC_RX_PTHRESH;
651         rxdctl |= IGC_RX_HTHRESH << 8;
652         rxdctl |= IGC_RX_WTHRESH << 16;
653
654         /* initialize rx_buffer_info */
655         memset(ring->rx_buffer_info, 0,
656                sizeof(struct igc_rx_buffer) * ring->count);
657
658         /* initialize Rx descriptor 0 */
659         rx_desc = IGC_RX_DESC(ring, 0);
660         rx_desc->wb.upper.length = 0;
661
662         /* enable receive descriptor fetching */
663         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
664
665         wr32(IGC_RXDCTL(reg_idx), rxdctl);
666 }
667
668 /**
669  * igc_configure_rx - Configure receive Unit after Reset
670  * @adapter: board private structure
671  *
672  * Configure the Rx unit of the MAC after a reset.
673  */
674 static void igc_configure_rx(struct igc_adapter *adapter)
675 {
676         int i;
677
678         /* Setup the HW Rx Head and Tail Descriptor Pointers and
679          * the Base and Length of the Rx Descriptor Ring
680          */
681         for (i = 0; i < adapter->num_rx_queues; i++)
682                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
683 }
684
685 /**
686  * igc_configure_tx_ring - Configure transmit ring after Reset
687  * @adapter: board private structure
688  * @ring: tx ring to configure
689  *
690  * Configure a transmit ring after a reset.
691  */
692 static void igc_configure_tx_ring(struct igc_adapter *adapter,
693                                   struct igc_ring *ring)
694 {
695         struct igc_hw *hw = &adapter->hw;
696         int reg_idx = ring->reg_idx;
697         u64 tdba = ring->dma;
698         u32 txdctl = 0;
699
700         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
701
702         /* disable the queue */
703         wr32(IGC_TXDCTL(reg_idx), 0);
704         wrfl();
705         mdelay(10);
706
707         wr32(IGC_TDLEN(reg_idx),
708              ring->count * sizeof(union igc_adv_tx_desc));
709         wr32(IGC_TDBAL(reg_idx),
710              tdba & 0x00000000ffffffffULL);
711         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
712
713         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
714         wr32(IGC_TDH(reg_idx), 0);
715         writel(0, ring->tail);
716
717         txdctl |= IGC_TX_PTHRESH;
718         txdctl |= IGC_TX_HTHRESH << 8;
719         txdctl |= IGC_TX_WTHRESH << 16;
720
721         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
722         wr32(IGC_TXDCTL(reg_idx), txdctl);
723 }
724
725 /**
726  * igc_configure_tx - Configure transmit Unit after Reset
727  * @adapter: board private structure
728  *
729  * Configure the Tx unit of the MAC after a reset.
730  */
731 static void igc_configure_tx(struct igc_adapter *adapter)
732 {
733         int i;
734
735         for (i = 0; i < adapter->num_tx_queues; i++)
736                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
737 }
738
739 /**
740  * igc_setup_mrqc - configure the multiple receive queue control registers
741  * @adapter: Board private structure
742  */
743 static void igc_setup_mrqc(struct igc_adapter *adapter)
744 {
745         struct igc_hw *hw = &adapter->hw;
746         u32 j, num_rx_queues;
747         u32 mrqc, rxcsum;
748         u32 rss_key[10];
749
750         netdev_rss_key_fill(rss_key, sizeof(rss_key));
751         for (j = 0; j < 10; j++)
752                 wr32(IGC_RSSRK(j), rss_key[j]);
753
754         num_rx_queues = adapter->rss_queues;
755
756         if (adapter->rss_indir_tbl_init != num_rx_queues) {
757                 for (j = 0; j < IGC_RETA_SIZE; j++)
758                         adapter->rss_indir_tbl[j] =
759                         (j * num_rx_queues) / IGC_RETA_SIZE;
760                 adapter->rss_indir_tbl_init = num_rx_queues;
761         }
762         igc_write_rss_indir_tbl(adapter);
763
764         /* Disable raw packet checksumming so that RSS hash is placed in
765          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
766          * offloads as they are enabled by default
767          */
768         rxcsum = rd32(IGC_RXCSUM);
769         rxcsum |= IGC_RXCSUM_PCSD;
770
771         /* Enable Receive Checksum Offload for SCTP */
772         rxcsum |= IGC_RXCSUM_CRCOFL;
773
774         /* Don't need to set TUOFL or IPOFL, they default to 1 */
775         wr32(IGC_RXCSUM, rxcsum);
776
777         /* Generate RSS hash based on packet types, TCP/UDP
778          * port numbers and/or IPv4/v6 src and dst addresses
779          */
780         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
781                IGC_MRQC_RSS_FIELD_IPV4_TCP |
782                IGC_MRQC_RSS_FIELD_IPV6 |
783                IGC_MRQC_RSS_FIELD_IPV6_TCP |
784                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
785
786         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
787                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
788         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
789                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
790
791         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
792
793         wr32(IGC_MRQC, mrqc);
794 }
795
796 /**
797  * igc_setup_rctl - configure the receive control registers
798  * @adapter: Board private structure
799  */
800 static void igc_setup_rctl(struct igc_adapter *adapter)
801 {
802         struct igc_hw *hw = &adapter->hw;
803         u32 rctl;
804
805         rctl = rd32(IGC_RCTL);
806
807         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
808         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
809
810         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
811                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
812
813         /* enable stripping of CRC. Newer features require
814          * that the HW strips the CRC.
815          */
816         rctl |= IGC_RCTL_SECRC;
817
818         /* disable store bad packets and clear size bits. */
819         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
820
821         /* enable LPE to allow for reception of jumbo frames */
822         rctl |= IGC_RCTL_LPE;
823
824         /* disable queue 0 to prevent tail write w/o re-config */
825         wr32(IGC_RXDCTL(0), 0);
826
827         /* This is useful for sniffing bad packets. */
828         if (adapter->netdev->features & NETIF_F_RXALL) {
829                 /* UPE and MPE will be handled by normal PROMISC logic
830                  * in set_rx_mode
831                  */
832                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
833                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
834                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
835
836                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
837                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
838         }
839
840         wr32(IGC_RCTL, rctl);
841 }
842
843 /**
844  * igc_setup_tctl - configure the transmit control registers
845  * @adapter: Board private structure
846  */
847 static void igc_setup_tctl(struct igc_adapter *adapter)
848 {
849         struct igc_hw *hw = &adapter->hw;
850         u32 tctl;
851
852         /* disable queue 0 which icould be enabled by default */
853         wr32(IGC_TXDCTL(0), 0);
854
855         /* Program the Transmit Control Register */
856         tctl = rd32(IGC_TCTL);
857         tctl &= ~IGC_TCTL_CT;
858         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
859                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
860
861         /* Enable transmits */
862         tctl |= IGC_TCTL_EN;
863
864         wr32(IGC_TCTL, tctl);
865 }
866
867 /**
868  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
869  * @adapter: Pointer to adapter where the filter should be set
870  * @index: Filter index
871  * @type: MAC address filter type (source or destination)
872  * @addr: MAC address
873  * @queue: If non-negative, queue assignment feature is enabled and frames
874  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
875  *         assignment is disabled.
876  */
877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
878                                   enum igc_mac_filter_type type,
879                                   const u8 *addr, int queue)
880 {
881         struct net_device *dev = adapter->netdev;
882         struct igc_hw *hw = &adapter->hw;
883         u32 ral, rah;
884
885         if (WARN_ON(index >= hw->mac.rar_entry_count))
886                 return;
887
888         ral = le32_to_cpup((__le32 *)(addr));
889         rah = le16_to_cpup((__le16 *)(addr + 4));
890
891         if (type == IGC_MAC_FILTER_TYPE_SRC) {
892                 rah &= ~IGC_RAH_ASEL_MASK;
893                 rah |= IGC_RAH_ASEL_SRC_ADDR;
894         }
895
896         if (queue >= 0) {
897                 rah &= ~IGC_RAH_QSEL_MASK;
898                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
899                 rah |= IGC_RAH_QSEL_ENABLE;
900         }
901
902         rah |= IGC_RAH_AV;
903
904         wr32(IGC_RAL(index), ral);
905         wr32(IGC_RAH(index), rah);
906
907         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
908 }
909
910 /**
911  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
912  * @adapter: Pointer to adapter where the filter should be cleared
913  * @index: Filter index
914  */
915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
916 {
917         struct net_device *dev = adapter->netdev;
918         struct igc_hw *hw = &adapter->hw;
919
920         if (WARN_ON(index >= hw->mac.rar_entry_count))
921                 return;
922
923         wr32(IGC_RAL(index), 0);
924         wr32(IGC_RAH(index), 0);
925
926         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
927 }
928
929 /* Set default MAC address for the PF in the first RAR entry */
930 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
931 {
932         struct net_device *dev = adapter->netdev;
933         u8 *addr = adapter->hw.mac.addr;
934
935         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
936
937         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
938 }
939
940 /**
941  * igc_set_mac - Change the Ethernet Address of the NIC
942  * @netdev: network interface device structure
943  * @p: pointer to an address structure
944  *
945  * Returns 0 on success, negative on failure
946  */
947 static int igc_set_mac(struct net_device *netdev, void *p)
948 {
949         struct igc_adapter *adapter = netdev_priv(netdev);
950         struct igc_hw *hw = &adapter->hw;
951         struct sockaddr *addr = p;
952
953         if (!is_valid_ether_addr(addr->sa_data))
954                 return -EADDRNOTAVAIL;
955
956         eth_hw_addr_set(netdev, addr->sa_data);
957         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
958
959         /* set the correct pool for the new PF MAC address in entry 0 */
960         igc_set_default_mac_filter(adapter);
961
962         return 0;
963 }
964
965 /**
966  *  igc_write_mc_addr_list - write multicast addresses to MTA
967  *  @netdev: network interface device structure
968  *
969  *  Writes multicast address list to the MTA hash table.
970  *  Returns: -ENOMEM on failure
971  *           0 on no addresses written
972  *           X on writing X addresses to MTA
973  **/
974 static int igc_write_mc_addr_list(struct net_device *netdev)
975 {
976         struct igc_adapter *adapter = netdev_priv(netdev);
977         struct igc_hw *hw = &adapter->hw;
978         struct netdev_hw_addr *ha;
979         u8  *mta_list;
980         int i;
981
982         if (netdev_mc_empty(netdev)) {
983                 /* nothing to program, so clear mc list */
984                 igc_update_mc_addr_list(hw, NULL, 0);
985                 return 0;
986         }
987
988         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
989         if (!mta_list)
990                 return -ENOMEM;
991
992         /* The shared function expects a packed array of only addresses. */
993         i = 0;
994         netdev_for_each_mc_addr(ha, netdev)
995                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
996
997         igc_update_mc_addr_list(hw, mta_list, i);
998         kfree(mta_list);
999
1000         return netdev_mc_count(netdev);
1001 }
1002
1003 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1004                                 bool *first_flag, bool *insert_empty)
1005 {
1006         struct igc_adapter *adapter = netdev_priv(ring->netdev);
1007         ktime_t cycle_time = adapter->cycle_time;
1008         ktime_t base_time = adapter->base_time;
1009         ktime_t now = ktime_get_clocktai();
1010         ktime_t baset_est, end_of_cycle;
1011         u32 launchtime;
1012         s64 n;
1013
1014         n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1015
1016         baset_est = ktime_add_ns(base_time, cycle_time * (n));
1017         end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1018
1019         if (ktime_compare(txtime, end_of_cycle) >= 0) {
1020                 if (baset_est != ring->last_ff_cycle) {
1021                         *first_flag = true;
1022                         ring->last_ff_cycle = baset_est;
1023
1024                         if (ktime_compare(txtime, ring->last_tx_cycle) > 0)
1025                                 *insert_empty = true;
1026                 }
1027         }
1028
1029         /* Introducing a window at end of cycle on which packets
1030          * potentially not honor launchtime. Window of 5us chosen
1031          * considering software update the tail pointer and packets
1032          * are dma'ed to packet buffer.
1033          */
1034         if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1035                 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1036                             txtime);
1037
1038         ring->last_tx_cycle = end_of_cycle;
1039
1040         launchtime = ktime_sub_ns(txtime, baset_est);
1041         if (launchtime > 0)
1042                 div_s64_rem(launchtime, cycle_time, &launchtime);
1043         else
1044                 launchtime = 0;
1045
1046         return cpu_to_le32(launchtime);
1047 }
1048
1049 static int igc_init_empty_frame(struct igc_ring *ring,
1050                                 struct igc_tx_buffer *buffer,
1051                                 struct sk_buff *skb)
1052 {
1053         unsigned int size;
1054         dma_addr_t dma;
1055
1056         size = skb_headlen(skb);
1057
1058         dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1059         if (dma_mapping_error(ring->dev, dma)) {
1060                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1061                 return -ENOMEM;
1062         }
1063
1064         buffer->skb = skb;
1065         buffer->protocol = 0;
1066         buffer->bytecount = skb->len;
1067         buffer->gso_segs = 1;
1068         buffer->time_stamp = jiffies;
1069         dma_unmap_len_set(buffer, len, skb->len);
1070         dma_unmap_addr_set(buffer, dma, dma);
1071
1072         return 0;
1073 }
1074
1075 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1076                                         struct sk_buff *skb,
1077                                         struct igc_tx_buffer *first)
1078 {
1079         union igc_adv_tx_desc *desc;
1080         u32 cmd_type, olinfo_status;
1081         int err;
1082
1083         if (!igc_desc_unused(ring))
1084                 return -EBUSY;
1085
1086         err = igc_init_empty_frame(ring, first, skb);
1087         if (err)
1088                 return err;
1089
1090         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1091                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1092                    first->bytecount;
1093         olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1094
1095         desc = IGC_TX_DESC(ring, ring->next_to_use);
1096         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1097         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1098         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1099
1100         netdev_tx_sent_queue(txring_txq(ring), skb->len);
1101
1102         first->next_to_watch = desc;
1103
1104         ring->next_to_use++;
1105         if (ring->next_to_use == ring->count)
1106                 ring->next_to_use = 0;
1107
1108         return 0;
1109 }
1110
1111 #define IGC_EMPTY_FRAME_SIZE 60
1112
1113 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1114                             __le32 launch_time, bool first_flag,
1115                             u32 vlan_macip_lens, u32 type_tucmd,
1116                             u32 mss_l4len_idx)
1117 {
1118         struct igc_adv_tx_context_desc *context_desc;
1119         u16 i = tx_ring->next_to_use;
1120
1121         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1122
1123         i++;
1124         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1125
1126         /* set bits to identify this as an advanced context descriptor */
1127         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1128
1129         /* For i225, context index must be unique per ring. */
1130         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1131                 mss_l4len_idx |= tx_ring->reg_idx << 4;
1132
1133         if (first_flag)
1134                 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1135
1136         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1137         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1138         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1139         context_desc->launch_time       = launch_time;
1140 }
1141
1142 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1143                         __le32 launch_time, bool first_flag)
1144 {
1145         struct sk_buff *skb = first->skb;
1146         u32 vlan_macip_lens = 0;
1147         u32 type_tucmd = 0;
1148
1149         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1150 csum_failed:
1151                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1152                     !tx_ring->launchtime_enable)
1153                         return;
1154                 goto no_csum;
1155         }
1156
1157         switch (skb->csum_offset) {
1158         case offsetof(struct tcphdr, check):
1159                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1160                 fallthrough;
1161         case offsetof(struct udphdr, check):
1162                 break;
1163         case offsetof(struct sctphdr, checksum):
1164                 /* validate that this is actually an SCTP request */
1165                 if (skb_csum_is_sctp(skb)) {
1166                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1167                         break;
1168                 }
1169                 fallthrough;
1170         default:
1171                 skb_checksum_help(skb);
1172                 goto csum_failed;
1173         }
1174
1175         /* update TX checksum flag */
1176         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1177         vlan_macip_lens = skb_checksum_start_offset(skb) -
1178                           skb_network_offset(skb);
1179 no_csum:
1180         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1181         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1182
1183         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1184                         vlan_macip_lens, type_tucmd, 0);
1185 }
1186
1187 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1188 {
1189         struct net_device *netdev = tx_ring->netdev;
1190
1191         netif_stop_subqueue(netdev, tx_ring->queue_index);
1192
1193         /* memory barriier comment */
1194         smp_mb();
1195
1196         /* We need to check again in a case another CPU has just
1197          * made room available.
1198          */
1199         if (igc_desc_unused(tx_ring) < size)
1200                 return -EBUSY;
1201
1202         /* A reprieve! */
1203         netif_wake_subqueue(netdev, tx_ring->queue_index);
1204
1205         u64_stats_update_begin(&tx_ring->tx_syncp2);
1206         tx_ring->tx_stats.restart_queue2++;
1207         u64_stats_update_end(&tx_ring->tx_syncp2);
1208
1209         return 0;
1210 }
1211
1212 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1213 {
1214         if (igc_desc_unused(tx_ring) >= size)
1215                 return 0;
1216         return __igc_maybe_stop_tx(tx_ring, size);
1217 }
1218
1219 #define IGC_SET_FLAG(_input, _flag, _result) \
1220         (((_flag) <= (_result)) ?                               \
1221          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1222          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1223
1224 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1225 {
1226         /* set type for advanced descriptor with frame checksum insertion */
1227         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1228                        IGC_ADVTXD_DCMD_DEXT |
1229                        IGC_ADVTXD_DCMD_IFCS;
1230
1231         /* set HW vlan bit if vlan is present */
1232         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1233                                  IGC_ADVTXD_DCMD_VLE);
1234
1235         /* set segmentation bits for TSO */
1236         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1237                                  (IGC_ADVTXD_DCMD_TSE));
1238
1239         /* set timestamp bit if present */
1240         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1241                                  (IGC_ADVTXD_MAC_TSTAMP));
1242
1243         /* insert frame checksum */
1244         cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1245
1246         return cmd_type;
1247 }
1248
1249 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1250                                  union igc_adv_tx_desc *tx_desc,
1251                                  u32 tx_flags, unsigned int paylen)
1252 {
1253         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1254
1255         /* insert L4 checksum */
1256         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1257                           ((IGC_TXD_POPTS_TXSM << 8) /
1258                           IGC_TX_FLAGS_CSUM);
1259
1260         /* insert IPv4 checksum */
1261         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1262                           (((IGC_TXD_POPTS_IXSM << 8)) /
1263                           IGC_TX_FLAGS_IPV4);
1264
1265         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1266 }
1267
1268 static int igc_tx_map(struct igc_ring *tx_ring,
1269                       struct igc_tx_buffer *first,
1270                       const u8 hdr_len)
1271 {
1272         struct sk_buff *skb = first->skb;
1273         struct igc_tx_buffer *tx_buffer;
1274         union igc_adv_tx_desc *tx_desc;
1275         u32 tx_flags = first->tx_flags;
1276         skb_frag_t *frag;
1277         u16 i = tx_ring->next_to_use;
1278         unsigned int data_len, size;
1279         dma_addr_t dma;
1280         u32 cmd_type;
1281
1282         cmd_type = igc_tx_cmd_type(skb, tx_flags);
1283         tx_desc = IGC_TX_DESC(tx_ring, i);
1284
1285         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1286
1287         size = skb_headlen(skb);
1288         data_len = skb->data_len;
1289
1290         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1291
1292         tx_buffer = first;
1293
1294         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1295                 if (dma_mapping_error(tx_ring->dev, dma))
1296                         goto dma_error;
1297
1298                 /* record length, and DMA address */
1299                 dma_unmap_len_set(tx_buffer, len, size);
1300                 dma_unmap_addr_set(tx_buffer, dma, dma);
1301
1302                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1303
1304                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1305                         tx_desc->read.cmd_type_len =
1306                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1307
1308                         i++;
1309                         tx_desc++;
1310                         if (i == tx_ring->count) {
1311                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1312                                 i = 0;
1313                         }
1314                         tx_desc->read.olinfo_status = 0;
1315
1316                         dma += IGC_MAX_DATA_PER_TXD;
1317                         size -= IGC_MAX_DATA_PER_TXD;
1318
1319                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1320                 }
1321
1322                 if (likely(!data_len))
1323                         break;
1324
1325                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1326
1327                 i++;
1328                 tx_desc++;
1329                 if (i == tx_ring->count) {
1330                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1331                         i = 0;
1332                 }
1333                 tx_desc->read.olinfo_status = 0;
1334
1335                 size = skb_frag_size(frag);
1336                 data_len -= size;
1337
1338                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1339                                        size, DMA_TO_DEVICE);
1340
1341                 tx_buffer = &tx_ring->tx_buffer_info[i];
1342         }
1343
1344         /* write last descriptor with RS and EOP bits */
1345         cmd_type |= size | IGC_TXD_DCMD;
1346         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1347
1348         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1349
1350         /* set the timestamp */
1351         first->time_stamp = jiffies;
1352
1353         skb_tx_timestamp(skb);
1354
1355         /* Force memory writes to complete before letting h/w know there
1356          * are new descriptors to fetch.  (Only applicable for weak-ordered
1357          * memory model archs, such as IA-64).
1358          *
1359          * We also need this memory barrier to make certain all of the
1360          * status bits have been updated before next_to_watch is written.
1361          */
1362         wmb();
1363
1364         /* set next_to_watch value indicating a packet is present */
1365         first->next_to_watch = tx_desc;
1366
1367         i++;
1368         if (i == tx_ring->count)
1369                 i = 0;
1370
1371         tx_ring->next_to_use = i;
1372
1373         /* Make sure there is space in the ring for the next send. */
1374         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1375
1376         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1377                 writel(i, tx_ring->tail);
1378         }
1379
1380         return 0;
1381 dma_error:
1382         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1383         tx_buffer = &tx_ring->tx_buffer_info[i];
1384
1385         /* clear dma mappings for failed tx_buffer_info map */
1386         while (tx_buffer != first) {
1387                 if (dma_unmap_len(tx_buffer, len))
1388                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1389
1390                 if (i-- == 0)
1391                         i += tx_ring->count;
1392                 tx_buffer = &tx_ring->tx_buffer_info[i];
1393         }
1394
1395         if (dma_unmap_len(tx_buffer, len))
1396                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1397
1398         dev_kfree_skb_any(tx_buffer->skb);
1399         tx_buffer->skb = NULL;
1400
1401         tx_ring->next_to_use = i;
1402
1403         return -1;
1404 }
1405
1406 static int igc_tso(struct igc_ring *tx_ring,
1407                    struct igc_tx_buffer *first,
1408                    __le32 launch_time, bool first_flag,
1409                    u8 *hdr_len)
1410 {
1411         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1412         struct sk_buff *skb = first->skb;
1413         union {
1414                 struct iphdr *v4;
1415                 struct ipv6hdr *v6;
1416                 unsigned char *hdr;
1417         } ip;
1418         union {
1419                 struct tcphdr *tcp;
1420                 struct udphdr *udp;
1421                 unsigned char *hdr;
1422         } l4;
1423         u32 paylen, l4_offset;
1424         int err;
1425
1426         if (skb->ip_summed != CHECKSUM_PARTIAL)
1427                 return 0;
1428
1429         if (!skb_is_gso(skb))
1430                 return 0;
1431
1432         err = skb_cow_head(skb, 0);
1433         if (err < 0)
1434                 return err;
1435
1436         ip.hdr = skb_network_header(skb);
1437         l4.hdr = skb_checksum_start(skb);
1438
1439         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1440         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1441
1442         /* initialize outer IP header fields */
1443         if (ip.v4->version == 4) {
1444                 unsigned char *csum_start = skb_checksum_start(skb);
1445                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1446
1447                 /* IP header will have to cancel out any data that
1448                  * is not a part of the outer IP header
1449                  */
1450                 ip.v4->check = csum_fold(csum_partial(trans_start,
1451                                                       csum_start - trans_start,
1452                                                       0));
1453                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1454
1455                 ip.v4->tot_len = 0;
1456                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1457                                    IGC_TX_FLAGS_CSUM |
1458                                    IGC_TX_FLAGS_IPV4;
1459         } else {
1460                 ip.v6->payload_len = 0;
1461                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1462                                    IGC_TX_FLAGS_CSUM;
1463         }
1464
1465         /* determine offset of inner transport header */
1466         l4_offset = l4.hdr - skb->data;
1467
1468         /* remove payload length from inner checksum */
1469         paylen = skb->len - l4_offset;
1470         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1471                 /* compute length of segmentation header */
1472                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1473                 csum_replace_by_diff(&l4.tcp->check,
1474                                      (__force __wsum)htonl(paylen));
1475         } else {
1476                 /* compute length of segmentation header */
1477                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1478                 csum_replace_by_diff(&l4.udp->check,
1479                                      (__force __wsum)htonl(paylen));
1480         }
1481
1482         /* update gso size and bytecount with header size */
1483         first->gso_segs = skb_shinfo(skb)->gso_segs;
1484         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1485
1486         /* MSS L4LEN IDX */
1487         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1488         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1489
1490         /* VLAN MACLEN IPLEN */
1491         vlan_macip_lens = l4.hdr - ip.hdr;
1492         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1493         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1494
1495         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1496                         vlan_macip_lens, type_tucmd, mss_l4len_idx);
1497
1498         return 1;
1499 }
1500
1501 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1502                                        struct igc_ring *tx_ring)
1503 {
1504         bool first_flag = false, insert_empty = false;
1505         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1506         __be16 protocol = vlan_get_protocol(skb);
1507         struct igc_tx_buffer *first;
1508         __le32 launch_time = 0;
1509         u32 tx_flags = 0;
1510         unsigned short f;
1511         ktime_t txtime;
1512         u8 hdr_len = 0;
1513         int tso = 0;
1514
1515         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1516          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1517          *      + 2 desc gap to keep tail from touching head,
1518          *      + 1 desc for context descriptor,
1519          * otherwise try next time
1520          */
1521         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1522                 count += TXD_USE_COUNT(skb_frag_size(
1523                                                 &skb_shinfo(skb)->frags[f]));
1524
1525         if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1526                 /* this is a hard error */
1527                 return NETDEV_TX_BUSY;
1528         }
1529
1530         if (!tx_ring->launchtime_enable)
1531                 goto done;
1532
1533         txtime = skb->tstamp;
1534         skb->tstamp = ktime_set(0, 0);
1535         launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1536
1537         if (insert_empty) {
1538                 struct igc_tx_buffer *empty_info;
1539                 struct sk_buff *empty;
1540                 void *data;
1541
1542                 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1543                 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1544                 if (!empty)
1545                         goto done;
1546
1547                 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1548                 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1549
1550                 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1551
1552                 if (igc_init_tx_empty_descriptor(tx_ring,
1553                                                  empty,
1554                                                  empty_info) < 0)
1555                         dev_kfree_skb_any(empty);
1556         }
1557
1558 done:
1559         /* record the location of the first descriptor for this packet */
1560         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1561         first->type = IGC_TX_BUFFER_TYPE_SKB;
1562         first->skb = skb;
1563         first->bytecount = skb->len;
1564         first->gso_segs = 1;
1565
1566         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1567                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1568
1569                 /* FIXME: add support for retrieving timestamps from
1570                  * the other timer registers before skipping the
1571                  * timestamping request.
1572                  */
1573                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1574                     !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1575                                            &adapter->state)) {
1576                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1577                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1578
1579                         adapter->ptp_tx_skb = skb_get(skb);
1580                         adapter->ptp_tx_start = jiffies;
1581                 } else {
1582                         adapter->tx_hwtstamp_skipped++;
1583                 }
1584         }
1585
1586         if (skb_vlan_tag_present(skb)) {
1587                 tx_flags |= IGC_TX_FLAGS_VLAN;
1588                 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1589         }
1590
1591         /* record initial flags and protocol */
1592         first->tx_flags = tx_flags;
1593         first->protocol = protocol;
1594
1595         tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1596         if (tso < 0)
1597                 goto out_drop;
1598         else if (!tso)
1599                 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1600
1601         igc_tx_map(tx_ring, first, hdr_len);
1602
1603         return NETDEV_TX_OK;
1604
1605 out_drop:
1606         dev_kfree_skb_any(first->skb);
1607         first->skb = NULL;
1608
1609         return NETDEV_TX_OK;
1610 }
1611
1612 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1613                                                     struct sk_buff *skb)
1614 {
1615         unsigned int r_idx = skb->queue_mapping;
1616
1617         if (r_idx >= adapter->num_tx_queues)
1618                 r_idx = r_idx % adapter->num_tx_queues;
1619
1620         return adapter->tx_ring[r_idx];
1621 }
1622
1623 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1624                                   struct net_device *netdev)
1625 {
1626         struct igc_adapter *adapter = netdev_priv(netdev);
1627
1628         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1629          * in order to meet this minimum size requirement.
1630          */
1631         if (skb->len < 17) {
1632                 if (skb_padto(skb, 17))
1633                         return NETDEV_TX_OK;
1634                 skb->len = 17;
1635         }
1636
1637         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1638 }
1639
1640 static void igc_rx_checksum(struct igc_ring *ring,
1641                             union igc_adv_rx_desc *rx_desc,
1642                             struct sk_buff *skb)
1643 {
1644         skb_checksum_none_assert(skb);
1645
1646         /* Ignore Checksum bit is set */
1647         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1648                 return;
1649
1650         /* Rx checksum disabled via ethtool */
1651         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1652                 return;
1653
1654         /* TCP/UDP checksum error bit is set */
1655         if (igc_test_staterr(rx_desc,
1656                              IGC_RXDEXT_STATERR_L4E |
1657                              IGC_RXDEXT_STATERR_IPE)) {
1658                 /* work around errata with sctp packets where the TCPE aka
1659                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1660                  * packets (aka let the stack check the crc32c)
1661                  */
1662                 if (!(skb->len == 60 &&
1663                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1664                         u64_stats_update_begin(&ring->rx_syncp);
1665                         ring->rx_stats.csum_err++;
1666                         u64_stats_update_end(&ring->rx_syncp);
1667                 }
1668                 /* let the stack verify checksum errors */
1669                 return;
1670         }
1671         /* It must be a TCP or UDP packet with a valid checksum */
1672         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1673                                       IGC_RXD_STAT_UDPCS))
1674                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1675
1676         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1677                    le32_to_cpu(rx_desc->wb.upper.status_error));
1678 }
1679
1680 static inline void igc_rx_hash(struct igc_ring *ring,
1681                                union igc_adv_rx_desc *rx_desc,
1682                                struct sk_buff *skb)
1683 {
1684         if (ring->netdev->features & NETIF_F_RXHASH)
1685                 skb_set_hash(skb,
1686                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1687                              PKT_HASH_TYPE_L3);
1688 }
1689
1690 static void igc_rx_vlan(struct igc_ring *rx_ring,
1691                         union igc_adv_rx_desc *rx_desc,
1692                         struct sk_buff *skb)
1693 {
1694         struct net_device *dev = rx_ring->netdev;
1695         u16 vid;
1696
1697         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1698             igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1699                 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1700                     test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1701                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1702                 else
1703                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1704
1705                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1706         }
1707 }
1708
1709 /**
1710  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1711  * @rx_ring: rx descriptor ring packet is being transacted on
1712  * @rx_desc: pointer to the EOP Rx descriptor
1713  * @skb: pointer to current skb being populated
1714  *
1715  * This function checks the ring, descriptor, and packet information in order
1716  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1717  * skb.
1718  */
1719 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1720                                    union igc_adv_rx_desc *rx_desc,
1721                                    struct sk_buff *skb)
1722 {
1723         igc_rx_hash(rx_ring, rx_desc, skb);
1724
1725         igc_rx_checksum(rx_ring, rx_desc, skb);
1726
1727         igc_rx_vlan(rx_ring, rx_desc, skb);
1728
1729         skb_record_rx_queue(skb, rx_ring->queue_index);
1730
1731         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1732 }
1733
1734 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1735 {
1736         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1737         struct igc_adapter *adapter = netdev_priv(netdev);
1738         struct igc_hw *hw = &adapter->hw;
1739         u32 ctrl;
1740
1741         ctrl = rd32(IGC_CTRL);
1742
1743         if (enable) {
1744                 /* enable VLAN tag insert/strip */
1745                 ctrl |= IGC_CTRL_VME;
1746         } else {
1747                 /* disable VLAN tag insert/strip */
1748                 ctrl &= ~IGC_CTRL_VME;
1749         }
1750         wr32(IGC_CTRL, ctrl);
1751 }
1752
1753 static void igc_restore_vlan(struct igc_adapter *adapter)
1754 {
1755         igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1756 }
1757
1758 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1759                                                const unsigned int size,
1760                                                int *rx_buffer_pgcnt)
1761 {
1762         struct igc_rx_buffer *rx_buffer;
1763
1764         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1765         *rx_buffer_pgcnt =
1766 #if (PAGE_SIZE < 8192)
1767                 page_count(rx_buffer->page);
1768 #else
1769                 0;
1770 #endif
1771         prefetchw(rx_buffer->page);
1772
1773         /* we are reusing so sync this buffer for CPU use */
1774         dma_sync_single_range_for_cpu(rx_ring->dev,
1775                                       rx_buffer->dma,
1776                                       rx_buffer->page_offset,
1777                                       size,
1778                                       DMA_FROM_DEVICE);
1779
1780         rx_buffer->pagecnt_bias--;
1781
1782         return rx_buffer;
1783 }
1784
1785 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1786                                unsigned int truesize)
1787 {
1788 #if (PAGE_SIZE < 8192)
1789         buffer->page_offset ^= truesize;
1790 #else
1791         buffer->page_offset += truesize;
1792 #endif
1793 }
1794
1795 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1796                                               unsigned int size)
1797 {
1798         unsigned int truesize;
1799
1800 #if (PAGE_SIZE < 8192)
1801         truesize = igc_rx_pg_size(ring) / 2;
1802 #else
1803         truesize = ring_uses_build_skb(ring) ?
1804                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1805                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1806                    SKB_DATA_ALIGN(size);
1807 #endif
1808         return truesize;
1809 }
1810
1811 /**
1812  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1813  * @rx_ring: rx descriptor ring to transact packets on
1814  * @rx_buffer: buffer containing page to add
1815  * @skb: sk_buff to place the data into
1816  * @size: size of buffer to be added
1817  *
1818  * This function will add the data contained in rx_buffer->page to the skb.
1819  */
1820 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1821                             struct igc_rx_buffer *rx_buffer,
1822                             struct sk_buff *skb,
1823                             unsigned int size)
1824 {
1825         unsigned int truesize;
1826
1827 #if (PAGE_SIZE < 8192)
1828         truesize = igc_rx_pg_size(rx_ring) / 2;
1829 #else
1830         truesize = ring_uses_build_skb(rx_ring) ?
1831                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1832                    SKB_DATA_ALIGN(size);
1833 #endif
1834         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1835                         rx_buffer->page_offset, size, truesize);
1836
1837         igc_rx_buffer_flip(rx_buffer, truesize);
1838 }
1839
1840 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1841                                      struct igc_rx_buffer *rx_buffer,
1842                                      struct xdp_buff *xdp)
1843 {
1844         unsigned int size = xdp->data_end - xdp->data;
1845         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1846         unsigned int metasize = xdp->data - xdp->data_meta;
1847         struct sk_buff *skb;
1848
1849         /* prefetch first cache line of first page */
1850         net_prefetch(xdp->data_meta);
1851
1852         /* build an skb around the page buffer */
1853         skb = napi_build_skb(xdp->data_hard_start, truesize);
1854         if (unlikely(!skb))
1855                 return NULL;
1856
1857         /* update pointers within the skb to store the data */
1858         skb_reserve(skb, xdp->data - xdp->data_hard_start);
1859         __skb_put(skb, size);
1860         if (metasize)
1861                 skb_metadata_set(skb, metasize);
1862
1863         igc_rx_buffer_flip(rx_buffer, truesize);
1864         return skb;
1865 }
1866
1867 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1868                                          struct igc_rx_buffer *rx_buffer,
1869                                          struct xdp_buff *xdp,
1870                                          ktime_t timestamp)
1871 {
1872         unsigned int metasize = xdp->data - xdp->data_meta;
1873         unsigned int size = xdp->data_end - xdp->data;
1874         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1875         void *va = xdp->data;
1876         unsigned int headlen;
1877         struct sk_buff *skb;
1878
1879         /* prefetch first cache line of first page */
1880         net_prefetch(xdp->data_meta);
1881
1882         /* allocate a skb to store the frags */
1883         skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1884                              IGC_RX_HDR_LEN + metasize);
1885         if (unlikely(!skb))
1886                 return NULL;
1887
1888         if (timestamp)
1889                 skb_hwtstamps(skb)->hwtstamp = timestamp;
1890
1891         /* Determine available headroom for copy */
1892         headlen = size;
1893         if (headlen > IGC_RX_HDR_LEN)
1894                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1895
1896         /* align pull length to size of long to optimize memcpy performance */
1897         memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1898                ALIGN(headlen + metasize, sizeof(long)));
1899
1900         if (metasize) {
1901                 skb_metadata_set(skb, metasize);
1902                 __skb_pull(skb, metasize);
1903         }
1904
1905         /* update all of the pointers */
1906         size -= headlen;
1907         if (size) {
1908                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1909                                 (va + headlen) - page_address(rx_buffer->page),
1910                                 size, truesize);
1911                 igc_rx_buffer_flip(rx_buffer, truesize);
1912         } else {
1913                 rx_buffer->pagecnt_bias++;
1914         }
1915
1916         return skb;
1917 }
1918
1919 /**
1920  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1921  * @rx_ring: rx descriptor ring to store buffers on
1922  * @old_buff: donor buffer to have page reused
1923  *
1924  * Synchronizes page for reuse by the adapter
1925  */
1926 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1927                               struct igc_rx_buffer *old_buff)
1928 {
1929         u16 nta = rx_ring->next_to_alloc;
1930         struct igc_rx_buffer *new_buff;
1931
1932         new_buff = &rx_ring->rx_buffer_info[nta];
1933
1934         /* update, and store next to alloc */
1935         nta++;
1936         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1937
1938         /* Transfer page from old buffer to new buffer.
1939          * Move each member individually to avoid possible store
1940          * forwarding stalls.
1941          */
1942         new_buff->dma           = old_buff->dma;
1943         new_buff->page          = old_buff->page;
1944         new_buff->page_offset   = old_buff->page_offset;
1945         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1946 }
1947
1948 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1949                                   int rx_buffer_pgcnt)
1950 {
1951         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1952         struct page *page = rx_buffer->page;
1953
1954         /* avoid re-using remote and pfmemalloc pages */
1955         if (!dev_page_is_reusable(page))
1956                 return false;
1957
1958 #if (PAGE_SIZE < 8192)
1959         /* if we are only owner of page we can reuse it */
1960         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1961                 return false;
1962 #else
1963 #define IGC_LAST_OFFSET \
1964         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1965
1966         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1967                 return false;
1968 #endif
1969
1970         /* If we have drained the page fragment pool we need to update
1971          * the pagecnt_bias and page count so that we fully restock the
1972          * number of references the driver holds.
1973          */
1974         if (unlikely(pagecnt_bias == 1)) {
1975                 page_ref_add(page, USHRT_MAX - 1);
1976                 rx_buffer->pagecnt_bias = USHRT_MAX;
1977         }
1978
1979         return true;
1980 }
1981
1982 /**
1983  * igc_is_non_eop - process handling of non-EOP buffers
1984  * @rx_ring: Rx ring being processed
1985  * @rx_desc: Rx descriptor for current buffer
1986  *
1987  * This function updates next to clean.  If the buffer is an EOP buffer
1988  * this function exits returning false, otherwise it will place the
1989  * sk_buff in the next buffer to be chained and return true indicating
1990  * that this is in fact a non-EOP buffer.
1991  */
1992 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1993                            union igc_adv_rx_desc *rx_desc)
1994 {
1995         u32 ntc = rx_ring->next_to_clean + 1;
1996
1997         /* fetch, update, and store next to clean */
1998         ntc = (ntc < rx_ring->count) ? ntc : 0;
1999         rx_ring->next_to_clean = ntc;
2000
2001         prefetch(IGC_RX_DESC(rx_ring, ntc));
2002
2003         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2004                 return false;
2005
2006         return true;
2007 }
2008
2009 /**
2010  * igc_cleanup_headers - Correct corrupted or empty headers
2011  * @rx_ring: rx descriptor ring packet is being transacted on
2012  * @rx_desc: pointer to the EOP Rx descriptor
2013  * @skb: pointer to current skb being fixed
2014  *
2015  * Address the case where we are pulling data in on pages only
2016  * and as such no data is present in the skb header.
2017  *
2018  * In addition if skb is not at least 60 bytes we need to pad it so that
2019  * it is large enough to qualify as a valid Ethernet frame.
2020  *
2021  * Returns true if an error was encountered and skb was freed.
2022  */
2023 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2024                                 union igc_adv_rx_desc *rx_desc,
2025                                 struct sk_buff *skb)
2026 {
2027         /* XDP packets use error pointer so abort at this point */
2028         if (IS_ERR(skb))
2029                 return true;
2030
2031         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2032                 struct net_device *netdev = rx_ring->netdev;
2033
2034                 if (!(netdev->features & NETIF_F_RXALL)) {
2035                         dev_kfree_skb_any(skb);
2036                         return true;
2037                 }
2038         }
2039
2040         /* if eth_skb_pad returns an error the skb was freed */
2041         if (eth_skb_pad(skb))
2042                 return true;
2043
2044         return false;
2045 }
2046
2047 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2048                               struct igc_rx_buffer *rx_buffer,
2049                               int rx_buffer_pgcnt)
2050 {
2051         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2052                 /* hand second half of page back to the ring */
2053                 igc_reuse_rx_page(rx_ring, rx_buffer);
2054         } else {
2055                 /* We are not reusing the buffer so unmap it and free
2056                  * any references we are holding to it
2057                  */
2058                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2059                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2060                                      IGC_RX_DMA_ATTR);
2061                 __page_frag_cache_drain(rx_buffer->page,
2062                                         rx_buffer->pagecnt_bias);
2063         }
2064
2065         /* clear contents of rx_buffer */
2066         rx_buffer->page = NULL;
2067 }
2068
2069 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2070 {
2071         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2072
2073         if (ring_uses_build_skb(rx_ring))
2074                 return IGC_SKB_PAD;
2075         if (igc_xdp_is_enabled(adapter))
2076                 return XDP_PACKET_HEADROOM;
2077
2078         return 0;
2079 }
2080
2081 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2082                                   struct igc_rx_buffer *bi)
2083 {
2084         struct page *page = bi->page;
2085         dma_addr_t dma;
2086
2087         /* since we are recycling buffers we should seldom need to alloc */
2088         if (likely(page))
2089                 return true;
2090
2091         /* alloc new page for storage */
2092         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2093         if (unlikely(!page)) {
2094                 rx_ring->rx_stats.alloc_failed++;
2095                 return false;
2096         }
2097
2098         /* map page for use */
2099         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2100                                  igc_rx_pg_size(rx_ring),
2101                                  DMA_FROM_DEVICE,
2102                                  IGC_RX_DMA_ATTR);
2103
2104         /* if mapping failed free memory back to system since
2105          * there isn't much point in holding memory we can't use
2106          */
2107         if (dma_mapping_error(rx_ring->dev, dma)) {
2108                 __free_page(page);
2109
2110                 rx_ring->rx_stats.alloc_failed++;
2111                 return false;
2112         }
2113
2114         bi->dma = dma;
2115         bi->page = page;
2116         bi->page_offset = igc_rx_offset(rx_ring);
2117         page_ref_add(page, USHRT_MAX - 1);
2118         bi->pagecnt_bias = USHRT_MAX;
2119
2120         return true;
2121 }
2122
2123 /**
2124  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2125  * @rx_ring: rx descriptor ring
2126  * @cleaned_count: number of buffers to clean
2127  */
2128 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2129 {
2130         union igc_adv_rx_desc *rx_desc;
2131         u16 i = rx_ring->next_to_use;
2132         struct igc_rx_buffer *bi;
2133         u16 bufsz;
2134
2135         /* nothing to do */
2136         if (!cleaned_count)
2137                 return;
2138
2139         rx_desc = IGC_RX_DESC(rx_ring, i);
2140         bi = &rx_ring->rx_buffer_info[i];
2141         i -= rx_ring->count;
2142
2143         bufsz = igc_rx_bufsz(rx_ring);
2144
2145         do {
2146                 if (!igc_alloc_mapped_page(rx_ring, bi))
2147                         break;
2148
2149                 /* sync the buffer for use by the device */
2150                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2151                                                  bi->page_offset, bufsz,
2152                                                  DMA_FROM_DEVICE);
2153
2154                 /* Refresh the desc even if buffer_addrs didn't change
2155                  * because each write-back erases this info.
2156                  */
2157                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2158
2159                 rx_desc++;
2160                 bi++;
2161                 i++;
2162                 if (unlikely(!i)) {
2163                         rx_desc = IGC_RX_DESC(rx_ring, 0);
2164                         bi = rx_ring->rx_buffer_info;
2165                         i -= rx_ring->count;
2166                 }
2167
2168                 /* clear the length for the next_to_use descriptor */
2169                 rx_desc->wb.upper.length = 0;
2170
2171                 cleaned_count--;
2172         } while (cleaned_count);
2173
2174         i += rx_ring->count;
2175
2176         if (rx_ring->next_to_use != i) {
2177                 /* record the next descriptor to use */
2178                 rx_ring->next_to_use = i;
2179
2180                 /* update next to alloc since we have filled the ring */
2181                 rx_ring->next_to_alloc = i;
2182
2183                 /* Force memory writes to complete before letting h/w
2184                  * know there are new descriptors to fetch.  (Only
2185                  * applicable for weak-ordered memory model archs,
2186                  * such as IA-64).
2187                  */
2188                 wmb();
2189                 writel(i, rx_ring->tail);
2190         }
2191 }
2192
2193 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2194 {
2195         union igc_adv_rx_desc *desc;
2196         u16 i = ring->next_to_use;
2197         struct igc_rx_buffer *bi;
2198         dma_addr_t dma;
2199         bool ok = true;
2200
2201         if (!count)
2202                 return ok;
2203
2204         desc = IGC_RX_DESC(ring, i);
2205         bi = &ring->rx_buffer_info[i];
2206         i -= ring->count;
2207
2208         do {
2209                 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2210                 if (!bi->xdp) {
2211                         ok = false;
2212                         break;
2213                 }
2214
2215                 dma = xsk_buff_xdp_get_dma(bi->xdp);
2216                 desc->read.pkt_addr = cpu_to_le64(dma);
2217
2218                 desc++;
2219                 bi++;
2220                 i++;
2221                 if (unlikely(!i)) {
2222                         desc = IGC_RX_DESC(ring, 0);
2223                         bi = ring->rx_buffer_info;
2224                         i -= ring->count;
2225                 }
2226
2227                 /* Clear the length for the next_to_use descriptor. */
2228                 desc->wb.upper.length = 0;
2229
2230                 count--;
2231         } while (count);
2232
2233         i += ring->count;
2234
2235         if (ring->next_to_use != i) {
2236                 ring->next_to_use = i;
2237
2238                 /* Force memory writes to complete before letting h/w
2239                  * know there are new descriptors to fetch.  (Only
2240                  * applicable for weak-ordered memory model archs,
2241                  * such as IA-64).
2242                  */
2243                 wmb();
2244                 writel(i, ring->tail);
2245         }
2246
2247         return ok;
2248 }
2249
2250 /* This function requires __netif_tx_lock is held by the caller. */
2251 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2252                                       struct xdp_frame *xdpf)
2253 {
2254         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2255         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2256         u16 count, index = ring->next_to_use;
2257         struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2258         struct igc_tx_buffer *buffer = head;
2259         union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2260         u32 olinfo_status, len = xdpf->len, cmd_type;
2261         void *data = xdpf->data;
2262         u16 i;
2263
2264         count = TXD_USE_COUNT(len);
2265         for (i = 0; i < nr_frags; i++)
2266                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2267
2268         if (igc_maybe_stop_tx(ring, count + 3)) {
2269                 /* this is a hard error */
2270                 return -EBUSY;
2271         }
2272
2273         i = 0;
2274         head->bytecount = xdp_get_frame_len(xdpf);
2275         head->type = IGC_TX_BUFFER_TYPE_XDP;
2276         head->gso_segs = 1;
2277         head->xdpf = xdpf;
2278
2279         olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2280         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2281
2282         for (;;) {
2283                 dma_addr_t dma;
2284
2285                 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2286                 if (dma_mapping_error(ring->dev, dma)) {
2287                         netdev_err_once(ring->netdev,
2288                                         "Failed to map DMA for TX\n");
2289                         goto unmap;
2290                 }
2291
2292                 dma_unmap_len_set(buffer, len, len);
2293                 dma_unmap_addr_set(buffer, dma, dma);
2294
2295                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2296                            IGC_ADVTXD_DCMD_IFCS | len;
2297
2298                 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2299                 desc->read.buffer_addr = cpu_to_le64(dma);
2300
2301                 buffer->protocol = 0;
2302
2303                 if (++index == ring->count)
2304                         index = 0;
2305
2306                 if (i == nr_frags)
2307                         break;
2308
2309                 buffer = &ring->tx_buffer_info[index];
2310                 desc = IGC_TX_DESC(ring, index);
2311                 desc->read.olinfo_status = 0;
2312
2313                 data = skb_frag_address(&sinfo->frags[i]);
2314                 len = skb_frag_size(&sinfo->frags[i]);
2315                 i++;
2316         }
2317         desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2318
2319         netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2320         /* set the timestamp */
2321         head->time_stamp = jiffies;
2322         /* set next_to_watch value indicating a packet is present */
2323         head->next_to_watch = desc;
2324         ring->next_to_use = index;
2325
2326         return 0;
2327
2328 unmap:
2329         for (;;) {
2330                 buffer = &ring->tx_buffer_info[index];
2331                 if (dma_unmap_len(buffer, len))
2332                         dma_unmap_page(ring->dev,
2333                                        dma_unmap_addr(buffer, dma),
2334                                        dma_unmap_len(buffer, len),
2335                                        DMA_TO_DEVICE);
2336                 dma_unmap_len_set(buffer, len, 0);
2337                 if (buffer == head)
2338                         break;
2339
2340                 if (!index)
2341                         index += ring->count;
2342                 index--;
2343         }
2344
2345         return -ENOMEM;
2346 }
2347
2348 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2349                                             int cpu)
2350 {
2351         int index = cpu;
2352
2353         if (unlikely(index < 0))
2354                 index = 0;
2355
2356         while (index >= adapter->num_tx_queues)
2357                 index -= adapter->num_tx_queues;
2358
2359         return adapter->tx_ring[index];
2360 }
2361
2362 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2363 {
2364         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2365         int cpu = smp_processor_id();
2366         struct netdev_queue *nq;
2367         struct igc_ring *ring;
2368         int res;
2369
2370         if (unlikely(!xdpf))
2371                 return -EFAULT;
2372
2373         ring = igc_xdp_get_tx_ring(adapter, cpu);
2374         nq = txring_txq(ring);
2375
2376         __netif_tx_lock(nq, cpu);
2377         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2378         __netif_tx_unlock(nq);
2379         return res;
2380 }
2381
2382 /* This function assumes rcu_read_lock() is held by the caller. */
2383 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2384                               struct bpf_prog *prog,
2385                               struct xdp_buff *xdp)
2386 {
2387         u32 act = bpf_prog_run_xdp(prog, xdp);
2388
2389         switch (act) {
2390         case XDP_PASS:
2391                 return IGC_XDP_PASS;
2392         case XDP_TX:
2393                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2394                         goto out_failure;
2395                 return IGC_XDP_TX;
2396         case XDP_REDIRECT:
2397                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2398                         goto out_failure;
2399                 return IGC_XDP_REDIRECT;
2400                 break;
2401         default:
2402                 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2403                 fallthrough;
2404         case XDP_ABORTED:
2405 out_failure:
2406                 trace_xdp_exception(adapter->netdev, prog, act);
2407                 fallthrough;
2408         case XDP_DROP:
2409                 return IGC_XDP_CONSUMED;
2410         }
2411 }
2412
2413 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2414                                         struct xdp_buff *xdp)
2415 {
2416         struct bpf_prog *prog;
2417         int res;
2418
2419         prog = READ_ONCE(adapter->xdp_prog);
2420         if (!prog) {
2421                 res = IGC_XDP_PASS;
2422                 goto out;
2423         }
2424
2425         res = __igc_xdp_run_prog(adapter, prog, xdp);
2426
2427 out:
2428         return ERR_PTR(-res);
2429 }
2430
2431 /* This function assumes __netif_tx_lock is held by the caller. */
2432 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2433 {
2434         /* Once tail pointer is updated, hardware can fetch the descriptors
2435          * any time so we issue a write membar here to ensure all memory
2436          * writes are complete before the tail pointer is updated.
2437          */
2438         wmb();
2439         writel(ring->next_to_use, ring->tail);
2440 }
2441
2442 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2443 {
2444         int cpu = smp_processor_id();
2445         struct netdev_queue *nq;
2446         struct igc_ring *ring;
2447
2448         if (status & IGC_XDP_TX) {
2449                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2450                 nq = txring_txq(ring);
2451
2452                 __netif_tx_lock(nq, cpu);
2453                 igc_flush_tx_descriptors(ring);
2454                 __netif_tx_unlock(nq);
2455         }
2456
2457         if (status & IGC_XDP_REDIRECT)
2458                 xdp_do_flush();
2459 }
2460
2461 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2462                                 unsigned int packets, unsigned int bytes)
2463 {
2464         struct igc_ring *ring = q_vector->rx.ring;
2465
2466         u64_stats_update_begin(&ring->rx_syncp);
2467         ring->rx_stats.packets += packets;
2468         ring->rx_stats.bytes += bytes;
2469         u64_stats_update_end(&ring->rx_syncp);
2470
2471         q_vector->rx.total_packets += packets;
2472         q_vector->rx.total_bytes += bytes;
2473 }
2474
2475 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2476 {
2477         unsigned int total_bytes = 0, total_packets = 0;
2478         struct igc_adapter *adapter = q_vector->adapter;
2479         struct igc_ring *rx_ring = q_vector->rx.ring;
2480         struct sk_buff *skb = rx_ring->skb;
2481         u16 cleaned_count = igc_desc_unused(rx_ring);
2482         int xdp_status = 0, rx_buffer_pgcnt;
2483
2484         while (likely(total_packets < budget)) {
2485                 union igc_adv_rx_desc *rx_desc;
2486                 struct igc_rx_buffer *rx_buffer;
2487                 unsigned int size, truesize;
2488                 ktime_t timestamp = 0;
2489                 struct xdp_buff xdp;
2490                 int pkt_offset = 0;
2491                 void *pktbuf;
2492
2493                 /* return some buffers to hardware, one at a time is too slow */
2494                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2495                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2496                         cleaned_count = 0;
2497                 }
2498
2499                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2500                 size = le16_to_cpu(rx_desc->wb.upper.length);
2501                 if (!size)
2502                         break;
2503
2504                 /* This memory barrier is needed to keep us from reading
2505                  * any other fields out of the rx_desc until we know the
2506                  * descriptor has been written back
2507                  */
2508                 dma_rmb();
2509
2510                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2511                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2512
2513                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2514
2515                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2516                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2517                                                         pktbuf);
2518                         pkt_offset = IGC_TS_HDR_LEN;
2519                         size -= IGC_TS_HDR_LEN;
2520                 }
2521
2522                 if (!skb) {
2523                         xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2524                         xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2525                                          igc_rx_offset(rx_ring) + pkt_offset,
2526                                          size, true);
2527                         xdp_buff_clear_frags_flag(&xdp);
2528
2529                         skb = igc_xdp_run_prog(adapter, &xdp);
2530                 }
2531
2532                 if (IS_ERR(skb)) {
2533                         unsigned int xdp_res = -PTR_ERR(skb);
2534
2535                         switch (xdp_res) {
2536                         case IGC_XDP_CONSUMED:
2537                                 rx_buffer->pagecnt_bias++;
2538                                 break;
2539                         case IGC_XDP_TX:
2540                         case IGC_XDP_REDIRECT:
2541                                 igc_rx_buffer_flip(rx_buffer, truesize);
2542                                 xdp_status |= xdp_res;
2543                                 break;
2544                         }
2545
2546                         total_packets++;
2547                         total_bytes += size;
2548                 } else if (skb)
2549                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2550                 else if (ring_uses_build_skb(rx_ring))
2551                         skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2552                 else
2553                         skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2554                                                 timestamp);
2555
2556                 /* exit if we failed to retrieve a buffer */
2557                 if (!skb) {
2558                         rx_ring->rx_stats.alloc_failed++;
2559                         rx_buffer->pagecnt_bias++;
2560                         break;
2561                 }
2562
2563                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2564                 cleaned_count++;
2565
2566                 /* fetch next buffer in frame if non-eop */
2567                 if (igc_is_non_eop(rx_ring, rx_desc))
2568                         continue;
2569
2570                 /* verify the packet layout is correct */
2571                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2572                         skb = NULL;
2573                         continue;
2574                 }
2575
2576                 /* probably a little skewed due to removing CRC */
2577                 total_bytes += skb->len;
2578
2579                 /* populate checksum, VLAN, and protocol */
2580                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2581
2582                 napi_gro_receive(&q_vector->napi, skb);
2583
2584                 /* reset skb pointer */
2585                 skb = NULL;
2586
2587                 /* update budget accounting */
2588                 total_packets++;
2589         }
2590
2591         if (xdp_status)
2592                 igc_finalize_xdp(adapter, xdp_status);
2593
2594         /* place incomplete frames back on ring for completion */
2595         rx_ring->skb = skb;
2596
2597         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2598
2599         if (cleaned_count)
2600                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2601
2602         return total_packets;
2603 }
2604
2605 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2606                                             struct xdp_buff *xdp)
2607 {
2608         unsigned int totalsize = xdp->data_end - xdp->data_meta;
2609         unsigned int metasize = xdp->data - xdp->data_meta;
2610         struct sk_buff *skb;
2611
2612         net_prefetch(xdp->data_meta);
2613
2614         skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2615                                GFP_ATOMIC | __GFP_NOWARN);
2616         if (unlikely(!skb))
2617                 return NULL;
2618
2619         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2620                ALIGN(totalsize, sizeof(long)));
2621
2622         if (metasize) {
2623                 skb_metadata_set(skb, metasize);
2624                 __skb_pull(skb, metasize);
2625         }
2626
2627         return skb;
2628 }
2629
2630 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2631                                 union igc_adv_rx_desc *desc,
2632                                 struct xdp_buff *xdp,
2633                                 ktime_t timestamp)
2634 {
2635         struct igc_ring *ring = q_vector->rx.ring;
2636         struct sk_buff *skb;
2637
2638         skb = igc_construct_skb_zc(ring, xdp);
2639         if (!skb) {
2640                 ring->rx_stats.alloc_failed++;
2641                 return;
2642         }
2643
2644         if (timestamp)
2645                 skb_hwtstamps(skb)->hwtstamp = timestamp;
2646
2647         if (igc_cleanup_headers(ring, desc, skb))
2648                 return;
2649
2650         igc_process_skb_fields(ring, desc, skb);
2651         napi_gro_receive(&q_vector->napi, skb);
2652 }
2653
2654 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2655 {
2656         struct igc_adapter *adapter = q_vector->adapter;
2657         struct igc_ring *ring = q_vector->rx.ring;
2658         u16 cleaned_count = igc_desc_unused(ring);
2659         int total_bytes = 0, total_packets = 0;
2660         u16 ntc = ring->next_to_clean;
2661         struct bpf_prog *prog;
2662         bool failure = false;
2663         int xdp_status = 0;
2664
2665         rcu_read_lock();
2666
2667         prog = READ_ONCE(adapter->xdp_prog);
2668
2669         while (likely(total_packets < budget)) {
2670                 union igc_adv_rx_desc *desc;
2671                 struct igc_rx_buffer *bi;
2672                 ktime_t timestamp = 0;
2673                 unsigned int size;
2674                 int res;
2675
2676                 desc = IGC_RX_DESC(ring, ntc);
2677                 size = le16_to_cpu(desc->wb.upper.length);
2678                 if (!size)
2679                         break;
2680
2681                 /* This memory barrier is needed to keep us from reading
2682                  * any other fields out of the rx_desc until we know the
2683                  * descriptor has been written back
2684                  */
2685                 dma_rmb();
2686
2687                 bi = &ring->rx_buffer_info[ntc];
2688
2689                 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2690                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2691                                                         bi->xdp->data);
2692
2693                         bi->xdp->data += IGC_TS_HDR_LEN;
2694
2695                         /* HW timestamp has been copied into local variable. Metadata
2696                          * length when XDP program is called should be 0.
2697                          */
2698                         bi->xdp->data_meta += IGC_TS_HDR_LEN;
2699                         size -= IGC_TS_HDR_LEN;
2700                 }
2701
2702                 bi->xdp->data_end = bi->xdp->data + size;
2703                 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2704
2705                 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2706                 switch (res) {
2707                 case IGC_XDP_PASS:
2708                         igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2709                         fallthrough;
2710                 case IGC_XDP_CONSUMED:
2711                         xsk_buff_free(bi->xdp);
2712                         break;
2713                 case IGC_XDP_TX:
2714                 case IGC_XDP_REDIRECT:
2715                         xdp_status |= res;
2716                         break;
2717                 }
2718
2719                 bi->xdp = NULL;
2720                 total_bytes += size;
2721                 total_packets++;
2722                 cleaned_count++;
2723                 ntc++;
2724                 if (ntc == ring->count)
2725                         ntc = 0;
2726         }
2727
2728         ring->next_to_clean = ntc;
2729         rcu_read_unlock();
2730
2731         if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2732                 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2733
2734         if (xdp_status)
2735                 igc_finalize_xdp(adapter, xdp_status);
2736
2737         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2738
2739         if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2740                 if (failure || ring->next_to_clean == ring->next_to_use)
2741                         xsk_set_rx_need_wakeup(ring->xsk_pool);
2742                 else
2743                         xsk_clear_rx_need_wakeup(ring->xsk_pool);
2744                 return total_packets;
2745         }
2746
2747         return failure ? budget : total_packets;
2748 }
2749
2750 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2751                                 unsigned int packets, unsigned int bytes)
2752 {
2753         struct igc_ring *ring = q_vector->tx.ring;
2754
2755         u64_stats_update_begin(&ring->tx_syncp);
2756         ring->tx_stats.bytes += bytes;
2757         ring->tx_stats.packets += packets;
2758         u64_stats_update_end(&ring->tx_syncp);
2759
2760         q_vector->tx.total_bytes += bytes;
2761         q_vector->tx.total_packets += packets;
2762 }
2763
2764 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2765 {
2766         struct xsk_buff_pool *pool = ring->xsk_pool;
2767         struct netdev_queue *nq = txring_txq(ring);
2768         union igc_adv_tx_desc *tx_desc = NULL;
2769         int cpu = smp_processor_id();
2770         u16 ntu = ring->next_to_use;
2771         struct xdp_desc xdp_desc;
2772         u16 budget;
2773
2774         if (!netif_carrier_ok(ring->netdev))
2775                 return;
2776
2777         __netif_tx_lock(nq, cpu);
2778
2779         budget = igc_desc_unused(ring);
2780
2781         while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2782                 u32 cmd_type, olinfo_status;
2783                 struct igc_tx_buffer *bi;
2784                 dma_addr_t dma;
2785
2786                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2787                            IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2788                            xdp_desc.len;
2789                 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2790
2791                 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2792                 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2793
2794                 tx_desc = IGC_TX_DESC(ring, ntu);
2795                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2796                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2797                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2798
2799                 bi = &ring->tx_buffer_info[ntu];
2800                 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2801                 bi->protocol = 0;
2802                 bi->bytecount = xdp_desc.len;
2803                 bi->gso_segs = 1;
2804                 bi->time_stamp = jiffies;
2805                 bi->next_to_watch = tx_desc;
2806
2807                 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2808
2809                 ntu++;
2810                 if (ntu == ring->count)
2811                         ntu = 0;
2812         }
2813
2814         ring->next_to_use = ntu;
2815         if (tx_desc) {
2816                 igc_flush_tx_descriptors(ring);
2817                 xsk_tx_release(pool);
2818         }
2819
2820         __netif_tx_unlock(nq);
2821 }
2822
2823 /**
2824  * igc_clean_tx_irq - Reclaim resources after transmit completes
2825  * @q_vector: pointer to q_vector containing needed info
2826  * @napi_budget: Used to determine if we are in netpoll
2827  *
2828  * returns true if ring is completely cleaned
2829  */
2830 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2831 {
2832         struct igc_adapter *adapter = q_vector->adapter;
2833         unsigned int total_bytes = 0, total_packets = 0;
2834         unsigned int budget = q_vector->tx.work_limit;
2835         struct igc_ring *tx_ring = q_vector->tx.ring;
2836         unsigned int i = tx_ring->next_to_clean;
2837         struct igc_tx_buffer *tx_buffer;
2838         union igc_adv_tx_desc *tx_desc;
2839         u32 xsk_frames = 0;
2840
2841         if (test_bit(__IGC_DOWN, &adapter->state))
2842                 return true;
2843
2844         tx_buffer = &tx_ring->tx_buffer_info[i];
2845         tx_desc = IGC_TX_DESC(tx_ring, i);
2846         i -= tx_ring->count;
2847
2848         do {
2849                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2850
2851                 /* if next_to_watch is not set then there is no work pending */
2852                 if (!eop_desc)
2853                         break;
2854
2855                 /* prevent any other reads prior to eop_desc */
2856                 smp_rmb();
2857
2858                 /* if DD is not set pending work has not been completed */
2859                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2860                         break;
2861
2862                 /* clear next_to_watch to prevent false hangs */
2863                 tx_buffer->next_to_watch = NULL;
2864
2865                 /* update the statistics for this packet */
2866                 total_bytes += tx_buffer->bytecount;
2867                 total_packets += tx_buffer->gso_segs;
2868
2869                 switch (tx_buffer->type) {
2870                 case IGC_TX_BUFFER_TYPE_XSK:
2871                         xsk_frames++;
2872                         break;
2873                 case IGC_TX_BUFFER_TYPE_XDP:
2874                         xdp_return_frame(tx_buffer->xdpf);
2875                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2876                         break;
2877                 case IGC_TX_BUFFER_TYPE_SKB:
2878                         napi_consume_skb(tx_buffer->skb, napi_budget);
2879                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2880                         break;
2881                 default:
2882                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2883                         break;
2884                 }
2885
2886                 /* clear last DMA location and unmap remaining buffers */
2887                 while (tx_desc != eop_desc) {
2888                         tx_buffer++;
2889                         tx_desc++;
2890                         i++;
2891                         if (unlikely(!i)) {
2892                                 i -= tx_ring->count;
2893                                 tx_buffer = tx_ring->tx_buffer_info;
2894                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2895                         }
2896
2897                         /* unmap any remaining paged data */
2898                         if (dma_unmap_len(tx_buffer, len))
2899                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2900                 }
2901
2902                 /* move us one more past the eop_desc for start of next pkt */
2903                 tx_buffer++;
2904                 tx_desc++;
2905                 i++;
2906                 if (unlikely(!i)) {
2907                         i -= tx_ring->count;
2908                         tx_buffer = tx_ring->tx_buffer_info;
2909                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2910                 }
2911
2912                 /* issue prefetch for next Tx descriptor */
2913                 prefetch(tx_desc);
2914
2915                 /* update budget accounting */
2916                 budget--;
2917         } while (likely(budget));
2918
2919         netdev_tx_completed_queue(txring_txq(tx_ring),
2920                                   total_packets, total_bytes);
2921
2922         i += tx_ring->count;
2923         tx_ring->next_to_clean = i;
2924
2925         igc_update_tx_stats(q_vector, total_packets, total_bytes);
2926
2927         if (tx_ring->xsk_pool) {
2928                 if (xsk_frames)
2929                         xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2930                 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2931                         xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2932                 igc_xdp_xmit_zc(tx_ring);
2933         }
2934
2935         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2936                 struct igc_hw *hw = &adapter->hw;
2937
2938                 /* Detect a transmit hang in hardware, this serializes the
2939                  * check with the clearing of time_stamp and movement of i
2940                  */
2941                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2942                 if (tx_buffer->next_to_watch &&
2943                     time_after(jiffies, tx_buffer->time_stamp +
2944                     (adapter->tx_timeout_factor * HZ)) &&
2945                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
2946                     (rd32(IGC_TDH(tx_ring->reg_idx)) !=
2947                      readl(tx_ring->tail))) {
2948                         /* detected Tx unit hang */
2949                         netdev_err(tx_ring->netdev,
2950                                    "Detected Tx Unit Hang\n"
2951                                    "  Tx Queue             <%d>\n"
2952                                    "  TDH                  <%x>\n"
2953                                    "  TDT                  <%x>\n"
2954                                    "  next_to_use          <%x>\n"
2955                                    "  next_to_clean        <%x>\n"
2956                                    "buffer_info[next_to_clean]\n"
2957                                    "  time_stamp           <%lx>\n"
2958                                    "  next_to_watch        <%p>\n"
2959                                    "  jiffies              <%lx>\n"
2960                                    "  desc.status          <%x>\n",
2961                                    tx_ring->queue_index,
2962                                    rd32(IGC_TDH(tx_ring->reg_idx)),
2963                                    readl(tx_ring->tail),
2964                                    tx_ring->next_to_use,
2965                                    tx_ring->next_to_clean,
2966                                    tx_buffer->time_stamp,
2967                                    tx_buffer->next_to_watch,
2968                                    jiffies,
2969                                    tx_buffer->next_to_watch->wb.status);
2970                         netif_stop_subqueue(tx_ring->netdev,
2971                                             tx_ring->queue_index);
2972
2973                         /* we are about to reset, no point in enabling stuff */
2974                         return true;
2975                 }
2976         }
2977
2978 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2979         if (unlikely(total_packets &&
2980                      netif_carrier_ok(tx_ring->netdev) &&
2981                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2982                 /* Make sure that anybody stopping the queue after this
2983                  * sees the new next_to_clean.
2984                  */
2985                 smp_mb();
2986                 if (__netif_subqueue_stopped(tx_ring->netdev,
2987                                              tx_ring->queue_index) &&
2988                     !(test_bit(__IGC_DOWN, &adapter->state))) {
2989                         netif_wake_subqueue(tx_ring->netdev,
2990                                             tx_ring->queue_index);
2991
2992                         u64_stats_update_begin(&tx_ring->tx_syncp);
2993                         tx_ring->tx_stats.restart_queue++;
2994                         u64_stats_update_end(&tx_ring->tx_syncp);
2995                 }
2996         }
2997
2998         return !!budget;
2999 }
3000
3001 static int igc_find_mac_filter(struct igc_adapter *adapter,
3002                                enum igc_mac_filter_type type, const u8 *addr)
3003 {
3004         struct igc_hw *hw = &adapter->hw;
3005         int max_entries = hw->mac.rar_entry_count;
3006         u32 ral, rah;
3007         int i;
3008
3009         for (i = 0; i < max_entries; i++) {
3010                 ral = rd32(IGC_RAL(i));
3011                 rah = rd32(IGC_RAH(i));
3012
3013                 if (!(rah & IGC_RAH_AV))
3014                         continue;
3015                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3016                         continue;
3017                 if ((rah & IGC_RAH_RAH_MASK) !=
3018                     le16_to_cpup((__le16 *)(addr + 4)))
3019                         continue;
3020                 if (ral != le32_to_cpup((__le32 *)(addr)))
3021                         continue;
3022
3023                 return i;
3024         }
3025
3026         return -1;
3027 }
3028
3029 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3030 {
3031         struct igc_hw *hw = &adapter->hw;
3032         int max_entries = hw->mac.rar_entry_count;
3033         u32 rah;
3034         int i;
3035
3036         for (i = 0; i < max_entries; i++) {
3037                 rah = rd32(IGC_RAH(i));
3038
3039                 if (!(rah & IGC_RAH_AV))
3040                         return i;
3041         }
3042
3043         return -1;
3044 }
3045
3046 /**
3047  * igc_add_mac_filter() - Add MAC address filter
3048  * @adapter: Pointer to adapter where the filter should be added
3049  * @type: MAC address filter type (source or destination)
3050  * @addr: MAC address
3051  * @queue: If non-negative, queue assignment feature is enabled and frames
3052  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3053  *         assignment is disabled.
3054  *
3055  * Return: 0 in case of success, negative errno code otherwise.
3056  */
3057 static int igc_add_mac_filter(struct igc_adapter *adapter,
3058                               enum igc_mac_filter_type type, const u8 *addr,
3059                               int queue)
3060 {
3061         struct net_device *dev = adapter->netdev;
3062         int index;
3063
3064         index = igc_find_mac_filter(adapter, type, addr);
3065         if (index >= 0)
3066                 goto update_filter;
3067
3068         index = igc_get_avail_mac_filter_slot(adapter);
3069         if (index < 0)
3070                 return -ENOSPC;
3071
3072         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3073                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3074                    addr, queue);
3075
3076 update_filter:
3077         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3078         return 0;
3079 }
3080
3081 /**
3082  * igc_del_mac_filter() - Delete MAC address filter
3083  * @adapter: Pointer to adapter where the filter should be deleted from
3084  * @type: MAC address filter type (source or destination)
3085  * @addr: MAC address
3086  */
3087 static void igc_del_mac_filter(struct igc_adapter *adapter,
3088                                enum igc_mac_filter_type type, const u8 *addr)
3089 {
3090         struct net_device *dev = adapter->netdev;
3091         int index;
3092
3093         index = igc_find_mac_filter(adapter, type, addr);
3094         if (index < 0)
3095                 return;
3096
3097         if (index == 0) {
3098                 /* If this is the default filter, we don't actually delete it.
3099                  * We just reset to its default value i.e. disable queue
3100                  * assignment.
3101                  */
3102                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3103
3104                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3105         } else {
3106                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3107                            index,
3108                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3109                            addr);
3110
3111                 igc_clear_mac_filter_hw(adapter, index);
3112         }
3113 }
3114
3115 /**
3116  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3117  * @adapter: Pointer to adapter where the filter should be added
3118  * @prio: VLAN priority value
3119  * @queue: Queue number which matching frames are assigned to
3120  *
3121  * Return: 0 in case of success, negative errno code otherwise.
3122  */
3123 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3124                                     int queue)
3125 {
3126         struct net_device *dev = adapter->netdev;
3127         struct igc_hw *hw = &adapter->hw;
3128         u32 vlanpqf;
3129
3130         vlanpqf = rd32(IGC_VLANPQF);
3131
3132         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3133                 netdev_dbg(dev, "VLAN priority filter already in use\n");
3134                 return -EEXIST;
3135         }
3136
3137         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3138         vlanpqf |= IGC_VLANPQF_VALID(prio);
3139
3140         wr32(IGC_VLANPQF, vlanpqf);
3141
3142         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3143                    prio, queue);
3144         return 0;
3145 }
3146
3147 /**
3148  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3149  * @adapter: Pointer to adapter where the filter should be deleted from
3150  * @prio: VLAN priority value
3151  */
3152 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3153 {
3154         struct igc_hw *hw = &adapter->hw;
3155         u32 vlanpqf;
3156
3157         vlanpqf = rd32(IGC_VLANPQF);
3158
3159         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3160         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3161
3162         wr32(IGC_VLANPQF, vlanpqf);
3163
3164         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3165                    prio);
3166 }
3167
3168 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3169 {
3170         struct igc_hw *hw = &adapter->hw;
3171         int i;
3172
3173         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3174                 u32 etqf = rd32(IGC_ETQF(i));
3175
3176                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3177                         return i;
3178         }
3179
3180         return -1;
3181 }
3182
3183 /**
3184  * igc_add_etype_filter() - Add ethertype filter
3185  * @adapter: Pointer to adapter where the filter should be added
3186  * @etype: Ethertype value
3187  * @queue: If non-negative, queue assignment feature is enabled and frames
3188  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3189  *         assignment is disabled.
3190  *
3191  * Return: 0 in case of success, negative errno code otherwise.
3192  */
3193 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3194                                 int queue)
3195 {
3196         struct igc_hw *hw = &adapter->hw;
3197         int index;
3198         u32 etqf;
3199
3200         index = igc_get_avail_etype_filter_slot(adapter);
3201         if (index < 0)
3202                 return -ENOSPC;
3203
3204         etqf = rd32(IGC_ETQF(index));
3205
3206         etqf &= ~IGC_ETQF_ETYPE_MASK;
3207         etqf |= etype;
3208
3209         if (queue >= 0) {
3210                 etqf &= ~IGC_ETQF_QUEUE_MASK;
3211                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3212                 etqf |= IGC_ETQF_QUEUE_ENABLE;
3213         }
3214
3215         etqf |= IGC_ETQF_FILTER_ENABLE;
3216
3217         wr32(IGC_ETQF(index), etqf);
3218
3219         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3220                    etype, queue);
3221         return 0;
3222 }
3223
3224 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3225 {
3226         struct igc_hw *hw = &adapter->hw;
3227         int i;
3228
3229         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3230                 u32 etqf = rd32(IGC_ETQF(i));
3231
3232                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3233                         return i;
3234         }
3235
3236         return -1;
3237 }
3238
3239 /**
3240  * igc_del_etype_filter() - Delete ethertype filter
3241  * @adapter: Pointer to adapter where the filter should be deleted from
3242  * @etype: Ethertype value
3243  */
3244 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3245 {
3246         struct igc_hw *hw = &adapter->hw;
3247         int index;
3248
3249         index = igc_find_etype_filter(adapter, etype);
3250         if (index < 0)
3251                 return;
3252
3253         wr32(IGC_ETQF(index), 0);
3254
3255         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3256                    etype);
3257 }
3258
3259 static int igc_flex_filter_select(struct igc_adapter *adapter,
3260                                   struct igc_flex_filter *input,
3261                                   u32 *fhft)
3262 {
3263         struct igc_hw *hw = &adapter->hw;
3264         u8 fhft_index;
3265         u32 fhftsl;
3266
3267         if (input->index >= MAX_FLEX_FILTER) {
3268                 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3269                 return -EINVAL;
3270         }
3271
3272         /* Indirect table select register */
3273         fhftsl = rd32(IGC_FHFTSL);
3274         fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3275         switch (input->index) {
3276         case 0 ... 7:
3277                 fhftsl |= 0x00;
3278                 break;
3279         case 8 ... 15:
3280                 fhftsl |= 0x01;
3281                 break;
3282         case 16 ... 23:
3283                 fhftsl |= 0x02;
3284                 break;
3285         case 24 ... 31:
3286                 fhftsl |= 0x03;
3287                 break;
3288         }
3289         wr32(IGC_FHFTSL, fhftsl);
3290
3291         /* Normalize index down to host table register */
3292         fhft_index = input->index % 8;
3293
3294         *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3295                 IGC_FHFT_EXT(fhft_index - 4);
3296
3297         return 0;
3298 }
3299
3300 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3301                                     struct igc_flex_filter *input)
3302 {
3303         struct device *dev = &adapter->pdev->dev;
3304         struct igc_hw *hw = &adapter->hw;
3305         u8 *data = input->data;
3306         u8 *mask = input->mask;
3307         u32 queuing;
3308         u32 fhft;
3309         u32 wufc;
3310         int ret;
3311         int i;
3312
3313         /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3314          * out early to avoid surprises later.
3315          */
3316         if (input->length % 8 != 0) {
3317                 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3318                 return -EINVAL;
3319         }
3320
3321         /* Select corresponding flex filter register and get base for host table. */
3322         ret = igc_flex_filter_select(adapter, input, &fhft);
3323         if (ret)
3324                 return ret;
3325
3326         /* When adding a filter globally disable flex filter feature. That is
3327          * recommended within the datasheet.
3328          */
3329         wufc = rd32(IGC_WUFC);
3330         wufc &= ~IGC_WUFC_FLEX_HQ;
3331         wr32(IGC_WUFC, wufc);
3332
3333         /* Configure filter */
3334         queuing = input->length & IGC_FHFT_LENGTH_MASK;
3335         queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3336         queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3337
3338         if (input->immediate_irq)
3339                 queuing |= IGC_FHFT_IMM_INT;
3340
3341         if (input->drop)
3342                 queuing |= IGC_FHFT_DROP;
3343
3344         wr32(fhft + 0xFC, queuing);
3345
3346         /* Write data (128 byte) and mask (128 bit) */
3347         for (i = 0; i < 16; ++i) {
3348                 const size_t data_idx = i * 8;
3349                 const size_t row_idx = i * 16;
3350                 u32 dw0 =
3351                         (data[data_idx + 0] << 0) |
3352                         (data[data_idx + 1] << 8) |
3353                         (data[data_idx + 2] << 16) |
3354                         (data[data_idx + 3] << 24);
3355                 u32 dw1 =
3356                         (data[data_idx + 4] << 0) |
3357                         (data[data_idx + 5] << 8) |
3358                         (data[data_idx + 6] << 16) |
3359                         (data[data_idx + 7] << 24);
3360                 u32 tmp;
3361
3362                 /* Write row: dw0, dw1 and mask */
3363                 wr32(fhft + row_idx, dw0);
3364                 wr32(fhft + row_idx + 4, dw1);
3365
3366                 /* mask is only valid for MASK(7, 0) */
3367                 tmp = rd32(fhft + row_idx + 8);
3368                 tmp &= ~GENMASK(7, 0);
3369                 tmp |= mask[i];
3370                 wr32(fhft + row_idx + 8, tmp);
3371         }
3372
3373         /* Enable filter. */
3374         wufc |= IGC_WUFC_FLEX_HQ;
3375         if (input->index > 8) {
3376                 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3377                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3378
3379                 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3380
3381                 wr32(IGC_WUFC_EXT, wufc_ext);
3382         } else {
3383                 wufc |= (IGC_WUFC_FLX0 << input->index);
3384         }
3385         wr32(IGC_WUFC, wufc);
3386
3387         dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3388                 input->index);
3389
3390         return 0;
3391 }
3392
3393 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3394                                       const void *src, unsigned int offset,
3395                                       size_t len, const void *mask)
3396 {
3397         int i;
3398
3399         /* data */
3400         memcpy(&flex->data[offset], src, len);
3401
3402         /* mask */
3403         for (i = 0; i < len; ++i) {
3404                 const unsigned int idx = i + offset;
3405                 const u8 *ptr = mask;
3406
3407                 if (mask) {
3408                         if (ptr[i] & 0xff)
3409                                 flex->mask[idx / 8] |= BIT(idx % 8);
3410
3411                         continue;
3412                 }
3413
3414                 flex->mask[idx / 8] |= BIT(idx % 8);
3415         }
3416 }
3417
3418 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3419 {
3420         struct igc_hw *hw = &adapter->hw;
3421         u32 wufc, wufc_ext;
3422         int i;
3423
3424         wufc = rd32(IGC_WUFC);
3425         wufc_ext = rd32(IGC_WUFC_EXT);
3426
3427         for (i = 0; i < MAX_FLEX_FILTER; i++) {
3428                 if (i < 8) {
3429                         if (!(wufc & (IGC_WUFC_FLX0 << i)))
3430                                 return i;
3431                 } else {
3432                         if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3433                                 return i;
3434                 }
3435         }
3436
3437         return -ENOSPC;
3438 }
3439
3440 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3441 {
3442         struct igc_hw *hw = &adapter->hw;
3443         u32 wufc, wufc_ext;
3444
3445         wufc = rd32(IGC_WUFC);
3446         wufc_ext = rd32(IGC_WUFC_EXT);
3447
3448         if (wufc & IGC_WUFC_FILTER_MASK)
3449                 return true;
3450
3451         if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3452                 return true;
3453
3454         return false;
3455 }
3456
3457 static int igc_add_flex_filter(struct igc_adapter *adapter,
3458                                struct igc_nfc_rule *rule)
3459 {
3460         struct igc_flex_filter flex = { };
3461         struct igc_nfc_filter *filter = &rule->filter;
3462         unsigned int eth_offset, user_offset;
3463         int ret, index;
3464         bool vlan;
3465
3466         index = igc_find_avail_flex_filter_slot(adapter);
3467         if (index < 0)
3468                 return -ENOSPC;
3469
3470         /* Construct the flex filter:
3471          *  -> dest_mac [6]
3472          *  -> src_mac [6]
3473          *  -> tpid [2]
3474          *  -> vlan tci [2]
3475          *  -> ether type [2]
3476          *  -> user data [8]
3477          *  -> = 26 bytes => 32 length
3478          */
3479         flex.index    = index;
3480         flex.length   = 32;
3481         flex.rx_queue = rule->action;
3482
3483         vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3484         eth_offset = vlan ? 16 : 12;
3485         user_offset = vlan ? 18 : 14;
3486
3487         /* Add destination MAC  */
3488         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3489                 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3490                                           ETH_ALEN, NULL);
3491
3492         /* Add source MAC */
3493         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3494                 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3495                                           ETH_ALEN, NULL);
3496
3497         /* Add VLAN etype */
3498         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3499                 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3500                                           sizeof(filter->vlan_etype),
3501                                           NULL);
3502
3503         /* Add VLAN TCI */
3504         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3505                 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3506                                           sizeof(filter->vlan_tci), NULL);
3507
3508         /* Add Ether type */
3509         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3510                 __be16 etype = cpu_to_be16(filter->etype);
3511
3512                 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3513                                           sizeof(etype), NULL);
3514         }
3515
3516         /* Add user data */
3517         if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3518                 igc_flex_filter_add_field(&flex, &filter->user_data,
3519                                           user_offset,
3520                                           sizeof(filter->user_data),
3521                                           filter->user_mask);
3522
3523         /* Add it down to the hardware and enable it. */
3524         ret = igc_write_flex_filter_ll(adapter, &flex);
3525         if (ret)
3526                 return ret;
3527
3528         filter->flex_index = index;
3529
3530         return 0;
3531 }
3532
3533 static void igc_del_flex_filter(struct igc_adapter *adapter,
3534                                 u16 reg_index)
3535 {
3536         struct igc_hw *hw = &adapter->hw;
3537         u32 wufc;
3538
3539         /* Just disable the filter. The filter table itself is kept
3540          * intact. Another flex_filter_add() should override the "old" data
3541          * then.
3542          */
3543         if (reg_index > 8) {
3544                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3545
3546                 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3547                 wr32(IGC_WUFC_EXT, wufc_ext);
3548         } else {
3549                 wufc = rd32(IGC_WUFC);
3550
3551                 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3552                 wr32(IGC_WUFC, wufc);
3553         }
3554
3555         if (igc_flex_filter_in_use(adapter))
3556                 return;
3557
3558         /* No filters are in use, we may disable flex filters */
3559         wufc = rd32(IGC_WUFC);
3560         wufc &= ~IGC_WUFC_FLEX_HQ;
3561         wr32(IGC_WUFC, wufc);
3562 }
3563
3564 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3565                                struct igc_nfc_rule *rule)
3566 {
3567         int err;
3568
3569         if (rule->flex) {
3570                 return igc_add_flex_filter(adapter, rule);
3571         }
3572
3573         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3574                 err = igc_add_etype_filter(adapter, rule->filter.etype,
3575                                            rule->action);
3576                 if (err)
3577                         return err;
3578         }
3579
3580         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3581                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3582                                          rule->filter.src_addr, rule->action);
3583                 if (err)
3584                         return err;
3585         }
3586
3587         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3588                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3589                                          rule->filter.dst_addr, rule->action);
3590                 if (err)
3591                         return err;
3592         }
3593
3594         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3595                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3596                            VLAN_PRIO_SHIFT;
3597
3598                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3599                 if (err)
3600                         return err;
3601         }
3602
3603         return 0;
3604 }
3605
3606 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3607                                  const struct igc_nfc_rule *rule)
3608 {
3609         if (rule->flex) {
3610                 igc_del_flex_filter(adapter, rule->filter.flex_index);
3611                 return;
3612         }
3613
3614         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3615                 igc_del_etype_filter(adapter, rule->filter.etype);
3616
3617         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3618                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3619                            VLAN_PRIO_SHIFT;
3620
3621                 igc_del_vlan_prio_filter(adapter, prio);
3622         }
3623
3624         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3625                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3626                                    rule->filter.src_addr);
3627
3628         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3629                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3630                                    rule->filter.dst_addr);
3631 }
3632
3633 /**
3634  * igc_get_nfc_rule() - Get NFC rule
3635  * @adapter: Pointer to adapter
3636  * @location: Rule location
3637  *
3638  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3639  *
3640  * Return: Pointer to NFC rule at @location. If not found, NULL.
3641  */
3642 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3643                                       u32 location)
3644 {
3645         struct igc_nfc_rule *rule;
3646
3647         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3648                 if (rule->location == location)
3649                         return rule;
3650                 if (rule->location > location)
3651                         break;
3652         }
3653
3654         return NULL;
3655 }
3656
3657 /**
3658  * igc_del_nfc_rule() - Delete NFC rule
3659  * @adapter: Pointer to adapter
3660  * @rule: Pointer to rule to be deleted
3661  *
3662  * Disable NFC rule in hardware and delete it from adapter.
3663  *
3664  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3665  */
3666 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3667 {
3668         igc_disable_nfc_rule(adapter, rule);
3669
3670         list_del(&rule->list);
3671         adapter->nfc_rule_count--;
3672
3673         kfree(rule);
3674 }
3675
3676 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3677 {
3678         struct igc_nfc_rule *rule, *tmp;
3679
3680         mutex_lock(&adapter->nfc_rule_lock);
3681
3682         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3683                 igc_del_nfc_rule(adapter, rule);
3684
3685         mutex_unlock(&adapter->nfc_rule_lock);
3686 }
3687
3688 /**
3689  * igc_add_nfc_rule() - Add NFC rule
3690  * @adapter: Pointer to adapter
3691  * @rule: Pointer to rule to be added
3692  *
3693  * Enable NFC rule in hardware and add it to adapter.
3694  *
3695  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3696  *
3697  * Return: 0 on success, negative errno on failure.
3698  */
3699 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3700 {
3701         struct igc_nfc_rule *pred, *cur;
3702         int err;
3703
3704         err = igc_enable_nfc_rule(adapter, rule);
3705         if (err)
3706                 return err;
3707
3708         pred = NULL;
3709         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3710                 if (cur->location >= rule->location)
3711                         break;
3712                 pred = cur;
3713         }
3714
3715         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3716         adapter->nfc_rule_count++;
3717         return 0;
3718 }
3719
3720 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3721 {
3722         struct igc_nfc_rule *rule;
3723
3724         mutex_lock(&adapter->nfc_rule_lock);
3725
3726         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3727                 igc_enable_nfc_rule(adapter, rule);
3728
3729         mutex_unlock(&adapter->nfc_rule_lock);
3730 }
3731
3732 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3733 {
3734         struct igc_adapter *adapter = netdev_priv(netdev);
3735
3736         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3737 }
3738
3739 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3740 {
3741         struct igc_adapter *adapter = netdev_priv(netdev);
3742
3743         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3744         return 0;
3745 }
3746
3747 /**
3748  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3749  * @netdev: network interface device structure
3750  *
3751  * The set_rx_mode entry point is called whenever the unicast or multicast
3752  * address lists or the network interface flags are updated.  This routine is
3753  * responsible for configuring the hardware for proper unicast, multicast,
3754  * promiscuous mode, and all-multi behavior.
3755  */
3756 static void igc_set_rx_mode(struct net_device *netdev)
3757 {
3758         struct igc_adapter *adapter = netdev_priv(netdev);
3759         struct igc_hw *hw = &adapter->hw;
3760         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3761         int count;
3762
3763         /* Check for Promiscuous and All Multicast modes */
3764         if (netdev->flags & IFF_PROMISC) {
3765                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3766         } else {
3767                 if (netdev->flags & IFF_ALLMULTI) {
3768                         rctl |= IGC_RCTL_MPE;
3769                 } else {
3770                         /* Write addresses to the MTA, if the attempt fails
3771                          * then we should just turn on promiscuous mode so
3772                          * that we can at least receive multicast traffic
3773                          */
3774                         count = igc_write_mc_addr_list(netdev);
3775                         if (count < 0)
3776                                 rctl |= IGC_RCTL_MPE;
3777                 }
3778         }
3779
3780         /* Write addresses to available RAR registers, if there is not
3781          * sufficient space to store all the addresses then enable
3782          * unicast promiscuous mode
3783          */
3784         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3785                 rctl |= IGC_RCTL_UPE;
3786
3787         /* update state of unicast and multicast */
3788         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3789         wr32(IGC_RCTL, rctl);
3790
3791 #if (PAGE_SIZE < 8192)
3792         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3793                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3794 #endif
3795         wr32(IGC_RLPML, rlpml);
3796 }
3797
3798 /**
3799  * igc_configure - configure the hardware for RX and TX
3800  * @adapter: private board structure
3801  */
3802 static void igc_configure(struct igc_adapter *adapter)
3803 {
3804         struct net_device *netdev = adapter->netdev;
3805         int i = 0;
3806
3807         igc_get_hw_control(adapter);
3808         igc_set_rx_mode(netdev);
3809
3810         igc_restore_vlan(adapter);
3811
3812         igc_setup_tctl(adapter);
3813         igc_setup_mrqc(adapter);
3814         igc_setup_rctl(adapter);
3815
3816         igc_set_default_mac_filter(adapter);
3817         igc_restore_nfc_rules(adapter);
3818
3819         igc_configure_tx(adapter);
3820         igc_configure_rx(adapter);
3821
3822         igc_rx_fifo_flush_base(&adapter->hw);
3823
3824         /* call igc_desc_unused which always leaves
3825          * at least 1 descriptor unused to make sure
3826          * next_to_use != next_to_clean
3827          */
3828         for (i = 0; i < adapter->num_rx_queues; i++) {
3829                 struct igc_ring *ring = adapter->rx_ring[i];
3830
3831                 if (ring->xsk_pool)
3832                         igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3833                 else
3834                         igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3835         }
3836 }
3837
3838 /**
3839  * igc_write_ivar - configure ivar for given MSI-X vector
3840  * @hw: pointer to the HW structure
3841  * @msix_vector: vector number we are allocating to a given ring
3842  * @index: row index of IVAR register to write within IVAR table
3843  * @offset: column offset of in IVAR, should be multiple of 8
3844  *
3845  * The IVAR table consists of 2 columns,
3846  * each containing an cause allocation for an Rx and Tx ring, and a
3847  * variable number of rows depending on the number of queues supported.
3848  */
3849 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3850                            int index, int offset)
3851 {
3852         u32 ivar = array_rd32(IGC_IVAR0, index);
3853
3854         /* clear any bits that are currently set */
3855         ivar &= ~((u32)0xFF << offset);
3856
3857         /* write vector and valid bit */
3858         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3859
3860         array_wr32(IGC_IVAR0, index, ivar);
3861 }
3862
3863 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3864 {
3865         struct igc_adapter *adapter = q_vector->adapter;
3866         struct igc_hw *hw = &adapter->hw;
3867         int rx_queue = IGC_N0_QUEUE;
3868         int tx_queue = IGC_N0_QUEUE;
3869
3870         if (q_vector->rx.ring)
3871                 rx_queue = q_vector->rx.ring->reg_idx;
3872         if (q_vector->tx.ring)
3873                 tx_queue = q_vector->tx.ring->reg_idx;
3874
3875         switch (hw->mac.type) {
3876         case igc_i225:
3877                 if (rx_queue > IGC_N0_QUEUE)
3878                         igc_write_ivar(hw, msix_vector,
3879                                        rx_queue >> 1,
3880                                        (rx_queue & 0x1) << 4);
3881                 if (tx_queue > IGC_N0_QUEUE)
3882                         igc_write_ivar(hw, msix_vector,
3883                                        tx_queue >> 1,
3884                                        ((tx_queue & 0x1) << 4) + 8);
3885                 q_vector->eims_value = BIT(msix_vector);
3886                 break;
3887         default:
3888                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3889                 break;
3890         }
3891
3892         /* add q_vector eims value to global eims_enable_mask */
3893         adapter->eims_enable_mask |= q_vector->eims_value;
3894
3895         /* configure q_vector to set itr on first interrupt */
3896         q_vector->set_itr = 1;
3897 }
3898
3899 /**
3900  * igc_configure_msix - Configure MSI-X hardware
3901  * @adapter: Pointer to adapter structure
3902  *
3903  * igc_configure_msix sets up the hardware to properly
3904  * generate MSI-X interrupts.
3905  */
3906 static void igc_configure_msix(struct igc_adapter *adapter)
3907 {
3908         struct igc_hw *hw = &adapter->hw;
3909         int i, vector = 0;
3910         u32 tmp;
3911
3912         adapter->eims_enable_mask = 0;
3913
3914         /* set vector for other causes, i.e. link changes */
3915         switch (hw->mac.type) {
3916         case igc_i225:
3917                 /* Turn on MSI-X capability first, or our settings
3918                  * won't stick.  And it will take days to debug.
3919                  */
3920                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3921                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
3922                      IGC_GPIE_NSICR);
3923
3924                 /* enable msix_other interrupt */
3925                 adapter->eims_other = BIT(vector);
3926                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3927
3928                 wr32(IGC_IVAR_MISC, tmp);
3929                 break;
3930         default:
3931                 /* do nothing, since nothing else supports MSI-X */
3932                 break;
3933         } /* switch (hw->mac.type) */
3934
3935         adapter->eims_enable_mask |= adapter->eims_other;
3936
3937         for (i = 0; i < adapter->num_q_vectors; i++)
3938                 igc_assign_vector(adapter->q_vector[i], vector++);
3939
3940         wrfl();
3941 }
3942
3943 /**
3944  * igc_irq_enable - Enable default interrupt generation settings
3945  * @adapter: board private structure
3946  */
3947 static void igc_irq_enable(struct igc_adapter *adapter)
3948 {
3949         struct igc_hw *hw = &adapter->hw;
3950
3951         if (adapter->msix_entries) {
3952                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3953                 u32 regval = rd32(IGC_EIAC);
3954
3955                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3956                 regval = rd32(IGC_EIAM);
3957                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3958                 wr32(IGC_EIMS, adapter->eims_enable_mask);
3959                 wr32(IGC_IMS, ims);
3960         } else {
3961                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3962                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3963         }
3964 }
3965
3966 /**
3967  * igc_irq_disable - Mask off interrupt generation on the NIC
3968  * @adapter: board private structure
3969  */
3970 static void igc_irq_disable(struct igc_adapter *adapter)
3971 {
3972         struct igc_hw *hw = &adapter->hw;
3973
3974         if (adapter->msix_entries) {
3975                 u32 regval = rd32(IGC_EIAM);
3976
3977                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3978                 wr32(IGC_EIMC, adapter->eims_enable_mask);
3979                 regval = rd32(IGC_EIAC);
3980                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3981         }
3982
3983         wr32(IGC_IAM, 0);
3984         wr32(IGC_IMC, ~0);
3985         wrfl();
3986
3987         if (adapter->msix_entries) {
3988                 int vector = 0, i;
3989
3990                 synchronize_irq(adapter->msix_entries[vector++].vector);
3991
3992                 for (i = 0; i < adapter->num_q_vectors; i++)
3993                         synchronize_irq(adapter->msix_entries[vector++].vector);
3994         } else {
3995                 synchronize_irq(adapter->pdev->irq);
3996         }
3997 }
3998
3999 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4000                               const u32 max_rss_queues)
4001 {
4002         /* Determine if we need to pair queues. */
4003         /* If rss_queues > half of max_rss_queues, pair the queues in
4004          * order to conserve interrupts due to limited supply.
4005          */
4006         if (adapter->rss_queues > (max_rss_queues / 2))
4007                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4008         else
4009                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4010 }
4011
4012 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4013 {
4014         return IGC_MAX_RX_QUEUES;
4015 }
4016
4017 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4018 {
4019         u32 max_rss_queues;
4020
4021         max_rss_queues = igc_get_max_rss_queues(adapter);
4022         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4023
4024         igc_set_flag_queue_pairs(adapter, max_rss_queues);
4025 }
4026
4027 /**
4028  * igc_reset_q_vector - Reset config for interrupt vector
4029  * @adapter: board private structure to initialize
4030  * @v_idx: Index of vector to be reset
4031  *
4032  * If NAPI is enabled it will delete any references to the
4033  * NAPI struct. This is preparation for igc_free_q_vector.
4034  */
4035 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4036 {
4037         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4038
4039         /* if we're coming from igc_set_interrupt_capability, the vectors are
4040          * not yet allocated
4041          */
4042         if (!q_vector)
4043                 return;
4044
4045         if (q_vector->tx.ring)
4046                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4047
4048         if (q_vector->rx.ring)
4049                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4050
4051         netif_napi_del(&q_vector->napi);
4052 }
4053
4054 /**
4055  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4056  * @adapter: board private structure to initialize
4057  * @v_idx: Index of vector to be freed
4058  *
4059  * This function frees the memory allocated to the q_vector.
4060  */
4061 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4062 {
4063         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4064
4065         adapter->q_vector[v_idx] = NULL;
4066
4067         /* igc_get_stats64() might access the rings on this vector,
4068          * we must wait a grace period before freeing it.
4069          */
4070         if (q_vector)
4071                 kfree_rcu(q_vector, rcu);
4072 }
4073
4074 /**
4075  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4076  * @adapter: board private structure to initialize
4077  *
4078  * This function frees the memory allocated to the q_vectors.  In addition if
4079  * NAPI is enabled it will delete any references to the NAPI struct prior
4080  * to freeing the q_vector.
4081  */
4082 static void igc_free_q_vectors(struct igc_adapter *adapter)
4083 {
4084         int v_idx = adapter->num_q_vectors;
4085
4086         adapter->num_tx_queues = 0;
4087         adapter->num_rx_queues = 0;
4088         adapter->num_q_vectors = 0;
4089
4090         while (v_idx--) {
4091                 igc_reset_q_vector(adapter, v_idx);
4092                 igc_free_q_vector(adapter, v_idx);
4093         }
4094 }
4095
4096 /**
4097  * igc_update_itr - update the dynamic ITR value based on statistics
4098  * @q_vector: pointer to q_vector
4099  * @ring_container: ring info to update the itr for
4100  *
4101  * Stores a new ITR value based on packets and byte
4102  * counts during the last interrupt.  The advantage of per interrupt
4103  * computation is faster updates and more accurate ITR for the current
4104  * traffic pattern.  Constants in this function were computed
4105  * based on theoretical maximum wire speed and thresholds were set based
4106  * on testing data as well as attempting to minimize response time
4107  * while increasing bulk throughput.
4108  * NOTE: These calculations are only valid when operating in a single-
4109  * queue environment.
4110  */
4111 static void igc_update_itr(struct igc_q_vector *q_vector,
4112                            struct igc_ring_container *ring_container)
4113 {
4114         unsigned int packets = ring_container->total_packets;
4115         unsigned int bytes = ring_container->total_bytes;
4116         u8 itrval = ring_container->itr;
4117
4118         /* no packets, exit with status unchanged */
4119         if (packets == 0)
4120                 return;
4121
4122         switch (itrval) {
4123         case lowest_latency:
4124                 /* handle TSO and jumbo frames */
4125                 if (bytes / packets > 8000)
4126                         itrval = bulk_latency;
4127                 else if ((packets < 5) && (bytes > 512))
4128                         itrval = low_latency;
4129                 break;
4130         case low_latency:  /* 50 usec aka 20000 ints/s */
4131                 if (bytes > 10000) {
4132                         /* this if handles the TSO accounting */
4133                         if (bytes / packets > 8000)
4134                                 itrval = bulk_latency;
4135                         else if ((packets < 10) || ((bytes / packets) > 1200))
4136                                 itrval = bulk_latency;
4137                         else if ((packets > 35))
4138                                 itrval = lowest_latency;
4139                 } else if (bytes / packets > 2000) {
4140                         itrval = bulk_latency;
4141                 } else if (packets <= 2 && bytes < 512) {
4142                         itrval = lowest_latency;
4143                 }
4144                 break;
4145         case bulk_latency: /* 250 usec aka 4000 ints/s */
4146                 if (bytes > 25000) {
4147                         if (packets > 35)
4148                                 itrval = low_latency;
4149                 } else if (bytes < 1500) {
4150                         itrval = low_latency;
4151                 }
4152                 break;
4153         }
4154
4155         /* clear work counters since we have the values we need */
4156         ring_container->total_bytes = 0;
4157         ring_container->total_packets = 0;
4158
4159         /* write updated itr to ring container */
4160         ring_container->itr = itrval;
4161 }
4162
4163 static void igc_set_itr(struct igc_q_vector *q_vector)
4164 {
4165         struct igc_adapter *adapter = q_vector->adapter;
4166         u32 new_itr = q_vector->itr_val;
4167         u8 current_itr = 0;
4168
4169         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4170         switch (adapter->link_speed) {
4171         case SPEED_10:
4172         case SPEED_100:
4173                 current_itr = 0;
4174                 new_itr = IGC_4K_ITR;
4175                 goto set_itr_now;
4176         default:
4177                 break;
4178         }
4179
4180         igc_update_itr(q_vector, &q_vector->tx);
4181         igc_update_itr(q_vector, &q_vector->rx);
4182
4183         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4184
4185         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4186         if (current_itr == lowest_latency &&
4187             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4188             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4189                 current_itr = low_latency;
4190
4191         switch (current_itr) {
4192         /* counts and packets in update_itr are dependent on these numbers */
4193         case lowest_latency:
4194                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4195                 break;
4196         case low_latency:
4197                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4198                 break;
4199         case bulk_latency:
4200                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4201                 break;
4202         default:
4203                 break;
4204         }
4205
4206 set_itr_now:
4207         if (new_itr != q_vector->itr_val) {
4208                 /* this attempts to bias the interrupt rate towards Bulk
4209                  * by adding intermediate steps when interrupt rate is
4210                  * increasing
4211                  */
4212                 new_itr = new_itr > q_vector->itr_val ?
4213                           max((new_itr * q_vector->itr_val) /
4214                           (new_itr + (q_vector->itr_val >> 2)),
4215                           new_itr) : new_itr;
4216                 /* Don't write the value here; it resets the adapter's
4217                  * internal timer, and causes us to delay far longer than
4218                  * we should between interrupts.  Instead, we write the ITR
4219                  * value at the beginning of the next interrupt so the timing
4220                  * ends up being correct.
4221                  */
4222                 q_vector->itr_val = new_itr;
4223                 q_vector->set_itr = 1;
4224         }
4225 }
4226
4227 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4228 {
4229         int v_idx = adapter->num_q_vectors;
4230
4231         if (adapter->msix_entries) {
4232                 pci_disable_msix(adapter->pdev);
4233                 kfree(adapter->msix_entries);
4234                 adapter->msix_entries = NULL;
4235         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4236                 pci_disable_msi(adapter->pdev);
4237         }
4238
4239         while (v_idx--)
4240                 igc_reset_q_vector(adapter, v_idx);
4241 }
4242
4243 /**
4244  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4245  * @adapter: Pointer to adapter structure
4246  * @msix: boolean value for MSI-X capability
4247  *
4248  * Attempt to configure interrupts using the best available
4249  * capabilities of the hardware and kernel.
4250  */
4251 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4252                                          bool msix)
4253 {
4254         int numvecs, i;
4255         int err;
4256
4257         if (!msix)
4258                 goto msi_only;
4259         adapter->flags |= IGC_FLAG_HAS_MSIX;
4260
4261         /* Number of supported queues. */
4262         adapter->num_rx_queues = adapter->rss_queues;
4263
4264         adapter->num_tx_queues = adapter->rss_queues;
4265
4266         /* start with one vector for every Rx queue */
4267         numvecs = adapter->num_rx_queues;
4268
4269         /* if Tx handler is separate add 1 for every Tx queue */
4270         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4271                 numvecs += adapter->num_tx_queues;
4272
4273         /* store the number of vectors reserved for queues */
4274         adapter->num_q_vectors = numvecs;
4275
4276         /* add 1 vector for link status interrupts */
4277         numvecs++;
4278
4279         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4280                                         GFP_KERNEL);
4281
4282         if (!adapter->msix_entries)
4283                 return;
4284
4285         /* populate entry values */
4286         for (i = 0; i < numvecs; i++)
4287                 adapter->msix_entries[i].entry = i;
4288
4289         err = pci_enable_msix_range(adapter->pdev,
4290                                     adapter->msix_entries,
4291                                     numvecs,
4292                                     numvecs);
4293         if (err > 0)
4294                 return;
4295
4296         kfree(adapter->msix_entries);
4297         adapter->msix_entries = NULL;
4298
4299         igc_reset_interrupt_capability(adapter);
4300
4301 msi_only:
4302         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4303
4304         adapter->rss_queues = 1;
4305         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4306         adapter->num_rx_queues = 1;
4307         adapter->num_tx_queues = 1;
4308         adapter->num_q_vectors = 1;
4309         if (!pci_enable_msi(adapter->pdev))
4310                 adapter->flags |= IGC_FLAG_HAS_MSI;
4311 }
4312
4313 /**
4314  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4315  * @q_vector: pointer to q_vector
4316  *
4317  * Stores a new ITR value based on strictly on packet size.  This
4318  * algorithm is less sophisticated than that used in igc_update_itr,
4319  * due to the difficulty of synchronizing statistics across multiple
4320  * receive rings.  The divisors and thresholds used by this function
4321  * were determined based on theoretical maximum wire speed and testing
4322  * data, in order to minimize response time while increasing bulk
4323  * throughput.
4324  * NOTE: This function is called only when operating in a multiqueue
4325  * receive environment.
4326  */
4327 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4328 {
4329         struct igc_adapter *adapter = q_vector->adapter;
4330         int new_val = q_vector->itr_val;
4331         int avg_wire_size = 0;
4332         unsigned int packets;
4333
4334         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4335          * ints/sec - ITR timer value of 120 ticks.
4336          */
4337         switch (adapter->link_speed) {
4338         case SPEED_10:
4339         case SPEED_100:
4340                 new_val = IGC_4K_ITR;
4341                 goto set_itr_val;
4342         default:
4343                 break;
4344         }
4345
4346         packets = q_vector->rx.total_packets;
4347         if (packets)
4348                 avg_wire_size = q_vector->rx.total_bytes / packets;
4349
4350         packets = q_vector->tx.total_packets;
4351         if (packets)
4352                 avg_wire_size = max_t(u32, avg_wire_size,
4353                                       q_vector->tx.total_bytes / packets);
4354
4355         /* if avg_wire_size isn't set no work was done */
4356         if (!avg_wire_size)
4357                 goto clear_counts;
4358
4359         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4360         avg_wire_size += 24;
4361
4362         /* Don't starve jumbo frames */
4363         avg_wire_size = min(avg_wire_size, 3000);
4364
4365         /* Give a little boost to mid-size frames */
4366         if (avg_wire_size > 300 && avg_wire_size < 1200)
4367                 new_val = avg_wire_size / 3;
4368         else
4369                 new_val = avg_wire_size / 2;
4370
4371         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4372         if (new_val < IGC_20K_ITR &&
4373             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4374             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4375                 new_val = IGC_20K_ITR;
4376
4377 set_itr_val:
4378         if (new_val != q_vector->itr_val) {
4379                 q_vector->itr_val = new_val;
4380                 q_vector->set_itr = 1;
4381         }
4382 clear_counts:
4383         q_vector->rx.total_bytes = 0;
4384         q_vector->rx.total_packets = 0;
4385         q_vector->tx.total_bytes = 0;
4386         q_vector->tx.total_packets = 0;
4387 }
4388
4389 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4390 {
4391         struct igc_adapter *adapter = q_vector->adapter;
4392         struct igc_hw *hw = &adapter->hw;
4393
4394         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4395             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4396                 if (adapter->num_q_vectors == 1)
4397                         igc_set_itr(q_vector);
4398                 else
4399                         igc_update_ring_itr(q_vector);
4400         }
4401
4402         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4403                 if (adapter->msix_entries)
4404                         wr32(IGC_EIMS, q_vector->eims_value);
4405                 else
4406                         igc_irq_enable(adapter);
4407         }
4408 }
4409
4410 static void igc_add_ring(struct igc_ring *ring,
4411                          struct igc_ring_container *head)
4412 {
4413         head->ring = ring;
4414         head->count++;
4415 }
4416
4417 /**
4418  * igc_cache_ring_register - Descriptor ring to register mapping
4419  * @adapter: board private structure to initialize
4420  *
4421  * Once we know the feature-set enabled for the device, we'll cache
4422  * the register offset the descriptor ring is assigned to.
4423  */
4424 static void igc_cache_ring_register(struct igc_adapter *adapter)
4425 {
4426         int i = 0, j = 0;
4427
4428         switch (adapter->hw.mac.type) {
4429         case igc_i225:
4430         default:
4431                 for (; i < adapter->num_rx_queues; i++)
4432                         adapter->rx_ring[i]->reg_idx = i;
4433                 for (; j < adapter->num_tx_queues; j++)
4434                         adapter->tx_ring[j]->reg_idx = j;
4435                 break;
4436         }
4437 }
4438
4439 /**
4440  * igc_poll - NAPI Rx polling callback
4441  * @napi: napi polling structure
4442  * @budget: count of how many packets we should handle
4443  */
4444 static int igc_poll(struct napi_struct *napi, int budget)
4445 {
4446         struct igc_q_vector *q_vector = container_of(napi,
4447                                                      struct igc_q_vector,
4448                                                      napi);
4449         struct igc_ring *rx_ring = q_vector->rx.ring;
4450         bool clean_complete = true;
4451         int work_done = 0;
4452
4453         if (q_vector->tx.ring)
4454                 clean_complete = igc_clean_tx_irq(q_vector, budget);
4455
4456         if (rx_ring) {
4457                 int cleaned = rx_ring->xsk_pool ?
4458                               igc_clean_rx_irq_zc(q_vector, budget) :
4459                               igc_clean_rx_irq(q_vector, budget);
4460
4461                 work_done += cleaned;
4462                 if (cleaned >= budget)
4463                         clean_complete = false;
4464         }
4465
4466         /* If all work not completed, return budget and keep polling */
4467         if (!clean_complete)
4468                 return budget;
4469
4470         /* Exit the polling mode, but don't re-enable interrupts if stack might
4471          * poll us due to busy-polling
4472          */
4473         if (likely(napi_complete_done(napi, work_done)))
4474                 igc_ring_irq_enable(q_vector);
4475
4476         return min(work_done, budget - 1);
4477 }
4478
4479 /**
4480  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4481  * @adapter: board private structure to initialize
4482  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4483  * @v_idx: index of vector in adapter struct
4484  * @txr_count: total number of Tx rings to allocate
4485  * @txr_idx: index of first Tx ring to allocate
4486  * @rxr_count: total number of Rx rings to allocate
4487  * @rxr_idx: index of first Rx ring to allocate
4488  *
4489  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4490  */
4491 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4492                               unsigned int v_count, unsigned int v_idx,
4493                               unsigned int txr_count, unsigned int txr_idx,
4494                               unsigned int rxr_count, unsigned int rxr_idx)
4495 {
4496         struct igc_q_vector *q_vector;
4497         struct igc_ring *ring;
4498         int ring_count;
4499
4500         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4501         if (txr_count > 1 || rxr_count > 1)
4502                 return -ENOMEM;
4503
4504         ring_count = txr_count + rxr_count;
4505
4506         /* allocate q_vector and rings */
4507         q_vector = adapter->q_vector[v_idx];
4508         if (!q_vector)
4509                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4510                                    GFP_KERNEL);
4511         else
4512                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4513         if (!q_vector)
4514                 return -ENOMEM;
4515
4516         /* initialize NAPI */
4517         netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4518
4519         /* tie q_vector and adapter together */
4520         adapter->q_vector[v_idx] = q_vector;
4521         q_vector->adapter = adapter;
4522
4523         /* initialize work limits */
4524         q_vector->tx.work_limit = adapter->tx_work_limit;
4525
4526         /* initialize ITR configuration */
4527         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4528         q_vector->itr_val = IGC_START_ITR;
4529
4530         /* initialize pointer to rings */
4531         ring = q_vector->ring;
4532
4533         /* initialize ITR */
4534         if (rxr_count) {
4535                 /* rx or rx/tx vector */
4536                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4537                         q_vector->itr_val = adapter->rx_itr_setting;
4538         } else {
4539                 /* tx only vector */
4540                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4541                         q_vector->itr_val = adapter->tx_itr_setting;
4542         }
4543
4544         if (txr_count) {
4545                 /* assign generic ring traits */
4546                 ring->dev = &adapter->pdev->dev;
4547                 ring->netdev = adapter->netdev;
4548
4549                 /* configure backlink on ring */
4550                 ring->q_vector = q_vector;
4551
4552                 /* update q_vector Tx values */
4553                 igc_add_ring(ring, &q_vector->tx);
4554
4555                 /* apply Tx specific ring traits */
4556                 ring->count = adapter->tx_ring_count;
4557                 ring->queue_index = txr_idx;
4558
4559                 /* assign ring to adapter */
4560                 adapter->tx_ring[txr_idx] = ring;
4561
4562                 /* push pointer to next ring */
4563                 ring++;
4564         }
4565
4566         if (rxr_count) {
4567                 /* assign generic ring traits */
4568                 ring->dev = &adapter->pdev->dev;
4569                 ring->netdev = adapter->netdev;
4570
4571                 /* configure backlink on ring */
4572                 ring->q_vector = q_vector;
4573
4574                 /* update q_vector Rx values */
4575                 igc_add_ring(ring, &q_vector->rx);
4576
4577                 /* apply Rx specific ring traits */
4578                 ring->count = adapter->rx_ring_count;
4579                 ring->queue_index = rxr_idx;
4580
4581                 /* assign ring to adapter */
4582                 adapter->rx_ring[rxr_idx] = ring;
4583         }
4584
4585         return 0;
4586 }
4587
4588 /**
4589  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4590  * @adapter: board private structure to initialize
4591  *
4592  * We allocate one q_vector per queue interrupt.  If allocation fails we
4593  * return -ENOMEM.
4594  */
4595 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4596 {
4597         int rxr_remaining = adapter->num_rx_queues;
4598         int txr_remaining = adapter->num_tx_queues;
4599         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4600         int q_vectors = adapter->num_q_vectors;
4601         int err;
4602
4603         if (q_vectors >= (rxr_remaining + txr_remaining)) {
4604                 for (; rxr_remaining; v_idx++) {
4605                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4606                                                  0, 0, 1, rxr_idx);
4607
4608                         if (err)
4609                                 goto err_out;
4610
4611                         /* update counts and index */
4612                         rxr_remaining--;
4613                         rxr_idx++;
4614                 }
4615         }
4616
4617         for (; v_idx < q_vectors; v_idx++) {
4618                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4619                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4620
4621                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4622                                          tqpv, txr_idx, rqpv, rxr_idx);
4623
4624                 if (err)
4625                         goto err_out;
4626
4627                 /* update counts and index */
4628                 rxr_remaining -= rqpv;
4629                 txr_remaining -= tqpv;
4630                 rxr_idx++;
4631                 txr_idx++;
4632         }
4633
4634         return 0;
4635
4636 err_out:
4637         adapter->num_tx_queues = 0;
4638         adapter->num_rx_queues = 0;
4639         adapter->num_q_vectors = 0;
4640
4641         while (v_idx--)
4642                 igc_free_q_vector(adapter, v_idx);
4643
4644         return -ENOMEM;
4645 }
4646
4647 /**
4648  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4649  * @adapter: Pointer to adapter structure
4650  * @msix: boolean for MSI-X capability
4651  *
4652  * This function initializes the interrupts and allocates all of the queues.
4653  */
4654 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4655 {
4656         struct net_device *dev = adapter->netdev;
4657         int err = 0;
4658
4659         igc_set_interrupt_capability(adapter, msix);
4660
4661         err = igc_alloc_q_vectors(adapter);
4662         if (err) {
4663                 netdev_err(dev, "Unable to allocate memory for vectors\n");
4664                 goto err_alloc_q_vectors;
4665         }
4666
4667         igc_cache_ring_register(adapter);
4668
4669         return 0;
4670
4671 err_alloc_q_vectors:
4672         igc_reset_interrupt_capability(adapter);
4673         return err;
4674 }
4675
4676 /**
4677  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4678  * @adapter: board private structure to initialize
4679  *
4680  * igc_sw_init initializes the Adapter private data structure.
4681  * Fields are initialized based on PCI device information and
4682  * OS network device settings (MTU size).
4683  */
4684 static int igc_sw_init(struct igc_adapter *adapter)
4685 {
4686         struct net_device *netdev = adapter->netdev;
4687         struct pci_dev *pdev = adapter->pdev;
4688         struct igc_hw *hw = &adapter->hw;
4689
4690         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4691
4692         /* set default ring sizes */
4693         adapter->tx_ring_count = IGC_DEFAULT_TXD;
4694         adapter->rx_ring_count = IGC_DEFAULT_RXD;
4695
4696         /* set default ITR values */
4697         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4698         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4699
4700         /* set default work limits */
4701         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4702
4703         /* adjust max frame to be at least the size of a standard frame */
4704         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4705                                 VLAN_HLEN;
4706         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4707
4708         mutex_init(&adapter->nfc_rule_lock);
4709         INIT_LIST_HEAD(&adapter->nfc_rule_list);
4710         adapter->nfc_rule_count = 0;
4711
4712         spin_lock_init(&adapter->stats64_lock);
4713         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4714         adapter->flags |= IGC_FLAG_HAS_MSIX;
4715
4716         igc_init_queue_configuration(adapter);
4717
4718         /* This call may decrease the number of queues */
4719         if (igc_init_interrupt_scheme(adapter, true)) {
4720                 netdev_err(netdev, "Unable to allocate memory for queues\n");
4721                 return -ENOMEM;
4722         }
4723
4724         /* Explicitly disable IRQ since the NIC can be in any state. */
4725         igc_irq_disable(adapter);
4726
4727         set_bit(__IGC_DOWN, &adapter->state);
4728
4729         return 0;
4730 }
4731
4732 /**
4733  * igc_up - Open the interface and prepare it to handle traffic
4734  * @adapter: board private structure
4735  */
4736 void igc_up(struct igc_adapter *adapter)
4737 {
4738         struct igc_hw *hw = &adapter->hw;
4739         int i = 0;
4740
4741         /* hardware has been reset, we need to reload some things */
4742         igc_configure(adapter);
4743
4744         clear_bit(__IGC_DOWN, &adapter->state);
4745
4746         for (i = 0; i < adapter->num_q_vectors; i++)
4747                 napi_enable(&adapter->q_vector[i]->napi);
4748
4749         if (adapter->msix_entries)
4750                 igc_configure_msix(adapter);
4751         else
4752                 igc_assign_vector(adapter->q_vector[0], 0);
4753
4754         /* Clear any pending interrupts. */
4755         rd32(IGC_ICR);
4756         igc_irq_enable(adapter);
4757
4758         netif_tx_start_all_queues(adapter->netdev);
4759
4760         /* start the watchdog. */
4761         hw->mac.get_link_status = true;
4762         schedule_work(&adapter->watchdog_task);
4763 }
4764
4765 /**
4766  * igc_update_stats - Update the board statistics counters
4767  * @adapter: board private structure
4768  */
4769 void igc_update_stats(struct igc_adapter *adapter)
4770 {
4771         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4772         struct pci_dev *pdev = adapter->pdev;
4773         struct igc_hw *hw = &adapter->hw;
4774         u64 _bytes, _packets;
4775         u64 bytes, packets;
4776         unsigned int start;
4777         u32 mpc;
4778         int i;
4779
4780         /* Prevent stats update while adapter is being reset, or if the pci
4781          * connection is down.
4782          */
4783         if (adapter->link_speed == 0)
4784                 return;
4785         if (pci_channel_offline(pdev))
4786                 return;
4787
4788         packets = 0;
4789         bytes = 0;
4790
4791         rcu_read_lock();
4792         for (i = 0; i < adapter->num_rx_queues; i++) {
4793                 struct igc_ring *ring = adapter->rx_ring[i];
4794                 u32 rqdpc = rd32(IGC_RQDPC(i));
4795
4796                 if (hw->mac.type >= igc_i225)
4797                         wr32(IGC_RQDPC(i), 0);
4798
4799                 if (rqdpc) {
4800                         ring->rx_stats.drops += rqdpc;
4801                         net_stats->rx_fifo_errors += rqdpc;
4802                 }
4803
4804                 do {
4805                         start = u64_stats_fetch_begin(&ring->rx_syncp);
4806                         _bytes = ring->rx_stats.bytes;
4807                         _packets = ring->rx_stats.packets;
4808                 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4809                 bytes += _bytes;
4810                 packets += _packets;
4811         }
4812
4813         net_stats->rx_bytes = bytes;
4814         net_stats->rx_packets = packets;
4815
4816         packets = 0;
4817         bytes = 0;
4818         for (i = 0; i < adapter->num_tx_queues; i++) {
4819                 struct igc_ring *ring = adapter->tx_ring[i];
4820
4821                 do {
4822                         start = u64_stats_fetch_begin(&ring->tx_syncp);
4823                         _bytes = ring->tx_stats.bytes;
4824                         _packets = ring->tx_stats.packets;
4825                 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4826                 bytes += _bytes;
4827                 packets += _packets;
4828         }
4829         net_stats->tx_bytes = bytes;
4830         net_stats->tx_packets = packets;
4831         rcu_read_unlock();
4832
4833         /* read stats registers */
4834         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4835         adapter->stats.gprc += rd32(IGC_GPRC);
4836         adapter->stats.gorc += rd32(IGC_GORCL);
4837         rd32(IGC_GORCH); /* clear GORCL */
4838         adapter->stats.bprc += rd32(IGC_BPRC);
4839         adapter->stats.mprc += rd32(IGC_MPRC);
4840         adapter->stats.roc += rd32(IGC_ROC);
4841
4842         adapter->stats.prc64 += rd32(IGC_PRC64);
4843         adapter->stats.prc127 += rd32(IGC_PRC127);
4844         adapter->stats.prc255 += rd32(IGC_PRC255);
4845         adapter->stats.prc511 += rd32(IGC_PRC511);
4846         adapter->stats.prc1023 += rd32(IGC_PRC1023);
4847         adapter->stats.prc1522 += rd32(IGC_PRC1522);
4848         adapter->stats.tlpic += rd32(IGC_TLPIC);
4849         adapter->stats.rlpic += rd32(IGC_RLPIC);
4850         adapter->stats.hgptc += rd32(IGC_HGPTC);
4851
4852         mpc = rd32(IGC_MPC);
4853         adapter->stats.mpc += mpc;
4854         net_stats->rx_fifo_errors += mpc;
4855         adapter->stats.scc += rd32(IGC_SCC);
4856         adapter->stats.ecol += rd32(IGC_ECOL);
4857         adapter->stats.mcc += rd32(IGC_MCC);
4858         adapter->stats.latecol += rd32(IGC_LATECOL);
4859         adapter->stats.dc += rd32(IGC_DC);
4860         adapter->stats.rlec += rd32(IGC_RLEC);
4861         adapter->stats.xonrxc += rd32(IGC_XONRXC);
4862         adapter->stats.xontxc += rd32(IGC_XONTXC);
4863         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4864         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4865         adapter->stats.fcruc += rd32(IGC_FCRUC);
4866         adapter->stats.gptc += rd32(IGC_GPTC);
4867         adapter->stats.gotc += rd32(IGC_GOTCL);
4868         rd32(IGC_GOTCH); /* clear GOTCL */
4869         adapter->stats.rnbc += rd32(IGC_RNBC);
4870         adapter->stats.ruc += rd32(IGC_RUC);
4871         adapter->stats.rfc += rd32(IGC_RFC);
4872         adapter->stats.rjc += rd32(IGC_RJC);
4873         adapter->stats.tor += rd32(IGC_TORH);
4874         adapter->stats.tot += rd32(IGC_TOTH);
4875         adapter->stats.tpr += rd32(IGC_TPR);
4876
4877         adapter->stats.ptc64 += rd32(IGC_PTC64);
4878         adapter->stats.ptc127 += rd32(IGC_PTC127);
4879         adapter->stats.ptc255 += rd32(IGC_PTC255);
4880         adapter->stats.ptc511 += rd32(IGC_PTC511);
4881         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4882         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4883
4884         adapter->stats.mptc += rd32(IGC_MPTC);
4885         adapter->stats.bptc += rd32(IGC_BPTC);
4886
4887         adapter->stats.tpt += rd32(IGC_TPT);
4888         adapter->stats.colc += rd32(IGC_COLC);
4889         adapter->stats.colc += rd32(IGC_RERC);
4890
4891         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4892
4893         adapter->stats.tsctc += rd32(IGC_TSCTC);
4894
4895         adapter->stats.iac += rd32(IGC_IAC);
4896
4897         /* Fill out the OS statistics structure */
4898         net_stats->multicast = adapter->stats.mprc;
4899         net_stats->collisions = adapter->stats.colc;
4900
4901         /* Rx Errors */
4902
4903         /* RLEC on some newer hardware can be incorrect so build
4904          * our own version based on RUC and ROC
4905          */
4906         net_stats->rx_errors = adapter->stats.rxerrc +
4907                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4908                 adapter->stats.ruc + adapter->stats.roc +
4909                 adapter->stats.cexterr;
4910         net_stats->rx_length_errors = adapter->stats.ruc +
4911                                       adapter->stats.roc;
4912         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4913         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4914         net_stats->rx_missed_errors = adapter->stats.mpc;
4915
4916         /* Tx Errors */
4917         net_stats->tx_errors = adapter->stats.ecol +
4918                                adapter->stats.latecol;
4919         net_stats->tx_aborted_errors = adapter->stats.ecol;
4920         net_stats->tx_window_errors = adapter->stats.latecol;
4921         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4922
4923         /* Tx Dropped needs to be maintained elsewhere */
4924
4925         /* Management Stats */
4926         adapter->stats.mgptc += rd32(IGC_MGTPTC);
4927         adapter->stats.mgprc += rd32(IGC_MGTPRC);
4928         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4929 }
4930
4931 /**
4932  * igc_down - Close the interface
4933  * @adapter: board private structure
4934  */
4935 void igc_down(struct igc_adapter *adapter)
4936 {
4937         struct net_device *netdev = adapter->netdev;
4938         struct igc_hw *hw = &adapter->hw;
4939         u32 tctl, rctl;
4940         int i = 0;
4941
4942         set_bit(__IGC_DOWN, &adapter->state);
4943
4944         igc_ptp_suspend(adapter);
4945
4946         if (pci_device_is_present(adapter->pdev)) {
4947                 /* disable receives in the hardware */
4948                 rctl = rd32(IGC_RCTL);
4949                 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4950                 /* flush and sleep below */
4951         }
4952         /* set trans_start so we don't get spurious watchdogs during reset */
4953         netif_trans_update(netdev);
4954
4955         netif_carrier_off(netdev);
4956         netif_tx_stop_all_queues(netdev);
4957
4958         if (pci_device_is_present(adapter->pdev)) {
4959                 /* disable transmits in the hardware */
4960                 tctl = rd32(IGC_TCTL);
4961                 tctl &= ~IGC_TCTL_EN;
4962                 wr32(IGC_TCTL, tctl);
4963                 /* flush both disables and wait for them to finish */
4964                 wrfl();
4965                 usleep_range(10000, 20000);
4966
4967                 igc_irq_disable(adapter);
4968         }
4969
4970         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4971
4972         for (i = 0; i < adapter->num_q_vectors; i++) {
4973                 if (adapter->q_vector[i]) {
4974                         napi_synchronize(&adapter->q_vector[i]->napi);
4975                         napi_disable(&adapter->q_vector[i]->napi);
4976                 }
4977         }
4978
4979         del_timer_sync(&adapter->watchdog_timer);
4980         del_timer_sync(&adapter->phy_info_timer);
4981
4982         /* record the stats before reset*/
4983         spin_lock(&adapter->stats64_lock);
4984         igc_update_stats(adapter);
4985         spin_unlock(&adapter->stats64_lock);
4986
4987         adapter->link_speed = 0;
4988         adapter->link_duplex = 0;
4989
4990         if (!pci_channel_offline(adapter->pdev))
4991                 igc_reset(adapter);
4992
4993         /* clear VLAN promisc flag so VFTA will be updated if necessary */
4994         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4995
4996         igc_clean_all_tx_rings(adapter);
4997         igc_clean_all_rx_rings(adapter);
4998 }
4999
5000 void igc_reinit_locked(struct igc_adapter *adapter)
5001 {
5002         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5003                 usleep_range(1000, 2000);
5004         igc_down(adapter);
5005         igc_up(adapter);
5006         clear_bit(__IGC_RESETTING, &adapter->state);
5007 }
5008
5009 static void igc_reset_task(struct work_struct *work)
5010 {
5011         struct igc_adapter *adapter;
5012
5013         adapter = container_of(work, struct igc_adapter, reset_task);
5014
5015         rtnl_lock();
5016         /* If we're already down or resetting, just bail */
5017         if (test_bit(__IGC_DOWN, &adapter->state) ||
5018             test_bit(__IGC_RESETTING, &adapter->state)) {
5019                 rtnl_unlock();
5020                 return;
5021         }
5022
5023         igc_rings_dump(adapter);
5024         igc_regs_dump(adapter);
5025         netdev_err(adapter->netdev, "Reset adapter\n");
5026         igc_reinit_locked(adapter);
5027         rtnl_unlock();
5028 }
5029
5030 /**
5031  * igc_change_mtu - Change the Maximum Transfer Unit
5032  * @netdev: network interface device structure
5033  * @new_mtu: new value for maximum frame size
5034  *
5035  * Returns 0 on success, negative on failure
5036  */
5037 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5038 {
5039         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5040         struct igc_adapter *adapter = netdev_priv(netdev);
5041
5042         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5043                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5044                 return -EINVAL;
5045         }
5046
5047         /* adjust max frame to be at least the size of a standard frame */
5048         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5049                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5050
5051         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5052                 usleep_range(1000, 2000);
5053
5054         /* igc_down has a dependency on max_frame_size */
5055         adapter->max_frame_size = max_frame;
5056
5057         if (netif_running(netdev))
5058                 igc_down(adapter);
5059
5060         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5061         netdev->mtu = new_mtu;
5062
5063         if (netif_running(netdev))
5064                 igc_up(adapter);
5065         else
5066                 igc_reset(adapter);
5067
5068         clear_bit(__IGC_RESETTING, &adapter->state);
5069
5070         return 0;
5071 }
5072
5073 /**
5074  * igc_tx_timeout - Respond to a Tx Hang
5075  * @netdev: network interface device structure
5076  * @txqueue: queue number that timed out
5077  **/
5078 static void igc_tx_timeout(struct net_device *netdev,
5079                            unsigned int __always_unused txqueue)
5080 {
5081         struct igc_adapter *adapter = netdev_priv(netdev);
5082         struct igc_hw *hw = &adapter->hw;
5083
5084         /* Do the reset outside of interrupt context */
5085         adapter->tx_timeout_count++;
5086         schedule_work(&adapter->reset_task);
5087         wr32(IGC_EICS,
5088              (adapter->eims_enable_mask & ~adapter->eims_other));
5089 }
5090
5091 /**
5092  * igc_get_stats64 - Get System Network Statistics
5093  * @netdev: network interface device structure
5094  * @stats: rtnl_link_stats64 pointer
5095  *
5096  * Returns the address of the device statistics structure.
5097  * The statistics are updated here and also from the timer callback.
5098  */
5099 static void igc_get_stats64(struct net_device *netdev,
5100                             struct rtnl_link_stats64 *stats)
5101 {
5102         struct igc_adapter *adapter = netdev_priv(netdev);
5103
5104         spin_lock(&adapter->stats64_lock);
5105         if (!test_bit(__IGC_RESETTING, &adapter->state))
5106                 igc_update_stats(adapter);
5107         memcpy(stats, &adapter->stats64, sizeof(*stats));
5108         spin_unlock(&adapter->stats64_lock);
5109 }
5110
5111 static netdev_features_t igc_fix_features(struct net_device *netdev,
5112                                           netdev_features_t features)
5113 {
5114         /* Since there is no support for separate Rx/Tx vlan accel
5115          * enable/disable make sure Tx flag is always in same state as Rx.
5116          */
5117         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5118                 features |= NETIF_F_HW_VLAN_CTAG_TX;
5119         else
5120                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5121
5122         return features;
5123 }
5124
5125 static int igc_set_features(struct net_device *netdev,
5126                             netdev_features_t features)
5127 {
5128         netdev_features_t changed = netdev->features ^ features;
5129         struct igc_adapter *adapter = netdev_priv(netdev);
5130
5131         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5132                 igc_vlan_mode(netdev, features);
5133
5134         /* Add VLAN support */
5135         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5136                 return 0;
5137
5138         if (!(features & NETIF_F_NTUPLE))
5139                 igc_flush_nfc_rules(adapter);
5140
5141         netdev->features = features;
5142
5143         if (netif_running(netdev))
5144                 igc_reinit_locked(adapter);
5145         else
5146                 igc_reset(adapter);
5147
5148         return 1;
5149 }
5150
5151 static netdev_features_t
5152 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5153                    netdev_features_t features)
5154 {
5155         unsigned int network_hdr_len, mac_hdr_len;
5156
5157         /* Make certain the headers can be described by a context descriptor */
5158         mac_hdr_len = skb_network_header(skb) - skb->data;
5159         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5160                 return features & ~(NETIF_F_HW_CSUM |
5161                                     NETIF_F_SCTP_CRC |
5162                                     NETIF_F_HW_VLAN_CTAG_TX |
5163                                     NETIF_F_TSO |
5164                                     NETIF_F_TSO6);
5165
5166         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5167         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5168                 return features & ~(NETIF_F_HW_CSUM |
5169                                     NETIF_F_SCTP_CRC |
5170                                     NETIF_F_TSO |
5171                                     NETIF_F_TSO6);
5172
5173         /* We can only support IPv4 TSO in tunnels if we can mangle the
5174          * inner IP ID field, so strip TSO if MANGLEID is not supported.
5175          */
5176         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5177                 features &= ~NETIF_F_TSO;
5178
5179         return features;
5180 }
5181
5182 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5183 {
5184         u32 ack, tsauxc, sec, nsec, tsicr;
5185         struct igc_hw *hw = &adapter->hw;
5186         struct ptp_clock_event event;
5187         struct timespec64 ts;
5188
5189         tsicr = rd32(IGC_TSICR);
5190         ack = 0;
5191
5192         if (tsicr & IGC_TSICR_SYS_WRAP) {
5193                 event.type = PTP_CLOCK_PPS;
5194                 if (adapter->ptp_caps.pps)
5195                         ptp_clock_event(adapter->ptp_clock, &event);
5196                 ack |= IGC_TSICR_SYS_WRAP;
5197         }
5198
5199         if (tsicr & IGC_TSICR_TXTS) {
5200                 /* retrieve hardware timestamp */
5201                 schedule_work(&adapter->ptp_tx_work);
5202                 ack |= IGC_TSICR_TXTS;
5203         }
5204
5205         if (tsicr & IGC_TSICR_TT0) {
5206                 spin_lock(&adapter->tmreg_lock);
5207                 ts = timespec64_add(adapter->perout[0].start,
5208                                     adapter->perout[0].period);
5209                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5210                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5211                 tsauxc = rd32(IGC_TSAUXC);
5212                 tsauxc |= IGC_TSAUXC_EN_TT0;
5213                 wr32(IGC_TSAUXC, tsauxc);
5214                 adapter->perout[0].start = ts;
5215                 spin_unlock(&adapter->tmreg_lock);
5216                 ack |= IGC_TSICR_TT0;
5217         }
5218
5219         if (tsicr & IGC_TSICR_TT1) {
5220                 spin_lock(&adapter->tmreg_lock);
5221                 ts = timespec64_add(adapter->perout[1].start,
5222                                     adapter->perout[1].period);
5223                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5224                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5225                 tsauxc = rd32(IGC_TSAUXC);
5226                 tsauxc |= IGC_TSAUXC_EN_TT1;
5227                 wr32(IGC_TSAUXC, tsauxc);
5228                 adapter->perout[1].start = ts;
5229                 spin_unlock(&adapter->tmreg_lock);
5230                 ack |= IGC_TSICR_TT1;
5231         }
5232
5233         if (tsicr & IGC_TSICR_AUTT0) {
5234                 nsec = rd32(IGC_AUXSTMPL0);
5235                 sec  = rd32(IGC_AUXSTMPH0);
5236                 event.type = PTP_CLOCK_EXTTS;
5237                 event.index = 0;
5238                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5239                 ptp_clock_event(adapter->ptp_clock, &event);
5240                 ack |= IGC_TSICR_AUTT0;
5241         }
5242
5243         if (tsicr & IGC_TSICR_AUTT1) {
5244                 nsec = rd32(IGC_AUXSTMPL1);
5245                 sec  = rd32(IGC_AUXSTMPH1);
5246                 event.type = PTP_CLOCK_EXTTS;
5247                 event.index = 1;
5248                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5249                 ptp_clock_event(adapter->ptp_clock, &event);
5250                 ack |= IGC_TSICR_AUTT1;
5251         }
5252
5253         /* acknowledge the interrupts */
5254         wr32(IGC_TSICR, ack);
5255 }
5256
5257 /**
5258  * igc_msix_other - msix other interrupt handler
5259  * @irq: interrupt number
5260  * @data: pointer to a q_vector
5261  */
5262 static irqreturn_t igc_msix_other(int irq, void *data)
5263 {
5264         struct igc_adapter *adapter = data;
5265         struct igc_hw *hw = &adapter->hw;
5266         u32 icr = rd32(IGC_ICR);
5267
5268         /* reading ICR causes bit 31 of EICR to be cleared */
5269         if (icr & IGC_ICR_DRSTA)
5270                 schedule_work(&adapter->reset_task);
5271
5272         if (icr & IGC_ICR_DOUTSYNC) {
5273                 /* HW is reporting DMA is out of sync */
5274                 adapter->stats.doosync++;
5275         }
5276
5277         if (icr & IGC_ICR_LSC) {
5278                 hw->mac.get_link_status = true;
5279                 /* guard against interrupt when we're going down */
5280                 if (!test_bit(__IGC_DOWN, &adapter->state))
5281                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5282         }
5283
5284         if (icr & IGC_ICR_TS)
5285                 igc_tsync_interrupt(adapter);
5286
5287         wr32(IGC_EIMS, adapter->eims_other);
5288
5289         return IRQ_HANDLED;
5290 }
5291
5292 static void igc_write_itr(struct igc_q_vector *q_vector)
5293 {
5294         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5295
5296         if (!q_vector->set_itr)
5297                 return;
5298
5299         if (!itr_val)
5300                 itr_val = IGC_ITR_VAL_MASK;
5301
5302         itr_val |= IGC_EITR_CNT_IGNR;
5303
5304         writel(itr_val, q_vector->itr_register);
5305         q_vector->set_itr = 0;
5306 }
5307
5308 static irqreturn_t igc_msix_ring(int irq, void *data)
5309 {
5310         struct igc_q_vector *q_vector = data;
5311
5312         /* Write the ITR value calculated from the previous interrupt. */
5313         igc_write_itr(q_vector);
5314
5315         napi_schedule(&q_vector->napi);
5316
5317         return IRQ_HANDLED;
5318 }
5319
5320 /**
5321  * igc_request_msix - Initialize MSI-X interrupts
5322  * @adapter: Pointer to adapter structure
5323  *
5324  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5325  * kernel.
5326  */
5327 static int igc_request_msix(struct igc_adapter *adapter)
5328 {
5329         unsigned int num_q_vectors = adapter->num_q_vectors;
5330         int i = 0, err = 0, vector = 0, free_vector = 0;
5331         struct net_device *netdev = adapter->netdev;
5332
5333         err = request_irq(adapter->msix_entries[vector].vector,
5334                           &igc_msix_other, 0, netdev->name, adapter);
5335         if (err)
5336                 goto err_out;
5337
5338         if (num_q_vectors > MAX_Q_VECTORS) {
5339                 num_q_vectors = MAX_Q_VECTORS;
5340                 dev_warn(&adapter->pdev->dev,
5341                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5342                          adapter->num_q_vectors, MAX_Q_VECTORS);
5343         }
5344         for (i = 0; i < num_q_vectors; i++) {
5345                 struct igc_q_vector *q_vector = adapter->q_vector[i];
5346
5347                 vector++;
5348
5349                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5350
5351                 if (q_vector->rx.ring && q_vector->tx.ring)
5352                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5353                                 q_vector->rx.ring->queue_index);
5354                 else if (q_vector->tx.ring)
5355                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5356                                 q_vector->tx.ring->queue_index);
5357                 else if (q_vector->rx.ring)
5358                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5359                                 q_vector->rx.ring->queue_index);
5360                 else
5361                         sprintf(q_vector->name, "%s-unused", netdev->name);
5362
5363                 err = request_irq(adapter->msix_entries[vector].vector,
5364                                   igc_msix_ring, 0, q_vector->name,
5365                                   q_vector);
5366                 if (err)
5367                         goto err_free;
5368         }
5369
5370         igc_configure_msix(adapter);
5371         return 0;
5372
5373 err_free:
5374         /* free already assigned IRQs */
5375         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5376
5377         vector--;
5378         for (i = 0; i < vector; i++) {
5379                 free_irq(adapter->msix_entries[free_vector++].vector,
5380                          adapter->q_vector[i]);
5381         }
5382 err_out:
5383         return err;
5384 }
5385
5386 /**
5387  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5388  * @adapter: Pointer to adapter structure
5389  *
5390  * This function resets the device so that it has 0 rx queues, tx queues, and
5391  * MSI-X interrupts allocated.
5392  */
5393 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5394 {
5395         igc_free_q_vectors(adapter);
5396         igc_reset_interrupt_capability(adapter);
5397 }
5398
5399 /* Need to wait a few seconds after link up to get diagnostic information from
5400  * the phy
5401  */
5402 static void igc_update_phy_info(struct timer_list *t)
5403 {
5404         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5405
5406         igc_get_phy_info(&adapter->hw);
5407 }
5408
5409 /**
5410  * igc_has_link - check shared code for link and determine up/down
5411  * @adapter: pointer to driver private info
5412  */
5413 bool igc_has_link(struct igc_adapter *adapter)
5414 {
5415         struct igc_hw *hw = &adapter->hw;
5416         bool link_active = false;
5417
5418         /* get_link_status is set on LSC (link status) interrupt or
5419          * rx sequence error interrupt.  get_link_status will stay
5420          * false until the igc_check_for_link establishes link
5421          * for copper adapters ONLY
5422          */
5423         if (!hw->mac.get_link_status)
5424                 return true;
5425         hw->mac.ops.check_for_link(hw);
5426         link_active = !hw->mac.get_link_status;
5427
5428         if (hw->mac.type == igc_i225) {
5429                 if (!netif_carrier_ok(adapter->netdev)) {
5430                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5431                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5432                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5433                         adapter->link_check_timeout = jiffies;
5434                 }
5435         }
5436
5437         return link_active;
5438 }
5439
5440 /**
5441  * igc_watchdog - Timer Call-back
5442  * @t: timer for the watchdog
5443  */
5444 static void igc_watchdog(struct timer_list *t)
5445 {
5446         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5447         /* Do the rest outside of interrupt context */
5448         schedule_work(&adapter->watchdog_task);
5449 }
5450
5451 static void igc_watchdog_task(struct work_struct *work)
5452 {
5453         struct igc_adapter *adapter = container_of(work,
5454                                                    struct igc_adapter,
5455                                                    watchdog_task);
5456         struct net_device *netdev = adapter->netdev;
5457         struct igc_hw *hw = &adapter->hw;
5458         struct igc_phy_info *phy = &hw->phy;
5459         u16 phy_data, retry_count = 20;
5460         u32 link;
5461         int i;
5462
5463         link = igc_has_link(adapter);
5464
5465         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5466                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5467                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5468                 else
5469                         link = false;
5470         }
5471
5472         if (link) {
5473                 /* Cancel scheduled suspend requests. */
5474                 pm_runtime_resume(netdev->dev.parent);
5475
5476                 if (!netif_carrier_ok(netdev)) {
5477                         u32 ctrl;
5478
5479                         hw->mac.ops.get_speed_and_duplex(hw,
5480                                                          &adapter->link_speed,
5481                                                          &adapter->link_duplex);
5482
5483                         ctrl = rd32(IGC_CTRL);
5484                         /* Link status message must follow this format */
5485                         netdev_info(netdev,
5486                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5487                                     adapter->link_speed,
5488                                     adapter->link_duplex == FULL_DUPLEX ?
5489                                     "Full" : "Half",
5490                                     (ctrl & IGC_CTRL_TFCE) &&
5491                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5492                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5493                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5494
5495                         /* disable EEE if enabled */
5496                         if ((adapter->flags & IGC_FLAG_EEE) &&
5497                             adapter->link_duplex == HALF_DUPLEX) {
5498                                 netdev_info(netdev,
5499                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5500                                 adapter->hw.dev_spec._base.eee_enable = false;
5501                                 adapter->flags &= ~IGC_FLAG_EEE;
5502                         }
5503
5504                         /* check if SmartSpeed worked */
5505                         igc_check_downshift(hw);
5506                         if (phy->speed_downgraded)
5507                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5508
5509                         /* adjust timeout factor according to speed/duplex */
5510                         adapter->tx_timeout_factor = 1;
5511                         switch (adapter->link_speed) {
5512                         case SPEED_10:
5513                                 adapter->tx_timeout_factor = 14;
5514                                 break;
5515                         case SPEED_100:
5516                         case SPEED_1000:
5517                         case SPEED_2500:
5518                                 adapter->tx_timeout_factor = 1;
5519                                 break;
5520                         }
5521
5522                         /* Once the launch time has been set on the wire, there
5523                          * is a delay before the link speed can be determined
5524                          * based on link-up activity. Write into the register
5525                          * as soon as we know the correct link speed.
5526                          */
5527                         igc_tsn_adjust_txtime_offset(adapter);
5528
5529                         if (adapter->link_speed != SPEED_1000)
5530                                 goto no_wait;
5531
5532                         /* wait for Remote receiver status OK */
5533 retry_read_status:
5534                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5535                                               &phy_data)) {
5536                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5537                                     retry_count) {
5538                                         msleep(100);
5539                                         retry_count--;
5540                                         goto retry_read_status;
5541                                 } else if (!retry_count) {
5542                                         netdev_err(netdev, "exceed max 2 second\n");
5543                                 }
5544                         } else {
5545                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5546                         }
5547 no_wait:
5548                         netif_carrier_on(netdev);
5549
5550                         /* link state has changed, schedule phy info update */
5551                         if (!test_bit(__IGC_DOWN, &adapter->state))
5552                                 mod_timer(&adapter->phy_info_timer,
5553                                           round_jiffies(jiffies + 2 * HZ));
5554                 }
5555         } else {
5556                 if (netif_carrier_ok(netdev)) {
5557                         adapter->link_speed = 0;
5558                         adapter->link_duplex = 0;
5559
5560                         /* Links status message must follow this format */
5561                         netdev_info(netdev, "NIC Link is Down\n");
5562                         netif_carrier_off(netdev);
5563
5564                         /* link state has changed, schedule phy info update */
5565                         if (!test_bit(__IGC_DOWN, &adapter->state))
5566                                 mod_timer(&adapter->phy_info_timer,
5567                                           round_jiffies(jiffies + 2 * HZ));
5568
5569                         /* link is down, time to check for alternate media */
5570                         if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5571                                 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5572                                         schedule_work(&adapter->reset_task);
5573                                         /* return immediately */
5574                                         return;
5575                                 }
5576                         }
5577                         pm_schedule_suspend(netdev->dev.parent,
5578                                             MSEC_PER_SEC * 5);
5579
5580                 /* also check for alternate media here */
5581                 } else if (!netif_carrier_ok(netdev) &&
5582                            (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5583                         if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5584                                 schedule_work(&adapter->reset_task);
5585                                 /* return immediately */
5586                                 return;
5587                         }
5588                 }
5589         }
5590
5591         spin_lock(&adapter->stats64_lock);
5592         igc_update_stats(adapter);
5593         spin_unlock(&adapter->stats64_lock);
5594
5595         for (i = 0; i < adapter->num_tx_queues; i++) {
5596                 struct igc_ring *tx_ring = adapter->tx_ring[i];
5597
5598                 if (!netif_carrier_ok(netdev)) {
5599                         /* We've lost link, so the controller stops DMA,
5600                          * but we've got queued Tx work that's never going
5601                          * to get done, so reset controller to flush Tx.
5602                          * (Do the reset outside of interrupt context).
5603                          */
5604                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5605                                 adapter->tx_timeout_count++;
5606                                 schedule_work(&adapter->reset_task);
5607                                 /* return immediately since reset is imminent */
5608                                 return;
5609                         }
5610                 }
5611
5612                 /* Force detection of hung controller every watchdog period */
5613                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5614         }
5615
5616         /* Cause software interrupt to ensure Rx ring is cleaned */
5617         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5618                 u32 eics = 0;
5619
5620                 for (i = 0; i < adapter->num_q_vectors; i++)
5621                         eics |= adapter->q_vector[i]->eims_value;
5622                 wr32(IGC_EICS, eics);
5623         } else {
5624                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5625         }
5626
5627         igc_ptp_tx_hang(adapter);
5628
5629         /* Reset the timer */
5630         if (!test_bit(__IGC_DOWN, &adapter->state)) {
5631                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5632                         mod_timer(&adapter->watchdog_timer,
5633                                   round_jiffies(jiffies +  HZ));
5634                 else
5635                         mod_timer(&adapter->watchdog_timer,
5636                                   round_jiffies(jiffies + 2 * HZ));
5637         }
5638 }
5639
5640 /**
5641  * igc_intr_msi - Interrupt Handler
5642  * @irq: interrupt number
5643  * @data: pointer to a network interface device structure
5644  */
5645 static irqreturn_t igc_intr_msi(int irq, void *data)
5646 {
5647         struct igc_adapter *adapter = data;
5648         struct igc_q_vector *q_vector = adapter->q_vector[0];
5649         struct igc_hw *hw = &adapter->hw;
5650         /* read ICR disables interrupts using IAM */
5651         u32 icr = rd32(IGC_ICR);
5652
5653         igc_write_itr(q_vector);
5654
5655         if (icr & IGC_ICR_DRSTA)
5656                 schedule_work(&adapter->reset_task);
5657
5658         if (icr & IGC_ICR_DOUTSYNC) {
5659                 /* HW is reporting DMA is out of sync */
5660                 adapter->stats.doosync++;
5661         }
5662
5663         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5664                 hw->mac.get_link_status = true;
5665                 if (!test_bit(__IGC_DOWN, &adapter->state))
5666                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5667         }
5668
5669         if (icr & IGC_ICR_TS)
5670                 igc_tsync_interrupt(adapter);
5671
5672         napi_schedule(&q_vector->napi);
5673
5674         return IRQ_HANDLED;
5675 }
5676
5677 /**
5678  * igc_intr - Legacy Interrupt Handler
5679  * @irq: interrupt number
5680  * @data: pointer to a network interface device structure
5681  */
5682 static irqreturn_t igc_intr(int irq, void *data)
5683 {
5684         struct igc_adapter *adapter = data;
5685         struct igc_q_vector *q_vector = adapter->q_vector[0];
5686         struct igc_hw *hw = &adapter->hw;
5687         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5688          * need for the IMC write
5689          */
5690         u32 icr = rd32(IGC_ICR);
5691
5692         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5693          * not set, then the adapter didn't send an interrupt
5694          */
5695         if (!(icr & IGC_ICR_INT_ASSERTED))
5696                 return IRQ_NONE;
5697
5698         igc_write_itr(q_vector);
5699
5700         if (icr & IGC_ICR_DRSTA)
5701                 schedule_work(&adapter->reset_task);
5702
5703         if (icr & IGC_ICR_DOUTSYNC) {
5704                 /* HW is reporting DMA is out of sync */
5705                 adapter->stats.doosync++;
5706         }
5707
5708         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5709                 hw->mac.get_link_status = true;
5710                 /* guard against interrupt when we're going down */
5711                 if (!test_bit(__IGC_DOWN, &adapter->state))
5712                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5713         }
5714
5715         if (icr & IGC_ICR_TS)
5716                 igc_tsync_interrupt(adapter);
5717
5718         napi_schedule(&q_vector->napi);
5719
5720         return IRQ_HANDLED;
5721 }
5722
5723 static void igc_free_irq(struct igc_adapter *adapter)
5724 {
5725         if (adapter->msix_entries) {
5726                 int vector = 0, i;
5727
5728                 free_irq(adapter->msix_entries[vector++].vector, adapter);
5729
5730                 for (i = 0; i < adapter->num_q_vectors; i++)
5731                         free_irq(adapter->msix_entries[vector++].vector,
5732                                  adapter->q_vector[i]);
5733         } else {
5734                 free_irq(adapter->pdev->irq, adapter);
5735         }
5736 }
5737
5738 /**
5739  * igc_request_irq - initialize interrupts
5740  * @adapter: Pointer to adapter structure
5741  *
5742  * Attempts to configure interrupts using the best available
5743  * capabilities of the hardware and kernel.
5744  */
5745 static int igc_request_irq(struct igc_adapter *adapter)
5746 {
5747         struct net_device *netdev = adapter->netdev;
5748         struct pci_dev *pdev = adapter->pdev;
5749         int err = 0;
5750
5751         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5752                 err = igc_request_msix(adapter);
5753                 if (!err)
5754                         goto request_done;
5755                 /* fall back to MSI */
5756                 igc_free_all_tx_resources(adapter);
5757                 igc_free_all_rx_resources(adapter);
5758
5759                 igc_clear_interrupt_scheme(adapter);
5760                 err = igc_init_interrupt_scheme(adapter, false);
5761                 if (err)
5762                         goto request_done;
5763                 igc_setup_all_tx_resources(adapter);
5764                 igc_setup_all_rx_resources(adapter);
5765                 igc_configure(adapter);
5766         }
5767
5768         igc_assign_vector(adapter->q_vector[0], 0);
5769
5770         if (adapter->flags & IGC_FLAG_HAS_MSI) {
5771                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5772                                   netdev->name, adapter);
5773                 if (!err)
5774                         goto request_done;
5775
5776                 /* fall back to legacy interrupts */
5777                 igc_reset_interrupt_capability(adapter);
5778                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5779         }
5780
5781         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5782                           netdev->name, adapter);
5783
5784         if (err)
5785                 netdev_err(netdev, "Error %d getting interrupt\n", err);
5786
5787 request_done:
5788         return err;
5789 }
5790
5791 /**
5792  * __igc_open - Called when a network interface is made active
5793  * @netdev: network interface device structure
5794  * @resuming: boolean indicating if the device is resuming
5795  *
5796  * Returns 0 on success, negative value on failure
5797  *
5798  * The open entry point is called when a network interface is made
5799  * active by the system (IFF_UP).  At this point all resources needed
5800  * for transmit and receive operations are allocated, the interrupt
5801  * handler is registered with the OS, the watchdog timer is started,
5802  * and the stack is notified that the interface is ready.
5803  */
5804 static int __igc_open(struct net_device *netdev, bool resuming)
5805 {
5806         struct igc_adapter *adapter = netdev_priv(netdev);
5807         struct pci_dev *pdev = adapter->pdev;
5808         struct igc_hw *hw = &adapter->hw;
5809         int err = 0;
5810         int i = 0;
5811
5812         /* disallow open during test */
5813
5814         if (test_bit(__IGC_TESTING, &adapter->state)) {
5815                 WARN_ON(resuming);
5816                 return -EBUSY;
5817         }
5818
5819         if (!resuming)
5820                 pm_runtime_get_sync(&pdev->dev);
5821
5822         netif_carrier_off(netdev);
5823
5824         /* allocate transmit descriptors */
5825         err = igc_setup_all_tx_resources(adapter);
5826         if (err)
5827                 goto err_setup_tx;
5828
5829         /* allocate receive descriptors */
5830         err = igc_setup_all_rx_resources(adapter);
5831         if (err)
5832                 goto err_setup_rx;
5833
5834         igc_power_up_link(adapter);
5835
5836         igc_configure(adapter);
5837
5838         err = igc_request_irq(adapter);
5839         if (err)
5840                 goto err_req_irq;
5841
5842         /* Notify the stack of the actual queue counts. */
5843         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5844         if (err)
5845                 goto err_set_queues;
5846
5847         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5848         if (err)
5849                 goto err_set_queues;
5850
5851         clear_bit(__IGC_DOWN, &adapter->state);
5852
5853         for (i = 0; i < adapter->num_q_vectors; i++)
5854                 napi_enable(&adapter->q_vector[i]->napi);
5855
5856         /* Clear any pending interrupts. */
5857         rd32(IGC_ICR);
5858         igc_irq_enable(adapter);
5859
5860         if (!resuming)
5861                 pm_runtime_put(&pdev->dev);
5862
5863         netif_tx_start_all_queues(netdev);
5864
5865         /* start the watchdog. */
5866         hw->mac.get_link_status = true;
5867         schedule_work(&adapter->watchdog_task);
5868
5869         return IGC_SUCCESS;
5870
5871 err_set_queues:
5872         igc_free_irq(adapter);
5873 err_req_irq:
5874         igc_release_hw_control(adapter);
5875         igc_power_down_phy_copper_base(&adapter->hw);
5876         igc_free_all_rx_resources(adapter);
5877 err_setup_rx:
5878         igc_free_all_tx_resources(adapter);
5879 err_setup_tx:
5880         igc_reset(adapter);
5881         if (!resuming)
5882                 pm_runtime_put(&pdev->dev);
5883
5884         return err;
5885 }
5886
5887 int igc_open(struct net_device *netdev)
5888 {
5889         return __igc_open(netdev, false);
5890 }
5891
5892 /**
5893  * __igc_close - Disables a network interface
5894  * @netdev: network interface device structure
5895  * @suspending: boolean indicating the device is suspending
5896  *
5897  * Returns 0, this is not allowed to fail
5898  *
5899  * The close entry point is called when an interface is de-activated
5900  * by the OS.  The hardware is still under the driver's control, but
5901  * needs to be disabled.  A global MAC reset is issued to stop the
5902  * hardware, and all transmit and receive resources are freed.
5903  */
5904 static int __igc_close(struct net_device *netdev, bool suspending)
5905 {
5906         struct igc_adapter *adapter = netdev_priv(netdev);
5907         struct pci_dev *pdev = adapter->pdev;
5908
5909         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5910
5911         if (!suspending)
5912                 pm_runtime_get_sync(&pdev->dev);
5913
5914         igc_down(adapter);
5915
5916         igc_release_hw_control(adapter);
5917
5918         igc_free_irq(adapter);
5919
5920         igc_free_all_tx_resources(adapter);
5921         igc_free_all_rx_resources(adapter);
5922
5923         if (!suspending)
5924                 pm_runtime_put_sync(&pdev->dev);
5925
5926         return 0;
5927 }
5928
5929 int igc_close(struct net_device *netdev)
5930 {
5931         if (netif_device_present(netdev) || netdev->dismantle)
5932                 return __igc_close(netdev, false);
5933         return 0;
5934 }
5935
5936 /**
5937  * igc_ioctl - Access the hwtstamp interface
5938  * @netdev: network interface device structure
5939  * @ifr: interface request data
5940  * @cmd: ioctl command
5941  **/
5942 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5943 {
5944         switch (cmd) {
5945         case SIOCGHWTSTAMP:
5946                 return igc_ptp_get_ts_config(netdev, ifr);
5947         case SIOCSHWTSTAMP:
5948                 return igc_ptp_set_ts_config(netdev, ifr);
5949         default:
5950                 return -EOPNOTSUPP;
5951         }
5952 }
5953
5954 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5955                                       bool enable)
5956 {
5957         struct igc_ring *ring;
5958
5959         if (queue < 0 || queue >= adapter->num_tx_queues)
5960                 return -EINVAL;
5961
5962         ring = adapter->tx_ring[queue];
5963         ring->launchtime_enable = enable;
5964
5965         return 0;
5966 }
5967
5968 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5969 {
5970         struct timespec64 b;
5971
5972         b = ktime_to_timespec64(base_time);
5973
5974         return timespec64_compare(now, &b) > 0;
5975 }
5976
5977 static bool validate_schedule(struct igc_adapter *adapter,
5978                               const struct tc_taprio_qopt_offload *qopt)
5979 {
5980         int queue_uses[IGC_MAX_TX_QUEUES] = { };
5981         struct igc_hw *hw = &adapter->hw;
5982         struct timespec64 now;
5983         size_t n;
5984
5985         if (qopt->cycle_time_extension)
5986                 return false;
5987
5988         igc_ptp_read(adapter, &now);
5989
5990         /* If we program the controller's BASET registers with a time
5991          * in the future, it will hold all the packets until that
5992          * time, causing a lot of TX Hangs, so to avoid that, we
5993          * reject schedules that would start in the future.
5994          * Note: Limitation above is no longer in i226.
5995          */
5996         if (!is_base_time_past(qopt->base_time, &now) &&
5997             igc_is_device_id_i225(hw))
5998                 return false;
5999
6000         for (n = 0; n < qopt->num_entries; n++) {
6001                 const struct tc_taprio_sched_entry *e, *prev;
6002                 int i;
6003
6004                 prev = n ? &qopt->entries[n - 1] : NULL;
6005                 e = &qopt->entries[n];
6006
6007                 /* i225 only supports "global" frame preemption
6008                  * settings.
6009                  */
6010                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6011                         return false;
6012
6013                 for (i = 0; i < adapter->num_tx_queues; i++) {
6014                         if (e->gate_mask & BIT(i))
6015                                 queue_uses[i]++;
6016
6017                         /* There are limitations: A single queue cannot be
6018                          * opened and closed multiple times per cycle unless the
6019                          * gate stays open. Check for it.
6020                          */
6021                         if (queue_uses[i] > 1 &&
6022                             !(prev->gate_mask & BIT(i)))
6023                                 return false;
6024                 }
6025         }
6026
6027         return true;
6028 }
6029
6030 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6031                                      struct tc_etf_qopt_offload *qopt)
6032 {
6033         struct igc_hw *hw = &adapter->hw;
6034         int err;
6035
6036         if (hw->mac.type != igc_i225)
6037                 return -EOPNOTSUPP;
6038
6039         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6040         if (err)
6041                 return err;
6042
6043         return igc_tsn_offload_apply(adapter);
6044 }
6045
6046 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6047 {
6048         int i;
6049
6050         adapter->base_time = 0;
6051         adapter->cycle_time = NSEC_PER_SEC;
6052         adapter->qbv_config_change_errors = 0;
6053
6054         for (i = 0; i < adapter->num_tx_queues; i++) {
6055                 struct igc_ring *ring = adapter->tx_ring[i];
6056
6057                 ring->start_time = 0;
6058                 ring->end_time = NSEC_PER_SEC;
6059         }
6060
6061         return 0;
6062 }
6063
6064 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6065                                  struct tc_taprio_qopt_offload *qopt)
6066 {
6067         bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6068         struct igc_hw *hw = &adapter->hw;
6069         u32 start_time = 0, end_time = 0;
6070         size_t n;
6071         int i;
6072
6073         adapter->qbv_enable = qopt->enable;
6074
6075         if (!qopt->enable)
6076                 return igc_tsn_clear_schedule(adapter);
6077
6078         if (qopt->base_time < 0)
6079                 return -ERANGE;
6080
6081         if (igc_is_device_id_i225(hw) && adapter->base_time)
6082                 return -EALREADY;
6083
6084         if (!validate_schedule(adapter, qopt))
6085                 return -EINVAL;
6086
6087         adapter->cycle_time = qopt->cycle_time;
6088         adapter->base_time = qopt->base_time;
6089
6090         for (n = 0; n < qopt->num_entries; n++) {
6091                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6092
6093                 end_time += e->interval;
6094
6095                 /* If any of the conditions below are true, we need to manually
6096                  * control the end time of the cycle.
6097                  * 1. Qbv users can specify a cycle time that is not equal
6098                  * to the total GCL intervals. Hence, recalculation is
6099                  * necessary here to exclude the time interval that
6100                  * exceeds the cycle time.
6101                  * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6102                  * once the end of the list is reached, it will switch
6103                  * to the END_OF_CYCLE state and leave the gates in the
6104                  * same state until the next cycle is started.
6105                  */
6106                 if (end_time > adapter->cycle_time ||
6107                     n + 1 == qopt->num_entries)
6108                         end_time = adapter->cycle_time;
6109
6110                 for (i = 0; i < adapter->num_tx_queues; i++) {
6111                         struct igc_ring *ring = adapter->tx_ring[i];
6112
6113                         if (!(e->gate_mask & BIT(i)))
6114                                 continue;
6115
6116                         /* Check whether a queue stays open for more than one
6117                          * entry. If so, keep the start and advance the end
6118                          * time.
6119                          */
6120                         if (!queue_configured[i])
6121                                 ring->start_time = start_time;
6122                         ring->end_time = end_time;
6123
6124                         queue_configured[i] = true;
6125                 }
6126
6127                 start_time += e->interval;
6128         }
6129
6130         /* Check whether a queue gets configured.
6131          * If not, set the start and end time to be end time.
6132          */
6133         for (i = 0; i < adapter->num_tx_queues; i++) {
6134                 if (!queue_configured[i]) {
6135                         struct igc_ring *ring = adapter->tx_ring[i];
6136
6137                         ring->start_time = end_time;
6138                         ring->end_time = end_time;
6139                 }
6140         }
6141
6142         return 0;
6143 }
6144
6145 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6146                                          struct tc_taprio_qopt_offload *qopt)
6147 {
6148         struct igc_hw *hw = &adapter->hw;
6149         int err;
6150
6151         if (hw->mac.type != igc_i225)
6152                 return -EOPNOTSUPP;
6153
6154         err = igc_save_qbv_schedule(adapter, qopt);
6155         if (err)
6156                 return err;
6157
6158         return igc_tsn_offload_apply(adapter);
6159 }
6160
6161 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6162                                bool enable, int idleslope, int sendslope,
6163                                int hicredit, int locredit)
6164 {
6165         bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6166         struct net_device *netdev = adapter->netdev;
6167         struct igc_ring *ring;
6168         int i;
6169
6170         /* i225 has two sets of credit-based shaper logic.
6171          * Supporting it only on the top two priority queues
6172          */
6173         if (queue < 0 || queue > 1)
6174                 return -EINVAL;
6175
6176         ring = adapter->tx_ring[queue];
6177
6178         for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6179                 if (adapter->tx_ring[i])
6180                         cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6181
6182         /* CBS should be enabled on the highest priority queue first in order
6183          * for the CBS algorithm to operate as intended.
6184          */
6185         if (enable) {
6186                 if (queue == 1 && !cbs_status[0]) {
6187                         netdev_err(netdev,
6188                                    "Enabling CBS on queue1 before queue0\n");
6189                         return -EINVAL;
6190                 }
6191         } else {
6192                 if (queue == 0 && cbs_status[1]) {
6193                         netdev_err(netdev,
6194                                    "Disabling CBS on queue0 before queue1\n");
6195                         return -EINVAL;
6196                 }
6197         }
6198
6199         ring->cbs_enable = enable;
6200         ring->idleslope = idleslope;
6201         ring->sendslope = sendslope;
6202         ring->hicredit = hicredit;
6203         ring->locredit = locredit;
6204
6205         return 0;
6206 }
6207
6208 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6209                               struct tc_cbs_qopt_offload *qopt)
6210 {
6211         struct igc_hw *hw = &adapter->hw;
6212         int err;
6213
6214         if (hw->mac.type != igc_i225)
6215                 return -EOPNOTSUPP;
6216
6217         if (qopt->queue < 0 || qopt->queue > 1)
6218                 return -EINVAL;
6219
6220         err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6221                                   qopt->idleslope, qopt->sendslope,
6222                                   qopt->hicredit, qopt->locredit);
6223         if (err)
6224                 return err;
6225
6226         return igc_tsn_offload_apply(adapter);
6227 }
6228
6229 static int igc_tc_query_caps(struct igc_adapter *adapter,
6230                              struct tc_query_caps_base *base)
6231 {
6232         struct igc_hw *hw = &adapter->hw;
6233
6234         switch (base->type) {
6235         case TC_SETUP_QDISC_TAPRIO: {
6236                 struct tc_taprio_caps *caps = base->caps;
6237
6238                 caps->broken_mqprio = true;
6239
6240                 if (hw->mac.type == igc_i225)
6241                         caps->gate_mask_per_txq = true;
6242
6243                 return 0;
6244         }
6245         default:
6246                 return -EOPNOTSUPP;
6247         }
6248 }
6249
6250 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6251                         void *type_data)
6252 {
6253         struct igc_adapter *adapter = netdev_priv(dev);
6254
6255         switch (type) {
6256         case TC_QUERY_CAPS:
6257                 return igc_tc_query_caps(adapter, type_data);
6258         case TC_SETUP_QDISC_TAPRIO:
6259                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6260
6261         case TC_SETUP_QDISC_ETF:
6262                 return igc_tsn_enable_launchtime(adapter, type_data);
6263
6264         case TC_SETUP_QDISC_CBS:
6265                 return igc_tsn_enable_cbs(adapter, type_data);
6266
6267         default:
6268                 return -EOPNOTSUPP;
6269         }
6270 }
6271
6272 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6273 {
6274         struct igc_adapter *adapter = netdev_priv(dev);
6275
6276         switch (bpf->command) {
6277         case XDP_SETUP_PROG:
6278                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6279         case XDP_SETUP_XSK_POOL:
6280                 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6281                                           bpf->xsk.queue_id);
6282         default:
6283                 return -EOPNOTSUPP;
6284         }
6285 }
6286
6287 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6288                         struct xdp_frame **frames, u32 flags)
6289 {
6290         struct igc_adapter *adapter = netdev_priv(dev);
6291         int cpu = smp_processor_id();
6292         struct netdev_queue *nq;
6293         struct igc_ring *ring;
6294         int i, drops;
6295
6296         if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6297                 return -ENETDOWN;
6298
6299         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6300                 return -EINVAL;
6301
6302         ring = igc_xdp_get_tx_ring(adapter, cpu);
6303         nq = txring_txq(ring);
6304
6305         __netif_tx_lock(nq, cpu);
6306
6307         drops = 0;
6308         for (i = 0; i < num_frames; i++) {
6309                 int err;
6310                 struct xdp_frame *xdpf = frames[i];
6311
6312                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6313                 if (err) {
6314                         xdp_return_frame_rx_napi(xdpf);
6315                         drops++;
6316                 }
6317         }
6318
6319         if (flags & XDP_XMIT_FLUSH)
6320                 igc_flush_tx_descriptors(ring);
6321
6322         __netif_tx_unlock(nq);
6323
6324         return num_frames - drops;
6325 }
6326
6327 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6328                                         struct igc_q_vector *q_vector)
6329 {
6330         struct igc_hw *hw = &adapter->hw;
6331         u32 eics = 0;
6332
6333         eics |= q_vector->eims_value;
6334         wr32(IGC_EICS, eics);
6335 }
6336
6337 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6338 {
6339         struct igc_adapter *adapter = netdev_priv(dev);
6340         struct igc_q_vector *q_vector;
6341         struct igc_ring *ring;
6342
6343         if (test_bit(__IGC_DOWN, &adapter->state))
6344                 return -ENETDOWN;
6345
6346         if (!igc_xdp_is_enabled(adapter))
6347                 return -ENXIO;
6348
6349         if (queue_id >= adapter->num_rx_queues)
6350                 return -EINVAL;
6351
6352         ring = adapter->rx_ring[queue_id];
6353
6354         if (!ring->xsk_pool)
6355                 return -ENXIO;
6356
6357         q_vector = adapter->q_vector[queue_id];
6358         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6359                 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6360
6361         return 0;
6362 }
6363
6364 static const struct net_device_ops igc_netdev_ops = {
6365         .ndo_open               = igc_open,
6366         .ndo_stop               = igc_close,
6367         .ndo_start_xmit         = igc_xmit_frame,
6368         .ndo_set_rx_mode        = igc_set_rx_mode,
6369         .ndo_set_mac_address    = igc_set_mac,
6370         .ndo_change_mtu         = igc_change_mtu,
6371         .ndo_tx_timeout         = igc_tx_timeout,
6372         .ndo_get_stats64        = igc_get_stats64,
6373         .ndo_fix_features       = igc_fix_features,
6374         .ndo_set_features       = igc_set_features,
6375         .ndo_features_check     = igc_features_check,
6376         .ndo_eth_ioctl          = igc_ioctl,
6377         .ndo_setup_tc           = igc_setup_tc,
6378         .ndo_bpf                = igc_bpf,
6379         .ndo_xdp_xmit           = igc_xdp_xmit,
6380         .ndo_xsk_wakeup         = igc_xsk_wakeup,
6381 };
6382
6383 /* PCIe configuration access */
6384 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6385 {
6386         struct igc_adapter *adapter = hw->back;
6387
6388         pci_read_config_word(adapter->pdev, reg, value);
6389 }
6390
6391 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6392 {
6393         struct igc_adapter *adapter = hw->back;
6394
6395         pci_write_config_word(adapter->pdev, reg, *value);
6396 }
6397
6398 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6399 {
6400         struct igc_adapter *adapter = hw->back;
6401
6402         if (!pci_is_pcie(adapter->pdev))
6403                 return -IGC_ERR_CONFIG;
6404
6405         pcie_capability_read_word(adapter->pdev, reg, value);
6406
6407         return IGC_SUCCESS;
6408 }
6409
6410 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6411 {
6412         struct igc_adapter *adapter = hw->back;
6413
6414         if (!pci_is_pcie(adapter->pdev))
6415                 return -IGC_ERR_CONFIG;
6416
6417         pcie_capability_write_word(adapter->pdev, reg, *value);
6418
6419         return IGC_SUCCESS;
6420 }
6421
6422 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6423 {
6424         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6425         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6426         u32 value = 0;
6427
6428         if (IGC_REMOVED(hw_addr))
6429                 return ~value;
6430
6431         value = readl(&hw_addr[reg]);
6432
6433         /* reads should not return all F's */
6434         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6435                 struct net_device *netdev = igc->netdev;
6436
6437                 hw->hw_addr = NULL;
6438                 netif_device_detach(netdev);
6439                 netdev_err(netdev, "PCIe link lost, device now detached\n");
6440                 WARN(pci_device_is_present(igc->pdev),
6441                      "igc: Failed to read reg 0x%x!\n", reg);
6442         }
6443
6444         return value;
6445 }
6446
6447 /**
6448  * igc_probe - Device Initialization Routine
6449  * @pdev: PCI device information struct
6450  * @ent: entry in igc_pci_tbl
6451  *
6452  * Returns 0 on success, negative on failure
6453  *
6454  * igc_probe initializes an adapter identified by a pci_dev structure.
6455  * The OS initialization, configuring the adapter private structure,
6456  * and a hardware reset occur.
6457  */
6458 static int igc_probe(struct pci_dev *pdev,
6459                      const struct pci_device_id *ent)
6460 {
6461         struct igc_adapter *adapter;
6462         struct net_device *netdev;
6463         struct igc_hw *hw;
6464         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6465         int err;
6466
6467         err = pci_enable_device_mem(pdev);
6468         if (err)
6469                 return err;
6470
6471         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6472         if (err) {
6473                 dev_err(&pdev->dev,
6474                         "No usable DMA configuration, aborting\n");
6475                 goto err_dma;
6476         }
6477
6478         err = pci_request_mem_regions(pdev, igc_driver_name);
6479         if (err)
6480                 goto err_pci_reg;
6481
6482         err = pci_enable_ptm(pdev, NULL);
6483         if (err < 0)
6484                 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6485
6486         pci_set_master(pdev);
6487
6488         err = -ENOMEM;
6489         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6490                                    IGC_MAX_TX_QUEUES);
6491
6492         if (!netdev)
6493                 goto err_alloc_etherdev;
6494
6495         SET_NETDEV_DEV(netdev, &pdev->dev);
6496
6497         pci_set_drvdata(pdev, netdev);
6498         adapter = netdev_priv(netdev);
6499         adapter->netdev = netdev;
6500         adapter->pdev = pdev;
6501         hw = &adapter->hw;
6502         hw->back = adapter;
6503         adapter->port_num = hw->bus.func;
6504         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6505
6506         err = pci_save_state(pdev);
6507         if (err)
6508                 goto err_ioremap;
6509
6510         err = -EIO;
6511         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6512                                    pci_resource_len(pdev, 0));
6513         if (!adapter->io_addr)
6514                 goto err_ioremap;
6515
6516         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6517         hw->hw_addr = adapter->io_addr;
6518
6519         netdev->netdev_ops = &igc_netdev_ops;
6520         igc_ethtool_set_ops(netdev);
6521         netdev->watchdog_timeo = 5 * HZ;
6522
6523         netdev->mem_start = pci_resource_start(pdev, 0);
6524         netdev->mem_end = pci_resource_end(pdev, 0);
6525
6526         /* PCI config space info */
6527         hw->vendor_id = pdev->vendor;
6528         hw->device_id = pdev->device;
6529         hw->revision_id = pdev->revision;
6530         hw->subsystem_vendor_id = pdev->subsystem_vendor;
6531         hw->subsystem_device_id = pdev->subsystem_device;
6532
6533         /* Copy the default MAC and PHY function pointers */
6534         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6535         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6536
6537         /* Initialize skew-specific constants */
6538         err = ei->get_invariants(hw);
6539         if (err)
6540                 goto err_sw_init;
6541
6542         /* Add supported features to the features list*/
6543         netdev->features |= NETIF_F_SG;
6544         netdev->features |= NETIF_F_TSO;
6545         netdev->features |= NETIF_F_TSO6;
6546         netdev->features |= NETIF_F_TSO_ECN;
6547         netdev->features |= NETIF_F_RXCSUM;
6548         netdev->features |= NETIF_F_HW_CSUM;
6549         netdev->features |= NETIF_F_SCTP_CRC;
6550         netdev->features |= NETIF_F_HW_TC;
6551
6552 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6553                                   NETIF_F_GSO_GRE_CSUM | \
6554                                   NETIF_F_GSO_IPXIP4 | \
6555                                   NETIF_F_GSO_IPXIP6 | \
6556                                   NETIF_F_GSO_UDP_TUNNEL | \
6557                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
6558
6559         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6560         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6561
6562         /* setup the private structure */
6563         err = igc_sw_init(adapter);
6564         if (err)
6565                 goto err_sw_init;
6566
6567         /* copy netdev features into list of user selectable features */
6568         netdev->hw_features |= NETIF_F_NTUPLE;
6569         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6570         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6571         netdev->hw_features |= netdev->features;
6572
6573         netdev->features |= NETIF_F_HIGHDMA;
6574
6575         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6576         netdev->mpls_features |= NETIF_F_HW_CSUM;
6577         netdev->hw_enc_features |= netdev->vlan_features;
6578
6579         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6580                                NETDEV_XDP_ACT_XSK_ZEROCOPY;
6581
6582         /* MTU range: 68 - 9216 */
6583         netdev->min_mtu = ETH_MIN_MTU;
6584         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6585
6586         /* before reading the NVM, reset the controller to put the device in a
6587          * known good starting state
6588          */
6589         hw->mac.ops.reset_hw(hw);
6590
6591         if (igc_get_flash_presence_i225(hw)) {
6592                 if (hw->nvm.ops.validate(hw) < 0) {
6593                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6594                         err = -EIO;
6595                         goto err_eeprom;
6596                 }
6597         }
6598
6599         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6600                 /* copy the MAC address out of the NVM */
6601                 if (hw->mac.ops.read_mac_addr(hw))
6602                         dev_err(&pdev->dev, "NVM Read Error\n");
6603         }
6604
6605         eth_hw_addr_set(netdev, hw->mac.addr);
6606
6607         if (!is_valid_ether_addr(netdev->dev_addr)) {
6608                 dev_err(&pdev->dev, "Invalid MAC Address\n");
6609                 err = -EIO;
6610                 goto err_eeprom;
6611         }
6612
6613         /* configure RXPBSIZE and TXPBSIZE */
6614         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6615         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6616
6617         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6618         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6619
6620         INIT_WORK(&adapter->reset_task, igc_reset_task);
6621         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6622
6623         /* Initialize link properties that are user-changeable */
6624         adapter->fc_autoneg = true;
6625         hw->mac.autoneg = true;
6626         hw->phy.autoneg_advertised = 0xaf;
6627
6628         hw->fc.requested_mode = igc_fc_default;
6629         hw->fc.current_mode = igc_fc_default;
6630
6631         /* By default, support wake on port A */
6632         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6633
6634         /* initialize the wol settings based on the eeprom settings */
6635         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6636                 adapter->wol |= IGC_WUFC_MAG;
6637
6638         device_set_wakeup_enable(&adapter->pdev->dev,
6639                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6640
6641         igc_ptp_init(adapter);
6642
6643         igc_tsn_clear_schedule(adapter);
6644
6645         /* reset the hardware with the new settings */
6646         igc_reset(adapter);
6647
6648         /* let the f/w know that the h/w is now under the control of the
6649          * driver.
6650          */
6651         igc_get_hw_control(adapter);
6652
6653         strncpy(netdev->name, "eth%d", IFNAMSIZ);
6654         err = register_netdev(netdev);
6655         if (err)
6656                 goto err_register;
6657
6658          /* carrier off reporting is important to ethtool even BEFORE open */
6659         netif_carrier_off(netdev);
6660
6661         /* Check if Media Autosense is enabled */
6662         adapter->ei = *ei;
6663
6664         /* print pcie link status and MAC address */
6665         pcie_print_link_status(pdev);
6666         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6667
6668         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6669         /* Disable EEE for internal PHY devices */
6670         hw->dev_spec._base.eee_enable = false;
6671         adapter->flags &= ~IGC_FLAG_EEE;
6672         igc_set_eee_i225(hw, false, false, false);
6673
6674         pm_runtime_put_noidle(&pdev->dev);
6675
6676         return 0;
6677
6678 err_register:
6679         igc_release_hw_control(adapter);
6680 err_eeprom:
6681         if (!igc_check_reset_block(hw))
6682                 igc_reset_phy(hw);
6683 err_sw_init:
6684         igc_clear_interrupt_scheme(adapter);
6685         iounmap(adapter->io_addr);
6686 err_ioremap:
6687         free_netdev(netdev);
6688 err_alloc_etherdev:
6689         pci_release_mem_regions(pdev);
6690 err_pci_reg:
6691 err_dma:
6692         pci_disable_device(pdev);
6693         return err;
6694 }
6695
6696 /**
6697  * igc_remove - Device Removal Routine
6698  * @pdev: PCI device information struct
6699  *
6700  * igc_remove is called by the PCI subsystem to alert the driver
6701  * that it should release a PCI device.  This could be caused by a
6702  * Hot-Plug event, or because the driver is going to be removed from
6703  * memory.
6704  */
6705 static void igc_remove(struct pci_dev *pdev)
6706 {
6707         struct net_device *netdev = pci_get_drvdata(pdev);
6708         struct igc_adapter *adapter = netdev_priv(netdev);
6709
6710         pm_runtime_get_noresume(&pdev->dev);
6711
6712         igc_flush_nfc_rules(adapter);
6713
6714         igc_ptp_stop(adapter);
6715
6716         set_bit(__IGC_DOWN, &adapter->state);
6717
6718         del_timer_sync(&adapter->watchdog_timer);
6719         del_timer_sync(&adapter->phy_info_timer);
6720
6721         cancel_work_sync(&adapter->reset_task);
6722         cancel_work_sync(&adapter->watchdog_task);
6723
6724         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6725          * would have already happened in close and is redundant.
6726          */
6727         igc_release_hw_control(adapter);
6728         unregister_netdev(netdev);
6729
6730         igc_clear_interrupt_scheme(adapter);
6731         pci_iounmap(pdev, adapter->io_addr);
6732         pci_release_mem_regions(pdev);
6733
6734         free_netdev(netdev);
6735
6736         pci_disable_device(pdev);
6737 }
6738
6739 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6740                           bool runtime)
6741 {
6742         struct net_device *netdev = pci_get_drvdata(pdev);
6743         struct igc_adapter *adapter = netdev_priv(netdev);
6744         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6745         struct igc_hw *hw = &adapter->hw;
6746         u32 ctrl, rctl, status;
6747         bool wake;
6748
6749         rtnl_lock();
6750         netif_device_detach(netdev);
6751
6752         if (netif_running(netdev))
6753                 __igc_close(netdev, true);
6754
6755         igc_ptp_suspend(adapter);
6756
6757         igc_clear_interrupt_scheme(adapter);
6758         rtnl_unlock();
6759
6760         status = rd32(IGC_STATUS);
6761         if (status & IGC_STATUS_LU)
6762                 wufc &= ~IGC_WUFC_LNKC;
6763
6764         if (wufc) {
6765                 igc_setup_rctl(adapter);
6766                 igc_set_rx_mode(netdev);
6767
6768                 /* turn on all-multi mode if wake on multicast is enabled */
6769                 if (wufc & IGC_WUFC_MC) {
6770                         rctl = rd32(IGC_RCTL);
6771                         rctl |= IGC_RCTL_MPE;
6772                         wr32(IGC_RCTL, rctl);
6773                 }
6774
6775                 ctrl = rd32(IGC_CTRL);
6776                 ctrl |= IGC_CTRL_ADVD3WUC;
6777                 wr32(IGC_CTRL, ctrl);
6778
6779                 /* Allow time for pending master requests to run */
6780                 igc_disable_pcie_master(hw);
6781
6782                 wr32(IGC_WUC, IGC_WUC_PME_EN);
6783                 wr32(IGC_WUFC, wufc);
6784         } else {
6785                 wr32(IGC_WUC, 0);
6786                 wr32(IGC_WUFC, 0);
6787         }
6788
6789         wake = wufc || adapter->en_mng_pt;
6790         if (!wake)
6791                 igc_power_down_phy_copper_base(&adapter->hw);
6792         else
6793                 igc_power_up_link(adapter);
6794
6795         if (enable_wake)
6796                 *enable_wake = wake;
6797
6798         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6799          * would have already happened in close and is redundant.
6800          */
6801         igc_release_hw_control(adapter);
6802
6803         pci_disable_device(pdev);
6804
6805         return 0;
6806 }
6807
6808 #ifdef CONFIG_PM
6809 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6810 {
6811         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6812 }
6813
6814 static void igc_deliver_wake_packet(struct net_device *netdev)
6815 {
6816         struct igc_adapter *adapter = netdev_priv(netdev);
6817         struct igc_hw *hw = &adapter->hw;
6818         struct sk_buff *skb;
6819         u32 wupl;
6820
6821         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6822
6823         /* WUPM stores only the first 128 bytes of the wake packet.
6824          * Read the packet only if we have the whole thing.
6825          */
6826         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6827                 return;
6828
6829         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6830         if (!skb)
6831                 return;
6832
6833         skb_put(skb, wupl);
6834
6835         /* Ensure reads are 32-bit aligned */
6836         wupl = roundup(wupl, 4);
6837
6838         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6839
6840         skb->protocol = eth_type_trans(skb, netdev);
6841         netif_rx(skb);
6842 }
6843
6844 static int __maybe_unused igc_resume(struct device *dev)
6845 {
6846         struct pci_dev *pdev = to_pci_dev(dev);
6847         struct net_device *netdev = pci_get_drvdata(pdev);
6848         struct igc_adapter *adapter = netdev_priv(netdev);
6849         struct igc_hw *hw = &adapter->hw;
6850         u32 err, val;
6851
6852         pci_set_power_state(pdev, PCI_D0);
6853         pci_restore_state(pdev);
6854         pci_save_state(pdev);
6855
6856         if (!pci_device_is_present(pdev))
6857                 return -ENODEV;
6858         err = pci_enable_device_mem(pdev);
6859         if (err) {
6860                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6861                 return err;
6862         }
6863         pci_set_master(pdev);
6864
6865         pci_enable_wake(pdev, PCI_D3hot, 0);
6866         pci_enable_wake(pdev, PCI_D3cold, 0);
6867
6868         if (igc_init_interrupt_scheme(adapter, true)) {
6869                 netdev_err(netdev, "Unable to allocate memory for queues\n");
6870                 return -ENOMEM;
6871         }
6872
6873         igc_reset(adapter);
6874
6875         /* let the f/w know that the h/w is now under the control of the
6876          * driver.
6877          */
6878         igc_get_hw_control(adapter);
6879
6880         val = rd32(IGC_WUS);
6881         if (val & WAKE_PKT_WUS)
6882                 igc_deliver_wake_packet(netdev);
6883
6884         wr32(IGC_WUS, ~0);
6885
6886         rtnl_lock();
6887         if (!err && netif_running(netdev))
6888                 err = __igc_open(netdev, true);
6889
6890         if (!err)
6891                 netif_device_attach(netdev);
6892         rtnl_unlock();
6893
6894         return err;
6895 }
6896
6897 static int __maybe_unused igc_runtime_resume(struct device *dev)
6898 {
6899         return igc_resume(dev);
6900 }
6901
6902 static int __maybe_unused igc_suspend(struct device *dev)
6903 {
6904         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6905 }
6906
6907 static int __maybe_unused igc_runtime_idle(struct device *dev)
6908 {
6909         struct net_device *netdev = dev_get_drvdata(dev);
6910         struct igc_adapter *adapter = netdev_priv(netdev);
6911
6912         if (!igc_has_link(adapter))
6913                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6914
6915         return -EBUSY;
6916 }
6917 #endif /* CONFIG_PM */
6918
6919 static void igc_shutdown(struct pci_dev *pdev)
6920 {
6921         bool wake;
6922
6923         __igc_shutdown(pdev, &wake, 0);
6924
6925         if (system_state == SYSTEM_POWER_OFF) {
6926                 pci_wake_from_d3(pdev, wake);
6927                 pci_set_power_state(pdev, PCI_D3hot);
6928         }
6929 }
6930
6931 /**
6932  *  igc_io_error_detected - called when PCI error is detected
6933  *  @pdev: Pointer to PCI device
6934  *  @state: The current PCI connection state
6935  *
6936  *  This function is called after a PCI bus error affecting
6937  *  this device has been detected.
6938  **/
6939 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6940                                               pci_channel_state_t state)
6941 {
6942         struct net_device *netdev = pci_get_drvdata(pdev);
6943         struct igc_adapter *adapter = netdev_priv(netdev);
6944
6945         netif_device_detach(netdev);
6946
6947         if (state == pci_channel_io_perm_failure)
6948                 return PCI_ERS_RESULT_DISCONNECT;
6949
6950         if (netif_running(netdev))
6951                 igc_down(adapter);
6952         pci_disable_device(pdev);
6953
6954         /* Request a slot reset. */
6955         return PCI_ERS_RESULT_NEED_RESET;
6956 }
6957
6958 /**
6959  *  igc_io_slot_reset - called after the PCI bus has been reset.
6960  *  @pdev: Pointer to PCI device
6961  *
6962  *  Restart the card from scratch, as if from a cold-boot. Implementation
6963  *  resembles the first-half of the igc_resume routine.
6964  **/
6965 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6966 {
6967         struct net_device *netdev = pci_get_drvdata(pdev);
6968         struct igc_adapter *adapter = netdev_priv(netdev);
6969         struct igc_hw *hw = &adapter->hw;
6970         pci_ers_result_t result;
6971
6972         if (pci_enable_device_mem(pdev)) {
6973                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6974                 result = PCI_ERS_RESULT_DISCONNECT;
6975         } else {
6976                 pci_set_master(pdev);
6977                 pci_restore_state(pdev);
6978                 pci_save_state(pdev);
6979
6980                 pci_enable_wake(pdev, PCI_D3hot, 0);
6981                 pci_enable_wake(pdev, PCI_D3cold, 0);
6982
6983                 /* In case of PCI error, adapter loses its HW address
6984                  * so we should re-assign it here.
6985                  */
6986                 hw->hw_addr = adapter->io_addr;
6987
6988                 igc_reset(adapter);
6989                 wr32(IGC_WUS, ~0);
6990                 result = PCI_ERS_RESULT_RECOVERED;
6991         }
6992
6993         return result;
6994 }
6995
6996 /**
6997  *  igc_io_resume - called when traffic can start to flow again.
6998  *  @pdev: Pointer to PCI device
6999  *
7000  *  This callback is called when the error recovery driver tells us that
7001  *  its OK to resume normal operation. Implementation resembles the
7002  *  second-half of the igc_resume routine.
7003  */
7004 static void igc_io_resume(struct pci_dev *pdev)
7005 {
7006         struct net_device *netdev = pci_get_drvdata(pdev);
7007         struct igc_adapter *adapter = netdev_priv(netdev);
7008
7009         rtnl_lock();
7010         if (netif_running(netdev)) {
7011                 if (igc_open(netdev)) {
7012                         netdev_err(netdev, "igc_open failed after reset\n");
7013                         return;
7014                 }
7015         }
7016
7017         netif_device_attach(netdev);
7018
7019         /* let the f/w know that the h/w is now under the control of the
7020          * driver.
7021          */
7022         igc_get_hw_control(adapter);
7023         rtnl_unlock();
7024 }
7025
7026 static const struct pci_error_handlers igc_err_handler = {
7027         .error_detected = igc_io_error_detected,
7028         .slot_reset = igc_io_slot_reset,
7029         .resume = igc_io_resume,
7030 };
7031
7032 #ifdef CONFIG_PM
7033 static const struct dev_pm_ops igc_pm_ops = {
7034         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7035         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7036                            igc_runtime_idle)
7037 };
7038 #endif
7039
7040 static struct pci_driver igc_driver = {
7041         .name     = igc_driver_name,
7042         .id_table = igc_pci_tbl,
7043         .probe    = igc_probe,
7044         .remove   = igc_remove,
7045 #ifdef CONFIG_PM
7046         .driver.pm = &igc_pm_ops,
7047 #endif
7048         .shutdown = igc_shutdown,
7049         .err_handler = &igc_err_handler,
7050 };
7051
7052 /**
7053  * igc_reinit_queues - return error
7054  * @adapter: pointer to adapter structure
7055  */
7056 int igc_reinit_queues(struct igc_adapter *adapter)
7057 {
7058         struct net_device *netdev = adapter->netdev;
7059         int err = 0;
7060
7061         if (netif_running(netdev))
7062                 igc_close(netdev);
7063
7064         igc_reset_interrupt_capability(adapter);
7065
7066         if (igc_init_interrupt_scheme(adapter, true)) {
7067                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7068                 return -ENOMEM;
7069         }
7070
7071         if (netif_running(netdev))
7072                 err = igc_open(netdev);
7073
7074         return err;
7075 }
7076
7077 /**
7078  * igc_get_hw_dev - return device
7079  * @hw: pointer to hardware structure
7080  *
7081  * used by hardware layer to print debugging information
7082  */
7083 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7084 {
7085         struct igc_adapter *adapter = hw->back;
7086
7087         return adapter->netdev;
7088 }
7089
7090 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7091 {
7092         struct igc_hw *hw = &ring->q_vector->adapter->hw;
7093         u8 idx = ring->reg_idx;
7094         u32 rxdctl;
7095
7096         rxdctl = rd32(IGC_RXDCTL(idx));
7097         rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7098         rxdctl |= IGC_RXDCTL_SWFLUSH;
7099         wr32(IGC_RXDCTL(idx), rxdctl);
7100 }
7101
7102 void igc_disable_rx_ring(struct igc_ring *ring)
7103 {
7104         igc_disable_rx_ring_hw(ring);
7105         igc_clean_rx_ring(ring);
7106 }
7107
7108 void igc_enable_rx_ring(struct igc_ring *ring)
7109 {
7110         struct igc_adapter *adapter = ring->q_vector->adapter;
7111
7112         igc_configure_rx_ring(adapter, ring);
7113
7114         if (ring->xsk_pool)
7115                 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7116         else
7117                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7118 }
7119
7120 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
7121 {
7122         struct igc_hw *hw = &ring->q_vector->adapter->hw;
7123         u8 idx = ring->reg_idx;
7124         u32 txdctl;
7125
7126         txdctl = rd32(IGC_TXDCTL(idx));
7127         txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
7128         txdctl |= IGC_TXDCTL_SWFLUSH;
7129         wr32(IGC_TXDCTL(idx), txdctl);
7130 }
7131
7132 void igc_disable_tx_ring(struct igc_ring *ring)
7133 {
7134         igc_disable_tx_ring_hw(ring);
7135         igc_clean_tx_ring(ring);
7136 }
7137
7138 void igc_enable_tx_ring(struct igc_ring *ring)
7139 {
7140         struct igc_adapter *adapter = ring->q_vector->adapter;
7141
7142         igc_configure_tx_ring(adapter, ring);
7143 }
7144
7145 /**
7146  * igc_init_module - Driver Registration Routine
7147  *
7148  * igc_init_module is the first routine called when the driver is
7149  * loaded. All it does is register with the PCI subsystem.
7150  */
7151 static int __init igc_init_module(void)
7152 {
7153         int ret;
7154
7155         pr_info("%s\n", igc_driver_string);
7156         pr_info("%s\n", igc_copyright);
7157
7158         ret = pci_register_driver(&igc_driver);
7159         return ret;
7160 }
7161
7162 module_init(igc_init_module);
7163
7164 /**
7165  * igc_exit_module - Driver Exit Cleanup Routine
7166  *
7167  * igc_exit_module is called just before the driver is removed
7168  * from memory.
7169  */
7170 static void __exit igc_exit_module(void)
7171 {
7172         pci_unregister_driver(&igc_driver);
7173 }
7174
7175 module_exit(igc_exit_module);
7176 /* igc_main.c */