clk: baikal-t1: Convert to platform device driver
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44         QUEUE_MODE_STRICT_PRIORITY,
45         QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49         TX_QUEUE_PRIO_HIGH,
50         TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57                                 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99         /* required last entry */
100         {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128                             struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147                           netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167                                    bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169                                 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171                                  struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191                         igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198         .notifier_call  = igb_notify_dca,
199         .next           = NULL,
200         .priority       = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210                      pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215         .error_detected = igb_io_error_detected,
216         .slot_reset = igb_io_slot_reset,
217         .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223         .name     = igb_driver_name,
224         .id_table = igb_pci_tbl,
225         .probe    = igb_probe,
226         .remove   = igb_remove,
227 #ifdef CONFIG_PM
228         .driver.pm = &igb_pm_ops,
229 #endif
230         .shutdown = igb_shutdown,
231         .sriov_configure = igb_pci_sriov_configure,
232         .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245         u32 ofs;
246         char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251         /* General Registers */
252         {E1000_CTRL, "CTRL"},
253         {E1000_STATUS, "STATUS"},
254         {E1000_CTRL_EXT, "CTRL_EXT"},
255
256         /* Interrupt Registers */
257         {E1000_ICR, "ICR"},
258
259         /* RX Registers */
260         {E1000_RCTL, "RCTL"},
261         {E1000_RDLEN(0), "RDLEN"},
262         {E1000_RDH(0), "RDH"},
263         {E1000_RDT(0), "RDT"},
264         {E1000_RXDCTL(0), "RXDCTL"},
265         {E1000_RDBAL(0), "RDBAL"},
266         {E1000_RDBAH(0), "RDBAH"},
267
268         /* TX Registers */
269         {E1000_TCTL, "TCTL"},
270         {E1000_TDBAL(0), "TDBAL"},
271         {E1000_TDBAH(0), "TDBAH"},
272         {E1000_TDLEN(0), "TDLEN"},
273         {E1000_TDH(0), "TDH"},
274         {E1000_TDT(0), "TDT"},
275         {E1000_TXDCTL(0), "TXDCTL"},
276         {E1000_TDFH, "TDFH"},
277         {E1000_TDFT, "TDFT"},
278         {E1000_TDFHS, "TDFHS"},
279         {E1000_TDFPC, "TDFPC"},
280
281         /* List Terminator */
282         {}
283 };
284
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288         int n = 0;
289         char rname[16];
290         u32 regs[8];
291
292         switch (reginfo->ofs) {
293         case E1000_RDLEN(0):
294                 for (n = 0; n < 4; n++)
295                         regs[n] = rd32(E1000_RDLEN(n));
296                 break;
297         case E1000_RDH(0):
298                 for (n = 0; n < 4; n++)
299                         regs[n] = rd32(E1000_RDH(n));
300                 break;
301         case E1000_RDT(0):
302                 for (n = 0; n < 4; n++)
303                         regs[n] = rd32(E1000_RDT(n));
304                 break;
305         case E1000_RXDCTL(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RXDCTL(n));
308                 break;
309         case E1000_RDBAL(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDBAL(n));
312                 break;
313         case E1000_RDBAH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDBAH(n));
316                 break;
317         case E1000_TDBAL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_TDBAL(n));
320                 break;
321         case E1000_TDBAH(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_TDBAH(n));
324                 break;
325         case E1000_TDLEN(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_TDLEN(n));
328                 break;
329         case E1000_TDH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_TDH(n));
332                 break;
333         case E1000_TDT(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDT(n));
336                 break;
337         case E1000_TXDCTL(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TXDCTL(n));
340                 break;
341         default:
342                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343                 return;
344         }
345
346         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348                 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354         struct net_device *netdev = adapter->netdev;
355         struct e1000_hw *hw = &adapter->hw;
356         struct igb_reg_info *reginfo;
357         struct igb_ring *tx_ring;
358         union e1000_adv_tx_desc *tx_desc;
359         struct my_u0 { __le64 a; __le64 b; } *u0;
360         struct igb_ring *rx_ring;
361         union e1000_adv_rx_desc *rx_desc;
362         u32 staterr;
363         u16 i, n;
364
365         if (!netif_msg_hw(adapter))
366                 return;
367
368         /* Print netdevice Info */
369         if (netdev) {
370                 dev_info(&adapter->pdev->dev, "Net device Info\n");
371                 pr_info("Device Name     state            trans_start\n");
372                 pr_info("%-15s %016lX %016lX\n", netdev->name,
373                         netdev->state, dev_trans_start(netdev));
374         }
375
376         /* Print Registers */
377         dev_info(&adapter->pdev->dev, "Register Dump\n");
378         pr_info(" Register Name   Value\n");
379         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380              reginfo->name; reginfo++) {
381                 igb_regdump(hw, reginfo);
382         }
383
384         /* Print TX Ring Summary */
385         if (!netdev || !netif_running(netdev))
386                 goto exit;
387
388         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390         for (n = 0; n < adapter->num_tx_queues; n++) {
391                 struct igb_tx_buffer *buffer_info;
392                 tx_ring = adapter->tx_ring[n];
393                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
396                         (u64)dma_unmap_addr(buffer_info, dma),
397                         dma_unmap_len(buffer_info, len),
398                         buffer_info->next_to_watch,
399                         (u64)buffer_info->time_stamp);
400         }
401
402         /* Print TX Rings */
403         if (!netif_msg_tx_done(adapter))
404                 goto rx_ring_summary;
405
406         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408         /* Transmit Descriptor Formats
409          *
410          * Advanced Transmit Descriptor
411          *   +--------------------------------------------------------------+
412          * 0 |         Buffer Address [63:0]                                |
413          *   +--------------------------------------------------------------+
414          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415          *   +--------------------------------------------------------------+
416          *   63      46 45    40 39 38 36 35 32 31   24             15       0
417          */
418
419         for (n = 0; n < adapter->num_tx_queues; n++) {
420                 tx_ring = adapter->tx_ring[n];
421                 pr_info("------------------------------------\n");
422                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423                 pr_info("------------------------------------\n");
424                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425
426                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427                         const char *next_desc;
428                         struct igb_tx_buffer *buffer_info;
429                         tx_desc = IGB_TX_DESC(tx_ring, i);
430                         buffer_info = &tx_ring->tx_buffer_info[i];
431                         u0 = (struct my_u0 *)tx_desc;
432                         if (i == tx_ring->next_to_use &&
433                             i == tx_ring->next_to_clean)
434                                 next_desc = " NTC/U";
435                         else if (i == tx_ring->next_to_use)
436                                 next_desc = " NTU";
437                         else if (i == tx_ring->next_to_clean)
438                                 next_desc = " NTC";
439                         else
440                                 next_desc = "";
441
442                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443                                 i, le64_to_cpu(u0->a),
444                                 le64_to_cpu(u0->b),
445                                 (u64)dma_unmap_addr(buffer_info, dma),
446                                 dma_unmap_len(buffer_info, len),
447                                 buffer_info->next_to_watch,
448                                 (u64)buffer_info->time_stamp,
449                                 buffer_info->skb, next_desc);
450
451                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
452                                 print_hex_dump(KERN_INFO, "",
453                                         DUMP_PREFIX_ADDRESS,
454                                         16, 1, buffer_info->skb->data,
455                                         dma_unmap_len(buffer_info, len),
456                                         true);
457                 }
458         }
459
460         /* Print RX Rings Summary */
461 rx_ring_summary:
462         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463         pr_info("Queue [NTU] [NTC]\n");
464         for (n = 0; n < adapter->num_rx_queues; n++) {
465                 rx_ring = adapter->rx_ring[n];
466                 pr_info(" %5d %5X %5X\n",
467                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
468         }
469
470         /* Print RX Rings */
471         if (!netif_msg_rx_status(adapter))
472                 goto exit;
473
474         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476         /* Advanced Receive Descriptor (Read) Format
477          *    63                                           1        0
478          *    +-----------------------------------------------------+
479          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480          *    +----------------------------------------------+------+
481          *  8 |       Header Buffer Address [63:1]           |  DD  |
482          *    +-----------------------------------------------------+
483          *
484          *
485          * Advanced Receive Descriptor (Write-Back) Format
486          *
487          *   63       48 47    32 31  30      21 20 17 16   4 3     0
488          *   +------------------------------------------------------+
489          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490          *   | Checksum   Ident  |   |           |    | Type | Type |
491          *   +------------------------------------------------------+
492          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493          *   +------------------------------------------------------+
494          *   63       48 47    32 31            20 19               0
495          */
496
497         for (n = 0; n < adapter->num_rx_queues; n++) {
498                 rx_ring = adapter->rx_ring[n];
499                 pr_info("------------------------------------\n");
500                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501                 pr_info("------------------------------------\n");
502                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505                 for (i = 0; i < rx_ring->count; i++) {
506                         const char *next_desc;
507                         struct igb_rx_buffer *buffer_info;
508                         buffer_info = &rx_ring->rx_buffer_info[i];
509                         rx_desc = IGB_RX_DESC(rx_ring, i);
510                         u0 = (struct my_u0 *)rx_desc;
511                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513                         if (i == rx_ring->next_to_use)
514                                 next_desc = " NTU";
515                         else if (i == rx_ring->next_to_clean)
516                                 next_desc = " NTC";
517                         else
518                                 next_desc = "";
519
520                         if (staterr & E1000_RXD_STAT_DD) {
521                                 /* Descriptor Done */
522                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523                                         "RWB", i,
524                                         le64_to_cpu(u0->a),
525                                         le64_to_cpu(u0->b),
526                                         next_desc);
527                         } else {
528                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529                                         "R  ", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         (u64)buffer_info->dma,
533                                         next_desc);
534
535                                 if (netif_msg_pktdata(adapter) &&
536                                     buffer_info->dma && buffer_info->page) {
537                                         print_hex_dump(KERN_INFO, "",
538                                           DUMP_PREFIX_ADDRESS,
539                                           16, 1,
540                                           page_address(buffer_info->page) +
541                                                       buffer_info->page_offset,
542                                           igb_rx_bufsz(rx_ring), true);
543                                 }
544                         }
545                 }
546         }
547
548 exit:
549         return;
550 }
551
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560         struct igb_adapter *adapter = (struct igb_adapter *)data;
561         struct e1000_hw *hw = &adapter->hw;
562         s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564         return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576         struct igb_adapter *adapter = (struct igb_adapter *)data;
577         struct e1000_hw *hw = &adapter->hw;
578         s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580         if (state) {
581                 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582         } else {
583                 i2cctl &= ~E1000_I2C_DATA_OE_N;
584                 i2cctl &= ~E1000_I2C_DATA_OUT;
585         }
586
587         wr32(E1000_I2CPARAMS, i2cctl);
588         wrfl();
589 }
590
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600         struct igb_adapter *adapter = (struct igb_adapter *)data;
601         struct e1000_hw *hw = &adapter->hw;
602         s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604         if (state) {
605                 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606         } else {
607                 i2cctl &= ~E1000_I2C_CLK_OUT;
608                 i2cctl &= ~E1000_I2C_CLK_OE_N;
609         }
610         wr32(E1000_I2CPARAMS, i2cctl);
611         wrfl();
612 }
613
614 /**
615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
616  *  @data: pointer to hardware structure
617  *
618  *  Gets the I2C clock state
619  **/
620 static int igb_get_i2c_clk(void *data)
621 {
622         struct igb_adapter *adapter = (struct igb_adapter *)data;
623         struct e1000_hw *hw = &adapter->hw;
624         s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626         return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630         .setsda         = igb_set_i2c_data,
631         .setscl         = igb_set_i2c_clk,
632         .getsda         = igb_get_i2c_data,
633         .getscl         = igb_get_i2c_clk,
634         .udelay         = 5,
635         .timeout        = 20,
636 };
637
638 /**
639  *  igb_get_hw_dev - return device
640  *  @hw: pointer to hardware structure
641  *
642  *  used by hardware layer to print debugging information
643  **/
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646         struct igb_adapter *adapter = hw->back;
647         return adapter->netdev;
648 }
649
650 /**
651  *  igb_init_module - Driver Registration Routine
652  *
653  *  igb_init_module is the first routine called when the driver is
654  *  loaded. All it does is register with the PCI subsystem.
655  **/
656 static int __init igb_init_module(void)
657 {
658         int ret;
659
660         pr_info("%s\n", igb_driver_string);
661         pr_info("%s\n", igb_copyright);
662
663 #ifdef CONFIG_IGB_DCA
664         dca_register_notify(&dca_notifier);
665 #endif
666         ret = pci_register_driver(&igb_driver);
667         return ret;
668 }
669
670 module_init(igb_init_module);
671
672 /**
673  *  igb_exit_module - Driver Exit Cleanup Routine
674  *
675  *  igb_exit_module is called just before the driver is removed
676  *  from memory.
677  **/
678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681         dca_unregister_notify(&dca_notifier);
682 #endif
683         pci_unregister_driver(&igb_driver);
684 }
685
686 module_exit(igb_exit_module);
687
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690  *  igb_cache_ring_register - Descriptor ring to register mapping
691  *  @adapter: board private structure to initialize
692  *
693  *  Once we know the feature-set enabled for the device, we'll cache
694  *  the register offset the descriptor ring is assigned to.
695  **/
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698         int i = 0, j = 0;
699         u32 rbase_offset = adapter->vfs_allocated_count;
700
701         switch (adapter->hw.mac.type) {
702         case e1000_82576:
703                 /* The queues are allocated for virtualization such that VF 0
704                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705                  * In order to avoid collision we start at the first free queue
706                  * and continue consuming queues in the same sequence
707                  */
708                 if (adapter->vfs_allocated_count) {
709                         for (; i < adapter->rss_queues; i++)
710                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
711                                                                Q_IDX_82576(i);
712                 }
713                 fallthrough;
714         case e1000_82575:
715         case e1000_82580:
716         case e1000_i350:
717         case e1000_i354:
718         case e1000_i210:
719         case e1000_i211:
720         default:
721                 for (; i < adapter->num_rx_queues; i++)
722                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723                 for (; j < adapter->num_tx_queues; j++)
724                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725                 break;
726         }
727 }
728
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733         u32 value = 0;
734
735         if (E1000_REMOVED(hw_addr))
736                 return ~value;
737
738         value = readl(&hw_addr[reg]);
739
740         /* reads should not return all F's */
741         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742                 struct net_device *netdev = igb->netdev;
743                 hw->hw_addr = NULL;
744                 netdev_err(netdev, "PCIe link lost\n");
745                 WARN(pci_device_is_present(igb->pdev),
746                      "igb: Failed to read reg 0x%x!\n", reg);
747         }
748
749         return value;
750 }
751
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765                            int index, int offset)
766 {
767         u32 ivar = array_rd32(E1000_IVAR0, index);
768
769         /* clear any bits that are currently set */
770         ivar &= ~((u32)0xFF << offset);
771
772         /* write vector and valid bit */
773         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775         array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781         struct igb_adapter *adapter = q_vector->adapter;
782         struct e1000_hw *hw = &adapter->hw;
783         int rx_queue = IGB_N0_QUEUE;
784         int tx_queue = IGB_N0_QUEUE;
785         u32 msixbm = 0;
786
787         if (q_vector->rx.ring)
788                 rx_queue = q_vector->rx.ring->reg_idx;
789         if (q_vector->tx.ring)
790                 tx_queue = q_vector->tx.ring->reg_idx;
791
792         switch (hw->mac.type) {
793         case e1000_82575:
794                 /* The 82575 assigns vectors using a bitmask, which matches the
795                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796                  * or more queues to a vector, we write the appropriate bits
797                  * into the MSIXBM register for that vector.
798                  */
799                 if (rx_queue > IGB_N0_QUEUE)
800                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801                 if (tx_queue > IGB_N0_QUEUE)
802                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804                         msixbm |= E1000_EIMS_OTHER;
805                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806                 q_vector->eims_value = msixbm;
807                 break;
808         case e1000_82576:
809                 /* 82576 uses a table that essentially consists of 2 columns
810                  * with 8 rows.  The ordering is column-major so we use the
811                  * lower 3 bits as the row index, and the 4th bit as the
812                  * column offset.
813                  */
814                 if (rx_queue > IGB_N0_QUEUE)
815                         igb_write_ivar(hw, msix_vector,
816                                        rx_queue & 0x7,
817                                        (rx_queue & 0x8) << 1);
818                 if (tx_queue > IGB_N0_QUEUE)
819                         igb_write_ivar(hw, msix_vector,
820                                        tx_queue & 0x7,
821                                        ((tx_queue & 0x8) << 1) + 8);
822                 q_vector->eims_value = BIT(msix_vector);
823                 break;
824         case e1000_82580:
825         case e1000_i350:
826         case e1000_i354:
827         case e1000_i210:
828         case e1000_i211:
829                 /* On 82580 and newer adapters the scheme is similar to 82576
830                  * however instead of ordering column-major we have things
831                  * ordered row-major.  So we traverse the table by using
832                  * bit 0 as the column offset, and the remaining bits as the
833                  * row index.
834                  */
835                 if (rx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        rx_queue >> 1,
838                                        (rx_queue & 0x1) << 4);
839                 if (tx_queue > IGB_N0_QUEUE)
840                         igb_write_ivar(hw, msix_vector,
841                                        tx_queue >> 1,
842                                        ((tx_queue & 0x1) << 4) + 8);
843                 q_vector->eims_value = BIT(msix_vector);
844                 break;
845         default:
846                 BUG();
847                 break;
848         }
849
850         /* add q_vector eims value to global eims_enable_mask */
851         adapter->eims_enable_mask |= q_vector->eims_value;
852
853         /* configure q_vector to set itr on first interrupt */
854         q_vector->set_itr = 1;
855 }
856
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866         u32 tmp;
867         int i, vector = 0;
868         struct e1000_hw *hw = &adapter->hw;
869
870         adapter->eims_enable_mask = 0;
871
872         /* set vector for other causes, i.e. link changes */
873         switch (hw->mac.type) {
874         case e1000_82575:
875                 tmp = rd32(E1000_CTRL_EXT);
876                 /* enable MSI-X PBA support*/
877                 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879                 /* Auto-Mask interrupts upon ICR read. */
880                 tmp |= E1000_CTRL_EXT_EIAME;
881                 tmp |= E1000_CTRL_EXT_IRCA;
882
883                 wr32(E1000_CTRL_EXT, tmp);
884
885                 /* enable msix_other interrupt */
886                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887                 adapter->eims_other = E1000_EIMS_OTHER;
888
889                 break;
890
891         case e1000_82576:
892         case e1000_82580:
893         case e1000_i350:
894         case e1000_i354:
895         case e1000_i210:
896         case e1000_i211:
897                 /* Turn on MSI-X capability first, or our settings
898                  * won't stick.  And it will take days to debug.
899                  */
900                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
902                      E1000_GPIE_NSICR);
903
904                 /* enable msix_other interrupt */
905                 adapter->eims_other = BIT(vector);
906                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908                 wr32(E1000_IVAR_MISC, tmp);
909                 break;
910         default:
911                 /* do nothing, since nothing else supports MSI-X */
912                 break;
913         } /* switch (hw->mac.type) */
914
915         adapter->eims_enable_mask |= adapter->eims_other;
916
917         for (i = 0; i < adapter->num_q_vectors; i++)
918                 igb_assign_vector(adapter->q_vector[i], vector++);
919
920         wrfl();
921 }
922
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932         unsigned int num_q_vectors = adapter->num_q_vectors;
933         struct net_device *netdev = adapter->netdev;
934         int i, err = 0, vector = 0, free_vector = 0;
935
936         err = request_irq(adapter->msix_entries[vector].vector,
937                           igb_msix_other, 0, netdev->name, adapter);
938         if (err)
939                 goto err_out;
940
941         if (num_q_vectors > MAX_Q_VECTORS) {
942                 num_q_vectors = MAX_Q_VECTORS;
943                 dev_warn(&adapter->pdev->dev,
944                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945                          adapter->num_q_vectors, MAX_Q_VECTORS);
946         }
947         for (i = 0; i < num_q_vectors; i++) {
948                 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950                 vector++;
951
952                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953
954                 if (q_vector->rx.ring && q_vector->tx.ring)
955                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956                                 q_vector->rx.ring->queue_index);
957                 else if (q_vector->tx.ring)
958                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959                                 q_vector->tx.ring->queue_index);
960                 else if (q_vector->rx.ring)
961                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962                                 q_vector->rx.ring->queue_index);
963                 else
964                         sprintf(q_vector->name, "%s-unused", netdev->name);
965
966                 err = request_irq(adapter->msix_entries[vector].vector,
967                                   igb_msix_ring, 0, q_vector->name,
968                                   q_vector);
969                 if (err)
970                         goto err_free;
971         }
972
973         igb_configure_msix(adapter);
974         return 0;
975
976 err_free:
977         /* free already assigned IRQs */
978         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979
980         vector--;
981         for (i = 0; i < vector; i++) {
982                 free_irq(adapter->msix_entries[free_vector++].vector,
983                          adapter->q_vector[i]);
984         }
985 err_out:
986         return err;
987 }
988
989 /**
990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
991  *  @adapter: board private structure to initialize
992  *  @v_idx: Index of vector to be freed
993  *
994  *  This function frees the memory allocated to the q_vector.
995  **/
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000         adapter->q_vector[v_idx] = NULL;
1001
1002         /* igb_get_stats64() might access the rings on this vector,
1003          * we must wait a grace period before freeing it.
1004          */
1005         if (q_vector)
1006                 kfree_rcu(q_vector, rcu);
1007 }
1008
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020
1021         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022          * allocated. So, q_vector is NULL so we should stop here.
1023          */
1024         if (!q_vector)
1025                 return;
1026
1027         if (q_vector->tx.ring)
1028                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029
1030         if (q_vector->rx.ring)
1031                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032
1033         netif_napi_del(&q_vector->napi);
1034
1035 }
1036
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039         int v_idx = adapter->num_q_vectors;
1040
1041         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042                 pci_disable_msix(adapter->pdev);
1043         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044                 pci_disable_msi(adapter->pdev);
1045
1046         while (v_idx--)
1047                 igb_reset_q_vector(adapter, v_idx);
1048 }
1049
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060         int v_idx = adapter->num_q_vectors;
1061
1062         adapter->num_tx_queues = 0;
1063         adapter->num_rx_queues = 0;
1064         adapter->num_q_vectors = 0;
1065
1066         while (v_idx--) {
1067                 igb_reset_q_vector(adapter, v_idx);
1068                 igb_free_q_vector(adapter, v_idx);
1069         }
1070 }
1071
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081         igb_free_q_vectors(adapter);
1082         igb_reset_interrupt_capability(adapter);
1083 }
1084
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095         int err;
1096         int numvecs, i;
1097
1098         if (!msix)
1099                 goto msi_only;
1100         adapter->flags |= IGB_FLAG_HAS_MSIX;
1101
1102         /* Number of supported queues. */
1103         adapter->num_rx_queues = adapter->rss_queues;
1104         if (adapter->vfs_allocated_count)
1105                 adapter->num_tx_queues = 1;
1106         else
1107                 adapter->num_tx_queues = adapter->rss_queues;
1108
1109         /* start with one vector for every Rx queue */
1110         numvecs = adapter->num_rx_queues;
1111
1112         /* if Tx handler is separate add 1 for every Tx queue */
1113         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114                 numvecs += adapter->num_tx_queues;
1115
1116         /* store the number of vectors reserved for queues */
1117         adapter->num_q_vectors = numvecs;
1118
1119         /* add 1 vector for link status interrupts */
1120         numvecs++;
1121         for (i = 0; i < numvecs; i++)
1122                 adapter->msix_entries[i].entry = i;
1123
1124         err = pci_enable_msix_range(adapter->pdev,
1125                                     adapter->msix_entries,
1126                                     numvecs,
1127                                     numvecs);
1128         if (err > 0)
1129                 return;
1130
1131         igb_reset_interrupt_capability(adapter);
1132
1133         /* If we can't do MSI-X, try MSI */
1134 msi_only:
1135         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137         /* disable SR-IOV for non MSI-X configurations */
1138         if (adapter->vf_data) {
1139                 struct e1000_hw *hw = &adapter->hw;
1140                 /* disable iov and allow time for transactions to clear */
1141                 pci_disable_sriov(adapter->pdev);
1142                 msleep(500);
1143
1144                 kfree(adapter->vf_mac_list);
1145                 adapter->vf_mac_list = NULL;
1146                 kfree(adapter->vf_data);
1147                 adapter->vf_data = NULL;
1148                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149                 wrfl();
1150                 msleep(100);
1151                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152         }
1153 #endif
1154         adapter->vfs_allocated_count = 0;
1155         adapter->rss_queues = 1;
1156         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157         adapter->num_rx_queues = 1;
1158         adapter->num_tx_queues = 1;
1159         adapter->num_q_vectors = 1;
1160         if (!pci_enable_msi(adapter->pdev))
1161                 adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163
1164 static void igb_add_ring(struct igb_ring *ring,
1165                          struct igb_ring_container *head)
1166 {
1167         head->ring = ring;
1168         head->count++;
1169 }
1170
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184                               int v_count, int v_idx,
1185                               int txr_count, int txr_idx,
1186                               int rxr_count, int rxr_idx)
1187 {
1188         struct igb_q_vector *q_vector;
1189         struct igb_ring *ring;
1190         int ring_count;
1191         size_t size;
1192
1193         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194         if (txr_count > 1 || rxr_count > 1)
1195                 return -ENOMEM;
1196
1197         ring_count = txr_count + rxr_count;
1198         size = struct_size(q_vector, ring, ring_count);
1199
1200         /* allocate q_vector and rings */
1201         q_vector = adapter->q_vector[v_idx];
1202         if (!q_vector) {
1203                 q_vector = kzalloc(size, GFP_KERNEL);
1204         } else if (size > ksize(q_vector)) {
1205                 kfree_rcu(q_vector, rcu);
1206                 q_vector = kzalloc(size, GFP_KERNEL);
1207         } else {
1208                 memset(q_vector, 0, size);
1209         }
1210         if (!q_vector)
1211                 return -ENOMEM;
1212
1213         /* initialize NAPI */
1214         netif_napi_add(adapter->netdev, &q_vector->napi,
1215                        igb_poll, 64);
1216
1217         /* tie q_vector and adapter together */
1218         adapter->q_vector[v_idx] = q_vector;
1219         q_vector->adapter = adapter;
1220
1221         /* initialize work limits */
1222         q_vector->tx.work_limit = adapter->tx_work_limit;
1223
1224         /* initialize ITR configuration */
1225         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1226         q_vector->itr_val = IGB_START_ITR;
1227
1228         /* initialize pointer to rings */
1229         ring = q_vector->ring;
1230
1231         /* intialize ITR */
1232         if (rxr_count) {
1233                 /* rx or rx/tx vector */
1234                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1235                         q_vector->itr_val = adapter->rx_itr_setting;
1236         } else {
1237                 /* tx only vector */
1238                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1239                         q_vector->itr_val = adapter->tx_itr_setting;
1240         }
1241
1242         if (txr_count) {
1243                 /* assign generic ring traits */
1244                 ring->dev = &adapter->pdev->dev;
1245                 ring->netdev = adapter->netdev;
1246
1247                 /* configure backlink on ring */
1248                 ring->q_vector = q_vector;
1249
1250                 /* update q_vector Tx values */
1251                 igb_add_ring(ring, &q_vector->tx);
1252
1253                 /* For 82575, context index must be unique per ring. */
1254                 if (adapter->hw.mac.type == e1000_82575)
1255                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1256
1257                 /* apply Tx specific ring traits */
1258                 ring->count = adapter->tx_ring_count;
1259                 ring->queue_index = txr_idx;
1260
1261                 ring->cbs_enable = false;
1262                 ring->idleslope = 0;
1263                 ring->sendslope = 0;
1264                 ring->hicredit = 0;
1265                 ring->locredit = 0;
1266
1267                 u64_stats_init(&ring->tx_syncp);
1268                 u64_stats_init(&ring->tx_syncp2);
1269
1270                 /* assign ring to adapter */
1271                 adapter->tx_ring[txr_idx] = ring;
1272
1273                 /* push pointer to next ring */
1274                 ring++;
1275         }
1276
1277         if (rxr_count) {
1278                 /* assign generic ring traits */
1279                 ring->dev = &adapter->pdev->dev;
1280                 ring->netdev = adapter->netdev;
1281
1282                 /* configure backlink on ring */
1283                 ring->q_vector = q_vector;
1284
1285                 /* update q_vector Rx values */
1286                 igb_add_ring(ring, &q_vector->rx);
1287
1288                 /* set flag indicating ring supports SCTP checksum offload */
1289                 if (adapter->hw.mac.type >= e1000_82576)
1290                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1291
1292                 /* On i350, i354, i210, and i211, loopback VLAN packets
1293                  * have the tag byte-swapped.
1294                  */
1295                 if (adapter->hw.mac.type >= e1000_i350)
1296                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1297
1298                 /* apply Rx specific ring traits */
1299                 ring->count = adapter->rx_ring_count;
1300                 ring->queue_index = rxr_idx;
1301
1302                 u64_stats_init(&ring->rx_syncp);
1303
1304                 /* assign ring to adapter */
1305                 adapter->rx_ring[rxr_idx] = ring;
1306         }
1307
1308         return 0;
1309 }
1310
1311
1312 /**
1313  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1314  *  @adapter: board private structure to initialize
1315  *
1316  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1317  *  return -ENOMEM.
1318  **/
1319 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1320 {
1321         int q_vectors = adapter->num_q_vectors;
1322         int rxr_remaining = adapter->num_rx_queues;
1323         int txr_remaining = adapter->num_tx_queues;
1324         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1325         int err;
1326
1327         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1328                 for (; rxr_remaining; v_idx++) {
1329                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1330                                                  0, 0, 1, rxr_idx);
1331
1332                         if (err)
1333                                 goto err_out;
1334
1335                         /* update counts and index */
1336                         rxr_remaining--;
1337                         rxr_idx++;
1338                 }
1339         }
1340
1341         for (; v_idx < q_vectors; v_idx++) {
1342                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1343                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1344
1345                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1346                                          tqpv, txr_idx, rqpv, rxr_idx);
1347
1348                 if (err)
1349                         goto err_out;
1350
1351                 /* update counts and index */
1352                 rxr_remaining -= rqpv;
1353                 txr_remaining -= tqpv;
1354                 rxr_idx++;
1355                 txr_idx++;
1356         }
1357
1358         return 0;
1359
1360 err_out:
1361         adapter->num_tx_queues = 0;
1362         adapter->num_rx_queues = 0;
1363         adapter->num_q_vectors = 0;
1364
1365         while (v_idx--)
1366                 igb_free_q_vector(adapter, v_idx);
1367
1368         return -ENOMEM;
1369 }
1370
1371 /**
1372  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1373  *  @adapter: board private structure to initialize
1374  *  @msix: boolean value of MSIX capability
1375  *
1376  *  This function initializes the interrupts and allocates all of the queues.
1377  **/
1378 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1379 {
1380         struct pci_dev *pdev = adapter->pdev;
1381         int err;
1382
1383         igb_set_interrupt_capability(adapter, msix);
1384
1385         err = igb_alloc_q_vectors(adapter);
1386         if (err) {
1387                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1388                 goto err_alloc_q_vectors;
1389         }
1390
1391         igb_cache_ring_register(adapter);
1392
1393         return 0;
1394
1395 err_alloc_q_vectors:
1396         igb_reset_interrupt_capability(adapter);
1397         return err;
1398 }
1399
1400 /**
1401  *  igb_request_irq - initialize interrupts
1402  *  @adapter: board private structure to initialize
1403  *
1404  *  Attempts to configure interrupts using the best available
1405  *  capabilities of the hardware and kernel.
1406  **/
1407 static int igb_request_irq(struct igb_adapter *adapter)
1408 {
1409         struct net_device *netdev = adapter->netdev;
1410         struct pci_dev *pdev = adapter->pdev;
1411         int err = 0;
1412
1413         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414                 err = igb_request_msix(adapter);
1415                 if (!err)
1416                         goto request_done;
1417                 /* fall back to MSI */
1418                 igb_free_all_tx_resources(adapter);
1419                 igb_free_all_rx_resources(adapter);
1420
1421                 igb_clear_interrupt_scheme(adapter);
1422                 err = igb_init_interrupt_scheme(adapter, false);
1423                 if (err)
1424                         goto request_done;
1425
1426                 igb_setup_all_tx_resources(adapter);
1427                 igb_setup_all_rx_resources(adapter);
1428                 igb_configure(adapter);
1429         }
1430
1431         igb_assign_vector(adapter->q_vector[0], 0);
1432
1433         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1434                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1435                                   netdev->name, adapter);
1436                 if (!err)
1437                         goto request_done;
1438
1439                 /* fall back to legacy interrupts */
1440                 igb_reset_interrupt_capability(adapter);
1441                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1442         }
1443
1444         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1445                           netdev->name, adapter);
1446
1447         if (err)
1448                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1449                         err);
1450
1451 request_done:
1452         return err;
1453 }
1454
1455 static void igb_free_irq(struct igb_adapter *adapter)
1456 {
1457         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1458                 int vector = 0, i;
1459
1460                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1461
1462                 for (i = 0; i < adapter->num_q_vectors; i++)
1463                         free_irq(adapter->msix_entries[vector++].vector,
1464                                  adapter->q_vector[i]);
1465         } else {
1466                 free_irq(adapter->pdev->irq, adapter);
1467         }
1468 }
1469
1470 /**
1471  *  igb_irq_disable - Mask off interrupt generation on the NIC
1472  *  @adapter: board private structure
1473  **/
1474 static void igb_irq_disable(struct igb_adapter *adapter)
1475 {
1476         struct e1000_hw *hw = &adapter->hw;
1477
1478         /* we need to be careful when disabling interrupts.  The VFs are also
1479          * mapped into these registers and so clearing the bits can cause
1480          * issues on the VF drivers so we only need to clear what we set
1481          */
1482         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483                 u32 regval = rd32(E1000_EIAM);
1484
1485                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1486                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1487                 regval = rd32(E1000_EIAC);
1488                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1489         }
1490
1491         wr32(E1000_IAM, 0);
1492         wr32(E1000_IMC, ~0);
1493         wrfl();
1494         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495                 int i;
1496
1497                 for (i = 0; i < adapter->num_q_vectors; i++)
1498                         synchronize_irq(adapter->msix_entries[i].vector);
1499         } else {
1500                 synchronize_irq(adapter->pdev->irq);
1501         }
1502 }
1503
1504 /**
1505  *  igb_irq_enable - Enable default interrupt generation settings
1506  *  @adapter: board private structure
1507  **/
1508 static void igb_irq_enable(struct igb_adapter *adapter)
1509 {
1510         struct e1000_hw *hw = &adapter->hw;
1511
1512         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1513                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1514                 u32 regval = rd32(E1000_EIAC);
1515
1516                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517                 regval = rd32(E1000_EIAM);
1518                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1520                 if (adapter->vfs_allocated_count) {
1521                         wr32(E1000_MBVFIMR, 0xFF);
1522                         ims |= E1000_IMS_VMMB;
1523                 }
1524                 wr32(E1000_IMS, ims);
1525         } else {
1526                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1527                                 E1000_IMS_DRSTA);
1528                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530         }
1531 }
1532
1533 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534 {
1535         struct e1000_hw *hw = &adapter->hw;
1536         u16 pf_id = adapter->vfs_allocated_count;
1537         u16 vid = adapter->hw.mng_cookie.vlan_id;
1538         u16 old_vid = adapter->mng_vlan_id;
1539
1540         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1541                 /* add VID to filter table */
1542                 igb_vfta_set(hw, vid, pf_id, true, true);
1543                 adapter->mng_vlan_id = vid;
1544         } else {
1545                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1546         }
1547
1548         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1549             (vid != old_vid) &&
1550             !test_bit(old_vid, adapter->active_vlans)) {
1551                 /* remove VID from filter table */
1552                 igb_vfta_set(hw, vid, pf_id, false, true);
1553         }
1554 }
1555
1556 /**
1557  *  igb_release_hw_control - release control of the h/w to f/w
1558  *  @adapter: address of board private structure
1559  *
1560  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1561  *  For ASF and Pass Through versions of f/w this means that the
1562  *  driver is no longer loaded.
1563  **/
1564 static void igb_release_hw_control(struct igb_adapter *adapter)
1565 {
1566         struct e1000_hw *hw = &adapter->hw;
1567         u32 ctrl_ext;
1568
1569         /* Let firmware take over control of h/w */
1570         ctrl_ext = rd32(E1000_CTRL_EXT);
1571         wr32(E1000_CTRL_EXT,
1572                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1573 }
1574
1575 /**
1576  *  igb_get_hw_control - get control of the h/w from f/w
1577  *  @adapter: address of board private structure
1578  *
1579  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1580  *  For ASF and Pass Through versions of f/w this means that
1581  *  the driver is loaded.
1582  **/
1583 static void igb_get_hw_control(struct igb_adapter *adapter)
1584 {
1585         struct e1000_hw *hw = &adapter->hw;
1586         u32 ctrl_ext;
1587
1588         /* Let firmware know the driver has taken over */
1589         ctrl_ext = rd32(E1000_CTRL_EXT);
1590         wr32(E1000_CTRL_EXT,
1591                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1592 }
1593
1594 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1595 {
1596         struct net_device *netdev = adapter->netdev;
1597         struct e1000_hw *hw = &adapter->hw;
1598
1599         WARN_ON(hw->mac.type != e1000_i210);
1600
1601         if (enable)
1602                 adapter->flags |= IGB_FLAG_FQTSS;
1603         else
1604                 adapter->flags &= ~IGB_FLAG_FQTSS;
1605
1606         if (netif_running(netdev))
1607                 schedule_work(&adapter->reset_task);
1608 }
1609
1610 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1611 {
1612         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1613 }
1614
1615 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1616                                    enum tx_queue_prio prio)
1617 {
1618         u32 val;
1619
1620         WARN_ON(hw->mac.type != e1000_i210);
1621         WARN_ON(queue < 0 || queue > 4);
1622
1623         val = rd32(E1000_I210_TXDCTL(queue));
1624
1625         if (prio == TX_QUEUE_PRIO_HIGH)
1626                 val |= E1000_TXDCTL_PRIORITY;
1627         else
1628                 val &= ~E1000_TXDCTL_PRIORITY;
1629
1630         wr32(E1000_I210_TXDCTL(queue), val);
1631 }
1632
1633 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1634 {
1635         u32 val;
1636
1637         WARN_ON(hw->mac.type != e1000_i210);
1638         WARN_ON(queue < 0 || queue > 1);
1639
1640         val = rd32(E1000_I210_TQAVCC(queue));
1641
1642         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1643                 val |= E1000_TQAVCC_QUEUEMODE;
1644         else
1645                 val &= ~E1000_TQAVCC_QUEUEMODE;
1646
1647         wr32(E1000_I210_TQAVCC(queue), val);
1648 }
1649
1650 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1651 {
1652         int i;
1653
1654         for (i = 0; i < adapter->num_tx_queues; i++) {
1655                 if (adapter->tx_ring[i]->cbs_enable)
1656                         return true;
1657         }
1658
1659         return false;
1660 }
1661
1662 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1663 {
1664         int i;
1665
1666         for (i = 0; i < adapter->num_tx_queues; i++) {
1667                 if (adapter->tx_ring[i]->launchtime_enable)
1668                         return true;
1669         }
1670
1671         return false;
1672 }
1673
1674 /**
1675  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1676  *  @adapter: pointer to adapter struct
1677  *  @queue: queue number
1678  *
1679  *  Configure CBS and Launchtime for a given hardware queue.
1680  *  Parameters are retrieved from the correct Tx ring, so
1681  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1682  *  for setting those correctly prior to this function being called.
1683  **/
1684 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1685 {
1686         struct net_device *netdev = adapter->netdev;
1687         struct e1000_hw *hw = &adapter->hw;
1688         struct igb_ring *ring;
1689         u32 tqavcc, tqavctrl;
1690         u16 value;
1691
1692         WARN_ON(hw->mac.type != e1000_i210);
1693         WARN_ON(queue < 0 || queue > 1);
1694         ring = adapter->tx_ring[queue];
1695
1696         /* If any of the Qav features is enabled, configure queues as SR and
1697          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1698          * as SP.
1699          */
1700         if (ring->cbs_enable || ring->launchtime_enable) {
1701                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1702                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1703         } else {
1704                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1705                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1706         }
1707
1708         /* If CBS is enabled, set DataTranARB and config its parameters. */
1709         if (ring->cbs_enable || queue == 0) {
1710                 /* i210 does not allow the queue 0 to be in the Strict
1711                  * Priority mode while the Qav mode is enabled, so,
1712                  * instead of disabling strict priority mode, we give
1713                  * queue 0 the maximum of credits possible.
1714                  *
1715                  * See section 8.12.19 of the i210 datasheet, "Note:
1716                  * Queue0 QueueMode must be set to 1b when
1717                  * TransmitMode is set to Qav."
1718                  */
1719                 if (queue == 0 && !ring->cbs_enable) {
1720                         /* max "linkspeed" idleslope in kbps */
1721                         ring->idleslope = 1000000;
1722                         ring->hicredit = ETH_FRAME_LEN;
1723                 }
1724
1725                 /* Always set data transfer arbitration to credit-based
1726                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1727                  * the queues.
1728                  */
1729                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1730                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1731                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1732
1733                 /* According to i210 datasheet section 7.2.7.7, we should set
1734                  * the 'idleSlope' field from TQAVCC register following the
1735                  * equation:
1736                  *
1737                  * For 100 Mbps link speed:
1738                  *
1739                  *     value = BW * 0x7735 * 0.2                          (E1)
1740                  *
1741                  * For 1000Mbps link speed:
1742                  *
1743                  *     value = BW * 0x7735 * 2                            (E2)
1744                  *
1745                  * E1 and E2 can be merged into one equation as shown below.
1746                  * Note that 'link-speed' is in Mbps.
1747                  *
1748                  *     value = BW * 0x7735 * 2 * link-speed
1749                  *                           --------------               (E3)
1750                  *                                1000
1751                  *
1752                  * 'BW' is the percentage bandwidth out of full link speed
1753                  * which can be found with the following equation. Note that
1754                  * idleSlope here is the parameter from this function which
1755                  * is in kbps.
1756                  *
1757                  *     BW =     idleSlope
1758                  *          -----------------                             (E4)
1759                  *          link-speed * 1000
1760                  *
1761                  * That said, we can come up with a generic equation to
1762                  * calculate the value we should set it TQAVCC register by
1763                  * replacing 'BW' in E3 by E4. The resulting equation is:
1764                  *
1765                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1766                  *         -----------------            --------------    (E5)
1767                  *         link-speed * 1000                 1000
1768                  *
1769                  * 'link-speed' is present in both sides of the fraction so
1770                  * it is canceled out. The final equation is the following:
1771                  *
1772                  *     value = idleSlope * 61034
1773                  *             -----------------                          (E6)
1774                  *                  1000000
1775                  *
1776                  * NOTE: For i210, given the above, we can see that idleslope
1777                  *       is represented in 16.38431 kbps units by the value at
1778                  *       the TQAVCC register (1Gbps / 61034), which reduces
1779                  *       the granularity for idleslope increments.
1780                  *       For instance, if you want to configure a 2576kbps
1781                  *       idleslope, the value to be written on the register
1782                  *       would have to be 157.23. If rounded down, you end
1783                  *       up with less bandwidth available than originally
1784                  *       required (~2572 kbps). If rounded up, you end up
1785                  *       with a higher bandwidth (~2589 kbps). Below the
1786                  *       approach we take is to always round up the
1787                  *       calculated value, so the resulting bandwidth might
1788                  *       be slightly higher for some configurations.
1789                  */
1790                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1791
1792                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794                 tqavcc |= value;
1795                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1796
1797                 wr32(E1000_I210_TQAVHC(queue),
1798                      0x80000000 + ring->hicredit * 0x7735);
1799         } else {
1800
1801                 /* Set idleSlope to zero. */
1802                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1803                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1804                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1805
1806                 /* Set hiCredit to zero. */
1807                 wr32(E1000_I210_TQAVHC(queue), 0);
1808
1809                 /* If CBS is not enabled for any queues anymore, then return to
1810                  * the default state of Data Transmission Arbitration on
1811                  * TQAVCTRL.
1812                  */
1813                 if (!is_any_cbs_enabled(adapter)) {
1814                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1815                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1816                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1817                 }
1818         }
1819
1820         /* If LaunchTime is enabled, set DataTranTIM. */
1821         if (ring->launchtime_enable) {
1822                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1823                  * for any of the SR queues, and configure fetchtime delta.
1824                  * XXX NOTE:
1825                  *     - LaunchTime will be enabled for all SR queues.
1826                  *     - A fixed offset can be added relative to the launch
1827                  *       time of all packets if configured at reg LAUNCH_OS0.
1828                  *       We are keeping it as 0 for now (default value).
1829                  */
1830                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1831                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1832                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1833                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1834         } else {
1835                 /* If Launchtime is not enabled for any SR queues anymore,
1836                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1837                  * effectively disabling Launchtime.
1838                  */
1839                 if (!is_any_txtime_enabled(adapter)) {
1840                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1841                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1842                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1843                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1844                 }
1845         }
1846
1847         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1848          * CBS are not configurable by software so we don't do any 'controller
1849          * configuration' in respect to these parameters.
1850          */
1851
1852         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1853                    ring->cbs_enable ? "enabled" : "disabled",
1854                    ring->launchtime_enable ? "enabled" : "disabled",
1855                    queue,
1856                    ring->idleslope, ring->sendslope,
1857                    ring->hicredit, ring->locredit);
1858 }
1859
1860 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1861                                   bool enable)
1862 {
1863         struct igb_ring *ring;
1864
1865         if (queue < 0 || queue > adapter->num_tx_queues)
1866                 return -EINVAL;
1867
1868         ring = adapter->tx_ring[queue];
1869         ring->launchtime_enable = enable;
1870
1871         return 0;
1872 }
1873
1874 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1875                                bool enable, int idleslope, int sendslope,
1876                                int hicredit, int locredit)
1877 {
1878         struct igb_ring *ring;
1879
1880         if (queue < 0 || queue > adapter->num_tx_queues)
1881                 return -EINVAL;
1882
1883         ring = adapter->tx_ring[queue];
1884
1885         ring->cbs_enable = enable;
1886         ring->idleslope = idleslope;
1887         ring->sendslope = sendslope;
1888         ring->hicredit = hicredit;
1889         ring->locredit = locredit;
1890
1891         return 0;
1892 }
1893
1894 /**
1895  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1896  *  @adapter: pointer to adapter struct
1897  *
1898  *  Configure TQAVCTRL register switching the controller's Tx mode
1899  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1900  *  a call to igb_config_tx_modes() per queue so any previously saved
1901  *  Tx parameters are applied.
1902  **/
1903 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1904 {
1905         struct net_device *netdev = adapter->netdev;
1906         struct e1000_hw *hw = &adapter->hw;
1907         u32 val;
1908
1909         /* Only i210 controller supports changing the transmission mode. */
1910         if (hw->mac.type != e1000_i210)
1911                 return;
1912
1913         if (is_fqtss_enabled(adapter)) {
1914                 int i, max_queue;
1915
1916                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1917                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1918                  * so SP queues wait for SR ones.
1919                  */
1920                 val = rd32(E1000_I210_TQAVCTRL);
1921                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1922                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1923                 wr32(E1000_I210_TQAVCTRL, val);
1924
1925                 /* Configure Tx and Rx packet buffers sizes as described in
1926                  * i210 datasheet section 7.2.7.7.
1927                  */
1928                 val = rd32(E1000_TXPBS);
1929                 val &= ~I210_TXPBSIZE_MASK;
1930                 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1931                         I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1932                 wr32(E1000_TXPBS, val);
1933
1934                 val = rd32(E1000_RXPBS);
1935                 val &= ~I210_RXPBSIZE_MASK;
1936                 val |= I210_RXPBSIZE_PB_30KB;
1937                 wr32(E1000_RXPBS, val);
1938
1939                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1940                  * register should not exceed the buffer size programmed in
1941                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1942                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1943                  * 4kB / 64.
1944                  *
1945                  * However, when we do so, no frame from queue 2 and 3 are
1946                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1947                  * or _equal_ to the buffer size programmed in TXPBS. For this
1948                  * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1949                  */
1950                 val = (4096 - 1) / 64;
1951                 wr32(E1000_I210_DTXMXPKTSZ, val);
1952
1953                 /* Since FQTSS mode is enabled, apply any CBS configuration
1954                  * previously set. If no previous CBS configuration has been
1955                  * done, then the initial configuration is applied, which means
1956                  * CBS is disabled.
1957                  */
1958                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1959                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1960
1961                 for (i = 0; i < max_queue; i++) {
1962                         igb_config_tx_modes(adapter, i);
1963                 }
1964         } else {
1965                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1966                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1967                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1968
1969                 val = rd32(E1000_I210_TQAVCTRL);
1970                 /* According to Section 8.12.21, the other flags we've set when
1971                  * enabling FQTSS are not relevant when disabling FQTSS so we
1972                  * don't set they here.
1973                  */
1974                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1975                 wr32(E1000_I210_TQAVCTRL, val);
1976         }
1977
1978         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1979                    "enabled" : "disabled");
1980 }
1981
1982 /**
1983  *  igb_configure - configure the hardware for RX and TX
1984  *  @adapter: private board structure
1985  **/
1986 static void igb_configure(struct igb_adapter *adapter)
1987 {
1988         struct net_device *netdev = adapter->netdev;
1989         int i;
1990
1991         igb_get_hw_control(adapter);
1992         igb_set_rx_mode(netdev);
1993         igb_setup_tx_mode(adapter);
1994
1995         igb_restore_vlan(adapter);
1996
1997         igb_setup_tctl(adapter);
1998         igb_setup_mrqc(adapter);
1999         igb_setup_rctl(adapter);
2000
2001         igb_nfc_filter_restore(adapter);
2002         igb_configure_tx(adapter);
2003         igb_configure_rx(adapter);
2004
2005         igb_rx_fifo_flush_82575(&adapter->hw);
2006
2007         /* call igb_desc_unused which always leaves
2008          * at least 1 descriptor unused to make sure
2009          * next_to_use != next_to_clean
2010          */
2011         for (i = 0; i < adapter->num_rx_queues; i++) {
2012                 struct igb_ring *ring = adapter->rx_ring[i];
2013                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2014         }
2015 }
2016
2017 /**
2018  *  igb_power_up_link - Power up the phy/serdes link
2019  *  @adapter: address of board private structure
2020  **/
2021 void igb_power_up_link(struct igb_adapter *adapter)
2022 {
2023         igb_reset_phy(&adapter->hw);
2024
2025         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2026                 igb_power_up_phy_copper(&adapter->hw);
2027         else
2028                 igb_power_up_serdes_link_82575(&adapter->hw);
2029
2030         igb_setup_link(&adapter->hw);
2031 }
2032
2033 /**
2034  *  igb_power_down_link - Power down the phy/serdes link
2035  *  @adapter: address of board private structure
2036  */
2037 static void igb_power_down_link(struct igb_adapter *adapter)
2038 {
2039         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2040                 igb_power_down_phy_copper_82575(&adapter->hw);
2041         else
2042                 igb_shutdown_serdes_link_82575(&adapter->hw);
2043 }
2044
2045 /**
2046  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2047  * @adapter: address of the board private structure
2048  **/
2049 static void igb_check_swap_media(struct igb_adapter *adapter)
2050 {
2051         struct e1000_hw *hw = &adapter->hw;
2052         u32 ctrl_ext, connsw;
2053         bool swap_now = false;
2054
2055         ctrl_ext = rd32(E1000_CTRL_EXT);
2056         connsw = rd32(E1000_CONNSW);
2057
2058         /* need to live swap if current media is copper and we have fiber/serdes
2059          * to go to.
2060          */
2061
2062         if ((hw->phy.media_type == e1000_media_type_copper) &&
2063             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2064                 swap_now = true;
2065         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2066                    !(connsw & E1000_CONNSW_SERDESD)) {
2067                 /* copper signal takes time to appear */
2068                 if (adapter->copper_tries < 4) {
2069                         adapter->copper_tries++;
2070                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071                         wr32(E1000_CONNSW, connsw);
2072                         return;
2073                 } else {
2074                         adapter->copper_tries = 0;
2075                         if ((connsw & E1000_CONNSW_PHYSD) &&
2076                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077                                 swap_now = true;
2078                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079                                 wr32(E1000_CONNSW, connsw);
2080                         }
2081                 }
2082         }
2083
2084         if (!swap_now)
2085                 return;
2086
2087         switch (hw->phy.media_type) {
2088         case e1000_media_type_copper:
2089                 netdev_info(adapter->netdev,
2090                         "MAS: changing media to fiber/serdes\n");
2091                 ctrl_ext |=
2092                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094                 adapter->copper_tries = 0;
2095                 break;
2096         case e1000_media_type_internal_serdes:
2097         case e1000_media_type_fiber:
2098                 netdev_info(adapter->netdev,
2099                         "MAS: changing media to copper\n");
2100                 ctrl_ext &=
2101                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103                 break;
2104         default:
2105                 /* shouldn't get here during regular operation */
2106                 netdev_err(adapter->netdev,
2107                         "AMS: Invalid media type found, returning\n");
2108                 break;
2109         }
2110         wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112
2113 /**
2114  *  igb_up - Open the interface and prepare it to handle traffic
2115  *  @adapter: board private structure
2116  **/
2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119         struct e1000_hw *hw = &adapter->hw;
2120         int i;
2121
2122         /* hardware has been reset, we need to reload some things */
2123         igb_configure(adapter);
2124
2125         clear_bit(__IGB_DOWN, &adapter->state);
2126
2127         for (i = 0; i < adapter->num_q_vectors; i++)
2128                 napi_enable(&(adapter->q_vector[i]->napi));
2129
2130         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131                 igb_configure_msix(adapter);
2132         else
2133                 igb_assign_vector(adapter->q_vector[0], 0);
2134
2135         /* Clear any pending interrupts. */
2136         rd32(E1000_TSICR);
2137         rd32(E1000_ICR);
2138         igb_irq_enable(adapter);
2139
2140         /* notify VFs that reset has been completed */
2141         if (adapter->vfs_allocated_count) {
2142                 u32 reg_data = rd32(E1000_CTRL_EXT);
2143
2144                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2145                 wr32(E1000_CTRL_EXT, reg_data);
2146         }
2147
2148         netif_tx_start_all_queues(adapter->netdev);
2149
2150         /* start the watchdog. */
2151         hw->mac.get_link_status = 1;
2152         schedule_work(&adapter->watchdog_task);
2153
2154         if ((adapter->flags & IGB_FLAG_EEE) &&
2155             (!hw->dev_spec._82575.eee_disable))
2156                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157
2158         return 0;
2159 }
2160
2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163         struct net_device *netdev = adapter->netdev;
2164         struct e1000_hw *hw = &adapter->hw;
2165         u32 tctl, rctl;
2166         int i;
2167
2168         /* signal that we're down so the interrupt handler does not
2169          * reschedule our watchdog timer
2170          */
2171         set_bit(__IGB_DOWN, &adapter->state);
2172
2173         /* disable receives in the hardware */
2174         rctl = rd32(E1000_RCTL);
2175         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176         /* flush and sleep below */
2177
2178         igb_nfc_filter_exit(adapter);
2179
2180         netif_carrier_off(netdev);
2181         netif_tx_stop_all_queues(netdev);
2182
2183         /* disable transmits in the hardware */
2184         tctl = rd32(E1000_TCTL);
2185         tctl &= ~E1000_TCTL_EN;
2186         wr32(E1000_TCTL, tctl);
2187         /* flush both disables and wait for them to finish */
2188         wrfl();
2189         usleep_range(10000, 11000);
2190
2191         igb_irq_disable(adapter);
2192
2193         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194
2195         for (i = 0; i < adapter->num_q_vectors; i++) {
2196                 if (adapter->q_vector[i]) {
2197                         napi_synchronize(&adapter->q_vector[i]->napi);
2198                         napi_disable(&adapter->q_vector[i]->napi);
2199                 }
2200         }
2201
2202         del_timer_sync(&adapter->watchdog_timer);
2203         del_timer_sync(&adapter->phy_info_timer);
2204
2205         /* record the stats before reset*/
2206         spin_lock(&adapter->stats64_lock);
2207         igb_update_stats(adapter);
2208         spin_unlock(&adapter->stats64_lock);
2209
2210         adapter->link_speed = 0;
2211         adapter->link_duplex = 0;
2212
2213         if (!pci_channel_offline(adapter->pdev))
2214                 igb_reset(adapter);
2215
2216         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218
2219         igb_clean_all_tx_rings(adapter);
2220         igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222
2223         /* since we reset the hardware DCA settings were cleared */
2224         igb_setup_dca(adapter);
2225 #endif
2226 }
2227
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2231                 usleep_range(1000, 2000);
2232         igb_down(adapter);
2233         igb_up(adapter);
2234         clear_bit(__IGB_RESETTING, &adapter->state);
2235 }
2236
2237 /** igb_enable_mas - Media Autosense re-enable after swap
2238  *
2239  * @adapter: adapter struct
2240  **/
2241 static void igb_enable_mas(struct igb_adapter *adapter)
2242 {
2243         struct e1000_hw *hw = &adapter->hw;
2244         u32 connsw = rd32(E1000_CONNSW);
2245
2246         /* configure for SerDes media detect */
2247         if ((hw->phy.media_type == e1000_media_type_copper) &&
2248             (!(connsw & E1000_CONNSW_SERDESD))) {
2249                 connsw |= E1000_CONNSW_ENRGSRC;
2250                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2251                 wr32(E1000_CONNSW, connsw);
2252                 wrfl();
2253         }
2254 }
2255
2256 void igb_reset(struct igb_adapter *adapter)
2257 {
2258         struct pci_dev *pdev = adapter->pdev;
2259         struct e1000_hw *hw = &adapter->hw;
2260         struct e1000_mac_info *mac = &hw->mac;
2261         struct e1000_fc_info *fc = &hw->fc;
2262         u32 pba, hwm;
2263
2264         /* Repartition Pba for greater than 9k mtu
2265          * To take effect CTRL.RST is required.
2266          */
2267         switch (mac->type) {
2268         case e1000_i350:
2269         case e1000_i354:
2270         case e1000_82580:
2271                 pba = rd32(E1000_RXPBS);
2272                 pba = igb_rxpbs_adjust_82580(pba);
2273                 break;
2274         case e1000_82576:
2275                 pba = rd32(E1000_RXPBS);
2276                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2277                 break;
2278         case e1000_82575:
2279         case e1000_i210:
2280         case e1000_i211:
2281         default:
2282                 pba = E1000_PBA_34K;
2283                 break;
2284         }
2285
2286         if (mac->type == e1000_82575) {
2287                 u32 min_rx_space, min_tx_space, needed_tx_space;
2288
2289                 /* write Rx PBA so that hardware can report correct Tx PBA */
2290                 wr32(E1000_PBA, pba);
2291
2292                 /* To maintain wire speed transmits, the Tx FIFO should be
2293                  * large enough to accommodate two full transmit packets,
2294                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2295                  * the Rx FIFO should be large enough to accommodate at least
2296                  * one full receive packet and is similarly rounded up and
2297                  * expressed in KB.
2298                  */
2299                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2300
2301                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2302                  * but don't include Ethernet FCS because hardware appends it.
2303                  * We only need to round down to the nearest 512 byte block
2304                  * count since the value we care about is 2 frames, not 1.
2305                  */
2306                 min_tx_space = adapter->max_frame_size;
2307                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2308                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2309
2310                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2311                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2312
2313                 /* If current Tx allocation is less than the min Tx FIFO size,
2314                  * and the min Tx FIFO size is less than the current Rx FIFO
2315                  * allocation, take space away from current Rx allocation.
2316                  */
2317                 if (needed_tx_space < pba) {
2318                         pba -= needed_tx_space;
2319
2320                         /* if short on Rx space, Rx wins and must trump Tx
2321                          * adjustment
2322                          */
2323                         if (pba < min_rx_space)
2324                                 pba = min_rx_space;
2325                 }
2326
2327                 /* adjust PBA for jumbo frames */
2328                 wr32(E1000_PBA, pba);
2329         }
2330
2331         /* flow control settings
2332          * The high water mark must be low enough to fit one full frame
2333          * after transmitting the pause frame.  As such we must have enough
2334          * space to allow for us to complete our current transmit and then
2335          * receive the frame that is in progress from the link partner.
2336          * Set it to:
2337          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2338          */
2339         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2340
2341         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2342         fc->low_water = fc->high_water - 16;
2343         fc->pause_time = 0xFFFF;
2344         fc->send_xon = 1;
2345         fc->current_mode = fc->requested_mode;
2346
2347         /* disable receive for all VFs and wait one second */
2348         if (adapter->vfs_allocated_count) {
2349                 int i;
2350
2351                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2352                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2353
2354                 /* ping all the active vfs to let them know we are going down */
2355                 igb_ping_all_vfs(adapter);
2356
2357                 /* disable transmits and receives */
2358                 wr32(E1000_VFRE, 0);
2359                 wr32(E1000_VFTE, 0);
2360         }
2361
2362         /* Allow time for pending master requests to run */
2363         hw->mac.ops.reset_hw(hw);
2364         wr32(E1000_WUC, 0);
2365
2366         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2367                 /* need to resetup here after media swap */
2368                 adapter->ei.get_invariants(hw);
2369                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2370         }
2371         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2372             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2373                 igb_enable_mas(adapter);
2374         }
2375         if (hw->mac.ops.init_hw(hw))
2376                 dev_err(&pdev->dev, "Hardware Error\n");
2377
2378         /* RAR registers were cleared during init_hw, clear mac table */
2379         igb_flush_mac_table(adapter);
2380         __dev_uc_unsync(adapter->netdev, NULL);
2381
2382         /* Recover default RAR entry */
2383         igb_set_default_mac_filter(adapter);
2384
2385         /* Flow control settings reset on hardware reset, so guarantee flow
2386          * control is off when forcing speed.
2387          */
2388         if (!hw->mac.autoneg)
2389                 igb_force_mac_fc(hw);
2390
2391         igb_init_dmac(adapter, pba);
2392 #ifdef CONFIG_IGB_HWMON
2393         /* Re-initialize the thermal sensor on i350 devices. */
2394         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2395                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2396                         /* If present, re-initialize the external thermal sensor
2397                          * interface.
2398                          */
2399                         if (adapter->ets)
2400                                 mac->ops.init_thermal_sensor_thresh(hw);
2401                 }
2402         }
2403 #endif
2404         /* Re-establish EEE setting */
2405         if (hw->phy.media_type == e1000_media_type_copper) {
2406                 switch (mac->type) {
2407                 case e1000_i350:
2408                 case e1000_i210:
2409                 case e1000_i211:
2410                         igb_set_eee_i350(hw, true, true);
2411                         break;
2412                 case e1000_i354:
2413                         igb_set_eee_i354(hw, true, true);
2414                         break;
2415                 default:
2416                         break;
2417                 }
2418         }
2419         if (!netif_running(adapter->netdev))
2420                 igb_power_down_link(adapter);
2421
2422         igb_update_mng_vlan(adapter);
2423
2424         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2425         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2426
2427         /* Re-enable PTP, where applicable. */
2428         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2429                 igb_ptp_reset(adapter);
2430
2431         igb_get_phy_info(hw);
2432 }
2433
2434 static netdev_features_t igb_fix_features(struct net_device *netdev,
2435         netdev_features_t features)
2436 {
2437         /* Since there is no support for separate Rx/Tx vlan accel
2438          * enable/disable make sure Tx flag is always in same state as Rx.
2439          */
2440         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2441                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2442         else
2443                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2444
2445         return features;
2446 }
2447
2448 static int igb_set_features(struct net_device *netdev,
2449         netdev_features_t features)
2450 {
2451         netdev_features_t changed = netdev->features ^ features;
2452         struct igb_adapter *adapter = netdev_priv(netdev);
2453
2454         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2455                 igb_vlan_mode(netdev, features);
2456
2457         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2458                 return 0;
2459
2460         if (!(features & NETIF_F_NTUPLE)) {
2461                 struct hlist_node *node2;
2462                 struct igb_nfc_filter *rule;
2463
2464                 spin_lock(&adapter->nfc_lock);
2465                 hlist_for_each_entry_safe(rule, node2,
2466                                           &adapter->nfc_filter_list, nfc_node) {
2467                         igb_erase_filter(adapter, rule);
2468                         hlist_del(&rule->nfc_node);
2469                         kfree(rule);
2470                 }
2471                 spin_unlock(&adapter->nfc_lock);
2472                 adapter->nfc_filter_count = 0;
2473         }
2474
2475         netdev->features = features;
2476
2477         if (netif_running(netdev))
2478                 igb_reinit_locked(adapter);
2479         else
2480                 igb_reset(adapter);
2481
2482         return 1;
2483 }
2484
2485 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2486                            struct net_device *dev,
2487                            const unsigned char *addr, u16 vid,
2488                            u16 flags,
2489                            struct netlink_ext_ack *extack)
2490 {
2491         /* guarantee we can provide a unique filter for the unicast address */
2492         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493                 struct igb_adapter *adapter = netdev_priv(dev);
2494                 int vfn = adapter->vfs_allocated_count;
2495
2496                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497                         return -ENOMEM;
2498         }
2499
2500         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502
2503 #define IGB_MAX_MAC_HDR_LEN     127
2504 #define IGB_MAX_NETWORK_HDR_LEN 511
2505
2506 static netdev_features_t
2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508                    netdev_features_t features)
2509 {
2510         unsigned int network_hdr_len, mac_hdr_len;
2511
2512         /* Make certain the headers can be described by a context descriptor */
2513         mac_hdr_len = skb_network_header(skb) - skb->data;
2514         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515                 return features & ~(NETIF_F_HW_CSUM |
2516                                     NETIF_F_SCTP_CRC |
2517                                     NETIF_F_GSO_UDP_L4 |
2518                                     NETIF_F_HW_VLAN_CTAG_TX |
2519                                     NETIF_F_TSO |
2520                                     NETIF_F_TSO6);
2521
2522         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2524                 return features & ~(NETIF_F_HW_CSUM |
2525                                     NETIF_F_SCTP_CRC |
2526                                     NETIF_F_GSO_UDP_L4 |
2527                                     NETIF_F_TSO |
2528                                     NETIF_F_TSO6);
2529
2530         /* We can only support IPV4 TSO in tunnels if we can mangle the
2531          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532          */
2533         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534                 features &= ~NETIF_F_TSO;
2535
2536         return features;
2537 }
2538
2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541         if (!is_fqtss_enabled(adapter)) {
2542                 enable_fqtss(adapter, true);
2543                 return;
2544         }
2545
2546         igb_config_tx_modes(adapter, queue);
2547
2548         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549                 enable_fqtss(adapter, false);
2550 }
2551
2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553                            struct tc_cbs_qopt_offload *qopt)
2554 {
2555         struct e1000_hw *hw = &adapter->hw;
2556         int err;
2557
2558         /* CBS offloading is only supported by i210 controller. */
2559         if (hw->mac.type != e1000_i210)
2560                 return -EOPNOTSUPP;
2561
2562         /* CBS offloading is only supported by queue 0 and queue 1. */
2563         if (qopt->queue < 0 || qopt->queue > 1)
2564                 return -EINVAL;
2565
2566         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567                                   qopt->idleslope, qopt->sendslope,
2568                                   qopt->hicredit, qopt->locredit);
2569         if (err)
2570                 return err;
2571
2572         igb_offload_apply(adapter, qopt->queue);
2573
2574         return 0;
2575 }
2576
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579
2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581                                 struct flow_cls_offload *f,
2582                                 int traffic_class,
2583                                 struct igb_nfc_filter *input)
2584 {
2585         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2586         struct flow_dissector *dissector = rule->match.dissector;
2587         struct netlink_ext_ack *extack = f->common.extack;
2588
2589         if (dissector->used_keys &
2590             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2591               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2592               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2593               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2594                 NL_SET_ERR_MSG_MOD(extack,
2595                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2596                 return -EOPNOTSUPP;
2597         }
2598
2599         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2600                 struct flow_match_eth_addrs match;
2601
2602                 flow_rule_match_eth_addrs(rule, &match);
2603                 if (!is_zero_ether_addr(match.mask->dst)) {
2604                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2605                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2606                                 return -EINVAL;
2607                         }
2608
2609                         input->filter.match_flags |=
2610                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2611                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2612                 }
2613
2614                 if (!is_zero_ether_addr(match.mask->src)) {
2615                         if (!is_broadcast_ether_addr(match.mask->src)) {
2616                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2617                                 return -EINVAL;
2618                         }
2619
2620                         input->filter.match_flags |=
2621                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2622                         ether_addr_copy(input->filter.src_addr, match.key->src);
2623                 }
2624         }
2625
2626         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2627                 struct flow_match_basic match;
2628
2629                 flow_rule_match_basic(rule, &match);
2630                 if (match.mask->n_proto) {
2631                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2632                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2633                                 return -EINVAL;
2634                         }
2635
2636                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2637                         input->filter.etype = match.key->n_proto;
2638                 }
2639         }
2640
2641         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2642                 struct flow_match_vlan match;
2643
2644                 flow_rule_match_vlan(rule, &match);
2645                 if (match.mask->vlan_priority) {
2646                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2647                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2648                                 return -EINVAL;
2649                         }
2650
2651                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2652                         input->filter.vlan_tci =
2653                                 (__force __be16)match.key->vlan_priority;
2654                 }
2655         }
2656
2657         input->action = traffic_class;
2658         input->cookie = f->cookie;
2659
2660         return 0;
2661 }
2662
2663 static int igb_configure_clsflower(struct igb_adapter *adapter,
2664                                    struct flow_cls_offload *cls_flower)
2665 {
2666         struct netlink_ext_ack *extack = cls_flower->common.extack;
2667         struct igb_nfc_filter *filter, *f;
2668         int err, tc;
2669
2670         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2671         if (tc < 0) {
2672                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2673                 return -EINVAL;
2674         }
2675
2676         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2677         if (!filter)
2678                 return -ENOMEM;
2679
2680         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2681         if (err < 0)
2682                 goto err_parse;
2683
2684         spin_lock(&adapter->nfc_lock);
2685
2686         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2687                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2688                         err = -EEXIST;
2689                         NL_SET_ERR_MSG_MOD(extack,
2690                                            "This filter is already set in ethtool");
2691                         goto err_locked;
2692                 }
2693         }
2694
2695         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2696                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2697                         err = -EEXIST;
2698                         NL_SET_ERR_MSG_MOD(extack,
2699                                            "This filter is already set in cls_flower");
2700                         goto err_locked;
2701                 }
2702         }
2703
2704         err = igb_add_filter(adapter, filter);
2705         if (err < 0) {
2706                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2707                 goto err_locked;
2708         }
2709
2710         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2711
2712         spin_unlock(&adapter->nfc_lock);
2713
2714         return 0;
2715
2716 err_locked:
2717         spin_unlock(&adapter->nfc_lock);
2718
2719 err_parse:
2720         kfree(filter);
2721
2722         return err;
2723 }
2724
2725 static int igb_delete_clsflower(struct igb_adapter *adapter,
2726                                 struct flow_cls_offload *cls_flower)
2727 {
2728         struct igb_nfc_filter *filter;
2729         int err;
2730
2731         spin_lock(&adapter->nfc_lock);
2732
2733         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2734                 if (filter->cookie == cls_flower->cookie)
2735                         break;
2736
2737         if (!filter) {
2738                 err = -ENOENT;
2739                 goto out;
2740         }
2741
2742         err = igb_erase_filter(adapter, filter);
2743         if (err < 0)
2744                 goto out;
2745
2746         hlist_del(&filter->nfc_node);
2747         kfree(filter);
2748
2749 out:
2750         spin_unlock(&adapter->nfc_lock);
2751
2752         return err;
2753 }
2754
2755 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2756                                    struct flow_cls_offload *cls_flower)
2757 {
2758         switch (cls_flower->command) {
2759         case FLOW_CLS_REPLACE:
2760                 return igb_configure_clsflower(adapter, cls_flower);
2761         case FLOW_CLS_DESTROY:
2762                 return igb_delete_clsflower(adapter, cls_flower);
2763         case FLOW_CLS_STATS:
2764                 return -EOPNOTSUPP;
2765         default:
2766                 return -EOPNOTSUPP;
2767         }
2768 }
2769
2770 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2771                                  void *cb_priv)
2772 {
2773         struct igb_adapter *adapter = cb_priv;
2774
2775         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2776                 return -EOPNOTSUPP;
2777
2778         switch (type) {
2779         case TC_SETUP_CLSFLOWER:
2780                 return igb_setup_tc_cls_flower(adapter, type_data);
2781
2782         default:
2783                 return -EOPNOTSUPP;
2784         }
2785 }
2786
2787 static int igb_offload_txtime(struct igb_adapter *adapter,
2788                               struct tc_etf_qopt_offload *qopt)
2789 {
2790         struct e1000_hw *hw = &adapter->hw;
2791         int err;
2792
2793         /* Launchtime offloading is only supported by i210 controller. */
2794         if (hw->mac.type != e1000_i210)
2795                 return -EOPNOTSUPP;
2796
2797         /* Launchtime offloading is only supported by queues 0 and 1. */
2798         if (qopt->queue < 0 || qopt->queue > 1)
2799                 return -EINVAL;
2800
2801         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2802         if (err)
2803                 return err;
2804
2805         igb_offload_apply(adapter, qopt->queue);
2806
2807         return 0;
2808 }
2809
2810 static LIST_HEAD(igb_block_cb_list);
2811
2812 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2813                         void *type_data)
2814 {
2815         struct igb_adapter *adapter = netdev_priv(dev);
2816
2817         switch (type) {
2818         case TC_SETUP_QDISC_CBS:
2819                 return igb_offload_cbs(adapter, type_data);
2820         case TC_SETUP_BLOCK:
2821                 return flow_block_cb_setup_simple(type_data,
2822                                                   &igb_block_cb_list,
2823                                                   igb_setup_tc_block_cb,
2824                                                   adapter, adapter, true);
2825
2826         case TC_SETUP_QDISC_ETF:
2827                 return igb_offload_txtime(adapter, type_data);
2828
2829         default:
2830                 return -EOPNOTSUPP;
2831         }
2832 }
2833
2834 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2835 {
2836         int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2837         struct igb_adapter *adapter = netdev_priv(dev);
2838         struct bpf_prog *prog = bpf->prog, *old_prog;
2839         bool running = netif_running(dev);
2840         bool need_reset;
2841
2842         /* verify igb ring attributes are sufficient for XDP */
2843         for (i = 0; i < adapter->num_rx_queues; i++) {
2844                 struct igb_ring *ring = adapter->rx_ring[i];
2845
2846                 if (frame_size > igb_rx_bufsz(ring)) {
2847                         NL_SET_ERR_MSG_MOD(bpf->extack,
2848                                            "The RX buffer size is too small for the frame size");
2849                         netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2850                                     igb_rx_bufsz(ring), frame_size);
2851                         return -EINVAL;
2852                 }
2853         }
2854
2855         old_prog = xchg(&adapter->xdp_prog, prog);
2856         need_reset = (!!prog != !!old_prog);
2857
2858         /* device is up and bpf is added/removed, must setup the RX queues */
2859         if (need_reset && running) {
2860                 igb_close(dev);
2861         } else {
2862                 for (i = 0; i < adapter->num_rx_queues; i++)
2863                         (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2864                             adapter->xdp_prog);
2865         }
2866
2867         if (old_prog)
2868                 bpf_prog_put(old_prog);
2869
2870         /* bpf is just replaced, RXQ and MTU are already setup */
2871         if (!need_reset)
2872                 return 0;
2873
2874         if (running)
2875                 igb_open(dev);
2876
2877         return 0;
2878 }
2879
2880 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2881 {
2882         switch (xdp->command) {
2883         case XDP_SETUP_PROG:
2884                 return igb_xdp_setup(dev, xdp);
2885         default:
2886                 return -EINVAL;
2887         }
2888 }
2889
2890 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2891 {
2892         /* Force memory writes to complete before letting h/w know there
2893          * are new descriptors to fetch.
2894          */
2895         wmb();
2896         writel(ring->next_to_use, ring->tail);
2897 }
2898
2899 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2900 {
2901         unsigned int r_idx = smp_processor_id();
2902
2903         if (r_idx >= adapter->num_tx_queues)
2904                 r_idx = r_idx % adapter->num_tx_queues;
2905
2906         return adapter->tx_ring[r_idx];
2907 }
2908
2909 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2910 {
2911         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2912         int cpu = smp_processor_id();
2913         struct igb_ring *tx_ring;
2914         struct netdev_queue *nq;
2915         u32 ret;
2916
2917         if (unlikely(!xdpf))
2918                 return IGB_XDP_CONSUMED;
2919
2920         /* During program transitions its possible adapter->xdp_prog is assigned
2921          * but ring has not been configured yet. In this case simply abort xmit.
2922          */
2923         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2924         if (unlikely(!tx_ring))
2925                 return IGB_XDP_CONSUMED;
2926
2927         nq = txring_txq(tx_ring);
2928         __netif_tx_lock(nq, cpu);
2929         /* Avoid transmit queue timeout since we share it with the slow path */
2930         txq_trans_cond_update(nq);
2931         ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2932         __netif_tx_unlock(nq);
2933
2934         return ret;
2935 }
2936
2937 static int igb_xdp_xmit(struct net_device *dev, int n,
2938                         struct xdp_frame **frames, u32 flags)
2939 {
2940         struct igb_adapter *adapter = netdev_priv(dev);
2941         int cpu = smp_processor_id();
2942         struct igb_ring *tx_ring;
2943         struct netdev_queue *nq;
2944         int nxmit = 0;
2945         int i;
2946
2947         if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2948                 return -ENETDOWN;
2949
2950         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2951                 return -EINVAL;
2952
2953         /* During program transitions its possible adapter->xdp_prog is assigned
2954          * but ring has not been configured yet. In this case simply abort xmit.
2955          */
2956         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2957         if (unlikely(!tx_ring))
2958                 return -ENXIO;
2959
2960         nq = txring_txq(tx_ring);
2961         __netif_tx_lock(nq, cpu);
2962
2963         /* Avoid transmit queue timeout since we share it with the slow path */
2964         txq_trans_cond_update(nq);
2965
2966         for (i = 0; i < n; i++) {
2967                 struct xdp_frame *xdpf = frames[i];
2968                 int err;
2969
2970                 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2971                 if (err != IGB_XDP_TX)
2972                         break;
2973                 nxmit++;
2974         }
2975
2976         __netif_tx_unlock(nq);
2977
2978         if (unlikely(flags & XDP_XMIT_FLUSH))
2979                 igb_xdp_ring_update_tail(tx_ring);
2980
2981         return nxmit;
2982 }
2983
2984 static const struct net_device_ops igb_netdev_ops = {
2985         .ndo_open               = igb_open,
2986         .ndo_stop               = igb_close,
2987         .ndo_start_xmit         = igb_xmit_frame,
2988         .ndo_get_stats64        = igb_get_stats64,
2989         .ndo_set_rx_mode        = igb_set_rx_mode,
2990         .ndo_set_mac_address    = igb_set_mac,
2991         .ndo_change_mtu         = igb_change_mtu,
2992         .ndo_eth_ioctl          = igb_ioctl,
2993         .ndo_tx_timeout         = igb_tx_timeout,
2994         .ndo_validate_addr      = eth_validate_addr,
2995         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2996         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2997         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2998         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2999         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
3000         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
3001         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
3002         .ndo_get_vf_config      = igb_ndo_get_vf_config,
3003         .ndo_fix_features       = igb_fix_features,
3004         .ndo_set_features       = igb_set_features,
3005         .ndo_fdb_add            = igb_ndo_fdb_add,
3006         .ndo_features_check     = igb_features_check,
3007         .ndo_setup_tc           = igb_setup_tc,
3008         .ndo_bpf                = igb_xdp,
3009         .ndo_xdp_xmit           = igb_xdp_xmit,
3010 };
3011
3012 /**
3013  * igb_set_fw_version - Configure version string for ethtool
3014  * @adapter: adapter struct
3015  **/
3016 void igb_set_fw_version(struct igb_adapter *adapter)
3017 {
3018         struct e1000_hw *hw = &adapter->hw;
3019         struct e1000_fw_version fw;
3020
3021         igb_get_fw_version(hw, &fw);
3022
3023         switch (hw->mac.type) {
3024         case e1000_i210:
3025         case e1000_i211:
3026                 if (!(igb_get_flash_presence_i210(hw))) {
3027                         snprintf(adapter->fw_version,
3028                                  sizeof(adapter->fw_version),
3029                                  "%2d.%2d-%d",
3030                                  fw.invm_major, fw.invm_minor,
3031                                  fw.invm_img_type);
3032                         break;
3033                 }
3034                 fallthrough;
3035         default:
3036                 /* if option is rom valid, display its version too */
3037                 if (fw.or_valid) {
3038                         snprintf(adapter->fw_version,
3039                                  sizeof(adapter->fw_version),
3040                                  "%d.%d, 0x%08x, %d.%d.%d",
3041                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3042                                  fw.or_major, fw.or_build, fw.or_patch);
3043                 /* no option rom */
3044                 } else if (fw.etrack_id != 0X0000) {
3045                         snprintf(adapter->fw_version,
3046                             sizeof(adapter->fw_version),
3047                             "%d.%d, 0x%08x",
3048                             fw.eep_major, fw.eep_minor, fw.etrack_id);
3049                 } else {
3050                 snprintf(adapter->fw_version,
3051                     sizeof(adapter->fw_version),
3052                     "%d.%d.%d",
3053                     fw.eep_major, fw.eep_minor, fw.eep_build);
3054                 }
3055                 break;
3056         }
3057 }
3058
3059 /**
3060  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3061  *
3062  * @adapter: adapter struct
3063  **/
3064 static void igb_init_mas(struct igb_adapter *adapter)
3065 {
3066         struct e1000_hw *hw = &adapter->hw;
3067         u16 eeprom_data;
3068
3069         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3070         switch (hw->bus.func) {
3071         case E1000_FUNC_0:
3072                 if (eeprom_data & IGB_MAS_ENABLE_0) {
3073                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3074                         netdev_info(adapter->netdev,
3075                                 "MAS: Enabling Media Autosense for port %d\n",
3076                                 hw->bus.func);
3077                 }
3078                 break;
3079         case E1000_FUNC_1:
3080                 if (eeprom_data & IGB_MAS_ENABLE_1) {
3081                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3082                         netdev_info(adapter->netdev,
3083                                 "MAS: Enabling Media Autosense for port %d\n",
3084                                 hw->bus.func);
3085                 }
3086                 break;
3087         case E1000_FUNC_2:
3088                 if (eeprom_data & IGB_MAS_ENABLE_2) {
3089                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3090                         netdev_info(adapter->netdev,
3091                                 "MAS: Enabling Media Autosense for port %d\n",
3092                                 hw->bus.func);
3093                 }
3094                 break;
3095         case E1000_FUNC_3:
3096                 if (eeprom_data & IGB_MAS_ENABLE_3) {
3097                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3098                         netdev_info(adapter->netdev,
3099                                 "MAS: Enabling Media Autosense for port %d\n",
3100                                 hw->bus.func);
3101                 }
3102                 break;
3103         default:
3104                 /* Shouldn't get here */
3105                 netdev_err(adapter->netdev,
3106                         "MAS: Invalid port configuration, returning\n");
3107                 break;
3108         }
3109 }
3110
3111 /**
3112  *  igb_init_i2c - Init I2C interface
3113  *  @adapter: pointer to adapter structure
3114  **/
3115 static s32 igb_init_i2c(struct igb_adapter *adapter)
3116 {
3117         struct e1000_hw *hw = &adapter->hw;
3118         s32 status = 0;
3119         s32 i2cctl;
3120
3121         /* I2C interface supported on i350 devices */
3122         if (adapter->hw.mac.type != e1000_i350)
3123                 return 0;
3124
3125         i2cctl = rd32(E1000_I2CPARAMS);
3126         i2cctl |= E1000_I2CBB_EN
3127                 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3128                 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3129         wr32(E1000_I2CPARAMS, i2cctl);
3130         wrfl();
3131
3132         /* Initialize the i2c bus which is controlled by the registers.
3133          * This bus will use the i2c_algo_bit structure that implements
3134          * the protocol through toggling of the 4 bits in the register.
3135          */
3136         adapter->i2c_adap.owner = THIS_MODULE;
3137         adapter->i2c_algo = igb_i2c_algo;
3138         adapter->i2c_algo.data = adapter;
3139         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3140         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3141         strlcpy(adapter->i2c_adap.name, "igb BB",
3142                 sizeof(adapter->i2c_adap.name));
3143         status = i2c_bit_add_bus(&adapter->i2c_adap);
3144         return status;
3145 }
3146
3147 /**
3148  *  igb_probe - Device Initialization Routine
3149  *  @pdev: PCI device information struct
3150  *  @ent: entry in igb_pci_tbl
3151  *
3152  *  Returns 0 on success, negative on failure
3153  *
3154  *  igb_probe initializes an adapter identified by a pci_dev structure.
3155  *  The OS initialization, configuring of the adapter private structure,
3156  *  and a hardware reset occur.
3157  **/
3158 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3159 {
3160         struct net_device *netdev;
3161         struct igb_adapter *adapter;
3162         struct e1000_hw *hw;
3163         u16 eeprom_data = 0;
3164         s32 ret_val;
3165         static int global_quad_port_a; /* global quad port a indication */
3166         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3167         u8 part_str[E1000_PBANUM_LENGTH];
3168         int err;
3169
3170         /* Catch broken hardware that put the wrong VF device ID in
3171          * the PCIe SR-IOV capability.
3172          */
3173         if (pdev->is_virtfn) {
3174                 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3175                         pci_name(pdev), pdev->vendor, pdev->device);
3176                 return -EINVAL;
3177         }
3178
3179         err = pci_enable_device_mem(pdev);
3180         if (err)
3181                 return err;
3182
3183         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3184         if (err) {
3185                 dev_err(&pdev->dev,
3186                         "No usable DMA configuration, aborting\n");
3187                 goto err_dma;
3188         }
3189
3190         err = pci_request_mem_regions(pdev, igb_driver_name);
3191         if (err)
3192                 goto err_pci_reg;
3193
3194         pci_enable_pcie_error_reporting(pdev);
3195
3196         pci_set_master(pdev);
3197         pci_save_state(pdev);
3198
3199         err = -ENOMEM;
3200         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3201                                    IGB_MAX_TX_QUEUES);
3202         if (!netdev)
3203                 goto err_alloc_etherdev;
3204
3205         SET_NETDEV_DEV(netdev, &pdev->dev);
3206
3207         pci_set_drvdata(pdev, netdev);
3208         adapter = netdev_priv(netdev);
3209         adapter->netdev = netdev;
3210         adapter->pdev = pdev;
3211         hw = &adapter->hw;
3212         hw->back = adapter;
3213         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3214
3215         err = -EIO;
3216         adapter->io_addr = pci_iomap(pdev, 0, 0);
3217         if (!adapter->io_addr)
3218                 goto err_ioremap;
3219         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3220         hw->hw_addr = adapter->io_addr;
3221
3222         netdev->netdev_ops = &igb_netdev_ops;
3223         igb_set_ethtool_ops(netdev);
3224         netdev->watchdog_timeo = 5 * HZ;
3225
3226         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3227
3228         netdev->mem_start = pci_resource_start(pdev, 0);
3229         netdev->mem_end = pci_resource_end(pdev, 0);
3230
3231         /* PCI config space info */
3232         hw->vendor_id = pdev->vendor;
3233         hw->device_id = pdev->device;
3234         hw->revision_id = pdev->revision;
3235         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3236         hw->subsystem_device_id = pdev->subsystem_device;
3237
3238         /* Copy the default MAC, PHY and NVM function pointers */
3239         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3240         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3241         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3242         /* Initialize skew-specific constants */
3243         err = ei->get_invariants(hw);
3244         if (err)
3245                 goto err_sw_init;
3246
3247         /* setup the private structure */
3248         err = igb_sw_init(adapter);
3249         if (err)
3250                 goto err_sw_init;
3251
3252         igb_get_bus_info_pcie(hw);
3253
3254         hw->phy.autoneg_wait_to_complete = false;
3255
3256         /* Copper options */
3257         if (hw->phy.media_type == e1000_media_type_copper) {
3258                 hw->phy.mdix = AUTO_ALL_MODES;
3259                 hw->phy.disable_polarity_correction = false;
3260                 hw->phy.ms_type = e1000_ms_hw_default;
3261         }
3262
3263         if (igb_check_reset_block(hw))
3264                 dev_info(&pdev->dev,
3265                         "PHY reset is blocked due to SOL/IDER session.\n");
3266
3267         /* features is initialized to 0 in allocation, it might have bits
3268          * set by igb_sw_init so we should use an or instead of an
3269          * assignment.
3270          */
3271         netdev->features |= NETIF_F_SG |
3272                             NETIF_F_TSO |
3273                             NETIF_F_TSO6 |
3274                             NETIF_F_RXHASH |
3275                             NETIF_F_RXCSUM |
3276                             NETIF_F_HW_CSUM;
3277
3278         if (hw->mac.type >= e1000_82576)
3279                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3280
3281         if (hw->mac.type >= e1000_i350)
3282                 netdev->features |= NETIF_F_HW_TC;
3283
3284 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3285                                   NETIF_F_GSO_GRE_CSUM | \
3286                                   NETIF_F_GSO_IPXIP4 | \
3287                                   NETIF_F_GSO_IPXIP6 | \
3288                                   NETIF_F_GSO_UDP_TUNNEL | \
3289                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3290
3291         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3292         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3293
3294         /* copy netdev features into list of user selectable features */
3295         netdev->hw_features |= netdev->features |
3296                                NETIF_F_HW_VLAN_CTAG_RX |
3297                                NETIF_F_HW_VLAN_CTAG_TX |
3298                                NETIF_F_RXALL;
3299
3300         if (hw->mac.type >= e1000_i350)
3301                 netdev->hw_features |= NETIF_F_NTUPLE;
3302
3303         netdev->features |= NETIF_F_HIGHDMA;
3304
3305         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3306         netdev->mpls_features |= NETIF_F_HW_CSUM;
3307         netdev->hw_enc_features |= netdev->vlan_features;
3308
3309         /* set this bit last since it cannot be part of vlan_features */
3310         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3311                             NETIF_F_HW_VLAN_CTAG_RX |
3312                             NETIF_F_HW_VLAN_CTAG_TX;
3313
3314         netdev->priv_flags |= IFF_SUPP_NOFCS;
3315
3316         netdev->priv_flags |= IFF_UNICAST_FLT;
3317
3318         /* MTU range: 68 - 9216 */
3319         netdev->min_mtu = ETH_MIN_MTU;
3320         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3321
3322         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3323
3324         /* before reading the NVM, reset the controller to put the device in a
3325          * known good starting state
3326          */
3327         hw->mac.ops.reset_hw(hw);
3328
3329         /* make sure the NVM is good , i211/i210 parts can have special NVM
3330          * that doesn't contain a checksum
3331          */
3332         switch (hw->mac.type) {
3333         case e1000_i210:
3334         case e1000_i211:
3335                 if (igb_get_flash_presence_i210(hw)) {
3336                         if (hw->nvm.ops.validate(hw) < 0) {
3337                                 dev_err(&pdev->dev,
3338                                         "The NVM Checksum Is Not Valid\n");
3339                                 err = -EIO;
3340                                 goto err_eeprom;
3341                         }
3342                 }
3343                 break;
3344         default:
3345                 if (hw->nvm.ops.validate(hw) < 0) {
3346                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3347                         err = -EIO;
3348                         goto err_eeprom;
3349                 }
3350                 break;
3351         }
3352
3353         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3354                 /* copy the MAC address out of the NVM */
3355                 if (hw->mac.ops.read_mac_addr(hw))
3356                         dev_err(&pdev->dev, "NVM Read Error\n");
3357         }
3358
3359         eth_hw_addr_set(netdev, hw->mac.addr);
3360
3361         if (!is_valid_ether_addr(netdev->dev_addr)) {
3362                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3363                 err = -EIO;
3364                 goto err_eeprom;
3365         }
3366
3367         igb_set_default_mac_filter(adapter);
3368
3369         /* get firmware version for ethtool -i */
3370         igb_set_fw_version(adapter);
3371
3372         /* configure RXPBSIZE and TXPBSIZE */
3373         if (hw->mac.type == e1000_i210) {
3374                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3375                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3376         }
3377
3378         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3379         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3380
3381         INIT_WORK(&adapter->reset_task, igb_reset_task);
3382         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3383
3384         /* Initialize link properties that are user-changeable */
3385         adapter->fc_autoneg = true;
3386         hw->mac.autoneg = true;
3387         hw->phy.autoneg_advertised = 0x2f;
3388
3389         hw->fc.requested_mode = e1000_fc_default;
3390         hw->fc.current_mode = e1000_fc_default;
3391
3392         igb_validate_mdi_setting(hw);
3393
3394         /* By default, support wake on port A */
3395         if (hw->bus.func == 0)
3396                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3397
3398         /* Check the NVM for wake support on non-port A ports */
3399         if (hw->mac.type >= e1000_82580)
3400                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3401                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3402                                  &eeprom_data);
3403         else if (hw->bus.func == 1)
3404                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3405
3406         if (eeprom_data & IGB_EEPROM_APME)
3407                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3408
3409         /* now that we have the eeprom settings, apply the special cases where
3410          * the eeprom may be wrong or the board simply won't support wake on
3411          * lan on a particular port
3412          */
3413         switch (pdev->device) {
3414         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3415                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416                 break;
3417         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3418         case E1000_DEV_ID_82576_FIBER:
3419         case E1000_DEV_ID_82576_SERDES:
3420                 /* Wake events only supported on port A for dual fiber
3421                  * regardless of eeprom setting
3422                  */
3423                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3424                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3425                 break;
3426         case E1000_DEV_ID_82576_QUAD_COPPER:
3427         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3428                 /* if quad port adapter, disable WoL on all but port A */
3429                 if (global_quad_port_a != 0)
3430                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3431                 else
3432                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3433                 /* Reset for multiple quad port adapters */
3434                 if (++global_quad_port_a == 4)
3435                         global_quad_port_a = 0;
3436                 break;
3437         default:
3438                 /* If the device can't wake, don't set software support */
3439                 if (!device_can_wakeup(&adapter->pdev->dev))
3440                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3441         }
3442
3443         /* initialize the wol settings based on the eeprom settings */
3444         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3445                 adapter->wol |= E1000_WUFC_MAG;
3446
3447         /* Some vendors want WoL disabled by default, but still supported */
3448         if ((hw->mac.type == e1000_i350) &&
3449             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3450                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3451                 adapter->wol = 0;
3452         }
3453
3454         /* Some vendors want the ability to Use the EEPROM setting as
3455          * enable/disable only, and not for capability
3456          */
3457         if (((hw->mac.type == e1000_i350) ||
3458              (hw->mac.type == e1000_i354)) &&
3459             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3460                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3461                 adapter->wol = 0;
3462         }
3463         if (hw->mac.type == e1000_i350) {
3464                 if (((pdev->subsystem_device == 0x5001) ||
3465                      (pdev->subsystem_device == 0x5002)) &&
3466                                 (hw->bus.func == 0)) {
3467                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3468                         adapter->wol = 0;
3469                 }
3470                 if (pdev->subsystem_device == 0x1F52)
3471                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472         }
3473
3474         device_set_wakeup_enable(&adapter->pdev->dev,
3475                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3476
3477         /* reset the hardware with the new settings */
3478         igb_reset(adapter);
3479
3480         /* Init the I2C interface */
3481         err = igb_init_i2c(adapter);
3482         if (err) {
3483                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3484                 goto err_eeprom;
3485         }
3486
3487         /* let the f/w know that the h/w is now under the control of the
3488          * driver.
3489          */
3490         igb_get_hw_control(adapter);
3491
3492         strcpy(netdev->name, "eth%d");
3493         err = register_netdev(netdev);
3494         if (err)
3495                 goto err_register;
3496
3497         /* carrier off reporting is important to ethtool even BEFORE open */
3498         netif_carrier_off(netdev);
3499
3500 #ifdef CONFIG_IGB_DCA
3501         if (dca_add_requester(&pdev->dev) == 0) {
3502                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3503                 dev_info(&pdev->dev, "DCA enabled\n");
3504                 igb_setup_dca(adapter);
3505         }
3506
3507 #endif
3508 #ifdef CONFIG_IGB_HWMON
3509         /* Initialize the thermal sensor on i350 devices. */
3510         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3511                 u16 ets_word;
3512
3513                 /* Read the NVM to determine if this i350 device supports an
3514                  * external thermal sensor.
3515                  */
3516                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3517                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3518                         adapter->ets = true;
3519                 else
3520                         adapter->ets = false;
3521                 if (igb_sysfs_init(adapter))
3522                         dev_err(&pdev->dev,
3523                                 "failed to allocate sysfs resources\n");
3524         } else {
3525                 adapter->ets = false;
3526         }
3527 #endif
3528         /* Check if Media Autosense is enabled */
3529         adapter->ei = *ei;
3530         if (hw->dev_spec._82575.mas_capable)
3531                 igb_init_mas(adapter);
3532
3533         /* do hw tstamp init after resetting */
3534         igb_ptp_init(adapter);
3535
3536         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3537         /* print bus type/speed/width info, not applicable to i354 */
3538         if (hw->mac.type != e1000_i354) {
3539                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3540                          netdev->name,
3541                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3542                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3543                            "unknown"),
3544                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3545                           "Width x4" :
3546                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3547                           "Width x2" :
3548                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3549                           "Width x1" : "unknown"), netdev->dev_addr);
3550         }
3551
3552         if ((hw->mac.type == e1000_82576 &&
3553              rd32(E1000_EECD) & E1000_EECD_PRES) ||
3554             (hw->mac.type >= e1000_i210 ||
3555              igb_get_flash_presence_i210(hw))) {
3556                 ret_val = igb_read_part_string(hw, part_str,
3557                                                E1000_PBANUM_LENGTH);
3558         } else {
3559                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3560         }
3561
3562         if (ret_val)
3563                 strcpy(part_str, "Unknown");
3564         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3565         dev_info(&pdev->dev,
3566                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3567                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3568                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3569                 adapter->num_rx_queues, adapter->num_tx_queues);
3570         if (hw->phy.media_type == e1000_media_type_copper) {
3571                 switch (hw->mac.type) {
3572                 case e1000_i350:
3573                 case e1000_i210:
3574                 case e1000_i211:
3575                         /* Enable EEE for internal copper PHY devices */
3576                         err = igb_set_eee_i350(hw, true, true);
3577                         if ((!err) &&
3578                             (!hw->dev_spec._82575.eee_disable)) {
3579                                 adapter->eee_advert =
3580                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3581                                 adapter->flags |= IGB_FLAG_EEE;
3582                         }
3583                         break;
3584                 case e1000_i354:
3585                         if ((rd32(E1000_CTRL_EXT) &
3586                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3587                                 err = igb_set_eee_i354(hw, true, true);
3588                                 if ((!err) &&
3589                                         (!hw->dev_spec._82575.eee_disable)) {
3590                                         adapter->eee_advert =
3591                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3592                                         adapter->flags |= IGB_FLAG_EEE;
3593                                 }
3594                         }
3595                         break;
3596                 default:
3597                         break;
3598                 }
3599         }
3600
3601         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3602
3603         pm_runtime_put_noidle(&pdev->dev);
3604         return 0;
3605
3606 err_register:
3607         igb_release_hw_control(adapter);
3608         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3609 err_eeprom:
3610         if (!igb_check_reset_block(hw))
3611                 igb_reset_phy(hw);
3612
3613         if (hw->flash_address)
3614                 iounmap(hw->flash_address);
3615 err_sw_init:
3616         kfree(adapter->mac_table);
3617         kfree(adapter->shadow_vfta);
3618         igb_clear_interrupt_scheme(adapter);
3619 #ifdef CONFIG_PCI_IOV
3620         igb_disable_sriov(pdev);
3621 #endif
3622         pci_iounmap(pdev, adapter->io_addr);
3623 err_ioremap:
3624         free_netdev(netdev);
3625 err_alloc_etherdev:
3626         pci_disable_pcie_error_reporting(pdev);
3627         pci_release_mem_regions(pdev);
3628 err_pci_reg:
3629 err_dma:
3630         pci_disable_device(pdev);
3631         return err;
3632 }
3633
3634 #ifdef CONFIG_PCI_IOV
3635 static int igb_disable_sriov(struct pci_dev *pdev)
3636 {
3637         struct net_device *netdev = pci_get_drvdata(pdev);
3638         struct igb_adapter *adapter = netdev_priv(netdev);
3639         struct e1000_hw *hw = &adapter->hw;
3640
3641         /* reclaim resources allocated to VFs */
3642         if (adapter->vf_data) {
3643                 /* disable iov and allow time for transactions to clear */
3644                 if (pci_vfs_assigned(pdev)) {
3645                         dev_warn(&pdev->dev,
3646                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3647                         return -EPERM;
3648                 } else {
3649                         pci_disable_sriov(pdev);
3650                         msleep(500);
3651                 }
3652
3653                 kfree(adapter->vf_mac_list);
3654                 adapter->vf_mac_list = NULL;
3655                 kfree(adapter->vf_data);
3656                 adapter->vf_data = NULL;
3657                 adapter->vfs_allocated_count = 0;
3658                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3659                 wrfl();
3660                 msleep(100);
3661                 dev_info(&pdev->dev, "IOV Disabled\n");
3662
3663                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3664                 adapter->flags |= IGB_FLAG_DMAC;
3665         }
3666
3667         return 0;
3668 }
3669
3670 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3671 {
3672         struct net_device *netdev = pci_get_drvdata(pdev);
3673         struct igb_adapter *adapter = netdev_priv(netdev);
3674         int old_vfs = pci_num_vf(pdev);
3675         struct vf_mac_filter *mac_list;
3676         int err = 0;
3677         int num_vf_mac_filters, i;
3678
3679         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3680                 err = -EPERM;
3681                 goto out;
3682         }
3683         if (!num_vfs)
3684                 goto out;
3685
3686         if (old_vfs) {
3687                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3688                          old_vfs, max_vfs);
3689                 adapter->vfs_allocated_count = old_vfs;
3690         } else
3691                 adapter->vfs_allocated_count = num_vfs;
3692
3693         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3694                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3695
3696         /* if allocation failed then we do not support SR-IOV */
3697         if (!adapter->vf_data) {
3698                 adapter->vfs_allocated_count = 0;
3699                 err = -ENOMEM;
3700                 goto out;
3701         }
3702
3703         /* Due to the limited number of RAR entries calculate potential
3704          * number of MAC filters available for the VFs. Reserve entries
3705          * for PF default MAC, PF MAC filters and at least one RAR entry
3706          * for each VF for VF MAC.
3707          */
3708         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3709                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3710                               adapter->vfs_allocated_count);
3711
3712         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3713                                        sizeof(struct vf_mac_filter),
3714                                        GFP_KERNEL);
3715
3716         mac_list = adapter->vf_mac_list;
3717         INIT_LIST_HEAD(&adapter->vf_macs.l);
3718
3719         if (adapter->vf_mac_list) {
3720                 /* Initialize list of VF MAC filters */
3721                 for (i = 0; i < num_vf_mac_filters; i++) {
3722                         mac_list->vf = -1;
3723                         mac_list->free = true;
3724                         list_add(&mac_list->l, &adapter->vf_macs.l);
3725                         mac_list++;
3726                 }
3727         } else {
3728                 /* If we could not allocate memory for the VF MAC filters
3729                  * we can continue without this feature but warn user.
3730                  */
3731                 dev_err(&pdev->dev,
3732                         "Unable to allocate memory for VF MAC filter list\n");
3733         }
3734
3735         /* only call pci_enable_sriov() if no VFs are allocated already */
3736         if (!old_vfs) {
3737                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3738                 if (err)
3739                         goto err_out;
3740         }
3741         dev_info(&pdev->dev, "%d VFs allocated\n",
3742                  adapter->vfs_allocated_count);
3743         for (i = 0; i < adapter->vfs_allocated_count; i++)
3744                 igb_vf_configure(adapter, i);
3745
3746         /* DMA Coalescing is not supported in IOV mode. */
3747         adapter->flags &= ~IGB_FLAG_DMAC;
3748         goto out;
3749
3750 err_out:
3751         kfree(adapter->vf_mac_list);
3752         adapter->vf_mac_list = NULL;
3753         kfree(adapter->vf_data);
3754         adapter->vf_data = NULL;
3755         adapter->vfs_allocated_count = 0;
3756 out:
3757         return err;
3758 }
3759
3760 #endif
3761 /**
3762  *  igb_remove_i2c - Cleanup  I2C interface
3763  *  @adapter: pointer to adapter structure
3764  **/
3765 static void igb_remove_i2c(struct igb_adapter *adapter)
3766 {
3767         /* free the adapter bus structure */
3768         i2c_del_adapter(&adapter->i2c_adap);
3769 }
3770
3771 /**
3772  *  igb_remove - Device Removal Routine
3773  *  @pdev: PCI device information struct
3774  *
3775  *  igb_remove is called by the PCI subsystem to alert the driver
3776  *  that it should release a PCI device.  The could be caused by a
3777  *  Hot-Plug event, or because the driver is going to be removed from
3778  *  memory.
3779  **/
3780 static void igb_remove(struct pci_dev *pdev)
3781 {
3782         struct net_device *netdev = pci_get_drvdata(pdev);
3783         struct igb_adapter *adapter = netdev_priv(netdev);
3784         struct e1000_hw *hw = &adapter->hw;
3785
3786         pm_runtime_get_noresume(&pdev->dev);
3787 #ifdef CONFIG_IGB_HWMON
3788         igb_sysfs_exit(adapter);
3789 #endif
3790         igb_remove_i2c(adapter);
3791         igb_ptp_stop(adapter);
3792         /* The watchdog timer may be rescheduled, so explicitly
3793          * disable watchdog from being rescheduled.
3794          */
3795         set_bit(__IGB_DOWN, &adapter->state);
3796         del_timer_sync(&adapter->watchdog_timer);
3797         del_timer_sync(&adapter->phy_info_timer);
3798
3799         cancel_work_sync(&adapter->reset_task);
3800         cancel_work_sync(&adapter->watchdog_task);
3801
3802 #ifdef CONFIG_IGB_DCA
3803         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3804                 dev_info(&pdev->dev, "DCA disabled\n");
3805                 dca_remove_requester(&pdev->dev);
3806                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3807                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3808         }
3809 #endif
3810
3811         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3812          * would have already happened in close and is redundant.
3813          */
3814         igb_release_hw_control(adapter);
3815
3816 #ifdef CONFIG_PCI_IOV
3817         igb_disable_sriov(pdev);
3818 #endif
3819
3820         unregister_netdev(netdev);
3821
3822         igb_clear_interrupt_scheme(adapter);
3823
3824         pci_iounmap(pdev, adapter->io_addr);
3825         if (hw->flash_address)
3826                 iounmap(hw->flash_address);
3827         pci_release_mem_regions(pdev);
3828
3829         kfree(adapter->mac_table);
3830         kfree(adapter->shadow_vfta);
3831         free_netdev(netdev);
3832
3833         pci_disable_pcie_error_reporting(pdev);
3834
3835         pci_disable_device(pdev);
3836 }
3837
3838 /**
3839  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3840  *  @adapter: board private structure to initialize
3841  *
3842  *  This function initializes the vf specific data storage and then attempts to
3843  *  allocate the VFs.  The reason for ordering it this way is because it is much
3844  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3845  *  the memory for the VFs.
3846  **/
3847 static void igb_probe_vfs(struct igb_adapter *adapter)
3848 {
3849 #ifdef CONFIG_PCI_IOV
3850         struct pci_dev *pdev = adapter->pdev;
3851         struct e1000_hw *hw = &adapter->hw;
3852
3853         /* Virtualization features not supported on i210 family. */
3854         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3855                 return;
3856
3857         /* Of the below we really only want the effect of getting
3858          * IGB_FLAG_HAS_MSIX set (if available), without which
3859          * igb_enable_sriov() has no effect.
3860          */
3861         igb_set_interrupt_capability(adapter, true);
3862         igb_reset_interrupt_capability(adapter);
3863
3864         pci_sriov_set_totalvfs(pdev, 7);
3865         igb_enable_sriov(pdev, max_vfs);
3866
3867 #endif /* CONFIG_PCI_IOV */
3868 }
3869
3870 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3871 {
3872         struct e1000_hw *hw = &adapter->hw;
3873         unsigned int max_rss_queues;
3874
3875         /* Determine the maximum number of RSS queues supported. */
3876         switch (hw->mac.type) {
3877         case e1000_i211:
3878                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3879                 break;
3880         case e1000_82575:
3881         case e1000_i210:
3882                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3883                 break;
3884         case e1000_i350:
3885                 /* I350 cannot do RSS and SR-IOV at the same time */
3886                 if (!!adapter->vfs_allocated_count) {
3887                         max_rss_queues = 1;
3888                         break;
3889                 }
3890                 fallthrough;
3891         case e1000_82576:
3892                 if (!!adapter->vfs_allocated_count) {
3893                         max_rss_queues = 2;
3894                         break;
3895                 }
3896                 fallthrough;
3897         case e1000_82580:
3898         case e1000_i354:
3899         default:
3900                 max_rss_queues = IGB_MAX_RX_QUEUES;
3901                 break;
3902         }
3903
3904         return max_rss_queues;
3905 }
3906
3907 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3908 {
3909         u32 max_rss_queues;
3910
3911         max_rss_queues = igb_get_max_rss_queues(adapter);
3912         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3913
3914         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3915 }
3916
3917 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3918                               const u32 max_rss_queues)
3919 {
3920         struct e1000_hw *hw = &adapter->hw;
3921
3922         /* Determine if we need to pair queues. */
3923         switch (hw->mac.type) {
3924         case e1000_82575:
3925         case e1000_i211:
3926                 /* Device supports enough interrupts without queue pairing. */
3927                 break;
3928         case e1000_82576:
3929         case e1000_82580:
3930         case e1000_i350:
3931         case e1000_i354:
3932         case e1000_i210:
3933         default:
3934                 /* If rss_queues > half of max_rss_queues, pair the queues in
3935                  * order to conserve interrupts due to limited supply.
3936                  */
3937                 if (adapter->rss_queues > (max_rss_queues / 2))
3938                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3939                 else
3940                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3941                 break;
3942         }
3943 }
3944
3945 /**
3946  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3947  *  @adapter: board private structure to initialize
3948  *
3949  *  igb_sw_init initializes the Adapter private data structure.
3950  *  Fields are initialized based on PCI device information and
3951  *  OS network device settings (MTU size).
3952  **/
3953 static int igb_sw_init(struct igb_adapter *adapter)
3954 {
3955         struct e1000_hw *hw = &adapter->hw;
3956         struct net_device *netdev = adapter->netdev;
3957         struct pci_dev *pdev = adapter->pdev;
3958
3959         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3960
3961         /* set default ring sizes */
3962         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3963         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3964
3965         /* set default ITR values */
3966         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3967         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3968
3969         /* set default work limits */
3970         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3971
3972         adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3973         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3974
3975         spin_lock_init(&adapter->nfc_lock);
3976         spin_lock_init(&adapter->stats64_lock);
3977 #ifdef CONFIG_PCI_IOV
3978         switch (hw->mac.type) {
3979         case e1000_82576:
3980         case e1000_i350:
3981                 if (max_vfs > 7) {
3982                         dev_warn(&pdev->dev,
3983                                  "Maximum of 7 VFs per PF, using max\n");
3984                         max_vfs = adapter->vfs_allocated_count = 7;
3985                 } else
3986                         adapter->vfs_allocated_count = max_vfs;
3987                 if (adapter->vfs_allocated_count)
3988                         dev_warn(&pdev->dev,
3989                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3990                 break;
3991         default:
3992                 break;
3993         }
3994 #endif /* CONFIG_PCI_IOV */
3995
3996         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3997         adapter->flags |= IGB_FLAG_HAS_MSIX;
3998
3999         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4000                                      sizeof(struct igb_mac_addr),
4001                                      GFP_KERNEL);
4002         if (!adapter->mac_table)
4003                 return -ENOMEM;
4004
4005         igb_probe_vfs(adapter);
4006
4007         igb_init_queue_configuration(adapter);
4008
4009         /* Setup and initialize a copy of the hw vlan table array */
4010         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4011                                        GFP_KERNEL);
4012         if (!adapter->shadow_vfta)
4013                 return -ENOMEM;
4014
4015         /* This call may decrease the number of queues */
4016         if (igb_init_interrupt_scheme(adapter, true)) {
4017                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4018                 return -ENOMEM;
4019         }
4020
4021         /* Explicitly disable IRQ since the NIC can be in any state. */
4022         igb_irq_disable(adapter);
4023
4024         if (hw->mac.type >= e1000_i350)
4025                 adapter->flags &= ~IGB_FLAG_DMAC;
4026
4027         set_bit(__IGB_DOWN, &adapter->state);
4028         return 0;
4029 }
4030
4031 /**
4032  *  __igb_open - Called when a network interface is made active
4033  *  @netdev: network interface device structure
4034  *  @resuming: indicates whether we are in a resume call
4035  *
4036  *  Returns 0 on success, negative value on failure
4037  *
4038  *  The open entry point is called when a network interface is made
4039  *  active by the system (IFF_UP).  At this point all resources needed
4040  *  for transmit and receive operations are allocated, the interrupt
4041  *  handler is registered with the OS, the watchdog timer is started,
4042  *  and the stack is notified that the interface is ready.
4043  **/
4044 static int __igb_open(struct net_device *netdev, bool resuming)
4045 {
4046         struct igb_adapter *adapter = netdev_priv(netdev);
4047         struct e1000_hw *hw = &adapter->hw;
4048         struct pci_dev *pdev = adapter->pdev;
4049         int err;
4050         int i;
4051
4052         /* disallow open during test */
4053         if (test_bit(__IGB_TESTING, &adapter->state)) {
4054                 WARN_ON(resuming);
4055                 return -EBUSY;
4056         }
4057
4058         if (!resuming)
4059                 pm_runtime_get_sync(&pdev->dev);
4060
4061         netif_carrier_off(netdev);
4062
4063         /* allocate transmit descriptors */
4064         err = igb_setup_all_tx_resources(adapter);
4065         if (err)
4066                 goto err_setup_tx;
4067
4068         /* allocate receive descriptors */
4069         err = igb_setup_all_rx_resources(adapter);
4070         if (err)
4071                 goto err_setup_rx;
4072
4073         igb_power_up_link(adapter);
4074
4075         /* before we allocate an interrupt, we must be ready to handle it.
4076          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4077          * as soon as we call pci_request_irq, so we have to setup our
4078          * clean_rx handler before we do so.
4079          */
4080         igb_configure(adapter);
4081
4082         err = igb_request_irq(adapter);
4083         if (err)
4084                 goto err_req_irq;
4085
4086         /* Notify the stack of the actual queue counts. */
4087         err = netif_set_real_num_tx_queues(adapter->netdev,
4088                                            adapter->num_tx_queues);
4089         if (err)
4090                 goto err_set_queues;
4091
4092         err = netif_set_real_num_rx_queues(adapter->netdev,
4093                                            adapter->num_rx_queues);
4094         if (err)
4095                 goto err_set_queues;
4096
4097         /* From here on the code is the same as igb_up() */
4098         clear_bit(__IGB_DOWN, &adapter->state);
4099
4100         for (i = 0; i < adapter->num_q_vectors; i++)
4101                 napi_enable(&(adapter->q_vector[i]->napi));
4102
4103         /* Clear any pending interrupts. */
4104         rd32(E1000_TSICR);
4105         rd32(E1000_ICR);
4106
4107         igb_irq_enable(adapter);
4108
4109         /* notify VFs that reset has been completed */
4110         if (adapter->vfs_allocated_count) {
4111                 u32 reg_data = rd32(E1000_CTRL_EXT);
4112
4113                 reg_data |= E1000_CTRL_EXT_PFRSTD;
4114                 wr32(E1000_CTRL_EXT, reg_data);
4115         }
4116
4117         netif_tx_start_all_queues(netdev);
4118
4119         if (!resuming)
4120                 pm_runtime_put(&pdev->dev);
4121
4122         /* start the watchdog. */
4123         hw->mac.get_link_status = 1;
4124         schedule_work(&adapter->watchdog_task);
4125
4126         return 0;
4127
4128 err_set_queues:
4129         igb_free_irq(adapter);
4130 err_req_irq:
4131         igb_release_hw_control(adapter);
4132         igb_power_down_link(adapter);
4133         igb_free_all_rx_resources(adapter);
4134 err_setup_rx:
4135         igb_free_all_tx_resources(adapter);
4136 err_setup_tx:
4137         igb_reset(adapter);
4138         if (!resuming)
4139                 pm_runtime_put(&pdev->dev);
4140
4141         return err;
4142 }
4143
4144 int igb_open(struct net_device *netdev)
4145 {
4146         return __igb_open(netdev, false);
4147 }
4148
4149 /**
4150  *  __igb_close - Disables a network interface
4151  *  @netdev: network interface device structure
4152  *  @suspending: indicates we are in a suspend call
4153  *
4154  *  Returns 0, this is not allowed to fail
4155  *
4156  *  The close entry point is called when an interface is de-activated
4157  *  by the OS.  The hardware is still under the driver's control, but
4158  *  needs to be disabled.  A global MAC reset is issued to stop the
4159  *  hardware, and all transmit and receive resources are freed.
4160  **/
4161 static int __igb_close(struct net_device *netdev, bool suspending)
4162 {
4163         struct igb_adapter *adapter = netdev_priv(netdev);
4164         struct pci_dev *pdev = adapter->pdev;
4165
4166         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4167
4168         if (!suspending)
4169                 pm_runtime_get_sync(&pdev->dev);
4170
4171         igb_down(adapter);
4172         igb_free_irq(adapter);
4173
4174         igb_free_all_tx_resources(adapter);
4175         igb_free_all_rx_resources(adapter);
4176
4177         if (!suspending)
4178                 pm_runtime_put_sync(&pdev->dev);
4179         return 0;
4180 }
4181
4182 int igb_close(struct net_device *netdev)
4183 {
4184         if (netif_device_present(netdev) || netdev->dismantle)
4185                 return __igb_close(netdev, false);
4186         return 0;
4187 }
4188
4189 /**
4190  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4191  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4192  *
4193  *  Return 0 on success, negative on failure
4194  **/
4195 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4196 {
4197         struct device *dev = tx_ring->dev;
4198         int size;
4199
4200         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4201
4202         tx_ring->tx_buffer_info = vmalloc(size);
4203         if (!tx_ring->tx_buffer_info)
4204                 goto err;
4205
4206         /* round up to nearest 4K */
4207         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4208         tx_ring->size = ALIGN(tx_ring->size, 4096);
4209
4210         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4211                                            &tx_ring->dma, GFP_KERNEL);
4212         if (!tx_ring->desc)
4213                 goto err;
4214
4215         tx_ring->next_to_use = 0;
4216         tx_ring->next_to_clean = 0;
4217
4218         return 0;
4219
4220 err:
4221         vfree(tx_ring->tx_buffer_info);
4222         tx_ring->tx_buffer_info = NULL;
4223         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4224         return -ENOMEM;
4225 }
4226
4227 /**
4228  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4229  *                               (Descriptors) for all queues
4230  *  @adapter: board private structure
4231  *
4232  *  Return 0 on success, negative on failure
4233  **/
4234 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4235 {
4236         struct pci_dev *pdev = adapter->pdev;
4237         int i, err = 0;
4238
4239         for (i = 0; i < adapter->num_tx_queues; i++) {
4240                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4241                 if (err) {
4242                         dev_err(&pdev->dev,
4243                                 "Allocation for Tx Queue %u failed\n", i);
4244                         for (i--; i >= 0; i--)
4245                                 igb_free_tx_resources(adapter->tx_ring[i]);
4246                         break;
4247                 }
4248         }
4249
4250         return err;
4251 }
4252
4253 /**
4254  *  igb_setup_tctl - configure the transmit control registers
4255  *  @adapter: Board private structure
4256  **/
4257 void igb_setup_tctl(struct igb_adapter *adapter)
4258 {
4259         struct e1000_hw *hw = &adapter->hw;
4260         u32 tctl;
4261
4262         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4263         wr32(E1000_TXDCTL(0), 0);
4264
4265         /* Program the Transmit Control Register */
4266         tctl = rd32(E1000_TCTL);
4267         tctl &= ~E1000_TCTL_CT;
4268         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4269                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4270
4271         igb_config_collision_dist(hw);
4272
4273         /* Enable transmits */
4274         tctl |= E1000_TCTL_EN;
4275
4276         wr32(E1000_TCTL, tctl);
4277 }
4278
4279 /**
4280  *  igb_configure_tx_ring - Configure transmit ring after Reset
4281  *  @adapter: board private structure
4282  *  @ring: tx ring to configure
4283  *
4284  *  Configure a transmit ring after a reset.
4285  **/
4286 void igb_configure_tx_ring(struct igb_adapter *adapter,
4287                            struct igb_ring *ring)
4288 {
4289         struct e1000_hw *hw = &adapter->hw;
4290         u32 txdctl = 0;
4291         u64 tdba = ring->dma;
4292         int reg_idx = ring->reg_idx;
4293
4294         wr32(E1000_TDLEN(reg_idx),
4295              ring->count * sizeof(union e1000_adv_tx_desc));
4296         wr32(E1000_TDBAL(reg_idx),
4297              tdba & 0x00000000ffffffffULL);
4298         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4299
4300         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4301         wr32(E1000_TDH(reg_idx), 0);
4302         writel(0, ring->tail);
4303
4304         txdctl |= IGB_TX_PTHRESH;
4305         txdctl |= IGB_TX_HTHRESH << 8;
4306         txdctl |= IGB_TX_WTHRESH << 16;
4307
4308         /* reinitialize tx_buffer_info */
4309         memset(ring->tx_buffer_info, 0,
4310                sizeof(struct igb_tx_buffer) * ring->count);
4311
4312         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4313         wr32(E1000_TXDCTL(reg_idx), txdctl);
4314 }
4315
4316 /**
4317  *  igb_configure_tx - Configure transmit Unit after Reset
4318  *  @adapter: board private structure
4319  *
4320  *  Configure the Tx unit of the MAC after a reset.
4321  **/
4322 static void igb_configure_tx(struct igb_adapter *adapter)
4323 {
4324         struct e1000_hw *hw = &adapter->hw;
4325         int i;
4326
4327         /* disable the queues */
4328         for (i = 0; i < adapter->num_tx_queues; i++)
4329                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4330
4331         wrfl();
4332         usleep_range(10000, 20000);
4333
4334         for (i = 0; i < adapter->num_tx_queues; i++)
4335                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4336 }
4337
4338 /**
4339  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4340  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4341  *
4342  *  Returns 0 on success, negative on failure
4343  **/
4344 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4345 {
4346         struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4347         struct device *dev = rx_ring->dev;
4348         int size, res;
4349
4350         /* XDP RX-queue info */
4351         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4352                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4353         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4354                                rx_ring->queue_index, 0);
4355         if (res < 0) {
4356                 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4357                         rx_ring->queue_index);
4358                 return res;
4359         }
4360
4361         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4362
4363         rx_ring->rx_buffer_info = vmalloc(size);
4364         if (!rx_ring->rx_buffer_info)
4365                 goto err;
4366
4367         /* Round up to nearest 4K */
4368         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4369         rx_ring->size = ALIGN(rx_ring->size, 4096);
4370
4371         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4372                                            &rx_ring->dma, GFP_KERNEL);
4373         if (!rx_ring->desc)
4374                 goto err;
4375
4376         rx_ring->next_to_alloc = 0;
4377         rx_ring->next_to_clean = 0;
4378         rx_ring->next_to_use = 0;
4379
4380         rx_ring->xdp_prog = adapter->xdp_prog;
4381
4382         return 0;
4383
4384 err:
4385         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4386         vfree(rx_ring->rx_buffer_info);
4387         rx_ring->rx_buffer_info = NULL;
4388         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4389         return -ENOMEM;
4390 }
4391
4392 /**
4393  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4394  *                               (Descriptors) for all queues
4395  *  @adapter: board private structure
4396  *
4397  *  Return 0 on success, negative on failure
4398  **/
4399 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4400 {
4401         struct pci_dev *pdev = adapter->pdev;
4402         int i, err = 0;
4403
4404         for (i = 0; i < adapter->num_rx_queues; i++) {
4405                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4406                 if (err) {
4407                         dev_err(&pdev->dev,
4408                                 "Allocation for Rx Queue %u failed\n", i);
4409                         for (i--; i >= 0; i--)
4410                                 igb_free_rx_resources(adapter->rx_ring[i]);
4411                         break;
4412                 }
4413         }
4414
4415         return err;
4416 }
4417
4418 /**
4419  *  igb_setup_mrqc - configure the multiple receive queue control registers
4420  *  @adapter: Board private structure
4421  **/
4422 static void igb_setup_mrqc(struct igb_adapter *adapter)
4423 {
4424         struct e1000_hw *hw = &adapter->hw;
4425         u32 mrqc, rxcsum;
4426         u32 j, num_rx_queues;
4427         u32 rss_key[10];
4428
4429         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4430         for (j = 0; j < 10; j++)
4431                 wr32(E1000_RSSRK(j), rss_key[j]);
4432
4433         num_rx_queues = adapter->rss_queues;
4434
4435         switch (hw->mac.type) {
4436         case e1000_82576:
4437                 /* 82576 supports 2 RSS queues for SR-IOV */
4438                 if (adapter->vfs_allocated_count)
4439                         num_rx_queues = 2;
4440                 break;
4441         default:
4442                 break;
4443         }
4444
4445         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4446                 for (j = 0; j < IGB_RETA_SIZE; j++)
4447                         adapter->rss_indir_tbl[j] =
4448                         (j * num_rx_queues) / IGB_RETA_SIZE;
4449                 adapter->rss_indir_tbl_init = num_rx_queues;
4450         }
4451         igb_write_rss_indir_tbl(adapter);
4452
4453         /* Disable raw packet checksumming so that RSS hash is placed in
4454          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4455          * offloads as they are enabled by default
4456          */
4457         rxcsum = rd32(E1000_RXCSUM);
4458         rxcsum |= E1000_RXCSUM_PCSD;
4459
4460         if (adapter->hw.mac.type >= e1000_82576)
4461                 /* Enable Receive Checksum Offload for SCTP */
4462                 rxcsum |= E1000_RXCSUM_CRCOFL;
4463
4464         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4465         wr32(E1000_RXCSUM, rxcsum);
4466
4467         /* Generate RSS hash based on packet types, TCP/UDP
4468          * port numbers and/or IPv4/v6 src and dst addresses
4469          */
4470         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4471                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4472                E1000_MRQC_RSS_FIELD_IPV6 |
4473                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4474                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4475
4476         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4477                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4478         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4479                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4480
4481         /* If VMDq is enabled then we set the appropriate mode for that, else
4482          * we default to RSS so that an RSS hash is calculated per packet even
4483          * if we are only using one queue
4484          */
4485         if (adapter->vfs_allocated_count) {
4486                 if (hw->mac.type > e1000_82575) {
4487                         /* Set the default pool for the PF's first queue */
4488                         u32 vtctl = rd32(E1000_VT_CTL);
4489
4490                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4491                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4492                         vtctl |= adapter->vfs_allocated_count <<
4493                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4494                         wr32(E1000_VT_CTL, vtctl);
4495                 }
4496                 if (adapter->rss_queues > 1)
4497                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4498                 else
4499                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4500         } else {
4501                 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4502         }
4503         igb_vmm_control(adapter);
4504
4505         wr32(E1000_MRQC, mrqc);
4506 }
4507
4508 /**
4509  *  igb_setup_rctl - configure the receive control registers
4510  *  @adapter: Board private structure
4511  **/
4512 void igb_setup_rctl(struct igb_adapter *adapter)
4513 {
4514         struct e1000_hw *hw = &adapter->hw;
4515         u32 rctl;
4516
4517         rctl = rd32(E1000_RCTL);
4518
4519         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4520         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4521
4522         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4523                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4524
4525         /* enable stripping of CRC. It's unlikely this will break BMC
4526          * redirection as it did with e1000. Newer features require
4527          * that the HW strips the CRC.
4528          */
4529         rctl |= E1000_RCTL_SECRC;
4530
4531         /* disable store bad packets and clear size bits. */
4532         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4533
4534         /* enable LPE to allow for reception of jumbo frames */
4535         rctl |= E1000_RCTL_LPE;
4536
4537         /* disable queue 0 to prevent tail write w/o re-config */
4538         wr32(E1000_RXDCTL(0), 0);
4539
4540         /* Attention!!!  For SR-IOV PF driver operations you must enable
4541          * queue drop for all VF and PF queues to prevent head of line blocking
4542          * if an un-trusted VF does not provide descriptors to hardware.
4543          */
4544         if (adapter->vfs_allocated_count) {
4545                 /* set all queue drop enable bits */
4546                 wr32(E1000_QDE, ALL_QUEUES);
4547         }
4548
4549         /* This is useful for sniffing bad packets. */
4550         if (adapter->netdev->features & NETIF_F_RXALL) {
4551                 /* UPE and MPE will be handled by normal PROMISC logic
4552                  * in e1000e_set_rx_mode
4553                  */
4554                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4555                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4556                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4557
4558                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4559                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4560                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4561                  * and that breaks VLANs.
4562                  */
4563         }
4564
4565         wr32(E1000_RCTL, rctl);
4566 }
4567
4568 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4569                                    int vfn)
4570 {
4571         struct e1000_hw *hw = &adapter->hw;
4572         u32 vmolr;
4573
4574         if (size > MAX_JUMBO_FRAME_SIZE)
4575                 size = MAX_JUMBO_FRAME_SIZE;
4576
4577         vmolr = rd32(E1000_VMOLR(vfn));
4578         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4579         vmolr |= size | E1000_VMOLR_LPE;
4580         wr32(E1000_VMOLR(vfn), vmolr);
4581
4582         return 0;
4583 }
4584
4585 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4586                                          int vfn, bool enable)
4587 {
4588         struct e1000_hw *hw = &adapter->hw;
4589         u32 val, reg;
4590
4591         if (hw->mac.type < e1000_82576)
4592                 return;
4593
4594         if (hw->mac.type == e1000_i350)
4595                 reg = E1000_DVMOLR(vfn);
4596         else
4597                 reg = E1000_VMOLR(vfn);
4598
4599         val = rd32(reg);
4600         if (enable)
4601                 val |= E1000_VMOLR_STRVLAN;
4602         else
4603                 val &= ~(E1000_VMOLR_STRVLAN);
4604         wr32(reg, val);
4605 }
4606
4607 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4608                                  int vfn, bool aupe)
4609 {
4610         struct e1000_hw *hw = &adapter->hw;
4611         u32 vmolr;
4612
4613         /* This register exists only on 82576 and newer so if we are older then
4614          * we should exit and do nothing
4615          */
4616         if (hw->mac.type < e1000_82576)
4617                 return;
4618
4619         vmolr = rd32(E1000_VMOLR(vfn));
4620         if (aupe)
4621                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4622         else
4623                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4624
4625         /* clear all bits that might not be set */
4626         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4627
4628         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4629                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4630         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4631          * multicast packets
4632          */
4633         if (vfn <= adapter->vfs_allocated_count)
4634                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4635
4636         wr32(E1000_VMOLR(vfn), vmolr);
4637 }
4638
4639 /**
4640  *  igb_setup_srrctl - configure the split and replication receive control
4641  *                     registers
4642  *  @adapter: Board private structure
4643  *  @ring: receive ring to be configured
4644  **/
4645 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4646 {
4647         struct e1000_hw *hw = &adapter->hw;
4648         int reg_idx = ring->reg_idx;
4649         u32 srrctl = 0;
4650
4651         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4652         if (ring_uses_large_buffer(ring))
4653                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4654         else
4655                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4656         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4657         if (hw->mac.type >= e1000_82580)
4658                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4659         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4660          * queues and rx flow control is disabled
4661          */
4662         if (adapter->vfs_allocated_count ||
4663             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4664              adapter->num_rx_queues > 1))
4665                 srrctl |= E1000_SRRCTL_DROP_EN;
4666
4667         wr32(E1000_SRRCTL(reg_idx), srrctl);
4668 }
4669
4670 /**
4671  *  igb_configure_rx_ring - Configure a receive ring after Reset
4672  *  @adapter: board private structure
4673  *  @ring: receive ring to be configured
4674  *
4675  *  Configure the Rx unit of the MAC after a reset.
4676  **/
4677 void igb_configure_rx_ring(struct igb_adapter *adapter,
4678                            struct igb_ring *ring)
4679 {
4680         struct e1000_hw *hw = &adapter->hw;
4681         union e1000_adv_rx_desc *rx_desc;
4682         u64 rdba = ring->dma;
4683         int reg_idx = ring->reg_idx;
4684         u32 rxdctl = 0;
4685
4686         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4687         WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4688                                            MEM_TYPE_PAGE_SHARED, NULL));
4689
4690         /* disable the queue */
4691         wr32(E1000_RXDCTL(reg_idx), 0);
4692
4693         /* Set DMA base address registers */
4694         wr32(E1000_RDBAL(reg_idx),
4695              rdba & 0x00000000ffffffffULL);
4696         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4697         wr32(E1000_RDLEN(reg_idx),
4698              ring->count * sizeof(union e1000_adv_rx_desc));
4699
4700         /* initialize head and tail */
4701         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4702         wr32(E1000_RDH(reg_idx), 0);
4703         writel(0, ring->tail);
4704
4705         /* set descriptor configuration */
4706         igb_setup_srrctl(adapter, ring);
4707
4708         /* set filtering for VMDQ pools */
4709         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4710
4711         rxdctl |= IGB_RX_PTHRESH;
4712         rxdctl |= IGB_RX_HTHRESH << 8;
4713         rxdctl |= IGB_RX_WTHRESH << 16;
4714
4715         /* initialize rx_buffer_info */
4716         memset(ring->rx_buffer_info, 0,
4717                sizeof(struct igb_rx_buffer) * ring->count);
4718
4719         /* initialize Rx descriptor 0 */
4720         rx_desc = IGB_RX_DESC(ring, 0);
4721         rx_desc->wb.upper.length = 0;
4722
4723         /* enable receive descriptor fetching */
4724         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4725         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4726 }
4727
4728 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4729                                   struct igb_ring *rx_ring)
4730 {
4731         /* set build_skb and buffer size flags */
4732         clear_ring_build_skb_enabled(rx_ring);
4733         clear_ring_uses_large_buffer(rx_ring);
4734
4735         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4736                 return;
4737
4738         set_ring_build_skb_enabled(rx_ring);
4739
4740 #if (PAGE_SIZE < 8192)
4741         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4742                 return;
4743
4744         set_ring_uses_large_buffer(rx_ring);
4745 #endif
4746 }
4747
4748 /**
4749  *  igb_configure_rx - Configure receive Unit after Reset
4750  *  @adapter: board private structure
4751  *
4752  *  Configure the Rx unit of the MAC after a reset.
4753  **/
4754 static void igb_configure_rx(struct igb_adapter *adapter)
4755 {
4756         int i;
4757
4758         /* set the correct pool for the PF default MAC address in entry 0 */
4759         igb_set_default_mac_filter(adapter);
4760
4761         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4762          * the Base and Length of the Rx Descriptor Ring
4763          */
4764         for (i = 0; i < adapter->num_rx_queues; i++) {
4765                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4766
4767                 igb_set_rx_buffer_len(adapter, rx_ring);
4768                 igb_configure_rx_ring(adapter, rx_ring);
4769         }
4770 }
4771
4772 /**
4773  *  igb_free_tx_resources - Free Tx Resources per Queue
4774  *  @tx_ring: Tx descriptor ring for a specific queue
4775  *
4776  *  Free all transmit software resources
4777  **/
4778 void igb_free_tx_resources(struct igb_ring *tx_ring)
4779 {
4780         igb_clean_tx_ring(tx_ring);
4781
4782         vfree(tx_ring->tx_buffer_info);
4783         tx_ring->tx_buffer_info = NULL;
4784
4785         /* if not set, then don't free */
4786         if (!tx_ring->desc)
4787                 return;
4788
4789         dma_free_coherent(tx_ring->dev, tx_ring->size,
4790                           tx_ring->desc, tx_ring->dma);
4791
4792         tx_ring->desc = NULL;
4793 }
4794
4795 /**
4796  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4797  *  @adapter: board private structure
4798  *
4799  *  Free all transmit software resources
4800  **/
4801 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4802 {
4803         int i;
4804
4805         for (i = 0; i < adapter->num_tx_queues; i++)
4806                 if (adapter->tx_ring[i])
4807                         igb_free_tx_resources(adapter->tx_ring[i]);
4808 }
4809
4810 /**
4811  *  igb_clean_tx_ring - Free Tx Buffers
4812  *  @tx_ring: ring to be cleaned
4813  **/
4814 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4815 {
4816         u16 i = tx_ring->next_to_clean;
4817         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4818
4819         while (i != tx_ring->next_to_use) {
4820                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4821
4822                 /* Free all the Tx ring sk_buffs or xdp frames */
4823                 if (tx_buffer->type == IGB_TYPE_SKB)
4824                         dev_kfree_skb_any(tx_buffer->skb);
4825                 else
4826                         xdp_return_frame(tx_buffer->xdpf);
4827
4828                 /* unmap skb header data */
4829                 dma_unmap_single(tx_ring->dev,
4830                                  dma_unmap_addr(tx_buffer, dma),
4831                                  dma_unmap_len(tx_buffer, len),
4832                                  DMA_TO_DEVICE);
4833
4834                 /* check for eop_desc to determine the end of the packet */
4835                 eop_desc = tx_buffer->next_to_watch;
4836                 tx_desc = IGB_TX_DESC(tx_ring, i);
4837
4838                 /* unmap remaining buffers */
4839                 while (tx_desc != eop_desc) {
4840                         tx_buffer++;
4841                         tx_desc++;
4842                         i++;
4843                         if (unlikely(i == tx_ring->count)) {
4844                                 i = 0;
4845                                 tx_buffer = tx_ring->tx_buffer_info;
4846                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4847                         }
4848
4849                         /* unmap any remaining paged data */
4850                         if (dma_unmap_len(tx_buffer, len))
4851                                 dma_unmap_page(tx_ring->dev,
4852                                                dma_unmap_addr(tx_buffer, dma),
4853                                                dma_unmap_len(tx_buffer, len),
4854                                                DMA_TO_DEVICE);
4855                 }
4856
4857                 tx_buffer->next_to_watch = NULL;
4858
4859                 /* move us one more past the eop_desc for start of next pkt */
4860                 tx_buffer++;
4861                 i++;
4862                 if (unlikely(i == tx_ring->count)) {
4863                         i = 0;
4864                         tx_buffer = tx_ring->tx_buffer_info;
4865                 }
4866         }
4867
4868         /* reset BQL for queue */
4869         netdev_tx_reset_queue(txring_txq(tx_ring));
4870
4871         /* reset next_to_use and next_to_clean */
4872         tx_ring->next_to_use = 0;
4873         tx_ring->next_to_clean = 0;
4874 }
4875
4876 /**
4877  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4878  *  @adapter: board private structure
4879  **/
4880 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4881 {
4882         int i;
4883
4884         for (i = 0; i < adapter->num_tx_queues; i++)
4885                 if (adapter->tx_ring[i])
4886                         igb_clean_tx_ring(adapter->tx_ring[i]);
4887 }
4888
4889 /**
4890  *  igb_free_rx_resources - Free Rx Resources
4891  *  @rx_ring: ring to clean the resources from
4892  *
4893  *  Free all receive software resources
4894  **/
4895 void igb_free_rx_resources(struct igb_ring *rx_ring)
4896 {
4897         igb_clean_rx_ring(rx_ring);
4898
4899         rx_ring->xdp_prog = NULL;
4900         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4901         vfree(rx_ring->rx_buffer_info);
4902         rx_ring->rx_buffer_info = NULL;
4903
4904         /* if not set, then don't free */
4905         if (!rx_ring->desc)
4906                 return;
4907
4908         dma_free_coherent(rx_ring->dev, rx_ring->size,
4909                           rx_ring->desc, rx_ring->dma);
4910
4911         rx_ring->desc = NULL;
4912 }
4913
4914 /**
4915  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4916  *  @adapter: board private structure
4917  *
4918  *  Free all receive software resources
4919  **/
4920 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4921 {
4922         int i;
4923
4924         for (i = 0; i < adapter->num_rx_queues; i++)
4925                 if (adapter->rx_ring[i])
4926                         igb_free_rx_resources(adapter->rx_ring[i]);
4927 }
4928
4929 /**
4930  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4931  *  @rx_ring: ring to free buffers from
4932  **/
4933 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4934 {
4935         u16 i = rx_ring->next_to_clean;
4936
4937         dev_kfree_skb(rx_ring->skb);
4938         rx_ring->skb = NULL;
4939
4940         /* Free all the Rx ring sk_buffs */
4941         while (i != rx_ring->next_to_alloc) {
4942                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4943
4944                 /* Invalidate cache lines that may have been written to by
4945                  * device so that we avoid corrupting memory.
4946                  */
4947                 dma_sync_single_range_for_cpu(rx_ring->dev,
4948                                               buffer_info->dma,
4949                                               buffer_info->page_offset,
4950                                               igb_rx_bufsz(rx_ring),
4951                                               DMA_FROM_DEVICE);
4952
4953                 /* free resources associated with mapping */
4954                 dma_unmap_page_attrs(rx_ring->dev,
4955                                      buffer_info->dma,
4956                                      igb_rx_pg_size(rx_ring),
4957                                      DMA_FROM_DEVICE,
4958                                      IGB_RX_DMA_ATTR);
4959                 __page_frag_cache_drain(buffer_info->page,
4960                                         buffer_info->pagecnt_bias);
4961
4962                 i++;
4963                 if (i == rx_ring->count)
4964                         i = 0;
4965         }
4966
4967         rx_ring->next_to_alloc = 0;
4968         rx_ring->next_to_clean = 0;
4969         rx_ring->next_to_use = 0;
4970 }
4971
4972 /**
4973  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4974  *  @adapter: board private structure
4975  **/
4976 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4977 {
4978         int i;
4979
4980         for (i = 0; i < adapter->num_rx_queues; i++)
4981                 if (adapter->rx_ring[i])
4982                         igb_clean_rx_ring(adapter->rx_ring[i]);
4983 }
4984
4985 /**
4986  *  igb_set_mac - Change the Ethernet Address of the NIC
4987  *  @netdev: network interface device structure
4988  *  @p: pointer to an address structure
4989  *
4990  *  Returns 0 on success, negative on failure
4991  **/
4992 static int igb_set_mac(struct net_device *netdev, void *p)
4993 {
4994         struct igb_adapter *adapter = netdev_priv(netdev);
4995         struct e1000_hw *hw = &adapter->hw;
4996         struct sockaddr *addr = p;
4997
4998         if (!is_valid_ether_addr(addr->sa_data))
4999                 return -EADDRNOTAVAIL;
5000
5001         eth_hw_addr_set(netdev, addr->sa_data);
5002         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5003
5004         /* set the correct pool for the new PF MAC address in entry 0 */
5005         igb_set_default_mac_filter(adapter);
5006
5007         return 0;
5008 }
5009
5010 /**
5011  *  igb_write_mc_addr_list - write multicast addresses to MTA
5012  *  @netdev: network interface device structure
5013  *
5014  *  Writes multicast address list to the MTA hash table.
5015  *  Returns: -ENOMEM on failure
5016  *           0 on no addresses written
5017  *           X on writing X addresses to MTA
5018  **/
5019 static int igb_write_mc_addr_list(struct net_device *netdev)
5020 {
5021         struct igb_adapter *adapter = netdev_priv(netdev);
5022         struct e1000_hw *hw = &adapter->hw;
5023         struct netdev_hw_addr *ha;
5024         u8  *mta_list;
5025         int i;
5026
5027         if (netdev_mc_empty(netdev)) {
5028                 /* nothing to program, so clear mc list */
5029                 igb_update_mc_addr_list(hw, NULL, 0);
5030                 igb_restore_vf_multicasts(adapter);
5031                 return 0;
5032         }
5033
5034         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5035         if (!mta_list)
5036                 return -ENOMEM;
5037
5038         /* The shared function expects a packed array of only addresses. */
5039         i = 0;
5040         netdev_for_each_mc_addr(ha, netdev)
5041                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5042
5043         igb_update_mc_addr_list(hw, mta_list, i);
5044         kfree(mta_list);
5045
5046         return netdev_mc_count(netdev);
5047 }
5048
5049 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5050 {
5051         struct e1000_hw *hw = &adapter->hw;
5052         u32 i, pf_id;
5053
5054         switch (hw->mac.type) {
5055         case e1000_i210:
5056         case e1000_i211:
5057         case e1000_i350:
5058                 /* VLAN filtering needed for VLAN prio filter */
5059                 if (adapter->netdev->features & NETIF_F_NTUPLE)
5060                         break;
5061                 fallthrough;
5062         case e1000_82576:
5063         case e1000_82580:
5064         case e1000_i354:
5065                 /* VLAN filtering needed for pool filtering */
5066                 if (adapter->vfs_allocated_count)
5067                         break;
5068                 fallthrough;
5069         default:
5070                 return 1;
5071         }
5072
5073         /* We are already in VLAN promisc, nothing to do */
5074         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5075                 return 0;
5076
5077         if (!adapter->vfs_allocated_count)
5078                 goto set_vfta;
5079
5080         /* Add PF to all active pools */
5081         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5082
5083         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5084                 u32 vlvf = rd32(E1000_VLVF(i));
5085
5086                 vlvf |= BIT(pf_id);
5087                 wr32(E1000_VLVF(i), vlvf);
5088         }
5089
5090 set_vfta:
5091         /* Set all bits in the VLAN filter table array */
5092         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5093                 hw->mac.ops.write_vfta(hw, i, ~0U);
5094
5095         /* Set flag so we don't redo unnecessary work */
5096         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5097
5098         return 0;
5099 }
5100
5101 #define VFTA_BLOCK_SIZE 8
5102 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5103 {
5104         struct e1000_hw *hw = &adapter->hw;
5105         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5106         u32 vid_start = vfta_offset * 32;
5107         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5108         u32 i, vid, word, bits, pf_id;
5109
5110         /* guarantee that we don't scrub out management VLAN */
5111         vid = adapter->mng_vlan_id;
5112         if (vid >= vid_start && vid < vid_end)
5113                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5114
5115         if (!adapter->vfs_allocated_count)
5116                 goto set_vfta;
5117
5118         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5119
5120         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5121                 u32 vlvf = rd32(E1000_VLVF(i));
5122
5123                 /* pull VLAN ID from VLVF */
5124                 vid = vlvf & VLAN_VID_MASK;
5125
5126                 /* only concern ourselves with a certain range */
5127                 if (vid < vid_start || vid >= vid_end)
5128                         continue;
5129
5130                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5131                         /* record VLAN ID in VFTA */
5132                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5133
5134                         /* if PF is part of this then continue */
5135                         if (test_bit(vid, adapter->active_vlans))
5136                                 continue;
5137                 }
5138
5139                 /* remove PF from the pool */
5140                 bits = ~BIT(pf_id);
5141                 bits &= rd32(E1000_VLVF(i));
5142                 wr32(E1000_VLVF(i), bits);
5143         }
5144
5145 set_vfta:
5146         /* extract values from active_vlans and write back to VFTA */
5147         for (i = VFTA_BLOCK_SIZE; i--;) {
5148                 vid = (vfta_offset + i) * 32;
5149                 word = vid / BITS_PER_LONG;
5150                 bits = vid % BITS_PER_LONG;
5151
5152                 vfta[i] |= adapter->active_vlans[word] >> bits;
5153
5154                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5155         }
5156 }
5157
5158 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5159 {
5160         u32 i;
5161
5162         /* We are not in VLAN promisc, nothing to do */
5163         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5164                 return;
5165
5166         /* Set flag so we don't redo unnecessary work */
5167         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5168
5169         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5170                 igb_scrub_vfta(adapter, i);
5171 }
5172
5173 /**
5174  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5175  *  @netdev: network interface device structure
5176  *
5177  *  The set_rx_mode entry point is called whenever the unicast or multicast
5178  *  address lists or the network interface flags are updated.  This routine is
5179  *  responsible for configuring the hardware for proper unicast, multicast,
5180  *  promiscuous mode, and all-multi behavior.
5181  **/
5182 static void igb_set_rx_mode(struct net_device *netdev)
5183 {
5184         struct igb_adapter *adapter = netdev_priv(netdev);
5185         struct e1000_hw *hw = &adapter->hw;
5186         unsigned int vfn = adapter->vfs_allocated_count;
5187         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5188         int count;
5189
5190         /* Check for Promiscuous and All Multicast modes */
5191         if (netdev->flags & IFF_PROMISC) {
5192                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5193                 vmolr |= E1000_VMOLR_MPME;
5194
5195                 /* enable use of UTA filter to force packets to default pool */
5196                 if (hw->mac.type == e1000_82576)
5197                         vmolr |= E1000_VMOLR_ROPE;
5198         } else {
5199                 if (netdev->flags & IFF_ALLMULTI) {
5200                         rctl |= E1000_RCTL_MPE;
5201                         vmolr |= E1000_VMOLR_MPME;
5202                 } else {
5203                         /* Write addresses to the MTA, if the attempt fails
5204                          * then we should just turn on promiscuous mode so
5205                          * that we can at least receive multicast traffic
5206                          */
5207                         count = igb_write_mc_addr_list(netdev);
5208                         if (count < 0) {
5209                                 rctl |= E1000_RCTL_MPE;
5210                                 vmolr |= E1000_VMOLR_MPME;
5211                         } else if (count) {
5212                                 vmolr |= E1000_VMOLR_ROMPE;
5213                         }
5214                 }
5215         }
5216
5217         /* Write addresses to available RAR registers, if there is not
5218          * sufficient space to store all the addresses then enable
5219          * unicast promiscuous mode
5220          */
5221         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5222                 rctl |= E1000_RCTL_UPE;
5223                 vmolr |= E1000_VMOLR_ROPE;
5224         }
5225
5226         /* enable VLAN filtering by default */
5227         rctl |= E1000_RCTL_VFE;
5228
5229         /* disable VLAN filtering for modes that require it */
5230         if ((netdev->flags & IFF_PROMISC) ||
5231             (netdev->features & NETIF_F_RXALL)) {
5232                 /* if we fail to set all rules then just clear VFE */
5233                 if (igb_vlan_promisc_enable(adapter))
5234                         rctl &= ~E1000_RCTL_VFE;
5235         } else {
5236                 igb_vlan_promisc_disable(adapter);
5237         }
5238
5239         /* update state of unicast, multicast, and VLAN filtering modes */
5240         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5241                                      E1000_RCTL_VFE);
5242         wr32(E1000_RCTL, rctl);
5243
5244 #if (PAGE_SIZE < 8192)
5245         if (!adapter->vfs_allocated_count) {
5246                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5247                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5248         }
5249 #endif
5250         wr32(E1000_RLPML, rlpml);
5251
5252         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5253          * the VMOLR to enable the appropriate modes.  Without this workaround
5254          * we will have issues with VLAN tag stripping not being done for frames
5255          * that are only arriving because we are the default pool
5256          */
5257         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5258                 return;
5259
5260         /* set UTA to appropriate mode */
5261         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5262
5263         vmolr |= rd32(E1000_VMOLR(vfn)) &
5264                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5265
5266         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5267         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5268 #if (PAGE_SIZE < 8192)
5269         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5270                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5271         else
5272 #endif
5273                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5274         vmolr |= E1000_VMOLR_LPE;
5275
5276         wr32(E1000_VMOLR(vfn), vmolr);
5277
5278         igb_restore_vf_multicasts(adapter);
5279 }
5280
5281 static void igb_check_wvbr(struct igb_adapter *adapter)
5282 {
5283         struct e1000_hw *hw = &adapter->hw;
5284         u32 wvbr = 0;
5285
5286         switch (hw->mac.type) {
5287         case e1000_82576:
5288         case e1000_i350:
5289                 wvbr = rd32(E1000_WVBR);
5290                 if (!wvbr)
5291                         return;
5292                 break;
5293         default:
5294                 break;
5295         }
5296
5297         adapter->wvbr |= wvbr;
5298 }
5299
5300 #define IGB_STAGGERED_QUEUE_OFFSET 8
5301
5302 static void igb_spoof_check(struct igb_adapter *adapter)
5303 {
5304         int j;
5305
5306         if (!adapter->wvbr)
5307                 return;
5308
5309         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5310                 if (adapter->wvbr & BIT(j) ||
5311                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5312                         dev_warn(&adapter->pdev->dev,
5313                                 "Spoof event(s) detected on VF %d\n", j);
5314                         adapter->wvbr &=
5315                                 ~(BIT(j) |
5316                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5317                 }
5318         }
5319 }
5320
5321 /* Need to wait a few seconds after link up to get diagnostic information from
5322  * the phy
5323  */
5324 static void igb_update_phy_info(struct timer_list *t)
5325 {
5326         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5327         igb_get_phy_info(&adapter->hw);
5328 }
5329
5330 /**
5331  *  igb_has_link - check shared code for link and determine up/down
5332  *  @adapter: pointer to driver private info
5333  **/
5334 bool igb_has_link(struct igb_adapter *adapter)
5335 {
5336         struct e1000_hw *hw = &adapter->hw;
5337         bool link_active = false;
5338
5339         /* get_link_status is set on LSC (link status) interrupt or
5340          * rx sequence error interrupt.  get_link_status will stay
5341          * false until the e1000_check_for_link establishes link
5342          * for copper adapters ONLY
5343          */
5344         switch (hw->phy.media_type) {
5345         case e1000_media_type_copper:
5346                 if (!hw->mac.get_link_status)
5347                         return true;
5348                 fallthrough;
5349         case e1000_media_type_internal_serdes:
5350                 hw->mac.ops.check_for_link(hw);
5351                 link_active = !hw->mac.get_link_status;
5352                 break;
5353         default:
5354         case e1000_media_type_unknown:
5355                 break;
5356         }
5357
5358         if (((hw->mac.type == e1000_i210) ||
5359              (hw->mac.type == e1000_i211)) &&
5360              (hw->phy.id == I210_I_PHY_ID)) {
5361                 if (!netif_carrier_ok(adapter->netdev)) {
5362                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5363                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5364                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5365                         adapter->link_check_timeout = jiffies;
5366                 }
5367         }
5368
5369         return link_active;
5370 }
5371
5372 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5373 {
5374         bool ret = false;
5375         u32 ctrl_ext, thstat;
5376
5377         /* check for thermal sensor event on i350 copper only */
5378         if (hw->mac.type == e1000_i350) {
5379                 thstat = rd32(E1000_THSTAT);
5380                 ctrl_ext = rd32(E1000_CTRL_EXT);
5381
5382                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5383                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5384                         ret = !!(thstat & event);
5385         }
5386
5387         return ret;
5388 }
5389
5390 /**
5391  *  igb_check_lvmmc - check for malformed packets received
5392  *  and indicated in LVMMC register
5393  *  @adapter: pointer to adapter
5394  **/
5395 static void igb_check_lvmmc(struct igb_adapter *adapter)
5396 {
5397         struct e1000_hw *hw = &adapter->hw;
5398         u32 lvmmc;
5399
5400         lvmmc = rd32(E1000_LVMMC);
5401         if (lvmmc) {
5402                 if (unlikely(net_ratelimit())) {
5403                         netdev_warn(adapter->netdev,
5404                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5405                                     lvmmc);
5406                 }
5407         }
5408 }
5409
5410 /**
5411  *  igb_watchdog - Timer Call-back
5412  *  @t: pointer to timer_list containing our private info pointer
5413  **/
5414 static void igb_watchdog(struct timer_list *t)
5415 {
5416         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5417         /* Do the rest outside of interrupt context */
5418         schedule_work(&adapter->watchdog_task);
5419 }
5420
5421 static void igb_watchdog_task(struct work_struct *work)
5422 {
5423         struct igb_adapter *adapter = container_of(work,
5424                                                    struct igb_adapter,
5425                                                    watchdog_task);
5426         struct e1000_hw *hw = &adapter->hw;
5427         struct e1000_phy_info *phy = &hw->phy;
5428         struct net_device *netdev = adapter->netdev;
5429         u32 link;
5430         int i;
5431         u32 connsw;
5432         u16 phy_data, retry_count = 20;
5433
5434         link = igb_has_link(adapter);
5435
5436         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5437                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5438                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5439                 else
5440                         link = false;
5441         }
5442
5443         /* Force link down if we have fiber to swap to */
5444         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5445                 if (hw->phy.media_type == e1000_media_type_copper) {
5446                         connsw = rd32(E1000_CONNSW);
5447                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5448                                 link = 0;
5449                 }
5450         }
5451         if (link) {
5452                 /* Perform a reset if the media type changed. */
5453                 if (hw->dev_spec._82575.media_changed) {
5454                         hw->dev_spec._82575.media_changed = false;
5455                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5456                         igb_reset(adapter);
5457                 }
5458                 /* Cancel scheduled suspend requests. */
5459                 pm_runtime_resume(netdev->dev.parent);
5460
5461                 if (!netif_carrier_ok(netdev)) {
5462                         u32 ctrl;
5463
5464                         hw->mac.ops.get_speed_and_duplex(hw,
5465                                                          &adapter->link_speed,
5466                                                          &adapter->link_duplex);
5467
5468                         ctrl = rd32(E1000_CTRL);
5469                         /* Links status message must follow this format */
5470                         netdev_info(netdev,
5471                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5472                                netdev->name,
5473                                adapter->link_speed,
5474                                adapter->link_duplex == FULL_DUPLEX ?
5475                                "Full" : "Half",
5476                                (ctrl & E1000_CTRL_TFCE) &&
5477                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5478                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5479                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5480
5481                         /* disable EEE if enabled */
5482                         if ((adapter->flags & IGB_FLAG_EEE) &&
5483                                 (adapter->link_duplex == HALF_DUPLEX)) {
5484                                 dev_info(&adapter->pdev->dev,
5485                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5486                                 adapter->hw.dev_spec._82575.eee_disable = true;
5487                                 adapter->flags &= ~IGB_FLAG_EEE;
5488                         }
5489
5490                         /* check if SmartSpeed worked */
5491                         igb_check_downshift(hw);
5492                         if (phy->speed_downgraded)
5493                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5494
5495                         /* check for thermal sensor event */
5496                         if (igb_thermal_sensor_event(hw,
5497                             E1000_THSTAT_LINK_THROTTLE))
5498                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5499
5500                         /* adjust timeout factor according to speed/duplex */
5501                         adapter->tx_timeout_factor = 1;
5502                         switch (adapter->link_speed) {
5503                         case SPEED_10:
5504                                 adapter->tx_timeout_factor = 14;
5505                                 break;
5506                         case SPEED_100:
5507                                 /* maybe add some timeout factor ? */
5508                                 break;
5509                         }
5510
5511                         if (adapter->link_speed != SPEED_1000 ||
5512                             !hw->phy.ops.read_reg)
5513                                 goto no_wait;
5514
5515                         /* wait for Remote receiver status OK */
5516 retry_read_status:
5517                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5518                                               &phy_data)) {
5519                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5520                                     retry_count) {
5521                                         msleep(100);
5522                                         retry_count--;
5523                                         goto retry_read_status;
5524                                 } else if (!retry_count) {
5525                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5526                                 }
5527                         } else {
5528                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5529                         }
5530 no_wait:
5531                         netif_carrier_on(netdev);
5532
5533                         igb_ping_all_vfs(adapter);
5534                         igb_check_vf_rate_limit(adapter);
5535
5536                         /* link state has changed, schedule phy info update */
5537                         if (!test_bit(__IGB_DOWN, &adapter->state))
5538                                 mod_timer(&adapter->phy_info_timer,
5539                                           round_jiffies(jiffies + 2 * HZ));
5540                 }
5541         } else {
5542                 if (netif_carrier_ok(netdev)) {
5543                         adapter->link_speed = 0;
5544                         adapter->link_duplex = 0;
5545
5546                         /* check for thermal sensor event */
5547                         if (igb_thermal_sensor_event(hw,
5548                             E1000_THSTAT_PWR_DOWN)) {
5549                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5550                         }
5551
5552                         /* Links status message must follow this format */
5553                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5554                                netdev->name);
5555                         netif_carrier_off(netdev);
5556
5557                         igb_ping_all_vfs(adapter);
5558
5559                         /* link state has changed, schedule phy info update */
5560                         if (!test_bit(__IGB_DOWN, &adapter->state))
5561                                 mod_timer(&adapter->phy_info_timer,
5562                                           round_jiffies(jiffies + 2 * HZ));
5563
5564                         /* link is down, time to check for alternate media */
5565                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5566                                 igb_check_swap_media(adapter);
5567                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5568                                         schedule_work(&adapter->reset_task);
5569                                         /* return immediately */
5570                                         return;
5571                                 }
5572                         }
5573                         pm_schedule_suspend(netdev->dev.parent,
5574                                             MSEC_PER_SEC * 5);
5575
5576                 /* also check for alternate media here */
5577                 } else if (!netif_carrier_ok(netdev) &&
5578                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5579                         igb_check_swap_media(adapter);
5580                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5581                                 schedule_work(&adapter->reset_task);
5582                                 /* return immediately */
5583                                 return;
5584                         }
5585                 }
5586         }
5587
5588         spin_lock(&adapter->stats64_lock);
5589         igb_update_stats(adapter);
5590         spin_unlock(&adapter->stats64_lock);
5591
5592         for (i = 0; i < adapter->num_tx_queues; i++) {
5593                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5594                 if (!netif_carrier_ok(netdev)) {
5595                         /* We've lost link, so the controller stops DMA,
5596                          * but we've got queued Tx work that's never going
5597                          * to get done, so reset controller to flush Tx.
5598                          * (Do the reset outside of interrupt context).
5599                          */
5600                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5601                                 adapter->tx_timeout_count++;
5602                                 schedule_work(&adapter->reset_task);
5603                                 /* return immediately since reset is imminent */
5604                                 return;
5605                         }
5606                 }
5607
5608                 /* Force detection of hung controller every watchdog period */
5609                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5610         }
5611
5612         /* Cause software interrupt to ensure Rx ring is cleaned */
5613         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5614                 u32 eics = 0;
5615
5616                 for (i = 0; i < adapter->num_q_vectors; i++)
5617                         eics |= adapter->q_vector[i]->eims_value;
5618                 wr32(E1000_EICS, eics);
5619         } else {
5620                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5621         }
5622
5623         igb_spoof_check(adapter);
5624         igb_ptp_rx_hang(adapter);
5625         igb_ptp_tx_hang(adapter);
5626
5627         /* Check LVMMC register on i350/i354 only */
5628         if ((adapter->hw.mac.type == e1000_i350) ||
5629             (adapter->hw.mac.type == e1000_i354))
5630                 igb_check_lvmmc(adapter);
5631
5632         /* Reset the timer */
5633         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5634                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5635                         mod_timer(&adapter->watchdog_timer,
5636                                   round_jiffies(jiffies +  HZ));
5637                 else
5638                         mod_timer(&adapter->watchdog_timer,
5639                                   round_jiffies(jiffies + 2 * HZ));
5640         }
5641 }
5642
5643 enum latency_range {
5644         lowest_latency = 0,
5645         low_latency = 1,
5646         bulk_latency = 2,
5647         latency_invalid = 255
5648 };
5649
5650 /**
5651  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5652  *  @q_vector: pointer to q_vector
5653  *
5654  *  Stores a new ITR value based on strictly on packet size.  This
5655  *  algorithm is less sophisticated than that used in igb_update_itr,
5656  *  due to the difficulty of synchronizing statistics across multiple
5657  *  receive rings.  The divisors and thresholds used by this function
5658  *  were determined based on theoretical maximum wire speed and testing
5659  *  data, in order to minimize response time while increasing bulk
5660  *  throughput.
5661  *  This functionality is controlled by ethtool's coalescing settings.
5662  *  NOTE:  This function is called only when operating in a multiqueue
5663  *         receive environment.
5664  **/
5665 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5666 {
5667         int new_val = q_vector->itr_val;
5668         int avg_wire_size = 0;
5669         struct igb_adapter *adapter = q_vector->adapter;
5670         unsigned int packets;
5671
5672         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5673          * ints/sec - ITR timer value of 120 ticks.
5674          */
5675         if (adapter->link_speed != SPEED_1000) {
5676                 new_val = IGB_4K_ITR;
5677                 goto set_itr_val;
5678         }
5679
5680         packets = q_vector->rx.total_packets;
5681         if (packets)
5682                 avg_wire_size = q_vector->rx.total_bytes / packets;
5683
5684         packets = q_vector->tx.total_packets;
5685         if (packets)
5686                 avg_wire_size = max_t(u32, avg_wire_size,
5687                                       q_vector->tx.total_bytes / packets);
5688
5689         /* if avg_wire_size isn't set no work was done */
5690         if (!avg_wire_size)
5691                 goto clear_counts;
5692
5693         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5694         avg_wire_size += 24;
5695
5696         /* Don't starve jumbo frames */
5697         avg_wire_size = min(avg_wire_size, 3000);
5698
5699         /* Give a little boost to mid-size frames */
5700         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5701                 new_val = avg_wire_size / 3;
5702         else
5703                 new_val = avg_wire_size / 2;
5704
5705         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5706         if (new_val < IGB_20K_ITR &&
5707             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5708              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5709                 new_val = IGB_20K_ITR;
5710
5711 set_itr_val:
5712         if (new_val != q_vector->itr_val) {
5713                 q_vector->itr_val = new_val;
5714                 q_vector->set_itr = 1;
5715         }
5716 clear_counts:
5717         q_vector->rx.total_bytes = 0;
5718         q_vector->rx.total_packets = 0;
5719         q_vector->tx.total_bytes = 0;
5720         q_vector->tx.total_packets = 0;
5721 }
5722
5723 /**
5724  *  igb_update_itr - update the dynamic ITR value based on statistics
5725  *  @q_vector: pointer to q_vector
5726  *  @ring_container: ring info to update the itr for
5727  *
5728  *  Stores a new ITR value based on packets and byte
5729  *  counts during the last interrupt.  The advantage of per interrupt
5730  *  computation is faster updates and more accurate ITR for the current
5731  *  traffic pattern.  Constants in this function were computed
5732  *  based on theoretical maximum wire speed and thresholds were set based
5733  *  on testing data as well as attempting to minimize response time
5734  *  while increasing bulk throughput.
5735  *  This functionality is controlled by ethtool's coalescing settings.
5736  *  NOTE:  These calculations are only valid when operating in a single-
5737  *         queue environment.
5738  **/
5739 static void igb_update_itr(struct igb_q_vector *q_vector,
5740                            struct igb_ring_container *ring_container)
5741 {
5742         unsigned int packets = ring_container->total_packets;
5743         unsigned int bytes = ring_container->total_bytes;
5744         u8 itrval = ring_container->itr;
5745
5746         /* no packets, exit with status unchanged */
5747         if (packets == 0)
5748                 return;
5749
5750         switch (itrval) {
5751         case lowest_latency:
5752                 /* handle TSO and jumbo frames */
5753                 if (bytes/packets > 8000)
5754                         itrval = bulk_latency;
5755                 else if ((packets < 5) && (bytes > 512))
5756                         itrval = low_latency;
5757                 break;
5758         case low_latency:  /* 50 usec aka 20000 ints/s */
5759                 if (bytes > 10000) {
5760                         /* this if handles the TSO accounting */
5761                         if (bytes/packets > 8000)
5762                                 itrval = bulk_latency;
5763                         else if ((packets < 10) || ((bytes/packets) > 1200))
5764                                 itrval = bulk_latency;
5765                         else if ((packets > 35))
5766                                 itrval = lowest_latency;
5767                 } else if (bytes/packets > 2000) {
5768                         itrval = bulk_latency;
5769                 } else if (packets <= 2 && bytes < 512) {
5770                         itrval = lowest_latency;
5771                 }
5772                 break;
5773         case bulk_latency: /* 250 usec aka 4000 ints/s */
5774                 if (bytes > 25000) {
5775                         if (packets > 35)
5776                                 itrval = low_latency;
5777                 } else if (bytes < 1500) {
5778                         itrval = low_latency;
5779                 }
5780                 break;
5781         }
5782
5783         /* clear work counters since we have the values we need */
5784         ring_container->total_bytes = 0;
5785         ring_container->total_packets = 0;
5786
5787         /* write updated itr to ring container */
5788         ring_container->itr = itrval;
5789 }
5790
5791 static void igb_set_itr(struct igb_q_vector *q_vector)
5792 {
5793         struct igb_adapter *adapter = q_vector->adapter;
5794         u32 new_itr = q_vector->itr_val;
5795         u8 current_itr = 0;
5796
5797         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5798         if (adapter->link_speed != SPEED_1000) {
5799                 current_itr = 0;
5800                 new_itr = IGB_4K_ITR;
5801                 goto set_itr_now;
5802         }
5803
5804         igb_update_itr(q_vector, &q_vector->tx);
5805         igb_update_itr(q_vector, &q_vector->rx);
5806
5807         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5808
5809         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5810         if (current_itr == lowest_latency &&
5811             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5812              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5813                 current_itr = low_latency;
5814
5815         switch (current_itr) {
5816         /* counts and packets in update_itr are dependent on these numbers */
5817         case lowest_latency:
5818                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5819                 break;
5820         case low_latency:
5821                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5822                 break;
5823         case bulk_latency:
5824                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5825                 break;
5826         default:
5827                 break;
5828         }
5829
5830 set_itr_now:
5831         if (new_itr != q_vector->itr_val) {
5832                 /* this attempts to bias the interrupt rate towards Bulk
5833                  * by adding intermediate steps when interrupt rate is
5834                  * increasing
5835                  */
5836                 new_itr = new_itr > q_vector->itr_val ?
5837                           max((new_itr * q_vector->itr_val) /
5838                           (new_itr + (q_vector->itr_val >> 2)),
5839                           new_itr) : new_itr;
5840                 /* Don't write the value here; it resets the adapter's
5841                  * internal timer, and causes us to delay far longer than
5842                  * we should between interrupts.  Instead, we write the ITR
5843                  * value at the beginning of the next interrupt so the timing
5844                  * ends up being correct.
5845                  */
5846                 q_vector->itr_val = new_itr;
5847                 q_vector->set_itr = 1;
5848         }
5849 }
5850
5851 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5852                             struct igb_tx_buffer *first,
5853                             u32 vlan_macip_lens, u32 type_tucmd,
5854                             u32 mss_l4len_idx)
5855 {
5856         struct e1000_adv_tx_context_desc *context_desc;
5857         u16 i = tx_ring->next_to_use;
5858         struct timespec64 ts;
5859
5860         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5861
5862         i++;
5863         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5864
5865         /* set bits to identify this as an advanced context descriptor */
5866         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5867
5868         /* For 82575, context index must be unique per ring. */
5869         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5870                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5871
5872         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5873         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5874         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5875
5876         /* We assume there is always a valid tx time available. Invalid times
5877          * should have been handled by the upper layers.
5878          */
5879         if (tx_ring->launchtime_enable) {
5880                 ts = ktime_to_timespec64(first->skb->tstamp);
5881                 skb_txtime_consumed(first->skb);
5882                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5883         } else {
5884                 context_desc->seqnum_seed = 0;
5885         }
5886 }
5887
5888 static int igb_tso(struct igb_ring *tx_ring,
5889                    struct igb_tx_buffer *first,
5890                    u8 *hdr_len)
5891 {
5892         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5893         struct sk_buff *skb = first->skb;
5894         union {
5895                 struct iphdr *v4;
5896                 struct ipv6hdr *v6;
5897                 unsigned char *hdr;
5898         } ip;
5899         union {
5900                 struct tcphdr *tcp;
5901                 struct udphdr *udp;
5902                 unsigned char *hdr;
5903         } l4;
5904         u32 paylen, l4_offset;
5905         int err;
5906
5907         if (skb->ip_summed != CHECKSUM_PARTIAL)
5908                 return 0;
5909
5910         if (!skb_is_gso(skb))
5911                 return 0;
5912
5913         err = skb_cow_head(skb, 0);
5914         if (err < 0)
5915                 return err;
5916
5917         ip.hdr = skb_network_header(skb);
5918         l4.hdr = skb_checksum_start(skb);
5919
5920         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5921         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5922                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5923
5924         /* initialize outer IP header fields */
5925         if (ip.v4->version == 4) {
5926                 unsigned char *csum_start = skb_checksum_start(skb);
5927                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5928
5929                 /* IP header will have to cancel out any data that
5930                  * is not a part of the outer IP header
5931                  */
5932                 ip.v4->check = csum_fold(csum_partial(trans_start,
5933                                                       csum_start - trans_start,
5934                                                       0));
5935                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5936
5937                 ip.v4->tot_len = 0;
5938                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5939                                    IGB_TX_FLAGS_CSUM |
5940                                    IGB_TX_FLAGS_IPV4;
5941         } else {
5942                 ip.v6->payload_len = 0;
5943                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5944                                    IGB_TX_FLAGS_CSUM;
5945         }
5946
5947         /* determine offset of inner transport header */
5948         l4_offset = l4.hdr - skb->data;
5949
5950         /* remove payload length from inner checksum */
5951         paylen = skb->len - l4_offset;
5952         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5953                 /* compute length of segmentation header */
5954                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5955                 csum_replace_by_diff(&l4.tcp->check,
5956                         (__force __wsum)htonl(paylen));
5957         } else {
5958                 /* compute length of segmentation header */
5959                 *hdr_len = sizeof(*l4.udp) + l4_offset;
5960                 csum_replace_by_diff(&l4.udp->check,
5961                                      (__force __wsum)htonl(paylen));
5962         }
5963
5964         /* update gso size and bytecount with header size */
5965         first->gso_segs = skb_shinfo(skb)->gso_segs;
5966         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5967
5968         /* MSS L4LEN IDX */
5969         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5970         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5971
5972         /* VLAN MACLEN IPLEN */
5973         vlan_macip_lens = l4.hdr - ip.hdr;
5974         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5975         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5976
5977         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5978                         type_tucmd, mss_l4len_idx);
5979
5980         return 1;
5981 }
5982
5983 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5984 {
5985         struct sk_buff *skb = first->skb;
5986         u32 vlan_macip_lens = 0;
5987         u32 type_tucmd = 0;
5988
5989         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5990 csum_failed:
5991                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5992                     !tx_ring->launchtime_enable)
5993                         return;
5994                 goto no_csum;
5995         }
5996
5997         switch (skb->csum_offset) {
5998         case offsetof(struct tcphdr, check):
5999                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6000                 fallthrough;
6001         case offsetof(struct udphdr, check):
6002                 break;
6003         case offsetof(struct sctphdr, checksum):
6004                 /* validate that this is actually an SCTP request */
6005                 if (skb_csum_is_sctp(skb)) {
6006                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6007                         break;
6008                 }
6009                 fallthrough;
6010         default:
6011                 skb_checksum_help(skb);
6012                 goto csum_failed;
6013         }
6014
6015         /* update TX checksum flag */
6016         first->tx_flags |= IGB_TX_FLAGS_CSUM;
6017         vlan_macip_lens = skb_checksum_start_offset(skb) -
6018                           skb_network_offset(skb);
6019 no_csum:
6020         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6021         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6022
6023         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6024 }
6025
6026 #define IGB_SET_FLAG(_input, _flag, _result) \
6027         ((_flag <= _result) ? \
6028          ((u32)(_input & _flag) * (_result / _flag)) : \
6029          ((u32)(_input & _flag) / (_flag / _result)))
6030
6031 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6032 {
6033         /* set type for advanced descriptor with frame checksum insertion */
6034         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6035                        E1000_ADVTXD_DCMD_DEXT |
6036                        E1000_ADVTXD_DCMD_IFCS;
6037
6038         /* set HW vlan bit if vlan is present */
6039         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6040                                  (E1000_ADVTXD_DCMD_VLE));
6041
6042         /* set segmentation bits for TSO */
6043         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6044                                  (E1000_ADVTXD_DCMD_TSE));
6045
6046         /* set timestamp bit if present */
6047         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6048                                  (E1000_ADVTXD_MAC_TSTAMP));
6049
6050         /* insert frame checksum */
6051         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6052
6053         return cmd_type;
6054 }
6055
6056 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6057                                  union e1000_adv_tx_desc *tx_desc,
6058                                  u32 tx_flags, unsigned int paylen)
6059 {
6060         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6061
6062         /* 82575 requires a unique index per ring */
6063         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6064                 olinfo_status |= tx_ring->reg_idx << 4;
6065
6066         /* insert L4 checksum */
6067         olinfo_status |= IGB_SET_FLAG(tx_flags,
6068                                       IGB_TX_FLAGS_CSUM,
6069                                       (E1000_TXD_POPTS_TXSM << 8));
6070
6071         /* insert IPv4 checksum */
6072         olinfo_status |= IGB_SET_FLAG(tx_flags,
6073                                       IGB_TX_FLAGS_IPV4,
6074                                       (E1000_TXD_POPTS_IXSM << 8));
6075
6076         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6077 }
6078
6079 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6080 {
6081         struct net_device *netdev = tx_ring->netdev;
6082
6083         netif_stop_subqueue(netdev, tx_ring->queue_index);
6084
6085         /* Herbert's original patch had:
6086          *  smp_mb__after_netif_stop_queue();
6087          * but since that doesn't exist yet, just open code it.
6088          */
6089         smp_mb();
6090
6091         /* We need to check again in a case another CPU has just
6092          * made room available.
6093          */
6094         if (igb_desc_unused(tx_ring) < size)
6095                 return -EBUSY;
6096
6097         /* A reprieve! */
6098         netif_wake_subqueue(netdev, tx_ring->queue_index);
6099
6100         u64_stats_update_begin(&tx_ring->tx_syncp2);
6101         tx_ring->tx_stats.restart_queue2++;
6102         u64_stats_update_end(&tx_ring->tx_syncp2);
6103
6104         return 0;
6105 }
6106
6107 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6108 {
6109         if (igb_desc_unused(tx_ring) >= size)
6110                 return 0;
6111         return __igb_maybe_stop_tx(tx_ring, size);
6112 }
6113
6114 static int igb_tx_map(struct igb_ring *tx_ring,
6115                       struct igb_tx_buffer *first,
6116                       const u8 hdr_len)
6117 {
6118         struct sk_buff *skb = first->skb;
6119         struct igb_tx_buffer *tx_buffer;
6120         union e1000_adv_tx_desc *tx_desc;
6121         skb_frag_t *frag;
6122         dma_addr_t dma;
6123         unsigned int data_len, size;
6124         u32 tx_flags = first->tx_flags;
6125         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6126         u16 i = tx_ring->next_to_use;
6127
6128         tx_desc = IGB_TX_DESC(tx_ring, i);
6129
6130         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6131
6132         size = skb_headlen(skb);
6133         data_len = skb->data_len;
6134
6135         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6136
6137         tx_buffer = first;
6138
6139         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6140                 if (dma_mapping_error(tx_ring->dev, dma))
6141                         goto dma_error;
6142
6143                 /* record length, and DMA address */
6144                 dma_unmap_len_set(tx_buffer, len, size);
6145                 dma_unmap_addr_set(tx_buffer, dma, dma);
6146
6147                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6148
6149                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6150                         tx_desc->read.cmd_type_len =
6151                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6152
6153                         i++;
6154                         tx_desc++;
6155                         if (i == tx_ring->count) {
6156                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6157                                 i = 0;
6158                         }
6159                         tx_desc->read.olinfo_status = 0;
6160
6161                         dma += IGB_MAX_DATA_PER_TXD;
6162                         size -= IGB_MAX_DATA_PER_TXD;
6163
6164                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6165                 }
6166
6167                 if (likely(!data_len))
6168                         break;
6169
6170                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6171
6172                 i++;
6173                 tx_desc++;
6174                 if (i == tx_ring->count) {
6175                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6176                         i = 0;
6177                 }
6178                 tx_desc->read.olinfo_status = 0;
6179
6180                 size = skb_frag_size(frag);
6181                 data_len -= size;
6182
6183                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6184                                        size, DMA_TO_DEVICE);
6185
6186                 tx_buffer = &tx_ring->tx_buffer_info[i];
6187         }
6188
6189         /* write last descriptor with RS and EOP bits */
6190         cmd_type |= size | IGB_TXD_DCMD;
6191         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6192
6193         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6194
6195         /* set the timestamp */
6196         first->time_stamp = jiffies;
6197
6198         skb_tx_timestamp(skb);
6199
6200         /* Force memory writes to complete before letting h/w know there
6201          * are new descriptors to fetch.  (Only applicable for weak-ordered
6202          * memory model archs, such as IA-64).
6203          *
6204          * We also need this memory barrier to make certain all of the
6205          * status bits have been updated before next_to_watch is written.
6206          */
6207         dma_wmb();
6208
6209         /* set next_to_watch value indicating a packet is present */
6210         first->next_to_watch = tx_desc;
6211
6212         i++;
6213         if (i == tx_ring->count)
6214                 i = 0;
6215
6216         tx_ring->next_to_use = i;
6217
6218         /* Make sure there is space in the ring for the next send. */
6219         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6220
6221         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6222                 writel(i, tx_ring->tail);
6223         }
6224         return 0;
6225
6226 dma_error:
6227         dev_err(tx_ring->dev, "TX DMA map failed\n");
6228         tx_buffer = &tx_ring->tx_buffer_info[i];
6229
6230         /* clear dma mappings for failed tx_buffer_info map */
6231         while (tx_buffer != first) {
6232                 if (dma_unmap_len(tx_buffer, len))
6233                         dma_unmap_page(tx_ring->dev,
6234                                        dma_unmap_addr(tx_buffer, dma),
6235                                        dma_unmap_len(tx_buffer, len),
6236                                        DMA_TO_DEVICE);
6237                 dma_unmap_len_set(tx_buffer, len, 0);
6238
6239                 if (i-- == 0)
6240                         i += tx_ring->count;
6241                 tx_buffer = &tx_ring->tx_buffer_info[i];
6242         }
6243
6244         if (dma_unmap_len(tx_buffer, len))
6245                 dma_unmap_single(tx_ring->dev,
6246                                  dma_unmap_addr(tx_buffer, dma),
6247                                  dma_unmap_len(tx_buffer, len),
6248                                  DMA_TO_DEVICE);
6249         dma_unmap_len_set(tx_buffer, len, 0);
6250
6251         dev_kfree_skb_any(tx_buffer->skb);
6252         tx_buffer->skb = NULL;
6253
6254         tx_ring->next_to_use = i;
6255
6256         return -1;
6257 }
6258
6259 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6260                       struct igb_ring *tx_ring,
6261                       struct xdp_frame *xdpf)
6262 {
6263         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6264         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6265         u16 count, i, index = tx_ring->next_to_use;
6266         struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6267         struct igb_tx_buffer *tx_buffer = tx_head;
6268         union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6269         u32 len = xdpf->len, cmd_type, olinfo_status;
6270         void *data = xdpf->data;
6271
6272         count = TXD_USE_COUNT(len);
6273         for (i = 0; i < nr_frags; i++)
6274                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6275
6276         if (igb_maybe_stop_tx(tx_ring, count + 3))
6277                 return IGB_XDP_CONSUMED;
6278
6279         i = 0;
6280         /* record the location of the first descriptor for this packet */
6281         tx_head->bytecount = xdp_get_frame_len(xdpf);
6282         tx_head->type = IGB_TYPE_XDP;
6283         tx_head->gso_segs = 1;
6284         tx_head->xdpf = xdpf;
6285
6286         olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6287         /* 82575 requires a unique index per ring */
6288         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6289                 olinfo_status |= tx_ring->reg_idx << 4;
6290         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6291
6292         for (;;) {
6293                 dma_addr_t dma;
6294
6295                 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6296                 if (dma_mapping_error(tx_ring->dev, dma))
6297                         goto unmap;
6298
6299                 /* record length, and DMA address */
6300                 dma_unmap_len_set(tx_buffer, len, len);
6301                 dma_unmap_addr_set(tx_buffer, dma, dma);
6302
6303                 /* put descriptor type bits */
6304                 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6305                            E1000_ADVTXD_DCMD_IFCS | len;
6306
6307                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6308                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6309
6310                 tx_buffer->protocol = 0;
6311
6312                 if (++index == tx_ring->count)
6313                         index = 0;
6314
6315                 if (i == nr_frags)
6316                         break;
6317
6318                 tx_buffer = &tx_ring->tx_buffer_info[index];
6319                 tx_desc = IGB_TX_DESC(tx_ring, index);
6320                 tx_desc->read.olinfo_status = 0;
6321
6322                 data = skb_frag_address(&sinfo->frags[i]);
6323                 len = skb_frag_size(&sinfo->frags[i]);
6324                 i++;
6325         }
6326         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6327
6328         netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6329         /* set the timestamp */
6330         tx_head->time_stamp = jiffies;
6331
6332         /* Avoid any potential race with xdp_xmit and cleanup */
6333         smp_wmb();
6334
6335         /* set next_to_watch value indicating a packet is present */
6336         tx_head->next_to_watch = tx_desc;
6337         tx_ring->next_to_use = index;
6338
6339         /* Make sure there is space in the ring for the next send. */
6340         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6341
6342         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6343                 writel(index, tx_ring->tail);
6344
6345         return IGB_XDP_TX;
6346
6347 unmap:
6348         for (;;) {
6349                 tx_buffer = &tx_ring->tx_buffer_info[index];
6350                 if (dma_unmap_len(tx_buffer, len))
6351                         dma_unmap_page(tx_ring->dev,
6352                                        dma_unmap_addr(tx_buffer, dma),
6353                                        dma_unmap_len(tx_buffer, len),
6354                                        DMA_TO_DEVICE);
6355                 dma_unmap_len_set(tx_buffer, len, 0);
6356                 if (tx_buffer == tx_head)
6357                         break;
6358
6359                 if (!index)
6360                         index += tx_ring->count;
6361                 index--;
6362         }
6363
6364         return IGB_XDP_CONSUMED;
6365 }
6366
6367 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6368                                 struct igb_ring *tx_ring)
6369 {
6370         struct igb_tx_buffer *first;
6371         int tso;
6372         u32 tx_flags = 0;
6373         unsigned short f;
6374         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6375         __be16 protocol = vlan_get_protocol(skb);
6376         u8 hdr_len = 0;
6377
6378         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6379          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6380          *       + 2 desc gap to keep tail from touching head,
6381          *       + 1 desc for context descriptor,
6382          * otherwise try next time
6383          */
6384         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6385                 count += TXD_USE_COUNT(skb_frag_size(
6386                                                 &skb_shinfo(skb)->frags[f]));
6387
6388         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6389                 /* this is a hard error */
6390                 return NETDEV_TX_BUSY;
6391         }
6392
6393         /* record the location of the first descriptor for this packet */
6394         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6395         first->type = IGB_TYPE_SKB;
6396         first->skb = skb;
6397         first->bytecount = skb->len;
6398         first->gso_segs = 1;
6399
6400         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6401                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6402
6403                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6404                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6405                                            &adapter->state)) {
6406                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6407                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6408
6409                         adapter->ptp_tx_skb = skb_get(skb);
6410                         adapter->ptp_tx_start = jiffies;
6411                         if (adapter->hw.mac.type == e1000_82576)
6412                                 schedule_work(&adapter->ptp_tx_work);
6413                 } else {
6414                         adapter->tx_hwtstamp_skipped++;
6415                 }
6416         }
6417
6418         if (skb_vlan_tag_present(skb)) {
6419                 tx_flags |= IGB_TX_FLAGS_VLAN;
6420                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6421         }
6422
6423         /* record initial flags and protocol */
6424         first->tx_flags = tx_flags;
6425         first->protocol = protocol;
6426
6427         tso = igb_tso(tx_ring, first, &hdr_len);
6428         if (tso < 0)
6429                 goto out_drop;
6430         else if (!tso)
6431                 igb_tx_csum(tx_ring, first);
6432
6433         if (igb_tx_map(tx_ring, first, hdr_len))
6434                 goto cleanup_tx_tstamp;
6435
6436         return NETDEV_TX_OK;
6437
6438 out_drop:
6439         dev_kfree_skb_any(first->skb);
6440         first->skb = NULL;
6441 cleanup_tx_tstamp:
6442         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6443                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6444
6445                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6446                 adapter->ptp_tx_skb = NULL;
6447                 if (adapter->hw.mac.type == e1000_82576)
6448                         cancel_work_sync(&adapter->ptp_tx_work);
6449                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6450         }
6451
6452         return NETDEV_TX_OK;
6453 }
6454
6455 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6456                                                     struct sk_buff *skb)
6457 {
6458         unsigned int r_idx = skb->queue_mapping;
6459
6460         if (r_idx >= adapter->num_tx_queues)
6461                 r_idx = r_idx % adapter->num_tx_queues;
6462
6463         return adapter->tx_ring[r_idx];
6464 }
6465
6466 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6467                                   struct net_device *netdev)
6468 {
6469         struct igb_adapter *adapter = netdev_priv(netdev);
6470
6471         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6472          * in order to meet this minimum size requirement.
6473          */
6474         if (skb_put_padto(skb, 17))
6475                 return NETDEV_TX_OK;
6476
6477         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6478 }
6479
6480 /**
6481  *  igb_tx_timeout - Respond to a Tx Hang
6482  *  @netdev: network interface device structure
6483  *  @txqueue: number of the Tx queue that hung (unused)
6484  **/
6485 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6486 {
6487         struct igb_adapter *adapter = netdev_priv(netdev);
6488         struct e1000_hw *hw = &adapter->hw;
6489
6490         /* Do the reset outside of interrupt context */
6491         adapter->tx_timeout_count++;
6492
6493         if (hw->mac.type >= e1000_82580)
6494                 hw->dev_spec._82575.global_device_reset = true;
6495
6496         schedule_work(&adapter->reset_task);
6497         wr32(E1000_EICS,
6498              (adapter->eims_enable_mask & ~adapter->eims_other));
6499 }
6500
6501 static void igb_reset_task(struct work_struct *work)
6502 {
6503         struct igb_adapter *adapter;
6504         adapter = container_of(work, struct igb_adapter, reset_task);
6505
6506         rtnl_lock();
6507         /* If we're already down or resetting, just bail */
6508         if (test_bit(__IGB_DOWN, &adapter->state) ||
6509             test_bit(__IGB_RESETTING, &adapter->state)) {
6510                 rtnl_unlock();
6511                 return;
6512         }
6513
6514         igb_dump(adapter);
6515         netdev_err(adapter->netdev, "Reset adapter\n");
6516         igb_reinit_locked(adapter);
6517         rtnl_unlock();
6518 }
6519
6520 /**
6521  *  igb_get_stats64 - Get System Network Statistics
6522  *  @netdev: network interface device structure
6523  *  @stats: rtnl_link_stats64 pointer
6524  **/
6525 static void igb_get_stats64(struct net_device *netdev,
6526                             struct rtnl_link_stats64 *stats)
6527 {
6528         struct igb_adapter *adapter = netdev_priv(netdev);
6529
6530         spin_lock(&adapter->stats64_lock);
6531         igb_update_stats(adapter);
6532         memcpy(stats, &adapter->stats64, sizeof(*stats));
6533         spin_unlock(&adapter->stats64_lock);
6534 }
6535
6536 /**
6537  *  igb_change_mtu - Change the Maximum Transfer Unit
6538  *  @netdev: network interface device structure
6539  *  @new_mtu: new value for maximum frame size
6540  *
6541  *  Returns 0 on success, negative on failure
6542  **/
6543 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6544 {
6545         struct igb_adapter *adapter = netdev_priv(netdev);
6546         int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6547
6548         if (adapter->xdp_prog) {
6549                 int i;
6550
6551                 for (i = 0; i < adapter->num_rx_queues; i++) {
6552                         struct igb_ring *ring = adapter->rx_ring[i];
6553
6554                         if (max_frame > igb_rx_bufsz(ring)) {
6555                                 netdev_warn(adapter->netdev,
6556                                             "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6557                                             max_frame);
6558                                 return -EINVAL;
6559                         }
6560                 }
6561         }
6562
6563         /* adjust max frame to be at least the size of a standard frame */
6564         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6565                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6566
6567         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6568                 usleep_range(1000, 2000);
6569
6570         /* igb_down has a dependency on max_frame_size */
6571         adapter->max_frame_size = max_frame;
6572
6573         if (netif_running(netdev))
6574                 igb_down(adapter);
6575
6576         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6577                    netdev->mtu, new_mtu);
6578         netdev->mtu = new_mtu;
6579
6580         if (netif_running(netdev))
6581                 igb_up(adapter);
6582         else
6583                 igb_reset(adapter);
6584
6585         clear_bit(__IGB_RESETTING, &adapter->state);
6586
6587         return 0;
6588 }
6589
6590 /**
6591  *  igb_update_stats - Update the board statistics counters
6592  *  @adapter: board private structure
6593  **/
6594 void igb_update_stats(struct igb_adapter *adapter)
6595 {
6596         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6597         struct e1000_hw *hw = &adapter->hw;
6598         struct pci_dev *pdev = adapter->pdev;
6599         u32 reg, mpc;
6600         int i;
6601         u64 bytes, packets;
6602         unsigned int start;
6603         u64 _bytes, _packets;
6604
6605         /* Prevent stats update while adapter is being reset, or if the pci
6606          * connection is down.
6607          */
6608         if (adapter->link_speed == 0)
6609                 return;
6610         if (pci_channel_offline(pdev))
6611                 return;
6612
6613         bytes = 0;
6614         packets = 0;
6615
6616         rcu_read_lock();
6617         for (i = 0; i < adapter->num_rx_queues; i++) {
6618                 struct igb_ring *ring = adapter->rx_ring[i];
6619                 u32 rqdpc = rd32(E1000_RQDPC(i));
6620                 if (hw->mac.type >= e1000_i210)
6621                         wr32(E1000_RQDPC(i), 0);
6622
6623                 if (rqdpc) {
6624                         ring->rx_stats.drops += rqdpc;
6625                         net_stats->rx_fifo_errors += rqdpc;
6626                 }
6627
6628                 do {
6629                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6630                         _bytes = ring->rx_stats.bytes;
6631                         _packets = ring->rx_stats.packets;
6632                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6633                 bytes += _bytes;
6634                 packets += _packets;
6635         }
6636
6637         net_stats->rx_bytes = bytes;
6638         net_stats->rx_packets = packets;
6639
6640         bytes = 0;
6641         packets = 0;
6642         for (i = 0; i < adapter->num_tx_queues; i++) {
6643                 struct igb_ring *ring = adapter->tx_ring[i];
6644                 do {
6645                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6646                         _bytes = ring->tx_stats.bytes;
6647                         _packets = ring->tx_stats.packets;
6648                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6649                 bytes += _bytes;
6650                 packets += _packets;
6651         }
6652         net_stats->tx_bytes = bytes;
6653         net_stats->tx_packets = packets;
6654         rcu_read_unlock();
6655
6656         /* read stats registers */
6657         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6658         adapter->stats.gprc += rd32(E1000_GPRC);
6659         adapter->stats.gorc += rd32(E1000_GORCL);
6660         rd32(E1000_GORCH); /* clear GORCL */
6661         adapter->stats.bprc += rd32(E1000_BPRC);
6662         adapter->stats.mprc += rd32(E1000_MPRC);
6663         adapter->stats.roc += rd32(E1000_ROC);
6664
6665         adapter->stats.prc64 += rd32(E1000_PRC64);
6666         adapter->stats.prc127 += rd32(E1000_PRC127);
6667         adapter->stats.prc255 += rd32(E1000_PRC255);
6668         adapter->stats.prc511 += rd32(E1000_PRC511);
6669         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6670         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6671         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6672         adapter->stats.sec += rd32(E1000_SEC);
6673
6674         mpc = rd32(E1000_MPC);
6675         adapter->stats.mpc += mpc;
6676         net_stats->rx_fifo_errors += mpc;
6677         adapter->stats.scc += rd32(E1000_SCC);
6678         adapter->stats.ecol += rd32(E1000_ECOL);
6679         adapter->stats.mcc += rd32(E1000_MCC);
6680         adapter->stats.latecol += rd32(E1000_LATECOL);
6681         adapter->stats.dc += rd32(E1000_DC);
6682         adapter->stats.rlec += rd32(E1000_RLEC);
6683         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6684         adapter->stats.xontxc += rd32(E1000_XONTXC);
6685         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6686         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6687         adapter->stats.fcruc += rd32(E1000_FCRUC);
6688         adapter->stats.gptc += rd32(E1000_GPTC);
6689         adapter->stats.gotc += rd32(E1000_GOTCL);
6690         rd32(E1000_GOTCH); /* clear GOTCL */
6691         adapter->stats.rnbc += rd32(E1000_RNBC);
6692         adapter->stats.ruc += rd32(E1000_RUC);
6693         adapter->stats.rfc += rd32(E1000_RFC);
6694         adapter->stats.rjc += rd32(E1000_RJC);
6695         adapter->stats.tor += rd32(E1000_TORH);
6696         adapter->stats.tot += rd32(E1000_TOTH);
6697         adapter->stats.tpr += rd32(E1000_TPR);
6698
6699         adapter->stats.ptc64 += rd32(E1000_PTC64);
6700         adapter->stats.ptc127 += rd32(E1000_PTC127);
6701         adapter->stats.ptc255 += rd32(E1000_PTC255);
6702         adapter->stats.ptc511 += rd32(E1000_PTC511);
6703         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6704         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6705
6706         adapter->stats.mptc += rd32(E1000_MPTC);
6707         adapter->stats.bptc += rd32(E1000_BPTC);
6708
6709         adapter->stats.tpt += rd32(E1000_TPT);
6710         adapter->stats.colc += rd32(E1000_COLC);
6711
6712         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6713         /* read internal phy specific stats */
6714         reg = rd32(E1000_CTRL_EXT);
6715         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6716                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6717
6718                 /* this stat has invalid values on i210/i211 */
6719                 if ((hw->mac.type != e1000_i210) &&
6720                     (hw->mac.type != e1000_i211))
6721                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6722         }
6723
6724         adapter->stats.tsctc += rd32(E1000_TSCTC);
6725         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6726
6727         adapter->stats.iac += rd32(E1000_IAC);
6728         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6729         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6730         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6731         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6732         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6733         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6734         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6735         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6736
6737         /* Fill out the OS statistics structure */
6738         net_stats->multicast = adapter->stats.mprc;
6739         net_stats->collisions = adapter->stats.colc;
6740
6741         /* Rx Errors */
6742
6743         /* RLEC on some newer hardware can be incorrect so build
6744          * our own version based on RUC and ROC
6745          */
6746         net_stats->rx_errors = adapter->stats.rxerrc +
6747                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6748                 adapter->stats.ruc + adapter->stats.roc +
6749                 adapter->stats.cexterr;
6750         net_stats->rx_length_errors = adapter->stats.ruc +
6751                                       adapter->stats.roc;
6752         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6753         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6754         net_stats->rx_missed_errors = adapter->stats.mpc;
6755
6756         /* Tx Errors */
6757         net_stats->tx_errors = adapter->stats.ecol +
6758                                adapter->stats.latecol;
6759         net_stats->tx_aborted_errors = adapter->stats.ecol;
6760         net_stats->tx_window_errors = adapter->stats.latecol;
6761         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6762
6763         /* Tx Dropped needs to be maintained elsewhere */
6764
6765         /* Management Stats */
6766         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6767         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6768         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6769
6770         /* OS2BMC Stats */
6771         reg = rd32(E1000_MANC);
6772         if (reg & E1000_MANC_EN_BMC2OS) {
6773                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6774                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6775                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6776                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6777         }
6778 }
6779
6780 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6781 {
6782         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6783         struct e1000_hw *hw = &adapter->hw;
6784         struct timespec64 ts;
6785         u32 tsauxc;
6786
6787         if (pin < 0 || pin >= IGB_N_PEROUT)
6788                 return;
6789
6790         spin_lock(&adapter->tmreg_lock);
6791
6792         if (hw->mac.type == e1000_82580 ||
6793             hw->mac.type == e1000_i354 ||
6794             hw->mac.type == e1000_i350) {
6795                 s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6796                 u32 systiml, systimh, level_mask, level, rem;
6797                 u64 systim, now;
6798
6799                 /* read systim registers in sequence */
6800                 rd32(E1000_SYSTIMR);
6801                 systiml = rd32(E1000_SYSTIML);
6802                 systimh = rd32(E1000_SYSTIMH);
6803                 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6804                 now = timecounter_cyc2time(&adapter->tc, systim);
6805
6806                 if (pin < 2) {
6807                         level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6808                         level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6809                 } else {
6810                         level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6811                         level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6812                 }
6813
6814                 div_u64_rem(now, ns, &rem);
6815                 systim = systim + (ns - rem);
6816
6817                 /* synchronize pin level with rising/falling edges */
6818                 div_u64_rem(now, ns << 1, &rem);
6819                 if (rem < ns) {
6820                         /* first half of period */
6821                         if (level == 0) {
6822                                 /* output is already low, skip this period */
6823                                 systim += ns;
6824                                 pr_notice("igb: periodic output on %s missed falling edge\n",
6825                                           adapter->sdp_config[pin].name);
6826                         }
6827                 } else {
6828                         /* second half of period */
6829                         if (level == 1) {
6830                                 /* output is already high, skip this period */
6831                                 systim += ns;
6832                                 pr_notice("igb: periodic output on %s missed rising edge\n",
6833                                           adapter->sdp_config[pin].name);
6834                         }
6835                 }
6836
6837                 /* for this chip family tv_sec is the upper part of the binary value,
6838                  * so not seconds
6839                  */
6840                 ts.tv_nsec = (u32)systim;
6841                 ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6842         } else {
6843                 ts = timespec64_add(adapter->perout[pin].start,
6844                                     adapter->perout[pin].period);
6845         }
6846
6847         /* u32 conversion of tv_sec is safe until y2106 */
6848         wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6849         wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6850         tsauxc = rd32(E1000_TSAUXC);
6851         tsauxc |= TSAUXC_EN_TT0;
6852         wr32(E1000_TSAUXC, tsauxc);
6853         adapter->perout[pin].start = ts;
6854
6855         spin_unlock(&adapter->tmreg_lock);
6856 }
6857
6858 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6859 {
6860         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6861         int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6862         int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6863         struct e1000_hw *hw = &adapter->hw;
6864         struct ptp_clock_event event;
6865         struct timespec64 ts;
6866
6867         if (pin < 0 || pin >= IGB_N_EXTTS)
6868                 return;
6869
6870         if (hw->mac.type == e1000_82580 ||
6871             hw->mac.type == e1000_i354 ||
6872             hw->mac.type == e1000_i350) {
6873                 s64 ns = rd32(auxstmpl);
6874
6875                 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6876                 ts = ns_to_timespec64(ns);
6877         } else {
6878                 ts.tv_nsec = rd32(auxstmpl);
6879                 ts.tv_sec  = rd32(auxstmph);
6880         }
6881
6882         event.type = PTP_CLOCK_EXTTS;
6883         event.index = tsintr_tt;
6884         event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6885         ptp_clock_event(adapter->ptp_clock, &event);
6886 }
6887
6888 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6889 {
6890         struct e1000_hw *hw = &adapter->hw;
6891         u32 ack = 0, tsicr = rd32(E1000_TSICR);
6892         struct ptp_clock_event event;
6893
6894         if (tsicr & TSINTR_SYS_WRAP) {
6895                 event.type = PTP_CLOCK_PPS;
6896                 if (adapter->ptp_caps.pps)
6897                         ptp_clock_event(adapter->ptp_clock, &event);
6898                 ack |= TSINTR_SYS_WRAP;
6899         }
6900
6901         if (tsicr & E1000_TSICR_TXTS) {
6902                 /* retrieve hardware timestamp */
6903                 schedule_work(&adapter->ptp_tx_work);
6904                 ack |= E1000_TSICR_TXTS;
6905         }
6906
6907         if (tsicr & TSINTR_TT0) {
6908                 igb_perout(adapter, 0);
6909                 ack |= TSINTR_TT0;
6910         }
6911
6912         if (tsicr & TSINTR_TT1) {
6913                 igb_perout(adapter, 1);
6914                 ack |= TSINTR_TT1;
6915         }
6916
6917         if (tsicr & TSINTR_AUTT0) {
6918                 igb_extts(adapter, 0);
6919                 ack |= TSINTR_AUTT0;
6920         }
6921
6922         if (tsicr & TSINTR_AUTT1) {
6923                 igb_extts(adapter, 1);
6924                 ack |= TSINTR_AUTT1;
6925         }
6926
6927         /* acknowledge the interrupts */
6928         wr32(E1000_TSICR, ack);
6929 }
6930
6931 static irqreturn_t igb_msix_other(int irq, void *data)
6932 {
6933         struct igb_adapter *adapter = data;
6934         struct e1000_hw *hw = &adapter->hw;
6935         u32 icr = rd32(E1000_ICR);
6936         /* reading ICR causes bit 31 of EICR to be cleared */
6937
6938         if (icr & E1000_ICR_DRSTA)
6939                 schedule_work(&adapter->reset_task);
6940
6941         if (icr & E1000_ICR_DOUTSYNC) {
6942                 /* HW is reporting DMA is out of sync */
6943                 adapter->stats.doosync++;
6944                 /* The DMA Out of Sync is also indication of a spoof event
6945                  * in IOV mode. Check the Wrong VM Behavior register to
6946                  * see if it is really a spoof event.
6947                  */
6948                 igb_check_wvbr(adapter);
6949         }
6950
6951         /* Check for a mailbox event */
6952         if (icr & E1000_ICR_VMMB)
6953                 igb_msg_task(adapter);
6954
6955         if (icr & E1000_ICR_LSC) {
6956                 hw->mac.get_link_status = 1;
6957                 /* guard against interrupt when we're going down */
6958                 if (!test_bit(__IGB_DOWN, &adapter->state))
6959                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6960         }
6961
6962         if (icr & E1000_ICR_TS)
6963                 igb_tsync_interrupt(adapter);
6964
6965         wr32(E1000_EIMS, adapter->eims_other);
6966
6967         return IRQ_HANDLED;
6968 }
6969
6970 static void igb_write_itr(struct igb_q_vector *q_vector)
6971 {
6972         struct igb_adapter *adapter = q_vector->adapter;
6973         u32 itr_val = q_vector->itr_val & 0x7FFC;
6974
6975         if (!q_vector->set_itr)
6976                 return;
6977
6978         if (!itr_val)
6979                 itr_val = 0x4;
6980
6981         if (adapter->hw.mac.type == e1000_82575)
6982                 itr_val |= itr_val << 16;
6983         else
6984                 itr_val |= E1000_EITR_CNT_IGNR;
6985
6986         writel(itr_val, q_vector->itr_register);
6987         q_vector->set_itr = 0;
6988 }
6989
6990 static irqreturn_t igb_msix_ring(int irq, void *data)
6991 {
6992         struct igb_q_vector *q_vector = data;
6993
6994         /* Write the ITR value calculated from the previous interrupt. */
6995         igb_write_itr(q_vector);
6996
6997         napi_schedule(&q_vector->napi);
6998
6999         return IRQ_HANDLED;
7000 }
7001
7002 #ifdef CONFIG_IGB_DCA
7003 static void igb_update_tx_dca(struct igb_adapter *adapter,
7004                               struct igb_ring *tx_ring,
7005                               int cpu)
7006 {
7007         struct e1000_hw *hw = &adapter->hw;
7008         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7009
7010         if (hw->mac.type != e1000_82575)
7011                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7012
7013         /* We can enable relaxed ordering for reads, but not writes when
7014          * DCA is enabled.  This is due to a known issue in some chipsets
7015          * which will cause the DCA tag to be cleared.
7016          */
7017         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7018                   E1000_DCA_TXCTRL_DATA_RRO_EN |
7019                   E1000_DCA_TXCTRL_DESC_DCA_EN;
7020
7021         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7022 }
7023
7024 static void igb_update_rx_dca(struct igb_adapter *adapter,
7025                               struct igb_ring *rx_ring,
7026                               int cpu)
7027 {
7028         struct e1000_hw *hw = &adapter->hw;
7029         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7030
7031         if (hw->mac.type != e1000_82575)
7032                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7033
7034         /* We can enable relaxed ordering for reads, but not writes when
7035          * DCA is enabled.  This is due to a known issue in some chipsets
7036          * which will cause the DCA tag to be cleared.
7037          */
7038         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7039                   E1000_DCA_RXCTRL_DESC_DCA_EN;
7040
7041         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7042 }
7043
7044 static void igb_update_dca(struct igb_q_vector *q_vector)
7045 {
7046         struct igb_adapter *adapter = q_vector->adapter;
7047         int cpu = get_cpu();
7048
7049         if (q_vector->cpu == cpu)
7050                 goto out_no_update;
7051
7052         if (q_vector->tx.ring)
7053                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7054
7055         if (q_vector->rx.ring)
7056                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7057
7058         q_vector->cpu = cpu;
7059 out_no_update:
7060         put_cpu();
7061 }
7062
7063 static void igb_setup_dca(struct igb_adapter *adapter)
7064 {
7065         struct e1000_hw *hw = &adapter->hw;
7066         int i;
7067
7068         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7069                 return;
7070
7071         /* Always use CB2 mode, difference is masked in the CB driver. */
7072         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7073
7074         for (i = 0; i < adapter->num_q_vectors; i++) {
7075                 adapter->q_vector[i]->cpu = -1;
7076                 igb_update_dca(adapter->q_vector[i]);
7077         }
7078 }
7079
7080 static int __igb_notify_dca(struct device *dev, void *data)
7081 {
7082         struct net_device *netdev = dev_get_drvdata(dev);
7083         struct igb_adapter *adapter = netdev_priv(netdev);
7084         struct pci_dev *pdev = adapter->pdev;
7085         struct e1000_hw *hw = &adapter->hw;
7086         unsigned long event = *(unsigned long *)data;
7087
7088         switch (event) {
7089         case DCA_PROVIDER_ADD:
7090                 /* if already enabled, don't do it again */
7091                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7092                         break;
7093                 if (dca_add_requester(dev) == 0) {
7094                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
7095                         dev_info(&pdev->dev, "DCA enabled\n");
7096                         igb_setup_dca(adapter);
7097                         break;
7098                 }
7099                 fallthrough; /* since DCA is disabled. */
7100         case DCA_PROVIDER_REMOVE:
7101                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7102                         /* without this a class_device is left
7103                          * hanging around in the sysfs model
7104                          */
7105                         dca_remove_requester(dev);
7106                         dev_info(&pdev->dev, "DCA disabled\n");
7107                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7108                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7109                 }
7110                 break;
7111         }
7112
7113         return 0;
7114 }
7115
7116 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7117                           void *p)
7118 {
7119         int ret_val;
7120
7121         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7122                                          __igb_notify_dca);
7123
7124         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7125 }
7126 #endif /* CONFIG_IGB_DCA */
7127
7128 #ifdef CONFIG_PCI_IOV
7129 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7130 {
7131         unsigned char mac_addr[ETH_ALEN];
7132
7133         eth_zero_addr(mac_addr);
7134         igb_set_vf_mac(adapter, vf, mac_addr);
7135
7136         /* By default spoof check is enabled for all VFs */
7137         adapter->vf_data[vf].spoofchk_enabled = true;
7138
7139         /* By default VFs are not trusted */
7140         adapter->vf_data[vf].trusted = false;
7141
7142         return 0;
7143 }
7144
7145 #endif
7146 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7147 {
7148         struct e1000_hw *hw = &adapter->hw;
7149         u32 ping;
7150         int i;
7151
7152         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7153                 ping = E1000_PF_CONTROL_MSG;
7154                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7155                         ping |= E1000_VT_MSGTYPE_CTS;
7156                 igb_write_mbx(hw, &ping, 1, i);
7157         }
7158 }
7159
7160 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7161 {
7162         struct e1000_hw *hw = &adapter->hw;
7163         u32 vmolr = rd32(E1000_VMOLR(vf));
7164         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7165
7166         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7167                             IGB_VF_FLAG_MULTI_PROMISC);
7168         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7169
7170         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7171                 vmolr |= E1000_VMOLR_MPME;
7172                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7173                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7174         } else {
7175                 /* if we have hashes and we are clearing a multicast promisc
7176                  * flag we need to write the hashes to the MTA as this step
7177                  * was previously skipped
7178                  */
7179                 if (vf_data->num_vf_mc_hashes > 30) {
7180                         vmolr |= E1000_VMOLR_MPME;
7181                 } else if (vf_data->num_vf_mc_hashes) {
7182                         int j;
7183
7184                         vmolr |= E1000_VMOLR_ROMPE;
7185                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7186                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7187                 }
7188         }
7189
7190         wr32(E1000_VMOLR(vf), vmolr);
7191
7192         /* there are flags left unprocessed, likely not supported */
7193         if (*msgbuf & E1000_VT_MSGINFO_MASK)
7194                 return -EINVAL;
7195
7196         return 0;
7197 }
7198
7199 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7200                                   u32 *msgbuf, u32 vf)
7201 {
7202         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7203         u16 *hash_list = (u16 *)&msgbuf[1];
7204         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7205         int i;
7206
7207         /* salt away the number of multicast addresses assigned
7208          * to this VF for later use to restore when the PF multi cast
7209          * list changes
7210          */
7211         vf_data->num_vf_mc_hashes = n;
7212
7213         /* only up to 30 hash values supported */
7214         if (n > 30)
7215                 n = 30;
7216
7217         /* store the hashes for later use */
7218         for (i = 0; i < n; i++)
7219                 vf_data->vf_mc_hashes[i] = hash_list[i];
7220
7221         /* Flush and reset the mta with the new values */
7222         igb_set_rx_mode(adapter->netdev);
7223
7224         return 0;
7225 }
7226
7227 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7228 {
7229         struct e1000_hw *hw = &adapter->hw;
7230         struct vf_data_storage *vf_data;
7231         int i, j;
7232
7233         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7234                 u32 vmolr = rd32(E1000_VMOLR(i));
7235
7236                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7237
7238                 vf_data = &adapter->vf_data[i];
7239
7240                 if ((vf_data->num_vf_mc_hashes > 30) ||
7241                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7242                         vmolr |= E1000_VMOLR_MPME;
7243                 } else if (vf_data->num_vf_mc_hashes) {
7244                         vmolr |= E1000_VMOLR_ROMPE;
7245                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7246                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7247                 }
7248                 wr32(E1000_VMOLR(i), vmolr);
7249         }
7250 }
7251
7252 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7253 {
7254         struct e1000_hw *hw = &adapter->hw;
7255         u32 pool_mask, vlvf_mask, i;
7256
7257         /* create mask for VF and other pools */
7258         pool_mask = E1000_VLVF_POOLSEL_MASK;
7259         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7260
7261         /* drop PF from pool bits */
7262         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7263                              adapter->vfs_allocated_count);
7264
7265         /* Find the vlan filter for this id */
7266         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7267                 u32 vlvf = rd32(E1000_VLVF(i));
7268                 u32 vfta_mask, vid, vfta;
7269
7270                 /* remove the vf from the pool */
7271                 if (!(vlvf & vlvf_mask))
7272                         continue;
7273
7274                 /* clear out bit from VLVF */
7275                 vlvf ^= vlvf_mask;
7276
7277                 /* if other pools are present, just remove ourselves */
7278                 if (vlvf & pool_mask)
7279                         goto update_vlvfb;
7280
7281                 /* if PF is present, leave VFTA */
7282                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7283                         goto update_vlvf;
7284
7285                 vid = vlvf & E1000_VLVF_VLANID_MASK;
7286                 vfta_mask = BIT(vid % 32);
7287
7288                 /* clear bit from VFTA */
7289                 vfta = adapter->shadow_vfta[vid / 32];
7290                 if (vfta & vfta_mask)
7291                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7292 update_vlvf:
7293                 /* clear pool selection enable */
7294                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7295                         vlvf &= E1000_VLVF_POOLSEL_MASK;
7296                 else
7297                         vlvf = 0;
7298 update_vlvfb:
7299                 /* clear pool bits */
7300                 wr32(E1000_VLVF(i), vlvf);
7301         }
7302 }
7303
7304 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7305 {
7306         u32 vlvf;
7307         int idx;
7308
7309         /* short cut the special case */
7310         if (vlan == 0)
7311                 return 0;
7312
7313         /* Search for the VLAN id in the VLVF entries */
7314         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7315                 vlvf = rd32(E1000_VLVF(idx));
7316                 if ((vlvf & VLAN_VID_MASK) == vlan)
7317                         break;
7318         }
7319
7320         return idx;
7321 }
7322
7323 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7324 {
7325         struct e1000_hw *hw = &adapter->hw;
7326         u32 bits, pf_id;
7327         int idx;
7328
7329         idx = igb_find_vlvf_entry(hw, vid);
7330         if (!idx)
7331                 return;
7332
7333         /* See if any other pools are set for this VLAN filter
7334          * entry other than the PF.
7335          */
7336         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7337         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7338         bits &= rd32(E1000_VLVF(idx));
7339
7340         /* Disable the filter so this falls into the default pool. */
7341         if (!bits) {
7342                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7343                         wr32(E1000_VLVF(idx), BIT(pf_id));
7344                 else
7345                         wr32(E1000_VLVF(idx), 0);
7346         }
7347 }
7348
7349 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7350                            bool add, u32 vf)
7351 {
7352         int pf_id = adapter->vfs_allocated_count;
7353         struct e1000_hw *hw = &adapter->hw;
7354         int err;
7355
7356         /* If VLAN overlaps with one the PF is currently monitoring make
7357          * sure that we are able to allocate a VLVF entry.  This may be
7358          * redundant but it guarantees PF will maintain visibility to
7359          * the VLAN.
7360          */
7361         if (add && test_bit(vid, adapter->active_vlans)) {
7362                 err = igb_vfta_set(hw, vid, pf_id, true, false);
7363                 if (err)
7364                         return err;
7365         }
7366
7367         err = igb_vfta_set(hw, vid, vf, add, false);
7368
7369         if (add && !err)
7370                 return err;
7371
7372         /* If we failed to add the VF VLAN or we are removing the VF VLAN
7373          * we may need to drop the PF pool bit in order to allow us to free
7374          * up the VLVF resources.
7375          */
7376         if (test_bit(vid, adapter->active_vlans) ||
7377             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7378                 igb_update_pf_vlvf(adapter, vid);
7379
7380         return err;
7381 }
7382
7383 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7384 {
7385         struct e1000_hw *hw = &adapter->hw;
7386
7387         if (vid)
7388                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7389         else
7390                 wr32(E1000_VMVIR(vf), 0);
7391 }
7392
7393 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7394                                 u16 vlan, u8 qos)
7395 {
7396         int err;
7397
7398         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7399         if (err)
7400                 return err;
7401
7402         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7403         igb_set_vmolr(adapter, vf, !vlan);
7404
7405         /* revoke access to previous VLAN */
7406         if (vlan != adapter->vf_data[vf].pf_vlan)
7407                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7408                                 false, vf);
7409
7410         adapter->vf_data[vf].pf_vlan = vlan;
7411         adapter->vf_data[vf].pf_qos = qos;
7412         igb_set_vf_vlan_strip(adapter, vf, true);
7413         dev_info(&adapter->pdev->dev,
7414                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7415         if (test_bit(__IGB_DOWN, &adapter->state)) {
7416                 dev_warn(&adapter->pdev->dev,
7417                          "The VF VLAN has been set, but the PF device is not up.\n");
7418                 dev_warn(&adapter->pdev->dev,
7419                          "Bring the PF device up before attempting to use the VF device.\n");
7420         }
7421
7422         return err;
7423 }
7424
7425 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7426 {
7427         /* Restore tagless access via VLAN 0 */
7428         igb_set_vf_vlan(adapter, 0, true, vf);
7429
7430         igb_set_vmvir(adapter, 0, vf);
7431         igb_set_vmolr(adapter, vf, true);
7432
7433         /* Remove any PF assigned VLAN */
7434         if (adapter->vf_data[vf].pf_vlan)
7435                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7436                                 false, vf);
7437
7438         adapter->vf_data[vf].pf_vlan = 0;
7439         adapter->vf_data[vf].pf_qos = 0;
7440         igb_set_vf_vlan_strip(adapter, vf, false);
7441
7442         return 0;
7443 }
7444
7445 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7446                                u16 vlan, u8 qos, __be16 vlan_proto)
7447 {
7448         struct igb_adapter *adapter = netdev_priv(netdev);
7449
7450         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7451                 return -EINVAL;
7452
7453         if (vlan_proto != htons(ETH_P_8021Q))
7454                 return -EPROTONOSUPPORT;
7455
7456         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7457                                igb_disable_port_vlan(adapter, vf);
7458 }
7459
7460 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7461 {
7462         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7463         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7464         int ret;
7465
7466         if (adapter->vf_data[vf].pf_vlan)
7467                 return -1;
7468
7469         /* VLAN 0 is a special case, don't allow it to be removed */
7470         if (!vid && !add)
7471                 return 0;
7472
7473         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7474         if (!ret)
7475                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7476         return ret;
7477 }
7478
7479 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7480 {
7481         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7482
7483         /* clear flags - except flag that indicates PF has set the MAC */
7484         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7485         vf_data->last_nack = jiffies;
7486
7487         /* reset vlans for device */
7488         igb_clear_vf_vfta(adapter, vf);
7489         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7490         igb_set_vmvir(adapter, vf_data->pf_vlan |
7491                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7492         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7493         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7494
7495         /* reset multicast table array for vf */
7496         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7497
7498         /* Flush and reset the mta with the new values */
7499         igb_set_rx_mode(adapter->netdev);
7500 }
7501
7502 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7503 {
7504         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7505
7506         /* clear mac address as we were hotplug removed/added */
7507         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7508                 eth_zero_addr(vf_mac);
7509
7510         /* process remaining reset events */
7511         igb_vf_reset(adapter, vf);
7512 }
7513
7514 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7515 {
7516         struct e1000_hw *hw = &adapter->hw;
7517         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7518         u32 reg, msgbuf[3];
7519         u8 *addr = (u8 *)(&msgbuf[1]);
7520
7521         /* process all the same items cleared in a function level reset */
7522         igb_vf_reset(adapter, vf);
7523
7524         /* set vf mac address */
7525         igb_set_vf_mac(adapter, vf, vf_mac);
7526
7527         /* enable transmit and receive for vf */
7528         reg = rd32(E1000_VFTE);
7529         wr32(E1000_VFTE, reg | BIT(vf));
7530         reg = rd32(E1000_VFRE);
7531         wr32(E1000_VFRE, reg | BIT(vf));
7532
7533         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7534
7535         /* reply to reset with ack and vf mac address */
7536         if (!is_zero_ether_addr(vf_mac)) {
7537                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7538                 memcpy(addr, vf_mac, ETH_ALEN);
7539         } else {
7540                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7541         }
7542         igb_write_mbx(hw, msgbuf, 3, vf);
7543 }
7544
7545 static void igb_flush_mac_table(struct igb_adapter *adapter)
7546 {
7547         struct e1000_hw *hw = &adapter->hw;
7548         int i;
7549
7550         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7551                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7552                 eth_zero_addr(adapter->mac_table[i].addr);
7553                 adapter->mac_table[i].queue = 0;
7554                 igb_rar_set_index(adapter, i);
7555         }
7556 }
7557
7558 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7559 {
7560         struct e1000_hw *hw = &adapter->hw;
7561         /* do not count rar entries reserved for VFs MAC addresses */
7562         int rar_entries = hw->mac.rar_entry_count -
7563                           adapter->vfs_allocated_count;
7564         int i, count = 0;
7565
7566         for (i = 0; i < rar_entries; i++) {
7567                 /* do not count default entries */
7568                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7569                         continue;
7570
7571                 /* do not count "in use" entries for different queues */
7572                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7573                     (adapter->mac_table[i].queue != queue))
7574                         continue;
7575
7576                 count++;
7577         }
7578
7579         return count;
7580 }
7581
7582 /* Set default MAC address for the PF in the first RAR entry */
7583 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7584 {
7585         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7586
7587         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7588         mac_table->queue = adapter->vfs_allocated_count;
7589         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7590
7591         igb_rar_set_index(adapter, 0);
7592 }
7593
7594 /* If the filter to be added and an already existing filter express
7595  * the same address and address type, it should be possible to only
7596  * override the other configurations, for example the queue to steer
7597  * traffic.
7598  */
7599 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7600                                       const u8 *addr, const u8 flags)
7601 {
7602         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7603                 return true;
7604
7605         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7606             (flags & IGB_MAC_STATE_SRC_ADDR))
7607                 return false;
7608
7609         if (!ether_addr_equal(addr, entry->addr))
7610                 return false;
7611
7612         return true;
7613 }
7614
7615 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7616  * 'flags' is used to indicate what kind of match is made, match is by
7617  * default for the destination address, if matching by source address
7618  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7619  */
7620 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7621                                     const u8 *addr, const u8 queue,
7622                                     const u8 flags)
7623 {
7624         struct e1000_hw *hw = &adapter->hw;
7625         int rar_entries = hw->mac.rar_entry_count -
7626                           adapter->vfs_allocated_count;
7627         int i;
7628
7629         if (is_zero_ether_addr(addr))
7630                 return -EINVAL;
7631
7632         /* Search for the first empty entry in the MAC table.
7633          * Do not touch entries at the end of the table reserved for the VF MAC
7634          * addresses.
7635          */
7636         for (i = 0; i < rar_entries; i++) {
7637                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7638                                                addr, flags))
7639                         continue;
7640
7641                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7642                 adapter->mac_table[i].queue = queue;
7643                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7644
7645                 igb_rar_set_index(adapter, i);
7646                 return i;
7647         }
7648
7649         return -ENOSPC;
7650 }
7651
7652 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7653                               const u8 queue)
7654 {
7655         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7656 }
7657
7658 /* Remove a MAC filter for 'addr' directing matching traffic to
7659  * 'queue', 'flags' is used to indicate what kind of match need to be
7660  * removed, match is by default for the destination address, if
7661  * matching by source address is to be removed the flag
7662  * IGB_MAC_STATE_SRC_ADDR can be used.
7663  */
7664 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7665                                     const u8 *addr, const u8 queue,
7666                                     const u8 flags)
7667 {
7668         struct e1000_hw *hw = &adapter->hw;
7669         int rar_entries = hw->mac.rar_entry_count -
7670                           adapter->vfs_allocated_count;
7671         int i;
7672
7673         if (is_zero_ether_addr(addr))
7674                 return -EINVAL;
7675
7676         /* Search for matching entry in the MAC table based on given address
7677          * and queue. Do not touch entries at the end of the table reserved
7678          * for the VF MAC addresses.
7679          */
7680         for (i = 0; i < rar_entries; i++) {
7681                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7682                         continue;
7683                 if ((adapter->mac_table[i].state & flags) != flags)
7684                         continue;
7685                 if (adapter->mac_table[i].queue != queue)
7686                         continue;
7687                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7688                         continue;
7689
7690                 /* When a filter for the default address is "deleted",
7691                  * we return it to its initial configuration
7692                  */
7693                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7694                         adapter->mac_table[i].state =
7695                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7696                         adapter->mac_table[i].queue =
7697                                 adapter->vfs_allocated_count;
7698                 } else {
7699                         adapter->mac_table[i].state = 0;
7700                         adapter->mac_table[i].queue = 0;
7701                         eth_zero_addr(adapter->mac_table[i].addr);
7702                 }
7703
7704                 igb_rar_set_index(adapter, i);
7705                 return 0;
7706         }
7707
7708         return -ENOENT;
7709 }
7710
7711 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7712                               const u8 queue)
7713 {
7714         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7715 }
7716
7717 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7718                                 const u8 *addr, u8 queue, u8 flags)
7719 {
7720         struct e1000_hw *hw = &adapter->hw;
7721
7722         /* In theory, this should be supported on 82575 as well, but
7723          * that part wasn't easily accessible during development.
7724          */
7725         if (hw->mac.type != e1000_i210)
7726                 return -EOPNOTSUPP;
7727
7728         return igb_add_mac_filter_flags(adapter, addr, queue,
7729                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7730 }
7731
7732 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7733                                 const u8 *addr, u8 queue, u8 flags)
7734 {
7735         return igb_del_mac_filter_flags(adapter, addr, queue,
7736                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7737 }
7738
7739 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7740 {
7741         struct igb_adapter *adapter = netdev_priv(netdev);
7742         int ret;
7743
7744         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7745
7746         return min_t(int, ret, 0);
7747 }
7748
7749 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7750 {
7751         struct igb_adapter *adapter = netdev_priv(netdev);
7752
7753         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7754
7755         return 0;
7756 }
7757
7758 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7759                                  const u32 info, const u8 *addr)
7760 {
7761         struct pci_dev *pdev = adapter->pdev;
7762         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7763         struct list_head *pos;
7764         struct vf_mac_filter *entry = NULL;
7765         int ret = 0;
7766
7767         if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7768             !vf_data->trusted) {
7769                 dev_warn(&pdev->dev,
7770                          "VF %d requested MAC filter but is administratively denied\n",
7771                           vf);
7772                 return -EINVAL;
7773         }
7774         if (!is_valid_ether_addr(addr)) {
7775                 dev_warn(&pdev->dev,
7776                          "VF %d attempted to set invalid MAC filter\n",
7777                           vf);
7778                 return -EINVAL;
7779         }
7780
7781         switch (info) {
7782         case E1000_VF_MAC_FILTER_CLR:
7783                 /* remove all unicast MAC filters related to the current VF */
7784                 list_for_each(pos, &adapter->vf_macs.l) {
7785                         entry = list_entry(pos, struct vf_mac_filter, l);
7786                         if (entry->vf == vf) {
7787                                 entry->vf = -1;
7788                                 entry->free = true;
7789                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7790                         }
7791                 }
7792                 break;
7793         case E1000_VF_MAC_FILTER_ADD:
7794                 /* try to find empty slot in the list */
7795                 list_for_each(pos, &adapter->vf_macs.l) {
7796                         entry = list_entry(pos, struct vf_mac_filter, l);
7797                         if (entry->free)
7798                                 break;
7799                 }
7800
7801                 if (entry && entry->free) {
7802                         entry->free = false;
7803                         entry->vf = vf;
7804                         ether_addr_copy(entry->vf_mac, addr);
7805
7806                         ret = igb_add_mac_filter(adapter, addr, vf);
7807                         ret = min_t(int, ret, 0);
7808                 } else {
7809                         ret = -ENOSPC;
7810                 }
7811
7812                 if (ret == -ENOSPC)
7813                         dev_warn(&pdev->dev,
7814                                  "VF %d has requested MAC filter but there is no space for it\n",
7815                                  vf);
7816                 break;
7817         default:
7818                 ret = -EINVAL;
7819                 break;
7820         }
7821
7822         return ret;
7823 }
7824
7825 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7826 {
7827         struct pci_dev *pdev = adapter->pdev;
7828         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7829         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7830
7831         /* The VF MAC Address is stored in a packed array of bytes
7832          * starting at the second 32 bit word of the msg array
7833          */
7834         unsigned char *addr = (unsigned char *)&msg[1];
7835         int ret = 0;
7836
7837         if (!info) {
7838                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7839                     !vf_data->trusted) {
7840                         dev_warn(&pdev->dev,
7841                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7842                                  vf);
7843                         return -EINVAL;
7844                 }
7845
7846                 if (!is_valid_ether_addr(addr)) {
7847                         dev_warn(&pdev->dev,
7848                                  "VF %d attempted to set invalid MAC\n",
7849                                  vf);
7850                         return -EINVAL;
7851                 }
7852
7853                 ret = igb_set_vf_mac(adapter, vf, addr);
7854         } else {
7855                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7856         }
7857
7858         return ret;
7859 }
7860
7861 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7862 {
7863         struct e1000_hw *hw = &adapter->hw;
7864         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7865         u32 msg = E1000_VT_MSGTYPE_NACK;
7866
7867         /* if device isn't clear to send it shouldn't be reading either */
7868         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7869             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7870                 igb_write_mbx(hw, &msg, 1, vf);
7871                 vf_data->last_nack = jiffies;
7872         }
7873 }
7874
7875 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7876 {
7877         struct pci_dev *pdev = adapter->pdev;
7878         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7879         struct e1000_hw *hw = &adapter->hw;
7880         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7881         s32 retval;
7882
7883         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7884
7885         if (retval) {
7886                 /* if receive failed revoke VF CTS stats and restart init */
7887                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7888                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7889                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7890                         goto unlock;
7891                 goto out;
7892         }
7893
7894         /* this is a message we already processed, do nothing */
7895         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7896                 goto unlock;
7897
7898         /* until the vf completes a reset it should not be
7899          * allowed to start any configuration.
7900          */
7901         if (msgbuf[0] == E1000_VF_RESET) {
7902                 /* unlocks mailbox */
7903                 igb_vf_reset_msg(adapter, vf);
7904                 return;
7905         }
7906
7907         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7908                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7909                         goto unlock;
7910                 retval = -1;
7911                 goto out;
7912         }
7913
7914         switch ((msgbuf[0] & 0xFFFF)) {
7915         case E1000_VF_SET_MAC_ADDR:
7916                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7917                 break;
7918         case E1000_VF_SET_PROMISC:
7919                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7920                 break;
7921         case E1000_VF_SET_MULTICAST:
7922                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7923                 break;
7924         case E1000_VF_SET_LPE:
7925                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7926                 break;
7927         case E1000_VF_SET_VLAN:
7928                 retval = -1;
7929                 if (vf_data->pf_vlan)
7930                         dev_warn(&pdev->dev,
7931                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7932                                  vf);
7933                 else
7934                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7935                 break;
7936         default:
7937                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7938                 retval = -1;
7939                 break;
7940         }
7941
7942         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7943 out:
7944         /* notify the VF of the results of what it sent us */
7945         if (retval)
7946                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7947         else
7948                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7949
7950         /* unlocks mailbox */
7951         igb_write_mbx(hw, msgbuf, 1, vf);
7952         return;
7953
7954 unlock:
7955         igb_unlock_mbx(hw, vf);
7956 }
7957
7958 static void igb_msg_task(struct igb_adapter *adapter)
7959 {
7960         struct e1000_hw *hw = &adapter->hw;
7961         u32 vf;
7962
7963         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7964                 /* process any reset requests */
7965                 if (!igb_check_for_rst(hw, vf))
7966                         igb_vf_reset_event(adapter, vf);
7967
7968                 /* process any messages pending */
7969                 if (!igb_check_for_msg(hw, vf))
7970                         igb_rcv_msg_from_vf(adapter, vf);
7971
7972                 /* process any acks */
7973                 if (!igb_check_for_ack(hw, vf))
7974                         igb_rcv_ack_from_vf(adapter, vf);
7975         }
7976 }
7977
7978 /**
7979  *  igb_set_uta - Set unicast filter table address
7980  *  @adapter: board private structure
7981  *  @set: boolean indicating if we are setting or clearing bits
7982  *
7983  *  The unicast table address is a register array of 32-bit registers.
7984  *  The table is meant to be used in a way similar to how the MTA is used
7985  *  however due to certain limitations in the hardware it is necessary to
7986  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7987  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7988  **/
7989 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7990 {
7991         struct e1000_hw *hw = &adapter->hw;
7992         u32 uta = set ? ~0 : 0;
7993         int i;
7994
7995         /* we only need to do this if VMDq is enabled */
7996         if (!adapter->vfs_allocated_count)
7997                 return;
7998
7999         for (i = hw->mac.uta_reg_count; i--;)
8000                 array_wr32(E1000_UTA, i, uta);
8001 }
8002
8003 /**
8004  *  igb_intr_msi - Interrupt Handler
8005  *  @irq: interrupt number
8006  *  @data: pointer to a network interface device structure
8007  **/
8008 static irqreturn_t igb_intr_msi(int irq, void *data)
8009 {
8010         struct igb_adapter *adapter = data;
8011         struct igb_q_vector *q_vector = adapter->q_vector[0];
8012         struct e1000_hw *hw = &adapter->hw;
8013         /* read ICR disables interrupts using IAM */
8014         u32 icr = rd32(E1000_ICR);
8015
8016         igb_write_itr(q_vector);
8017
8018         if (icr & E1000_ICR_DRSTA)
8019                 schedule_work(&adapter->reset_task);
8020
8021         if (icr & E1000_ICR_DOUTSYNC) {
8022                 /* HW is reporting DMA is out of sync */
8023                 adapter->stats.doosync++;
8024         }
8025
8026         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8027                 hw->mac.get_link_status = 1;
8028                 if (!test_bit(__IGB_DOWN, &adapter->state))
8029                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
8030         }
8031
8032         if (icr & E1000_ICR_TS)
8033                 igb_tsync_interrupt(adapter);
8034
8035         napi_schedule(&q_vector->napi);
8036
8037         return IRQ_HANDLED;
8038 }
8039
8040 /**
8041  *  igb_intr - Legacy Interrupt Handler
8042  *  @irq: interrupt number
8043  *  @data: pointer to a network interface device structure
8044  **/
8045 static irqreturn_t igb_intr(int irq, void *data)
8046 {
8047         struct igb_adapter *adapter = data;
8048         struct igb_q_vector *q_vector = adapter->q_vector[0];
8049         struct e1000_hw *hw = &adapter->hw;
8050         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8051          * need for the IMC write
8052          */
8053         u32 icr = rd32(E1000_ICR);
8054
8055         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8056          * not set, then the adapter didn't send an interrupt
8057          */
8058         if (!(icr & E1000_ICR_INT_ASSERTED))
8059                 return IRQ_NONE;
8060
8061         igb_write_itr(q_vector);
8062
8063         if (icr & E1000_ICR_DRSTA)
8064                 schedule_work(&adapter->reset_task);
8065
8066         if (icr & E1000_ICR_DOUTSYNC) {
8067                 /* HW is reporting DMA is out of sync */
8068                 adapter->stats.doosync++;
8069         }
8070
8071         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8072                 hw->mac.get_link_status = 1;
8073                 /* guard against interrupt when we're going down */
8074                 if (!test_bit(__IGB_DOWN, &adapter->state))
8075                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
8076         }
8077
8078         if (icr & E1000_ICR_TS)
8079                 igb_tsync_interrupt(adapter);
8080
8081         napi_schedule(&q_vector->napi);
8082
8083         return IRQ_HANDLED;
8084 }
8085
8086 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8087 {
8088         struct igb_adapter *adapter = q_vector->adapter;
8089         struct e1000_hw *hw = &adapter->hw;
8090
8091         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8092             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8093                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8094                         igb_set_itr(q_vector);
8095                 else
8096                         igb_update_ring_itr(q_vector);
8097         }
8098
8099         if (!test_bit(__IGB_DOWN, &adapter->state)) {
8100                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8101                         wr32(E1000_EIMS, q_vector->eims_value);
8102                 else
8103                         igb_irq_enable(adapter);
8104         }
8105 }
8106
8107 /**
8108  *  igb_poll - NAPI Rx polling callback
8109  *  @napi: napi polling structure
8110  *  @budget: count of how many packets we should handle
8111  **/
8112 static int igb_poll(struct napi_struct *napi, int budget)
8113 {
8114         struct igb_q_vector *q_vector = container_of(napi,
8115                                                      struct igb_q_vector,
8116                                                      napi);
8117         bool clean_complete = true;
8118         int work_done = 0;
8119
8120 #ifdef CONFIG_IGB_DCA
8121         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8122                 igb_update_dca(q_vector);
8123 #endif
8124         if (q_vector->tx.ring)
8125                 clean_complete = igb_clean_tx_irq(q_vector, budget);
8126
8127         if (q_vector->rx.ring) {
8128                 int cleaned = igb_clean_rx_irq(q_vector, budget);
8129
8130                 work_done += cleaned;
8131                 if (cleaned >= budget)
8132                         clean_complete = false;
8133         }
8134
8135         /* If all work not completed, return budget and keep polling */
8136         if (!clean_complete)
8137                 return budget;
8138
8139         /* Exit the polling mode, but don't re-enable interrupts if stack might
8140          * poll us due to busy-polling
8141          */
8142         if (likely(napi_complete_done(napi, work_done)))
8143                 igb_ring_irq_enable(q_vector);
8144
8145         return work_done;
8146 }
8147
8148 /**
8149  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8150  *  @q_vector: pointer to q_vector containing needed info
8151  *  @napi_budget: Used to determine if we are in netpoll
8152  *
8153  *  returns true if ring is completely cleaned
8154  **/
8155 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8156 {
8157         struct igb_adapter *adapter = q_vector->adapter;
8158         struct igb_ring *tx_ring = q_vector->tx.ring;
8159         struct igb_tx_buffer *tx_buffer;
8160         union e1000_adv_tx_desc *tx_desc;
8161         unsigned int total_bytes = 0, total_packets = 0;
8162         unsigned int budget = q_vector->tx.work_limit;
8163         unsigned int i = tx_ring->next_to_clean;
8164
8165         if (test_bit(__IGB_DOWN, &adapter->state))
8166                 return true;
8167
8168         tx_buffer = &tx_ring->tx_buffer_info[i];
8169         tx_desc = IGB_TX_DESC(tx_ring, i);
8170         i -= tx_ring->count;
8171
8172         do {
8173                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8174
8175                 /* if next_to_watch is not set then there is no work pending */
8176                 if (!eop_desc)
8177                         break;
8178
8179                 /* prevent any other reads prior to eop_desc */
8180                 smp_rmb();
8181
8182                 /* if DD is not set pending work has not been completed */
8183                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8184                         break;
8185
8186                 /* clear next_to_watch to prevent false hangs */
8187                 tx_buffer->next_to_watch = NULL;
8188
8189                 /* update the statistics for this packet */
8190                 total_bytes += tx_buffer->bytecount;
8191                 total_packets += tx_buffer->gso_segs;
8192
8193                 /* free the skb */
8194                 if (tx_buffer->type == IGB_TYPE_SKB)
8195                         napi_consume_skb(tx_buffer->skb, napi_budget);
8196                 else
8197                         xdp_return_frame(tx_buffer->xdpf);
8198
8199                 /* unmap skb header data */
8200                 dma_unmap_single(tx_ring->dev,
8201                                  dma_unmap_addr(tx_buffer, dma),
8202                                  dma_unmap_len(tx_buffer, len),
8203                                  DMA_TO_DEVICE);
8204
8205                 /* clear tx_buffer data */
8206                 dma_unmap_len_set(tx_buffer, len, 0);
8207
8208                 /* clear last DMA location and unmap remaining buffers */
8209                 while (tx_desc != eop_desc) {
8210                         tx_buffer++;
8211                         tx_desc++;
8212                         i++;
8213                         if (unlikely(!i)) {
8214                                 i -= tx_ring->count;
8215                                 tx_buffer = tx_ring->tx_buffer_info;
8216                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8217                         }
8218
8219                         /* unmap any remaining paged data */
8220                         if (dma_unmap_len(tx_buffer, len)) {
8221                                 dma_unmap_page(tx_ring->dev,
8222                                                dma_unmap_addr(tx_buffer, dma),
8223                                                dma_unmap_len(tx_buffer, len),
8224                                                DMA_TO_DEVICE);
8225                                 dma_unmap_len_set(tx_buffer, len, 0);
8226                         }
8227                 }
8228
8229                 /* move us one more past the eop_desc for start of next pkt */
8230                 tx_buffer++;
8231                 tx_desc++;
8232                 i++;
8233                 if (unlikely(!i)) {
8234                         i -= tx_ring->count;
8235                         tx_buffer = tx_ring->tx_buffer_info;
8236                         tx_desc = IGB_TX_DESC(tx_ring, 0);
8237                 }
8238
8239                 /* issue prefetch for next Tx descriptor */
8240                 prefetch(tx_desc);
8241
8242                 /* update budget accounting */
8243                 budget--;
8244         } while (likely(budget));
8245
8246         netdev_tx_completed_queue(txring_txq(tx_ring),
8247                                   total_packets, total_bytes);
8248         i += tx_ring->count;
8249         tx_ring->next_to_clean = i;
8250         u64_stats_update_begin(&tx_ring->tx_syncp);
8251         tx_ring->tx_stats.bytes += total_bytes;
8252         tx_ring->tx_stats.packets += total_packets;
8253         u64_stats_update_end(&tx_ring->tx_syncp);
8254         q_vector->tx.total_bytes += total_bytes;
8255         q_vector->tx.total_packets += total_packets;
8256
8257         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8258                 struct e1000_hw *hw = &adapter->hw;
8259
8260                 /* Detect a transmit hang in hardware, this serializes the
8261                  * check with the clearing of time_stamp and movement of i
8262                  */
8263                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8264                 if (tx_buffer->next_to_watch &&
8265                     time_after(jiffies, tx_buffer->time_stamp +
8266                                (adapter->tx_timeout_factor * HZ)) &&
8267                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8268
8269                         /* detected Tx unit hang */
8270                         dev_err(tx_ring->dev,
8271                                 "Detected Tx Unit Hang\n"
8272                                 "  Tx Queue             <%d>\n"
8273                                 "  TDH                  <%x>\n"
8274                                 "  TDT                  <%x>\n"
8275                                 "  next_to_use          <%x>\n"
8276                                 "  next_to_clean        <%x>\n"
8277                                 "buffer_info[next_to_clean]\n"
8278                                 "  time_stamp           <%lx>\n"
8279                                 "  next_to_watch        <%p>\n"
8280                                 "  jiffies              <%lx>\n"
8281                                 "  desc.status          <%x>\n",
8282                                 tx_ring->queue_index,
8283                                 rd32(E1000_TDH(tx_ring->reg_idx)),
8284                                 readl(tx_ring->tail),
8285                                 tx_ring->next_to_use,
8286                                 tx_ring->next_to_clean,
8287                                 tx_buffer->time_stamp,
8288                                 tx_buffer->next_to_watch,
8289                                 jiffies,
8290                                 tx_buffer->next_to_watch->wb.status);
8291                         netif_stop_subqueue(tx_ring->netdev,
8292                                             tx_ring->queue_index);
8293
8294                         /* we are about to reset, no point in enabling stuff */
8295                         return true;
8296                 }
8297         }
8298
8299 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8300         if (unlikely(total_packets &&
8301             netif_carrier_ok(tx_ring->netdev) &&
8302             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8303                 /* Make sure that anybody stopping the queue after this
8304                  * sees the new next_to_clean.
8305                  */
8306                 smp_mb();
8307                 if (__netif_subqueue_stopped(tx_ring->netdev,
8308                                              tx_ring->queue_index) &&
8309                     !(test_bit(__IGB_DOWN, &adapter->state))) {
8310                         netif_wake_subqueue(tx_ring->netdev,
8311                                             tx_ring->queue_index);
8312
8313                         u64_stats_update_begin(&tx_ring->tx_syncp);
8314                         tx_ring->tx_stats.restart_queue++;
8315                         u64_stats_update_end(&tx_ring->tx_syncp);
8316                 }
8317         }
8318
8319         return !!budget;
8320 }
8321
8322 /**
8323  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8324  *  @rx_ring: rx descriptor ring to store buffers on
8325  *  @old_buff: donor buffer to have page reused
8326  *
8327  *  Synchronizes page for reuse by the adapter
8328  **/
8329 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8330                               struct igb_rx_buffer *old_buff)
8331 {
8332         struct igb_rx_buffer *new_buff;
8333         u16 nta = rx_ring->next_to_alloc;
8334
8335         new_buff = &rx_ring->rx_buffer_info[nta];
8336
8337         /* update, and store next to alloc */
8338         nta++;
8339         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8340
8341         /* Transfer page from old buffer to new buffer.
8342          * Move each member individually to avoid possible store
8343          * forwarding stalls.
8344          */
8345         new_buff->dma           = old_buff->dma;
8346         new_buff->page          = old_buff->page;
8347         new_buff->page_offset   = old_buff->page_offset;
8348         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8349 }
8350
8351 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8352                                   int rx_buf_pgcnt)
8353 {
8354         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8355         struct page *page = rx_buffer->page;
8356
8357         /* avoid re-using remote and pfmemalloc pages */
8358         if (!dev_page_is_reusable(page))
8359                 return false;
8360
8361 #if (PAGE_SIZE < 8192)
8362         /* if we are only owner of page we can reuse it */
8363         if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8364                 return false;
8365 #else
8366 #define IGB_LAST_OFFSET \
8367         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8368
8369         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8370                 return false;
8371 #endif
8372
8373         /* If we have drained the page fragment pool we need to update
8374          * the pagecnt_bias and page count so that we fully restock the
8375          * number of references the driver holds.
8376          */
8377         if (unlikely(pagecnt_bias == 1)) {
8378                 page_ref_add(page, USHRT_MAX - 1);
8379                 rx_buffer->pagecnt_bias = USHRT_MAX;
8380         }
8381
8382         return true;
8383 }
8384
8385 /**
8386  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8387  *  @rx_ring: rx descriptor ring to transact packets on
8388  *  @rx_buffer: buffer containing page to add
8389  *  @skb: sk_buff to place the data into
8390  *  @size: size of buffer to be added
8391  *
8392  *  This function will add the data contained in rx_buffer->page to the skb.
8393  **/
8394 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8395                             struct igb_rx_buffer *rx_buffer,
8396                             struct sk_buff *skb,
8397                             unsigned int size)
8398 {
8399 #if (PAGE_SIZE < 8192)
8400         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8401 #else
8402         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8403                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8404                                 SKB_DATA_ALIGN(size);
8405 #endif
8406         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8407                         rx_buffer->page_offset, size, truesize);
8408 #if (PAGE_SIZE < 8192)
8409         rx_buffer->page_offset ^= truesize;
8410 #else
8411         rx_buffer->page_offset += truesize;
8412 #endif
8413 }
8414
8415 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8416                                          struct igb_rx_buffer *rx_buffer,
8417                                          struct xdp_buff *xdp,
8418                                          ktime_t timestamp)
8419 {
8420 #if (PAGE_SIZE < 8192)
8421         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8422 #else
8423         unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8424                                                xdp->data_hard_start);
8425 #endif
8426         unsigned int size = xdp->data_end - xdp->data;
8427         unsigned int headlen;
8428         struct sk_buff *skb;
8429
8430         /* prefetch first cache line of first page */
8431         net_prefetch(xdp->data);
8432
8433         /* allocate a skb to store the frags */
8434         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8435         if (unlikely(!skb))
8436                 return NULL;
8437
8438         if (timestamp)
8439                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8440
8441         /* Determine available headroom for copy */
8442         headlen = size;
8443         if (headlen > IGB_RX_HDR_LEN)
8444                 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8445
8446         /* align pull length to size of long to optimize memcpy performance */
8447         memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8448
8449         /* update all of the pointers */
8450         size -= headlen;
8451         if (size) {
8452                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8453                                 (xdp->data + headlen) - page_address(rx_buffer->page),
8454                                 size, truesize);
8455 #if (PAGE_SIZE < 8192)
8456                 rx_buffer->page_offset ^= truesize;
8457 #else
8458                 rx_buffer->page_offset += truesize;
8459 #endif
8460         } else {
8461                 rx_buffer->pagecnt_bias++;
8462         }
8463
8464         return skb;
8465 }
8466
8467 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8468                                      struct igb_rx_buffer *rx_buffer,
8469                                      struct xdp_buff *xdp,
8470                                      ktime_t timestamp)
8471 {
8472 #if (PAGE_SIZE < 8192)
8473         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8474 #else
8475         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8476                                 SKB_DATA_ALIGN(xdp->data_end -
8477                                                xdp->data_hard_start);
8478 #endif
8479         unsigned int metasize = xdp->data - xdp->data_meta;
8480         struct sk_buff *skb;
8481
8482         /* prefetch first cache line of first page */
8483         net_prefetch(xdp->data_meta);
8484
8485         /* build an skb around the page buffer */
8486         skb = napi_build_skb(xdp->data_hard_start, truesize);
8487         if (unlikely(!skb))
8488                 return NULL;
8489
8490         /* update pointers within the skb to store the data */
8491         skb_reserve(skb, xdp->data - xdp->data_hard_start);
8492         __skb_put(skb, xdp->data_end - xdp->data);
8493
8494         if (metasize)
8495                 skb_metadata_set(skb, metasize);
8496
8497         if (timestamp)
8498                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8499
8500         /* update buffer offset */
8501 #if (PAGE_SIZE < 8192)
8502         rx_buffer->page_offset ^= truesize;
8503 #else
8504         rx_buffer->page_offset += truesize;
8505 #endif
8506
8507         return skb;
8508 }
8509
8510 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8511                                    struct igb_ring *rx_ring,
8512                                    struct xdp_buff *xdp)
8513 {
8514         int err, result = IGB_XDP_PASS;
8515         struct bpf_prog *xdp_prog;
8516         u32 act;
8517
8518         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8519
8520         if (!xdp_prog)
8521                 goto xdp_out;
8522
8523         prefetchw(xdp->data_hard_start); /* xdp_frame write */
8524
8525         act = bpf_prog_run_xdp(xdp_prog, xdp);
8526         switch (act) {
8527         case XDP_PASS:
8528                 break;
8529         case XDP_TX:
8530                 result = igb_xdp_xmit_back(adapter, xdp);
8531                 if (result == IGB_XDP_CONSUMED)
8532                         goto out_failure;
8533                 break;
8534         case XDP_REDIRECT:
8535                 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8536                 if (err)
8537                         goto out_failure;
8538                 result = IGB_XDP_REDIR;
8539                 break;
8540         default:
8541                 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8542                 fallthrough;
8543         case XDP_ABORTED:
8544 out_failure:
8545                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8546                 fallthrough;
8547         case XDP_DROP:
8548                 result = IGB_XDP_CONSUMED;
8549                 break;
8550         }
8551 xdp_out:
8552         return ERR_PTR(-result);
8553 }
8554
8555 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8556                                           unsigned int size)
8557 {
8558         unsigned int truesize;
8559
8560 #if (PAGE_SIZE < 8192)
8561         truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8562 #else
8563         truesize = ring_uses_build_skb(rx_ring) ?
8564                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8565                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8566                 SKB_DATA_ALIGN(size);
8567 #endif
8568         return truesize;
8569 }
8570
8571 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8572                                struct igb_rx_buffer *rx_buffer,
8573                                unsigned int size)
8574 {
8575         unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8576 #if (PAGE_SIZE < 8192)
8577         rx_buffer->page_offset ^= truesize;
8578 #else
8579         rx_buffer->page_offset += truesize;
8580 #endif
8581 }
8582
8583 static inline void igb_rx_checksum(struct igb_ring *ring,
8584                                    union e1000_adv_rx_desc *rx_desc,
8585                                    struct sk_buff *skb)
8586 {
8587         skb_checksum_none_assert(skb);
8588
8589         /* Ignore Checksum bit is set */
8590         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8591                 return;
8592
8593         /* Rx checksum disabled via ethtool */
8594         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8595                 return;
8596
8597         /* TCP/UDP checksum error bit is set */
8598         if (igb_test_staterr(rx_desc,
8599                              E1000_RXDEXT_STATERR_TCPE |
8600                              E1000_RXDEXT_STATERR_IPE)) {
8601                 /* work around errata with sctp packets where the TCPE aka
8602                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8603                  * packets, (aka let the stack check the crc32c)
8604                  */
8605                 if (!((skb->len == 60) &&
8606                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8607                         u64_stats_update_begin(&ring->rx_syncp);
8608                         ring->rx_stats.csum_err++;
8609                         u64_stats_update_end(&ring->rx_syncp);
8610                 }
8611                 /* let the stack verify checksum errors */
8612                 return;
8613         }
8614         /* It must be a TCP or UDP packet with a valid checksum */
8615         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8616                                       E1000_RXD_STAT_UDPCS))
8617                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8618
8619         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8620                 le32_to_cpu(rx_desc->wb.upper.status_error));
8621 }
8622
8623 static inline void igb_rx_hash(struct igb_ring *ring,
8624                                union e1000_adv_rx_desc *rx_desc,
8625                                struct sk_buff *skb)
8626 {
8627         if (ring->netdev->features & NETIF_F_RXHASH)
8628                 skb_set_hash(skb,
8629                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8630                              PKT_HASH_TYPE_L3);
8631 }
8632
8633 /**
8634  *  igb_is_non_eop - process handling of non-EOP buffers
8635  *  @rx_ring: Rx ring being processed
8636  *  @rx_desc: Rx descriptor for current buffer
8637  *
8638  *  This function updates next to clean.  If the buffer is an EOP buffer
8639  *  this function exits returning false, otherwise it will place the
8640  *  sk_buff in the next buffer to be chained and return true indicating
8641  *  that this is in fact a non-EOP buffer.
8642  **/
8643 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8644                            union e1000_adv_rx_desc *rx_desc)
8645 {
8646         u32 ntc = rx_ring->next_to_clean + 1;
8647
8648         /* fetch, update, and store next to clean */
8649         ntc = (ntc < rx_ring->count) ? ntc : 0;
8650         rx_ring->next_to_clean = ntc;
8651
8652         prefetch(IGB_RX_DESC(rx_ring, ntc));
8653
8654         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8655                 return false;
8656
8657         return true;
8658 }
8659
8660 /**
8661  *  igb_cleanup_headers - Correct corrupted or empty headers
8662  *  @rx_ring: rx descriptor ring packet is being transacted on
8663  *  @rx_desc: pointer to the EOP Rx descriptor
8664  *  @skb: pointer to current skb being fixed
8665  *
8666  *  Address the case where we are pulling data in on pages only
8667  *  and as such no data is present in the skb header.
8668  *
8669  *  In addition if skb is not at least 60 bytes we need to pad it so that
8670  *  it is large enough to qualify as a valid Ethernet frame.
8671  *
8672  *  Returns true if an error was encountered and skb was freed.
8673  **/
8674 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8675                                 union e1000_adv_rx_desc *rx_desc,
8676                                 struct sk_buff *skb)
8677 {
8678         /* XDP packets use error pointer so abort at this point */
8679         if (IS_ERR(skb))
8680                 return true;
8681
8682         if (unlikely((igb_test_staterr(rx_desc,
8683                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8684                 struct net_device *netdev = rx_ring->netdev;
8685                 if (!(netdev->features & NETIF_F_RXALL)) {
8686                         dev_kfree_skb_any(skb);
8687                         return true;
8688                 }
8689         }
8690
8691         /* if eth_skb_pad returns an error the skb was freed */
8692         if (eth_skb_pad(skb))
8693                 return true;
8694
8695         return false;
8696 }
8697
8698 /**
8699  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8700  *  @rx_ring: rx descriptor ring packet is being transacted on
8701  *  @rx_desc: pointer to the EOP Rx descriptor
8702  *  @skb: pointer to current skb being populated
8703  *
8704  *  This function checks the ring, descriptor, and packet information in
8705  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8706  *  other fields within the skb.
8707  **/
8708 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8709                                    union e1000_adv_rx_desc *rx_desc,
8710                                    struct sk_buff *skb)
8711 {
8712         struct net_device *dev = rx_ring->netdev;
8713
8714         igb_rx_hash(rx_ring, rx_desc, skb);
8715
8716         igb_rx_checksum(rx_ring, rx_desc, skb);
8717
8718         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8719             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8720                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8721
8722         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8723             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8724                 u16 vid;
8725
8726                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8727                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8728                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8729                 else
8730                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8731
8732                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8733         }
8734
8735         skb_record_rx_queue(skb, rx_ring->queue_index);
8736
8737         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8738 }
8739
8740 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8741 {
8742         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8743 }
8744
8745 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8746                                                const unsigned int size, int *rx_buf_pgcnt)
8747 {
8748         struct igb_rx_buffer *rx_buffer;
8749
8750         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8751         *rx_buf_pgcnt =
8752 #if (PAGE_SIZE < 8192)
8753                 page_count(rx_buffer->page);
8754 #else
8755                 0;
8756 #endif
8757         prefetchw(rx_buffer->page);
8758
8759         /* we are reusing so sync this buffer for CPU use */
8760         dma_sync_single_range_for_cpu(rx_ring->dev,
8761                                       rx_buffer->dma,
8762                                       rx_buffer->page_offset,
8763                                       size,
8764                                       DMA_FROM_DEVICE);
8765
8766         rx_buffer->pagecnt_bias--;
8767
8768         return rx_buffer;
8769 }
8770
8771 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8772                               struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8773 {
8774         if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8775                 /* hand second half of page back to the ring */
8776                 igb_reuse_rx_page(rx_ring, rx_buffer);
8777         } else {
8778                 /* We are not reusing the buffer so unmap it and free
8779                  * any references we are holding to it
8780                  */
8781                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8782                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8783                                      IGB_RX_DMA_ATTR);
8784                 __page_frag_cache_drain(rx_buffer->page,
8785                                         rx_buffer->pagecnt_bias);
8786         }
8787
8788         /* clear contents of rx_buffer */
8789         rx_buffer->page = NULL;
8790 }
8791
8792 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8793 {
8794         struct igb_adapter *adapter = q_vector->adapter;
8795         struct igb_ring *rx_ring = q_vector->rx.ring;
8796         struct sk_buff *skb = rx_ring->skb;
8797         unsigned int total_bytes = 0, total_packets = 0;
8798         u16 cleaned_count = igb_desc_unused(rx_ring);
8799         unsigned int xdp_xmit = 0;
8800         struct xdp_buff xdp;
8801         u32 frame_sz = 0;
8802         int rx_buf_pgcnt;
8803
8804         /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8805 #if (PAGE_SIZE < 8192)
8806         frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8807 #endif
8808         xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8809
8810         while (likely(total_packets < budget)) {
8811                 union e1000_adv_rx_desc *rx_desc;
8812                 struct igb_rx_buffer *rx_buffer;
8813                 ktime_t timestamp = 0;
8814                 int pkt_offset = 0;
8815                 unsigned int size;
8816                 void *pktbuf;
8817
8818                 /* return some buffers to hardware, one at a time is too slow */
8819                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8820                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8821                         cleaned_count = 0;
8822                 }
8823
8824                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8825                 size = le16_to_cpu(rx_desc->wb.upper.length);
8826                 if (!size)
8827                         break;
8828
8829                 /* This memory barrier is needed to keep us from reading
8830                  * any other fields out of the rx_desc until we know the
8831                  * descriptor has been written back
8832                  */
8833                 dma_rmb();
8834
8835                 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8836                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8837
8838                 /* pull rx packet timestamp if available and valid */
8839                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8840                         int ts_hdr_len;
8841
8842                         ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8843                                                          pktbuf, &timestamp);
8844
8845                         pkt_offset += ts_hdr_len;
8846                         size -= ts_hdr_len;
8847                 }
8848
8849                 /* retrieve a buffer from the ring */
8850                 if (!skb) {
8851                         unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8852                         unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8853
8854                         xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8855                         xdp_buff_clear_frags_flag(&xdp);
8856 #if (PAGE_SIZE > 4096)
8857                         /* At larger PAGE_SIZE, frame_sz depend on len size */
8858                         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8859 #endif
8860                         skb = igb_run_xdp(adapter, rx_ring, &xdp);
8861                 }
8862
8863                 if (IS_ERR(skb)) {
8864                         unsigned int xdp_res = -PTR_ERR(skb);
8865
8866                         if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8867                                 xdp_xmit |= xdp_res;
8868                                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8869                         } else {
8870                                 rx_buffer->pagecnt_bias++;
8871                         }
8872                         total_packets++;
8873                         total_bytes += size;
8874                 } else if (skb)
8875                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8876                 else if (ring_uses_build_skb(rx_ring))
8877                         skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8878                                             timestamp);
8879                 else
8880                         skb = igb_construct_skb(rx_ring, rx_buffer,
8881                                                 &xdp, timestamp);
8882
8883                 /* exit if we failed to retrieve a buffer */
8884                 if (!skb) {
8885                         rx_ring->rx_stats.alloc_failed++;
8886                         rx_buffer->pagecnt_bias++;
8887                         break;
8888                 }
8889
8890                 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8891                 cleaned_count++;
8892
8893                 /* fetch next buffer in frame if non-eop */
8894                 if (igb_is_non_eop(rx_ring, rx_desc))
8895                         continue;
8896
8897                 /* verify the packet layout is correct */
8898                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8899                         skb = NULL;
8900                         continue;
8901                 }
8902
8903                 /* probably a little skewed due to removing CRC */
8904                 total_bytes += skb->len;
8905
8906                 /* populate checksum, timestamp, VLAN, and protocol */
8907                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8908
8909                 napi_gro_receive(&q_vector->napi, skb);
8910
8911                 /* reset skb pointer */
8912                 skb = NULL;
8913
8914                 /* update budget accounting */
8915                 total_packets++;
8916         }
8917
8918         /* place incomplete frames back on ring for completion */
8919         rx_ring->skb = skb;
8920
8921         if (xdp_xmit & IGB_XDP_REDIR)
8922                 xdp_do_flush();
8923
8924         if (xdp_xmit & IGB_XDP_TX) {
8925                 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8926
8927                 igb_xdp_ring_update_tail(tx_ring);
8928         }
8929
8930         u64_stats_update_begin(&rx_ring->rx_syncp);
8931         rx_ring->rx_stats.packets += total_packets;
8932         rx_ring->rx_stats.bytes += total_bytes;
8933         u64_stats_update_end(&rx_ring->rx_syncp);
8934         q_vector->rx.total_packets += total_packets;
8935         q_vector->rx.total_bytes += total_bytes;
8936
8937         if (cleaned_count)
8938                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8939
8940         return total_packets;
8941 }
8942
8943 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8944                                   struct igb_rx_buffer *bi)
8945 {
8946         struct page *page = bi->page;
8947         dma_addr_t dma;
8948
8949         /* since we are recycling buffers we should seldom need to alloc */
8950         if (likely(page))
8951                 return true;
8952
8953         /* alloc new page for storage */
8954         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8955         if (unlikely(!page)) {
8956                 rx_ring->rx_stats.alloc_failed++;
8957                 return false;
8958         }
8959
8960         /* map page for use */
8961         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8962                                  igb_rx_pg_size(rx_ring),
8963                                  DMA_FROM_DEVICE,
8964                                  IGB_RX_DMA_ATTR);
8965
8966         /* if mapping failed free memory back to system since
8967          * there isn't much point in holding memory we can't use
8968          */
8969         if (dma_mapping_error(rx_ring->dev, dma)) {
8970                 __free_pages(page, igb_rx_pg_order(rx_ring));
8971
8972                 rx_ring->rx_stats.alloc_failed++;
8973                 return false;
8974         }
8975
8976         bi->dma = dma;
8977         bi->page = page;
8978         bi->page_offset = igb_rx_offset(rx_ring);
8979         page_ref_add(page, USHRT_MAX - 1);
8980         bi->pagecnt_bias = USHRT_MAX;
8981
8982         return true;
8983 }
8984
8985 /**
8986  *  igb_alloc_rx_buffers - Replace used receive buffers
8987  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8988  *  @cleaned_count: count of buffers to allocate
8989  **/
8990 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8991 {
8992         union e1000_adv_rx_desc *rx_desc;
8993         struct igb_rx_buffer *bi;
8994         u16 i = rx_ring->next_to_use;
8995         u16 bufsz;
8996
8997         /* nothing to do */
8998         if (!cleaned_count)
8999                 return;
9000
9001         rx_desc = IGB_RX_DESC(rx_ring, i);
9002         bi = &rx_ring->rx_buffer_info[i];
9003         i -= rx_ring->count;
9004
9005         bufsz = igb_rx_bufsz(rx_ring);
9006
9007         do {
9008                 if (!igb_alloc_mapped_page(rx_ring, bi))
9009                         break;
9010
9011                 /* sync the buffer for use by the device */
9012                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9013                                                  bi->page_offset, bufsz,
9014                                                  DMA_FROM_DEVICE);
9015
9016                 /* Refresh the desc even if buffer_addrs didn't change
9017                  * because each write-back erases this info.
9018                  */
9019                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9020
9021                 rx_desc++;
9022                 bi++;
9023                 i++;
9024                 if (unlikely(!i)) {
9025                         rx_desc = IGB_RX_DESC(rx_ring, 0);
9026                         bi = rx_ring->rx_buffer_info;
9027                         i -= rx_ring->count;
9028                 }
9029
9030                 /* clear the length for the next_to_use descriptor */
9031                 rx_desc->wb.upper.length = 0;
9032
9033                 cleaned_count--;
9034         } while (cleaned_count);
9035
9036         i += rx_ring->count;
9037
9038         if (rx_ring->next_to_use != i) {
9039                 /* record the next descriptor to use */
9040                 rx_ring->next_to_use = i;
9041
9042                 /* update next to alloc since we have filled the ring */
9043                 rx_ring->next_to_alloc = i;
9044
9045                 /* Force memory writes to complete before letting h/w
9046                  * know there are new descriptors to fetch.  (Only
9047                  * applicable for weak-ordered memory model archs,
9048                  * such as IA-64).
9049                  */
9050                 dma_wmb();
9051                 writel(i, rx_ring->tail);
9052         }
9053 }
9054
9055 /**
9056  * igb_mii_ioctl -
9057  * @netdev: pointer to netdev struct
9058  * @ifr: interface structure
9059  * @cmd: ioctl command to execute
9060  **/
9061 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9062 {
9063         struct igb_adapter *adapter = netdev_priv(netdev);
9064         struct mii_ioctl_data *data = if_mii(ifr);
9065
9066         if (adapter->hw.phy.media_type != e1000_media_type_copper)
9067                 return -EOPNOTSUPP;
9068
9069         switch (cmd) {
9070         case SIOCGMIIPHY:
9071                 data->phy_id = adapter->hw.phy.addr;
9072                 break;
9073         case SIOCGMIIREG:
9074                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9075                                      &data->val_out))
9076                         return -EIO;
9077                 break;
9078         case SIOCSMIIREG:
9079         default:
9080                 return -EOPNOTSUPP;
9081         }
9082         return 0;
9083 }
9084
9085 /**
9086  * igb_ioctl -
9087  * @netdev: pointer to netdev struct
9088  * @ifr: interface structure
9089  * @cmd: ioctl command to execute
9090  **/
9091 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9092 {
9093         switch (cmd) {
9094         case SIOCGMIIPHY:
9095         case SIOCGMIIREG:
9096         case SIOCSMIIREG:
9097                 return igb_mii_ioctl(netdev, ifr, cmd);
9098         case SIOCGHWTSTAMP:
9099                 return igb_ptp_get_ts_config(netdev, ifr);
9100         case SIOCSHWTSTAMP:
9101                 return igb_ptp_set_ts_config(netdev, ifr);
9102         default:
9103                 return -EOPNOTSUPP;
9104         }
9105 }
9106
9107 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9108 {
9109         struct igb_adapter *adapter = hw->back;
9110
9111         pci_read_config_word(adapter->pdev, reg, value);
9112 }
9113
9114 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9115 {
9116         struct igb_adapter *adapter = hw->back;
9117
9118         pci_write_config_word(adapter->pdev, reg, *value);
9119 }
9120
9121 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9122 {
9123         struct igb_adapter *adapter = hw->back;
9124
9125         if (pcie_capability_read_word(adapter->pdev, reg, value))
9126                 return -E1000_ERR_CONFIG;
9127
9128         return 0;
9129 }
9130
9131 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9132 {
9133         struct igb_adapter *adapter = hw->back;
9134
9135         if (pcie_capability_write_word(adapter->pdev, reg, *value))
9136                 return -E1000_ERR_CONFIG;
9137
9138         return 0;
9139 }
9140
9141 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9142 {
9143         struct igb_adapter *adapter = netdev_priv(netdev);
9144         struct e1000_hw *hw = &adapter->hw;
9145         u32 ctrl, rctl;
9146         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9147
9148         if (enable) {
9149                 /* enable VLAN tag insert/strip */
9150                 ctrl = rd32(E1000_CTRL);
9151                 ctrl |= E1000_CTRL_VME;
9152                 wr32(E1000_CTRL, ctrl);
9153
9154                 /* Disable CFI check */
9155                 rctl = rd32(E1000_RCTL);
9156                 rctl &= ~E1000_RCTL_CFIEN;
9157                 wr32(E1000_RCTL, rctl);
9158         } else {
9159                 /* disable VLAN tag insert/strip */
9160                 ctrl = rd32(E1000_CTRL);
9161                 ctrl &= ~E1000_CTRL_VME;
9162                 wr32(E1000_CTRL, ctrl);
9163         }
9164
9165         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9166 }
9167
9168 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9169                                __be16 proto, u16 vid)
9170 {
9171         struct igb_adapter *adapter = netdev_priv(netdev);
9172         struct e1000_hw *hw = &adapter->hw;
9173         int pf_id = adapter->vfs_allocated_count;
9174
9175         /* add the filter since PF can receive vlans w/o entry in vlvf */
9176         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9177                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9178
9179         set_bit(vid, adapter->active_vlans);
9180
9181         return 0;
9182 }
9183
9184 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9185                                 __be16 proto, u16 vid)
9186 {
9187         struct igb_adapter *adapter = netdev_priv(netdev);
9188         int pf_id = adapter->vfs_allocated_count;
9189         struct e1000_hw *hw = &adapter->hw;
9190
9191         /* remove VID from filter table */
9192         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9193                 igb_vfta_set(hw, vid, pf_id, false, true);
9194
9195         clear_bit(vid, adapter->active_vlans);
9196
9197         return 0;
9198 }
9199
9200 static void igb_restore_vlan(struct igb_adapter *adapter)
9201 {
9202         u16 vid = 1;
9203
9204         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9205         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9206
9207         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9208                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9209 }
9210
9211 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9212 {
9213         struct pci_dev *pdev = adapter->pdev;
9214         struct e1000_mac_info *mac = &adapter->hw.mac;
9215
9216         mac->autoneg = 0;
9217
9218         /* Make sure dplx is at most 1 bit and lsb of speed is not set
9219          * for the switch() below to work
9220          */
9221         if ((spd & 1) || (dplx & ~1))
9222                 goto err_inval;
9223
9224         /* Fiber NIC's only allow 1000 gbps Full duplex
9225          * and 100Mbps Full duplex for 100baseFx sfp
9226          */
9227         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9228                 switch (spd + dplx) {
9229                 case SPEED_10 + DUPLEX_HALF:
9230                 case SPEED_10 + DUPLEX_FULL:
9231                 case SPEED_100 + DUPLEX_HALF:
9232                         goto err_inval;
9233                 default:
9234                         break;
9235                 }
9236         }
9237
9238         switch (spd + dplx) {
9239         case SPEED_10 + DUPLEX_HALF:
9240                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9241                 break;
9242         case SPEED_10 + DUPLEX_FULL:
9243                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9244                 break;
9245         case SPEED_100 + DUPLEX_HALF:
9246                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9247                 break;
9248         case SPEED_100 + DUPLEX_FULL:
9249                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9250                 break;
9251         case SPEED_1000 + DUPLEX_FULL:
9252                 mac->autoneg = 1;
9253                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9254                 break;
9255         case SPEED_1000 + DUPLEX_HALF: /* not supported */
9256         default:
9257                 goto err_inval;
9258         }
9259
9260         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9261         adapter->hw.phy.mdix = AUTO_ALL_MODES;
9262
9263         return 0;
9264
9265 err_inval:
9266         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9267         return -EINVAL;
9268 }
9269
9270 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9271                           bool runtime)
9272 {
9273         struct net_device *netdev = pci_get_drvdata(pdev);
9274         struct igb_adapter *adapter = netdev_priv(netdev);
9275         struct e1000_hw *hw = &adapter->hw;
9276         u32 ctrl, rctl, status;
9277         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9278         bool wake;
9279
9280         rtnl_lock();
9281         netif_device_detach(netdev);
9282
9283         if (netif_running(netdev))
9284                 __igb_close(netdev, true);
9285
9286         igb_ptp_suspend(adapter);
9287
9288         igb_clear_interrupt_scheme(adapter);
9289         rtnl_unlock();
9290
9291         status = rd32(E1000_STATUS);
9292         if (status & E1000_STATUS_LU)
9293                 wufc &= ~E1000_WUFC_LNKC;
9294
9295         if (wufc) {
9296                 igb_setup_rctl(adapter);
9297                 igb_set_rx_mode(netdev);
9298
9299                 /* turn on all-multi mode if wake on multicast is enabled */
9300                 if (wufc & E1000_WUFC_MC) {
9301                         rctl = rd32(E1000_RCTL);
9302                         rctl |= E1000_RCTL_MPE;
9303                         wr32(E1000_RCTL, rctl);
9304                 }
9305
9306                 ctrl = rd32(E1000_CTRL);
9307                 ctrl |= E1000_CTRL_ADVD3WUC;
9308                 wr32(E1000_CTRL, ctrl);
9309
9310                 /* Allow time for pending master requests to run */
9311                 igb_disable_pcie_master(hw);
9312
9313                 wr32(E1000_WUC, E1000_WUC_PME_EN);
9314                 wr32(E1000_WUFC, wufc);
9315         } else {
9316                 wr32(E1000_WUC, 0);
9317                 wr32(E1000_WUFC, 0);
9318         }
9319
9320         wake = wufc || adapter->en_mng_pt;
9321         if (!wake)
9322                 igb_power_down_link(adapter);
9323         else
9324                 igb_power_up_link(adapter);
9325
9326         if (enable_wake)
9327                 *enable_wake = wake;
9328
9329         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9330          * would have already happened in close and is redundant.
9331          */
9332         igb_release_hw_control(adapter);
9333
9334         pci_disable_device(pdev);
9335
9336         return 0;
9337 }
9338
9339 static void igb_deliver_wake_packet(struct net_device *netdev)
9340 {
9341         struct igb_adapter *adapter = netdev_priv(netdev);
9342         struct e1000_hw *hw = &adapter->hw;
9343         struct sk_buff *skb;
9344         u32 wupl;
9345
9346         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9347
9348         /* WUPM stores only the first 128 bytes of the wake packet.
9349          * Read the packet only if we have the whole thing.
9350          */
9351         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9352                 return;
9353
9354         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9355         if (!skb)
9356                 return;
9357
9358         skb_put(skb, wupl);
9359
9360         /* Ensure reads are 32-bit aligned */
9361         wupl = roundup(wupl, 4);
9362
9363         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9364
9365         skb->protocol = eth_type_trans(skb, netdev);
9366         netif_rx(skb);
9367 }
9368
9369 static int __maybe_unused igb_suspend(struct device *dev)
9370 {
9371         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9372 }
9373
9374 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9375 {
9376         struct pci_dev *pdev = to_pci_dev(dev);
9377         struct net_device *netdev = pci_get_drvdata(pdev);
9378         struct igb_adapter *adapter = netdev_priv(netdev);
9379         struct e1000_hw *hw = &adapter->hw;
9380         u32 err, val;
9381
9382         pci_set_power_state(pdev, PCI_D0);
9383         pci_restore_state(pdev);
9384         pci_save_state(pdev);
9385
9386         if (!pci_device_is_present(pdev))
9387                 return -ENODEV;
9388         err = pci_enable_device_mem(pdev);
9389         if (err) {
9390                 dev_err(&pdev->dev,
9391                         "igb: Cannot enable PCI device from suspend\n");
9392                 return err;
9393         }
9394         pci_set_master(pdev);
9395
9396         pci_enable_wake(pdev, PCI_D3hot, 0);
9397         pci_enable_wake(pdev, PCI_D3cold, 0);
9398
9399         if (igb_init_interrupt_scheme(adapter, true)) {
9400                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9401                 return -ENOMEM;
9402         }
9403
9404         igb_reset(adapter);
9405
9406         /* let the f/w know that the h/w is now under the control of the
9407          * driver.
9408          */
9409         igb_get_hw_control(adapter);
9410
9411         val = rd32(E1000_WUS);
9412         if (val & WAKE_PKT_WUS)
9413                 igb_deliver_wake_packet(netdev);
9414
9415         wr32(E1000_WUS, ~0);
9416
9417         if (!rpm)
9418                 rtnl_lock();
9419         if (!err && netif_running(netdev))
9420                 err = __igb_open(netdev, true);
9421
9422         if (!err)
9423                 netif_device_attach(netdev);
9424         if (!rpm)
9425                 rtnl_unlock();
9426
9427         return err;
9428 }
9429
9430 static int __maybe_unused igb_resume(struct device *dev)
9431 {
9432         return __igb_resume(dev, false);
9433 }
9434
9435 static int __maybe_unused igb_runtime_idle(struct device *dev)
9436 {
9437         struct net_device *netdev = dev_get_drvdata(dev);
9438         struct igb_adapter *adapter = netdev_priv(netdev);
9439
9440         if (!igb_has_link(adapter))
9441                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9442
9443         return -EBUSY;
9444 }
9445
9446 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9447 {
9448         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9449 }
9450
9451 static int __maybe_unused igb_runtime_resume(struct device *dev)
9452 {
9453         return __igb_resume(dev, true);
9454 }
9455
9456 static void igb_shutdown(struct pci_dev *pdev)
9457 {
9458         bool wake;
9459
9460         __igb_shutdown(pdev, &wake, 0);
9461
9462         if (system_state == SYSTEM_POWER_OFF) {
9463                 pci_wake_from_d3(pdev, wake);
9464                 pci_set_power_state(pdev, PCI_D3hot);
9465         }
9466 }
9467
9468 #ifdef CONFIG_PCI_IOV
9469 static int igb_sriov_reinit(struct pci_dev *dev)
9470 {
9471         struct net_device *netdev = pci_get_drvdata(dev);
9472         struct igb_adapter *adapter = netdev_priv(netdev);
9473         struct pci_dev *pdev = adapter->pdev;
9474
9475         rtnl_lock();
9476
9477         if (netif_running(netdev))
9478                 igb_close(netdev);
9479         else
9480                 igb_reset(adapter);
9481
9482         igb_clear_interrupt_scheme(adapter);
9483
9484         igb_init_queue_configuration(adapter);
9485
9486         if (igb_init_interrupt_scheme(adapter, true)) {
9487                 rtnl_unlock();
9488                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9489                 return -ENOMEM;
9490         }
9491
9492         if (netif_running(netdev))
9493                 igb_open(netdev);
9494
9495         rtnl_unlock();
9496
9497         return 0;
9498 }
9499
9500 static int igb_pci_disable_sriov(struct pci_dev *dev)
9501 {
9502         int err = igb_disable_sriov(dev);
9503
9504         if (!err)
9505                 err = igb_sriov_reinit(dev);
9506
9507         return err;
9508 }
9509
9510 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9511 {
9512         int err = igb_enable_sriov(dev, num_vfs);
9513
9514         if (err)
9515                 goto out;
9516
9517         err = igb_sriov_reinit(dev);
9518         if (!err)
9519                 return num_vfs;
9520
9521 out:
9522         return err;
9523 }
9524
9525 #endif
9526 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9527 {
9528 #ifdef CONFIG_PCI_IOV
9529         if (num_vfs == 0)
9530                 return igb_pci_disable_sriov(dev);
9531         else
9532                 return igb_pci_enable_sriov(dev, num_vfs);
9533 #endif
9534         return 0;
9535 }
9536
9537 /**
9538  *  igb_io_error_detected - called when PCI error is detected
9539  *  @pdev: Pointer to PCI device
9540  *  @state: The current pci connection state
9541  *
9542  *  This function is called after a PCI bus error affecting
9543  *  this device has been detected.
9544  **/
9545 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9546                                               pci_channel_state_t state)
9547 {
9548         struct net_device *netdev = pci_get_drvdata(pdev);
9549         struct igb_adapter *adapter = netdev_priv(netdev);
9550
9551         netif_device_detach(netdev);
9552
9553         if (state == pci_channel_io_perm_failure)
9554                 return PCI_ERS_RESULT_DISCONNECT;
9555
9556         if (netif_running(netdev))
9557                 igb_down(adapter);
9558         pci_disable_device(pdev);
9559
9560         /* Request a slot reset. */
9561         return PCI_ERS_RESULT_NEED_RESET;
9562 }
9563
9564 /**
9565  *  igb_io_slot_reset - called after the pci bus has been reset.
9566  *  @pdev: Pointer to PCI device
9567  *
9568  *  Restart the card from scratch, as if from a cold-boot. Implementation
9569  *  resembles the first-half of the __igb_resume routine.
9570  **/
9571 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9572 {
9573         struct net_device *netdev = pci_get_drvdata(pdev);
9574         struct igb_adapter *adapter = netdev_priv(netdev);
9575         struct e1000_hw *hw = &adapter->hw;
9576         pci_ers_result_t result;
9577
9578         if (pci_enable_device_mem(pdev)) {
9579                 dev_err(&pdev->dev,
9580                         "Cannot re-enable PCI device after reset.\n");
9581                 result = PCI_ERS_RESULT_DISCONNECT;
9582         } else {
9583                 pci_set_master(pdev);
9584                 pci_restore_state(pdev);
9585                 pci_save_state(pdev);
9586
9587                 pci_enable_wake(pdev, PCI_D3hot, 0);
9588                 pci_enable_wake(pdev, PCI_D3cold, 0);
9589
9590                 /* In case of PCI error, adapter lose its HW address
9591                  * so we should re-assign it here.
9592                  */
9593                 hw->hw_addr = adapter->io_addr;
9594
9595                 igb_reset(adapter);
9596                 wr32(E1000_WUS, ~0);
9597                 result = PCI_ERS_RESULT_RECOVERED;
9598         }
9599
9600         return result;
9601 }
9602
9603 /**
9604  *  igb_io_resume - called when traffic can start flowing again.
9605  *  @pdev: Pointer to PCI device
9606  *
9607  *  This callback is called when the error recovery driver tells us that
9608  *  its OK to resume normal operation. Implementation resembles the
9609  *  second-half of the __igb_resume routine.
9610  */
9611 static void igb_io_resume(struct pci_dev *pdev)
9612 {
9613         struct net_device *netdev = pci_get_drvdata(pdev);
9614         struct igb_adapter *adapter = netdev_priv(netdev);
9615
9616         if (netif_running(netdev)) {
9617                 if (igb_up(adapter)) {
9618                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9619                         return;
9620                 }
9621         }
9622
9623         netif_device_attach(netdev);
9624
9625         /* let the f/w know that the h/w is now under the control of the
9626          * driver.
9627          */
9628         igb_get_hw_control(adapter);
9629 }
9630
9631 /**
9632  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9633  *  @adapter: Pointer to adapter structure
9634  *  @index: Index of the RAR entry which need to be synced with MAC table
9635  **/
9636 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9637 {
9638         struct e1000_hw *hw = &adapter->hw;
9639         u32 rar_low, rar_high;
9640         u8 *addr = adapter->mac_table[index].addr;
9641
9642         /* HW expects these to be in network order when they are plugged
9643          * into the registers which are little endian.  In order to guarantee
9644          * that ordering we need to do an leXX_to_cpup here in order to be
9645          * ready for the byteswap that occurs with writel
9646          */
9647         rar_low = le32_to_cpup((__le32 *)(addr));
9648         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9649
9650         /* Indicate to hardware the Address is Valid. */
9651         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9652                 if (is_valid_ether_addr(addr))
9653                         rar_high |= E1000_RAH_AV;
9654
9655                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9656                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9657
9658                 switch (hw->mac.type) {
9659                 case e1000_82575:
9660                 case e1000_i210:
9661                         if (adapter->mac_table[index].state &
9662                             IGB_MAC_STATE_QUEUE_STEERING)
9663                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9664
9665                         rar_high |= E1000_RAH_POOL_1 *
9666                                     adapter->mac_table[index].queue;
9667                         break;
9668                 default:
9669                         rar_high |= E1000_RAH_POOL_1 <<
9670                                     adapter->mac_table[index].queue;
9671                         break;
9672                 }
9673         }
9674
9675         wr32(E1000_RAL(index), rar_low);
9676         wrfl();
9677         wr32(E1000_RAH(index), rar_high);
9678         wrfl();
9679 }
9680
9681 static int igb_set_vf_mac(struct igb_adapter *adapter,
9682                           int vf, unsigned char *mac_addr)
9683 {
9684         struct e1000_hw *hw = &adapter->hw;
9685         /* VF MAC addresses start at end of receive addresses and moves
9686          * towards the first, as a result a collision should not be possible
9687          */
9688         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9689         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9690
9691         ether_addr_copy(vf_mac_addr, mac_addr);
9692         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9693         adapter->mac_table[rar_entry].queue = vf;
9694         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9695         igb_rar_set_index(adapter, rar_entry);
9696
9697         return 0;
9698 }
9699
9700 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9701 {
9702         struct igb_adapter *adapter = netdev_priv(netdev);
9703
9704         if (vf >= adapter->vfs_allocated_count)
9705                 return -EINVAL;
9706
9707         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9708          * flag and allows to overwrite the MAC via VF netdev.  This
9709          * is necessary to allow libvirt a way to restore the original
9710          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9711          * down a VM.
9712          */
9713         if (is_zero_ether_addr(mac)) {
9714                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9715                 dev_info(&adapter->pdev->dev,
9716                          "remove administratively set MAC on VF %d\n",
9717                          vf);
9718         } else if (is_valid_ether_addr(mac)) {
9719                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9720                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9721                          mac, vf);
9722                 dev_info(&adapter->pdev->dev,
9723                          "Reload the VF driver to make this change effective.");
9724                 /* Generate additional warning if PF is down */
9725                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9726                         dev_warn(&adapter->pdev->dev,
9727                                  "The VF MAC address has been set, but the PF device is not up.\n");
9728                         dev_warn(&adapter->pdev->dev,
9729                                  "Bring the PF device up before attempting to use the VF device.\n");
9730                 }
9731         } else {
9732                 return -EINVAL;
9733         }
9734         return igb_set_vf_mac(adapter, vf, mac);
9735 }
9736
9737 static int igb_link_mbps(int internal_link_speed)
9738 {
9739         switch (internal_link_speed) {
9740         case SPEED_100:
9741                 return 100;
9742         case SPEED_1000:
9743                 return 1000;
9744         default:
9745                 return 0;
9746         }
9747 }
9748
9749 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9750                                   int link_speed)
9751 {
9752         int rf_dec, rf_int;
9753         u32 bcnrc_val;
9754
9755         if (tx_rate != 0) {
9756                 /* Calculate the rate factor values to set */
9757                 rf_int = link_speed / tx_rate;
9758                 rf_dec = (link_speed - (rf_int * tx_rate));
9759                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9760                          tx_rate;
9761
9762                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9763                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9764                               E1000_RTTBCNRC_RF_INT_MASK);
9765                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9766         } else {
9767                 bcnrc_val = 0;
9768         }
9769
9770         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9771         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9772          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9773          */
9774         wr32(E1000_RTTBCNRM, 0x14);
9775         wr32(E1000_RTTBCNRC, bcnrc_val);
9776 }
9777
9778 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9779 {
9780         int actual_link_speed, i;
9781         bool reset_rate = false;
9782
9783         /* VF TX rate limit was not set or not supported */
9784         if ((adapter->vf_rate_link_speed == 0) ||
9785             (adapter->hw.mac.type != e1000_82576))
9786                 return;
9787
9788         actual_link_speed = igb_link_mbps(adapter->link_speed);
9789         if (actual_link_speed != adapter->vf_rate_link_speed) {
9790                 reset_rate = true;
9791                 adapter->vf_rate_link_speed = 0;
9792                 dev_info(&adapter->pdev->dev,
9793                          "Link speed has been changed. VF Transmit rate is disabled\n");
9794         }
9795
9796         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9797                 if (reset_rate)
9798                         adapter->vf_data[i].tx_rate = 0;
9799
9800                 igb_set_vf_rate_limit(&adapter->hw, i,
9801                                       adapter->vf_data[i].tx_rate,
9802                                       actual_link_speed);
9803         }
9804 }
9805
9806 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9807                              int min_tx_rate, int max_tx_rate)
9808 {
9809         struct igb_adapter *adapter = netdev_priv(netdev);
9810         struct e1000_hw *hw = &adapter->hw;
9811         int actual_link_speed;
9812
9813         if (hw->mac.type != e1000_82576)
9814                 return -EOPNOTSUPP;
9815
9816         if (min_tx_rate)
9817                 return -EINVAL;
9818
9819         actual_link_speed = igb_link_mbps(adapter->link_speed);
9820         if ((vf >= adapter->vfs_allocated_count) ||
9821             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9822             (max_tx_rate < 0) ||
9823             (max_tx_rate > actual_link_speed))
9824                 return -EINVAL;
9825
9826         adapter->vf_rate_link_speed = actual_link_speed;
9827         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9828         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9829
9830         return 0;
9831 }
9832
9833 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9834                                    bool setting)
9835 {
9836         struct igb_adapter *adapter = netdev_priv(netdev);
9837         struct e1000_hw *hw = &adapter->hw;
9838         u32 reg_val, reg_offset;
9839
9840         if (!adapter->vfs_allocated_count)
9841                 return -EOPNOTSUPP;
9842
9843         if (vf >= adapter->vfs_allocated_count)
9844                 return -EINVAL;
9845
9846         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9847         reg_val = rd32(reg_offset);
9848         if (setting)
9849                 reg_val |= (BIT(vf) |
9850                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9851         else
9852                 reg_val &= ~(BIT(vf) |
9853                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9854         wr32(reg_offset, reg_val);
9855
9856         adapter->vf_data[vf].spoofchk_enabled = setting;
9857         return 0;
9858 }
9859
9860 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9861 {
9862         struct igb_adapter *adapter = netdev_priv(netdev);
9863
9864         if (vf >= adapter->vfs_allocated_count)
9865                 return -EINVAL;
9866         if (adapter->vf_data[vf].trusted == setting)
9867                 return 0;
9868
9869         adapter->vf_data[vf].trusted = setting;
9870
9871         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9872                  vf, setting ? "" : "not ");
9873         return 0;
9874 }
9875
9876 static int igb_ndo_get_vf_config(struct net_device *netdev,
9877                                  int vf, struct ifla_vf_info *ivi)
9878 {
9879         struct igb_adapter *adapter = netdev_priv(netdev);
9880         if (vf >= adapter->vfs_allocated_count)
9881                 return -EINVAL;
9882         ivi->vf = vf;
9883         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9884         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9885         ivi->min_tx_rate = 0;
9886         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9887         ivi->qos = adapter->vf_data[vf].pf_qos;
9888         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9889         ivi->trusted = adapter->vf_data[vf].trusted;
9890         return 0;
9891 }
9892
9893 static void igb_vmm_control(struct igb_adapter *adapter)
9894 {
9895         struct e1000_hw *hw = &adapter->hw;
9896         u32 reg;
9897
9898         switch (hw->mac.type) {
9899         case e1000_82575:
9900         case e1000_i210:
9901         case e1000_i211:
9902         case e1000_i354:
9903         default:
9904                 /* replication is not supported for 82575 */
9905                 return;
9906         case e1000_82576:
9907                 /* notify HW that the MAC is adding vlan tags */
9908                 reg = rd32(E1000_DTXCTL);
9909                 reg |= E1000_DTXCTL_VLAN_ADDED;
9910                 wr32(E1000_DTXCTL, reg);
9911                 fallthrough;
9912         case e1000_82580:
9913                 /* enable replication vlan tag stripping */
9914                 reg = rd32(E1000_RPLOLR);
9915                 reg |= E1000_RPLOLR_STRVLAN;
9916                 wr32(E1000_RPLOLR, reg);
9917                 fallthrough;
9918         case e1000_i350:
9919                 /* none of the above registers are supported by i350 */
9920                 break;
9921         }
9922
9923         if (adapter->vfs_allocated_count) {
9924                 igb_vmdq_set_loopback_pf(hw, true);
9925                 igb_vmdq_set_replication_pf(hw, true);
9926                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9927                                               adapter->vfs_allocated_count);
9928         } else {
9929                 igb_vmdq_set_loopback_pf(hw, false);
9930                 igb_vmdq_set_replication_pf(hw, false);
9931         }
9932 }
9933
9934 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9935 {
9936         struct e1000_hw *hw = &adapter->hw;
9937         u32 dmac_thr;
9938         u16 hwm;
9939         u32 reg;
9940
9941         if (hw->mac.type > e1000_82580) {
9942                 if (adapter->flags & IGB_FLAG_DMAC) {
9943                         /* force threshold to 0. */
9944                         wr32(E1000_DMCTXTH, 0);
9945
9946                         /* DMA Coalescing high water mark needs to be greater
9947                          * than the Rx threshold. Set hwm to PBA - max frame
9948                          * size in 16B units, capping it at PBA - 6KB.
9949                          */
9950                         hwm = 64 * (pba - 6);
9951                         reg = rd32(E1000_FCRTC);
9952                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9953                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9954                                 & E1000_FCRTC_RTH_COAL_MASK);
9955                         wr32(E1000_FCRTC, reg);
9956
9957                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9958                          * frame size, capping it at PBA - 10KB.
9959                          */
9960                         dmac_thr = pba - 10;
9961                         reg = rd32(E1000_DMACR);
9962                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9963                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9964                                 & E1000_DMACR_DMACTHR_MASK);
9965
9966                         /* transition to L0x or L1 if available..*/
9967                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9968
9969                         /* watchdog timer= +-1000 usec in 32usec intervals */
9970                         reg |= (1000 >> 5);
9971
9972                         /* Disable BMC-to-OS Watchdog Enable */
9973                         if (hw->mac.type != e1000_i354)
9974                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9975                         wr32(E1000_DMACR, reg);
9976
9977                         /* no lower threshold to disable
9978                          * coalescing(smart fifb)-UTRESH=0
9979                          */
9980                         wr32(E1000_DMCRTRH, 0);
9981
9982                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9983
9984                         wr32(E1000_DMCTLX, reg);
9985
9986                         /* free space in tx packet buffer to wake from
9987                          * DMA coal
9988                          */
9989                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9990                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9991                 }
9992
9993                 if (hw->mac.type >= e1000_i210 ||
9994                     (adapter->flags & IGB_FLAG_DMAC)) {
9995                         reg = rd32(E1000_PCIEMISC);
9996                         reg |= E1000_PCIEMISC_LX_DECISION;
9997                         wr32(E1000_PCIEMISC, reg);
9998                 } /* endif adapter->dmac is not disabled */
9999         } else if (hw->mac.type == e1000_82580) {
10000                 u32 reg = rd32(E1000_PCIEMISC);
10001
10002                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10003                 wr32(E1000_DMACR, 0);
10004         }
10005 }
10006
10007 /**
10008  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10009  *  @hw: pointer to hardware structure
10010  *  @byte_offset: byte offset to read
10011  *  @dev_addr: device address
10012  *  @data: value read
10013  *
10014  *  Performs byte read operation over I2C interface at
10015  *  a specified device address.
10016  **/
10017 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10018                       u8 dev_addr, u8 *data)
10019 {
10020         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10021         struct i2c_client *this_client = adapter->i2c_client;
10022         s32 status;
10023         u16 swfw_mask = 0;
10024
10025         if (!this_client)
10026                 return E1000_ERR_I2C;
10027
10028         swfw_mask = E1000_SWFW_PHY0_SM;
10029
10030         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10031                 return E1000_ERR_SWFW_SYNC;
10032
10033         status = i2c_smbus_read_byte_data(this_client, byte_offset);
10034         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10035
10036         if (status < 0)
10037                 return E1000_ERR_I2C;
10038         else {
10039                 *data = status;
10040                 return 0;
10041         }
10042 }
10043
10044 /**
10045  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10046  *  @hw: pointer to hardware structure
10047  *  @byte_offset: byte offset to write
10048  *  @dev_addr: device address
10049  *  @data: value to write
10050  *
10051  *  Performs byte write operation over I2C interface at
10052  *  a specified device address.
10053  **/
10054 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10055                        u8 dev_addr, u8 data)
10056 {
10057         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10058         struct i2c_client *this_client = adapter->i2c_client;
10059         s32 status;
10060         u16 swfw_mask = E1000_SWFW_PHY0_SM;
10061
10062         if (!this_client)
10063                 return E1000_ERR_I2C;
10064
10065         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10066                 return E1000_ERR_SWFW_SYNC;
10067         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10068         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10069
10070         if (status)
10071                 return E1000_ERR_I2C;
10072         else
10073                 return 0;
10074
10075 }
10076
10077 int igb_reinit_queues(struct igb_adapter *adapter)
10078 {
10079         struct net_device *netdev = adapter->netdev;
10080         struct pci_dev *pdev = adapter->pdev;
10081         int err = 0;
10082
10083         if (netif_running(netdev))
10084                 igb_close(netdev);
10085
10086         igb_reset_interrupt_capability(adapter);
10087
10088         if (igb_init_interrupt_scheme(adapter, true)) {
10089                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10090                 return -ENOMEM;
10091         }
10092
10093         if (netif_running(netdev))
10094                 err = igb_open(netdev);
10095
10096         return err;
10097 }
10098
10099 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10100 {
10101         struct igb_nfc_filter *rule;
10102
10103         spin_lock(&adapter->nfc_lock);
10104
10105         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10106                 igb_erase_filter(adapter, rule);
10107
10108         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10109                 igb_erase_filter(adapter, rule);
10110
10111         spin_unlock(&adapter->nfc_lock);
10112 }
10113
10114 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10115 {
10116         struct igb_nfc_filter *rule;
10117
10118         spin_lock(&adapter->nfc_lock);
10119
10120         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10121                 igb_add_filter(adapter, rule);
10122
10123         spin_unlock(&adapter->nfc_lock);
10124 }
10125 /* igb_main.c */