Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #ifdef CONFIG_IGB_DCA
37 #include <linux/dca.h>
38 #endif
39 #include <linux/i2c.h>
40 #include "igb.h"
41
42 enum queue_mode {
43         QUEUE_MODE_STRICT_PRIORITY,
44         QUEUE_MODE_STREAM_RESERVATION,
45 };
46
47 enum tx_queue_prio {
48         TX_QUEUE_PRIO_HIGH,
49         TX_QUEUE_PRIO_LOW,
50 };
51
52 char igb_driver_name[] = "igb";
53 static const char igb_driver_string[] =
54                                 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] =
56                                 "Copyright (c) 2007-2014 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static const struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98         /* required last entry */
99         {0, }
100 };
101
102 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104 static int igb_setup_all_tx_resources(struct igb_adapter *);
105 static int igb_setup_all_rx_resources(struct igb_adapter *);
106 static void igb_free_all_tx_resources(struct igb_adapter *);
107 static void igb_free_all_rx_resources(struct igb_adapter *);
108 static void igb_setup_mrqc(struct igb_adapter *);
109 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110 static void igb_remove(struct pci_dev *pdev);
111 static void igb_init_queue_configuration(struct igb_adapter *adapter);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128                             struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147                           netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167                                    bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169                                 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171                                  struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
179 #endif
180
181 static int igb_suspend(struct device *);
182 static int igb_resume(struct device *);
183 static int igb_runtime_suspend(struct device *dev);
184 static int igb_runtime_resume(struct device *dev);
185 static int igb_runtime_idle(struct device *dev);
186 static const struct dev_pm_ops igb_pm_ops = {
187         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
188         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
189                         igb_runtime_idle)
190 };
191 static void igb_shutdown(struct pci_dev *);
192 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
193 #ifdef CONFIG_IGB_DCA
194 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
195 static struct notifier_block dca_notifier = {
196         .notifier_call  = igb_notify_dca,
197         .next           = NULL,
198         .priority       = 0
199 };
200 #endif
201 #ifdef CONFIG_PCI_IOV
202 static unsigned int max_vfs;
203 module_param(max_vfs, uint, 0);
204 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
205 #endif /* CONFIG_PCI_IOV */
206
207 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
208                      pci_channel_state_t);
209 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
210 static void igb_io_resume(struct pci_dev *);
211
212 static const struct pci_error_handlers igb_err_handler = {
213         .error_detected = igb_io_error_detected,
214         .slot_reset = igb_io_slot_reset,
215         .resume = igb_io_resume,
216 };
217
218 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
219
220 static struct pci_driver igb_driver = {
221         .name     = igb_driver_name,
222         .id_table = igb_pci_tbl,
223         .probe    = igb_probe,
224         .remove   = igb_remove,
225 #ifdef CONFIG_PM
226         .driver.pm = &igb_pm_ops,
227 #endif
228         .shutdown = igb_shutdown,
229         .sriov_configure = igb_pci_sriov_configure,
230         .err_handler = &igb_err_handler
231 };
232
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL v2");
236
237 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
238 static int debug = -1;
239 module_param(debug, int, 0);
240 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
241
242 struct igb_reg_info {
243         u32 ofs;
244         char *name;
245 };
246
247 static const struct igb_reg_info igb_reg_info_tbl[] = {
248
249         /* General Registers */
250         {E1000_CTRL, "CTRL"},
251         {E1000_STATUS, "STATUS"},
252         {E1000_CTRL_EXT, "CTRL_EXT"},
253
254         /* Interrupt Registers */
255         {E1000_ICR, "ICR"},
256
257         /* RX Registers */
258         {E1000_RCTL, "RCTL"},
259         {E1000_RDLEN(0), "RDLEN"},
260         {E1000_RDH(0), "RDH"},
261         {E1000_RDT(0), "RDT"},
262         {E1000_RXDCTL(0), "RXDCTL"},
263         {E1000_RDBAL(0), "RDBAL"},
264         {E1000_RDBAH(0), "RDBAH"},
265
266         /* TX Registers */
267         {E1000_TCTL, "TCTL"},
268         {E1000_TDBAL(0), "TDBAL"},
269         {E1000_TDBAH(0), "TDBAH"},
270         {E1000_TDLEN(0), "TDLEN"},
271         {E1000_TDH(0), "TDH"},
272         {E1000_TDT(0), "TDT"},
273         {E1000_TXDCTL(0), "TXDCTL"},
274         {E1000_TDFH, "TDFH"},
275         {E1000_TDFT, "TDFT"},
276         {E1000_TDFHS, "TDFHS"},
277         {E1000_TDFPC, "TDFPC"},
278
279         /* List Terminator */
280         {}
281 };
282
283 /* igb_regdump - register printout routine */
284 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
285 {
286         int n = 0;
287         char rname[16];
288         u32 regs[8];
289
290         switch (reginfo->ofs) {
291         case E1000_RDLEN(0):
292                 for (n = 0; n < 4; n++)
293                         regs[n] = rd32(E1000_RDLEN(n));
294                 break;
295         case E1000_RDH(0):
296                 for (n = 0; n < 4; n++)
297                         regs[n] = rd32(E1000_RDH(n));
298                 break;
299         case E1000_RDT(0):
300                 for (n = 0; n < 4; n++)
301                         regs[n] = rd32(E1000_RDT(n));
302                 break;
303         case E1000_RXDCTL(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RXDCTL(n));
306                 break;
307         case E1000_RDBAL(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDBAL(n));
310                 break;
311         case E1000_RDBAH(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDBAH(n));
314                 break;
315         case E1000_TDBAL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_TDBAL(n));
318                 break;
319         case E1000_TDBAH(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_TDBAH(n));
322                 break;
323         case E1000_TDLEN(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_TDLEN(n));
326                 break;
327         case E1000_TDH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_TDH(n));
330                 break;
331         case E1000_TDT(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDT(n));
334                 break;
335         case E1000_TXDCTL(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TXDCTL(n));
338                 break;
339         default:
340                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
341                 return;
342         }
343
344         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
345         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
346                 regs[2], regs[3]);
347 }
348
349 /* igb_dump - Print registers, Tx-rings and Rx-rings */
350 static void igb_dump(struct igb_adapter *adapter)
351 {
352         struct net_device *netdev = adapter->netdev;
353         struct e1000_hw *hw = &adapter->hw;
354         struct igb_reg_info *reginfo;
355         struct igb_ring *tx_ring;
356         union e1000_adv_tx_desc *tx_desc;
357         struct my_u0 { __le64 a; __le64 b; } *u0;
358         struct igb_ring *rx_ring;
359         union e1000_adv_rx_desc *rx_desc;
360         u32 staterr;
361         u16 i, n;
362
363         if (!netif_msg_hw(adapter))
364                 return;
365
366         /* Print netdevice Info */
367         if (netdev) {
368                 dev_info(&adapter->pdev->dev, "Net device Info\n");
369                 pr_info("Device Name     state            trans_start\n");
370                 pr_info("%-15s %016lX %016lX\n", netdev->name,
371                         netdev->state, dev_trans_start(netdev));
372         }
373
374         /* Print Registers */
375         dev_info(&adapter->pdev->dev, "Register Dump\n");
376         pr_info(" Register Name   Value\n");
377         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
378              reginfo->name; reginfo++) {
379                 igb_regdump(hw, reginfo);
380         }
381
382         /* Print TX Ring Summary */
383         if (!netdev || !netif_running(netdev))
384                 goto exit;
385
386         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
387         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
388         for (n = 0; n < adapter->num_tx_queues; n++) {
389                 struct igb_tx_buffer *buffer_info;
390                 tx_ring = adapter->tx_ring[n];
391                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
392                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
393                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
394                         (u64)dma_unmap_addr(buffer_info, dma),
395                         dma_unmap_len(buffer_info, len),
396                         buffer_info->next_to_watch,
397                         (u64)buffer_info->time_stamp);
398         }
399
400         /* Print TX Rings */
401         if (!netif_msg_tx_done(adapter))
402                 goto rx_ring_summary;
403
404         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
405
406         /* Transmit Descriptor Formats
407          *
408          * Advanced Transmit Descriptor
409          *   +--------------------------------------------------------------+
410          * 0 |         Buffer Address [63:0]                                |
411          *   +--------------------------------------------------------------+
412          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
413          *   +--------------------------------------------------------------+
414          *   63      46 45    40 39 38 36 35 32 31   24             15       0
415          */
416
417         for (n = 0; n < adapter->num_tx_queues; n++) {
418                 tx_ring = adapter->tx_ring[n];
419                 pr_info("------------------------------------\n");
420                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
421                 pr_info("------------------------------------\n");
422                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
423
424                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
425                         const char *next_desc;
426                         struct igb_tx_buffer *buffer_info;
427                         tx_desc = IGB_TX_DESC(tx_ring, i);
428                         buffer_info = &tx_ring->tx_buffer_info[i];
429                         u0 = (struct my_u0 *)tx_desc;
430                         if (i == tx_ring->next_to_use &&
431                             i == tx_ring->next_to_clean)
432                                 next_desc = " NTC/U";
433                         else if (i == tx_ring->next_to_use)
434                                 next_desc = " NTU";
435                         else if (i == tx_ring->next_to_clean)
436                                 next_desc = " NTC";
437                         else
438                                 next_desc = "";
439
440                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
441                                 i, le64_to_cpu(u0->a),
442                                 le64_to_cpu(u0->b),
443                                 (u64)dma_unmap_addr(buffer_info, dma),
444                                 dma_unmap_len(buffer_info, len),
445                                 buffer_info->next_to_watch,
446                                 (u64)buffer_info->time_stamp,
447                                 buffer_info->skb, next_desc);
448
449                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
450                                 print_hex_dump(KERN_INFO, "",
451                                         DUMP_PREFIX_ADDRESS,
452                                         16, 1, buffer_info->skb->data,
453                                         dma_unmap_len(buffer_info, len),
454                                         true);
455                 }
456         }
457
458         /* Print RX Rings Summary */
459 rx_ring_summary:
460         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
461         pr_info("Queue [NTU] [NTC]\n");
462         for (n = 0; n < adapter->num_rx_queues; n++) {
463                 rx_ring = adapter->rx_ring[n];
464                 pr_info(" %5d %5X %5X\n",
465                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
466         }
467
468         /* Print RX Rings */
469         if (!netif_msg_rx_status(adapter))
470                 goto exit;
471
472         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
473
474         /* Advanced Receive Descriptor (Read) Format
475          *    63                                           1        0
476          *    +-----------------------------------------------------+
477          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
478          *    +----------------------------------------------+------+
479          *  8 |       Header Buffer Address [63:1]           |  DD  |
480          *    +-----------------------------------------------------+
481          *
482          *
483          * Advanced Receive Descriptor (Write-Back) Format
484          *
485          *   63       48 47    32 31  30      21 20 17 16   4 3     0
486          *   +------------------------------------------------------+
487          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
488          *   | Checksum   Ident  |   |           |    | Type | Type |
489          *   +------------------------------------------------------+
490          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
491          *   +------------------------------------------------------+
492          *   63       48 47    32 31            20 19               0
493          */
494
495         for (n = 0; n < adapter->num_rx_queues; n++) {
496                 rx_ring = adapter->rx_ring[n];
497                 pr_info("------------------------------------\n");
498                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
499                 pr_info("------------------------------------\n");
500                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
501                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
502
503                 for (i = 0; i < rx_ring->count; i++) {
504                         const char *next_desc;
505                         struct igb_rx_buffer *buffer_info;
506                         buffer_info = &rx_ring->rx_buffer_info[i];
507                         rx_desc = IGB_RX_DESC(rx_ring, i);
508                         u0 = (struct my_u0 *)rx_desc;
509                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
510
511                         if (i == rx_ring->next_to_use)
512                                 next_desc = " NTU";
513                         else if (i == rx_ring->next_to_clean)
514                                 next_desc = " NTC";
515                         else
516                                 next_desc = "";
517
518                         if (staterr & E1000_RXD_STAT_DD) {
519                                 /* Descriptor Done */
520                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
521                                         "RWB", i,
522                                         le64_to_cpu(u0->a),
523                                         le64_to_cpu(u0->b),
524                                         next_desc);
525                         } else {
526                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
527                                         "R  ", i,
528                                         le64_to_cpu(u0->a),
529                                         le64_to_cpu(u0->b),
530                                         (u64)buffer_info->dma,
531                                         next_desc);
532
533                                 if (netif_msg_pktdata(adapter) &&
534                                     buffer_info->dma && buffer_info->page) {
535                                         print_hex_dump(KERN_INFO, "",
536                                           DUMP_PREFIX_ADDRESS,
537                                           16, 1,
538                                           page_address(buffer_info->page) +
539                                                       buffer_info->page_offset,
540                                           igb_rx_bufsz(rx_ring), true);
541                                 }
542                         }
543                 }
544         }
545
546 exit:
547         return;
548 }
549
550 /**
551  *  igb_get_i2c_data - Reads the I2C SDA data bit
552  *  @data: opaque pointer to adapter struct
553  *
554  *  Returns the I2C data bit value
555  **/
556 static int igb_get_i2c_data(void *data)
557 {
558         struct igb_adapter *adapter = (struct igb_adapter *)data;
559         struct e1000_hw *hw = &adapter->hw;
560         s32 i2cctl = rd32(E1000_I2CPARAMS);
561
562         return !!(i2cctl & E1000_I2C_DATA_IN);
563 }
564
565 /**
566  *  igb_set_i2c_data - Sets the I2C data bit
567  *  @data: pointer to hardware structure
568  *  @state: I2C data value (0 or 1) to set
569  *
570  *  Sets the I2C data bit
571  **/
572 static void igb_set_i2c_data(void *data, int state)
573 {
574         struct igb_adapter *adapter = (struct igb_adapter *)data;
575         struct e1000_hw *hw = &adapter->hw;
576         s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578         if (state) {
579                 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
580         } else {
581                 i2cctl &= ~E1000_I2C_DATA_OE_N;
582                 i2cctl &= ~E1000_I2C_DATA_OUT;
583         }
584
585         wr32(E1000_I2CPARAMS, i2cctl);
586         wrfl();
587 }
588
589 /**
590  *  igb_set_i2c_clk - Sets the I2C SCL clock
591  *  @data: pointer to hardware structure
592  *  @state: state to set clock
593  *
594  *  Sets the I2C clock line to state
595  **/
596 static void igb_set_i2c_clk(void *data, int state)
597 {
598         struct igb_adapter *adapter = (struct igb_adapter *)data;
599         struct e1000_hw *hw = &adapter->hw;
600         s32 i2cctl = rd32(E1000_I2CPARAMS);
601
602         if (state) {
603                 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
604         } else {
605                 i2cctl &= ~E1000_I2C_CLK_OUT;
606                 i2cctl &= ~E1000_I2C_CLK_OE_N;
607         }
608         wr32(E1000_I2CPARAMS, i2cctl);
609         wrfl();
610 }
611
612 /**
613  *  igb_get_i2c_clk - Gets the I2C SCL clock state
614  *  @data: pointer to hardware structure
615  *
616  *  Gets the I2C clock state
617  **/
618 static int igb_get_i2c_clk(void *data)
619 {
620         struct igb_adapter *adapter = (struct igb_adapter *)data;
621         struct e1000_hw *hw = &adapter->hw;
622         s32 i2cctl = rd32(E1000_I2CPARAMS);
623
624         return !!(i2cctl & E1000_I2C_CLK_IN);
625 }
626
627 static const struct i2c_algo_bit_data igb_i2c_algo = {
628         .setsda         = igb_set_i2c_data,
629         .setscl         = igb_set_i2c_clk,
630         .getsda         = igb_get_i2c_data,
631         .getscl         = igb_get_i2c_clk,
632         .udelay         = 5,
633         .timeout        = 20,
634 };
635
636 /**
637  *  igb_get_hw_dev - return device
638  *  @hw: pointer to hardware structure
639  *
640  *  used by hardware layer to print debugging information
641  **/
642 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
643 {
644         struct igb_adapter *adapter = hw->back;
645         return adapter->netdev;
646 }
647
648 /**
649  *  igb_init_module - Driver Registration Routine
650  *
651  *  igb_init_module is the first routine called when the driver is
652  *  loaded. All it does is register with the PCI subsystem.
653  **/
654 static int __init igb_init_module(void)
655 {
656         int ret;
657
658         pr_info("%s\n", igb_driver_string);
659         pr_info("%s\n", igb_copyright);
660
661 #ifdef CONFIG_IGB_DCA
662         dca_register_notify(&dca_notifier);
663 #endif
664         ret = pci_register_driver(&igb_driver);
665         return ret;
666 }
667
668 module_init(igb_init_module);
669
670 /**
671  *  igb_exit_module - Driver Exit Cleanup Routine
672  *
673  *  igb_exit_module is called just before the driver is removed
674  *  from memory.
675  **/
676 static void __exit igb_exit_module(void)
677 {
678 #ifdef CONFIG_IGB_DCA
679         dca_unregister_notify(&dca_notifier);
680 #endif
681         pci_unregister_driver(&igb_driver);
682 }
683
684 module_exit(igb_exit_module);
685
686 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
687 /**
688  *  igb_cache_ring_register - Descriptor ring to register mapping
689  *  @adapter: board private structure to initialize
690  *
691  *  Once we know the feature-set enabled for the device, we'll cache
692  *  the register offset the descriptor ring is assigned to.
693  **/
694 static void igb_cache_ring_register(struct igb_adapter *adapter)
695 {
696         int i = 0, j = 0;
697         u32 rbase_offset = adapter->vfs_allocated_count;
698
699         switch (adapter->hw.mac.type) {
700         case e1000_82576:
701                 /* The queues are allocated for virtualization such that VF 0
702                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
703                  * In order to avoid collision we start at the first free queue
704                  * and continue consuming queues in the same sequence
705                  */
706                 if (adapter->vfs_allocated_count) {
707                         for (; i < adapter->rss_queues; i++)
708                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
709                                                                Q_IDX_82576(i);
710                 }
711                 fallthrough;
712         case e1000_82575:
713         case e1000_82580:
714         case e1000_i350:
715         case e1000_i354:
716         case e1000_i210:
717         case e1000_i211:
718         default:
719                 for (; i < adapter->num_rx_queues; i++)
720                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
721                 for (; j < adapter->num_tx_queues; j++)
722                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
723                 break;
724         }
725 }
726
727 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
728 {
729         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
730         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
731         u32 value = 0;
732
733         if (E1000_REMOVED(hw_addr))
734                 return ~value;
735
736         value = readl(&hw_addr[reg]);
737
738         /* reads should not return all F's */
739         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
740                 struct net_device *netdev = igb->netdev;
741                 hw->hw_addr = NULL;
742                 netdev_err(netdev, "PCIe link lost\n");
743                 WARN(pci_device_is_present(igb->pdev),
744                      "igb: Failed to read reg 0x%x!\n", reg);
745         }
746
747         return value;
748 }
749
750 /**
751  *  igb_write_ivar - configure ivar for given MSI-X vector
752  *  @hw: pointer to the HW structure
753  *  @msix_vector: vector number we are allocating to a given ring
754  *  @index: row index of IVAR register to write within IVAR table
755  *  @offset: column offset of in IVAR, should be multiple of 8
756  *
757  *  This function is intended to handle the writing of the IVAR register
758  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
759  *  each containing an cause allocation for an Rx and Tx ring, and a
760  *  variable number of rows depending on the number of queues supported.
761  **/
762 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
763                            int index, int offset)
764 {
765         u32 ivar = array_rd32(E1000_IVAR0, index);
766
767         /* clear any bits that are currently set */
768         ivar &= ~((u32)0xFF << offset);
769
770         /* write vector and valid bit */
771         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
772
773         array_wr32(E1000_IVAR0, index, ivar);
774 }
775
776 #define IGB_N0_QUEUE -1
777 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
778 {
779         struct igb_adapter *adapter = q_vector->adapter;
780         struct e1000_hw *hw = &adapter->hw;
781         int rx_queue = IGB_N0_QUEUE;
782         int tx_queue = IGB_N0_QUEUE;
783         u32 msixbm = 0;
784
785         if (q_vector->rx.ring)
786                 rx_queue = q_vector->rx.ring->reg_idx;
787         if (q_vector->tx.ring)
788                 tx_queue = q_vector->tx.ring->reg_idx;
789
790         switch (hw->mac.type) {
791         case e1000_82575:
792                 /* The 82575 assigns vectors using a bitmask, which matches the
793                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
794                  * or more queues to a vector, we write the appropriate bits
795                  * into the MSIXBM register for that vector.
796                  */
797                 if (rx_queue > IGB_N0_QUEUE)
798                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
799                 if (tx_queue > IGB_N0_QUEUE)
800                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
801                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
802                         msixbm |= E1000_EIMS_OTHER;
803                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
804                 q_vector->eims_value = msixbm;
805                 break;
806         case e1000_82576:
807                 /* 82576 uses a table that essentially consists of 2 columns
808                  * with 8 rows.  The ordering is column-major so we use the
809                  * lower 3 bits as the row index, and the 4th bit as the
810                  * column offset.
811                  */
812                 if (rx_queue > IGB_N0_QUEUE)
813                         igb_write_ivar(hw, msix_vector,
814                                        rx_queue & 0x7,
815                                        (rx_queue & 0x8) << 1);
816                 if (tx_queue > IGB_N0_QUEUE)
817                         igb_write_ivar(hw, msix_vector,
818                                        tx_queue & 0x7,
819                                        ((tx_queue & 0x8) << 1) + 8);
820                 q_vector->eims_value = BIT(msix_vector);
821                 break;
822         case e1000_82580:
823         case e1000_i350:
824         case e1000_i354:
825         case e1000_i210:
826         case e1000_i211:
827                 /* On 82580 and newer adapters the scheme is similar to 82576
828                  * however instead of ordering column-major we have things
829                  * ordered row-major.  So we traverse the table by using
830                  * bit 0 as the column offset, and the remaining bits as the
831                  * row index.
832                  */
833                 if (rx_queue > IGB_N0_QUEUE)
834                         igb_write_ivar(hw, msix_vector,
835                                        rx_queue >> 1,
836                                        (rx_queue & 0x1) << 4);
837                 if (tx_queue > IGB_N0_QUEUE)
838                         igb_write_ivar(hw, msix_vector,
839                                        tx_queue >> 1,
840                                        ((tx_queue & 0x1) << 4) + 8);
841                 q_vector->eims_value = BIT(msix_vector);
842                 break;
843         default:
844                 BUG();
845                 break;
846         }
847
848         /* add q_vector eims value to global eims_enable_mask */
849         adapter->eims_enable_mask |= q_vector->eims_value;
850
851         /* configure q_vector to set itr on first interrupt */
852         q_vector->set_itr = 1;
853 }
854
855 /**
856  *  igb_configure_msix - Configure MSI-X hardware
857  *  @adapter: board private structure to initialize
858  *
859  *  igb_configure_msix sets up the hardware to properly
860  *  generate MSI-X interrupts.
861  **/
862 static void igb_configure_msix(struct igb_adapter *adapter)
863 {
864         u32 tmp;
865         int i, vector = 0;
866         struct e1000_hw *hw = &adapter->hw;
867
868         adapter->eims_enable_mask = 0;
869
870         /* set vector for other causes, i.e. link changes */
871         switch (hw->mac.type) {
872         case e1000_82575:
873                 tmp = rd32(E1000_CTRL_EXT);
874                 /* enable MSI-X PBA support*/
875                 tmp |= E1000_CTRL_EXT_PBA_CLR;
876
877                 /* Auto-Mask interrupts upon ICR read. */
878                 tmp |= E1000_CTRL_EXT_EIAME;
879                 tmp |= E1000_CTRL_EXT_IRCA;
880
881                 wr32(E1000_CTRL_EXT, tmp);
882
883                 /* enable msix_other interrupt */
884                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
885                 adapter->eims_other = E1000_EIMS_OTHER;
886
887                 break;
888
889         case e1000_82576:
890         case e1000_82580:
891         case e1000_i350:
892         case e1000_i354:
893         case e1000_i210:
894         case e1000_i211:
895                 /* Turn on MSI-X capability first, or our settings
896                  * won't stick.  And it will take days to debug.
897                  */
898                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
899                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
900                      E1000_GPIE_NSICR);
901
902                 /* enable msix_other interrupt */
903                 adapter->eims_other = BIT(vector);
904                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
905
906                 wr32(E1000_IVAR_MISC, tmp);
907                 break;
908         default:
909                 /* do nothing, since nothing else supports MSI-X */
910                 break;
911         } /* switch (hw->mac.type) */
912
913         adapter->eims_enable_mask |= adapter->eims_other;
914
915         for (i = 0; i < adapter->num_q_vectors; i++)
916                 igb_assign_vector(adapter->q_vector[i], vector++);
917
918         wrfl();
919 }
920
921 /**
922  *  igb_request_msix - Initialize MSI-X interrupts
923  *  @adapter: board private structure to initialize
924  *
925  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
926  *  kernel.
927  **/
928 static int igb_request_msix(struct igb_adapter *adapter)
929 {
930         unsigned int num_q_vectors = adapter->num_q_vectors;
931         struct net_device *netdev = adapter->netdev;
932         int i, err = 0, vector = 0, free_vector = 0;
933
934         err = request_irq(adapter->msix_entries[vector].vector,
935                           igb_msix_other, 0, netdev->name, adapter);
936         if (err)
937                 goto err_out;
938
939         if (num_q_vectors > MAX_Q_VECTORS) {
940                 num_q_vectors = MAX_Q_VECTORS;
941                 dev_warn(&adapter->pdev->dev,
942                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
943                          adapter->num_q_vectors, MAX_Q_VECTORS);
944         }
945         for (i = 0; i < num_q_vectors; i++) {
946                 struct igb_q_vector *q_vector = adapter->q_vector[i];
947
948                 vector++;
949
950                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
951
952                 if (q_vector->rx.ring && q_vector->tx.ring)
953                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
954                                 q_vector->rx.ring->queue_index);
955                 else if (q_vector->tx.ring)
956                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
957                                 q_vector->tx.ring->queue_index);
958                 else if (q_vector->rx.ring)
959                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
960                                 q_vector->rx.ring->queue_index);
961                 else
962                         sprintf(q_vector->name, "%s-unused", netdev->name);
963
964                 err = request_irq(adapter->msix_entries[vector].vector,
965                                   igb_msix_ring, 0, q_vector->name,
966                                   q_vector);
967                 if (err)
968                         goto err_free;
969         }
970
971         igb_configure_msix(adapter);
972         return 0;
973
974 err_free:
975         /* free already assigned IRQs */
976         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
977
978         vector--;
979         for (i = 0; i < vector; i++) {
980                 free_irq(adapter->msix_entries[free_vector++].vector,
981                          adapter->q_vector[i]);
982         }
983 err_out:
984         return err;
985 }
986
987 /**
988  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
989  *  @adapter: board private structure to initialize
990  *  @v_idx: Index of vector to be freed
991  *
992  *  This function frees the memory allocated to the q_vector.
993  **/
994 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
995 {
996         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
997
998         adapter->q_vector[v_idx] = NULL;
999
1000         /* igb_get_stats64() might access the rings on this vector,
1001          * we must wait a grace period before freeing it.
1002          */
1003         if (q_vector)
1004                 kfree_rcu(q_vector, rcu);
1005 }
1006
1007 /**
1008  *  igb_reset_q_vector - Reset config for interrupt vector
1009  *  @adapter: board private structure to initialize
1010  *  @v_idx: Index of vector to be reset
1011  *
1012  *  If NAPI is enabled it will delete any references to the
1013  *  NAPI struct. This is preparation for igb_free_q_vector.
1014  **/
1015 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1016 {
1017         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1018
1019         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1020          * allocated. So, q_vector is NULL so we should stop here.
1021          */
1022         if (!q_vector)
1023                 return;
1024
1025         if (q_vector->tx.ring)
1026                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1027
1028         if (q_vector->rx.ring)
1029                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1030
1031         netif_napi_del(&q_vector->napi);
1032
1033 }
1034
1035 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1036 {
1037         int v_idx = adapter->num_q_vectors;
1038
1039         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1040                 pci_disable_msix(adapter->pdev);
1041         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1042                 pci_disable_msi(adapter->pdev);
1043
1044         while (v_idx--)
1045                 igb_reset_q_vector(adapter, v_idx);
1046 }
1047
1048 /**
1049  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1050  *  @adapter: board private structure to initialize
1051  *
1052  *  This function frees the memory allocated to the q_vectors.  In addition if
1053  *  NAPI is enabled it will delete any references to the NAPI struct prior
1054  *  to freeing the q_vector.
1055  **/
1056 static void igb_free_q_vectors(struct igb_adapter *adapter)
1057 {
1058         int v_idx = adapter->num_q_vectors;
1059
1060         adapter->num_tx_queues = 0;
1061         adapter->num_rx_queues = 0;
1062         adapter->num_q_vectors = 0;
1063
1064         while (v_idx--) {
1065                 igb_reset_q_vector(adapter, v_idx);
1066                 igb_free_q_vector(adapter, v_idx);
1067         }
1068 }
1069
1070 /**
1071  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1072  *  @adapter: board private structure to initialize
1073  *
1074  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1075  *  MSI-X interrupts allocated.
1076  */
1077 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1078 {
1079         igb_free_q_vectors(adapter);
1080         igb_reset_interrupt_capability(adapter);
1081 }
1082
1083 /**
1084  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1085  *  @adapter: board private structure to initialize
1086  *  @msix: boolean value of MSIX capability
1087  *
1088  *  Attempt to configure interrupts using the best available
1089  *  capabilities of the hardware and kernel.
1090  **/
1091 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1092 {
1093         int err;
1094         int numvecs, i;
1095
1096         if (!msix)
1097                 goto msi_only;
1098         adapter->flags |= IGB_FLAG_HAS_MSIX;
1099
1100         /* Number of supported queues. */
1101         adapter->num_rx_queues = adapter->rss_queues;
1102         if (adapter->vfs_allocated_count)
1103                 adapter->num_tx_queues = 1;
1104         else
1105                 adapter->num_tx_queues = adapter->rss_queues;
1106
1107         /* start with one vector for every Rx queue */
1108         numvecs = adapter->num_rx_queues;
1109
1110         /* if Tx handler is separate add 1 for every Tx queue */
1111         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1112                 numvecs += adapter->num_tx_queues;
1113
1114         /* store the number of vectors reserved for queues */
1115         adapter->num_q_vectors = numvecs;
1116
1117         /* add 1 vector for link status interrupts */
1118         numvecs++;
1119         for (i = 0; i < numvecs; i++)
1120                 adapter->msix_entries[i].entry = i;
1121
1122         err = pci_enable_msix_range(adapter->pdev,
1123                                     adapter->msix_entries,
1124                                     numvecs,
1125                                     numvecs);
1126         if (err > 0)
1127                 return;
1128
1129         igb_reset_interrupt_capability(adapter);
1130
1131         /* If we can't do MSI-X, try MSI */
1132 msi_only:
1133         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1134 #ifdef CONFIG_PCI_IOV
1135         /* disable SR-IOV for non MSI-X configurations */
1136         if (adapter->vf_data) {
1137                 struct e1000_hw *hw = &adapter->hw;
1138                 /* disable iov and allow time for transactions to clear */
1139                 pci_disable_sriov(adapter->pdev);
1140                 msleep(500);
1141
1142                 kfree(adapter->vf_mac_list);
1143                 adapter->vf_mac_list = NULL;
1144                 kfree(adapter->vf_data);
1145                 adapter->vf_data = NULL;
1146                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1147                 wrfl();
1148                 msleep(100);
1149                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1150         }
1151 #endif
1152         adapter->vfs_allocated_count = 0;
1153         adapter->rss_queues = 1;
1154         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1155         adapter->num_rx_queues = 1;
1156         adapter->num_tx_queues = 1;
1157         adapter->num_q_vectors = 1;
1158         if (!pci_enable_msi(adapter->pdev))
1159                 adapter->flags |= IGB_FLAG_HAS_MSI;
1160 }
1161
1162 static void igb_add_ring(struct igb_ring *ring,
1163                          struct igb_ring_container *head)
1164 {
1165         head->ring = ring;
1166         head->count++;
1167 }
1168
1169 /**
1170  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1171  *  @adapter: board private structure to initialize
1172  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1173  *  @v_idx: index of vector in adapter struct
1174  *  @txr_count: total number of Tx rings to allocate
1175  *  @txr_idx: index of first Tx ring to allocate
1176  *  @rxr_count: total number of Rx rings to allocate
1177  *  @rxr_idx: index of first Rx ring to allocate
1178  *
1179  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1180  **/
1181 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1182                               int v_count, int v_idx,
1183                               int txr_count, int txr_idx,
1184                               int rxr_count, int rxr_idx)
1185 {
1186         struct igb_q_vector *q_vector;
1187         struct igb_ring *ring;
1188         int ring_count;
1189         size_t size;
1190
1191         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1192         if (txr_count > 1 || rxr_count > 1)
1193                 return -ENOMEM;
1194
1195         ring_count = txr_count + rxr_count;
1196         size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1197
1198         /* allocate q_vector and rings */
1199         q_vector = adapter->q_vector[v_idx];
1200         if (!q_vector) {
1201                 q_vector = kzalloc(size, GFP_KERNEL);
1202         } else if (size > ksize(q_vector)) {
1203                 struct igb_q_vector *new_q_vector;
1204
1205                 new_q_vector = kzalloc(size, GFP_KERNEL);
1206                 if (new_q_vector)
1207                         kfree_rcu(q_vector, rcu);
1208                 q_vector = new_q_vector;
1209         } else {
1210                 memset(q_vector, 0, size);
1211         }
1212         if (!q_vector)
1213                 return -ENOMEM;
1214
1215         /* initialize NAPI */
1216         netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1217
1218         /* tie q_vector and adapter together */
1219         adapter->q_vector[v_idx] = q_vector;
1220         q_vector->adapter = adapter;
1221
1222         /* initialize work limits */
1223         q_vector->tx.work_limit = adapter->tx_work_limit;
1224
1225         /* initialize ITR configuration */
1226         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1227         q_vector->itr_val = IGB_START_ITR;
1228
1229         /* initialize pointer to rings */
1230         ring = q_vector->ring;
1231
1232         /* intialize ITR */
1233         if (rxr_count) {
1234                 /* rx or rx/tx vector */
1235                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236                         q_vector->itr_val = adapter->rx_itr_setting;
1237         } else {
1238                 /* tx only vector */
1239                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240                         q_vector->itr_val = adapter->tx_itr_setting;
1241         }
1242
1243         if (txr_count) {
1244                 /* assign generic ring traits */
1245                 ring->dev = &adapter->pdev->dev;
1246                 ring->netdev = adapter->netdev;
1247
1248                 /* configure backlink on ring */
1249                 ring->q_vector = q_vector;
1250
1251                 /* update q_vector Tx values */
1252                 igb_add_ring(ring, &q_vector->tx);
1253
1254                 /* For 82575, context index must be unique per ring. */
1255                 if (adapter->hw.mac.type == e1000_82575)
1256                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257
1258                 /* apply Tx specific ring traits */
1259                 ring->count = adapter->tx_ring_count;
1260                 ring->queue_index = txr_idx;
1261
1262                 ring->cbs_enable = false;
1263                 ring->idleslope = 0;
1264                 ring->sendslope = 0;
1265                 ring->hicredit = 0;
1266                 ring->locredit = 0;
1267
1268                 u64_stats_init(&ring->tx_syncp);
1269                 u64_stats_init(&ring->tx_syncp2);
1270
1271                 /* assign ring to adapter */
1272                 adapter->tx_ring[txr_idx] = ring;
1273
1274                 /* push pointer to next ring */
1275                 ring++;
1276         }
1277
1278         if (rxr_count) {
1279                 /* assign generic ring traits */
1280                 ring->dev = &adapter->pdev->dev;
1281                 ring->netdev = adapter->netdev;
1282
1283                 /* configure backlink on ring */
1284                 ring->q_vector = q_vector;
1285
1286                 /* update q_vector Rx values */
1287                 igb_add_ring(ring, &q_vector->rx);
1288
1289                 /* set flag indicating ring supports SCTP checksum offload */
1290                 if (adapter->hw.mac.type >= e1000_82576)
1291                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292
1293                 /* On i350, i354, i210, and i211, loopback VLAN packets
1294                  * have the tag byte-swapped.
1295                  */
1296                 if (adapter->hw.mac.type >= e1000_i350)
1297                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298
1299                 /* apply Rx specific ring traits */
1300                 ring->count = adapter->rx_ring_count;
1301                 ring->queue_index = rxr_idx;
1302
1303                 u64_stats_init(&ring->rx_syncp);
1304
1305                 /* assign ring to adapter */
1306                 adapter->rx_ring[rxr_idx] = ring;
1307         }
1308
1309         return 0;
1310 }
1311
1312
1313 /**
1314  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315  *  @adapter: board private structure to initialize
1316  *
1317  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318  *  return -ENOMEM.
1319  **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322         int q_vectors = adapter->num_q_vectors;
1323         int rxr_remaining = adapter->num_rx_queues;
1324         int txr_remaining = adapter->num_tx_queues;
1325         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326         int err;
1327
1328         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329                 for (; rxr_remaining; v_idx++) {
1330                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331                                                  0, 0, 1, rxr_idx);
1332
1333                         if (err)
1334                                 goto err_out;
1335
1336                         /* update counts and index */
1337                         rxr_remaining--;
1338                         rxr_idx++;
1339                 }
1340         }
1341
1342         for (; v_idx < q_vectors; v_idx++) {
1343                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345
1346                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347                                          tqpv, txr_idx, rqpv, rxr_idx);
1348
1349                 if (err)
1350                         goto err_out;
1351
1352                 /* update counts and index */
1353                 rxr_remaining -= rqpv;
1354                 txr_remaining -= tqpv;
1355                 rxr_idx++;
1356                 txr_idx++;
1357         }
1358
1359         return 0;
1360
1361 err_out:
1362         adapter->num_tx_queues = 0;
1363         adapter->num_rx_queues = 0;
1364         adapter->num_q_vectors = 0;
1365
1366         while (v_idx--)
1367                 igb_free_q_vector(adapter, v_idx);
1368
1369         return -ENOMEM;
1370 }
1371
1372 /**
1373  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374  *  @adapter: board private structure to initialize
1375  *  @msix: boolean value of MSIX capability
1376  *
1377  *  This function initializes the interrupts and allocates all of the queues.
1378  **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381         struct pci_dev *pdev = adapter->pdev;
1382         int err;
1383
1384         igb_set_interrupt_capability(adapter, msix);
1385
1386         err = igb_alloc_q_vectors(adapter);
1387         if (err) {
1388                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389                 goto err_alloc_q_vectors;
1390         }
1391
1392         igb_cache_ring_register(adapter);
1393
1394         return 0;
1395
1396 err_alloc_q_vectors:
1397         igb_reset_interrupt_capability(adapter);
1398         return err;
1399 }
1400
1401 /**
1402  *  igb_request_irq - initialize interrupts
1403  *  @adapter: board private structure to initialize
1404  *
1405  *  Attempts to configure interrupts using the best available
1406  *  capabilities of the hardware and kernel.
1407  **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410         struct net_device *netdev = adapter->netdev;
1411         struct pci_dev *pdev = adapter->pdev;
1412         int err = 0;
1413
1414         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415                 err = igb_request_msix(adapter);
1416                 if (!err)
1417                         goto request_done;
1418                 /* fall back to MSI */
1419                 igb_free_all_tx_resources(adapter);
1420                 igb_free_all_rx_resources(adapter);
1421
1422                 igb_clear_interrupt_scheme(adapter);
1423                 err = igb_init_interrupt_scheme(adapter, false);
1424                 if (err)
1425                         goto request_done;
1426
1427                 igb_setup_all_tx_resources(adapter);
1428                 igb_setup_all_rx_resources(adapter);
1429                 igb_configure(adapter);
1430         }
1431
1432         igb_assign_vector(adapter->q_vector[0], 0);
1433
1434         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1436                                   netdev->name, adapter);
1437                 if (!err)
1438                         goto request_done;
1439
1440                 /* fall back to legacy interrupts */
1441                 igb_reset_interrupt_capability(adapter);
1442                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443         }
1444
1445         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446                           netdev->name, adapter);
1447
1448         if (err)
1449                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450                         err);
1451
1452 request_done:
1453         return err;
1454 }
1455
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459                 int vector = 0, i;
1460
1461                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1462
1463                 for (i = 0; i < adapter->num_q_vectors; i++)
1464                         free_irq(adapter->msix_entries[vector++].vector,
1465                                  adapter->q_vector[i]);
1466         } else {
1467                 free_irq(adapter->pdev->irq, adapter);
1468         }
1469 }
1470
1471 /**
1472  *  igb_irq_disable - Mask off interrupt generation on the NIC
1473  *  @adapter: board private structure
1474  **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477         struct e1000_hw *hw = &adapter->hw;
1478
1479         /* we need to be careful when disabling interrupts.  The VFs are also
1480          * mapped into these registers and so clearing the bits can cause
1481          * issues on the VF drivers so we only need to clear what we set
1482          */
1483         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484                 u32 regval = rd32(E1000_EIAM);
1485
1486                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1488                 regval = rd32(E1000_EIAC);
1489                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490         }
1491
1492         wr32(E1000_IAM, 0);
1493         wr32(E1000_IMC, ~0);
1494         wrfl();
1495         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496                 int i;
1497
1498                 for (i = 0; i < adapter->num_q_vectors; i++)
1499                         synchronize_irq(adapter->msix_entries[i].vector);
1500         } else {
1501                 synchronize_irq(adapter->pdev->irq);
1502         }
1503 }
1504
1505 /**
1506  *  igb_irq_enable - Enable default interrupt generation settings
1507  *  @adapter: board private structure
1508  **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511         struct e1000_hw *hw = &adapter->hw;
1512
1513         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515                 u32 regval = rd32(E1000_EIAC);
1516
1517                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518                 regval = rd32(E1000_EIAM);
1519                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1521                 if (adapter->vfs_allocated_count) {
1522                         wr32(E1000_MBVFIMR, 0xFF);
1523                         ims |= E1000_IMS_VMMB;
1524                 }
1525                 wr32(E1000_IMS, ims);
1526         } else {
1527                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1528                                 E1000_IMS_DRSTA);
1529                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1530                                 E1000_IMS_DRSTA);
1531         }
1532 }
1533
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536         struct e1000_hw *hw = &adapter->hw;
1537         u16 pf_id = adapter->vfs_allocated_count;
1538         u16 vid = adapter->hw.mng_cookie.vlan_id;
1539         u16 old_vid = adapter->mng_vlan_id;
1540
1541         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542                 /* add VID to filter table */
1543                 igb_vfta_set(hw, vid, pf_id, true, true);
1544                 adapter->mng_vlan_id = vid;
1545         } else {
1546                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547         }
1548
1549         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550             (vid != old_vid) &&
1551             !test_bit(old_vid, adapter->active_vlans)) {
1552                 /* remove VID from filter table */
1553                 igb_vfta_set(hw, vid, pf_id, false, true);
1554         }
1555 }
1556
1557 /**
1558  *  igb_release_hw_control - release control of the h/w to f/w
1559  *  @adapter: address of board private structure
1560  *
1561  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562  *  For ASF and Pass Through versions of f/w this means that the
1563  *  driver is no longer loaded.
1564  **/
1565 static void igb_release_hw_control(struct igb_adapter *adapter)
1566 {
1567         struct e1000_hw *hw = &adapter->hw;
1568         u32 ctrl_ext;
1569
1570         /* Let firmware take over control of h/w */
1571         ctrl_ext = rd32(E1000_CTRL_EXT);
1572         wr32(E1000_CTRL_EXT,
1573                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574 }
1575
1576 /**
1577  *  igb_get_hw_control - get control of the h/w from f/w
1578  *  @adapter: address of board private structure
1579  *
1580  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581  *  For ASF and Pass Through versions of f/w this means that
1582  *  the driver is loaded.
1583  **/
1584 static void igb_get_hw_control(struct igb_adapter *adapter)
1585 {
1586         struct e1000_hw *hw = &adapter->hw;
1587         u32 ctrl_ext;
1588
1589         /* Let firmware know the driver has taken over */
1590         ctrl_ext = rd32(E1000_CTRL_EXT);
1591         wr32(E1000_CTRL_EXT,
1592                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593 }
1594
1595 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1596 {
1597         struct net_device *netdev = adapter->netdev;
1598         struct e1000_hw *hw = &adapter->hw;
1599
1600         WARN_ON(hw->mac.type != e1000_i210);
1601
1602         if (enable)
1603                 adapter->flags |= IGB_FLAG_FQTSS;
1604         else
1605                 adapter->flags &= ~IGB_FLAG_FQTSS;
1606
1607         if (netif_running(netdev))
1608                 schedule_work(&adapter->reset_task);
1609 }
1610
1611 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1612 {
1613         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1614 }
1615
1616 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1617                                    enum tx_queue_prio prio)
1618 {
1619         u32 val;
1620
1621         WARN_ON(hw->mac.type != e1000_i210);
1622         WARN_ON(queue < 0 || queue > 4);
1623
1624         val = rd32(E1000_I210_TXDCTL(queue));
1625
1626         if (prio == TX_QUEUE_PRIO_HIGH)
1627                 val |= E1000_TXDCTL_PRIORITY;
1628         else
1629                 val &= ~E1000_TXDCTL_PRIORITY;
1630
1631         wr32(E1000_I210_TXDCTL(queue), val);
1632 }
1633
1634 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1635 {
1636         u32 val;
1637
1638         WARN_ON(hw->mac.type != e1000_i210);
1639         WARN_ON(queue < 0 || queue > 1);
1640
1641         val = rd32(E1000_I210_TQAVCC(queue));
1642
1643         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1644                 val |= E1000_TQAVCC_QUEUEMODE;
1645         else
1646                 val &= ~E1000_TQAVCC_QUEUEMODE;
1647
1648         wr32(E1000_I210_TQAVCC(queue), val);
1649 }
1650
1651 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1652 {
1653         int i;
1654
1655         for (i = 0; i < adapter->num_tx_queues; i++) {
1656                 if (adapter->tx_ring[i]->cbs_enable)
1657                         return true;
1658         }
1659
1660         return false;
1661 }
1662
1663 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1664 {
1665         int i;
1666
1667         for (i = 0; i < adapter->num_tx_queues; i++) {
1668                 if (adapter->tx_ring[i]->launchtime_enable)
1669                         return true;
1670         }
1671
1672         return false;
1673 }
1674
1675 /**
1676  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1677  *  @adapter: pointer to adapter struct
1678  *  @queue: queue number
1679  *
1680  *  Configure CBS and Launchtime for a given hardware queue.
1681  *  Parameters are retrieved from the correct Tx ring, so
1682  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1683  *  for setting those correctly prior to this function being called.
1684  **/
1685 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1686 {
1687         struct net_device *netdev = adapter->netdev;
1688         struct e1000_hw *hw = &adapter->hw;
1689         struct igb_ring *ring;
1690         u32 tqavcc, tqavctrl;
1691         u16 value;
1692
1693         WARN_ON(hw->mac.type != e1000_i210);
1694         WARN_ON(queue < 0 || queue > 1);
1695         ring = adapter->tx_ring[queue];
1696
1697         /* If any of the Qav features is enabled, configure queues as SR and
1698          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699          * as SP.
1700          */
1701         if (ring->cbs_enable || ring->launchtime_enable) {
1702                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704         } else {
1705                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707         }
1708
1709         /* If CBS is enabled, set DataTranARB and config its parameters. */
1710         if (ring->cbs_enable || queue == 0) {
1711                 /* i210 does not allow the queue 0 to be in the Strict
1712                  * Priority mode while the Qav mode is enabled, so,
1713                  * instead of disabling strict priority mode, we give
1714                  * queue 0 the maximum of credits possible.
1715                  *
1716                  * See section 8.12.19 of the i210 datasheet, "Note:
1717                  * Queue0 QueueMode must be set to 1b when
1718                  * TransmitMode is set to Qav."
1719                  */
1720                 if (queue == 0 && !ring->cbs_enable) {
1721                         /* max "linkspeed" idleslope in kbps */
1722                         ring->idleslope = 1000000;
1723                         ring->hicredit = ETH_FRAME_LEN;
1724                 }
1725
1726                 /* Always set data transfer arbitration to credit-based
1727                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728                  * the queues.
1729                  */
1730                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733
1734                 /* According to i210 datasheet section 7.2.7.7, we should set
1735                  * the 'idleSlope' field from TQAVCC register following the
1736                  * equation:
1737                  *
1738                  * For 100 Mbps link speed:
1739                  *
1740                  *     value = BW * 0x7735 * 0.2                          (E1)
1741                  *
1742                  * For 1000Mbps link speed:
1743                  *
1744                  *     value = BW * 0x7735 * 2                            (E2)
1745                  *
1746                  * E1 and E2 can be merged into one equation as shown below.
1747                  * Note that 'link-speed' is in Mbps.
1748                  *
1749                  *     value = BW * 0x7735 * 2 * link-speed
1750                  *                           --------------               (E3)
1751                  *                                1000
1752                  *
1753                  * 'BW' is the percentage bandwidth out of full link speed
1754                  * which can be found with the following equation. Note that
1755                  * idleSlope here is the parameter from this function which
1756                  * is in kbps.
1757                  *
1758                  *     BW =     idleSlope
1759                  *          -----------------                             (E4)
1760                  *          link-speed * 1000
1761                  *
1762                  * That said, we can come up with a generic equation to
1763                  * calculate the value we should set it TQAVCC register by
1764                  * replacing 'BW' in E3 by E4. The resulting equation is:
1765                  *
1766                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1767                  *         -----------------            --------------    (E5)
1768                  *         link-speed * 1000                 1000
1769                  *
1770                  * 'link-speed' is present in both sides of the fraction so
1771                  * it is canceled out. The final equation is the following:
1772                  *
1773                  *     value = idleSlope * 61034
1774                  *             -----------------                          (E6)
1775                  *                  1000000
1776                  *
1777                  * NOTE: For i210, given the above, we can see that idleslope
1778                  *       is represented in 16.38431 kbps units by the value at
1779                  *       the TQAVCC register (1Gbps / 61034), which reduces
1780                  *       the granularity for idleslope increments.
1781                  *       For instance, if you want to configure a 2576kbps
1782                  *       idleslope, the value to be written on the register
1783                  *       would have to be 157.23. If rounded down, you end
1784                  *       up with less bandwidth available than originally
1785                  *       required (~2572 kbps). If rounded up, you end up
1786                  *       with a higher bandwidth (~2589 kbps). Below the
1787                  *       approach we take is to always round up the
1788                  *       calculated value, so the resulting bandwidth might
1789                  *       be slightly higher for some configurations.
1790                  */
1791                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792
1793                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795                 tqavcc |= value;
1796                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797
1798                 wr32(E1000_I210_TQAVHC(queue),
1799                      0x80000000 + ring->hicredit * 0x7735);
1800         } else {
1801
1802                 /* Set idleSlope to zero. */
1803                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806
1807                 /* Set hiCredit to zero. */
1808                 wr32(E1000_I210_TQAVHC(queue), 0);
1809
1810                 /* If CBS is not enabled for any queues anymore, then return to
1811                  * the default state of Data Transmission Arbitration on
1812                  * TQAVCTRL.
1813                  */
1814                 if (!is_any_cbs_enabled(adapter)) {
1815                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818                 }
1819         }
1820
1821         /* If LaunchTime is enabled, set DataTranTIM. */
1822         if (ring->launchtime_enable) {
1823                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824                  * for any of the SR queues, and configure fetchtime delta.
1825                  * XXX NOTE:
1826                  *     - LaunchTime will be enabled for all SR queues.
1827                  *     - A fixed offset can be added relative to the launch
1828                  *       time of all packets if configured at reg LAUNCH_OS0.
1829                  *       We are keeping it as 0 for now (default value).
1830                  */
1831                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1834                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835         } else {
1836                 /* If Launchtime is not enabled for any SR queues anymore,
1837                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838                  * effectively disabling Launchtime.
1839                  */
1840                 if (!is_any_txtime_enabled(adapter)) {
1841                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845                 }
1846         }
1847
1848         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849          * CBS are not configurable by software so we don't do any 'controller
1850          * configuration' in respect to these parameters.
1851          */
1852
1853         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854                    ring->cbs_enable ? "enabled" : "disabled",
1855                    ring->launchtime_enable ? "enabled" : "disabled",
1856                    queue,
1857                    ring->idleslope, ring->sendslope,
1858                    ring->hicredit, ring->locredit);
1859 }
1860
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862                                   bool enable)
1863 {
1864         struct igb_ring *ring;
1865
1866         if (queue < 0 || queue > adapter->num_tx_queues)
1867                 return -EINVAL;
1868
1869         ring = adapter->tx_ring[queue];
1870         ring->launchtime_enable = enable;
1871
1872         return 0;
1873 }
1874
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876                                bool enable, int idleslope, int sendslope,
1877                                int hicredit, int locredit)
1878 {
1879         struct igb_ring *ring;
1880
1881         if (queue < 0 || queue > adapter->num_tx_queues)
1882                 return -EINVAL;
1883
1884         ring = adapter->tx_ring[queue];
1885
1886         ring->cbs_enable = enable;
1887         ring->idleslope = idleslope;
1888         ring->sendslope = sendslope;
1889         ring->hicredit = hicredit;
1890         ring->locredit = locredit;
1891
1892         return 0;
1893 }
1894
1895 /**
1896  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897  *  @adapter: pointer to adapter struct
1898  *
1899  *  Configure TQAVCTRL register switching the controller's Tx mode
1900  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1901  *  a call to igb_config_tx_modes() per queue so any previously saved
1902  *  Tx parameters are applied.
1903  **/
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905 {
1906         struct net_device *netdev = adapter->netdev;
1907         struct e1000_hw *hw = &adapter->hw;
1908         u32 val;
1909
1910         /* Only i210 controller supports changing the transmission mode. */
1911         if (hw->mac.type != e1000_i210)
1912                 return;
1913
1914         if (is_fqtss_enabled(adapter)) {
1915                 int i, max_queue;
1916
1917                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919                  * so SP queues wait for SR ones.
1920                  */
1921                 val = rd32(E1000_I210_TQAVCTRL);
1922                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924                 wr32(E1000_I210_TQAVCTRL, val);
1925
1926                 /* Configure Tx and Rx packet buffers sizes as described in
1927                  * i210 datasheet section 7.2.7.7.
1928                  */
1929                 val = rd32(E1000_TXPBS);
1930                 val &= ~I210_TXPBSIZE_MASK;
1931                 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1932                         I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1933                 wr32(E1000_TXPBS, val);
1934
1935                 val = rd32(E1000_RXPBS);
1936                 val &= ~I210_RXPBSIZE_MASK;
1937                 val |= I210_RXPBSIZE_PB_30KB;
1938                 wr32(E1000_RXPBS, val);
1939
1940                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941                  * register should not exceed the buffer size programmed in
1942                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1944                  * 4kB / 64.
1945                  *
1946                  * However, when we do so, no frame from queue 2 and 3 are
1947                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1948                  * or _equal_ to the buffer size programmed in TXPBS. For this
1949                  * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950                  */
1951                 val = (4096 - 1) / 64;
1952                 wr32(E1000_I210_DTXMXPKTSZ, val);
1953
1954                 /* Since FQTSS mode is enabled, apply any CBS configuration
1955                  * previously set. If no previous CBS configuration has been
1956                  * done, then the initial configuration is applied, which means
1957                  * CBS is disabled.
1958                  */
1959                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961
1962                 for (i = 0; i < max_queue; i++) {
1963                         igb_config_tx_modes(adapter, i);
1964                 }
1965         } else {
1966                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969
1970                 val = rd32(E1000_I210_TQAVCTRL);
1971                 /* According to Section 8.12.21, the other flags we've set when
1972                  * enabling FQTSS are not relevant when disabling FQTSS so we
1973                  * don't set they here.
1974                  */
1975                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976                 wr32(E1000_I210_TQAVCTRL, val);
1977         }
1978
1979         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980                    "enabled" : "disabled");
1981 }
1982
1983 /**
1984  *  igb_configure - configure the hardware for RX and TX
1985  *  @adapter: private board structure
1986  **/
1987 static void igb_configure(struct igb_adapter *adapter)
1988 {
1989         struct net_device *netdev = adapter->netdev;
1990         int i;
1991
1992         igb_get_hw_control(adapter);
1993         igb_set_rx_mode(netdev);
1994         igb_setup_tx_mode(adapter);
1995
1996         igb_restore_vlan(adapter);
1997
1998         igb_setup_tctl(adapter);
1999         igb_setup_mrqc(adapter);
2000         igb_setup_rctl(adapter);
2001
2002         igb_nfc_filter_restore(adapter);
2003         igb_configure_tx(adapter);
2004         igb_configure_rx(adapter);
2005
2006         igb_rx_fifo_flush_82575(&adapter->hw);
2007
2008         /* call igb_desc_unused which always leaves
2009          * at least 1 descriptor unused to make sure
2010          * next_to_use != next_to_clean
2011          */
2012         for (i = 0; i < adapter->num_rx_queues; i++) {
2013                 struct igb_ring *ring = adapter->rx_ring[i];
2014                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015         }
2016 }
2017
2018 /**
2019  *  igb_power_up_link - Power up the phy/serdes link
2020  *  @adapter: address of board private structure
2021  **/
2022 void igb_power_up_link(struct igb_adapter *adapter)
2023 {
2024         igb_reset_phy(&adapter->hw);
2025
2026         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027                 igb_power_up_phy_copper(&adapter->hw);
2028         else
2029                 igb_power_up_serdes_link_82575(&adapter->hw);
2030
2031         igb_setup_link(&adapter->hw);
2032 }
2033
2034 /**
2035  *  igb_power_down_link - Power down the phy/serdes link
2036  *  @adapter: address of board private structure
2037  */
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2039 {
2040         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041                 igb_power_down_phy_copper_82575(&adapter->hw);
2042         else
2043                 igb_shutdown_serdes_link_82575(&adapter->hw);
2044 }
2045
2046 /**
2047  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2048  * @adapter: address of the board private structure
2049  **/
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2051 {
2052         struct e1000_hw *hw = &adapter->hw;
2053         u32 ctrl_ext, connsw;
2054         bool swap_now = false;
2055
2056         ctrl_ext = rd32(E1000_CTRL_EXT);
2057         connsw = rd32(E1000_CONNSW);
2058
2059         /* need to live swap if current media is copper and we have fiber/serdes
2060          * to go to.
2061          */
2062
2063         if ((hw->phy.media_type == e1000_media_type_copper) &&
2064             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065                 swap_now = true;
2066         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2067                    !(connsw & E1000_CONNSW_SERDESD)) {
2068                 /* copper signal takes time to appear */
2069                 if (adapter->copper_tries < 4) {
2070                         adapter->copper_tries++;
2071                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2072                         wr32(E1000_CONNSW, connsw);
2073                         return;
2074                 } else {
2075                         adapter->copper_tries = 0;
2076                         if ((connsw & E1000_CONNSW_PHYSD) &&
2077                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078                                 swap_now = true;
2079                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2080                                 wr32(E1000_CONNSW, connsw);
2081                         }
2082                 }
2083         }
2084
2085         if (!swap_now)
2086                 return;
2087
2088         switch (hw->phy.media_type) {
2089         case e1000_media_type_copper:
2090                 netdev_info(adapter->netdev,
2091                         "MAS: changing media to fiber/serdes\n");
2092                 ctrl_ext |=
2093                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2094                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2095                 adapter->copper_tries = 0;
2096                 break;
2097         case e1000_media_type_internal_serdes:
2098         case e1000_media_type_fiber:
2099                 netdev_info(adapter->netdev,
2100                         "MAS: changing media to copper\n");
2101                 ctrl_ext &=
2102                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2103                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2104                 break;
2105         default:
2106                 /* shouldn't get here during regular operation */
2107                 netdev_err(adapter->netdev,
2108                         "AMS: Invalid media type found, returning\n");
2109                 break;
2110         }
2111         wr32(E1000_CTRL_EXT, ctrl_ext);
2112 }
2113
2114 /**
2115  *  igb_up - Open the interface and prepare it to handle traffic
2116  *  @adapter: board private structure
2117  **/
2118 int igb_up(struct igb_adapter *adapter)
2119 {
2120         struct e1000_hw *hw = &adapter->hw;
2121         int i;
2122
2123         /* hardware has been reset, we need to reload some things */
2124         igb_configure(adapter);
2125
2126         clear_bit(__IGB_DOWN, &adapter->state);
2127
2128         for (i = 0; i < adapter->num_q_vectors; i++)
2129                 napi_enable(&(adapter->q_vector[i]->napi));
2130
2131         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2132                 igb_configure_msix(adapter);
2133         else
2134                 igb_assign_vector(adapter->q_vector[0], 0);
2135
2136         /* Clear any pending interrupts. */
2137         rd32(E1000_TSICR);
2138         rd32(E1000_ICR);
2139         igb_irq_enable(adapter);
2140
2141         /* notify VFs that reset has been completed */
2142         if (adapter->vfs_allocated_count) {
2143                 u32 reg_data = rd32(E1000_CTRL_EXT);
2144
2145                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2146                 wr32(E1000_CTRL_EXT, reg_data);
2147         }
2148
2149         netif_tx_start_all_queues(adapter->netdev);
2150
2151         /* start the watchdog. */
2152         hw->mac.get_link_status = 1;
2153         schedule_work(&adapter->watchdog_task);
2154
2155         if ((adapter->flags & IGB_FLAG_EEE) &&
2156             (!hw->dev_spec._82575.eee_disable))
2157                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2158
2159         return 0;
2160 }
2161
2162 void igb_down(struct igb_adapter *adapter)
2163 {
2164         struct net_device *netdev = adapter->netdev;
2165         struct e1000_hw *hw = &adapter->hw;
2166         u32 tctl, rctl;
2167         int i;
2168
2169         /* signal that we're down so the interrupt handler does not
2170          * reschedule our watchdog timer
2171          */
2172         set_bit(__IGB_DOWN, &adapter->state);
2173
2174         /* disable receives in the hardware */
2175         rctl = rd32(E1000_RCTL);
2176         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2177         /* flush and sleep below */
2178
2179         igb_nfc_filter_exit(adapter);
2180
2181         netif_carrier_off(netdev);
2182         netif_tx_stop_all_queues(netdev);
2183
2184         /* disable transmits in the hardware */
2185         tctl = rd32(E1000_TCTL);
2186         tctl &= ~E1000_TCTL_EN;
2187         wr32(E1000_TCTL, tctl);
2188         /* flush both disables and wait for them to finish */
2189         wrfl();
2190         usleep_range(10000, 11000);
2191
2192         igb_irq_disable(adapter);
2193
2194         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195
2196         for (i = 0; i < adapter->num_q_vectors; i++) {
2197                 if (adapter->q_vector[i]) {
2198                         napi_synchronize(&adapter->q_vector[i]->napi);
2199                         napi_disable(&adapter->q_vector[i]->napi);
2200                 }
2201         }
2202
2203         del_timer_sync(&adapter->watchdog_timer);
2204         del_timer_sync(&adapter->phy_info_timer);
2205
2206         /* record the stats before reset*/
2207         spin_lock(&adapter->stats64_lock);
2208         igb_update_stats(adapter);
2209         spin_unlock(&adapter->stats64_lock);
2210
2211         adapter->link_speed = 0;
2212         adapter->link_duplex = 0;
2213
2214         if (!pci_channel_offline(adapter->pdev))
2215                 igb_reset(adapter);
2216
2217         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2218         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219
2220         igb_clean_all_tx_rings(adapter);
2221         igb_clean_all_rx_rings(adapter);
2222 #ifdef CONFIG_IGB_DCA
2223
2224         /* since we reset the hardware DCA settings were cleared */
2225         igb_setup_dca(adapter);
2226 #endif
2227 }
2228
2229 void igb_reinit_locked(struct igb_adapter *adapter)
2230 {
2231         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232                 usleep_range(1000, 2000);
2233         igb_down(adapter);
2234         igb_up(adapter);
2235         clear_bit(__IGB_RESETTING, &adapter->state);
2236 }
2237
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2239  *
2240  * @adapter: adapter struct
2241  **/
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2243 {
2244         struct e1000_hw *hw = &adapter->hw;
2245         u32 connsw = rd32(E1000_CONNSW);
2246
2247         /* configure for SerDes media detect */
2248         if ((hw->phy.media_type == e1000_media_type_copper) &&
2249             (!(connsw & E1000_CONNSW_SERDESD))) {
2250                 connsw |= E1000_CONNSW_ENRGSRC;
2251                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252                 wr32(E1000_CONNSW, connsw);
2253                 wrfl();
2254         }
2255 }
2256
2257 #ifdef CONFIG_IGB_HWMON
2258 /**
2259  *  igb_set_i2c_bb - Init I2C interface
2260  *  @hw: pointer to hardware structure
2261  **/
2262 static void igb_set_i2c_bb(struct e1000_hw *hw)
2263 {
2264         u32 ctrl_ext;
2265         s32 i2cctl;
2266
2267         ctrl_ext = rd32(E1000_CTRL_EXT);
2268         ctrl_ext |= E1000_CTRL_I2C_ENA;
2269         wr32(E1000_CTRL_EXT, ctrl_ext);
2270         wrfl();
2271
2272         i2cctl = rd32(E1000_I2CPARAMS);
2273         i2cctl |= E1000_I2CBB_EN
2274                 | E1000_I2C_CLK_OE_N
2275                 | E1000_I2C_DATA_OE_N;
2276         wr32(E1000_I2CPARAMS, i2cctl);
2277         wrfl();
2278 }
2279 #endif
2280
2281 void igb_reset(struct igb_adapter *adapter)
2282 {
2283         struct pci_dev *pdev = adapter->pdev;
2284         struct e1000_hw *hw = &adapter->hw;
2285         struct e1000_mac_info *mac = &hw->mac;
2286         struct e1000_fc_info *fc = &hw->fc;
2287         u32 pba, hwm;
2288
2289         /* Repartition Pba for greater than 9k mtu
2290          * To take effect CTRL.RST is required.
2291          */
2292         switch (mac->type) {
2293         case e1000_i350:
2294         case e1000_i354:
2295         case e1000_82580:
2296                 pba = rd32(E1000_RXPBS);
2297                 pba = igb_rxpbs_adjust_82580(pba);
2298                 break;
2299         case e1000_82576:
2300                 pba = rd32(E1000_RXPBS);
2301                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2302                 break;
2303         case e1000_82575:
2304         case e1000_i210:
2305         case e1000_i211:
2306         default:
2307                 pba = E1000_PBA_34K;
2308                 break;
2309         }
2310
2311         if (mac->type == e1000_82575) {
2312                 u32 min_rx_space, min_tx_space, needed_tx_space;
2313
2314                 /* write Rx PBA so that hardware can report correct Tx PBA */
2315                 wr32(E1000_PBA, pba);
2316
2317                 /* To maintain wire speed transmits, the Tx FIFO should be
2318                  * large enough to accommodate two full transmit packets,
2319                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2320                  * the Rx FIFO should be large enough to accommodate at least
2321                  * one full receive packet and is similarly rounded up and
2322                  * expressed in KB.
2323                  */
2324                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2325
2326                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2327                  * but don't include Ethernet FCS because hardware appends it.
2328                  * We only need to round down to the nearest 512 byte block
2329                  * count since the value we care about is 2 frames, not 1.
2330                  */
2331                 min_tx_space = adapter->max_frame_size;
2332                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2333                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2334
2335                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2336                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2337
2338                 /* If current Tx allocation is less than the min Tx FIFO size,
2339                  * and the min Tx FIFO size is less than the current Rx FIFO
2340                  * allocation, take space away from current Rx allocation.
2341                  */
2342                 if (needed_tx_space < pba) {
2343                         pba -= needed_tx_space;
2344
2345                         /* if short on Rx space, Rx wins and must trump Tx
2346                          * adjustment
2347                          */
2348                         if (pba < min_rx_space)
2349                                 pba = min_rx_space;
2350                 }
2351
2352                 /* adjust PBA for jumbo frames */
2353                 wr32(E1000_PBA, pba);
2354         }
2355
2356         /* flow control settings
2357          * The high water mark must be low enough to fit one full frame
2358          * after transmitting the pause frame.  As such we must have enough
2359          * space to allow for us to complete our current transmit and then
2360          * receive the frame that is in progress from the link partner.
2361          * Set it to:
2362          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2363          */
2364         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2365
2366         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2367         fc->low_water = fc->high_water - 16;
2368         fc->pause_time = 0xFFFF;
2369         fc->send_xon = 1;
2370         fc->current_mode = fc->requested_mode;
2371
2372         /* disable receive for all VFs and wait one second */
2373         if (adapter->vfs_allocated_count) {
2374                 int i;
2375
2376                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2377                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2378
2379                 /* ping all the active vfs to let them know we are going down */
2380                 igb_ping_all_vfs(adapter);
2381
2382                 /* disable transmits and receives */
2383                 wr32(E1000_VFRE, 0);
2384                 wr32(E1000_VFTE, 0);
2385         }
2386
2387         /* Allow time for pending master requests to run */
2388         hw->mac.ops.reset_hw(hw);
2389         wr32(E1000_WUC, 0);
2390
2391         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2392                 /* need to resetup here after media swap */
2393                 adapter->ei.get_invariants(hw);
2394                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2395         }
2396         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2397             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2398                 igb_enable_mas(adapter);
2399         }
2400         if (hw->mac.ops.init_hw(hw))
2401                 dev_err(&pdev->dev, "Hardware Error\n");
2402
2403         /* RAR registers were cleared during init_hw, clear mac table */
2404         igb_flush_mac_table(adapter);
2405         __dev_uc_unsync(adapter->netdev, NULL);
2406
2407         /* Recover default RAR entry */
2408         igb_set_default_mac_filter(adapter);
2409
2410         /* Flow control settings reset on hardware reset, so guarantee flow
2411          * control is off when forcing speed.
2412          */
2413         if (!hw->mac.autoneg)
2414                 igb_force_mac_fc(hw);
2415
2416         igb_init_dmac(adapter, pba);
2417 #ifdef CONFIG_IGB_HWMON
2418         /* Re-initialize the thermal sensor on i350 devices. */
2419         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2420                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2421                         /* If present, re-initialize the external thermal sensor
2422                          * interface.
2423                          */
2424                         if (adapter->ets)
2425                                 igb_set_i2c_bb(hw);
2426                         mac->ops.init_thermal_sensor_thresh(hw);
2427                 }
2428         }
2429 #endif
2430         /* Re-establish EEE setting */
2431         if (hw->phy.media_type == e1000_media_type_copper) {
2432                 switch (mac->type) {
2433                 case e1000_i350:
2434                 case e1000_i210:
2435                 case e1000_i211:
2436                         igb_set_eee_i350(hw, true, true);
2437                         break;
2438                 case e1000_i354:
2439                         igb_set_eee_i354(hw, true, true);
2440                         break;
2441                 default:
2442                         break;
2443                 }
2444         }
2445         if (!netif_running(adapter->netdev))
2446                 igb_power_down_link(adapter);
2447
2448         igb_update_mng_vlan(adapter);
2449
2450         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2451         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2452
2453         /* Re-enable PTP, where applicable. */
2454         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2455                 igb_ptp_reset(adapter);
2456
2457         igb_get_phy_info(hw);
2458 }
2459
2460 static netdev_features_t igb_fix_features(struct net_device *netdev,
2461         netdev_features_t features)
2462 {
2463         /* Since there is no support for separate Rx/Tx vlan accel
2464          * enable/disable make sure Tx flag is always in same state as Rx.
2465          */
2466         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2467                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2468         else
2469                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2470
2471         return features;
2472 }
2473
2474 static int igb_set_features(struct net_device *netdev,
2475         netdev_features_t features)
2476 {
2477         netdev_features_t changed = netdev->features ^ features;
2478         struct igb_adapter *adapter = netdev_priv(netdev);
2479
2480         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2481                 igb_vlan_mode(netdev, features);
2482
2483         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2484                 return 0;
2485
2486         if (!(features & NETIF_F_NTUPLE)) {
2487                 struct hlist_node *node2;
2488                 struct igb_nfc_filter *rule;
2489
2490                 spin_lock(&adapter->nfc_lock);
2491                 hlist_for_each_entry_safe(rule, node2,
2492                                           &adapter->nfc_filter_list, nfc_node) {
2493                         igb_erase_filter(adapter, rule);
2494                         hlist_del(&rule->nfc_node);
2495                         kfree(rule);
2496                 }
2497                 spin_unlock(&adapter->nfc_lock);
2498                 adapter->nfc_filter_count = 0;
2499         }
2500
2501         netdev->features = features;
2502
2503         if (netif_running(netdev))
2504                 igb_reinit_locked(adapter);
2505         else
2506                 igb_reset(adapter);
2507
2508         return 1;
2509 }
2510
2511 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2512                            struct net_device *dev,
2513                            const unsigned char *addr, u16 vid,
2514                            u16 flags,
2515                            struct netlink_ext_ack *extack)
2516 {
2517         /* guarantee we can provide a unique filter for the unicast address */
2518         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2519                 struct igb_adapter *adapter = netdev_priv(dev);
2520                 int vfn = adapter->vfs_allocated_count;
2521
2522                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2523                         return -ENOMEM;
2524         }
2525
2526         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2527 }
2528
2529 #define IGB_MAX_MAC_HDR_LEN     127
2530 #define IGB_MAX_NETWORK_HDR_LEN 511
2531
2532 static netdev_features_t
2533 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2534                    netdev_features_t features)
2535 {
2536         unsigned int network_hdr_len, mac_hdr_len;
2537
2538         /* Make certain the headers can be described by a context descriptor */
2539         mac_hdr_len = skb_network_header(skb) - skb->data;
2540         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2541                 return features & ~(NETIF_F_HW_CSUM |
2542                                     NETIF_F_SCTP_CRC |
2543                                     NETIF_F_GSO_UDP_L4 |
2544                                     NETIF_F_HW_VLAN_CTAG_TX |
2545                                     NETIF_F_TSO |
2546                                     NETIF_F_TSO6);
2547
2548         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2549         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2550                 return features & ~(NETIF_F_HW_CSUM |
2551                                     NETIF_F_SCTP_CRC |
2552                                     NETIF_F_GSO_UDP_L4 |
2553                                     NETIF_F_TSO |
2554                                     NETIF_F_TSO6);
2555
2556         /* We can only support IPV4 TSO in tunnels if we can mangle the
2557          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2558          */
2559         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2560                 features &= ~NETIF_F_TSO;
2561
2562         return features;
2563 }
2564
2565 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2566 {
2567         if (!is_fqtss_enabled(adapter)) {
2568                 enable_fqtss(adapter, true);
2569                 return;
2570         }
2571
2572         igb_config_tx_modes(adapter, queue);
2573
2574         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2575                 enable_fqtss(adapter, false);
2576 }
2577
2578 static int igb_offload_cbs(struct igb_adapter *adapter,
2579                            struct tc_cbs_qopt_offload *qopt)
2580 {
2581         struct e1000_hw *hw = &adapter->hw;
2582         int err;
2583
2584         /* CBS offloading is only supported by i210 controller. */
2585         if (hw->mac.type != e1000_i210)
2586                 return -EOPNOTSUPP;
2587
2588         /* CBS offloading is only supported by queue 0 and queue 1. */
2589         if (qopt->queue < 0 || qopt->queue > 1)
2590                 return -EINVAL;
2591
2592         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2593                                   qopt->idleslope, qopt->sendslope,
2594                                   qopt->hicredit, qopt->locredit);
2595         if (err)
2596                 return err;
2597
2598         igb_offload_apply(adapter, qopt->queue);
2599
2600         return 0;
2601 }
2602
2603 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2604 #define VLAN_PRIO_FULL_MASK (0x07)
2605
2606 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2607                                 struct flow_cls_offload *f,
2608                                 int traffic_class,
2609                                 struct igb_nfc_filter *input)
2610 {
2611         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2612         struct flow_dissector *dissector = rule->match.dissector;
2613         struct netlink_ext_ack *extack = f->common.extack;
2614
2615         if (dissector->used_keys &
2616             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2617               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2618               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2619               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2620                 NL_SET_ERR_MSG_MOD(extack,
2621                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2622                 return -EOPNOTSUPP;
2623         }
2624
2625         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2626                 struct flow_match_eth_addrs match;
2627
2628                 flow_rule_match_eth_addrs(rule, &match);
2629                 if (!is_zero_ether_addr(match.mask->dst)) {
2630                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2631                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2632                                 return -EINVAL;
2633                         }
2634
2635                         input->filter.match_flags |=
2636                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2637                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2638                 }
2639
2640                 if (!is_zero_ether_addr(match.mask->src)) {
2641                         if (!is_broadcast_ether_addr(match.mask->src)) {
2642                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2643                                 return -EINVAL;
2644                         }
2645
2646                         input->filter.match_flags |=
2647                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2648                         ether_addr_copy(input->filter.src_addr, match.key->src);
2649                 }
2650         }
2651
2652         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2653                 struct flow_match_basic match;
2654
2655                 flow_rule_match_basic(rule, &match);
2656                 if (match.mask->n_proto) {
2657                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2658                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2659                                 return -EINVAL;
2660                         }
2661
2662                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2663                         input->filter.etype = match.key->n_proto;
2664                 }
2665         }
2666
2667         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2668                 struct flow_match_vlan match;
2669
2670                 flow_rule_match_vlan(rule, &match);
2671                 if (match.mask->vlan_priority) {
2672                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2673                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2674                                 return -EINVAL;
2675                         }
2676
2677                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2678                         input->filter.vlan_tci =
2679                                 (__force __be16)match.key->vlan_priority;
2680                 }
2681         }
2682
2683         input->action = traffic_class;
2684         input->cookie = f->cookie;
2685
2686         return 0;
2687 }
2688
2689 static int igb_configure_clsflower(struct igb_adapter *adapter,
2690                                    struct flow_cls_offload *cls_flower)
2691 {
2692         struct netlink_ext_ack *extack = cls_flower->common.extack;
2693         struct igb_nfc_filter *filter, *f;
2694         int err, tc;
2695
2696         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2697         if (tc < 0) {
2698                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2699                 return -EINVAL;
2700         }
2701
2702         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2703         if (!filter)
2704                 return -ENOMEM;
2705
2706         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2707         if (err < 0)
2708                 goto err_parse;
2709
2710         spin_lock(&adapter->nfc_lock);
2711
2712         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2713                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2714                         err = -EEXIST;
2715                         NL_SET_ERR_MSG_MOD(extack,
2716                                            "This filter is already set in ethtool");
2717                         goto err_locked;
2718                 }
2719         }
2720
2721         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2722                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2723                         err = -EEXIST;
2724                         NL_SET_ERR_MSG_MOD(extack,
2725                                            "This filter is already set in cls_flower");
2726                         goto err_locked;
2727                 }
2728         }
2729
2730         err = igb_add_filter(adapter, filter);
2731         if (err < 0) {
2732                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2733                 goto err_locked;
2734         }
2735
2736         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2737
2738         spin_unlock(&adapter->nfc_lock);
2739
2740         return 0;
2741
2742 err_locked:
2743         spin_unlock(&adapter->nfc_lock);
2744
2745 err_parse:
2746         kfree(filter);
2747
2748         return err;
2749 }
2750
2751 static int igb_delete_clsflower(struct igb_adapter *adapter,
2752                                 struct flow_cls_offload *cls_flower)
2753 {
2754         struct igb_nfc_filter *filter;
2755         int err;
2756
2757         spin_lock(&adapter->nfc_lock);
2758
2759         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2760                 if (filter->cookie == cls_flower->cookie)
2761                         break;
2762
2763         if (!filter) {
2764                 err = -ENOENT;
2765                 goto out;
2766         }
2767
2768         err = igb_erase_filter(adapter, filter);
2769         if (err < 0)
2770                 goto out;
2771
2772         hlist_del(&filter->nfc_node);
2773         kfree(filter);
2774
2775 out:
2776         spin_unlock(&adapter->nfc_lock);
2777
2778         return err;
2779 }
2780
2781 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2782                                    struct flow_cls_offload *cls_flower)
2783 {
2784         switch (cls_flower->command) {
2785         case FLOW_CLS_REPLACE:
2786                 return igb_configure_clsflower(adapter, cls_flower);
2787         case FLOW_CLS_DESTROY:
2788                 return igb_delete_clsflower(adapter, cls_flower);
2789         case FLOW_CLS_STATS:
2790                 return -EOPNOTSUPP;
2791         default:
2792                 return -EOPNOTSUPP;
2793         }
2794 }
2795
2796 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2797                                  void *cb_priv)
2798 {
2799         struct igb_adapter *adapter = cb_priv;
2800
2801         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2802                 return -EOPNOTSUPP;
2803
2804         switch (type) {
2805         case TC_SETUP_CLSFLOWER:
2806                 return igb_setup_tc_cls_flower(adapter, type_data);
2807
2808         default:
2809                 return -EOPNOTSUPP;
2810         }
2811 }
2812
2813 static int igb_offload_txtime(struct igb_adapter *adapter,
2814                               struct tc_etf_qopt_offload *qopt)
2815 {
2816         struct e1000_hw *hw = &adapter->hw;
2817         int err;
2818
2819         /* Launchtime offloading is only supported by i210 controller. */
2820         if (hw->mac.type != e1000_i210)
2821                 return -EOPNOTSUPP;
2822
2823         /* Launchtime offloading is only supported by queues 0 and 1. */
2824         if (qopt->queue < 0 || qopt->queue > 1)
2825                 return -EINVAL;
2826
2827         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2828         if (err)
2829                 return err;
2830
2831         igb_offload_apply(adapter, qopt->queue);
2832
2833         return 0;
2834 }
2835
2836 static int igb_tc_query_caps(struct igb_adapter *adapter,
2837                              struct tc_query_caps_base *base)
2838 {
2839         switch (base->type) {
2840         case TC_SETUP_QDISC_TAPRIO: {
2841                 struct tc_taprio_caps *caps = base->caps;
2842
2843                 caps->broken_mqprio = true;
2844
2845                 return 0;
2846         }
2847         default:
2848                 return -EOPNOTSUPP;
2849         }
2850 }
2851
2852 static LIST_HEAD(igb_block_cb_list);
2853
2854 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2855                         void *type_data)
2856 {
2857         struct igb_adapter *adapter = netdev_priv(dev);
2858
2859         switch (type) {
2860         case TC_QUERY_CAPS:
2861                 return igb_tc_query_caps(adapter, type_data);
2862         case TC_SETUP_QDISC_CBS:
2863                 return igb_offload_cbs(adapter, type_data);
2864         case TC_SETUP_BLOCK:
2865                 return flow_block_cb_setup_simple(type_data,
2866                                                   &igb_block_cb_list,
2867                                                   igb_setup_tc_block_cb,
2868                                                   adapter, adapter, true);
2869
2870         case TC_SETUP_QDISC_ETF:
2871                 return igb_offload_txtime(adapter, type_data);
2872
2873         default:
2874                 return -EOPNOTSUPP;
2875         }
2876 }
2877
2878 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2879 {
2880         int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2881         struct igb_adapter *adapter = netdev_priv(dev);
2882         struct bpf_prog *prog = bpf->prog, *old_prog;
2883         bool running = netif_running(dev);
2884         bool need_reset;
2885
2886         /* verify igb ring attributes are sufficient for XDP */
2887         for (i = 0; i < adapter->num_rx_queues; i++) {
2888                 struct igb_ring *ring = adapter->rx_ring[i];
2889
2890                 if (frame_size > igb_rx_bufsz(ring)) {
2891                         NL_SET_ERR_MSG_MOD(bpf->extack,
2892                                            "The RX buffer size is too small for the frame size");
2893                         netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2894                                     igb_rx_bufsz(ring), frame_size);
2895                         return -EINVAL;
2896                 }
2897         }
2898
2899         old_prog = xchg(&adapter->xdp_prog, prog);
2900         need_reset = (!!prog != !!old_prog);
2901
2902         /* device is up and bpf is added/removed, must setup the RX queues */
2903         if (need_reset && running) {
2904                 igb_close(dev);
2905         } else {
2906                 for (i = 0; i < adapter->num_rx_queues; i++)
2907                         (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2908                             adapter->xdp_prog);
2909         }
2910
2911         if (old_prog)
2912                 bpf_prog_put(old_prog);
2913
2914         /* bpf is just replaced, RXQ and MTU are already setup */
2915         if (!need_reset) {
2916                 return 0;
2917         } else {
2918                 if (prog)
2919                         xdp_features_set_redirect_target(dev, true);
2920                 else
2921                         xdp_features_clear_redirect_target(dev);
2922         }
2923
2924         if (running)
2925                 igb_open(dev);
2926
2927         return 0;
2928 }
2929
2930 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2931 {
2932         switch (xdp->command) {
2933         case XDP_SETUP_PROG:
2934                 return igb_xdp_setup(dev, xdp);
2935         default:
2936                 return -EINVAL;
2937         }
2938 }
2939
2940 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2941 {
2942         /* Force memory writes to complete before letting h/w know there
2943          * are new descriptors to fetch.
2944          */
2945         wmb();
2946         writel(ring->next_to_use, ring->tail);
2947 }
2948
2949 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2950 {
2951         unsigned int r_idx = smp_processor_id();
2952
2953         if (r_idx >= adapter->num_tx_queues)
2954                 r_idx = r_idx % adapter->num_tx_queues;
2955
2956         return adapter->tx_ring[r_idx];
2957 }
2958
2959 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2960 {
2961         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2962         int cpu = smp_processor_id();
2963         struct igb_ring *tx_ring;
2964         struct netdev_queue *nq;
2965         u32 ret;
2966
2967         if (unlikely(!xdpf))
2968                 return IGB_XDP_CONSUMED;
2969
2970         /* During program transitions its possible adapter->xdp_prog is assigned
2971          * but ring has not been configured yet. In this case simply abort xmit.
2972          */
2973         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2974         if (unlikely(!tx_ring))
2975                 return IGB_XDP_CONSUMED;
2976
2977         nq = txring_txq(tx_ring);
2978         __netif_tx_lock(nq, cpu);
2979         /* Avoid transmit queue timeout since we share it with the slow path */
2980         txq_trans_cond_update(nq);
2981         ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2982         __netif_tx_unlock(nq);
2983
2984         return ret;
2985 }
2986
2987 static int igb_xdp_xmit(struct net_device *dev, int n,
2988                         struct xdp_frame **frames, u32 flags)
2989 {
2990         struct igb_adapter *adapter = netdev_priv(dev);
2991         int cpu = smp_processor_id();
2992         struct igb_ring *tx_ring;
2993         struct netdev_queue *nq;
2994         int nxmit = 0;
2995         int i;
2996
2997         if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2998                 return -ENETDOWN;
2999
3000         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3001                 return -EINVAL;
3002
3003         /* During program transitions its possible adapter->xdp_prog is assigned
3004          * but ring has not been configured yet. In this case simply abort xmit.
3005          */
3006         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3007         if (unlikely(!tx_ring))
3008                 return -ENXIO;
3009
3010         nq = txring_txq(tx_ring);
3011         __netif_tx_lock(nq, cpu);
3012
3013         /* Avoid transmit queue timeout since we share it with the slow path */
3014         txq_trans_cond_update(nq);
3015
3016         for (i = 0; i < n; i++) {
3017                 struct xdp_frame *xdpf = frames[i];
3018                 int err;
3019
3020                 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3021                 if (err != IGB_XDP_TX)
3022                         break;
3023                 nxmit++;
3024         }
3025
3026         __netif_tx_unlock(nq);
3027
3028         if (unlikely(flags & XDP_XMIT_FLUSH))
3029                 igb_xdp_ring_update_tail(tx_ring);
3030
3031         return nxmit;
3032 }
3033
3034 static const struct net_device_ops igb_netdev_ops = {
3035         .ndo_open               = igb_open,
3036         .ndo_stop               = igb_close,
3037         .ndo_start_xmit         = igb_xmit_frame,
3038         .ndo_get_stats64        = igb_get_stats64,
3039         .ndo_set_rx_mode        = igb_set_rx_mode,
3040         .ndo_set_mac_address    = igb_set_mac,
3041         .ndo_change_mtu         = igb_change_mtu,
3042         .ndo_eth_ioctl          = igb_ioctl,
3043         .ndo_tx_timeout         = igb_tx_timeout,
3044         .ndo_validate_addr      = eth_validate_addr,
3045         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
3046         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
3047         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
3048         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
3049         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
3050         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
3051         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
3052         .ndo_get_vf_config      = igb_ndo_get_vf_config,
3053         .ndo_fix_features       = igb_fix_features,
3054         .ndo_set_features       = igb_set_features,
3055         .ndo_fdb_add            = igb_ndo_fdb_add,
3056         .ndo_features_check     = igb_features_check,
3057         .ndo_setup_tc           = igb_setup_tc,
3058         .ndo_bpf                = igb_xdp,
3059         .ndo_xdp_xmit           = igb_xdp_xmit,
3060 };
3061
3062 /**
3063  * igb_set_fw_version - Configure version string for ethtool
3064  * @adapter: adapter struct
3065  **/
3066 void igb_set_fw_version(struct igb_adapter *adapter)
3067 {
3068         struct e1000_hw *hw = &adapter->hw;
3069         struct e1000_fw_version fw;
3070
3071         igb_get_fw_version(hw, &fw);
3072
3073         switch (hw->mac.type) {
3074         case e1000_i210:
3075         case e1000_i211:
3076                 if (!(igb_get_flash_presence_i210(hw))) {
3077                         snprintf(adapter->fw_version,
3078                                  sizeof(adapter->fw_version),
3079                                  "%2d.%2d-%d",
3080                                  fw.invm_major, fw.invm_minor,
3081                                  fw.invm_img_type);
3082                         break;
3083                 }
3084                 fallthrough;
3085         default:
3086                 /* if option is rom valid, display its version too */
3087                 if (fw.or_valid) {
3088                         snprintf(adapter->fw_version,
3089                                  sizeof(adapter->fw_version),
3090                                  "%d.%d, 0x%08x, %d.%d.%d",
3091                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3092                                  fw.or_major, fw.or_build, fw.or_patch);
3093                 /* no option rom */
3094                 } else if (fw.etrack_id != 0X0000) {
3095                         snprintf(adapter->fw_version,
3096                             sizeof(adapter->fw_version),
3097                             "%d.%d, 0x%08x",
3098                             fw.eep_major, fw.eep_minor, fw.etrack_id);
3099                 } else {
3100                 snprintf(adapter->fw_version,
3101                     sizeof(adapter->fw_version),
3102                     "%d.%d.%d",
3103                     fw.eep_major, fw.eep_minor, fw.eep_build);
3104                 }
3105                 break;
3106         }
3107 }
3108
3109 /**
3110  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3111  *
3112  * @adapter: adapter struct
3113  **/
3114 static void igb_init_mas(struct igb_adapter *adapter)
3115 {
3116         struct e1000_hw *hw = &adapter->hw;
3117         u16 eeprom_data;
3118
3119         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3120         switch (hw->bus.func) {
3121         case E1000_FUNC_0:
3122                 if (eeprom_data & IGB_MAS_ENABLE_0) {
3123                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3124                         netdev_info(adapter->netdev,
3125                                 "MAS: Enabling Media Autosense for port %d\n",
3126                                 hw->bus.func);
3127                 }
3128                 break;
3129         case E1000_FUNC_1:
3130                 if (eeprom_data & IGB_MAS_ENABLE_1) {
3131                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3132                         netdev_info(adapter->netdev,
3133                                 "MAS: Enabling Media Autosense for port %d\n",
3134                                 hw->bus.func);
3135                 }
3136                 break;
3137         case E1000_FUNC_2:
3138                 if (eeprom_data & IGB_MAS_ENABLE_2) {
3139                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3140                         netdev_info(adapter->netdev,
3141                                 "MAS: Enabling Media Autosense for port %d\n",
3142                                 hw->bus.func);
3143                 }
3144                 break;
3145         case E1000_FUNC_3:
3146                 if (eeprom_data & IGB_MAS_ENABLE_3) {
3147                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3148                         netdev_info(adapter->netdev,
3149                                 "MAS: Enabling Media Autosense for port %d\n",
3150                                 hw->bus.func);
3151                 }
3152                 break;
3153         default:
3154                 /* Shouldn't get here */
3155                 netdev_err(adapter->netdev,
3156                         "MAS: Invalid port configuration, returning\n");
3157                 break;
3158         }
3159 }
3160
3161 /**
3162  *  igb_init_i2c - Init I2C interface
3163  *  @adapter: pointer to adapter structure
3164  **/
3165 static s32 igb_init_i2c(struct igb_adapter *adapter)
3166 {
3167         s32 status = 0;
3168
3169         /* I2C interface supported on i350 devices */
3170         if (adapter->hw.mac.type != e1000_i350)
3171                 return 0;
3172
3173         /* Initialize the i2c bus which is controlled by the registers.
3174          * This bus will use the i2c_algo_bit structure that implements
3175          * the protocol through toggling of the 4 bits in the register.
3176          */
3177         adapter->i2c_adap.owner = THIS_MODULE;
3178         adapter->i2c_algo = igb_i2c_algo;
3179         adapter->i2c_algo.data = adapter;
3180         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3181         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3182         strscpy(adapter->i2c_adap.name, "igb BB",
3183                 sizeof(adapter->i2c_adap.name));
3184         status = i2c_bit_add_bus(&adapter->i2c_adap);
3185         return status;
3186 }
3187
3188 /**
3189  *  igb_probe - Device Initialization Routine
3190  *  @pdev: PCI device information struct
3191  *  @ent: entry in igb_pci_tbl
3192  *
3193  *  Returns 0 on success, negative on failure
3194  *
3195  *  igb_probe initializes an adapter identified by a pci_dev structure.
3196  *  The OS initialization, configuring of the adapter private structure,
3197  *  and a hardware reset occur.
3198  **/
3199 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3200 {
3201         struct net_device *netdev;
3202         struct igb_adapter *adapter;
3203         struct e1000_hw *hw;
3204         u16 eeprom_data = 0;
3205         s32 ret_val;
3206         static int global_quad_port_a; /* global quad port a indication */
3207         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3208         u8 part_str[E1000_PBANUM_LENGTH];
3209         int err;
3210
3211         /* Catch broken hardware that put the wrong VF device ID in
3212          * the PCIe SR-IOV capability.
3213          */
3214         if (pdev->is_virtfn) {
3215                 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3216                         pci_name(pdev), pdev->vendor, pdev->device);
3217                 return -EINVAL;
3218         }
3219
3220         err = pci_enable_device_mem(pdev);
3221         if (err)
3222                 return err;
3223
3224         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3225         if (err) {
3226                 dev_err(&pdev->dev,
3227                         "No usable DMA configuration, aborting\n");
3228                 goto err_dma;
3229         }
3230
3231         err = pci_request_mem_regions(pdev, igb_driver_name);
3232         if (err)
3233                 goto err_pci_reg;
3234
3235         pci_set_master(pdev);
3236         pci_save_state(pdev);
3237
3238         err = -ENOMEM;
3239         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3240                                    IGB_MAX_TX_QUEUES);
3241         if (!netdev)
3242                 goto err_alloc_etherdev;
3243
3244         SET_NETDEV_DEV(netdev, &pdev->dev);
3245
3246         pci_set_drvdata(pdev, netdev);
3247         adapter = netdev_priv(netdev);
3248         adapter->netdev = netdev;
3249         adapter->pdev = pdev;
3250         hw = &adapter->hw;
3251         hw->back = adapter;
3252         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3253
3254         err = -EIO;
3255         adapter->io_addr = pci_iomap(pdev, 0, 0);
3256         if (!adapter->io_addr)
3257                 goto err_ioremap;
3258         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3259         hw->hw_addr = adapter->io_addr;
3260
3261         netdev->netdev_ops = &igb_netdev_ops;
3262         igb_set_ethtool_ops(netdev);
3263         netdev->watchdog_timeo = 5 * HZ;
3264
3265         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3266
3267         netdev->mem_start = pci_resource_start(pdev, 0);
3268         netdev->mem_end = pci_resource_end(pdev, 0);
3269
3270         /* PCI config space info */
3271         hw->vendor_id = pdev->vendor;
3272         hw->device_id = pdev->device;
3273         hw->revision_id = pdev->revision;
3274         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3275         hw->subsystem_device_id = pdev->subsystem_device;
3276
3277         /* Copy the default MAC, PHY and NVM function pointers */
3278         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3279         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3280         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3281         /* Initialize skew-specific constants */
3282         err = ei->get_invariants(hw);
3283         if (err)
3284                 goto err_sw_init;
3285
3286         /* setup the private structure */
3287         err = igb_sw_init(adapter);
3288         if (err)
3289                 goto err_sw_init;
3290
3291         igb_get_bus_info_pcie(hw);
3292
3293         hw->phy.autoneg_wait_to_complete = false;
3294
3295         /* Copper options */
3296         if (hw->phy.media_type == e1000_media_type_copper) {
3297                 hw->phy.mdix = AUTO_ALL_MODES;
3298                 hw->phy.disable_polarity_correction = false;
3299                 hw->phy.ms_type = e1000_ms_hw_default;
3300         }
3301
3302         if (igb_check_reset_block(hw))
3303                 dev_info(&pdev->dev,
3304                         "PHY reset is blocked due to SOL/IDER session.\n");
3305
3306         /* features is initialized to 0 in allocation, it might have bits
3307          * set by igb_sw_init so we should use an or instead of an
3308          * assignment.
3309          */
3310         netdev->features |= NETIF_F_SG |
3311                             NETIF_F_TSO |
3312                             NETIF_F_TSO6 |
3313                             NETIF_F_RXHASH |
3314                             NETIF_F_RXCSUM |
3315                             NETIF_F_HW_CSUM;
3316
3317         if (hw->mac.type >= e1000_82576)
3318                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3319
3320         if (hw->mac.type >= e1000_i350)
3321                 netdev->features |= NETIF_F_HW_TC;
3322
3323 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3324                                   NETIF_F_GSO_GRE_CSUM | \
3325                                   NETIF_F_GSO_IPXIP4 | \
3326                                   NETIF_F_GSO_IPXIP6 | \
3327                                   NETIF_F_GSO_UDP_TUNNEL | \
3328                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3329
3330         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3331         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3332
3333         /* copy netdev features into list of user selectable features */
3334         netdev->hw_features |= netdev->features |
3335                                NETIF_F_HW_VLAN_CTAG_RX |
3336                                NETIF_F_HW_VLAN_CTAG_TX |
3337                                NETIF_F_RXALL;
3338
3339         if (hw->mac.type >= e1000_i350)
3340                 netdev->hw_features |= NETIF_F_NTUPLE;
3341
3342         netdev->features |= NETIF_F_HIGHDMA;
3343
3344         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3345         netdev->mpls_features |= NETIF_F_HW_CSUM;
3346         netdev->hw_enc_features |= netdev->vlan_features;
3347
3348         /* set this bit last since it cannot be part of vlan_features */
3349         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3350                             NETIF_F_HW_VLAN_CTAG_RX |
3351                             NETIF_F_HW_VLAN_CTAG_TX;
3352
3353         netdev->priv_flags |= IFF_SUPP_NOFCS;
3354
3355         netdev->priv_flags |= IFF_UNICAST_FLT;
3356         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3357
3358         /* MTU range: 68 - 9216 */
3359         netdev->min_mtu = ETH_MIN_MTU;
3360         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3361
3362         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3363
3364         /* before reading the NVM, reset the controller to put the device in a
3365          * known good starting state
3366          */
3367         hw->mac.ops.reset_hw(hw);
3368
3369         /* make sure the NVM is good , i211/i210 parts can have special NVM
3370          * that doesn't contain a checksum
3371          */
3372         switch (hw->mac.type) {
3373         case e1000_i210:
3374         case e1000_i211:
3375                 if (igb_get_flash_presence_i210(hw)) {
3376                         if (hw->nvm.ops.validate(hw) < 0) {
3377                                 dev_err(&pdev->dev,
3378                                         "The NVM Checksum Is Not Valid\n");
3379                                 err = -EIO;
3380                                 goto err_eeprom;
3381                         }
3382                 }
3383                 break;
3384         default:
3385                 if (hw->nvm.ops.validate(hw) < 0) {
3386                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3387                         err = -EIO;
3388                         goto err_eeprom;
3389                 }
3390                 break;
3391         }
3392
3393         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3394                 /* copy the MAC address out of the NVM */
3395                 if (hw->mac.ops.read_mac_addr(hw))
3396                         dev_err(&pdev->dev, "NVM Read Error\n");
3397         }
3398
3399         eth_hw_addr_set(netdev, hw->mac.addr);
3400
3401         if (!is_valid_ether_addr(netdev->dev_addr)) {
3402                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3403                 err = -EIO;
3404                 goto err_eeprom;
3405         }
3406
3407         igb_set_default_mac_filter(adapter);
3408
3409         /* get firmware version for ethtool -i */
3410         igb_set_fw_version(adapter);
3411
3412         /* configure RXPBSIZE and TXPBSIZE */
3413         if (hw->mac.type == e1000_i210) {
3414                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3415                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3416         }
3417
3418         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3419         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3420
3421         INIT_WORK(&adapter->reset_task, igb_reset_task);
3422         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3423
3424         /* Initialize link properties that are user-changeable */
3425         adapter->fc_autoneg = true;
3426         hw->mac.autoneg = true;
3427         hw->phy.autoneg_advertised = 0x2f;
3428
3429         hw->fc.requested_mode = e1000_fc_default;
3430         hw->fc.current_mode = e1000_fc_default;
3431
3432         igb_validate_mdi_setting(hw);
3433
3434         /* By default, support wake on port A */
3435         if (hw->bus.func == 0)
3436                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3437
3438         /* Check the NVM for wake support on non-port A ports */
3439         if (hw->mac.type >= e1000_82580)
3440                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3441                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3442                                  &eeprom_data);
3443         else if (hw->bus.func == 1)
3444                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3445
3446         if (eeprom_data & IGB_EEPROM_APME)
3447                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3448
3449         /* now that we have the eeprom settings, apply the special cases where
3450          * the eeprom may be wrong or the board simply won't support wake on
3451          * lan on a particular port
3452          */
3453         switch (pdev->device) {
3454         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3455                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3456                 break;
3457         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3458         case E1000_DEV_ID_82576_FIBER:
3459         case E1000_DEV_ID_82576_SERDES:
3460                 /* Wake events only supported on port A for dual fiber
3461                  * regardless of eeprom setting
3462                  */
3463                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3464                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3465                 break;
3466         case E1000_DEV_ID_82576_QUAD_COPPER:
3467         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3468                 /* if quad port adapter, disable WoL on all but port A */
3469                 if (global_quad_port_a != 0)
3470                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3471                 else
3472                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3473                 /* Reset for multiple quad port adapters */
3474                 if (++global_quad_port_a == 4)
3475                         global_quad_port_a = 0;
3476                 break;
3477         default:
3478                 /* If the device can't wake, don't set software support */
3479                 if (!device_can_wakeup(&adapter->pdev->dev))
3480                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3481         }
3482
3483         /* initialize the wol settings based on the eeprom settings */
3484         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3485                 adapter->wol |= E1000_WUFC_MAG;
3486
3487         /* Some vendors want WoL disabled by default, but still supported */
3488         if ((hw->mac.type == e1000_i350) &&
3489             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3490                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3491                 adapter->wol = 0;
3492         }
3493
3494         /* Some vendors want the ability to Use the EEPROM setting as
3495          * enable/disable only, and not for capability
3496          */
3497         if (((hw->mac.type == e1000_i350) ||
3498              (hw->mac.type == e1000_i354)) &&
3499             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3500                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3501                 adapter->wol = 0;
3502         }
3503         if (hw->mac.type == e1000_i350) {
3504                 if (((pdev->subsystem_device == 0x5001) ||
3505                      (pdev->subsystem_device == 0x5002)) &&
3506                                 (hw->bus.func == 0)) {
3507                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3508                         adapter->wol = 0;
3509                 }
3510                 if (pdev->subsystem_device == 0x1F52)
3511                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3512         }
3513
3514         device_set_wakeup_enable(&adapter->pdev->dev,
3515                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3516
3517         /* reset the hardware with the new settings */
3518         igb_reset(adapter);
3519
3520         /* Init the I2C interface */
3521         err = igb_init_i2c(adapter);
3522         if (err) {
3523                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3524                 goto err_eeprom;
3525         }
3526
3527         /* let the f/w know that the h/w is now under the control of the
3528          * driver.
3529          */
3530         igb_get_hw_control(adapter);
3531
3532         strcpy(netdev->name, "eth%d");
3533         err = register_netdev(netdev);
3534         if (err)
3535                 goto err_register;
3536
3537         /* carrier off reporting is important to ethtool even BEFORE open */
3538         netif_carrier_off(netdev);
3539
3540 #ifdef CONFIG_IGB_DCA
3541         if (dca_add_requester(&pdev->dev) == 0) {
3542                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3543                 dev_info(&pdev->dev, "DCA enabled\n");
3544                 igb_setup_dca(adapter);
3545         }
3546
3547 #endif
3548 #ifdef CONFIG_IGB_HWMON
3549         /* Initialize the thermal sensor on i350 devices. */
3550         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3551                 u16 ets_word;
3552
3553                 /* Read the NVM to determine if this i350 device supports an
3554                  * external thermal sensor.
3555                  */
3556                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3557                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3558                         adapter->ets = true;
3559                 else
3560                         adapter->ets = false;
3561                 /* Only enable I2C bit banging if an external thermal
3562                  * sensor is supported.
3563                  */
3564                 if (adapter->ets)
3565                         igb_set_i2c_bb(hw);
3566                 hw->mac.ops.init_thermal_sensor_thresh(hw);
3567                 if (igb_sysfs_init(adapter))
3568                         dev_err(&pdev->dev,
3569                                 "failed to allocate sysfs resources\n");
3570         } else {
3571                 adapter->ets = false;
3572         }
3573 #endif
3574         /* Check if Media Autosense is enabled */
3575         adapter->ei = *ei;
3576         if (hw->dev_spec._82575.mas_capable)
3577                 igb_init_mas(adapter);
3578
3579         /* do hw tstamp init after resetting */
3580         igb_ptp_init(adapter);
3581
3582         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3583         /* print bus type/speed/width info, not applicable to i354 */
3584         if (hw->mac.type != e1000_i354) {
3585                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3586                          netdev->name,
3587                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3588                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3589                            "unknown"),
3590                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3591                           "Width x4" :
3592                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3593                           "Width x2" :
3594                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3595                           "Width x1" : "unknown"), netdev->dev_addr);
3596         }
3597
3598         if ((hw->mac.type == e1000_82576 &&
3599              rd32(E1000_EECD) & E1000_EECD_PRES) ||
3600             (hw->mac.type >= e1000_i210 ||
3601              igb_get_flash_presence_i210(hw))) {
3602                 ret_val = igb_read_part_string(hw, part_str,
3603                                                E1000_PBANUM_LENGTH);
3604         } else {
3605                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3606         }
3607
3608         if (ret_val)
3609                 strcpy(part_str, "Unknown");
3610         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3611         dev_info(&pdev->dev,
3612                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3613                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3614                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3615                 adapter->num_rx_queues, adapter->num_tx_queues);
3616         if (hw->phy.media_type == e1000_media_type_copper) {
3617                 switch (hw->mac.type) {
3618                 case e1000_i350:
3619                 case e1000_i210:
3620                 case e1000_i211:
3621                         /* Enable EEE for internal copper PHY devices */
3622                         err = igb_set_eee_i350(hw, true, true);
3623                         if ((!err) &&
3624                             (!hw->dev_spec._82575.eee_disable)) {
3625                                 adapter->eee_advert =
3626                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3627                                 adapter->flags |= IGB_FLAG_EEE;
3628                         }
3629                         break;
3630                 case e1000_i354:
3631                         if ((rd32(E1000_CTRL_EXT) &
3632                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3633                                 err = igb_set_eee_i354(hw, true, true);
3634                                 if ((!err) &&
3635                                         (!hw->dev_spec._82575.eee_disable)) {
3636                                         adapter->eee_advert =
3637                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3638                                         adapter->flags |= IGB_FLAG_EEE;
3639                                 }
3640                         }
3641                         break;
3642                 default:
3643                         break;
3644                 }
3645         }
3646
3647         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3648
3649         pm_runtime_put_noidle(&pdev->dev);
3650         return 0;
3651
3652 err_register:
3653         igb_release_hw_control(adapter);
3654         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3655 err_eeprom:
3656         if (!igb_check_reset_block(hw))
3657                 igb_reset_phy(hw);
3658
3659         if (hw->flash_address)
3660                 iounmap(hw->flash_address);
3661 err_sw_init:
3662         kfree(adapter->mac_table);
3663         kfree(adapter->shadow_vfta);
3664         igb_clear_interrupt_scheme(adapter);
3665 #ifdef CONFIG_PCI_IOV
3666         igb_disable_sriov(pdev, false);
3667 #endif
3668         pci_iounmap(pdev, adapter->io_addr);
3669 err_ioremap:
3670         free_netdev(netdev);
3671 err_alloc_etherdev:
3672         pci_release_mem_regions(pdev);
3673 err_pci_reg:
3674 err_dma:
3675         pci_disable_device(pdev);
3676         return err;
3677 }
3678
3679 #ifdef CONFIG_PCI_IOV
3680 static int igb_sriov_reinit(struct pci_dev *dev)
3681 {
3682         struct net_device *netdev = pci_get_drvdata(dev);
3683         struct igb_adapter *adapter = netdev_priv(netdev);
3684         struct pci_dev *pdev = adapter->pdev;
3685
3686         rtnl_lock();
3687
3688         if (netif_running(netdev))
3689                 igb_close(netdev);
3690         else
3691                 igb_reset(adapter);
3692
3693         igb_clear_interrupt_scheme(adapter);
3694
3695         igb_init_queue_configuration(adapter);
3696
3697         if (igb_init_interrupt_scheme(adapter, true)) {
3698                 rtnl_unlock();
3699                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3700                 return -ENOMEM;
3701         }
3702
3703         if (netif_running(netdev))
3704                 igb_open(netdev);
3705
3706         rtnl_unlock();
3707
3708         return 0;
3709 }
3710
3711 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3712 {
3713         struct net_device *netdev = pci_get_drvdata(pdev);
3714         struct igb_adapter *adapter = netdev_priv(netdev);
3715         struct e1000_hw *hw = &adapter->hw;
3716         unsigned long flags;
3717
3718         /* reclaim resources allocated to VFs */
3719         if (adapter->vf_data) {
3720                 /* disable iov and allow time for transactions to clear */
3721                 if (pci_vfs_assigned(pdev)) {
3722                         dev_warn(&pdev->dev,
3723                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3724                         return -EPERM;
3725                 } else {
3726                         pci_disable_sriov(pdev);
3727                         msleep(500);
3728                 }
3729                 spin_lock_irqsave(&adapter->vfs_lock, flags);
3730                 kfree(adapter->vf_mac_list);
3731                 adapter->vf_mac_list = NULL;
3732                 kfree(adapter->vf_data);
3733                 adapter->vf_data = NULL;
3734                 adapter->vfs_allocated_count = 0;
3735                 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3736                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3737                 wrfl();
3738                 msleep(100);
3739                 dev_info(&pdev->dev, "IOV Disabled\n");
3740
3741                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3742                 adapter->flags |= IGB_FLAG_DMAC;
3743         }
3744
3745         return reinit ? igb_sriov_reinit(pdev) : 0;
3746 }
3747
3748 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3749 {
3750         struct net_device *netdev = pci_get_drvdata(pdev);
3751         struct igb_adapter *adapter = netdev_priv(netdev);
3752         int old_vfs = pci_num_vf(pdev);
3753         struct vf_mac_filter *mac_list;
3754         int err = 0;
3755         int num_vf_mac_filters, i;
3756
3757         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3758                 err = -EPERM;
3759                 goto out;
3760         }
3761         if (!num_vfs)
3762                 goto out;
3763
3764         if (old_vfs) {
3765                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3766                          old_vfs, max_vfs);
3767                 adapter->vfs_allocated_count = old_vfs;
3768         } else
3769                 adapter->vfs_allocated_count = num_vfs;
3770
3771         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3772                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3773
3774         /* if allocation failed then we do not support SR-IOV */
3775         if (!adapter->vf_data) {
3776                 adapter->vfs_allocated_count = 0;
3777                 err = -ENOMEM;
3778                 goto out;
3779         }
3780
3781         /* Due to the limited number of RAR entries calculate potential
3782          * number of MAC filters available for the VFs. Reserve entries
3783          * for PF default MAC, PF MAC filters and at least one RAR entry
3784          * for each VF for VF MAC.
3785          */
3786         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3787                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3788                               adapter->vfs_allocated_count);
3789
3790         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3791                                        sizeof(struct vf_mac_filter),
3792                                        GFP_KERNEL);
3793
3794         mac_list = adapter->vf_mac_list;
3795         INIT_LIST_HEAD(&adapter->vf_macs.l);
3796
3797         if (adapter->vf_mac_list) {
3798                 /* Initialize list of VF MAC filters */
3799                 for (i = 0; i < num_vf_mac_filters; i++) {
3800                         mac_list->vf = -1;
3801                         mac_list->free = true;
3802                         list_add(&mac_list->l, &adapter->vf_macs.l);
3803                         mac_list++;
3804                 }
3805         } else {
3806                 /* If we could not allocate memory for the VF MAC filters
3807                  * we can continue without this feature but warn user.
3808                  */
3809                 dev_err(&pdev->dev,
3810                         "Unable to allocate memory for VF MAC filter list\n");
3811         }
3812
3813         dev_info(&pdev->dev, "%d VFs allocated\n",
3814                  adapter->vfs_allocated_count);
3815         for (i = 0; i < adapter->vfs_allocated_count; i++)
3816                 igb_vf_configure(adapter, i);
3817
3818         /* DMA Coalescing is not supported in IOV mode. */
3819         adapter->flags &= ~IGB_FLAG_DMAC;
3820
3821         if (reinit) {
3822                 err = igb_sriov_reinit(pdev);
3823                 if (err)
3824                         goto err_out;
3825         }
3826
3827         /* only call pci_enable_sriov() if no VFs are allocated already */
3828         if (!old_vfs)
3829                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3830
3831         goto out;
3832
3833 err_out:
3834         kfree(adapter->vf_mac_list);
3835         adapter->vf_mac_list = NULL;
3836         kfree(adapter->vf_data);
3837         adapter->vf_data = NULL;
3838         adapter->vfs_allocated_count = 0;
3839 out:
3840         return err;
3841 }
3842
3843 #endif
3844 /**
3845  *  igb_remove_i2c - Cleanup  I2C interface
3846  *  @adapter: pointer to adapter structure
3847  **/
3848 static void igb_remove_i2c(struct igb_adapter *adapter)
3849 {
3850         /* free the adapter bus structure */
3851         i2c_del_adapter(&adapter->i2c_adap);
3852 }
3853
3854 /**
3855  *  igb_remove - Device Removal Routine
3856  *  @pdev: PCI device information struct
3857  *
3858  *  igb_remove is called by the PCI subsystem to alert the driver
3859  *  that it should release a PCI device.  The could be caused by a
3860  *  Hot-Plug event, or because the driver is going to be removed from
3861  *  memory.
3862  **/
3863 static void igb_remove(struct pci_dev *pdev)
3864 {
3865         struct net_device *netdev = pci_get_drvdata(pdev);
3866         struct igb_adapter *adapter = netdev_priv(netdev);
3867         struct e1000_hw *hw = &adapter->hw;
3868
3869         pm_runtime_get_noresume(&pdev->dev);
3870 #ifdef CONFIG_IGB_HWMON
3871         igb_sysfs_exit(adapter);
3872 #endif
3873         igb_remove_i2c(adapter);
3874         igb_ptp_stop(adapter);
3875         /* The watchdog timer may be rescheduled, so explicitly
3876          * disable watchdog from being rescheduled.
3877          */
3878         set_bit(__IGB_DOWN, &adapter->state);
3879         del_timer_sync(&adapter->watchdog_timer);
3880         del_timer_sync(&adapter->phy_info_timer);
3881
3882         cancel_work_sync(&adapter->reset_task);
3883         cancel_work_sync(&adapter->watchdog_task);
3884
3885 #ifdef CONFIG_IGB_DCA
3886         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3887                 dev_info(&pdev->dev, "DCA disabled\n");
3888                 dca_remove_requester(&pdev->dev);
3889                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3890                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3891         }
3892 #endif
3893
3894         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3895          * would have already happened in close and is redundant.
3896          */
3897         igb_release_hw_control(adapter);
3898
3899 #ifdef CONFIG_PCI_IOV
3900         igb_disable_sriov(pdev, false);
3901 #endif
3902
3903         unregister_netdev(netdev);
3904
3905         igb_clear_interrupt_scheme(adapter);
3906
3907         pci_iounmap(pdev, adapter->io_addr);
3908         if (hw->flash_address)
3909                 iounmap(hw->flash_address);
3910         pci_release_mem_regions(pdev);
3911
3912         kfree(adapter->mac_table);
3913         kfree(adapter->shadow_vfta);
3914         free_netdev(netdev);
3915
3916         pci_disable_device(pdev);
3917 }
3918
3919 /**
3920  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3921  *  @adapter: board private structure to initialize
3922  *
3923  *  This function initializes the vf specific data storage and then attempts to
3924  *  allocate the VFs.  The reason for ordering it this way is because it is much
3925  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3926  *  the memory for the VFs.
3927  **/
3928 static void igb_probe_vfs(struct igb_adapter *adapter)
3929 {
3930 #ifdef CONFIG_PCI_IOV
3931         struct pci_dev *pdev = adapter->pdev;
3932         struct e1000_hw *hw = &adapter->hw;
3933
3934         /* Virtualization features not supported on i210 family. */
3935         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3936                 return;
3937
3938         /* Of the below we really only want the effect of getting
3939          * IGB_FLAG_HAS_MSIX set (if available), without which
3940          * igb_enable_sriov() has no effect.
3941          */
3942         igb_set_interrupt_capability(adapter, true);
3943         igb_reset_interrupt_capability(adapter);
3944
3945         pci_sriov_set_totalvfs(pdev, 7);
3946         igb_enable_sriov(pdev, max_vfs, false);
3947
3948 #endif /* CONFIG_PCI_IOV */
3949 }
3950
3951 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3952 {
3953         struct e1000_hw *hw = &adapter->hw;
3954         unsigned int max_rss_queues;
3955
3956         /* Determine the maximum number of RSS queues supported. */
3957         switch (hw->mac.type) {
3958         case e1000_i211:
3959                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3960                 break;
3961         case e1000_82575:
3962         case e1000_i210:
3963                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3964                 break;
3965         case e1000_i350:
3966                 /* I350 cannot do RSS and SR-IOV at the same time */
3967                 if (!!adapter->vfs_allocated_count) {
3968                         max_rss_queues = 1;
3969                         break;
3970                 }
3971                 fallthrough;
3972         case e1000_82576:
3973                 if (!!adapter->vfs_allocated_count) {
3974                         max_rss_queues = 2;
3975                         break;
3976                 }
3977                 fallthrough;
3978         case e1000_82580:
3979         case e1000_i354:
3980         default:
3981                 max_rss_queues = IGB_MAX_RX_QUEUES;
3982                 break;
3983         }
3984
3985         return max_rss_queues;
3986 }
3987
3988 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3989 {
3990         u32 max_rss_queues;
3991
3992         max_rss_queues = igb_get_max_rss_queues(adapter);
3993         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3994
3995         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3996 }
3997
3998 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3999                               const u32 max_rss_queues)
4000 {
4001         struct e1000_hw *hw = &adapter->hw;
4002
4003         /* Determine if we need to pair queues. */
4004         switch (hw->mac.type) {
4005         case e1000_82575:
4006         case e1000_i211:
4007                 /* Device supports enough interrupts without queue pairing. */
4008                 break;
4009         case e1000_82576:
4010         case e1000_82580:
4011         case e1000_i350:
4012         case e1000_i354:
4013         case e1000_i210:
4014         default:
4015                 /* If rss_queues > half of max_rss_queues, pair the queues in
4016                  * order to conserve interrupts due to limited supply.
4017                  */
4018                 if (adapter->rss_queues > (max_rss_queues / 2))
4019                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4020                 else
4021                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4022                 break;
4023         }
4024 }
4025
4026 /**
4027  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
4028  *  @adapter: board private structure to initialize
4029  *
4030  *  igb_sw_init initializes the Adapter private data structure.
4031  *  Fields are initialized based on PCI device information and
4032  *  OS network device settings (MTU size).
4033  **/
4034 static int igb_sw_init(struct igb_adapter *adapter)
4035 {
4036         struct e1000_hw *hw = &adapter->hw;
4037         struct net_device *netdev = adapter->netdev;
4038         struct pci_dev *pdev = adapter->pdev;
4039
4040         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4041
4042         /* set default ring sizes */
4043         adapter->tx_ring_count = IGB_DEFAULT_TXD;
4044         adapter->rx_ring_count = IGB_DEFAULT_RXD;
4045
4046         /* set default ITR values */
4047         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4048         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4049
4050         /* set default work limits */
4051         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4052
4053         adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4054         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4055
4056         spin_lock_init(&adapter->nfc_lock);
4057         spin_lock_init(&adapter->stats64_lock);
4058
4059         /* init spinlock to avoid concurrency of VF resources */
4060         spin_lock_init(&adapter->vfs_lock);
4061 #ifdef CONFIG_PCI_IOV
4062         switch (hw->mac.type) {
4063         case e1000_82576:
4064         case e1000_i350:
4065                 if (max_vfs > 7) {
4066                         dev_warn(&pdev->dev,
4067                                  "Maximum of 7 VFs per PF, using max\n");
4068                         max_vfs = adapter->vfs_allocated_count = 7;
4069                 } else
4070                         adapter->vfs_allocated_count = max_vfs;
4071                 if (adapter->vfs_allocated_count)
4072                         dev_warn(&pdev->dev,
4073                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4074                 break;
4075         default:
4076                 break;
4077         }
4078 #endif /* CONFIG_PCI_IOV */
4079
4080         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4081         adapter->flags |= IGB_FLAG_HAS_MSIX;
4082
4083         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4084                                      sizeof(struct igb_mac_addr),
4085                                      GFP_KERNEL);
4086         if (!adapter->mac_table)
4087                 return -ENOMEM;
4088
4089         igb_probe_vfs(adapter);
4090
4091         igb_init_queue_configuration(adapter);
4092
4093         /* Setup and initialize a copy of the hw vlan table array */
4094         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4095                                        GFP_KERNEL);
4096         if (!adapter->shadow_vfta)
4097                 return -ENOMEM;
4098
4099         /* This call may decrease the number of queues */
4100         if (igb_init_interrupt_scheme(adapter, true)) {
4101                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4102                 return -ENOMEM;
4103         }
4104
4105         /* Explicitly disable IRQ since the NIC can be in any state. */
4106         igb_irq_disable(adapter);
4107
4108         if (hw->mac.type >= e1000_i350)
4109                 adapter->flags &= ~IGB_FLAG_DMAC;
4110
4111         set_bit(__IGB_DOWN, &adapter->state);
4112         return 0;
4113 }
4114
4115 /**
4116  *  __igb_open - Called when a network interface is made active
4117  *  @netdev: network interface device structure
4118  *  @resuming: indicates whether we are in a resume call
4119  *
4120  *  Returns 0 on success, negative value on failure
4121  *
4122  *  The open entry point is called when a network interface is made
4123  *  active by the system (IFF_UP).  At this point all resources needed
4124  *  for transmit and receive operations are allocated, the interrupt
4125  *  handler is registered with the OS, the watchdog timer is started,
4126  *  and the stack is notified that the interface is ready.
4127  **/
4128 static int __igb_open(struct net_device *netdev, bool resuming)
4129 {
4130         struct igb_adapter *adapter = netdev_priv(netdev);
4131         struct e1000_hw *hw = &adapter->hw;
4132         struct pci_dev *pdev = adapter->pdev;
4133         int err;
4134         int i;
4135
4136         /* disallow open during test */
4137         if (test_bit(__IGB_TESTING, &adapter->state)) {
4138                 WARN_ON(resuming);
4139                 return -EBUSY;
4140         }
4141
4142         if (!resuming)
4143                 pm_runtime_get_sync(&pdev->dev);
4144
4145         netif_carrier_off(netdev);
4146
4147         /* allocate transmit descriptors */
4148         err = igb_setup_all_tx_resources(adapter);
4149         if (err)
4150                 goto err_setup_tx;
4151
4152         /* allocate receive descriptors */
4153         err = igb_setup_all_rx_resources(adapter);
4154         if (err)
4155                 goto err_setup_rx;
4156
4157         igb_power_up_link(adapter);
4158
4159         /* before we allocate an interrupt, we must be ready to handle it.
4160          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4161          * as soon as we call pci_request_irq, so we have to setup our
4162          * clean_rx handler before we do so.
4163          */
4164         igb_configure(adapter);
4165
4166         err = igb_request_irq(adapter);
4167         if (err)
4168                 goto err_req_irq;
4169
4170         /* Notify the stack of the actual queue counts. */
4171         err = netif_set_real_num_tx_queues(adapter->netdev,
4172                                            adapter->num_tx_queues);
4173         if (err)
4174                 goto err_set_queues;
4175
4176         err = netif_set_real_num_rx_queues(adapter->netdev,
4177                                            adapter->num_rx_queues);
4178         if (err)
4179                 goto err_set_queues;
4180
4181         /* From here on the code is the same as igb_up() */
4182         clear_bit(__IGB_DOWN, &adapter->state);
4183
4184         for (i = 0; i < adapter->num_q_vectors; i++)
4185                 napi_enable(&(adapter->q_vector[i]->napi));
4186
4187         /* Clear any pending interrupts. */
4188         rd32(E1000_TSICR);
4189         rd32(E1000_ICR);
4190
4191         igb_irq_enable(adapter);
4192
4193         /* notify VFs that reset has been completed */
4194         if (adapter->vfs_allocated_count) {
4195                 u32 reg_data = rd32(E1000_CTRL_EXT);
4196
4197                 reg_data |= E1000_CTRL_EXT_PFRSTD;
4198                 wr32(E1000_CTRL_EXT, reg_data);
4199         }
4200
4201         netif_tx_start_all_queues(netdev);
4202
4203         if (!resuming)
4204                 pm_runtime_put(&pdev->dev);
4205
4206         /* start the watchdog. */
4207         hw->mac.get_link_status = 1;
4208         schedule_work(&adapter->watchdog_task);
4209
4210         return 0;
4211
4212 err_set_queues:
4213         igb_free_irq(adapter);
4214 err_req_irq:
4215         igb_release_hw_control(adapter);
4216         igb_power_down_link(adapter);
4217         igb_free_all_rx_resources(adapter);
4218 err_setup_rx:
4219         igb_free_all_tx_resources(adapter);
4220 err_setup_tx:
4221         igb_reset(adapter);
4222         if (!resuming)
4223                 pm_runtime_put(&pdev->dev);
4224
4225         return err;
4226 }
4227
4228 int igb_open(struct net_device *netdev)
4229 {
4230         return __igb_open(netdev, false);
4231 }
4232
4233 /**
4234  *  __igb_close - Disables a network interface
4235  *  @netdev: network interface device structure
4236  *  @suspending: indicates we are in a suspend call
4237  *
4238  *  Returns 0, this is not allowed to fail
4239  *
4240  *  The close entry point is called when an interface is de-activated
4241  *  by the OS.  The hardware is still under the driver's control, but
4242  *  needs to be disabled.  A global MAC reset is issued to stop the
4243  *  hardware, and all transmit and receive resources are freed.
4244  **/
4245 static int __igb_close(struct net_device *netdev, bool suspending)
4246 {
4247         struct igb_adapter *adapter = netdev_priv(netdev);
4248         struct pci_dev *pdev = adapter->pdev;
4249
4250         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4251
4252         if (!suspending)
4253                 pm_runtime_get_sync(&pdev->dev);
4254
4255         igb_down(adapter);
4256         igb_free_irq(adapter);
4257
4258         igb_free_all_tx_resources(adapter);
4259         igb_free_all_rx_resources(adapter);
4260
4261         if (!suspending)
4262                 pm_runtime_put_sync(&pdev->dev);
4263         return 0;
4264 }
4265
4266 int igb_close(struct net_device *netdev)
4267 {
4268         if (netif_device_present(netdev) || netdev->dismantle)
4269                 return __igb_close(netdev, false);
4270         return 0;
4271 }
4272
4273 /**
4274  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4275  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4276  *
4277  *  Return 0 on success, negative on failure
4278  **/
4279 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4280 {
4281         struct device *dev = tx_ring->dev;
4282         int size;
4283
4284         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4285
4286         tx_ring->tx_buffer_info = vmalloc(size);
4287         if (!tx_ring->tx_buffer_info)
4288                 goto err;
4289
4290         /* round up to nearest 4K */
4291         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4292         tx_ring->size = ALIGN(tx_ring->size, 4096);
4293
4294         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4295                                            &tx_ring->dma, GFP_KERNEL);
4296         if (!tx_ring->desc)
4297                 goto err;
4298
4299         tx_ring->next_to_use = 0;
4300         tx_ring->next_to_clean = 0;
4301
4302         return 0;
4303
4304 err:
4305         vfree(tx_ring->tx_buffer_info);
4306         tx_ring->tx_buffer_info = NULL;
4307         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4308         return -ENOMEM;
4309 }
4310
4311 /**
4312  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4313  *                               (Descriptors) for all queues
4314  *  @adapter: board private structure
4315  *
4316  *  Return 0 on success, negative on failure
4317  **/
4318 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4319 {
4320         struct pci_dev *pdev = adapter->pdev;
4321         int i, err = 0;
4322
4323         for (i = 0; i < adapter->num_tx_queues; i++) {
4324                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4325                 if (err) {
4326                         dev_err(&pdev->dev,
4327                                 "Allocation for Tx Queue %u failed\n", i);
4328                         for (i--; i >= 0; i--)
4329                                 igb_free_tx_resources(adapter->tx_ring[i]);
4330                         break;
4331                 }
4332         }
4333
4334         return err;
4335 }
4336
4337 /**
4338  *  igb_setup_tctl - configure the transmit control registers
4339  *  @adapter: Board private structure
4340  **/
4341 void igb_setup_tctl(struct igb_adapter *adapter)
4342 {
4343         struct e1000_hw *hw = &adapter->hw;
4344         u32 tctl;
4345
4346         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4347         wr32(E1000_TXDCTL(0), 0);
4348
4349         /* Program the Transmit Control Register */
4350         tctl = rd32(E1000_TCTL);
4351         tctl &= ~E1000_TCTL_CT;
4352         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4353                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4354
4355         igb_config_collision_dist(hw);
4356
4357         /* Enable transmits */
4358         tctl |= E1000_TCTL_EN;
4359
4360         wr32(E1000_TCTL, tctl);
4361 }
4362
4363 /**
4364  *  igb_configure_tx_ring - Configure transmit ring after Reset
4365  *  @adapter: board private structure
4366  *  @ring: tx ring to configure
4367  *
4368  *  Configure a transmit ring after a reset.
4369  **/
4370 void igb_configure_tx_ring(struct igb_adapter *adapter,
4371                            struct igb_ring *ring)
4372 {
4373         struct e1000_hw *hw = &adapter->hw;
4374         u32 txdctl = 0;
4375         u64 tdba = ring->dma;
4376         int reg_idx = ring->reg_idx;
4377
4378         wr32(E1000_TDLEN(reg_idx),
4379              ring->count * sizeof(union e1000_adv_tx_desc));
4380         wr32(E1000_TDBAL(reg_idx),
4381              tdba & 0x00000000ffffffffULL);
4382         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4383
4384         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4385         wr32(E1000_TDH(reg_idx), 0);
4386         writel(0, ring->tail);
4387
4388         txdctl |= IGB_TX_PTHRESH;
4389         txdctl |= IGB_TX_HTHRESH << 8;
4390         txdctl |= IGB_TX_WTHRESH << 16;
4391
4392         /* reinitialize tx_buffer_info */
4393         memset(ring->tx_buffer_info, 0,
4394                sizeof(struct igb_tx_buffer) * ring->count);
4395
4396         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4397         wr32(E1000_TXDCTL(reg_idx), txdctl);
4398 }
4399
4400 /**
4401  *  igb_configure_tx - Configure transmit Unit after Reset
4402  *  @adapter: board private structure
4403  *
4404  *  Configure the Tx unit of the MAC after a reset.
4405  **/
4406 static void igb_configure_tx(struct igb_adapter *adapter)
4407 {
4408         struct e1000_hw *hw = &adapter->hw;
4409         int i;
4410
4411         /* disable the queues */
4412         for (i = 0; i < adapter->num_tx_queues; i++)
4413                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4414
4415         wrfl();
4416         usleep_range(10000, 20000);
4417
4418         for (i = 0; i < adapter->num_tx_queues; i++)
4419                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4420 }
4421
4422 /**
4423  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4424  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4425  *
4426  *  Returns 0 on success, negative on failure
4427  **/
4428 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4429 {
4430         struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4431         struct device *dev = rx_ring->dev;
4432         int size, res;
4433
4434         /* XDP RX-queue info */
4435         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4436                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4437         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4438                                rx_ring->queue_index, 0);
4439         if (res < 0) {
4440                 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4441                         rx_ring->queue_index);
4442                 return res;
4443         }
4444
4445         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4446
4447         rx_ring->rx_buffer_info = vmalloc(size);
4448         if (!rx_ring->rx_buffer_info)
4449                 goto err;
4450
4451         /* Round up to nearest 4K */
4452         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4453         rx_ring->size = ALIGN(rx_ring->size, 4096);
4454
4455         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4456                                            &rx_ring->dma, GFP_KERNEL);
4457         if (!rx_ring->desc)
4458                 goto err;
4459
4460         rx_ring->next_to_alloc = 0;
4461         rx_ring->next_to_clean = 0;
4462         rx_ring->next_to_use = 0;
4463
4464         rx_ring->xdp_prog = adapter->xdp_prog;
4465
4466         return 0;
4467
4468 err:
4469         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4470         vfree(rx_ring->rx_buffer_info);
4471         rx_ring->rx_buffer_info = NULL;
4472         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4473         return -ENOMEM;
4474 }
4475
4476 /**
4477  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4478  *                               (Descriptors) for all queues
4479  *  @adapter: board private structure
4480  *
4481  *  Return 0 on success, negative on failure
4482  **/
4483 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4484 {
4485         struct pci_dev *pdev = adapter->pdev;
4486         int i, err = 0;
4487
4488         for (i = 0; i < adapter->num_rx_queues; i++) {
4489                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4490                 if (err) {
4491                         dev_err(&pdev->dev,
4492                                 "Allocation for Rx Queue %u failed\n", i);
4493                         for (i--; i >= 0; i--)
4494                                 igb_free_rx_resources(adapter->rx_ring[i]);
4495                         break;
4496                 }
4497         }
4498
4499         return err;
4500 }
4501
4502 /**
4503  *  igb_setup_mrqc - configure the multiple receive queue control registers
4504  *  @adapter: Board private structure
4505  **/
4506 static void igb_setup_mrqc(struct igb_adapter *adapter)
4507 {
4508         struct e1000_hw *hw = &adapter->hw;
4509         u32 mrqc, rxcsum;
4510         u32 j, num_rx_queues;
4511         u32 rss_key[10];
4512
4513         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4514         for (j = 0; j < 10; j++)
4515                 wr32(E1000_RSSRK(j), rss_key[j]);
4516
4517         num_rx_queues = adapter->rss_queues;
4518
4519         switch (hw->mac.type) {
4520         case e1000_82576:
4521                 /* 82576 supports 2 RSS queues for SR-IOV */
4522                 if (adapter->vfs_allocated_count)
4523                         num_rx_queues = 2;
4524                 break;
4525         default:
4526                 break;
4527         }
4528
4529         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4530                 for (j = 0; j < IGB_RETA_SIZE; j++)
4531                         adapter->rss_indir_tbl[j] =
4532                         (j * num_rx_queues) / IGB_RETA_SIZE;
4533                 adapter->rss_indir_tbl_init = num_rx_queues;
4534         }
4535         igb_write_rss_indir_tbl(adapter);
4536
4537         /* Disable raw packet checksumming so that RSS hash is placed in
4538          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4539          * offloads as they are enabled by default
4540          */
4541         rxcsum = rd32(E1000_RXCSUM);
4542         rxcsum |= E1000_RXCSUM_PCSD;
4543
4544         if (adapter->hw.mac.type >= e1000_82576)
4545                 /* Enable Receive Checksum Offload for SCTP */
4546                 rxcsum |= E1000_RXCSUM_CRCOFL;
4547
4548         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4549         wr32(E1000_RXCSUM, rxcsum);
4550
4551         /* Generate RSS hash based on packet types, TCP/UDP
4552          * port numbers and/or IPv4/v6 src and dst addresses
4553          */
4554         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4555                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4556                E1000_MRQC_RSS_FIELD_IPV6 |
4557                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4558                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4559
4560         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4561                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4562         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4563                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4564
4565         /* If VMDq is enabled then we set the appropriate mode for that, else
4566          * we default to RSS so that an RSS hash is calculated per packet even
4567          * if we are only using one queue
4568          */
4569         if (adapter->vfs_allocated_count) {
4570                 if (hw->mac.type > e1000_82575) {
4571                         /* Set the default pool for the PF's first queue */
4572                         u32 vtctl = rd32(E1000_VT_CTL);
4573
4574                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4575                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4576                         vtctl |= adapter->vfs_allocated_count <<
4577                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4578                         wr32(E1000_VT_CTL, vtctl);
4579                 }
4580                 if (adapter->rss_queues > 1)
4581                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4582                 else
4583                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4584         } else {
4585                 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4586         }
4587         igb_vmm_control(adapter);
4588
4589         wr32(E1000_MRQC, mrqc);
4590 }
4591
4592 /**
4593  *  igb_setup_rctl - configure the receive control registers
4594  *  @adapter: Board private structure
4595  **/
4596 void igb_setup_rctl(struct igb_adapter *adapter)
4597 {
4598         struct e1000_hw *hw = &adapter->hw;
4599         u32 rctl;
4600
4601         rctl = rd32(E1000_RCTL);
4602
4603         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4604         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4605
4606         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4607                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4608
4609         /* enable stripping of CRC. It's unlikely this will break BMC
4610          * redirection as it did with e1000. Newer features require
4611          * that the HW strips the CRC.
4612          */
4613         rctl |= E1000_RCTL_SECRC;
4614
4615         /* disable store bad packets and clear size bits. */
4616         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4617
4618         /* enable LPE to allow for reception of jumbo frames */
4619         rctl |= E1000_RCTL_LPE;
4620
4621         /* disable queue 0 to prevent tail write w/o re-config */
4622         wr32(E1000_RXDCTL(0), 0);
4623
4624         /* Attention!!!  For SR-IOV PF driver operations you must enable
4625          * queue drop for all VF and PF queues to prevent head of line blocking
4626          * if an un-trusted VF does not provide descriptors to hardware.
4627          */
4628         if (adapter->vfs_allocated_count) {
4629                 /* set all queue drop enable bits */
4630                 wr32(E1000_QDE, ALL_QUEUES);
4631         }
4632
4633         /* This is useful for sniffing bad packets. */
4634         if (adapter->netdev->features & NETIF_F_RXALL) {
4635                 /* UPE and MPE will be handled by normal PROMISC logic
4636                  * in e1000e_set_rx_mode
4637                  */
4638                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4639                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4640                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4641
4642                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4643                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4644                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4645                  * and that breaks VLANs.
4646                  */
4647         }
4648
4649         wr32(E1000_RCTL, rctl);
4650 }
4651
4652 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4653                                    int vfn)
4654 {
4655         struct e1000_hw *hw = &adapter->hw;
4656         u32 vmolr;
4657
4658         if (size > MAX_JUMBO_FRAME_SIZE)
4659                 size = MAX_JUMBO_FRAME_SIZE;
4660
4661         vmolr = rd32(E1000_VMOLR(vfn));
4662         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4663         vmolr |= size | E1000_VMOLR_LPE;
4664         wr32(E1000_VMOLR(vfn), vmolr);
4665
4666         return 0;
4667 }
4668
4669 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4670                                          int vfn, bool enable)
4671 {
4672         struct e1000_hw *hw = &adapter->hw;
4673         u32 val, reg;
4674
4675         if (hw->mac.type < e1000_82576)
4676                 return;
4677
4678         if (hw->mac.type == e1000_i350)
4679                 reg = E1000_DVMOLR(vfn);
4680         else
4681                 reg = E1000_VMOLR(vfn);
4682
4683         val = rd32(reg);
4684         if (enable)
4685                 val |= E1000_VMOLR_STRVLAN;
4686         else
4687                 val &= ~(E1000_VMOLR_STRVLAN);
4688         wr32(reg, val);
4689 }
4690
4691 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4692                                  int vfn, bool aupe)
4693 {
4694         struct e1000_hw *hw = &adapter->hw;
4695         u32 vmolr;
4696
4697         /* This register exists only on 82576 and newer so if we are older then
4698          * we should exit and do nothing
4699          */
4700         if (hw->mac.type < e1000_82576)
4701                 return;
4702
4703         vmolr = rd32(E1000_VMOLR(vfn));
4704         if (aupe)
4705                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4706         else
4707                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4708
4709         /* clear all bits that might not be set */
4710         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4711
4712         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4713                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4714         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4715          * multicast packets
4716          */
4717         if (vfn <= adapter->vfs_allocated_count)
4718                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4719
4720         wr32(E1000_VMOLR(vfn), vmolr);
4721 }
4722
4723 /**
4724  *  igb_setup_srrctl - configure the split and replication receive control
4725  *                     registers
4726  *  @adapter: Board private structure
4727  *  @ring: receive ring to be configured
4728  **/
4729 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4730 {
4731         struct e1000_hw *hw = &adapter->hw;
4732         int reg_idx = ring->reg_idx;
4733         u32 srrctl = 0;
4734
4735         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4736         if (ring_uses_large_buffer(ring))
4737                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4738         else
4739                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4740         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4741         if (hw->mac.type >= e1000_82580)
4742                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4743         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4744          * queues and rx flow control is disabled
4745          */
4746         if (adapter->vfs_allocated_count ||
4747             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4748              adapter->num_rx_queues > 1))
4749                 srrctl |= E1000_SRRCTL_DROP_EN;
4750
4751         wr32(E1000_SRRCTL(reg_idx), srrctl);
4752 }
4753
4754 /**
4755  *  igb_configure_rx_ring - Configure a receive ring after Reset
4756  *  @adapter: board private structure
4757  *  @ring: receive ring to be configured
4758  *
4759  *  Configure the Rx unit of the MAC after a reset.
4760  **/
4761 void igb_configure_rx_ring(struct igb_adapter *adapter,
4762                            struct igb_ring *ring)
4763 {
4764         struct e1000_hw *hw = &adapter->hw;
4765         union e1000_adv_rx_desc *rx_desc;
4766         u64 rdba = ring->dma;
4767         int reg_idx = ring->reg_idx;
4768         u32 rxdctl = 0;
4769
4770         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4771         WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4772                                            MEM_TYPE_PAGE_SHARED, NULL));
4773
4774         /* disable the queue */
4775         wr32(E1000_RXDCTL(reg_idx), 0);
4776
4777         /* Set DMA base address registers */
4778         wr32(E1000_RDBAL(reg_idx),
4779              rdba & 0x00000000ffffffffULL);
4780         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4781         wr32(E1000_RDLEN(reg_idx),
4782              ring->count * sizeof(union e1000_adv_rx_desc));
4783
4784         /* initialize head and tail */
4785         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4786         wr32(E1000_RDH(reg_idx), 0);
4787         writel(0, ring->tail);
4788
4789         /* set descriptor configuration */
4790         igb_setup_srrctl(adapter, ring);
4791
4792         /* set filtering for VMDQ pools */
4793         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4794
4795         rxdctl |= IGB_RX_PTHRESH;
4796         rxdctl |= IGB_RX_HTHRESH << 8;
4797         rxdctl |= IGB_RX_WTHRESH << 16;
4798
4799         /* initialize rx_buffer_info */
4800         memset(ring->rx_buffer_info, 0,
4801                sizeof(struct igb_rx_buffer) * ring->count);
4802
4803         /* initialize Rx descriptor 0 */
4804         rx_desc = IGB_RX_DESC(ring, 0);
4805         rx_desc->wb.upper.length = 0;
4806
4807         /* enable receive descriptor fetching */
4808         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4809         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4810 }
4811
4812 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4813                                   struct igb_ring *rx_ring)
4814 {
4815         /* set build_skb and buffer size flags */
4816         clear_ring_build_skb_enabled(rx_ring);
4817         clear_ring_uses_large_buffer(rx_ring);
4818
4819         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4820                 return;
4821
4822         set_ring_build_skb_enabled(rx_ring);
4823
4824 #if (PAGE_SIZE < 8192)
4825         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4826                 return;
4827
4828         set_ring_uses_large_buffer(rx_ring);
4829 #endif
4830 }
4831
4832 /**
4833  *  igb_configure_rx - Configure receive Unit after Reset
4834  *  @adapter: board private structure
4835  *
4836  *  Configure the Rx unit of the MAC after a reset.
4837  **/
4838 static void igb_configure_rx(struct igb_adapter *adapter)
4839 {
4840         int i;
4841
4842         /* set the correct pool for the PF default MAC address in entry 0 */
4843         igb_set_default_mac_filter(adapter);
4844
4845         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4846          * the Base and Length of the Rx Descriptor Ring
4847          */
4848         for (i = 0; i < adapter->num_rx_queues; i++) {
4849                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4850
4851                 igb_set_rx_buffer_len(adapter, rx_ring);
4852                 igb_configure_rx_ring(adapter, rx_ring);
4853         }
4854 }
4855
4856 /**
4857  *  igb_free_tx_resources - Free Tx Resources per Queue
4858  *  @tx_ring: Tx descriptor ring for a specific queue
4859  *
4860  *  Free all transmit software resources
4861  **/
4862 void igb_free_tx_resources(struct igb_ring *tx_ring)
4863 {
4864         igb_clean_tx_ring(tx_ring);
4865
4866         vfree(tx_ring->tx_buffer_info);
4867         tx_ring->tx_buffer_info = NULL;
4868
4869         /* if not set, then don't free */
4870         if (!tx_ring->desc)
4871                 return;
4872
4873         dma_free_coherent(tx_ring->dev, tx_ring->size,
4874                           tx_ring->desc, tx_ring->dma);
4875
4876         tx_ring->desc = NULL;
4877 }
4878
4879 /**
4880  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4881  *  @adapter: board private structure
4882  *
4883  *  Free all transmit software resources
4884  **/
4885 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4886 {
4887         int i;
4888
4889         for (i = 0; i < adapter->num_tx_queues; i++)
4890                 if (adapter->tx_ring[i])
4891                         igb_free_tx_resources(adapter->tx_ring[i]);
4892 }
4893
4894 /**
4895  *  igb_clean_tx_ring - Free Tx Buffers
4896  *  @tx_ring: ring to be cleaned
4897  **/
4898 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4899 {
4900         u16 i = tx_ring->next_to_clean;
4901         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4902
4903         while (i != tx_ring->next_to_use) {
4904                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4905
4906                 /* Free all the Tx ring sk_buffs or xdp frames */
4907                 if (tx_buffer->type == IGB_TYPE_SKB)
4908                         dev_kfree_skb_any(tx_buffer->skb);
4909                 else
4910                         xdp_return_frame(tx_buffer->xdpf);
4911
4912                 /* unmap skb header data */
4913                 dma_unmap_single(tx_ring->dev,
4914                                  dma_unmap_addr(tx_buffer, dma),
4915                                  dma_unmap_len(tx_buffer, len),
4916                                  DMA_TO_DEVICE);
4917
4918                 /* check for eop_desc to determine the end of the packet */
4919                 eop_desc = tx_buffer->next_to_watch;
4920                 tx_desc = IGB_TX_DESC(tx_ring, i);
4921
4922                 /* unmap remaining buffers */
4923                 while (tx_desc != eop_desc) {
4924                         tx_buffer++;
4925                         tx_desc++;
4926                         i++;
4927                         if (unlikely(i == tx_ring->count)) {
4928                                 i = 0;
4929                                 tx_buffer = tx_ring->tx_buffer_info;
4930                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4931                         }
4932
4933                         /* unmap any remaining paged data */
4934                         if (dma_unmap_len(tx_buffer, len))
4935                                 dma_unmap_page(tx_ring->dev,
4936                                                dma_unmap_addr(tx_buffer, dma),
4937                                                dma_unmap_len(tx_buffer, len),
4938                                                DMA_TO_DEVICE);
4939                 }
4940
4941                 tx_buffer->next_to_watch = NULL;
4942
4943                 /* move us one more past the eop_desc for start of next pkt */
4944                 tx_buffer++;
4945                 i++;
4946                 if (unlikely(i == tx_ring->count)) {
4947                         i = 0;
4948                         tx_buffer = tx_ring->tx_buffer_info;
4949                 }
4950         }
4951
4952         /* reset BQL for queue */
4953         netdev_tx_reset_queue(txring_txq(tx_ring));
4954
4955         /* reset next_to_use and next_to_clean */
4956         tx_ring->next_to_use = 0;
4957         tx_ring->next_to_clean = 0;
4958 }
4959
4960 /**
4961  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4962  *  @adapter: board private structure
4963  **/
4964 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4965 {
4966         int i;
4967
4968         for (i = 0; i < adapter->num_tx_queues; i++)
4969                 if (adapter->tx_ring[i])
4970                         igb_clean_tx_ring(adapter->tx_ring[i]);
4971 }
4972
4973 /**
4974  *  igb_free_rx_resources - Free Rx Resources
4975  *  @rx_ring: ring to clean the resources from
4976  *
4977  *  Free all receive software resources
4978  **/
4979 void igb_free_rx_resources(struct igb_ring *rx_ring)
4980 {
4981         igb_clean_rx_ring(rx_ring);
4982
4983         rx_ring->xdp_prog = NULL;
4984         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4985         vfree(rx_ring->rx_buffer_info);
4986         rx_ring->rx_buffer_info = NULL;
4987
4988         /* if not set, then don't free */
4989         if (!rx_ring->desc)
4990                 return;
4991
4992         dma_free_coherent(rx_ring->dev, rx_ring->size,
4993                           rx_ring->desc, rx_ring->dma);
4994
4995         rx_ring->desc = NULL;
4996 }
4997
4998 /**
4999  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
5000  *  @adapter: board private structure
5001  *
5002  *  Free all receive software resources
5003  **/
5004 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5005 {
5006         int i;
5007
5008         for (i = 0; i < adapter->num_rx_queues; i++)
5009                 if (adapter->rx_ring[i])
5010                         igb_free_rx_resources(adapter->rx_ring[i]);
5011 }
5012
5013 /**
5014  *  igb_clean_rx_ring - Free Rx Buffers per Queue
5015  *  @rx_ring: ring to free buffers from
5016  **/
5017 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5018 {
5019         u16 i = rx_ring->next_to_clean;
5020
5021         dev_kfree_skb(rx_ring->skb);
5022         rx_ring->skb = NULL;
5023
5024         /* Free all the Rx ring sk_buffs */
5025         while (i != rx_ring->next_to_alloc) {
5026                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5027
5028                 /* Invalidate cache lines that may have been written to by
5029                  * device so that we avoid corrupting memory.
5030                  */
5031                 dma_sync_single_range_for_cpu(rx_ring->dev,
5032                                               buffer_info->dma,
5033                                               buffer_info->page_offset,
5034                                               igb_rx_bufsz(rx_ring),
5035                                               DMA_FROM_DEVICE);
5036
5037                 /* free resources associated with mapping */
5038                 dma_unmap_page_attrs(rx_ring->dev,
5039                                      buffer_info->dma,
5040                                      igb_rx_pg_size(rx_ring),
5041                                      DMA_FROM_DEVICE,
5042                                      IGB_RX_DMA_ATTR);
5043                 __page_frag_cache_drain(buffer_info->page,
5044                                         buffer_info->pagecnt_bias);
5045
5046                 i++;
5047                 if (i == rx_ring->count)
5048                         i = 0;
5049         }
5050
5051         rx_ring->next_to_alloc = 0;
5052         rx_ring->next_to_clean = 0;
5053         rx_ring->next_to_use = 0;
5054 }
5055
5056 /**
5057  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5058  *  @adapter: board private structure
5059  **/
5060 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5061 {
5062         int i;
5063
5064         for (i = 0; i < adapter->num_rx_queues; i++)
5065                 if (adapter->rx_ring[i])
5066                         igb_clean_rx_ring(adapter->rx_ring[i]);
5067 }
5068
5069 /**
5070  *  igb_set_mac - Change the Ethernet Address of the NIC
5071  *  @netdev: network interface device structure
5072  *  @p: pointer to an address structure
5073  *
5074  *  Returns 0 on success, negative on failure
5075  **/
5076 static int igb_set_mac(struct net_device *netdev, void *p)
5077 {
5078         struct igb_adapter *adapter = netdev_priv(netdev);
5079         struct e1000_hw *hw = &adapter->hw;
5080         struct sockaddr *addr = p;
5081
5082         if (!is_valid_ether_addr(addr->sa_data))
5083                 return -EADDRNOTAVAIL;
5084
5085         eth_hw_addr_set(netdev, addr->sa_data);
5086         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5087
5088         /* set the correct pool for the new PF MAC address in entry 0 */
5089         igb_set_default_mac_filter(adapter);
5090
5091         return 0;
5092 }
5093
5094 /**
5095  *  igb_write_mc_addr_list - write multicast addresses to MTA
5096  *  @netdev: network interface device structure
5097  *
5098  *  Writes multicast address list to the MTA hash table.
5099  *  Returns: -ENOMEM on failure
5100  *           0 on no addresses written
5101  *           X on writing X addresses to MTA
5102  **/
5103 static int igb_write_mc_addr_list(struct net_device *netdev)
5104 {
5105         struct igb_adapter *adapter = netdev_priv(netdev);
5106         struct e1000_hw *hw = &adapter->hw;
5107         struct netdev_hw_addr *ha;
5108         u8  *mta_list;
5109         int i;
5110
5111         if (netdev_mc_empty(netdev)) {
5112                 /* nothing to program, so clear mc list */
5113                 igb_update_mc_addr_list(hw, NULL, 0);
5114                 igb_restore_vf_multicasts(adapter);
5115                 return 0;
5116         }
5117
5118         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5119         if (!mta_list)
5120                 return -ENOMEM;
5121
5122         /* The shared function expects a packed array of only addresses. */
5123         i = 0;
5124         netdev_for_each_mc_addr(ha, netdev)
5125                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5126
5127         igb_update_mc_addr_list(hw, mta_list, i);
5128         kfree(mta_list);
5129
5130         return netdev_mc_count(netdev);
5131 }
5132
5133 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5134 {
5135         struct e1000_hw *hw = &adapter->hw;
5136         u32 i, pf_id;
5137
5138         switch (hw->mac.type) {
5139         case e1000_i210:
5140         case e1000_i211:
5141         case e1000_i350:
5142                 /* VLAN filtering needed for VLAN prio filter */
5143                 if (adapter->netdev->features & NETIF_F_NTUPLE)
5144                         break;
5145                 fallthrough;
5146         case e1000_82576:
5147         case e1000_82580:
5148         case e1000_i354:
5149                 /* VLAN filtering needed for pool filtering */
5150                 if (adapter->vfs_allocated_count)
5151                         break;
5152                 fallthrough;
5153         default:
5154                 return 1;
5155         }
5156
5157         /* We are already in VLAN promisc, nothing to do */
5158         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5159                 return 0;
5160
5161         if (!adapter->vfs_allocated_count)
5162                 goto set_vfta;
5163
5164         /* Add PF to all active pools */
5165         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5166
5167         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5168                 u32 vlvf = rd32(E1000_VLVF(i));
5169
5170                 vlvf |= BIT(pf_id);
5171                 wr32(E1000_VLVF(i), vlvf);
5172         }
5173
5174 set_vfta:
5175         /* Set all bits in the VLAN filter table array */
5176         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5177                 hw->mac.ops.write_vfta(hw, i, ~0U);
5178
5179         /* Set flag so we don't redo unnecessary work */
5180         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5181
5182         return 0;
5183 }
5184
5185 #define VFTA_BLOCK_SIZE 8
5186 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5187 {
5188         struct e1000_hw *hw = &adapter->hw;
5189         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5190         u32 vid_start = vfta_offset * 32;
5191         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5192         u32 i, vid, word, bits, pf_id;
5193
5194         /* guarantee that we don't scrub out management VLAN */
5195         vid = adapter->mng_vlan_id;
5196         if (vid >= vid_start && vid < vid_end)
5197                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5198
5199         if (!adapter->vfs_allocated_count)
5200                 goto set_vfta;
5201
5202         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5203
5204         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5205                 u32 vlvf = rd32(E1000_VLVF(i));
5206
5207                 /* pull VLAN ID from VLVF */
5208                 vid = vlvf & VLAN_VID_MASK;
5209
5210                 /* only concern ourselves with a certain range */
5211                 if (vid < vid_start || vid >= vid_end)
5212                         continue;
5213
5214                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5215                         /* record VLAN ID in VFTA */
5216                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5217
5218                         /* if PF is part of this then continue */
5219                         if (test_bit(vid, adapter->active_vlans))
5220                                 continue;
5221                 }
5222
5223                 /* remove PF from the pool */
5224                 bits = ~BIT(pf_id);
5225                 bits &= rd32(E1000_VLVF(i));
5226                 wr32(E1000_VLVF(i), bits);
5227         }
5228
5229 set_vfta:
5230         /* extract values from active_vlans and write back to VFTA */
5231         for (i = VFTA_BLOCK_SIZE; i--;) {
5232                 vid = (vfta_offset + i) * 32;
5233                 word = vid / BITS_PER_LONG;
5234                 bits = vid % BITS_PER_LONG;
5235
5236                 vfta[i] |= adapter->active_vlans[word] >> bits;
5237
5238                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5239         }
5240 }
5241
5242 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5243 {
5244         u32 i;
5245
5246         /* We are not in VLAN promisc, nothing to do */
5247         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5248                 return;
5249
5250         /* Set flag so we don't redo unnecessary work */
5251         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5252
5253         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5254                 igb_scrub_vfta(adapter, i);
5255 }
5256
5257 /**
5258  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5259  *  @netdev: network interface device structure
5260  *
5261  *  The set_rx_mode entry point is called whenever the unicast or multicast
5262  *  address lists or the network interface flags are updated.  This routine is
5263  *  responsible for configuring the hardware for proper unicast, multicast,
5264  *  promiscuous mode, and all-multi behavior.
5265  **/
5266 static void igb_set_rx_mode(struct net_device *netdev)
5267 {
5268         struct igb_adapter *adapter = netdev_priv(netdev);
5269         struct e1000_hw *hw = &adapter->hw;
5270         unsigned int vfn = adapter->vfs_allocated_count;
5271         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5272         int count;
5273
5274         /* Check for Promiscuous and All Multicast modes */
5275         if (netdev->flags & IFF_PROMISC) {
5276                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5277                 vmolr |= E1000_VMOLR_MPME;
5278
5279                 /* enable use of UTA filter to force packets to default pool */
5280                 if (hw->mac.type == e1000_82576)
5281                         vmolr |= E1000_VMOLR_ROPE;
5282         } else {
5283                 if (netdev->flags & IFF_ALLMULTI) {
5284                         rctl |= E1000_RCTL_MPE;
5285                         vmolr |= E1000_VMOLR_MPME;
5286                 } else {
5287                         /* Write addresses to the MTA, if the attempt fails
5288                          * then we should just turn on promiscuous mode so
5289                          * that we can at least receive multicast traffic
5290                          */
5291                         count = igb_write_mc_addr_list(netdev);
5292                         if (count < 0) {
5293                                 rctl |= E1000_RCTL_MPE;
5294                                 vmolr |= E1000_VMOLR_MPME;
5295                         } else if (count) {
5296                                 vmolr |= E1000_VMOLR_ROMPE;
5297                         }
5298                 }
5299         }
5300
5301         /* Write addresses to available RAR registers, if there is not
5302          * sufficient space to store all the addresses then enable
5303          * unicast promiscuous mode
5304          */
5305         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5306                 rctl |= E1000_RCTL_UPE;
5307                 vmolr |= E1000_VMOLR_ROPE;
5308         }
5309
5310         /* enable VLAN filtering by default */
5311         rctl |= E1000_RCTL_VFE;
5312
5313         /* disable VLAN filtering for modes that require it */
5314         if ((netdev->flags & IFF_PROMISC) ||
5315             (netdev->features & NETIF_F_RXALL)) {
5316                 /* if we fail to set all rules then just clear VFE */
5317                 if (igb_vlan_promisc_enable(adapter))
5318                         rctl &= ~E1000_RCTL_VFE;
5319         } else {
5320                 igb_vlan_promisc_disable(adapter);
5321         }
5322
5323         /* update state of unicast, multicast, and VLAN filtering modes */
5324         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5325                                      E1000_RCTL_VFE);
5326         wr32(E1000_RCTL, rctl);
5327
5328 #if (PAGE_SIZE < 8192)
5329         if (!adapter->vfs_allocated_count) {
5330                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5331                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5332         }
5333 #endif
5334         wr32(E1000_RLPML, rlpml);
5335
5336         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5337          * the VMOLR to enable the appropriate modes.  Without this workaround
5338          * we will have issues with VLAN tag stripping not being done for frames
5339          * that are only arriving because we are the default pool
5340          */
5341         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5342                 return;
5343
5344         /* set UTA to appropriate mode */
5345         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5346
5347         vmolr |= rd32(E1000_VMOLR(vfn)) &
5348                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5349
5350         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5351         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5352 #if (PAGE_SIZE < 8192)
5353         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5354                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5355         else
5356 #endif
5357                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5358         vmolr |= E1000_VMOLR_LPE;
5359
5360         wr32(E1000_VMOLR(vfn), vmolr);
5361
5362         igb_restore_vf_multicasts(adapter);
5363 }
5364
5365 static void igb_check_wvbr(struct igb_adapter *adapter)
5366 {
5367         struct e1000_hw *hw = &adapter->hw;
5368         u32 wvbr = 0;
5369
5370         switch (hw->mac.type) {
5371         case e1000_82576:
5372         case e1000_i350:
5373                 wvbr = rd32(E1000_WVBR);
5374                 if (!wvbr)
5375                         return;
5376                 break;
5377         default:
5378                 break;
5379         }
5380
5381         adapter->wvbr |= wvbr;
5382 }
5383
5384 #define IGB_STAGGERED_QUEUE_OFFSET 8
5385
5386 static void igb_spoof_check(struct igb_adapter *adapter)
5387 {
5388         int j;
5389
5390         if (!adapter->wvbr)
5391                 return;
5392
5393         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5394                 if (adapter->wvbr & BIT(j) ||
5395                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5396                         dev_warn(&adapter->pdev->dev,
5397                                 "Spoof event(s) detected on VF %d\n", j);
5398                         adapter->wvbr &=
5399                                 ~(BIT(j) |
5400                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5401                 }
5402         }
5403 }
5404
5405 /* Need to wait a few seconds after link up to get diagnostic information from
5406  * the phy
5407  */
5408 static void igb_update_phy_info(struct timer_list *t)
5409 {
5410         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5411         igb_get_phy_info(&adapter->hw);
5412 }
5413
5414 /**
5415  *  igb_has_link - check shared code for link and determine up/down
5416  *  @adapter: pointer to driver private info
5417  **/
5418 bool igb_has_link(struct igb_adapter *adapter)
5419 {
5420         struct e1000_hw *hw = &adapter->hw;
5421         bool link_active = false;
5422
5423         /* get_link_status is set on LSC (link status) interrupt or
5424          * rx sequence error interrupt.  get_link_status will stay
5425          * false until the e1000_check_for_link establishes link
5426          * for copper adapters ONLY
5427          */
5428         switch (hw->phy.media_type) {
5429         case e1000_media_type_copper:
5430                 if (!hw->mac.get_link_status)
5431                         return true;
5432                 fallthrough;
5433         case e1000_media_type_internal_serdes:
5434                 hw->mac.ops.check_for_link(hw);
5435                 link_active = !hw->mac.get_link_status;
5436                 break;
5437         default:
5438         case e1000_media_type_unknown:
5439                 break;
5440         }
5441
5442         if (((hw->mac.type == e1000_i210) ||
5443              (hw->mac.type == e1000_i211)) &&
5444              (hw->phy.id == I210_I_PHY_ID)) {
5445                 if (!netif_carrier_ok(adapter->netdev)) {
5446                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5447                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5448                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5449                         adapter->link_check_timeout = jiffies;
5450                 }
5451         }
5452
5453         return link_active;
5454 }
5455
5456 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5457 {
5458         bool ret = false;
5459         u32 ctrl_ext, thstat;
5460
5461         /* check for thermal sensor event on i350 copper only */
5462         if (hw->mac.type == e1000_i350) {
5463                 thstat = rd32(E1000_THSTAT);
5464                 ctrl_ext = rd32(E1000_CTRL_EXT);
5465
5466                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5467                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5468                         ret = !!(thstat & event);
5469         }
5470
5471         return ret;
5472 }
5473
5474 /**
5475  *  igb_check_lvmmc - check for malformed packets received
5476  *  and indicated in LVMMC register
5477  *  @adapter: pointer to adapter
5478  **/
5479 static void igb_check_lvmmc(struct igb_adapter *adapter)
5480 {
5481         struct e1000_hw *hw = &adapter->hw;
5482         u32 lvmmc;
5483
5484         lvmmc = rd32(E1000_LVMMC);
5485         if (lvmmc) {
5486                 if (unlikely(net_ratelimit())) {
5487                         netdev_warn(adapter->netdev,
5488                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5489                                     lvmmc);
5490                 }
5491         }
5492 }
5493
5494 /**
5495  *  igb_watchdog - Timer Call-back
5496  *  @t: pointer to timer_list containing our private info pointer
5497  **/
5498 static void igb_watchdog(struct timer_list *t)
5499 {
5500         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5501         /* Do the rest outside of interrupt context */
5502         schedule_work(&adapter->watchdog_task);
5503 }
5504
5505 static void igb_watchdog_task(struct work_struct *work)
5506 {
5507         struct igb_adapter *adapter = container_of(work,
5508                                                    struct igb_adapter,
5509                                                    watchdog_task);
5510         struct e1000_hw *hw = &adapter->hw;
5511         struct e1000_phy_info *phy = &hw->phy;
5512         struct net_device *netdev = adapter->netdev;
5513         u32 link;
5514         int i;
5515         u32 connsw;
5516         u16 phy_data, retry_count = 20;
5517
5518         link = igb_has_link(adapter);
5519
5520         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5521                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5522                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5523                 else
5524                         link = false;
5525         }
5526
5527         /* Force link down if we have fiber to swap to */
5528         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5529                 if (hw->phy.media_type == e1000_media_type_copper) {
5530                         connsw = rd32(E1000_CONNSW);
5531                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5532                                 link = 0;
5533                 }
5534         }
5535         if (link) {
5536                 /* Perform a reset if the media type changed. */
5537                 if (hw->dev_spec._82575.media_changed) {
5538                         hw->dev_spec._82575.media_changed = false;
5539                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5540                         igb_reset(adapter);
5541                 }
5542                 /* Cancel scheduled suspend requests. */
5543                 pm_runtime_resume(netdev->dev.parent);
5544
5545                 if (!netif_carrier_ok(netdev)) {
5546                         u32 ctrl;
5547
5548                         hw->mac.ops.get_speed_and_duplex(hw,
5549                                                          &adapter->link_speed,
5550                                                          &adapter->link_duplex);
5551
5552                         ctrl = rd32(E1000_CTRL);
5553                         /* Links status message must follow this format */
5554                         netdev_info(netdev,
5555                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5556                                netdev->name,
5557                                adapter->link_speed,
5558                                adapter->link_duplex == FULL_DUPLEX ?
5559                                "Full" : "Half",
5560                                (ctrl & E1000_CTRL_TFCE) &&
5561                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5562                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5563                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5564
5565                         /* disable EEE if enabled */
5566                         if ((adapter->flags & IGB_FLAG_EEE) &&
5567                                 (adapter->link_duplex == HALF_DUPLEX)) {
5568                                 dev_info(&adapter->pdev->dev,
5569                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5570                                 adapter->hw.dev_spec._82575.eee_disable = true;
5571                                 adapter->flags &= ~IGB_FLAG_EEE;
5572                         }
5573
5574                         /* check if SmartSpeed worked */
5575                         igb_check_downshift(hw);
5576                         if (phy->speed_downgraded)
5577                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5578
5579                         /* check for thermal sensor event */
5580                         if (igb_thermal_sensor_event(hw,
5581                             E1000_THSTAT_LINK_THROTTLE))
5582                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5583
5584                         /* adjust timeout factor according to speed/duplex */
5585                         adapter->tx_timeout_factor = 1;
5586                         switch (adapter->link_speed) {
5587                         case SPEED_10:
5588                                 adapter->tx_timeout_factor = 14;
5589                                 break;
5590                         case SPEED_100:
5591                                 /* maybe add some timeout factor ? */
5592                                 break;
5593                         }
5594
5595                         if (adapter->link_speed != SPEED_1000 ||
5596                             !hw->phy.ops.read_reg)
5597                                 goto no_wait;
5598
5599                         /* wait for Remote receiver status OK */
5600 retry_read_status:
5601                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5602                                               &phy_data)) {
5603                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5604                                     retry_count) {
5605                                         msleep(100);
5606                                         retry_count--;
5607                                         goto retry_read_status;
5608                                 } else if (!retry_count) {
5609                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5610                                 }
5611                         } else {
5612                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5613                         }
5614 no_wait:
5615                         netif_carrier_on(netdev);
5616
5617                         igb_ping_all_vfs(adapter);
5618                         igb_check_vf_rate_limit(adapter);
5619
5620                         /* link state has changed, schedule phy info update */
5621                         if (!test_bit(__IGB_DOWN, &adapter->state))
5622                                 mod_timer(&adapter->phy_info_timer,
5623                                           round_jiffies(jiffies + 2 * HZ));
5624                 }
5625         } else {
5626                 if (netif_carrier_ok(netdev)) {
5627                         adapter->link_speed = 0;
5628                         adapter->link_duplex = 0;
5629
5630                         /* check for thermal sensor event */
5631                         if (igb_thermal_sensor_event(hw,
5632                             E1000_THSTAT_PWR_DOWN)) {
5633                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5634                         }
5635
5636                         /* Links status message must follow this format */
5637                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5638                                netdev->name);
5639                         netif_carrier_off(netdev);
5640
5641                         igb_ping_all_vfs(adapter);
5642
5643                         /* link state has changed, schedule phy info update */
5644                         if (!test_bit(__IGB_DOWN, &adapter->state))
5645                                 mod_timer(&adapter->phy_info_timer,
5646                                           round_jiffies(jiffies + 2 * HZ));
5647
5648                         /* link is down, time to check for alternate media */
5649                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5650                                 igb_check_swap_media(adapter);
5651                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5652                                         schedule_work(&adapter->reset_task);
5653                                         /* return immediately */
5654                                         return;
5655                                 }
5656                         }
5657                         pm_schedule_suspend(netdev->dev.parent,
5658                                             MSEC_PER_SEC * 5);
5659
5660                 /* also check for alternate media here */
5661                 } else if (!netif_carrier_ok(netdev) &&
5662                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5663                         igb_check_swap_media(adapter);
5664                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5665                                 schedule_work(&adapter->reset_task);
5666                                 /* return immediately */
5667                                 return;
5668                         }
5669                 }
5670         }
5671
5672         spin_lock(&adapter->stats64_lock);
5673         igb_update_stats(adapter);
5674         spin_unlock(&adapter->stats64_lock);
5675
5676         for (i = 0; i < adapter->num_tx_queues; i++) {
5677                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5678                 if (!netif_carrier_ok(netdev)) {
5679                         /* We've lost link, so the controller stops DMA,
5680                          * but we've got queued Tx work that's never going
5681                          * to get done, so reset controller to flush Tx.
5682                          * (Do the reset outside of interrupt context).
5683                          */
5684                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5685                                 adapter->tx_timeout_count++;
5686                                 schedule_work(&adapter->reset_task);
5687                                 /* return immediately since reset is imminent */
5688                                 return;
5689                         }
5690                 }
5691
5692                 /* Force detection of hung controller every watchdog period */
5693                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5694         }
5695
5696         /* Cause software interrupt to ensure Rx ring is cleaned */
5697         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5698                 u32 eics = 0;
5699
5700                 for (i = 0; i < adapter->num_q_vectors; i++)
5701                         eics |= adapter->q_vector[i]->eims_value;
5702                 wr32(E1000_EICS, eics);
5703         } else {
5704                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5705         }
5706
5707         igb_spoof_check(adapter);
5708         igb_ptp_rx_hang(adapter);
5709         igb_ptp_tx_hang(adapter);
5710
5711         /* Check LVMMC register on i350/i354 only */
5712         if ((adapter->hw.mac.type == e1000_i350) ||
5713             (adapter->hw.mac.type == e1000_i354))
5714                 igb_check_lvmmc(adapter);
5715
5716         /* Reset the timer */
5717         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5718                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5719                         mod_timer(&adapter->watchdog_timer,
5720                                   round_jiffies(jiffies +  HZ));
5721                 else
5722                         mod_timer(&adapter->watchdog_timer,
5723                                   round_jiffies(jiffies + 2 * HZ));
5724         }
5725 }
5726
5727 enum latency_range {
5728         lowest_latency = 0,
5729         low_latency = 1,
5730         bulk_latency = 2,
5731         latency_invalid = 255
5732 };
5733
5734 /**
5735  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5736  *  @q_vector: pointer to q_vector
5737  *
5738  *  Stores a new ITR value based on strictly on packet size.  This
5739  *  algorithm is less sophisticated than that used in igb_update_itr,
5740  *  due to the difficulty of synchronizing statistics across multiple
5741  *  receive rings.  The divisors and thresholds used by this function
5742  *  were determined based on theoretical maximum wire speed and testing
5743  *  data, in order to minimize response time while increasing bulk
5744  *  throughput.
5745  *  This functionality is controlled by ethtool's coalescing settings.
5746  *  NOTE:  This function is called only when operating in a multiqueue
5747  *         receive environment.
5748  **/
5749 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5750 {
5751         int new_val = q_vector->itr_val;
5752         int avg_wire_size = 0;
5753         struct igb_adapter *adapter = q_vector->adapter;
5754         unsigned int packets;
5755
5756         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5757          * ints/sec - ITR timer value of 120 ticks.
5758          */
5759         if (adapter->link_speed != SPEED_1000) {
5760                 new_val = IGB_4K_ITR;
5761                 goto set_itr_val;
5762         }
5763
5764         packets = q_vector->rx.total_packets;
5765         if (packets)
5766                 avg_wire_size = q_vector->rx.total_bytes / packets;
5767
5768         packets = q_vector->tx.total_packets;
5769         if (packets)
5770                 avg_wire_size = max_t(u32, avg_wire_size,
5771                                       q_vector->tx.total_bytes / packets);
5772
5773         /* if avg_wire_size isn't set no work was done */
5774         if (!avg_wire_size)
5775                 goto clear_counts;
5776
5777         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5778         avg_wire_size += 24;
5779
5780         /* Don't starve jumbo frames */
5781         avg_wire_size = min(avg_wire_size, 3000);
5782
5783         /* Give a little boost to mid-size frames */
5784         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5785                 new_val = avg_wire_size / 3;
5786         else
5787                 new_val = avg_wire_size / 2;
5788
5789         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5790         if (new_val < IGB_20K_ITR &&
5791             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5792              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5793                 new_val = IGB_20K_ITR;
5794
5795 set_itr_val:
5796         if (new_val != q_vector->itr_val) {
5797                 q_vector->itr_val = new_val;
5798                 q_vector->set_itr = 1;
5799         }
5800 clear_counts:
5801         q_vector->rx.total_bytes = 0;
5802         q_vector->rx.total_packets = 0;
5803         q_vector->tx.total_bytes = 0;
5804         q_vector->tx.total_packets = 0;
5805 }
5806
5807 /**
5808  *  igb_update_itr - update the dynamic ITR value based on statistics
5809  *  @q_vector: pointer to q_vector
5810  *  @ring_container: ring info to update the itr for
5811  *
5812  *  Stores a new ITR value based on packets and byte
5813  *  counts during the last interrupt.  The advantage of per interrupt
5814  *  computation is faster updates and more accurate ITR for the current
5815  *  traffic pattern.  Constants in this function were computed
5816  *  based on theoretical maximum wire speed and thresholds were set based
5817  *  on testing data as well as attempting to minimize response time
5818  *  while increasing bulk throughput.
5819  *  This functionality is controlled by ethtool's coalescing settings.
5820  *  NOTE:  These calculations are only valid when operating in a single-
5821  *         queue environment.
5822  **/
5823 static void igb_update_itr(struct igb_q_vector *q_vector,
5824                            struct igb_ring_container *ring_container)
5825 {
5826         unsigned int packets = ring_container->total_packets;
5827         unsigned int bytes = ring_container->total_bytes;
5828         u8 itrval = ring_container->itr;
5829
5830         /* no packets, exit with status unchanged */
5831         if (packets == 0)
5832                 return;
5833
5834         switch (itrval) {
5835         case lowest_latency:
5836                 /* handle TSO and jumbo frames */
5837                 if (bytes/packets > 8000)
5838                         itrval = bulk_latency;
5839                 else if ((packets < 5) && (bytes > 512))
5840                         itrval = low_latency;
5841                 break;
5842         case low_latency:  /* 50 usec aka 20000 ints/s */
5843                 if (bytes > 10000) {
5844                         /* this if handles the TSO accounting */
5845                         if (bytes/packets > 8000)
5846                                 itrval = bulk_latency;
5847                         else if ((packets < 10) || ((bytes/packets) > 1200))
5848                                 itrval = bulk_latency;
5849                         else if ((packets > 35))
5850                                 itrval = lowest_latency;
5851                 } else if (bytes/packets > 2000) {
5852                         itrval = bulk_latency;
5853                 } else if (packets <= 2 && bytes < 512) {
5854                         itrval = lowest_latency;
5855                 }
5856                 break;
5857         case bulk_latency: /* 250 usec aka 4000 ints/s */
5858                 if (bytes > 25000) {
5859                         if (packets > 35)
5860                                 itrval = low_latency;
5861                 } else if (bytes < 1500) {
5862                         itrval = low_latency;
5863                 }
5864                 break;
5865         }
5866
5867         /* clear work counters since we have the values we need */
5868         ring_container->total_bytes = 0;
5869         ring_container->total_packets = 0;
5870
5871         /* write updated itr to ring container */
5872         ring_container->itr = itrval;
5873 }
5874
5875 static void igb_set_itr(struct igb_q_vector *q_vector)
5876 {
5877         struct igb_adapter *adapter = q_vector->adapter;
5878         u32 new_itr = q_vector->itr_val;
5879         u8 current_itr = 0;
5880
5881         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5882         if (adapter->link_speed != SPEED_1000) {
5883                 current_itr = 0;
5884                 new_itr = IGB_4K_ITR;
5885                 goto set_itr_now;
5886         }
5887
5888         igb_update_itr(q_vector, &q_vector->tx);
5889         igb_update_itr(q_vector, &q_vector->rx);
5890
5891         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5892
5893         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5894         if (current_itr == lowest_latency &&
5895             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5896              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5897                 current_itr = low_latency;
5898
5899         switch (current_itr) {
5900         /* counts and packets in update_itr are dependent on these numbers */
5901         case lowest_latency:
5902                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5903                 break;
5904         case low_latency:
5905                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5906                 break;
5907         case bulk_latency:
5908                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5909                 break;
5910         default:
5911                 break;
5912         }
5913
5914 set_itr_now:
5915         if (new_itr != q_vector->itr_val) {
5916                 /* this attempts to bias the interrupt rate towards Bulk
5917                  * by adding intermediate steps when interrupt rate is
5918                  * increasing
5919                  */
5920                 new_itr = new_itr > q_vector->itr_val ?
5921                           max((new_itr * q_vector->itr_val) /
5922                           (new_itr + (q_vector->itr_val >> 2)),
5923                           new_itr) : new_itr;
5924                 /* Don't write the value here; it resets the adapter's
5925                  * internal timer, and causes us to delay far longer than
5926                  * we should between interrupts.  Instead, we write the ITR
5927                  * value at the beginning of the next interrupt so the timing
5928                  * ends up being correct.
5929                  */
5930                 q_vector->itr_val = new_itr;
5931                 q_vector->set_itr = 1;
5932         }
5933 }
5934
5935 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5936                             struct igb_tx_buffer *first,
5937                             u32 vlan_macip_lens, u32 type_tucmd,
5938                             u32 mss_l4len_idx)
5939 {
5940         struct e1000_adv_tx_context_desc *context_desc;
5941         u16 i = tx_ring->next_to_use;
5942         struct timespec64 ts;
5943
5944         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5945
5946         i++;
5947         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5948
5949         /* set bits to identify this as an advanced context descriptor */
5950         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5951
5952         /* For 82575, context index must be unique per ring. */
5953         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5954                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5955
5956         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5957         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5958         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5959
5960         /* We assume there is always a valid tx time available. Invalid times
5961          * should have been handled by the upper layers.
5962          */
5963         if (tx_ring->launchtime_enable) {
5964                 ts = ktime_to_timespec64(first->skb->tstamp);
5965                 skb_txtime_consumed(first->skb);
5966                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5967         } else {
5968                 context_desc->seqnum_seed = 0;
5969         }
5970 }
5971
5972 static int igb_tso(struct igb_ring *tx_ring,
5973                    struct igb_tx_buffer *first,
5974                    u8 *hdr_len)
5975 {
5976         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5977         struct sk_buff *skb = first->skb;
5978         union {
5979                 struct iphdr *v4;
5980                 struct ipv6hdr *v6;
5981                 unsigned char *hdr;
5982         } ip;
5983         union {
5984                 struct tcphdr *tcp;
5985                 struct udphdr *udp;
5986                 unsigned char *hdr;
5987         } l4;
5988         u32 paylen, l4_offset;
5989         int err;
5990
5991         if (skb->ip_summed != CHECKSUM_PARTIAL)
5992                 return 0;
5993
5994         if (!skb_is_gso(skb))
5995                 return 0;
5996
5997         err = skb_cow_head(skb, 0);
5998         if (err < 0)
5999                 return err;
6000
6001         ip.hdr = skb_network_header(skb);
6002         l4.hdr = skb_checksum_start(skb);
6003
6004         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6005         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6006                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6007
6008         /* initialize outer IP header fields */
6009         if (ip.v4->version == 4) {
6010                 unsigned char *csum_start = skb_checksum_start(skb);
6011                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6012
6013                 /* IP header will have to cancel out any data that
6014                  * is not a part of the outer IP header
6015                  */
6016                 ip.v4->check = csum_fold(csum_partial(trans_start,
6017                                                       csum_start - trans_start,
6018                                                       0));
6019                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6020
6021                 ip.v4->tot_len = 0;
6022                 first->tx_flags |= IGB_TX_FLAGS_TSO |
6023                                    IGB_TX_FLAGS_CSUM |
6024                                    IGB_TX_FLAGS_IPV4;
6025         } else {
6026                 ip.v6->payload_len = 0;
6027                 first->tx_flags |= IGB_TX_FLAGS_TSO |
6028                                    IGB_TX_FLAGS_CSUM;
6029         }
6030
6031         /* determine offset of inner transport header */
6032         l4_offset = l4.hdr - skb->data;
6033
6034         /* remove payload length from inner checksum */
6035         paylen = skb->len - l4_offset;
6036         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6037                 /* compute length of segmentation header */
6038                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6039                 csum_replace_by_diff(&l4.tcp->check,
6040                         (__force __wsum)htonl(paylen));
6041         } else {
6042                 /* compute length of segmentation header */
6043                 *hdr_len = sizeof(*l4.udp) + l4_offset;
6044                 csum_replace_by_diff(&l4.udp->check,
6045                                      (__force __wsum)htonl(paylen));
6046         }
6047
6048         /* update gso size and bytecount with header size */
6049         first->gso_segs = skb_shinfo(skb)->gso_segs;
6050         first->bytecount += (first->gso_segs - 1) * *hdr_len;
6051
6052         /* MSS L4LEN IDX */
6053         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6054         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6055
6056         /* VLAN MACLEN IPLEN */
6057         vlan_macip_lens = l4.hdr - ip.hdr;
6058         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6059         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6060
6061         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6062                         type_tucmd, mss_l4len_idx);
6063
6064         return 1;
6065 }
6066
6067 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6068 {
6069         struct sk_buff *skb = first->skb;
6070         u32 vlan_macip_lens = 0;
6071         u32 type_tucmd = 0;
6072
6073         if (skb->ip_summed != CHECKSUM_PARTIAL) {
6074 csum_failed:
6075                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6076                     !tx_ring->launchtime_enable)
6077                         return;
6078                 goto no_csum;
6079         }
6080
6081         switch (skb->csum_offset) {
6082         case offsetof(struct tcphdr, check):
6083                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6084                 fallthrough;
6085         case offsetof(struct udphdr, check):
6086                 break;
6087         case offsetof(struct sctphdr, checksum):
6088                 /* validate that this is actually an SCTP request */
6089                 if (skb_csum_is_sctp(skb)) {
6090                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6091                         break;
6092                 }
6093                 fallthrough;
6094         default:
6095                 skb_checksum_help(skb);
6096                 goto csum_failed;
6097         }
6098
6099         /* update TX checksum flag */
6100         first->tx_flags |= IGB_TX_FLAGS_CSUM;
6101         vlan_macip_lens = skb_checksum_start_offset(skb) -
6102                           skb_network_offset(skb);
6103 no_csum:
6104         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6105         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6106
6107         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6108 }
6109
6110 #define IGB_SET_FLAG(_input, _flag, _result) \
6111         ((_flag <= _result) ? \
6112          ((u32)(_input & _flag) * (_result / _flag)) : \
6113          ((u32)(_input & _flag) / (_flag / _result)))
6114
6115 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6116 {
6117         /* set type for advanced descriptor with frame checksum insertion */
6118         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6119                        E1000_ADVTXD_DCMD_DEXT |
6120                        E1000_ADVTXD_DCMD_IFCS;
6121
6122         /* set HW vlan bit if vlan is present */
6123         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6124                                  (E1000_ADVTXD_DCMD_VLE));
6125
6126         /* set segmentation bits for TSO */
6127         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6128                                  (E1000_ADVTXD_DCMD_TSE));
6129
6130         /* set timestamp bit if present */
6131         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6132                                  (E1000_ADVTXD_MAC_TSTAMP));
6133
6134         /* insert frame checksum */
6135         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6136
6137         return cmd_type;
6138 }
6139
6140 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6141                                  union e1000_adv_tx_desc *tx_desc,
6142                                  u32 tx_flags, unsigned int paylen)
6143 {
6144         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6145
6146         /* 82575 requires a unique index per ring */
6147         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6148                 olinfo_status |= tx_ring->reg_idx << 4;
6149
6150         /* insert L4 checksum */
6151         olinfo_status |= IGB_SET_FLAG(tx_flags,
6152                                       IGB_TX_FLAGS_CSUM,
6153                                       (E1000_TXD_POPTS_TXSM << 8));
6154
6155         /* insert IPv4 checksum */
6156         olinfo_status |= IGB_SET_FLAG(tx_flags,
6157                                       IGB_TX_FLAGS_IPV4,
6158                                       (E1000_TXD_POPTS_IXSM << 8));
6159
6160         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6161 }
6162
6163 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6164 {
6165         struct net_device *netdev = tx_ring->netdev;
6166
6167         netif_stop_subqueue(netdev, tx_ring->queue_index);
6168
6169         /* Herbert's original patch had:
6170          *  smp_mb__after_netif_stop_queue();
6171          * but since that doesn't exist yet, just open code it.
6172          */
6173         smp_mb();
6174
6175         /* We need to check again in a case another CPU has just
6176          * made room available.
6177          */
6178         if (igb_desc_unused(tx_ring) < size)
6179                 return -EBUSY;
6180
6181         /* A reprieve! */
6182         netif_wake_subqueue(netdev, tx_ring->queue_index);
6183
6184         u64_stats_update_begin(&tx_ring->tx_syncp2);
6185         tx_ring->tx_stats.restart_queue2++;
6186         u64_stats_update_end(&tx_ring->tx_syncp2);
6187
6188         return 0;
6189 }
6190
6191 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6192 {
6193         if (igb_desc_unused(tx_ring) >= size)
6194                 return 0;
6195         return __igb_maybe_stop_tx(tx_ring, size);
6196 }
6197
6198 static int igb_tx_map(struct igb_ring *tx_ring,
6199                       struct igb_tx_buffer *first,
6200                       const u8 hdr_len)
6201 {
6202         struct sk_buff *skb = first->skb;
6203         struct igb_tx_buffer *tx_buffer;
6204         union e1000_adv_tx_desc *tx_desc;
6205         skb_frag_t *frag;
6206         dma_addr_t dma;
6207         unsigned int data_len, size;
6208         u32 tx_flags = first->tx_flags;
6209         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6210         u16 i = tx_ring->next_to_use;
6211
6212         tx_desc = IGB_TX_DESC(tx_ring, i);
6213
6214         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6215
6216         size = skb_headlen(skb);
6217         data_len = skb->data_len;
6218
6219         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6220
6221         tx_buffer = first;
6222
6223         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6224                 if (dma_mapping_error(tx_ring->dev, dma))
6225                         goto dma_error;
6226
6227                 /* record length, and DMA address */
6228                 dma_unmap_len_set(tx_buffer, len, size);
6229                 dma_unmap_addr_set(tx_buffer, dma, dma);
6230
6231                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6232
6233                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6234                         tx_desc->read.cmd_type_len =
6235                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6236
6237                         i++;
6238                         tx_desc++;
6239                         if (i == tx_ring->count) {
6240                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6241                                 i = 0;
6242                         }
6243                         tx_desc->read.olinfo_status = 0;
6244
6245                         dma += IGB_MAX_DATA_PER_TXD;
6246                         size -= IGB_MAX_DATA_PER_TXD;
6247
6248                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6249                 }
6250
6251                 if (likely(!data_len))
6252                         break;
6253
6254                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6255
6256                 i++;
6257                 tx_desc++;
6258                 if (i == tx_ring->count) {
6259                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6260                         i = 0;
6261                 }
6262                 tx_desc->read.olinfo_status = 0;
6263
6264                 size = skb_frag_size(frag);
6265                 data_len -= size;
6266
6267                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6268                                        size, DMA_TO_DEVICE);
6269
6270                 tx_buffer = &tx_ring->tx_buffer_info[i];
6271         }
6272
6273         /* write last descriptor with RS and EOP bits */
6274         cmd_type |= size | IGB_TXD_DCMD;
6275         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6276
6277         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6278
6279         /* set the timestamp */
6280         first->time_stamp = jiffies;
6281
6282         skb_tx_timestamp(skb);
6283
6284         /* Force memory writes to complete before letting h/w know there
6285          * are new descriptors to fetch.  (Only applicable for weak-ordered
6286          * memory model archs, such as IA-64).
6287          *
6288          * We also need this memory barrier to make certain all of the
6289          * status bits have been updated before next_to_watch is written.
6290          */
6291         dma_wmb();
6292
6293         /* set next_to_watch value indicating a packet is present */
6294         first->next_to_watch = tx_desc;
6295
6296         i++;
6297         if (i == tx_ring->count)
6298                 i = 0;
6299
6300         tx_ring->next_to_use = i;
6301
6302         /* Make sure there is space in the ring for the next send. */
6303         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6304
6305         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6306                 writel(i, tx_ring->tail);
6307         }
6308         return 0;
6309
6310 dma_error:
6311         dev_err(tx_ring->dev, "TX DMA map failed\n");
6312         tx_buffer = &tx_ring->tx_buffer_info[i];
6313
6314         /* clear dma mappings for failed tx_buffer_info map */
6315         while (tx_buffer != first) {
6316                 if (dma_unmap_len(tx_buffer, len))
6317                         dma_unmap_page(tx_ring->dev,
6318                                        dma_unmap_addr(tx_buffer, dma),
6319                                        dma_unmap_len(tx_buffer, len),
6320                                        DMA_TO_DEVICE);
6321                 dma_unmap_len_set(tx_buffer, len, 0);
6322
6323                 if (i-- == 0)
6324                         i += tx_ring->count;
6325                 tx_buffer = &tx_ring->tx_buffer_info[i];
6326         }
6327
6328         if (dma_unmap_len(tx_buffer, len))
6329                 dma_unmap_single(tx_ring->dev,
6330                                  dma_unmap_addr(tx_buffer, dma),
6331                                  dma_unmap_len(tx_buffer, len),
6332                                  DMA_TO_DEVICE);
6333         dma_unmap_len_set(tx_buffer, len, 0);
6334
6335         dev_kfree_skb_any(tx_buffer->skb);
6336         tx_buffer->skb = NULL;
6337
6338         tx_ring->next_to_use = i;
6339
6340         return -1;
6341 }
6342
6343 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6344                       struct igb_ring *tx_ring,
6345                       struct xdp_frame *xdpf)
6346 {
6347         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6348         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6349         u16 count, i, index = tx_ring->next_to_use;
6350         struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6351         struct igb_tx_buffer *tx_buffer = tx_head;
6352         union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6353         u32 len = xdpf->len, cmd_type, olinfo_status;
6354         void *data = xdpf->data;
6355
6356         count = TXD_USE_COUNT(len);
6357         for (i = 0; i < nr_frags; i++)
6358                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6359
6360         if (igb_maybe_stop_tx(tx_ring, count + 3))
6361                 return IGB_XDP_CONSUMED;
6362
6363         i = 0;
6364         /* record the location of the first descriptor for this packet */
6365         tx_head->bytecount = xdp_get_frame_len(xdpf);
6366         tx_head->type = IGB_TYPE_XDP;
6367         tx_head->gso_segs = 1;
6368         tx_head->xdpf = xdpf;
6369
6370         olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6371         /* 82575 requires a unique index per ring */
6372         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6373                 olinfo_status |= tx_ring->reg_idx << 4;
6374         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6375
6376         for (;;) {
6377                 dma_addr_t dma;
6378
6379                 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6380                 if (dma_mapping_error(tx_ring->dev, dma))
6381                         goto unmap;
6382
6383                 /* record length, and DMA address */
6384                 dma_unmap_len_set(tx_buffer, len, len);
6385                 dma_unmap_addr_set(tx_buffer, dma, dma);
6386
6387                 /* put descriptor type bits */
6388                 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6389                            E1000_ADVTXD_DCMD_IFCS | len;
6390
6391                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6392                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6393
6394                 tx_buffer->protocol = 0;
6395
6396                 if (++index == tx_ring->count)
6397                         index = 0;
6398
6399                 if (i == nr_frags)
6400                         break;
6401
6402                 tx_buffer = &tx_ring->tx_buffer_info[index];
6403                 tx_desc = IGB_TX_DESC(tx_ring, index);
6404                 tx_desc->read.olinfo_status = 0;
6405
6406                 data = skb_frag_address(&sinfo->frags[i]);
6407                 len = skb_frag_size(&sinfo->frags[i]);
6408                 i++;
6409         }
6410         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6411
6412         netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6413         /* set the timestamp */
6414         tx_head->time_stamp = jiffies;
6415
6416         /* Avoid any potential race with xdp_xmit and cleanup */
6417         smp_wmb();
6418
6419         /* set next_to_watch value indicating a packet is present */
6420         tx_head->next_to_watch = tx_desc;
6421         tx_ring->next_to_use = index;
6422
6423         /* Make sure there is space in the ring for the next send. */
6424         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6425
6426         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6427                 writel(index, tx_ring->tail);
6428
6429         return IGB_XDP_TX;
6430
6431 unmap:
6432         for (;;) {
6433                 tx_buffer = &tx_ring->tx_buffer_info[index];
6434                 if (dma_unmap_len(tx_buffer, len))
6435                         dma_unmap_page(tx_ring->dev,
6436                                        dma_unmap_addr(tx_buffer, dma),
6437                                        dma_unmap_len(tx_buffer, len),
6438                                        DMA_TO_DEVICE);
6439                 dma_unmap_len_set(tx_buffer, len, 0);
6440                 if (tx_buffer == tx_head)
6441                         break;
6442
6443                 if (!index)
6444                         index += tx_ring->count;
6445                 index--;
6446         }
6447
6448         return IGB_XDP_CONSUMED;
6449 }
6450
6451 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6452                                 struct igb_ring *tx_ring)
6453 {
6454         struct igb_tx_buffer *first;
6455         int tso;
6456         u32 tx_flags = 0;
6457         unsigned short f;
6458         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6459         __be16 protocol = vlan_get_protocol(skb);
6460         u8 hdr_len = 0;
6461
6462         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6463          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6464          *       + 2 desc gap to keep tail from touching head,
6465          *       + 1 desc for context descriptor,
6466          * otherwise try next time
6467          */
6468         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6469                 count += TXD_USE_COUNT(skb_frag_size(
6470                                                 &skb_shinfo(skb)->frags[f]));
6471
6472         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6473                 /* this is a hard error */
6474                 return NETDEV_TX_BUSY;
6475         }
6476
6477         /* record the location of the first descriptor for this packet */
6478         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6479         first->type = IGB_TYPE_SKB;
6480         first->skb = skb;
6481         first->bytecount = skb->len;
6482         first->gso_segs = 1;
6483
6484         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6485                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6486
6487                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6488                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6489                                            &adapter->state)) {
6490                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6491                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6492
6493                         adapter->ptp_tx_skb = skb_get(skb);
6494                         adapter->ptp_tx_start = jiffies;
6495                         if (adapter->hw.mac.type == e1000_82576)
6496                                 schedule_work(&adapter->ptp_tx_work);
6497                 } else {
6498                         adapter->tx_hwtstamp_skipped++;
6499                 }
6500         }
6501
6502         if (skb_vlan_tag_present(skb)) {
6503                 tx_flags |= IGB_TX_FLAGS_VLAN;
6504                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6505         }
6506
6507         /* record initial flags and protocol */
6508         first->tx_flags = tx_flags;
6509         first->protocol = protocol;
6510
6511         tso = igb_tso(tx_ring, first, &hdr_len);
6512         if (tso < 0)
6513                 goto out_drop;
6514         else if (!tso)
6515                 igb_tx_csum(tx_ring, first);
6516
6517         if (igb_tx_map(tx_ring, first, hdr_len))
6518                 goto cleanup_tx_tstamp;
6519
6520         return NETDEV_TX_OK;
6521
6522 out_drop:
6523         dev_kfree_skb_any(first->skb);
6524         first->skb = NULL;
6525 cleanup_tx_tstamp:
6526         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6527                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6528
6529                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6530                 adapter->ptp_tx_skb = NULL;
6531                 if (adapter->hw.mac.type == e1000_82576)
6532                         cancel_work_sync(&adapter->ptp_tx_work);
6533                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6534         }
6535
6536         return NETDEV_TX_OK;
6537 }
6538
6539 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6540                                                     struct sk_buff *skb)
6541 {
6542         unsigned int r_idx = skb->queue_mapping;
6543
6544         if (r_idx >= adapter->num_tx_queues)
6545                 r_idx = r_idx % adapter->num_tx_queues;
6546
6547         return adapter->tx_ring[r_idx];
6548 }
6549
6550 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6551                                   struct net_device *netdev)
6552 {
6553         struct igb_adapter *adapter = netdev_priv(netdev);
6554
6555         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6556          * in order to meet this minimum size requirement.
6557          */
6558         if (skb_put_padto(skb, 17))
6559                 return NETDEV_TX_OK;
6560
6561         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6562 }
6563
6564 /**
6565  *  igb_tx_timeout - Respond to a Tx Hang
6566  *  @netdev: network interface device structure
6567  *  @txqueue: number of the Tx queue that hung (unused)
6568  **/
6569 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6570 {
6571         struct igb_adapter *adapter = netdev_priv(netdev);
6572         struct e1000_hw *hw = &adapter->hw;
6573
6574         /* Do the reset outside of interrupt context */
6575         adapter->tx_timeout_count++;
6576
6577         if (hw->mac.type >= e1000_82580)
6578                 hw->dev_spec._82575.global_device_reset = true;
6579
6580         schedule_work(&adapter->reset_task);
6581         wr32(E1000_EICS,
6582              (adapter->eims_enable_mask & ~adapter->eims_other));
6583 }
6584
6585 static void igb_reset_task(struct work_struct *work)
6586 {
6587         struct igb_adapter *adapter;
6588         adapter = container_of(work, struct igb_adapter, reset_task);
6589
6590         rtnl_lock();
6591         /* If we're already down or resetting, just bail */
6592         if (test_bit(__IGB_DOWN, &adapter->state) ||
6593             test_bit(__IGB_RESETTING, &adapter->state)) {
6594                 rtnl_unlock();
6595                 return;
6596         }
6597
6598         igb_dump(adapter);
6599         netdev_err(adapter->netdev, "Reset adapter\n");
6600         igb_reinit_locked(adapter);
6601         rtnl_unlock();
6602 }
6603
6604 /**
6605  *  igb_get_stats64 - Get System Network Statistics
6606  *  @netdev: network interface device structure
6607  *  @stats: rtnl_link_stats64 pointer
6608  **/
6609 static void igb_get_stats64(struct net_device *netdev,
6610                             struct rtnl_link_stats64 *stats)
6611 {
6612         struct igb_adapter *adapter = netdev_priv(netdev);
6613
6614         spin_lock(&adapter->stats64_lock);
6615         igb_update_stats(adapter);
6616         memcpy(stats, &adapter->stats64, sizeof(*stats));
6617         spin_unlock(&adapter->stats64_lock);
6618 }
6619
6620 /**
6621  *  igb_change_mtu - Change the Maximum Transfer Unit
6622  *  @netdev: network interface device structure
6623  *  @new_mtu: new value for maximum frame size
6624  *
6625  *  Returns 0 on success, negative on failure
6626  **/
6627 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6628 {
6629         struct igb_adapter *adapter = netdev_priv(netdev);
6630         int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6631
6632         if (adapter->xdp_prog) {
6633                 int i;
6634
6635                 for (i = 0; i < adapter->num_rx_queues; i++) {
6636                         struct igb_ring *ring = adapter->rx_ring[i];
6637
6638                         if (max_frame > igb_rx_bufsz(ring)) {
6639                                 netdev_warn(adapter->netdev,
6640                                             "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6641                                             max_frame);
6642                                 return -EINVAL;
6643                         }
6644                 }
6645         }
6646
6647         /* adjust max frame to be at least the size of a standard frame */
6648         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6649                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6650
6651         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6652                 usleep_range(1000, 2000);
6653
6654         /* igb_down has a dependency on max_frame_size */
6655         adapter->max_frame_size = max_frame;
6656
6657         if (netif_running(netdev))
6658                 igb_down(adapter);
6659
6660         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6661                    netdev->mtu, new_mtu);
6662         netdev->mtu = new_mtu;
6663
6664         if (netif_running(netdev))
6665                 igb_up(adapter);
6666         else
6667                 igb_reset(adapter);
6668
6669         clear_bit(__IGB_RESETTING, &adapter->state);
6670
6671         return 0;
6672 }
6673
6674 /**
6675  *  igb_update_stats - Update the board statistics counters
6676  *  @adapter: board private structure
6677  **/
6678 void igb_update_stats(struct igb_adapter *adapter)
6679 {
6680         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6681         struct e1000_hw *hw = &adapter->hw;
6682         struct pci_dev *pdev = adapter->pdev;
6683         u32 reg, mpc;
6684         int i;
6685         u64 bytes, packets;
6686         unsigned int start;
6687         u64 _bytes, _packets;
6688
6689         /* Prevent stats update while adapter is being reset, or if the pci
6690          * connection is down.
6691          */
6692         if (adapter->link_speed == 0)
6693                 return;
6694         if (pci_channel_offline(pdev))
6695                 return;
6696
6697         bytes = 0;
6698         packets = 0;
6699
6700         rcu_read_lock();
6701         for (i = 0; i < adapter->num_rx_queues; i++) {
6702                 struct igb_ring *ring = adapter->rx_ring[i];
6703                 u32 rqdpc = rd32(E1000_RQDPC(i));
6704                 if (hw->mac.type >= e1000_i210)
6705                         wr32(E1000_RQDPC(i), 0);
6706
6707                 if (rqdpc) {
6708                         ring->rx_stats.drops += rqdpc;
6709                         net_stats->rx_fifo_errors += rqdpc;
6710                 }
6711
6712                 do {
6713                         start = u64_stats_fetch_begin(&ring->rx_syncp);
6714                         _bytes = ring->rx_stats.bytes;
6715                         _packets = ring->rx_stats.packets;
6716                 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6717                 bytes += _bytes;
6718                 packets += _packets;
6719         }
6720
6721         net_stats->rx_bytes = bytes;
6722         net_stats->rx_packets = packets;
6723
6724         bytes = 0;
6725         packets = 0;
6726         for (i = 0; i < adapter->num_tx_queues; i++) {
6727                 struct igb_ring *ring = adapter->tx_ring[i];
6728                 do {
6729                         start = u64_stats_fetch_begin(&ring->tx_syncp);
6730                         _bytes = ring->tx_stats.bytes;
6731                         _packets = ring->tx_stats.packets;
6732                 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6733                 bytes += _bytes;
6734                 packets += _packets;
6735         }
6736         net_stats->tx_bytes = bytes;
6737         net_stats->tx_packets = packets;
6738         rcu_read_unlock();
6739
6740         /* read stats registers */
6741         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6742         adapter->stats.gprc += rd32(E1000_GPRC);
6743         adapter->stats.gorc += rd32(E1000_GORCL);
6744         rd32(E1000_GORCH); /* clear GORCL */
6745         adapter->stats.bprc += rd32(E1000_BPRC);
6746         adapter->stats.mprc += rd32(E1000_MPRC);
6747         adapter->stats.roc += rd32(E1000_ROC);
6748
6749         adapter->stats.prc64 += rd32(E1000_PRC64);
6750         adapter->stats.prc127 += rd32(E1000_PRC127);
6751         adapter->stats.prc255 += rd32(E1000_PRC255);
6752         adapter->stats.prc511 += rd32(E1000_PRC511);
6753         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6754         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6755         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6756         adapter->stats.sec += rd32(E1000_SEC);
6757
6758         mpc = rd32(E1000_MPC);
6759         adapter->stats.mpc += mpc;
6760         net_stats->rx_fifo_errors += mpc;
6761         adapter->stats.scc += rd32(E1000_SCC);
6762         adapter->stats.ecol += rd32(E1000_ECOL);
6763         adapter->stats.mcc += rd32(E1000_MCC);
6764         adapter->stats.latecol += rd32(E1000_LATECOL);
6765         adapter->stats.dc += rd32(E1000_DC);
6766         adapter->stats.rlec += rd32(E1000_RLEC);
6767         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6768         adapter->stats.xontxc += rd32(E1000_XONTXC);
6769         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6770         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6771         adapter->stats.fcruc += rd32(E1000_FCRUC);
6772         adapter->stats.gptc += rd32(E1000_GPTC);
6773         adapter->stats.gotc += rd32(E1000_GOTCL);
6774         rd32(E1000_GOTCH); /* clear GOTCL */
6775         adapter->stats.rnbc += rd32(E1000_RNBC);
6776         adapter->stats.ruc += rd32(E1000_RUC);
6777         adapter->stats.rfc += rd32(E1000_RFC);
6778         adapter->stats.rjc += rd32(E1000_RJC);
6779         adapter->stats.tor += rd32(E1000_TORH);
6780         adapter->stats.tot += rd32(E1000_TOTH);
6781         adapter->stats.tpr += rd32(E1000_TPR);
6782
6783         adapter->stats.ptc64 += rd32(E1000_PTC64);
6784         adapter->stats.ptc127 += rd32(E1000_PTC127);
6785         adapter->stats.ptc255 += rd32(E1000_PTC255);
6786         adapter->stats.ptc511 += rd32(E1000_PTC511);
6787         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6788         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6789
6790         adapter->stats.mptc += rd32(E1000_MPTC);
6791         adapter->stats.bptc += rd32(E1000_BPTC);
6792
6793         adapter->stats.tpt += rd32(E1000_TPT);
6794         adapter->stats.colc += rd32(E1000_COLC);
6795
6796         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6797         /* read internal phy specific stats */
6798         reg = rd32(E1000_CTRL_EXT);
6799         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6800                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6801
6802                 /* this stat has invalid values on i210/i211 */
6803                 if ((hw->mac.type != e1000_i210) &&
6804                     (hw->mac.type != e1000_i211))
6805                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6806         }
6807
6808         adapter->stats.tsctc += rd32(E1000_TSCTC);
6809         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6810
6811         adapter->stats.iac += rd32(E1000_IAC);
6812         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6813         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6814         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6815         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6816         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6817         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6818         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6819         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6820
6821         /* Fill out the OS statistics structure */
6822         net_stats->multicast = adapter->stats.mprc;
6823         net_stats->collisions = adapter->stats.colc;
6824
6825         /* Rx Errors */
6826
6827         /* RLEC on some newer hardware can be incorrect so build
6828          * our own version based on RUC and ROC
6829          */
6830         net_stats->rx_errors = adapter->stats.rxerrc +
6831                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6832                 adapter->stats.ruc + adapter->stats.roc +
6833                 adapter->stats.cexterr;
6834         net_stats->rx_length_errors = adapter->stats.ruc +
6835                                       adapter->stats.roc;
6836         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6837         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6838         net_stats->rx_missed_errors = adapter->stats.mpc;
6839
6840         /* Tx Errors */
6841         net_stats->tx_errors = adapter->stats.ecol +
6842                                adapter->stats.latecol;
6843         net_stats->tx_aborted_errors = adapter->stats.ecol;
6844         net_stats->tx_window_errors = adapter->stats.latecol;
6845         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6846
6847         /* Tx Dropped needs to be maintained elsewhere */
6848
6849         /* Management Stats */
6850         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6851         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6852         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6853
6854         /* OS2BMC Stats */
6855         reg = rd32(E1000_MANC);
6856         if (reg & E1000_MANC_EN_BMC2OS) {
6857                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6858                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6859                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6860                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6861         }
6862 }
6863
6864 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6865 {
6866         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6867         struct e1000_hw *hw = &adapter->hw;
6868         struct timespec64 ts;
6869         u32 tsauxc;
6870
6871         if (pin < 0 || pin >= IGB_N_SDP)
6872                 return;
6873
6874         spin_lock(&adapter->tmreg_lock);
6875
6876         if (hw->mac.type == e1000_82580 ||
6877             hw->mac.type == e1000_i354 ||
6878             hw->mac.type == e1000_i350) {
6879                 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6880                 u32 systiml, systimh, level_mask, level, rem;
6881                 u64 systim, now;
6882
6883                 /* read systim registers in sequence */
6884                 rd32(E1000_SYSTIMR);
6885                 systiml = rd32(E1000_SYSTIML);
6886                 systimh = rd32(E1000_SYSTIMH);
6887                 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6888                 now = timecounter_cyc2time(&adapter->tc, systim);
6889
6890                 if (pin < 2) {
6891                         level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6892                         level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6893                 } else {
6894                         level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6895                         level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6896                 }
6897
6898                 div_u64_rem(now, ns, &rem);
6899                 systim = systim + (ns - rem);
6900
6901                 /* synchronize pin level with rising/falling edges */
6902                 div_u64_rem(now, ns << 1, &rem);
6903                 if (rem < ns) {
6904                         /* first half of period */
6905                         if (level == 0) {
6906                                 /* output is already low, skip this period */
6907                                 systim += ns;
6908                                 pr_notice("igb: periodic output on %s missed falling edge\n",
6909                                           adapter->sdp_config[pin].name);
6910                         }
6911                 } else {
6912                         /* second half of period */
6913                         if (level == 1) {
6914                                 /* output is already high, skip this period */
6915                                 systim += ns;
6916                                 pr_notice("igb: periodic output on %s missed rising edge\n",
6917                                           adapter->sdp_config[pin].name);
6918                         }
6919                 }
6920
6921                 /* for this chip family tv_sec is the upper part of the binary value,
6922                  * so not seconds
6923                  */
6924                 ts.tv_nsec = (u32)systim;
6925                 ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6926         } else {
6927                 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6928                                     adapter->perout[tsintr_tt].period);
6929         }
6930
6931         /* u32 conversion of tv_sec is safe until y2106 */
6932         wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6933         wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6934         tsauxc = rd32(E1000_TSAUXC);
6935         tsauxc |= TSAUXC_EN_TT0;
6936         wr32(E1000_TSAUXC, tsauxc);
6937         adapter->perout[tsintr_tt].start = ts;
6938
6939         spin_unlock(&adapter->tmreg_lock);
6940 }
6941
6942 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6943 {
6944         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6945         int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6946         int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6947         struct e1000_hw *hw = &adapter->hw;
6948         struct ptp_clock_event event;
6949         struct timespec64 ts;
6950
6951         if (pin < 0 || pin >= IGB_N_SDP)
6952                 return;
6953
6954         if (hw->mac.type == e1000_82580 ||
6955             hw->mac.type == e1000_i354 ||
6956             hw->mac.type == e1000_i350) {
6957                 s64 ns = rd32(auxstmpl);
6958
6959                 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6960                 ts = ns_to_timespec64(ns);
6961         } else {
6962                 ts.tv_nsec = rd32(auxstmpl);
6963                 ts.tv_sec  = rd32(auxstmph);
6964         }
6965
6966         event.type = PTP_CLOCK_EXTTS;
6967         event.index = tsintr_tt;
6968         event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6969         ptp_clock_event(adapter->ptp_clock, &event);
6970 }
6971
6972 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6973 {
6974         struct e1000_hw *hw = &adapter->hw;
6975         u32 ack = 0, tsicr = rd32(E1000_TSICR);
6976         struct ptp_clock_event event;
6977
6978         if (tsicr & TSINTR_SYS_WRAP) {
6979                 event.type = PTP_CLOCK_PPS;
6980                 if (adapter->ptp_caps.pps)
6981                         ptp_clock_event(adapter->ptp_clock, &event);
6982                 ack |= TSINTR_SYS_WRAP;
6983         }
6984
6985         if (tsicr & E1000_TSICR_TXTS) {
6986                 /* retrieve hardware timestamp */
6987                 schedule_work(&adapter->ptp_tx_work);
6988                 ack |= E1000_TSICR_TXTS;
6989         }
6990
6991         if (tsicr & TSINTR_TT0) {
6992                 igb_perout(adapter, 0);
6993                 ack |= TSINTR_TT0;
6994         }
6995
6996         if (tsicr & TSINTR_TT1) {
6997                 igb_perout(adapter, 1);
6998                 ack |= TSINTR_TT1;
6999         }
7000
7001         if (tsicr & TSINTR_AUTT0) {
7002                 igb_extts(adapter, 0);
7003                 ack |= TSINTR_AUTT0;
7004         }
7005
7006         if (tsicr & TSINTR_AUTT1) {
7007                 igb_extts(adapter, 1);
7008                 ack |= TSINTR_AUTT1;
7009         }
7010
7011         /* acknowledge the interrupts */
7012         wr32(E1000_TSICR, ack);
7013 }
7014
7015 static irqreturn_t igb_msix_other(int irq, void *data)
7016 {
7017         struct igb_adapter *adapter = data;
7018         struct e1000_hw *hw = &adapter->hw;
7019         u32 icr = rd32(E1000_ICR);
7020         /* reading ICR causes bit 31 of EICR to be cleared */
7021
7022         if (icr & E1000_ICR_DRSTA)
7023                 schedule_work(&adapter->reset_task);
7024
7025         if (icr & E1000_ICR_DOUTSYNC) {
7026                 /* HW is reporting DMA is out of sync */
7027                 adapter->stats.doosync++;
7028                 /* The DMA Out of Sync is also indication of a spoof event
7029                  * in IOV mode. Check the Wrong VM Behavior register to
7030                  * see if it is really a spoof event.
7031                  */
7032                 igb_check_wvbr(adapter);
7033         }
7034
7035         /* Check for a mailbox event */
7036         if (icr & E1000_ICR_VMMB)
7037                 igb_msg_task(adapter);
7038
7039         if (icr & E1000_ICR_LSC) {
7040                 hw->mac.get_link_status = 1;
7041                 /* guard against interrupt when we're going down */
7042                 if (!test_bit(__IGB_DOWN, &adapter->state))
7043                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7044         }
7045
7046         if (icr & E1000_ICR_TS)
7047                 igb_tsync_interrupt(adapter);
7048
7049         wr32(E1000_EIMS, adapter->eims_other);
7050
7051         return IRQ_HANDLED;
7052 }
7053
7054 static void igb_write_itr(struct igb_q_vector *q_vector)
7055 {
7056         struct igb_adapter *adapter = q_vector->adapter;
7057         u32 itr_val = q_vector->itr_val & 0x7FFC;
7058
7059         if (!q_vector->set_itr)
7060                 return;
7061
7062         if (!itr_val)
7063                 itr_val = 0x4;
7064
7065         if (adapter->hw.mac.type == e1000_82575)
7066                 itr_val |= itr_val << 16;
7067         else
7068                 itr_val |= E1000_EITR_CNT_IGNR;
7069
7070         writel(itr_val, q_vector->itr_register);
7071         q_vector->set_itr = 0;
7072 }
7073
7074 static irqreturn_t igb_msix_ring(int irq, void *data)
7075 {
7076         struct igb_q_vector *q_vector = data;
7077
7078         /* Write the ITR value calculated from the previous interrupt. */
7079         igb_write_itr(q_vector);
7080
7081         napi_schedule(&q_vector->napi);
7082
7083         return IRQ_HANDLED;
7084 }
7085
7086 #ifdef CONFIG_IGB_DCA
7087 static void igb_update_tx_dca(struct igb_adapter *adapter,
7088                               struct igb_ring *tx_ring,
7089                               int cpu)
7090 {
7091         struct e1000_hw *hw = &adapter->hw;
7092         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7093
7094         if (hw->mac.type != e1000_82575)
7095                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7096
7097         /* We can enable relaxed ordering for reads, but not writes when
7098          * DCA is enabled.  This is due to a known issue in some chipsets
7099          * which will cause the DCA tag to be cleared.
7100          */
7101         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7102                   E1000_DCA_TXCTRL_DATA_RRO_EN |
7103                   E1000_DCA_TXCTRL_DESC_DCA_EN;
7104
7105         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7106 }
7107
7108 static void igb_update_rx_dca(struct igb_adapter *adapter,
7109                               struct igb_ring *rx_ring,
7110                               int cpu)
7111 {
7112         struct e1000_hw *hw = &adapter->hw;
7113         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7114
7115         if (hw->mac.type != e1000_82575)
7116                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7117
7118         /* We can enable relaxed ordering for reads, but not writes when
7119          * DCA is enabled.  This is due to a known issue in some chipsets
7120          * which will cause the DCA tag to be cleared.
7121          */
7122         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7123                   E1000_DCA_RXCTRL_DESC_DCA_EN;
7124
7125         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7126 }
7127
7128 static void igb_update_dca(struct igb_q_vector *q_vector)
7129 {
7130         struct igb_adapter *adapter = q_vector->adapter;
7131         int cpu = get_cpu();
7132
7133         if (q_vector->cpu == cpu)
7134                 goto out_no_update;
7135
7136         if (q_vector->tx.ring)
7137                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7138
7139         if (q_vector->rx.ring)
7140                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7141
7142         q_vector->cpu = cpu;
7143 out_no_update:
7144         put_cpu();
7145 }
7146
7147 static void igb_setup_dca(struct igb_adapter *adapter)
7148 {
7149         struct e1000_hw *hw = &adapter->hw;
7150         int i;
7151
7152         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7153                 return;
7154
7155         /* Always use CB2 mode, difference is masked in the CB driver. */
7156         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7157
7158         for (i = 0; i < adapter->num_q_vectors; i++) {
7159                 adapter->q_vector[i]->cpu = -1;
7160                 igb_update_dca(adapter->q_vector[i]);
7161         }
7162 }
7163
7164 static int __igb_notify_dca(struct device *dev, void *data)
7165 {
7166         struct net_device *netdev = dev_get_drvdata(dev);
7167         struct igb_adapter *adapter = netdev_priv(netdev);
7168         struct pci_dev *pdev = adapter->pdev;
7169         struct e1000_hw *hw = &adapter->hw;
7170         unsigned long event = *(unsigned long *)data;
7171
7172         switch (event) {
7173         case DCA_PROVIDER_ADD:
7174                 /* if already enabled, don't do it again */
7175                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7176                         break;
7177                 if (dca_add_requester(dev) == 0) {
7178                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
7179                         dev_info(&pdev->dev, "DCA enabled\n");
7180                         igb_setup_dca(adapter);
7181                         break;
7182                 }
7183                 fallthrough; /* since DCA is disabled. */
7184         case DCA_PROVIDER_REMOVE:
7185                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7186                         /* without this a class_device is left
7187                          * hanging around in the sysfs model
7188                          */
7189                         dca_remove_requester(dev);
7190                         dev_info(&pdev->dev, "DCA disabled\n");
7191                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7192                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7193                 }
7194                 break;
7195         }
7196
7197         return 0;
7198 }
7199
7200 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7201                           void *p)
7202 {
7203         int ret_val;
7204
7205         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7206                                          __igb_notify_dca);
7207
7208         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7209 }
7210 #endif /* CONFIG_IGB_DCA */
7211
7212 #ifdef CONFIG_PCI_IOV
7213 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7214 {
7215         unsigned char mac_addr[ETH_ALEN];
7216
7217         eth_zero_addr(mac_addr);
7218         igb_set_vf_mac(adapter, vf, mac_addr);
7219
7220         /* By default spoof check is enabled for all VFs */
7221         adapter->vf_data[vf].spoofchk_enabled = true;
7222
7223         /* By default VFs are not trusted */
7224         adapter->vf_data[vf].trusted = false;
7225
7226         return 0;
7227 }
7228
7229 #endif
7230 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7231 {
7232         struct e1000_hw *hw = &adapter->hw;
7233         u32 ping;
7234         int i;
7235
7236         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7237                 ping = E1000_PF_CONTROL_MSG;
7238                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7239                         ping |= E1000_VT_MSGTYPE_CTS;
7240                 igb_write_mbx(hw, &ping, 1, i);
7241         }
7242 }
7243
7244 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7245 {
7246         struct e1000_hw *hw = &adapter->hw;
7247         u32 vmolr = rd32(E1000_VMOLR(vf));
7248         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7249
7250         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7251                             IGB_VF_FLAG_MULTI_PROMISC);
7252         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7253
7254         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7255                 vmolr |= E1000_VMOLR_MPME;
7256                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7257                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7258         } else {
7259                 /* if we have hashes and we are clearing a multicast promisc
7260                  * flag we need to write the hashes to the MTA as this step
7261                  * was previously skipped
7262                  */
7263                 if (vf_data->num_vf_mc_hashes > 30) {
7264                         vmolr |= E1000_VMOLR_MPME;
7265                 } else if (vf_data->num_vf_mc_hashes) {
7266                         int j;
7267
7268                         vmolr |= E1000_VMOLR_ROMPE;
7269                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7270                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7271                 }
7272         }
7273
7274         wr32(E1000_VMOLR(vf), vmolr);
7275
7276         /* there are flags left unprocessed, likely not supported */
7277         if (*msgbuf & E1000_VT_MSGINFO_MASK)
7278                 return -EINVAL;
7279
7280         return 0;
7281 }
7282
7283 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7284                                   u32 *msgbuf, u32 vf)
7285 {
7286         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7287         u16 *hash_list = (u16 *)&msgbuf[1];
7288         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7289         int i;
7290
7291         /* salt away the number of multicast addresses assigned
7292          * to this VF for later use to restore when the PF multi cast
7293          * list changes
7294          */
7295         vf_data->num_vf_mc_hashes = n;
7296
7297         /* only up to 30 hash values supported */
7298         if (n > 30)
7299                 n = 30;
7300
7301         /* store the hashes for later use */
7302         for (i = 0; i < n; i++)
7303                 vf_data->vf_mc_hashes[i] = hash_list[i];
7304
7305         /* Flush and reset the mta with the new values */
7306         igb_set_rx_mode(adapter->netdev);
7307
7308         return 0;
7309 }
7310
7311 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7312 {
7313         struct e1000_hw *hw = &adapter->hw;
7314         struct vf_data_storage *vf_data;
7315         int i, j;
7316
7317         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7318                 u32 vmolr = rd32(E1000_VMOLR(i));
7319
7320                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7321
7322                 vf_data = &adapter->vf_data[i];
7323
7324                 if ((vf_data->num_vf_mc_hashes > 30) ||
7325                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7326                         vmolr |= E1000_VMOLR_MPME;
7327                 } else if (vf_data->num_vf_mc_hashes) {
7328                         vmolr |= E1000_VMOLR_ROMPE;
7329                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7330                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7331                 }
7332                 wr32(E1000_VMOLR(i), vmolr);
7333         }
7334 }
7335
7336 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7337 {
7338         struct e1000_hw *hw = &adapter->hw;
7339         u32 pool_mask, vlvf_mask, i;
7340
7341         /* create mask for VF and other pools */
7342         pool_mask = E1000_VLVF_POOLSEL_MASK;
7343         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7344
7345         /* drop PF from pool bits */
7346         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7347                              adapter->vfs_allocated_count);
7348
7349         /* Find the vlan filter for this id */
7350         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7351                 u32 vlvf = rd32(E1000_VLVF(i));
7352                 u32 vfta_mask, vid, vfta;
7353
7354                 /* remove the vf from the pool */
7355                 if (!(vlvf & vlvf_mask))
7356                         continue;
7357
7358                 /* clear out bit from VLVF */
7359                 vlvf ^= vlvf_mask;
7360
7361                 /* if other pools are present, just remove ourselves */
7362                 if (vlvf & pool_mask)
7363                         goto update_vlvfb;
7364
7365                 /* if PF is present, leave VFTA */
7366                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7367                         goto update_vlvf;
7368
7369                 vid = vlvf & E1000_VLVF_VLANID_MASK;
7370                 vfta_mask = BIT(vid % 32);
7371
7372                 /* clear bit from VFTA */
7373                 vfta = adapter->shadow_vfta[vid / 32];
7374                 if (vfta & vfta_mask)
7375                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7376 update_vlvf:
7377                 /* clear pool selection enable */
7378                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7379                         vlvf &= E1000_VLVF_POOLSEL_MASK;
7380                 else
7381                         vlvf = 0;
7382 update_vlvfb:
7383                 /* clear pool bits */
7384                 wr32(E1000_VLVF(i), vlvf);
7385         }
7386 }
7387
7388 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7389 {
7390         u32 vlvf;
7391         int idx;
7392
7393         /* short cut the special case */
7394         if (vlan == 0)
7395                 return 0;
7396
7397         /* Search for the VLAN id in the VLVF entries */
7398         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7399                 vlvf = rd32(E1000_VLVF(idx));
7400                 if ((vlvf & VLAN_VID_MASK) == vlan)
7401                         break;
7402         }
7403
7404         return idx;
7405 }
7406
7407 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7408 {
7409         struct e1000_hw *hw = &adapter->hw;
7410         u32 bits, pf_id;
7411         int idx;
7412
7413         idx = igb_find_vlvf_entry(hw, vid);
7414         if (!idx)
7415                 return;
7416
7417         /* See if any other pools are set for this VLAN filter
7418          * entry other than the PF.
7419          */
7420         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7421         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7422         bits &= rd32(E1000_VLVF(idx));
7423
7424         /* Disable the filter so this falls into the default pool. */
7425         if (!bits) {
7426                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7427                         wr32(E1000_VLVF(idx), BIT(pf_id));
7428                 else
7429                         wr32(E1000_VLVF(idx), 0);
7430         }
7431 }
7432
7433 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7434                            bool add, u32 vf)
7435 {
7436         int pf_id = adapter->vfs_allocated_count;
7437         struct e1000_hw *hw = &adapter->hw;
7438         int err;
7439
7440         /* If VLAN overlaps with one the PF is currently monitoring make
7441          * sure that we are able to allocate a VLVF entry.  This may be
7442          * redundant but it guarantees PF will maintain visibility to
7443          * the VLAN.
7444          */
7445         if (add && test_bit(vid, adapter->active_vlans)) {
7446                 err = igb_vfta_set(hw, vid, pf_id, true, false);
7447                 if (err)
7448                         return err;
7449         }
7450
7451         err = igb_vfta_set(hw, vid, vf, add, false);
7452
7453         if (add && !err)
7454                 return err;
7455
7456         /* If we failed to add the VF VLAN or we are removing the VF VLAN
7457          * we may need to drop the PF pool bit in order to allow us to free
7458          * up the VLVF resources.
7459          */
7460         if (test_bit(vid, adapter->active_vlans) ||
7461             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462                 igb_update_pf_vlvf(adapter, vid);
7463
7464         return err;
7465 }
7466
7467 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7468 {
7469         struct e1000_hw *hw = &adapter->hw;
7470
7471         if (vid)
7472                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7473         else
7474                 wr32(E1000_VMVIR(vf), 0);
7475 }
7476
7477 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7478                                 u16 vlan, u8 qos)
7479 {
7480         int err;
7481
7482         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7483         if (err)
7484                 return err;
7485
7486         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7487         igb_set_vmolr(adapter, vf, !vlan);
7488
7489         /* revoke access to previous VLAN */
7490         if (vlan != adapter->vf_data[vf].pf_vlan)
7491                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7492                                 false, vf);
7493
7494         adapter->vf_data[vf].pf_vlan = vlan;
7495         adapter->vf_data[vf].pf_qos = qos;
7496         igb_set_vf_vlan_strip(adapter, vf, true);
7497         dev_info(&adapter->pdev->dev,
7498                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7499         if (test_bit(__IGB_DOWN, &adapter->state)) {
7500                 dev_warn(&adapter->pdev->dev,
7501                          "The VF VLAN has been set, but the PF device is not up.\n");
7502                 dev_warn(&adapter->pdev->dev,
7503                          "Bring the PF device up before attempting to use the VF device.\n");
7504         }
7505
7506         return err;
7507 }
7508
7509 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7510 {
7511         /* Restore tagless access via VLAN 0 */
7512         igb_set_vf_vlan(adapter, 0, true, vf);
7513
7514         igb_set_vmvir(adapter, 0, vf);
7515         igb_set_vmolr(adapter, vf, true);
7516
7517         /* Remove any PF assigned VLAN */
7518         if (adapter->vf_data[vf].pf_vlan)
7519                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7520                                 false, vf);
7521
7522         adapter->vf_data[vf].pf_vlan = 0;
7523         adapter->vf_data[vf].pf_qos = 0;
7524         igb_set_vf_vlan_strip(adapter, vf, false);
7525
7526         return 0;
7527 }
7528
7529 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7530                                u16 vlan, u8 qos, __be16 vlan_proto)
7531 {
7532         struct igb_adapter *adapter = netdev_priv(netdev);
7533
7534         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7535                 return -EINVAL;
7536
7537         if (vlan_proto != htons(ETH_P_8021Q))
7538                 return -EPROTONOSUPPORT;
7539
7540         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7541                                igb_disable_port_vlan(adapter, vf);
7542 }
7543
7544 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7545 {
7546         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7547         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7548         int ret;
7549
7550         if (adapter->vf_data[vf].pf_vlan)
7551                 return -1;
7552
7553         /* VLAN 0 is a special case, don't allow it to be removed */
7554         if (!vid && !add)
7555                 return 0;
7556
7557         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7558         if (!ret)
7559                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7560         return ret;
7561 }
7562
7563 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7564 {
7565         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7566
7567         /* clear flags - except flag that indicates PF has set the MAC */
7568         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7569         vf_data->last_nack = jiffies;
7570
7571         /* reset vlans for device */
7572         igb_clear_vf_vfta(adapter, vf);
7573         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7574         igb_set_vmvir(adapter, vf_data->pf_vlan |
7575                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7576         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7577         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7578
7579         /* reset multicast table array for vf */
7580         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7581
7582         /* Flush and reset the mta with the new values */
7583         igb_set_rx_mode(adapter->netdev);
7584 }
7585
7586 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7587 {
7588         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7589
7590         /* clear mac address as we were hotplug removed/added */
7591         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7592                 eth_zero_addr(vf_mac);
7593
7594         /* process remaining reset events */
7595         igb_vf_reset(adapter, vf);
7596 }
7597
7598 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7599 {
7600         struct e1000_hw *hw = &adapter->hw;
7601         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7602         u32 reg, msgbuf[3] = {};
7603         u8 *addr = (u8 *)(&msgbuf[1]);
7604
7605         /* process all the same items cleared in a function level reset */
7606         igb_vf_reset(adapter, vf);
7607
7608         /* set vf mac address */
7609         igb_set_vf_mac(adapter, vf, vf_mac);
7610
7611         /* enable transmit and receive for vf */
7612         reg = rd32(E1000_VFTE);
7613         wr32(E1000_VFTE, reg | BIT(vf));
7614         reg = rd32(E1000_VFRE);
7615         wr32(E1000_VFRE, reg | BIT(vf));
7616
7617         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7618
7619         /* reply to reset with ack and vf mac address */
7620         if (!is_zero_ether_addr(vf_mac)) {
7621                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7622                 memcpy(addr, vf_mac, ETH_ALEN);
7623         } else {
7624                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7625         }
7626         igb_write_mbx(hw, msgbuf, 3, vf);
7627 }
7628
7629 static void igb_flush_mac_table(struct igb_adapter *adapter)
7630 {
7631         struct e1000_hw *hw = &adapter->hw;
7632         int i;
7633
7634         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7635                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7636                 eth_zero_addr(adapter->mac_table[i].addr);
7637                 adapter->mac_table[i].queue = 0;
7638                 igb_rar_set_index(adapter, i);
7639         }
7640 }
7641
7642 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7643 {
7644         struct e1000_hw *hw = &adapter->hw;
7645         /* do not count rar entries reserved for VFs MAC addresses */
7646         int rar_entries = hw->mac.rar_entry_count -
7647                           adapter->vfs_allocated_count;
7648         int i, count = 0;
7649
7650         for (i = 0; i < rar_entries; i++) {
7651                 /* do not count default entries */
7652                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7653                         continue;
7654
7655                 /* do not count "in use" entries for different queues */
7656                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7657                     (adapter->mac_table[i].queue != queue))
7658                         continue;
7659
7660                 count++;
7661         }
7662
7663         return count;
7664 }
7665
7666 /* Set default MAC address for the PF in the first RAR entry */
7667 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7668 {
7669         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7670
7671         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7672         mac_table->queue = adapter->vfs_allocated_count;
7673         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7674
7675         igb_rar_set_index(adapter, 0);
7676 }
7677
7678 /* If the filter to be added and an already existing filter express
7679  * the same address and address type, it should be possible to only
7680  * override the other configurations, for example the queue to steer
7681  * traffic.
7682  */
7683 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7684                                       const u8 *addr, const u8 flags)
7685 {
7686         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7687                 return true;
7688
7689         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7690             (flags & IGB_MAC_STATE_SRC_ADDR))
7691                 return false;
7692
7693         if (!ether_addr_equal(addr, entry->addr))
7694                 return false;
7695
7696         return true;
7697 }
7698
7699 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7700  * 'flags' is used to indicate what kind of match is made, match is by
7701  * default for the destination address, if matching by source address
7702  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7703  */
7704 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7705                                     const u8 *addr, const u8 queue,
7706                                     const u8 flags)
7707 {
7708         struct e1000_hw *hw = &adapter->hw;
7709         int rar_entries = hw->mac.rar_entry_count -
7710                           adapter->vfs_allocated_count;
7711         int i;
7712
7713         if (is_zero_ether_addr(addr))
7714                 return -EINVAL;
7715
7716         /* Search for the first empty entry in the MAC table.
7717          * Do not touch entries at the end of the table reserved for the VF MAC
7718          * addresses.
7719          */
7720         for (i = 0; i < rar_entries; i++) {
7721                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7722                                                addr, flags))
7723                         continue;
7724
7725                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7726                 adapter->mac_table[i].queue = queue;
7727                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7728
7729                 igb_rar_set_index(adapter, i);
7730                 return i;
7731         }
7732
7733         return -ENOSPC;
7734 }
7735
7736 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7737                               const u8 queue)
7738 {
7739         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7740 }
7741
7742 /* Remove a MAC filter for 'addr' directing matching traffic to
7743  * 'queue', 'flags' is used to indicate what kind of match need to be
7744  * removed, match is by default for the destination address, if
7745  * matching by source address is to be removed the flag
7746  * IGB_MAC_STATE_SRC_ADDR can be used.
7747  */
7748 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7749                                     const u8 *addr, const u8 queue,
7750                                     const u8 flags)
7751 {
7752         struct e1000_hw *hw = &adapter->hw;
7753         int rar_entries = hw->mac.rar_entry_count -
7754                           adapter->vfs_allocated_count;
7755         int i;
7756
7757         if (is_zero_ether_addr(addr))
7758                 return -EINVAL;
7759
7760         /* Search for matching entry in the MAC table based on given address
7761          * and queue. Do not touch entries at the end of the table reserved
7762          * for the VF MAC addresses.
7763          */
7764         for (i = 0; i < rar_entries; i++) {
7765                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7766                         continue;
7767                 if ((adapter->mac_table[i].state & flags) != flags)
7768                         continue;
7769                 if (adapter->mac_table[i].queue != queue)
7770                         continue;
7771                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7772                         continue;
7773
7774                 /* When a filter for the default address is "deleted",
7775                  * we return it to its initial configuration
7776                  */
7777                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7778                         adapter->mac_table[i].state =
7779                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7780                         adapter->mac_table[i].queue =
7781                                 adapter->vfs_allocated_count;
7782                 } else {
7783                         adapter->mac_table[i].state = 0;
7784                         adapter->mac_table[i].queue = 0;
7785                         eth_zero_addr(adapter->mac_table[i].addr);
7786                 }
7787
7788                 igb_rar_set_index(adapter, i);
7789                 return 0;
7790         }
7791
7792         return -ENOENT;
7793 }
7794
7795 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7796                               const u8 queue)
7797 {
7798         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7799 }
7800
7801 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7802                                 const u8 *addr, u8 queue, u8 flags)
7803 {
7804         struct e1000_hw *hw = &adapter->hw;
7805
7806         /* In theory, this should be supported on 82575 as well, but
7807          * that part wasn't easily accessible during development.
7808          */
7809         if (hw->mac.type != e1000_i210)
7810                 return -EOPNOTSUPP;
7811
7812         return igb_add_mac_filter_flags(adapter, addr, queue,
7813                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7814 }
7815
7816 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7817                                 const u8 *addr, u8 queue, u8 flags)
7818 {
7819         return igb_del_mac_filter_flags(adapter, addr, queue,
7820                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7821 }
7822
7823 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7824 {
7825         struct igb_adapter *adapter = netdev_priv(netdev);
7826         int ret;
7827
7828         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7829
7830         return min_t(int, ret, 0);
7831 }
7832
7833 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7834 {
7835         struct igb_adapter *adapter = netdev_priv(netdev);
7836
7837         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7838
7839         return 0;
7840 }
7841
7842 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7843                                  const u32 info, const u8 *addr)
7844 {
7845         struct pci_dev *pdev = adapter->pdev;
7846         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7847         struct list_head *pos;
7848         struct vf_mac_filter *entry = NULL;
7849         int ret = 0;
7850
7851         if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7852             !vf_data->trusted) {
7853                 dev_warn(&pdev->dev,
7854                          "VF %d requested MAC filter but is administratively denied\n",
7855                           vf);
7856                 return -EINVAL;
7857         }
7858         if (!is_valid_ether_addr(addr)) {
7859                 dev_warn(&pdev->dev,
7860                          "VF %d attempted to set invalid MAC filter\n",
7861                           vf);
7862                 return -EINVAL;
7863         }
7864
7865         switch (info) {
7866         case E1000_VF_MAC_FILTER_CLR:
7867                 /* remove all unicast MAC filters related to the current VF */
7868                 list_for_each(pos, &adapter->vf_macs.l) {
7869                         entry = list_entry(pos, struct vf_mac_filter, l);
7870                         if (entry->vf == vf) {
7871                                 entry->vf = -1;
7872                                 entry->free = true;
7873                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7874                         }
7875                 }
7876                 break;
7877         case E1000_VF_MAC_FILTER_ADD:
7878                 /* try to find empty slot in the list */
7879                 list_for_each(pos, &adapter->vf_macs.l) {
7880                         entry = list_entry(pos, struct vf_mac_filter, l);
7881                         if (entry->free)
7882                                 break;
7883                 }
7884
7885                 if (entry && entry->free) {
7886                         entry->free = false;
7887                         entry->vf = vf;
7888                         ether_addr_copy(entry->vf_mac, addr);
7889
7890                         ret = igb_add_mac_filter(adapter, addr, vf);
7891                         ret = min_t(int, ret, 0);
7892                 } else {
7893                         ret = -ENOSPC;
7894                 }
7895
7896                 if (ret == -ENOSPC)
7897                         dev_warn(&pdev->dev,
7898                                  "VF %d has requested MAC filter but there is no space for it\n",
7899                                  vf);
7900                 break;
7901         default:
7902                 ret = -EINVAL;
7903                 break;
7904         }
7905
7906         return ret;
7907 }
7908
7909 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7910 {
7911         struct pci_dev *pdev = adapter->pdev;
7912         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7913         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7914
7915         /* The VF MAC Address is stored in a packed array of bytes
7916          * starting at the second 32 bit word of the msg array
7917          */
7918         unsigned char *addr = (unsigned char *)&msg[1];
7919         int ret = 0;
7920
7921         if (!info) {
7922                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7923                     !vf_data->trusted) {
7924                         dev_warn(&pdev->dev,
7925                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7926                                  vf);
7927                         return -EINVAL;
7928                 }
7929
7930                 if (!is_valid_ether_addr(addr)) {
7931                         dev_warn(&pdev->dev,
7932                                  "VF %d attempted to set invalid MAC\n",
7933                                  vf);
7934                         return -EINVAL;
7935                 }
7936
7937                 ret = igb_set_vf_mac(adapter, vf, addr);
7938         } else {
7939                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7940         }
7941
7942         return ret;
7943 }
7944
7945 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7946 {
7947         struct e1000_hw *hw = &adapter->hw;
7948         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7949         u32 msg = E1000_VT_MSGTYPE_NACK;
7950
7951         /* if device isn't clear to send it shouldn't be reading either */
7952         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7953             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7954                 igb_write_mbx(hw, &msg, 1, vf);
7955                 vf_data->last_nack = jiffies;
7956         }
7957 }
7958
7959 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7960 {
7961         struct pci_dev *pdev = adapter->pdev;
7962         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7963         struct e1000_hw *hw = &adapter->hw;
7964         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7965         s32 retval;
7966
7967         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7968
7969         if (retval) {
7970                 /* if receive failed revoke VF CTS stats and restart init */
7971                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7972                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7973                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7974                         goto unlock;
7975                 goto out;
7976         }
7977
7978         /* this is a message we already processed, do nothing */
7979         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7980                 goto unlock;
7981
7982         /* until the vf completes a reset it should not be
7983          * allowed to start any configuration.
7984          */
7985         if (msgbuf[0] == E1000_VF_RESET) {
7986                 /* unlocks mailbox */
7987                 igb_vf_reset_msg(adapter, vf);
7988                 return;
7989         }
7990
7991         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7992                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7993                         goto unlock;
7994                 retval = -1;
7995                 goto out;
7996         }
7997
7998         switch ((msgbuf[0] & 0xFFFF)) {
7999         case E1000_VF_SET_MAC_ADDR:
8000                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8001                 break;
8002         case E1000_VF_SET_PROMISC:
8003                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8004                 break;
8005         case E1000_VF_SET_MULTICAST:
8006                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8007                 break;
8008         case E1000_VF_SET_LPE:
8009                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8010                 break;
8011         case E1000_VF_SET_VLAN:
8012                 retval = -1;
8013                 if (vf_data->pf_vlan)
8014                         dev_warn(&pdev->dev,
8015                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8016                                  vf);
8017                 else
8018                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8019                 break;
8020         default:
8021                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8022                 retval = -1;
8023                 break;
8024         }
8025
8026         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8027 out:
8028         /* notify the VF of the results of what it sent us */
8029         if (retval)
8030                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8031         else
8032                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8033
8034         /* unlocks mailbox */
8035         igb_write_mbx(hw, msgbuf, 1, vf);
8036         return;
8037
8038 unlock:
8039         igb_unlock_mbx(hw, vf);
8040 }
8041
8042 static void igb_msg_task(struct igb_adapter *adapter)
8043 {
8044         struct e1000_hw *hw = &adapter->hw;
8045         unsigned long flags;
8046         u32 vf;
8047
8048         spin_lock_irqsave(&adapter->vfs_lock, flags);
8049         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8050                 /* process any reset requests */
8051                 if (!igb_check_for_rst(hw, vf))
8052                         igb_vf_reset_event(adapter, vf);
8053
8054                 /* process any messages pending */
8055                 if (!igb_check_for_msg(hw, vf))
8056                         igb_rcv_msg_from_vf(adapter, vf);
8057
8058                 /* process any acks */
8059                 if (!igb_check_for_ack(hw, vf))
8060                         igb_rcv_ack_from_vf(adapter, vf);
8061         }
8062         spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8063 }
8064
8065 /**
8066  *  igb_set_uta - Set unicast filter table address
8067  *  @adapter: board private structure
8068  *  @set: boolean indicating if we are setting or clearing bits
8069  *
8070  *  The unicast table address is a register array of 32-bit registers.
8071  *  The table is meant to be used in a way similar to how the MTA is used
8072  *  however due to certain limitations in the hardware it is necessary to
8073  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8074  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8075  **/
8076 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8077 {
8078         struct e1000_hw *hw = &adapter->hw;
8079         u32 uta = set ? ~0 : 0;
8080         int i;
8081
8082         /* we only need to do this if VMDq is enabled */
8083         if (!adapter->vfs_allocated_count)
8084                 return;
8085
8086         for (i = hw->mac.uta_reg_count; i--;)
8087                 array_wr32(E1000_UTA, i, uta);
8088 }
8089
8090 /**
8091  *  igb_intr_msi - Interrupt Handler
8092  *  @irq: interrupt number
8093  *  @data: pointer to a network interface device structure
8094  **/
8095 static irqreturn_t igb_intr_msi(int irq, void *data)
8096 {
8097         struct igb_adapter *adapter = data;
8098         struct igb_q_vector *q_vector = adapter->q_vector[0];
8099         struct e1000_hw *hw = &adapter->hw;
8100         /* read ICR disables interrupts using IAM */
8101         u32 icr = rd32(E1000_ICR);
8102
8103         igb_write_itr(q_vector);
8104
8105         if (icr & E1000_ICR_DRSTA)
8106                 schedule_work(&adapter->reset_task);
8107
8108         if (icr & E1000_ICR_DOUTSYNC) {
8109                 /* HW is reporting DMA is out of sync */
8110                 adapter->stats.doosync++;
8111         }
8112
8113         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8114                 hw->mac.get_link_status = 1;
8115                 if (!test_bit(__IGB_DOWN, &adapter->state))
8116                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
8117         }
8118
8119         if (icr & E1000_ICR_TS)
8120                 igb_tsync_interrupt(adapter);
8121
8122         napi_schedule(&q_vector->napi);
8123
8124         return IRQ_HANDLED;
8125 }
8126
8127 /**
8128  *  igb_intr - Legacy Interrupt Handler
8129  *  @irq: interrupt number
8130  *  @data: pointer to a network interface device structure
8131  **/
8132 static irqreturn_t igb_intr(int irq, void *data)
8133 {
8134         struct igb_adapter *adapter = data;
8135         struct igb_q_vector *q_vector = adapter->q_vector[0];
8136         struct e1000_hw *hw = &adapter->hw;
8137         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8138          * need for the IMC write
8139          */
8140         u32 icr = rd32(E1000_ICR);
8141
8142         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8143          * not set, then the adapter didn't send an interrupt
8144          */
8145         if (!(icr & E1000_ICR_INT_ASSERTED))
8146                 return IRQ_NONE;
8147
8148         igb_write_itr(q_vector);
8149
8150         if (icr & E1000_ICR_DRSTA)
8151                 schedule_work(&adapter->reset_task);
8152
8153         if (icr & E1000_ICR_DOUTSYNC) {
8154                 /* HW is reporting DMA is out of sync */
8155                 adapter->stats.doosync++;
8156         }
8157
8158         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8159                 hw->mac.get_link_status = 1;
8160                 /* guard against interrupt when we're going down */
8161                 if (!test_bit(__IGB_DOWN, &adapter->state))
8162                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
8163         }
8164
8165         if (icr & E1000_ICR_TS)
8166                 igb_tsync_interrupt(adapter);
8167
8168         napi_schedule(&q_vector->napi);
8169
8170         return IRQ_HANDLED;
8171 }
8172
8173 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8174 {
8175         struct igb_adapter *adapter = q_vector->adapter;
8176         struct e1000_hw *hw = &adapter->hw;
8177
8178         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8179             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8180                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8181                         igb_set_itr(q_vector);
8182                 else
8183                         igb_update_ring_itr(q_vector);
8184         }
8185
8186         if (!test_bit(__IGB_DOWN, &adapter->state)) {
8187                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8188                         wr32(E1000_EIMS, q_vector->eims_value);
8189                 else
8190                         igb_irq_enable(adapter);
8191         }
8192 }
8193
8194 /**
8195  *  igb_poll - NAPI Rx polling callback
8196  *  @napi: napi polling structure
8197  *  @budget: count of how many packets we should handle
8198  **/
8199 static int igb_poll(struct napi_struct *napi, int budget)
8200 {
8201         struct igb_q_vector *q_vector = container_of(napi,
8202                                                      struct igb_q_vector,
8203                                                      napi);
8204         bool clean_complete = true;
8205         int work_done = 0;
8206
8207 #ifdef CONFIG_IGB_DCA
8208         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8209                 igb_update_dca(q_vector);
8210 #endif
8211         if (q_vector->tx.ring)
8212                 clean_complete = igb_clean_tx_irq(q_vector, budget);
8213
8214         if (q_vector->rx.ring) {
8215                 int cleaned = igb_clean_rx_irq(q_vector, budget);
8216
8217                 work_done += cleaned;
8218                 if (cleaned >= budget)
8219                         clean_complete = false;
8220         }
8221
8222         /* If all work not completed, return budget and keep polling */
8223         if (!clean_complete)
8224                 return budget;
8225
8226         /* Exit the polling mode, but don't re-enable interrupts if stack might
8227          * poll us due to busy-polling
8228          */
8229         if (likely(napi_complete_done(napi, work_done)))
8230                 igb_ring_irq_enable(q_vector);
8231
8232         return work_done;
8233 }
8234
8235 /**
8236  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8237  *  @q_vector: pointer to q_vector containing needed info
8238  *  @napi_budget: Used to determine if we are in netpoll
8239  *
8240  *  returns true if ring is completely cleaned
8241  **/
8242 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8243 {
8244         struct igb_adapter *adapter = q_vector->adapter;
8245         struct igb_ring *tx_ring = q_vector->tx.ring;
8246         struct igb_tx_buffer *tx_buffer;
8247         union e1000_adv_tx_desc *tx_desc;
8248         unsigned int total_bytes = 0, total_packets = 0;
8249         unsigned int budget = q_vector->tx.work_limit;
8250         unsigned int i = tx_ring->next_to_clean;
8251
8252         if (test_bit(__IGB_DOWN, &adapter->state))
8253                 return true;
8254
8255         tx_buffer = &tx_ring->tx_buffer_info[i];
8256         tx_desc = IGB_TX_DESC(tx_ring, i);
8257         i -= tx_ring->count;
8258
8259         do {
8260                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8261
8262                 /* if next_to_watch is not set then there is no work pending */
8263                 if (!eop_desc)
8264                         break;
8265
8266                 /* prevent any other reads prior to eop_desc */
8267                 smp_rmb();
8268
8269                 /* if DD is not set pending work has not been completed */
8270                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8271                         break;
8272
8273                 /* clear next_to_watch to prevent false hangs */
8274                 tx_buffer->next_to_watch = NULL;
8275
8276                 /* update the statistics for this packet */
8277                 total_bytes += tx_buffer->bytecount;
8278                 total_packets += tx_buffer->gso_segs;
8279
8280                 /* free the skb */
8281                 if (tx_buffer->type == IGB_TYPE_SKB)
8282                         napi_consume_skb(tx_buffer->skb, napi_budget);
8283                 else
8284                         xdp_return_frame(tx_buffer->xdpf);
8285
8286                 /* unmap skb header data */
8287                 dma_unmap_single(tx_ring->dev,
8288                                  dma_unmap_addr(tx_buffer, dma),
8289                                  dma_unmap_len(tx_buffer, len),
8290                                  DMA_TO_DEVICE);
8291
8292                 /* clear tx_buffer data */
8293                 dma_unmap_len_set(tx_buffer, len, 0);
8294
8295                 /* clear last DMA location and unmap remaining buffers */
8296                 while (tx_desc != eop_desc) {
8297                         tx_buffer++;
8298                         tx_desc++;
8299                         i++;
8300                         if (unlikely(!i)) {
8301                                 i -= tx_ring->count;
8302                                 tx_buffer = tx_ring->tx_buffer_info;
8303                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8304                         }
8305
8306                         /* unmap any remaining paged data */
8307                         if (dma_unmap_len(tx_buffer, len)) {
8308                                 dma_unmap_page(tx_ring->dev,
8309                                                dma_unmap_addr(tx_buffer, dma),
8310                                                dma_unmap_len(tx_buffer, len),
8311                                                DMA_TO_DEVICE);
8312                                 dma_unmap_len_set(tx_buffer, len, 0);
8313                         }
8314                 }
8315
8316                 /* move us one more past the eop_desc for start of next pkt */
8317                 tx_buffer++;
8318                 tx_desc++;
8319                 i++;
8320                 if (unlikely(!i)) {
8321                         i -= tx_ring->count;
8322                         tx_buffer = tx_ring->tx_buffer_info;
8323                         tx_desc = IGB_TX_DESC(tx_ring, 0);
8324                 }
8325
8326                 /* issue prefetch for next Tx descriptor */
8327                 prefetch(tx_desc);
8328
8329                 /* update budget accounting */
8330                 budget--;
8331         } while (likely(budget));
8332
8333         netdev_tx_completed_queue(txring_txq(tx_ring),
8334                                   total_packets, total_bytes);
8335         i += tx_ring->count;
8336         tx_ring->next_to_clean = i;
8337         u64_stats_update_begin(&tx_ring->tx_syncp);
8338         tx_ring->tx_stats.bytes += total_bytes;
8339         tx_ring->tx_stats.packets += total_packets;
8340         u64_stats_update_end(&tx_ring->tx_syncp);
8341         q_vector->tx.total_bytes += total_bytes;
8342         q_vector->tx.total_packets += total_packets;
8343
8344         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8345                 struct e1000_hw *hw = &adapter->hw;
8346
8347                 /* Detect a transmit hang in hardware, this serializes the
8348                  * check with the clearing of time_stamp and movement of i
8349                  */
8350                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8351                 if (tx_buffer->next_to_watch &&
8352                     time_after(jiffies, tx_buffer->time_stamp +
8353                                (adapter->tx_timeout_factor * HZ)) &&
8354                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8355
8356                         /* detected Tx unit hang */
8357                         dev_err(tx_ring->dev,
8358                                 "Detected Tx Unit Hang\n"
8359                                 "  Tx Queue             <%d>\n"
8360                                 "  TDH                  <%x>\n"
8361                                 "  TDT                  <%x>\n"
8362                                 "  next_to_use          <%x>\n"
8363                                 "  next_to_clean        <%x>\n"
8364                                 "buffer_info[next_to_clean]\n"
8365                                 "  time_stamp           <%lx>\n"
8366                                 "  next_to_watch        <%p>\n"
8367                                 "  jiffies              <%lx>\n"
8368                                 "  desc.status          <%x>\n",
8369                                 tx_ring->queue_index,
8370                                 rd32(E1000_TDH(tx_ring->reg_idx)),
8371                                 readl(tx_ring->tail),
8372                                 tx_ring->next_to_use,
8373                                 tx_ring->next_to_clean,
8374                                 tx_buffer->time_stamp,
8375                                 tx_buffer->next_to_watch,
8376                                 jiffies,
8377                                 tx_buffer->next_to_watch->wb.status);
8378                         netif_stop_subqueue(tx_ring->netdev,
8379                                             tx_ring->queue_index);
8380
8381                         /* we are about to reset, no point in enabling stuff */
8382                         return true;
8383                 }
8384         }
8385
8386 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8387         if (unlikely(total_packets &&
8388             netif_carrier_ok(tx_ring->netdev) &&
8389             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8390                 /* Make sure that anybody stopping the queue after this
8391                  * sees the new next_to_clean.
8392                  */
8393                 smp_mb();
8394                 if (__netif_subqueue_stopped(tx_ring->netdev,
8395                                              tx_ring->queue_index) &&
8396                     !(test_bit(__IGB_DOWN, &adapter->state))) {
8397                         netif_wake_subqueue(tx_ring->netdev,
8398                                             tx_ring->queue_index);
8399
8400                         u64_stats_update_begin(&tx_ring->tx_syncp);
8401                         tx_ring->tx_stats.restart_queue++;
8402                         u64_stats_update_end(&tx_ring->tx_syncp);
8403                 }
8404         }
8405
8406         return !!budget;
8407 }
8408
8409 /**
8410  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8411  *  @rx_ring: rx descriptor ring to store buffers on
8412  *  @old_buff: donor buffer to have page reused
8413  *
8414  *  Synchronizes page for reuse by the adapter
8415  **/
8416 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8417                               struct igb_rx_buffer *old_buff)
8418 {
8419         struct igb_rx_buffer *new_buff;
8420         u16 nta = rx_ring->next_to_alloc;
8421
8422         new_buff = &rx_ring->rx_buffer_info[nta];
8423
8424         /* update, and store next to alloc */
8425         nta++;
8426         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8427
8428         /* Transfer page from old buffer to new buffer.
8429          * Move each member individually to avoid possible store
8430          * forwarding stalls.
8431          */
8432         new_buff->dma           = old_buff->dma;
8433         new_buff->page          = old_buff->page;
8434         new_buff->page_offset   = old_buff->page_offset;
8435         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8436 }
8437
8438 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8439                                   int rx_buf_pgcnt)
8440 {
8441         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8442         struct page *page = rx_buffer->page;
8443
8444         /* avoid re-using remote and pfmemalloc pages */
8445         if (!dev_page_is_reusable(page))
8446                 return false;
8447
8448 #if (PAGE_SIZE < 8192)
8449         /* if we are only owner of page we can reuse it */
8450         if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8451                 return false;
8452 #else
8453 #define IGB_LAST_OFFSET \
8454         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8455
8456         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8457                 return false;
8458 #endif
8459
8460         /* If we have drained the page fragment pool we need to update
8461          * the pagecnt_bias and page count so that we fully restock the
8462          * number of references the driver holds.
8463          */
8464         if (unlikely(pagecnt_bias == 1)) {
8465                 page_ref_add(page, USHRT_MAX - 1);
8466                 rx_buffer->pagecnt_bias = USHRT_MAX;
8467         }
8468
8469         return true;
8470 }
8471
8472 /**
8473  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8474  *  @rx_ring: rx descriptor ring to transact packets on
8475  *  @rx_buffer: buffer containing page to add
8476  *  @skb: sk_buff to place the data into
8477  *  @size: size of buffer to be added
8478  *
8479  *  This function will add the data contained in rx_buffer->page to the skb.
8480  **/
8481 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8482                             struct igb_rx_buffer *rx_buffer,
8483                             struct sk_buff *skb,
8484                             unsigned int size)
8485 {
8486 #if (PAGE_SIZE < 8192)
8487         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8488 #else
8489         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8490                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8491                                 SKB_DATA_ALIGN(size);
8492 #endif
8493         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8494                         rx_buffer->page_offset, size, truesize);
8495 #if (PAGE_SIZE < 8192)
8496         rx_buffer->page_offset ^= truesize;
8497 #else
8498         rx_buffer->page_offset += truesize;
8499 #endif
8500 }
8501
8502 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8503                                          struct igb_rx_buffer *rx_buffer,
8504                                          struct xdp_buff *xdp,
8505                                          ktime_t timestamp)
8506 {
8507 #if (PAGE_SIZE < 8192)
8508         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8509 #else
8510         unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8511                                                xdp->data_hard_start);
8512 #endif
8513         unsigned int size = xdp->data_end - xdp->data;
8514         unsigned int headlen;
8515         struct sk_buff *skb;
8516
8517         /* prefetch first cache line of first page */
8518         net_prefetch(xdp->data);
8519
8520         /* allocate a skb to store the frags */
8521         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8522         if (unlikely(!skb))
8523                 return NULL;
8524
8525         if (timestamp)
8526                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8527
8528         /* Determine available headroom for copy */
8529         headlen = size;
8530         if (headlen > IGB_RX_HDR_LEN)
8531                 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8532
8533         /* align pull length to size of long to optimize memcpy performance */
8534         memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8535
8536         /* update all of the pointers */
8537         size -= headlen;
8538         if (size) {
8539                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8540                                 (xdp->data + headlen) - page_address(rx_buffer->page),
8541                                 size, truesize);
8542 #if (PAGE_SIZE < 8192)
8543                 rx_buffer->page_offset ^= truesize;
8544 #else
8545                 rx_buffer->page_offset += truesize;
8546 #endif
8547         } else {
8548                 rx_buffer->pagecnt_bias++;
8549         }
8550
8551         return skb;
8552 }
8553
8554 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8555                                      struct igb_rx_buffer *rx_buffer,
8556                                      struct xdp_buff *xdp,
8557                                      ktime_t timestamp)
8558 {
8559 #if (PAGE_SIZE < 8192)
8560         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8561 #else
8562         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8563                                 SKB_DATA_ALIGN(xdp->data_end -
8564                                                xdp->data_hard_start);
8565 #endif
8566         unsigned int metasize = xdp->data - xdp->data_meta;
8567         struct sk_buff *skb;
8568
8569         /* prefetch first cache line of first page */
8570         net_prefetch(xdp->data_meta);
8571
8572         /* build an skb around the page buffer */
8573         skb = napi_build_skb(xdp->data_hard_start, truesize);
8574         if (unlikely(!skb))
8575                 return NULL;
8576
8577         /* update pointers within the skb to store the data */
8578         skb_reserve(skb, xdp->data - xdp->data_hard_start);
8579         __skb_put(skb, xdp->data_end - xdp->data);
8580
8581         if (metasize)
8582                 skb_metadata_set(skb, metasize);
8583
8584         if (timestamp)
8585                 skb_hwtstamps(skb)->hwtstamp = timestamp;
8586
8587         /* update buffer offset */
8588 #if (PAGE_SIZE < 8192)
8589         rx_buffer->page_offset ^= truesize;
8590 #else
8591         rx_buffer->page_offset += truesize;
8592 #endif
8593
8594         return skb;
8595 }
8596
8597 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8598                                    struct igb_ring *rx_ring,
8599                                    struct xdp_buff *xdp)
8600 {
8601         int err, result = IGB_XDP_PASS;
8602         struct bpf_prog *xdp_prog;
8603         u32 act;
8604
8605         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8606
8607         if (!xdp_prog)
8608                 goto xdp_out;
8609
8610         prefetchw(xdp->data_hard_start); /* xdp_frame write */
8611
8612         act = bpf_prog_run_xdp(xdp_prog, xdp);
8613         switch (act) {
8614         case XDP_PASS:
8615                 break;
8616         case XDP_TX:
8617                 result = igb_xdp_xmit_back(adapter, xdp);
8618                 if (result == IGB_XDP_CONSUMED)
8619                         goto out_failure;
8620                 break;
8621         case XDP_REDIRECT:
8622                 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8623                 if (err)
8624                         goto out_failure;
8625                 result = IGB_XDP_REDIR;
8626                 break;
8627         default:
8628                 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8629                 fallthrough;
8630         case XDP_ABORTED:
8631 out_failure:
8632                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8633                 fallthrough;
8634         case XDP_DROP:
8635                 result = IGB_XDP_CONSUMED;
8636                 break;
8637         }
8638 xdp_out:
8639         return ERR_PTR(-result);
8640 }
8641
8642 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8643                                           unsigned int size)
8644 {
8645         unsigned int truesize;
8646
8647 #if (PAGE_SIZE < 8192)
8648         truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8649 #else
8650         truesize = ring_uses_build_skb(rx_ring) ?
8651                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8652                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8653                 SKB_DATA_ALIGN(size);
8654 #endif
8655         return truesize;
8656 }
8657
8658 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8659                                struct igb_rx_buffer *rx_buffer,
8660                                unsigned int size)
8661 {
8662         unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8663 #if (PAGE_SIZE < 8192)
8664         rx_buffer->page_offset ^= truesize;
8665 #else
8666         rx_buffer->page_offset += truesize;
8667 #endif
8668 }
8669
8670 static inline void igb_rx_checksum(struct igb_ring *ring,
8671                                    union e1000_adv_rx_desc *rx_desc,
8672                                    struct sk_buff *skb)
8673 {
8674         skb_checksum_none_assert(skb);
8675
8676         /* Ignore Checksum bit is set */
8677         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8678                 return;
8679
8680         /* Rx checksum disabled via ethtool */
8681         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8682                 return;
8683
8684         /* TCP/UDP checksum error bit is set */
8685         if (igb_test_staterr(rx_desc,
8686                              E1000_RXDEXT_STATERR_TCPE |
8687                              E1000_RXDEXT_STATERR_IPE)) {
8688                 /* work around errata with sctp packets where the TCPE aka
8689                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8690                  * packets, (aka let the stack check the crc32c)
8691                  */
8692                 if (!((skb->len == 60) &&
8693                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8694                         u64_stats_update_begin(&ring->rx_syncp);
8695                         ring->rx_stats.csum_err++;
8696                         u64_stats_update_end(&ring->rx_syncp);
8697                 }
8698                 /* let the stack verify checksum errors */
8699                 return;
8700         }
8701         /* It must be a TCP or UDP packet with a valid checksum */
8702         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8703                                       E1000_RXD_STAT_UDPCS))
8704                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8705
8706         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8707                 le32_to_cpu(rx_desc->wb.upper.status_error));
8708 }
8709
8710 static inline void igb_rx_hash(struct igb_ring *ring,
8711                                union e1000_adv_rx_desc *rx_desc,
8712                                struct sk_buff *skb)
8713 {
8714         if (ring->netdev->features & NETIF_F_RXHASH)
8715                 skb_set_hash(skb,
8716                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8717                              PKT_HASH_TYPE_L3);
8718 }
8719
8720 /**
8721  *  igb_is_non_eop - process handling of non-EOP buffers
8722  *  @rx_ring: Rx ring being processed
8723  *  @rx_desc: Rx descriptor for current buffer
8724  *
8725  *  This function updates next to clean.  If the buffer is an EOP buffer
8726  *  this function exits returning false, otherwise it will place the
8727  *  sk_buff in the next buffer to be chained and return true indicating
8728  *  that this is in fact a non-EOP buffer.
8729  **/
8730 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8731                            union e1000_adv_rx_desc *rx_desc)
8732 {
8733         u32 ntc = rx_ring->next_to_clean + 1;
8734
8735         /* fetch, update, and store next to clean */
8736         ntc = (ntc < rx_ring->count) ? ntc : 0;
8737         rx_ring->next_to_clean = ntc;
8738
8739         prefetch(IGB_RX_DESC(rx_ring, ntc));
8740
8741         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8742                 return false;
8743
8744         return true;
8745 }
8746
8747 /**
8748  *  igb_cleanup_headers - Correct corrupted or empty headers
8749  *  @rx_ring: rx descriptor ring packet is being transacted on
8750  *  @rx_desc: pointer to the EOP Rx descriptor
8751  *  @skb: pointer to current skb being fixed
8752  *
8753  *  Address the case where we are pulling data in on pages only
8754  *  and as such no data is present in the skb header.
8755  *
8756  *  In addition if skb is not at least 60 bytes we need to pad it so that
8757  *  it is large enough to qualify as a valid Ethernet frame.
8758  *
8759  *  Returns true if an error was encountered and skb was freed.
8760  **/
8761 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8762                                 union e1000_adv_rx_desc *rx_desc,
8763                                 struct sk_buff *skb)
8764 {
8765         /* XDP packets use error pointer so abort at this point */
8766         if (IS_ERR(skb))
8767                 return true;
8768
8769         if (unlikely((igb_test_staterr(rx_desc,
8770                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8771                 struct net_device *netdev = rx_ring->netdev;
8772                 if (!(netdev->features & NETIF_F_RXALL)) {
8773                         dev_kfree_skb_any(skb);
8774                         return true;
8775                 }
8776         }
8777
8778         /* if eth_skb_pad returns an error the skb was freed */
8779         if (eth_skb_pad(skb))
8780                 return true;
8781
8782         return false;
8783 }
8784
8785 /**
8786  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8787  *  @rx_ring: rx descriptor ring packet is being transacted on
8788  *  @rx_desc: pointer to the EOP Rx descriptor
8789  *  @skb: pointer to current skb being populated
8790  *
8791  *  This function checks the ring, descriptor, and packet information in
8792  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8793  *  other fields within the skb.
8794  **/
8795 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8796                                    union e1000_adv_rx_desc *rx_desc,
8797                                    struct sk_buff *skb)
8798 {
8799         struct net_device *dev = rx_ring->netdev;
8800
8801         igb_rx_hash(rx_ring, rx_desc, skb);
8802
8803         igb_rx_checksum(rx_ring, rx_desc, skb);
8804
8805         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8806             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8807                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8808
8809         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8810             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8811                 u16 vid;
8812
8813                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8814                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8815                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8816                 else
8817                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8818
8819                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8820         }
8821
8822         skb_record_rx_queue(skb, rx_ring->queue_index);
8823
8824         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8825 }
8826
8827 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8828 {
8829         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8830 }
8831
8832 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8833                                                const unsigned int size, int *rx_buf_pgcnt)
8834 {
8835         struct igb_rx_buffer *rx_buffer;
8836
8837         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8838         *rx_buf_pgcnt =
8839 #if (PAGE_SIZE < 8192)
8840                 page_count(rx_buffer->page);
8841 #else
8842                 0;
8843 #endif
8844         prefetchw(rx_buffer->page);
8845
8846         /* we are reusing so sync this buffer for CPU use */
8847         dma_sync_single_range_for_cpu(rx_ring->dev,
8848                                       rx_buffer->dma,
8849                                       rx_buffer->page_offset,
8850                                       size,
8851                                       DMA_FROM_DEVICE);
8852
8853         rx_buffer->pagecnt_bias--;
8854
8855         return rx_buffer;
8856 }
8857
8858 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8859                               struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8860 {
8861         if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8862                 /* hand second half of page back to the ring */
8863                 igb_reuse_rx_page(rx_ring, rx_buffer);
8864         } else {
8865                 /* We are not reusing the buffer so unmap it and free
8866                  * any references we are holding to it
8867                  */
8868                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8869                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8870                                      IGB_RX_DMA_ATTR);
8871                 __page_frag_cache_drain(rx_buffer->page,
8872                                         rx_buffer->pagecnt_bias);
8873         }
8874
8875         /* clear contents of rx_buffer */
8876         rx_buffer->page = NULL;
8877 }
8878
8879 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8880 {
8881         struct igb_adapter *adapter = q_vector->adapter;
8882         struct igb_ring *rx_ring = q_vector->rx.ring;
8883         struct sk_buff *skb = rx_ring->skb;
8884         unsigned int total_bytes = 0, total_packets = 0;
8885         u16 cleaned_count = igb_desc_unused(rx_ring);
8886         unsigned int xdp_xmit = 0;
8887         struct xdp_buff xdp;
8888         u32 frame_sz = 0;
8889         int rx_buf_pgcnt;
8890
8891         /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8892 #if (PAGE_SIZE < 8192)
8893         frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8894 #endif
8895         xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8896
8897         while (likely(total_packets < budget)) {
8898                 union e1000_adv_rx_desc *rx_desc;
8899                 struct igb_rx_buffer *rx_buffer;
8900                 ktime_t timestamp = 0;
8901                 int pkt_offset = 0;
8902                 unsigned int size;
8903                 void *pktbuf;
8904
8905                 /* return some buffers to hardware, one at a time is too slow */
8906                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8907                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8908                         cleaned_count = 0;
8909                 }
8910
8911                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8912                 size = le16_to_cpu(rx_desc->wb.upper.length);
8913                 if (!size)
8914                         break;
8915
8916                 /* This memory barrier is needed to keep us from reading
8917                  * any other fields out of the rx_desc until we know the
8918                  * descriptor has been written back
8919                  */
8920                 dma_rmb();
8921
8922                 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8923                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8924
8925                 /* pull rx packet timestamp if available and valid */
8926                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8927                         int ts_hdr_len;
8928
8929                         ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8930                                                          pktbuf, &timestamp);
8931
8932                         pkt_offset += ts_hdr_len;
8933                         size -= ts_hdr_len;
8934                 }
8935
8936                 /* retrieve a buffer from the ring */
8937                 if (!skb) {
8938                         unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8939                         unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8940
8941                         xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8942                         xdp_buff_clear_frags_flag(&xdp);
8943 #if (PAGE_SIZE > 4096)
8944                         /* At larger PAGE_SIZE, frame_sz depend on len size */
8945                         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8946 #endif
8947                         skb = igb_run_xdp(adapter, rx_ring, &xdp);
8948                 }
8949
8950                 if (IS_ERR(skb)) {
8951                         unsigned int xdp_res = -PTR_ERR(skb);
8952
8953                         if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8954                                 xdp_xmit |= xdp_res;
8955                                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8956                         } else {
8957                                 rx_buffer->pagecnt_bias++;
8958                         }
8959                         total_packets++;
8960                         total_bytes += size;
8961                 } else if (skb)
8962                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8963                 else if (ring_uses_build_skb(rx_ring))
8964                         skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8965                                             timestamp);
8966                 else
8967                         skb = igb_construct_skb(rx_ring, rx_buffer,
8968                                                 &xdp, timestamp);
8969
8970                 /* exit if we failed to retrieve a buffer */
8971                 if (!skb) {
8972                         rx_ring->rx_stats.alloc_failed++;
8973                         rx_buffer->pagecnt_bias++;
8974                         break;
8975                 }
8976
8977                 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8978                 cleaned_count++;
8979
8980                 /* fetch next buffer in frame if non-eop */
8981                 if (igb_is_non_eop(rx_ring, rx_desc))
8982                         continue;
8983
8984                 /* verify the packet layout is correct */
8985                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8986                         skb = NULL;
8987                         continue;
8988                 }
8989
8990                 /* probably a little skewed due to removing CRC */
8991                 total_bytes += skb->len;
8992
8993                 /* populate checksum, timestamp, VLAN, and protocol */
8994                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8995
8996                 napi_gro_receive(&q_vector->napi, skb);
8997
8998                 /* reset skb pointer */
8999                 skb = NULL;
9000
9001                 /* update budget accounting */
9002                 total_packets++;
9003         }
9004
9005         /* place incomplete frames back on ring for completion */
9006         rx_ring->skb = skb;
9007
9008         if (xdp_xmit & IGB_XDP_REDIR)
9009                 xdp_do_flush();
9010
9011         if (xdp_xmit & IGB_XDP_TX) {
9012                 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9013
9014                 igb_xdp_ring_update_tail(tx_ring);
9015         }
9016
9017         u64_stats_update_begin(&rx_ring->rx_syncp);
9018         rx_ring->rx_stats.packets += total_packets;
9019         rx_ring->rx_stats.bytes += total_bytes;
9020         u64_stats_update_end(&rx_ring->rx_syncp);
9021         q_vector->rx.total_packets += total_packets;
9022         q_vector->rx.total_bytes += total_bytes;
9023
9024         if (cleaned_count)
9025                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9026
9027         return total_packets;
9028 }
9029
9030 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9031                                   struct igb_rx_buffer *bi)
9032 {
9033         struct page *page = bi->page;
9034         dma_addr_t dma;
9035
9036         /* since we are recycling buffers we should seldom need to alloc */
9037         if (likely(page))
9038                 return true;
9039
9040         /* alloc new page for storage */
9041         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9042         if (unlikely(!page)) {
9043                 rx_ring->rx_stats.alloc_failed++;
9044                 return false;
9045         }
9046
9047         /* map page for use */
9048         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9049                                  igb_rx_pg_size(rx_ring),
9050                                  DMA_FROM_DEVICE,
9051                                  IGB_RX_DMA_ATTR);
9052
9053         /* if mapping failed free memory back to system since
9054          * there isn't much point in holding memory we can't use
9055          */
9056         if (dma_mapping_error(rx_ring->dev, dma)) {
9057                 __free_pages(page, igb_rx_pg_order(rx_ring));
9058
9059                 rx_ring->rx_stats.alloc_failed++;
9060                 return false;
9061         }
9062
9063         bi->dma = dma;
9064         bi->page = page;
9065         bi->page_offset = igb_rx_offset(rx_ring);
9066         page_ref_add(page, USHRT_MAX - 1);
9067         bi->pagecnt_bias = USHRT_MAX;
9068
9069         return true;
9070 }
9071
9072 /**
9073  *  igb_alloc_rx_buffers - Replace used receive buffers
9074  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9075  *  @cleaned_count: count of buffers to allocate
9076  **/
9077 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9078 {
9079         union e1000_adv_rx_desc *rx_desc;
9080         struct igb_rx_buffer *bi;
9081         u16 i = rx_ring->next_to_use;
9082         u16 bufsz;
9083
9084         /* nothing to do */
9085         if (!cleaned_count)
9086                 return;
9087
9088         rx_desc = IGB_RX_DESC(rx_ring, i);
9089         bi = &rx_ring->rx_buffer_info[i];
9090         i -= rx_ring->count;
9091
9092         bufsz = igb_rx_bufsz(rx_ring);
9093
9094         do {
9095                 if (!igb_alloc_mapped_page(rx_ring, bi))
9096                         break;
9097
9098                 /* sync the buffer for use by the device */
9099                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9100                                                  bi->page_offset, bufsz,
9101                                                  DMA_FROM_DEVICE);
9102
9103                 /* Refresh the desc even if buffer_addrs didn't change
9104                  * because each write-back erases this info.
9105                  */
9106                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9107
9108                 rx_desc++;
9109                 bi++;
9110                 i++;
9111                 if (unlikely(!i)) {
9112                         rx_desc = IGB_RX_DESC(rx_ring, 0);
9113                         bi = rx_ring->rx_buffer_info;
9114                         i -= rx_ring->count;
9115                 }
9116
9117                 /* clear the length for the next_to_use descriptor */
9118                 rx_desc->wb.upper.length = 0;
9119
9120                 cleaned_count--;
9121         } while (cleaned_count);
9122
9123         i += rx_ring->count;
9124
9125         if (rx_ring->next_to_use != i) {
9126                 /* record the next descriptor to use */
9127                 rx_ring->next_to_use = i;
9128
9129                 /* update next to alloc since we have filled the ring */
9130                 rx_ring->next_to_alloc = i;
9131
9132                 /* Force memory writes to complete before letting h/w
9133                  * know there are new descriptors to fetch.  (Only
9134                  * applicable for weak-ordered memory model archs,
9135                  * such as IA-64).
9136                  */
9137                 dma_wmb();
9138                 writel(i, rx_ring->tail);
9139         }
9140 }
9141
9142 /**
9143  * igb_mii_ioctl -
9144  * @netdev: pointer to netdev struct
9145  * @ifr: interface structure
9146  * @cmd: ioctl command to execute
9147  **/
9148 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9149 {
9150         struct igb_adapter *adapter = netdev_priv(netdev);
9151         struct mii_ioctl_data *data = if_mii(ifr);
9152
9153         if (adapter->hw.phy.media_type != e1000_media_type_copper)
9154                 return -EOPNOTSUPP;
9155
9156         switch (cmd) {
9157         case SIOCGMIIPHY:
9158                 data->phy_id = adapter->hw.phy.addr;
9159                 break;
9160         case SIOCGMIIREG:
9161                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9162                                      &data->val_out))
9163                         return -EIO;
9164                 break;
9165         case SIOCSMIIREG:
9166         default:
9167                 return -EOPNOTSUPP;
9168         }
9169         return 0;
9170 }
9171
9172 /**
9173  * igb_ioctl -
9174  * @netdev: pointer to netdev struct
9175  * @ifr: interface structure
9176  * @cmd: ioctl command to execute
9177  **/
9178 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9179 {
9180         switch (cmd) {
9181         case SIOCGMIIPHY:
9182         case SIOCGMIIREG:
9183         case SIOCSMIIREG:
9184                 return igb_mii_ioctl(netdev, ifr, cmd);
9185         case SIOCGHWTSTAMP:
9186                 return igb_ptp_get_ts_config(netdev, ifr);
9187         case SIOCSHWTSTAMP:
9188                 return igb_ptp_set_ts_config(netdev, ifr);
9189         default:
9190                 return -EOPNOTSUPP;
9191         }
9192 }
9193
9194 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9195 {
9196         struct igb_adapter *adapter = hw->back;
9197
9198         pci_read_config_word(adapter->pdev, reg, value);
9199 }
9200
9201 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9202 {
9203         struct igb_adapter *adapter = hw->back;
9204
9205         pci_write_config_word(adapter->pdev, reg, *value);
9206 }
9207
9208 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9209 {
9210         struct igb_adapter *adapter = hw->back;
9211
9212         if (pcie_capability_read_word(adapter->pdev, reg, value))
9213                 return -E1000_ERR_CONFIG;
9214
9215         return 0;
9216 }
9217
9218 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9219 {
9220         struct igb_adapter *adapter = hw->back;
9221
9222         if (pcie_capability_write_word(adapter->pdev, reg, *value))
9223                 return -E1000_ERR_CONFIG;
9224
9225         return 0;
9226 }
9227
9228 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9229 {
9230         struct igb_adapter *adapter = netdev_priv(netdev);
9231         struct e1000_hw *hw = &adapter->hw;
9232         u32 ctrl, rctl;
9233         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9234
9235         if (enable) {
9236                 /* enable VLAN tag insert/strip */
9237                 ctrl = rd32(E1000_CTRL);
9238                 ctrl |= E1000_CTRL_VME;
9239                 wr32(E1000_CTRL, ctrl);
9240
9241                 /* Disable CFI check */
9242                 rctl = rd32(E1000_RCTL);
9243                 rctl &= ~E1000_RCTL_CFIEN;
9244                 wr32(E1000_RCTL, rctl);
9245         } else {
9246                 /* disable VLAN tag insert/strip */
9247                 ctrl = rd32(E1000_CTRL);
9248                 ctrl &= ~E1000_CTRL_VME;
9249                 wr32(E1000_CTRL, ctrl);
9250         }
9251
9252         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9253 }
9254
9255 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9256                                __be16 proto, u16 vid)
9257 {
9258         struct igb_adapter *adapter = netdev_priv(netdev);
9259         struct e1000_hw *hw = &adapter->hw;
9260         int pf_id = adapter->vfs_allocated_count;
9261
9262         /* add the filter since PF can receive vlans w/o entry in vlvf */
9263         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9264                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9265
9266         set_bit(vid, adapter->active_vlans);
9267
9268         return 0;
9269 }
9270
9271 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9272                                 __be16 proto, u16 vid)
9273 {
9274         struct igb_adapter *adapter = netdev_priv(netdev);
9275         int pf_id = adapter->vfs_allocated_count;
9276         struct e1000_hw *hw = &adapter->hw;
9277
9278         /* remove VID from filter table */
9279         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9280                 igb_vfta_set(hw, vid, pf_id, false, true);
9281
9282         clear_bit(vid, adapter->active_vlans);
9283
9284         return 0;
9285 }
9286
9287 static void igb_restore_vlan(struct igb_adapter *adapter)
9288 {
9289         u16 vid = 1;
9290
9291         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9292         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9293
9294         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9295                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9296 }
9297
9298 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9299 {
9300         struct pci_dev *pdev = adapter->pdev;
9301         struct e1000_mac_info *mac = &adapter->hw.mac;
9302
9303         mac->autoneg = 0;
9304
9305         /* Make sure dplx is at most 1 bit and lsb of speed is not set
9306          * for the switch() below to work
9307          */
9308         if ((spd & 1) || (dplx & ~1))
9309                 goto err_inval;
9310
9311         /* Fiber NIC's only allow 1000 gbps Full duplex
9312          * and 100Mbps Full duplex for 100baseFx sfp
9313          */
9314         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9315                 switch (spd + dplx) {
9316                 case SPEED_10 + DUPLEX_HALF:
9317                 case SPEED_10 + DUPLEX_FULL:
9318                 case SPEED_100 + DUPLEX_HALF:
9319                         goto err_inval;
9320                 default:
9321                         break;
9322                 }
9323         }
9324
9325         switch (spd + dplx) {
9326         case SPEED_10 + DUPLEX_HALF:
9327                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9328                 break;
9329         case SPEED_10 + DUPLEX_FULL:
9330                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9331                 break;
9332         case SPEED_100 + DUPLEX_HALF:
9333                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9334                 break;
9335         case SPEED_100 + DUPLEX_FULL:
9336                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9337                 break;
9338         case SPEED_1000 + DUPLEX_FULL:
9339                 mac->autoneg = 1;
9340                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9341                 break;
9342         case SPEED_1000 + DUPLEX_HALF: /* not supported */
9343         default:
9344                 goto err_inval;
9345         }
9346
9347         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9348         adapter->hw.phy.mdix = AUTO_ALL_MODES;
9349
9350         return 0;
9351
9352 err_inval:
9353         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9354         return -EINVAL;
9355 }
9356
9357 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9358                           bool runtime)
9359 {
9360         struct net_device *netdev = pci_get_drvdata(pdev);
9361         struct igb_adapter *adapter = netdev_priv(netdev);
9362         struct e1000_hw *hw = &adapter->hw;
9363         u32 ctrl, rctl, status;
9364         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9365         bool wake;
9366
9367         rtnl_lock();
9368         netif_device_detach(netdev);
9369
9370         if (netif_running(netdev))
9371                 __igb_close(netdev, true);
9372
9373         igb_ptp_suspend(adapter);
9374
9375         igb_clear_interrupt_scheme(adapter);
9376         rtnl_unlock();
9377
9378         status = rd32(E1000_STATUS);
9379         if (status & E1000_STATUS_LU)
9380                 wufc &= ~E1000_WUFC_LNKC;
9381
9382         if (wufc) {
9383                 igb_setup_rctl(adapter);
9384                 igb_set_rx_mode(netdev);
9385
9386                 /* turn on all-multi mode if wake on multicast is enabled */
9387                 if (wufc & E1000_WUFC_MC) {
9388                         rctl = rd32(E1000_RCTL);
9389                         rctl |= E1000_RCTL_MPE;
9390                         wr32(E1000_RCTL, rctl);
9391                 }
9392
9393                 ctrl = rd32(E1000_CTRL);
9394                 ctrl |= E1000_CTRL_ADVD3WUC;
9395                 wr32(E1000_CTRL, ctrl);
9396
9397                 /* Allow time for pending master requests to run */
9398                 igb_disable_pcie_master(hw);
9399
9400                 wr32(E1000_WUC, E1000_WUC_PME_EN);
9401                 wr32(E1000_WUFC, wufc);
9402         } else {
9403                 wr32(E1000_WUC, 0);
9404                 wr32(E1000_WUFC, 0);
9405         }
9406
9407         wake = wufc || adapter->en_mng_pt;
9408         if (!wake)
9409                 igb_power_down_link(adapter);
9410         else
9411                 igb_power_up_link(adapter);
9412
9413         if (enable_wake)
9414                 *enable_wake = wake;
9415
9416         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9417          * would have already happened in close and is redundant.
9418          */
9419         igb_release_hw_control(adapter);
9420
9421         pci_disable_device(pdev);
9422
9423         return 0;
9424 }
9425
9426 static void igb_deliver_wake_packet(struct net_device *netdev)
9427 {
9428         struct igb_adapter *adapter = netdev_priv(netdev);
9429         struct e1000_hw *hw = &adapter->hw;
9430         struct sk_buff *skb;
9431         u32 wupl;
9432
9433         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9434
9435         /* WUPM stores only the first 128 bytes of the wake packet.
9436          * Read the packet only if we have the whole thing.
9437          */
9438         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9439                 return;
9440
9441         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9442         if (!skb)
9443                 return;
9444
9445         skb_put(skb, wupl);
9446
9447         /* Ensure reads are 32-bit aligned */
9448         wupl = roundup(wupl, 4);
9449
9450         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9451
9452         skb->protocol = eth_type_trans(skb, netdev);
9453         netif_rx(skb);
9454 }
9455
9456 static int __maybe_unused igb_suspend(struct device *dev)
9457 {
9458         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9459 }
9460
9461 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9462 {
9463         struct pci_dev *pdev = to_pci_dev(dev);
9464         struct net_device *netdev = pci_get_drvdata(pdev);
9465         struct igb_adapter *adapter = netdev_priv(netdev);
9466         struct e1000_hw *hw = &adapter->hw;
9467         u32 err, val;
9468
9469         pci_set_power_state(pdev, PCI_D0);
9470         pci_restore_state(pdev);
9471         pci_save_state(pdev);
9472
9473         if (!pci_device_is_present(pdev))
9474                 return -ENODEV;
9475         err = pci_enable_device_mem(pdev);
9476         if (err) {
9477                 dev_err(&pdev->dev,
9478                         "igb: Cannot enable PCI device from suspend\n");
9479                 return err;
9480         }
9481         pci_set_master(pdev);
9482
9483         pci_enable_wake(pdev, PCI_D3hot, 0);
9484         pci_enable_wake(pdev, PCI_D3cold, 0);
9485
9486         if (igb_init_interrupt_scheme(adapter, true)) {
9487                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9488                 return -ENOMEM;
9489         }
9490
9491         igb_reset(adapter);
9492
9493         /* let the f/w know that the h/w is now under the control of the
9494          * driver.
9495          */
9496         igb_get_hw_control(adapter);
9497
9498         val = rd32(E1000_WUS);
9499         if (val & WAKE_PKT_WUS)
9500                 igb_deliver_wake_packet(netdev);
9501
9502         wr32(E1000_WUS, ~0);
9503
9504         if (!rpm)
9505                 rtnl_lock();
9506         if (!err && netif_running(netdev))
9507                 err = __igb_open(netdev, true);
9508
9509         if (!err)
9510                 netif_device_attach(netdev);
9511         if (!rpm)
9512                 rtnl_unlock();
9513
9514         return err;
9515 }
9516
9517 static int __maybe_unused igb_resume(struct device *dev)
9518 {
9519         return __igb_resume(dev, false);
9520 }
9521
9522 static int __maybe_unused igb_runtime_idle(struct device *dev)
9523 {
9524         struct net_device *netdev = dev_get_drvdata(dev);
9525         struct igb_adapter *adapter = netdev_priv(netdev);
9526
9527         if (!igb_has_link(adapter))
9528                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9529
9530         return -EBUSY;
9531 }
9532
9533 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9534 {
9535         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9536 }
9537
9538 static int __maybe_unused igb_runtime_resume(struct device *dev)
9539 {
9540         return __igb_resume(dev, true);
9541 }
9542
9543 static void igb_shutdown(struct pci_dev *pdev)
9544 {
9545         bool wake;
9546
9547         __igb_shutdown(pdev, &wake, 0);
9548
9549         if (system_state == SYSTEM_POWER_OFF) {
9550                 pci_wake_from_d3(pdev, wake);
9551                 pci_set_power_state(pdev, PCI_D3hot);
9552         }
9553 }
9554
9555 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9556 {
9557 #ifdef CONFIG_PCI_IOV
9558         int err;
9559
9560         if (num_vfs == 0) {
9561                 return igb_disable_sriov(dev, true);
9562         } else {
9563                 err = igb_enable_sriov(dev, num_vfs, true);
9564                 return err ? err : num_vfs;
9565         }
9566 #endif
9567         return 0;
9568 }
9569
9570 /**
9571  *  igb_io_error_detected - called when PCI error is detected
9572  *  @pdev: Pointer to PCI device
9573  *  @state: The current pci connection state
9574  *
9575  *  This function is called after a PCI bus error affecting
9576  *  this device has been detected.
9577  **/
9578 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9579                                               pci_channel_state_t state)
9580 {
9581         struct net_device *netdev = pci_get_drvdata(pdev);
9582         struct igb_adapter *adapter = netdev_priv(netdev);
9583
9584         netif_device_detach(netdev);
9585
9586         if (state == pci_channel_io_perm_failure)
9587                 return PCI_ERS_RESULT_DISCONNECT;
9588
9589         if (netif_running(netdev))
9590                 igb_down(adapter);
9591         pci_disable_device(pdev);
9592
9593         /* Request a slot reset. */
9594         return PCI_ERS_RESULT_NEED_RESET;
9595 }
9596
9597 /**
9598  *  igb_io_slot_reset - called after the pci bus has been reset.
9599  *  @pdev: Pointer to PCI device
9600  *
9601  *  Restart the card from scratch, as if from a cold-boot. Implementation
9602  *  resembles the first-half of the __igb_resume routine.
9603  **/
9604 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9605 {
9606         struct net_device *netdev = pci_get_drvdata(pdev);
9607         struct igb_adapter *adapter = netdev_priv(netdev);
9608         struct e1000_hw *hw = &adapter->hw;
9609         pci_ers_result_t result;
9610
9611         if (pci_enable_device_mem(pdev)) {
9612                 dev_err(&pdev->dev,
9613                         "Cannot re-enable PCI device after reset.\n");
9614                 result = PCI_ERS_RESULT_DISCONNECT;
9615         } else {
9616                 pci_set_master(pdev);
9617                 pci_restore_state(pdev);
9618                 pci_save_state(pdev);
9619
9620                 pci_enable_wake(pdev, PCI_D3hot, 0);
9621                 pci_enable_wake(pdev, PCI_D3cold, 0);
9622
9623                 /* In case of PCI error, adapter lose its HW address
9624                  * so we should re-assign it here.
9625                  */
9626                 hw->hw_addr = adapter->io_addr;
9627
9628                 igb_reset(adapter);
9629                 wr32(E1000_WUS, ~0);
9630                 result = PCI_ERS_RESULT_RECOVERED;
9631         }
9632
9633         return result;
9634 }
9635
9636 /**
9637  *  igb_io_resume - called when traffic can start flowing again.
9638  *  @pdev: Pointer to PCI device
9639  *
9640  *  This callback is called when the error recovery driver tells us that
9641  *  its OK to resume normal operation. Implementation resembles the
9642  *  second-half of the __igb_resume routine.
9643  */
9644 static void igb_io_resume(struct pci_dev *pdev)
9645 {
9646         struct net_device *netdev = pci_get_drvdata(pdev);
9647         struct igb_adapter *adapter = netdev_priv(netdev);
9648
9649         if (netif_running(netdev)) {
9650                 if (igb_up(adapter)) {
9651                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9652                         return;
9653                 }
9654         }
9655
9656         netif_device_attach(netdev);
9657
9658         /* let the f/w know that the h/w is now under the control of the
9659          * driver.
9660          */
9661         igb_get_hw_control(adapter);
9662 }
9663
9664 /**
9665  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9666  *  @adapter: Pointer to adapter structure
9667  *  @index: Index of the RAR entry which need to be synced with MAC table
9668  **/
9669 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9670 {
9671         struct e1000_hw *hw = &adapter->hw;
9672         u32 rar_low, rar_high;
9673         u8 *addr = adapter->mac_table[index].addr;
9674
9675         /* HW expects these to be in network order when they are plugged
9676          * into the registers which are little endian.  In order to guarantee
9677          * that ordering we need to do an leXX_to_cpup here in order to be
9678          * ready for the byteswap that occurs with writel
9679          */
9680         rar_low = le32_to_cpup((__le32 *)(addr));
9681         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9682
9683         /* Indicate to hardware the Address is Valid. */
9684         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9685                 if (is_valid_ether_addr(addr))
9686                         rar_high |= E1000_RAH_AV;
9687
9688                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9689                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9690
9691                 switch (hw->mac.type) {
9692                 case e1000_82575:
9693                 case e1000_i210:
9694                         if (adapter->mac_table[index].state &
9695                             IGB_MAC_STATE_QUEUE_STEERING)
9696                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9697
9698                         rar_high |= E1000_RAH_POOL_1 *
9699                                     adapter->mac_table[index].queue;
9700                         break;
9701                 default:
9702                         rar_high |= E1000_RAH_POOL_1 <<
9703                                     adapter->mac_table[index].queue;
9704                         break;
9705                 }
9706         }
9707
9708         wr32(E1000_RAL(index), rar_low);
9709         wrfl();
9710         wr32(E1000_RAH(index), rar_high);
9711         wrfl();
9712 }
9713
9714 static int igb_set_vf_mac(struct igb_adapter *adapter,
9715                           int vf, unsigned char *mac_addr)
9716 {
9717         struct e1000_hw *hw = &adapter->hw;
9718         /* VF MAC addresses start at end of receive addresses and moves
9719          * towards the first, as a result a collision should not be possible
9720          */
9721         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9722         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9723
9724         ether_addr_copy(vf_mac_addr, mac_addr);
9725         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9726         adapter->mac_table[rar_entry].queue = vf;
9727         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9728         igb_rar_set_index(adapter, rar_entry);
9729
9730         return 0;
9731 }
9732
9733 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9734 {
9735         struct igb_adapter *adapter = netdev_priv(netdev);
9736
9737         if (vf >= adapter->vfs_allocated_count)
9738                 return -EINVAL;
9739
9740         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9741          * flag and allows to overwrite the MAC via VF netdev.  This
9742          * is necessary to allow libvirt a way to restore the original
9743          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9744          * down a VM.
9745          */
9746         if (is_zero_ether_addr(mac)) {
9747                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9748                 dev_info(&adapter->pdev->dev,
9749                          "remove administratively set MAC on VF %d\n",
9750                          vf);
9751         } else if (is_valid_ether_addr(mac)) {
9752                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9753                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9754                          mac, vf);
9755                 dev_info(&adapter->pdev->dev,
9756                          "Reload the VF driver to make this change effective.");
9757                 /* Generate additional warning if PF is down */
9758                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9759                         dev_warn(&adapter->pdev->dev,
9760                                  "The VF MAC address has been set, but the PF device is not up.\n");
9761                         dev_warn(&adapter->pdev->dev,
9762                                  "Bring the PF device up before attempting to use the VF device.\n");
9763                 }
9764         } else {
9765                 return -EINVAL;
9766         }
9767         return igb_set_vf_mac(adapter, vf, mac);
9768 }
9769
9770 static int igb_link_mbps(int internal_link_speed)
9771 {
9772         switch (internal_link_speed) {
9773         case SPEED_100:
9774                 return 100;
9775         case SPEED_1000:
9776                 return 1000;
9777         default:
9778                 return 0;
9779         }
9780 }
9781
9782 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9783                                   int link_speed)
9784 {
9785         int rf_dec, rf_int;
9786         u32 bcnrc_val;
9787
9788         if (tx_rate != 0) {
9789                 /* Calculate the rate factor values to set */
9790                 rf_int = link_speed / tx_rate;
9791                 rf_dec = (link_speed - (rf_int * tx_rate));
9792                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9793                          tx_rate;
9794
9795                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9796                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9797                               E1000_RTTBCNRC_RF_INT_MASK);
9798                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9799         } else {
9800                 bcnrc_val = 0;
9801         }
9802
9803         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9804         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9805          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9806          */
9807         wr32(E1000_RTTBCNRM, 0x14);
9808         wr32(E1000_RTTBCNRC, bcnrc_val);
9809 }
9810
9811 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9812 {
9813         int actual_link_speed, i;
9814         bool reset_rate = false;
9815
9816         /* VF TX rate limit was not set or not supported */
9817         if ((adapter->vf_rate_link_speed == 0) ||
9818             (adapter->hw.mac.type != e1000_82576))
9819                 return;
9820
9821         actual_link_speed = igb_link_mbps(adapter->link_speed);
9822         if (actual_link_speed != adapter->vf_rate_link_speed) {
9823                 reset_rate = true;
9824                 adapter->vf_rate_link_speed = 0;
9825                 dev_info(&adapter->pdev->dev,
9826                          "Link speed has been changed. VF Transmit rate is disabled\n");
9827         }
9828
9829         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9830                 if (reset_rate)
9831                         adapter->vf_data[i].tx_rate = 0;
9832
9833                 igb_set_vf_rate_limit(&adapter->hw, i,
9834                                       adapter->vf_data[i].tx_rate,
9835                                       actual_link_speed);
9836         }
9837 }
9838
9839 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9840                              int min_tx_rate, int max_tx_rate)
9841 {
9842         struct igb_adapter *adapter = netdev_priv(netdev);
9843         struct e1000_hw *hw = &adapter->hw;
9844         int actual_link_speed;
9845
9846         if (hw->mac.type != e1000_82576)
9847                 return -EOPNOTSUPP;
9848
9849         if (min_tx_rate)
9850                 return -EINVAL;
9851
9852         actual_link_speed = igb_link_mbps(adapter->link_speed);
9853         if ((vf >= adapter->vfs_allocated_count) ||
9854             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9855             (max_tx_rate < 0) ||
9856             (max_tx_rate > actual_link_speed))
9857                 return -EINVAL;
9858
9859         adapter->vf_rate_link_speed = actual_link_speed;
9860         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9861         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9862
9863         return 0;
9864 }
9865
9866 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9867                                    bool setting)
9868 {
9869         struct igb_adapter *adapter = netdev_priv(netdev);
9870         struct e1000_hw *hw = &adapter->hw;
9871         u32 reg_val, reg_offset;
9872
9873         if (!adapter->vfs_allocated_count)
9874                 return -EOPNOTSUPP;
9875
9876         if (vf >= adapter->vfs_allocated_count)
9877                 return -EINVAL;
9878
9879         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9880         reg_val = rd32(reg_offset);
9881         if (setting)
9882                 reg_val |= (BIT(vf) |
9883                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9884         else
9885                 reg_val &= ~(BIT(vf) |
9886                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9887         wr32(reg_offset, reg_val);
9888
9889         adapter->vf_data[vf].spoofchk_enabled = setting;
9890         return 0;
9891 }
9892
9893 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9894 {
9895         struct igb_adapter *adapter = netdev_priv(netdev);
9896
9897         if (vf >= adapter->vfs_allocated_count)
9898                 return -EINVAL;
9899         if (adapter->vf_data[vf].trusted == setting)
9900                 return 0;
9901
9902         adapter->vf_data[vf].trusted = setting;
9903
9904         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9905                  vf, setting ? "" : "not ");
9906         return 0;
9907 }
9908
9909 static int igb_ndo_get_vf_config(struct net_device *netdev,
9910                                  int vf, struct ifla_vf_info *ivi)
9911 {
9912         struct igb_adapter *adapter = netdev_priv(netdev);
9913         if (vf >= adapter->vfs_allocated_count)
9914                 return -EINVAL;
9915         ivi->vf = vf;
9916         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9917         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9918         ivi->min_tx_rate = 0;
9919         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9920         ivi->qos = adapter->vf_data[vf].pf_qos;
9921         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9922         ivi->trusted = adapter->vf_data[vf].trusted;
9923         return 0;
9924 }
9925
9926 static void igb_vmm_control(struct igb_adapter *adapter)
9927 {
9928         struct e1000_hw *hw = &adapter->hw;
9929         u32 reg;
9930
9931         switch (hw->mac.type) {
9932         case e1000_82575:
9933         case e1000_i210:
9934         case e1000_i211:
9935         case e1000_i354:
9936         default:
9937                 /* replication is not supported for 82575 */
9938                 return;
9939         case e1000_82576:
9940                 /* notify HW that the MAC is adding vlan tags */
9941                 reg = rd32(E1000_DTXCTL);
9942                 reg |= E1000_DTXCTL_VLAN_ADDED;
9943                 wr32(E1000_DTXCTL, reg);
9944                 fallthrough;
9945         case e1000_82580:
9946                 /* enable replication vlan tag stripping */
9947                 reg = rd32(E1000_RPLOLR);
9948                 reg |= E1000_RPLOLR_STRVLAN;
9949                 wr32(E1000_RPLOLR, reg);
9950                 fallthrough;
9951         case e1000_i350:
9952                 /* none of the above registers are supported by i350 */
9953                 break;
9954         }
9955
9956         if (adapter->vfs_allocated_count) {
9957                 igb_vmdq_set_loopback_pf(hw, true);
9958                 igb_vmdq_set_replication_pf(hw, true);
9959                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9960                                               adapter->vfs_allocated_count);
9961         } else {
9962                 igb_vmdq_set_loopback_pf(hw, false);
9963                 igb_vmdq_set_replication_pf(hw, false);
9964         }
9965 }
9966
9967 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9968 {
9969         struct e1000_hw *hw = &adapter->hw;
9970         u32 dmac_thr;
9971         u16 hwm;
9972         u32 reg;
9973
9974         if (hw->mac.type > e1000_82580) {
9975                 if (adapter->flags & IGB_FLAG_DMAC) {
9976                         /* force threshold to 0. */
9977                         wr32(E1000_DMCTXTH, 0);
9978
9979                         /* DMA Coalescing high water mark needs to be greater
9980                          * than the Rx threshold. Set hwm to PBA - max frame
9981                          * size in 16B units, capping it at PBA - 6KB.
9982                          */
9983                         hwm = 64 * (pba - 6);
9984                         reg = rd32(E1000_FCRTC);
9985                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9986                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9987                                 & E1000_FCRTC_RTH_COAL_MASK);
9988                         wr32(E1000_FCRTC, reg);
9989
9990                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9991                          * frame size, capping it at PBA - 10KB.
9992                          */
9993                         dmac_thr = pba - 10;
9994                         reg = rd32(E1000_DMACR);
9995                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9996                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9997                                 & E1000_DMACR_DMACTHR_MASK);
9998
9999                         /* transition to L0x or L1 if available..*/
10000                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10001
10002                         /* watchdog timer= +-1000 usec in 32usec intervals */
10003                         reg |= (1000 >> 5);
10004
10005                         /* Disable BMC-to-OS Watchdog Enable */
10006                         if (hw->mac.type != e1000_i354)
10007                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10008                         wr32(E1000_DMACR, reg);
10009
10010                         /* no lower threshold to disable
10011                          * coalescing(smart fifb)-UTRESH=0
10012                          */
10013                         wr32(E1000_DMCRTRH, 0);
10014
10015                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10016
10017                         wr32(E1000_DMCTLX, reg);
10018
10019                         /* free space in tx packet buffer to wake from
10020                          * DMA coal
10021                          */
10022                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10023                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10024                 }
10025
10026                 if (hw->mac.type >= e1000_i210 ||
10027                     (adapter->flags & IGB_FLAG_DMAC)) {
10028                         reg = rd32(E1000_PCIEMISC);
10029                         reg |= E1000_PCIEMISC_LX_DECISION;
10030                         wr32(E1000_PCIEMISC, reg);
10031                 } /* endif adapter->dmac is not disabled */
10032         } else if (hw->mac.type == e1000_82580) {
10033                 u32 reg = rd32(E1000_PCIEMISC);
10034
10035                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10036                 wr32(E1000_DMACR, 0);
10037         }
10038 }
10039
10040 /**
10041  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10042  *  @hw: pointer to hardware structure
10043  *  @byte_offset: byte offset to read
10044  *  @dev_addr: device address
10045  *  @data: value read
10046  *
10047  *  Performs byte read operation over I2C interface at
10048  *  a specified device address.
10049  **/
10050 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10051                       u8 dev_addr, u8 *data)
10052 {
10053         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10054         struct i2c_client *this_client = adapter->i2c_client;
10055         s32 status;
10056         u16 swfw_mask = 0;
10057
10058         if (!this_client)
10059                 return E1000_ERR_I2C;
10060
10061         swfw_mask = E1000_SWFW_PHY0_SM;
10062
10063         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10064                 return E1000_ERR_SWFW_SYNC;
10065
10066         status = i2c_smbus_read_byte_data(this_client, byte_offset);
10067         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10068
10069         if (status < 0)
10070                 return E1000_ERR_I2C;
10071         else {
10072                 *data = status;
10073                 return 0;
10074         }
10075 }
10076
10077 /**
10078  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10079  *  @hw: pointer to hardware structure
10080  *  @byte_offset: byte offset to write
10081  *  @dev_addr: device address
10082  *  @data: value to write
10083  *
10084  *  Performs byte write operation over I2C interface at
10085  *  a specified device address.
10086  **/
10087 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10088                        u8 dev_addr, u8 data)
10089 {
10090         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10091         struct i2c_client *this_client = adapter->i2c_client;
10092         s32 status;
10093         u16 swfw_mask = E1000_SWFW_PHY0_SM;
10094
10095         if (!this_client)
10096                 return E1000_ERR_I2C;
10097
10098         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10099                 return E1000_ERR_SWFW_SYNC;
10100         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10101         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10102
10103         if (status)
10104                 return E1000_ERR_I2C;
10105         else
10106                 return 0;
10107
10108 }
10109
10110 int igb_reinit_queues(struct igb_adapter *adapter)
10111 {
10112         struct net_device *netdev = adapter->netdev;
10113         struct pci_dev *pdev = adapter->pdev;
10114         int err = 0;
10115
10116         if (netif_running(netdev))
10117                 igb_close(netdev);
10118
10119         igb_reset_interrupt_capability(adapter);
10120
10121         if (igb_init_interrupt_scheme(adapter, true)) {
10122                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10123                 return -ENOMEM;
10124         }
10125
10126         if (netif_running(netdev))
10127                 err = igb_open(netdev);
10128
10129         return err;
10130 }
10131
10132 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10133 {
10134         struct igb_nfc_filter *rule;
10135
10136         spin_lock(&adapter->nfc_lock);
10137
10138         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10139                 igb_erase_filter(adapter, rule);
10140
10141         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10142                 igb_erase_filter(adapter, rule);
10143
10144         spin_unlock(&adapter->nfc_lock);
10145 }
10146
10147 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10148 {
10149         struct igb_nfc_filter *rule;
10150
10151         spin_lock(&adapter->nfc_lock);
10152
10153         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10154                 igb_add_filter(adapter, rule);
10155
10156         spin_unlock(&adapter->nfc_lock);
10157 }
10158 /* igb_main.c */