1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
42 static s32 igb_get_invariants_82575(struct e1000_hw *);
43 static s32 igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32 igb_check_for_link_82575(struct e1000_hw *);
48 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32 igb_init_hw_82575(struct e1000_hw *);
50 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32 igb_reset_hw_82575(struct e1000_hw *);
55 static s32 igb_reset_hw_82580(struct e1000_hw *);
56 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
66 static s32 igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32 igb_reset_init_script_82575(struct e1000_hw *);
70 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 { 36, 72, 144, 1, 2, 4, 8, 16,
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
84 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 * @hw: pointer to the HW structure
87 * Called to determine if the I2C pins are being used for I2C or as an
88 * external MDIO interface since the two options are mutually exclusive.
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
93 bool ext_mdio = false;
95 switch (hw->mac.type) {
98 reg = rd32(E1000_MDIC);
99 ext_mdio = !!(reg & E1000_MDIC_DEST);
105 reg = rd32(E1000_MDICNFG);
106 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
115 * igb_init_phy_params_82575 - Init PHY func ptrs.
116 * @hw: pointer to the HW structure
118 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 struct e1000_phy_info *phy = &hw->phy;
124 if (hw->phy.media_type != e1000_media_type_copper) {
125 phy->type = e1000_phy_none;
129 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
130 phy->reset_delay_us = 100;
132 ctrl_ext = rd32(E1000_CTRL_EXT);
134 if (igb_sgmii_active_82575(hw)) {
135 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
136 ctrl_ext |= E1000_CTRL_I2C_ENA;
138 phy->ops.reset = igb_phy_hw_reset;
139 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
142 wr32(E1000_CTRL_EXT, ctrl_ext);
143 igb_reset_mdicnfg_82580(hw);
145 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
146 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
147 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149 switch (hw->mac.type) {
152 phy->ops.read_reg = igb_read_phy_reg_82580;
153 phy->ops.write_reg = igb_write_phy_reg_82580;
157 phy->ops.read_reg = igb_read_phy_reg_gs40g;
158 phy->ops.write_reg = igb_write_phy_reg_gs40g;
161 phy->ops.read_reg = igb_read_phy_reg_igp;
162 phy->ops.write_reg = igb_write_phy_reg_igp;
167 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
168 E1000_STATUS_FUNC_SHIFT;
170 /* Set phy->phy_addr and phy->id. */
171 ret_val = igb_get_phy_id_82575(hw);
175 /* Verify phy id and set remaining function pointers */
177 case I347AT4_E_PHY_ID:
178 case M88E1112_E_PHY_ID:
179 case M88E1111_I_PHY_ID:
180 phy->type = e1000_phy_m88;
181 phy->ops.get_phy_info = igb_get_phy_info_m88;
182 if (phy->id == I347AT4_E_PHY_ID ||
183 phy->id == M88E1112_E_PHY_ID)
184 phy->ops.get_cable_length =
185 igb_get_cable_length_m88_gen2;
187 phy->ops.get_cable_length = igb_get_cable_length_m88;
188 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
190 case IGP03E1000_E_PHY_ID:
191 phy->type = e1000_phy_igp_3;
192 phy->ops.get_phy_info = igb_get_phy_info_igp;
193 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
194 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
195 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
196 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
198 case I82580_I_PHY_ID:
200 phy->type = e1000_phy_82580;
201 phy->ops.force_speed_duplex =
202 igb_phy_force_speed_duplex_82580;
203 phy->ops.get_cable_length = igb_get_cable_length_82580;
204 phy->ops.get_phy_info = igb_get_phy_info_82580;
205 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
206 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
209 phy->type = e1000_phy_i210;
210 phy->ops.check_polarity = igb_check_polarity_m88;
211 phy->ops.get_phy_info = igb_get_phy_info_m88;
212 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
213 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
214 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
215 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
218 ret_val = -E1000_ERR_PHY;
227 * igb_init_nvm_params_82575 - Init NVM func ptrs.
228 * @hw: pointer to the HW structure
230 s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
232 struct e1000_nvm_info *nvm = &hw->nvm;
233 u32 eecd = rd32(E1000_EECD);
236 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237 E1000_EECD_SIZE_EX_SHIFT);
238 /* Added to a constant, "size" becomes the left-shift value
239 * for setting word_size.
241 size += NVM_WORD_SIZE_BASE_SHIFT;
243 /* Just in case size is out of range, cap it to the largest
244 * EEPROM size supported
249 nvm->word_size = 1 << size;
250 if (hw->mac.type < e1000_i210) {
251 nvm->opcode_bits = 8;
254 switch (nvm->override) {
255 case e1000_nvm_override_spi_large:
257 nvm->address_bits = 16;
259 case e1000_nvm_override_spi_small:
261 nvm->address_bits = 8;
264 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
265 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269 if (nvm->word_size == (1 << 15))
270 nvm->page_size = 128;
272 nvm->type = e1000_nvm_eeprom_spi;
274 nvm->type = e1000_nvm_flash_hw;
277 /* NVM Function Pointers */
278 switch (hw->mac.type) {
280 nvm->ops.validate = igb_validate_nvm_checksum_82580;
281 nvm->ops.update = igb_update_nvm_checksum_82580;
282 nvm->ops.acquire = igb_acquire_nvm_82575;
283 nvm->ops.release = igb_release_nvm_82575;
284 if (nvm->word_size < (1 << 15))
285 nvm->ops.read = igb_read_nvm_eerd;
287 nvm->ops.read = igb_read_nvm_spi;
288 nvm->ops.write = igb_write_nvm_spi;
291 nvm->ops.validate = igb_validate_nvm_checksum_i350;
292 nvm->ops.update = igb_update_nvm_checksum_i350;
293 nvm->ops.acquire = igb_acquire_nvm_82575;
294 nvm->ops.release = igb_release_nvm_82575;
295 if (nvm->word_size < (1 << 15))
296 nvm->ops.read = igb_read_nvm_eerd;
298 nvm->ops.read = igb_read_nvm_spi;
299 nvm->ops.write = igb_write_nvm_spi;
302 nvm->ops.validate = igb_validate_nvm_checksum_i210;
303 nvm->ops.update = igb_update_nvm_checksum_i210;
304 nvm->ops.acquire = igb_acquire_nvm_i210;
305 nvm->ops.release = igb_release_nvm_i210;
306 nvm->ops.read = igb_read_nvm_srrd_i210;
307 nvm->ops.write = igb_write_nvm_srwr_i210;
308 nvm->ops.valid_led_default = igb_valid_led_default_i210;
311 nvm->ops.acquire = igb_acquire_nvm_i210;
312 nvm->ops.release = igb_release_nvm_i210;
313 nvm->ops.read = igb_read_nvm_i211;
314 nvm->ops.valid_led_default = igb_valid_led_default_i210;
315 nvm->ops.validate = NULL;
316 nvm->ops.update = NULL;
317 nvm->ops.write = NULL;
320 nvm->ops.validate = igb_validate_nvm_checksum;
321 nvm->ops.update = igb_update_nvm_checksum;
322 nvm->ops.acquire = igb_acquire_nvm_82575;
323 nvm->ops.release = igb_release_nvm_82575;
324 if (nvm->word_size < (1 << 15))
325 nvm->ops.read = igb_read_nvm_eerd;
327 nvm->ops.read = igb_read_nvm_spi;
328 nvm->ops.write = igb_write_nvm_spi;
336 * igb_init_mac_params_82575 - Init MAC func ptrs.
337 * @hw: pointer to the HW structure
339 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
341 struct e1000_mac_info *mac = &hw->mac;
342 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
344 /* Set mta register count */
345 mac->mta_reg_count = 128;
346 /* Set rar entry count */
349 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
352 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
355 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
358 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
362 if (mac->type >= e1000_82580)
363 mac->ops.reset_hw = igb_reset_hw_82580;
365 mac->ops.reset_hw = igb_reset_hw_82575;
367 if (mac->type >= e1000_i210) {
368 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
369 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
372 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
373 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
376 /* Set if part includes ASF firmware */
377 mac->asf_firmware_present = true;
378 /* Set if manageability features are enabled. */
379 mac->arc_subsystem_valid =
380 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
382 /* enable EEE on i350 parts and later parts */
383 if (mac->type >= e1000_i350)
384 dev_spec->eee_disable = false;
386 dev_spec->eee_disable = true;
387 /* physical interface link setup */
388 mac->ops.setup_physical_interface =
389 (hw->phy.media_type == e1000_media_type_copper)
390 ? igb_setup_copper_link_82575
391 : igb_setup_serdes_link_82575;
396 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
398 struct e1000_mac_info *mac = &hw->mac;
399 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
403 switch (hw->device_id) {
404 case E1000_DEV_ID_82575EB_COPPER:
405 case E1000_DEV_ID_82575EB_FIBER_SERDES:
406 case E1000_DEV_ID_82575GB_QUAD_COPPER:
407 mac->type = e1000_82575;
409 case E1000_DEV_ID_82576:
410 case E1000_DEV_ID_82576_NS:
411 case E1000_DEV_ID_82576_NS_SERDES:
412 case E1000_DEV_ID_82576_FIBER:
413 case E1000_DEV_ID_82576_SERDES:
414 case E1000_DEV_ID_82576_QUAD_COPPER:
415 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
416 case E1000_DEV_ID_82576_SERDES_QUAD:
417 mac->type = e1000_82576;
419 case E1000_DEV_ID_82580_COPPER:
420 case E1000_DEV_ID_82580_FIBER:
421 case E1000_DEV_ID_82580_QUAD_FIBER:
422 case E1000_DEV_ID_82580_SERDES:
423 case E1000_DEV_ID_82580_SGMII:
424 case E1000_DEV_ID_82580_COPPER_DUAL:
425 case E1000_DEV_ID_DH89XXCC_SGMII:
426 case E1000_DEV_ID_DH89XXCC_SERDES:
427 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
428 case E1000_DEV_ID_DH89XXCC_SFP:
429 mac->type = e1000_82580;
431 case E1000_DEV_ID_I350_COPPER:
432 case E1000_DEV_ID_I350_FIBER:
433 case E1000_DEV_ID_I350_SERDES:
434 case E1000_DEV_ID_I350_SGMII:
435 mac->type = e1000_i350;
437 case E1000_DEV_ID_I210_COPPER:
438 case E1000_DEV_ID_I210_COPPER_OEM1:
439 case E1000_DEV_ID_I210_COPPER_IT:
440 case E1000_DEV_ID_I210_FIBER:
441 case E1000_DEV_ID_I210_SERDES:
442 case E1000_DEV_ID_I210_SGMII:
443 mac->type = e1000_i210;
445 case E1000_DEV_ID_I211_COPPER:
446 mac->type = e1000_i211;
449 return -E1000_ERR_MAC_INIT;
455 * The 82575 uses bits 22:23 for link mode. The mode can be changed
456 * based on the EEPROM. We cannot rely upon device ID. There
457 * is no distinguishable difference between fiber and internal
458 * SerDes mode on the 82575. There can be an external PHY attached
459 * on the SGMII interface. For this, we'll set sgmii_active to true.
461 hw->phy.media_type = e1000_media_type_copper;
462 dev_spec->sgmii_active = false;
464 ctrl_ext = rd32(E1000_CTRL_EXT);
465 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
466 case E1000_CTRL_EXT_LINK_MODE_SGMII:
467 dev_spec->sgmii_active = true;
469 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
470 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
471 hw->phy.media_type = e1000_media_type_internal_serdes;
477 /* mac initialization and operations */
478 ret_val = igb_init_mac_params_82575(hw);
482 /* NVM initialization */
483 ret_val = igb_init_nvm_params_82575(hw);
487 /* if part supports SR-IOV then initialize mailbox parameters */
491 igb_init_mbx_params_pf(hw);
497 /* setup PHY parameters */
498 ret_val = igb_init_phy_params_82575(hw);
505 * igb_acquire_phy_82575 - Acquire rights to access PHY
506 * @hw: pointer to the HW structure
508 * Acquire access rights to the correct PHY. This is a
509 * function pointer entry point called by the api module.
511 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
513 u16 mask = E1000_SWFW_PHY0_SM;
515 if (hw->bus.func == E1000_FUNC_1)
516 mask = E1000_SWFW_PHY1_SM;
517 else if (hw->bus.func == E1000_FUNC_2)
518 mask = E1000_SWFW_PHY2_SM;
519 else if (hw->bus.func == E1000_FUNC_3)
520 mask = E1000_SWFW_PHY3_SM;
522 return hw->mac.ops.acquire_swfw_sync(hw, mask);
526 * igb_release_phy_82575 - Release rights to access PHY
527 * @hw: pointer to the HW structure
529 * A wrapper to release access rights to the correct PHY. This is a
530 * function pointer entry point called by the api module.
532 static void igb_release_phy_82575(struct e1000_hw *hw)
534 u16 mask = E1000_SWFW_PHY0_SM;
536 if (hw->bus.func == E1000_FUNC_1)
537 mask = E1000_SWFW_PHY1_SM;
538 else if (hw->bus.func == E1000_FUNC_2)
539 mask = E1000_SWFW_PHY2_SM;
540 else if (hw->bus.func == E1000_FUNC_3)
541 mask = E1000_SWFW_PHY3_SM;
543 hw->mac.ops.release_swfw_sync(hw, mask);
547 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
548 * @hw: pointer to the HW structure
549 * @offset: register offset to be read
550 * @data: pointer to the read data
552 * Reads the PHY register at offset using the serial gigabit media independent
553 * interface and stores the retrieved information in data.
555 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
558 s32 ret_val = -E1000_ERR_PARAM;
560 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
561 hw_dbg("PHY Address %u is out of range\n", offset);
565 ret_val = hw->phy.ops.acquire(hw);
569 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
571 hw->phy.ops.release(hw);
578 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
579 * @hw: pointer to the HW structure
580 * @offset: register offset to write to
581 * @data: data to write at register offset
583 * Writes the data to PHY register at the offset using the serial gigabit
584 * media independent interface.
586 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
589 s32 ret_val = -E1000_ERR_PARAM;
592 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
593 hw_dbg("PHY Address %d is out of range\n", offset);
597 ret_val = hw->phy.ops.acquire(hw);
601 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
603 hw->phy.ops.release(hw);
610 * igb_get_phy_id_82575 - Retrieve PHY addr and id
611 * @hw: pointer to the HW structure
613 * Retrieves the PHY address and ID for both PHY's which do and do not use
616 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
618 struct e1000_phy_info *phy = &hw->phy;
625 * For SGMII PHYs, we try the list of possible addresses until
626 * we find one that works. For non-SGMII PHYs
627 * (e.g. integrated copper PHYs), an address of 1 should
628 * work. The result of this function should mean phy->phy_addr
629 * and phy->id are set correctly.
631 if (!(igb_sgmii_active_82575(hw))) {
633 ret_val = igb_get_phy_id(hw);
637 if (igb_sgmii_uses_mdio_82575(hw)) {
638 switch (hw->mac.type) {
641 mdic = rd32(E1000_MDIC);
642 mdic &= E1000_MDIC_PHY_MASK;
643 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
649 mdic = rd32(E1000_MDICNFG);
650 mdic &= E1000_MDICNFG_PHY_MASK;
651 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
654 ret_val = -E1000_ERR_PHY;
658 ret_val = igb_get_phy_id(hw);
662 /* Power on sgmii phy if it is disabled */
663 ctrl_ext = rd32(E1000_CTRL_EXT);
664 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
669 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
670 * Therefore, we need to test 1-7
672 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
673 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
675 hw_dbg("Vendor ID 0x%08X read at address %u\n",
678 * At the time of this writing, The M88 part is
679 * the only supported SGMII PHY product.
681 if (phy_id == M88_VENDOR)
684 hw_dbg("PHY address %u was unreadable\n", phy->addr);
688 /* A valid PHY type couldn't be found. */
689 if (phy->addr == 8) {
691 ret_val = -E1000_ERR_PHY;
694 ret_val = igb_get_phy_id(hw);
697 /* restore previous sfp cage power state */
698 wr32(E1000_CTRL_EXT, ctrl_ext);
705 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
706 * @hw: pointer to the HW structure
708 * Resets the PHY using the serial gigabit media independent interface.
710 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
715 * This isn't a true "hard" reset, but is the only reset
716 * available to us at this time.
719 hw_dbg("Soft resetting SGMII attached PHY...\n");
722 * SFP documentation requires the following to configure the SPF module
723 * to work on SGMII. No further documentation is given.
725 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
729 ret_val = igb_phy_sw_reset(hw);
736 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
737 * @hw: pointer to the HW structure
738 * @active: true to enable LPLU, false to disable
740 * Sets the LPLU D0 state according to the active flag. When
741 * activating LPLU this function also disables smart speed
742 * and vice versa. LPLU will not be activated unless the
743 * device autonegotiation advertisement meets standards of
744 * either 10 or 10/100 or 10/100/1000 at all duplexes.
745 * This is a function pointer entry point only called by
746 * PHY setup routines.
748 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
750 struct e1000_phy_info *phy = &hw->phy;
754 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
759 data |= IGP02E1000_PM_D0_LPLU;
760 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
765 /* When LPLU is enabled, we should disable SmartSpeed */
766 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
768 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
769 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
774 data &= ~IGP02E1000_PM_D0_LPLU;
775 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
778 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
779 * during Dx states where the power conservation is most
780 * important. During driver activity we should enable
781 * SmartSpeed, so performance is maintained.
783 if (phy->smart_speed == e1000_smart_speed_on) {
784 ret_val = phy->ops.read_reg(hw,
785 IGP01E1000_PHY_PORT_CONFIG, &data);
789 data |= IGP01E1000_PSCFR_SMART_SPEED;
790 ret_val = phy->ops.write_reg(hw,
791 IGP01E1000_PHY_PORT_CONFIG, data);
794 } else if (phy->smart_speed == e1000_smart_speed_off) {
795 ret_val = phy->ops.read_reg(hw,
796 IGP01E1000_PHY_PORT_CONFIG, &data);
800 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801 ret_val = phy->ops.write_reg(hw,
802 IGP01E1000_PHY_PORT_CONFIG, data);
813 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
814 * @hw: pointer to the HW structure
815 * @active: true to enable LPLU, false to disable
817 * Sets the LPLU D0 state according to the active flag. When
818 * activating LPLU this function also disables smart speed
819 * and vice versa. LPLU will not be activated unless the
820 * device autonegotiation advertisement meets standards of
821 * either 10 or 10/100 or 10/100/1000 at all duplexes.
822 * This is a function pointer entry point only called by
823 * PHY setup routines.
825 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
827 struct e1000_phy_info *phy = &hw->phy;
831 data = rd32(E1000_82580_PHY_POWER_MGMT);
834 data |= E1000_82580_PM_D0_LPLU;
836 /* When LPLU is enabled, we should disable SmartSpeed */
837 data &= ~E1000_82580_PM_SPD;
839 data &= ~E1000_82580_PM_D0_LPLU;
842 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
843 * during Dx states where the power conservation is most
844 * important. During driver activity we should enable
845 * SmartSpeed, so performance is maintained.
847 if (phy->smart_speed == e1000_smart_speed_on)
848 data |= E1000_82580_PM_SPD;
849 else if (phy->smart_speed == e1000_smart_speed_off)
850 data &= ~E1000_82580_PM_SPD; }
852 wr32(E1000_82580_PHY_POWER_MGMT, data);
857 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
858 * @hw: pointer to the HW structure
859 * @active: boolean used to enable/disable lplu
861 * Success returns 0, Failure returns 1
863 * The low power link up (lplu) state is set to the power management level D3
864 * and SmartSpeed is disabled when active is true, else clear lplu for D3
865 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
866 * is used during Dx states where the power conservation is most important.
867 * During driver activity, SmartSpeed should be enabled so performance is
870 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
872 struct e1000_phy_info *phy = &hw->phy;
876 data = rd32(E1000_82580_PHY_POWER_MGMT);
879 data &= ~E1000_82580_PM_D3_LPLU;
881 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
882 * during Dx states where the power conservation is most
883 * important. During driver activity we should enable
884 * SmartSpeed, so performance is maintained.
886 if (phy->smart_speed == e1000_smart_speed_on)
887 data |= E1000_82580_PM_SPD;
888 else if (phy->smart_speed == e1000_smart_speed_off)
889 data &= ~E1000_82580_PM_SPD;
890 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
891 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
892 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
893 data |= E1000_82580_PM_D3_LPLU;
894 /* When LPLU is enabled, we should disable SmartSpeed */
895 data &= ~E1000_82580_PM_SPD;
898 wr32(E1000_82580_PHY_POWER_MGMT, data);
903 * igb_acquire_nvm_82575 - Request for access to EEPROM
904 * @hw: pointer to the HW structure
906 * Acquire the necessary semaphores for exclusive access to the EEPROM.
907 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
908 * Return successful if access grant bit set, else clear the request for
909 * EEPROM access and return -E1000_ERR_NVM (-1).
911 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
915 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
919 ret_val = igb_acquire_nvm(hw);
922 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
929 * igb_release_nvm_82575 - Release exclusive access to EEPROM
930 * @hw: pointer to the HW structure
932 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
933 * then release the semaphores acquired.
935 static void igb_release_nvm_82575(struct e1000_hw *hw)
938 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
942 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
943 * @hw: pointer to the HW structure
944 * @mask: specifies which semaphore to acquire
946 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
947 * will also specify which port we're acquiring the lock for.
949 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
953 u32 fwmask = mask << 16;
955 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
957 while (i < timeout) {
958 if (igb_get_hw_semaphore(hw)) {
959 ret_val = -E1000_ERR_SWFW_SYNC;
963 swfw_sync = rd32(E1000_SW_FW_SYNC);
964 if (!(swfw_sync & (fwmask | swmask)))
968 * Firmware currently using resource (fwmask)
969 * or other software thread using resource (swmask)
971 igb_put_hw_semaphore(hw);
977 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
978 ret_val = -E1000_ERR_SWFW_SYNC;
983 wr32(E1000_SW_FW_SYNC, swfw_sync);
985 igb_put_hw_semaphore(hw);
992 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
993 * @hw: pointer to the HW structure
994 * @mask: specifies which semaphore to acquire
996 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
997 * will also specify which port we're releasing the lock for.
999 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1003 while (igb_get_hw_semaphore(hw) != 0);
1006 swfw_sync = rd32(E1000_SW_FW_SYNC);
1008 wr32(E1000_SW_FW_SYNC, swfw_sync);
1010 igb_put_hw_semaphore(hw);
1014 * igb_get_cfg_done_82575 - Read config done bit
1015 * @hw: pointer to the HW structure
1017 * Read the management control register for the config done bit for
1018 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1019 * to read the config done bit, so an error is *ONLY* logged and returns
1020 * 0. If we were to return with error, EEPROM-less silicon
1021 * would not be able to be reset or change link.
1023 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1025 s32 timeout = PHY_CFG_TIMEOUT;
1027 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1029 if (hw->bus.func == 1)
1030 mask = E1000_NVM_CFG_DONE_PORT_1;
1031 else if (hw->bus.func == E1000_FUNC_2)
1032 mask = E1000_NVM_CFG_DONE_PORT_2;
1033 else if (hw->bus.func == E1000_FUNC_3)
1034 mask = E1000_NVM_CFG_DONE_PORT_3;
1037 if (rd32(E1000_EEMNGCTL) & mask)
1043 hw_dbg("MNG configuration cycle has not completed.\n");
1045 /* If EEPROM is not marked present, init the PHY manually */
1046 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1047 (hw->phy.type == e1000_phy_igp_3))
1048 igb_phy_init_script_igp3(hw);
1054 * igb_check_for_link_82575 - Check for link
1055 * @hw: pointer to the HW structure
1057 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1058 * use the generic interface for determining link.
1060 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1065 if (hw->phy.media_type != e1000_media_type_copper) {
1066 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1069 * Use this flag to determine if link needs to be checked or
1070 * not. If we have link clear the flag so that we do not
1071 * continue to check for link.
1073 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1075 /* Configure Flow Control now that Auto-Neg has completed.
1076 * First, we need to restore the desired flow control
1077 * settings because we may have had to re-autoneg with a
1078 * different link partner.
1080 ret_val = igb_config_fc_after_link_up(hw);
1082 hw_dbg("Error configuring flow control\n");
1084 ret_val = igb_check_for_copper_link(hw);
1091 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1092 * @hw: pointer to the HW structure
1094 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1099 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1100 !igb_sgmii_active_82575(hw))
1103 /* Enable PCS to turn on link */
1104 reg = rd32(E1000_PCS_CFG0);
1105 reg |= E1000_PCS_CFG_PCS_EN;
1106 wr32(E1000_PCS_CFG0, reg);
1108 /* Power up the laser */
1109 reg = rd32(E1000_CTRL_EXT);
1110 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1111 wr32(E1000_CTRL_EXT, reg);
1113 /* flush the write to verify completion */
1119 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1120 * @hw: pointer to the HW structure
1121 * @speed: stores the current speed
1122 * @duplex: stores the current duplex
1124 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1125 * duplex, then store the values in the pointers provided.
1127 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1130 struct e1000_mac_info *mac = &hw->mac;
1133 /* Set up defaults for the return values of this function */
1134 mac->serdes_has_link = false;
1139 * Read the PCS Status register for link state. For non-copper mode,
1140 * the status register is not accurate. The PCS status register is
1143 pcs = rd32(E1000_PCS_LSTAT);
1146 * The link up bit determines when link is up on autoneg. The sync ok
1147 * gets set once both sides sync up and agree upon link. Stable link
1148 * can be determined by checking for both link up and link sync ok
1150 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1151 mac->serdes_has_link = true;
1153 /* Detect and store PCS speed */
1154 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1155 *speed = SPEED_1000;
1156 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1162 /* Detect and store PCS duplex */
1163 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1164 *duplex = FULL_DUPLEX;
1166 *duplex = HALF_DUPLEX;
1174 * igb_shutdown_serdes_link_82575 - Remove link during power down
1175 * @hw: pointer to the HW structure
1177 * In the case of fiber serdes, shut down optics and PCS on driver unload
1178 * when management pass thru is not enabled.
1180 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1184 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1185 igb_sgmii_active_82575(hw))
1188 if (!igb_enable_mng_pass_thru(hw)) {
1189 /* Disable PCS to turn off link */
1190 reg = rd32(E1000_PCS_CFG0);
1191 reg &= ~E1000_PCS_CFG_PCS_EN;
1192 wr32(E1000_PCS_CFG0, reg);
1194 /* shutdown the laser */
1195 reg = rd32(E1000_CTRL_EXT);
1196 reg |= E1000_CTRL_EXT_SDP3_DATA;
1197 wr32(E1000_CTRL_EXT, reg);
1199 /* flush the write to verify completion */
1206 * igb_reset_hw_82575 - Reset hardware
1207 * @hw: pointer to the HW structure
1209 * This resets the hardware into a known state. This is a
1210 * function pointer entry point called by the api module.
1212 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1218 * Prevent the PCI-E bus from sticking if there is no TLP connection
1219 * on the last TLP read/write transaction when MAC is reset.
1221 ret_val = igb_disable_pcie_master(hw);
1223 hw_dbg("PCI-E Master disable polling has failed.\n");
1225 /* set the completion timeout for interface */
1226 ret_val = igb_set_pcie_completion_timeout(hw);
1228 hw_dbg("PCI-E Set completion timeout has failed.\n");
1231 hw_dbg("Masking off all interrupts\n");
1232 wr32(E1000_IMC, 0xffffffff);
1234 wr32(E1000_RCTL, 0);
1235 wr32(E1000_TCTL, E1000_TCTL_PSP);
1240 ctrl = rd32(E1000_CTRL);
1242 hw_dbg("Issuing a global reset to MAC\n");
1243 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1245 ret_val = igb_get_auto_rd_done(hw);
1248 * When auto config read does not complete, do not
1249 * return with an error. This can happen in situations
1250 * where there is no eeprom and prevents getting link.
1252 hw_dbg("Auto Read Done did not complete\n");
1255 /* If EEPROM is not present, run manual init scripts */
1256 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1257 igb_reset_init_script_82575(hw);
1259 /* Clear any pending interrupt events. */
1260 wr32(E1000_IMC, 0xffffffff);
1261 icr = rd32(E1000_ICR);
1263 /* Install any alternate MAC address into RAR0 */
1264 ret_val = igb_check_alt_mac_addr(hw);
1270 * igb_init_hw_82575 - Initialize hardware
1271 * @hw: pointer to the HW structure
1273 * This inits the hardware readying it for operation.
1275 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1277 struct e1000_mac_info *mac = &hw->mac;
1279 u16 i, rar_count = mac->rar_entry_count;
1281 /* Initialize identification LED */
1282 ret_val = igb_id_led_init(hw);
1284 hw_dbg("Error initializing identification LED\n");
1285 /* This is not fatal and we should not stop init due to this */
1288 /* Disabling VLAN filtering */
1289 hw_dbg("Initializing the IEEE VLAN\n");
1290 if (hw->mac.type == e1000_i350)
1291 igb_clear_vfta_i350(hw);
1295 /* Setup the receive address */
1296 igb_init_rx_addrs(hw, rar_count);
1298 /* Zero out the Multicast HASH table */
1299 hw_dbg("Zeroing the MTA\n");
1300 for (i = 0; i < mac->mta_reg_count; i++)
1301 array_wr32(E1000_MTA, i, 0);
1303 /* Zero out the Unicast HASH table */
1304 hw_dbg("Zeroing the UTA\n");
1305 for (i = 0; i < mac->uta_reg_count; i++)
1306 array_wr32(E1000_UTA, i, 0);
1308 /* Setup link and flow control */
1309 ret_val = igb_setup_link(hw);
1312 * Clear all of the statistics registers (clear on read). It is
1313 * important that we do this after we have tried to establish link
1314 * because the symbol error count will increment wildly if there
1317 igb_clear_hw_cntrs_82575(hw);
1322 * igb_setup_copper_link_82575 - Configure copper link settings
1323 * @hw: pointer to the HW structure
1325 * Configures the link for auto-neg or forced speed and duplex. Then we check
1326 * for link, once link is established calls to configure collision distance
1327 * and flow control are called.
1329 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1335 ctrl = rd32(E1000_CTRL);
1336 ctrl |= E1000_CTRL_SLU;
1337 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1338 wr32(E1000_CTRL, ctrl);
1340 /* Clear Go Link Disconnect bit */
1341 if (hw->mac.type >= e1000_82580) {
1342 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1343 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1344 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1347 ret_val = igb_setup_serdes_link_82575(hw);
1351 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1352 /* allow time for SFP cage time to power up phy */
1355 ret_val = hw->phy.ops.reset(hw);
1357 hw_dbg("Error resetting the PHY.\n");
1361 switch (hw->phy.type) {
1362 case e1000_phy_i210:
1364 switch (hw->phy.id) {
1365 case I347AT4_E_PHY_ID:
1366 case M88E1112_E_PHY_ID:
1368 ret_val = igb_copper_link_setup_m88_gen2(hw);
1371 ret_val = igb_copper_link_setup_m88(hw);
1375 case e1000_phy_igp_3:
1376 ret_val = igb_copper_link_setup_igp(hw);
1378 case e1000_phy_82580:
1379 ret_val = igb_copper_link_setup_82580(hw);
1382 ret_val = -E1000_ERR_PHY;
1389 ret_val = igb_setup_copper_link(hw);
1395 * igb_setup_serdes_link_82575 - Setup link for serdes
1396 * @hw: pointer to the HW structure
1398 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1399 * used on copper connections where the serialized gigabit media independent
1400 * interface (sgmii), or serdes fiber is being used. Configures the link
1401 * for auto-negotiation or forces speed/duplex.
1403 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1405 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1407 s32 ret_val = E1000_SUCCESS;
1410 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1411 !igb_sgmii_active_82575(hw))
1416 * On the 82575, SerDes loopback mode persists until it is
1417 * explicitly turned off or a power cycle is performed. A read to
1418 * the register does not indicate its status. Therefore, we ensure
1419 * loopback mode is disabled during initialization.
1421 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1423 /* power on the sfp cage if present */
1424 ctrl_ext = rd32(E1000_CTRL_EXT);
1425 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1426 wr32(E1000_CTRL_EXT, ctrl_ext);
1428 ctrl_reg = rd32(E1000_CTRL);
1429 ctrl_reg |= E1000_CTRL_SLU;
1431 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1432 /* set both sw defined pins */
1433 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1435 /* Set switch control to serdes energy detect */
1436 reg = rd32(E1000_CONNSW);
1437 reg |= E1000_CONNSW_ENRGSRC;
1438 wr32(E1000_CONNSW, reg);
1441 reg = rd32(E1000_PCS_LCTL);
1443 /* default pcs_autoneg to the same setting as mac autoneg */
1444 pcs_autoneg = hw->mac.autoneg;
1446 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1447 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1448 /* sgmii mode lets the phy handle forcing speed/duplex */
1450 /* autoneg time out should be disabled for SGMII mode */
1451 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1453 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1454 /* disable PCS autoneg and support parallel detect only */
1455 pcs_autoneg = false;
1457 if (hw->mac.type == e1000_82575 ||
1458 hw->mac.type == e1000_82576) {
1459 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1461 printk(KERN_DEBUG "NVM Read Error\n\n");
1465 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1466 pcs_autoneg = false;
1470 * non-SGMII modes only supports a speed of 1000/Full for the
1471 * link so it is best to just force the MAC and let the pcs
1472 * link either autoneg or be forced to 1000/Full
1474 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1475 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1477 /* set speed of 1000/Full if speed/duplex is forced */
1478 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1482 wr32(E1000_CTRL, ctrl_reg);
1485 * New SerDes mode allows for forcing speed or autonegotiating speed
1486 * at 1gb. Autoneg should be default set by most drivers. This is the
1487 * mode that will be compatible with older link partners and switches.
1488 * However, both are supported by the hardware and some drivers/tools.
1490 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1491 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1494 /* Set PCS register for autoneg */
1495 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1496 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1498 /* Disable force flow control for autoneg */
1499 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1501 /* Configure flow control advertisement for autoneg */
1502 anadv_reg = rd32(E1000_PCS_ANADV);
1503 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1504 switch (hw->fc.requested_mode) {
1506 case e1000_fc_rx_pause:
1507 anadv_reg |= E1000_TXCW_ASM_DIR;
1508 anadv_reg |= E1000_TXCW_PAUSE;
1510 case e1000_fc_tx_pause:
1511 anadv_reg |= E1000_TXCW_ASM_DIR;
1516 wr32(E1000_PCS_ANADV, anadv_reg);
1518 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1520 /* Set PCS register for forced link */
1521 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1523 /* Force flow control for forced link */
1524 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1526 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1529 wr32(E1000_PCS_LCTL, reg);
1531 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1532 igb_force_mac_fc(hw);
1538 * igb_sgmii_active_82575 - Return sgmii state
1539 * @hw: pointer to the HW structure
1541 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1542 * which can be enabled for use in the embedded applications. Simply
1543 * return the current state of the sgmii interface.
1545 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1547 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1548 return dev_spec->sgmii_active;
1552 * igb_reset_init_script_82575 - Inits HW defaults after reset
1553 * @hw: pointer to the HW structure
1555 * Inits recommended HW defaults after a reset when there is no EEPROM
1556 * detected. This is only for the 82575.
1558 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1560 if (hw->mac.type == e1000_82575) {
1561 hw_dbg("Running reset init script for 82575\n");
1562 /* SerDes configuration via SERDESCTRL */
1563 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1564 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1565 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1566 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1568 /* CCM configuration via CCMCTL register */
1569 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1570 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1572 /* PCIe lanes configuration */
1573 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1574 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1575 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1576 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1578 /* PCIe PLL Configuration */
1579 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1580 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1581 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1588 * igb_read_mac_addr_82575 - Read device MAC address
1589 * @hw: pointer to the HW structure
1591 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1596 * If there's an alternate MAC address place it in RAR0
1597 * so that it will override the Si installed default perm
1600 ret_val = igb_check_alt_mac_addr(hw);
1604 ret_val = igb_read_mac_addr(hw);
1611 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1612 * @hw: pointer to the HW structure
1614 * In the case of a PHY power down to save power, or to turn off link during a
1615 * driver unload, or wake on lan is not enabled, remove the link.
1617 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1619 /* If the management interface is not enabled, then power down */
1620 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1621 igb_power_down_phy_copper(hw);
1625 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1626 * @hw: pointer to the HW structure
1628 * Clears the hardware counters by reading the counter registers.
1630 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1632 igb_clear_hw_cntrs_base(hw);
1638 rd32(E1000_PRC1023);
1639 rd32(E1000_PRC1522);
1644 rd32(E1000_PTC1023);
1645 rd32(E1000_PTC1522);
1647 rd32(E1000_ALGNERRC);
1650 rd32(E1000_CEXTERR);
1661 rd32(E1000_ICRXPTC);
1662 rd32(E1000_ICRXATC);
1663 rd32(E1000_ICTXPTC);
1664 rd32(E1000_ICTXATC);
1665 rd32(E1000_ICTXQEC);
1666 rd32(E1000_ICTXQMTC);
1667 rd32(E1000_ICRXDMTC);
1674 rd32(E1000_HTCBDPC);
1679 rd32(E1000_LENERRS);
1681 /* This register should not be read in copper configurations */
1682 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1683 igb_sgmii_active_82575(hw))
1688 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1689 * @hw: pointer to the HW structure
1691 * After rx enable if managability is enabled then there is likely some
1692 * bad data at the start of the fifo and possibly in the DMA fifo. This
1693 * function clears the fifos and flushes any packets that came in as rx was
1696 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1698 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1701 if (hw->mac.type != e1000_82575 ||
1702 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1705 /* Disable all RX queues */
1706 for (i = 0; i < 4; i++) {
1707 rxdctl[i] = rd32(E1000_RXDCTL(i));
1708 wr32(E1000_RXDCTL(i),
1709 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1711 /* Poll all queues to verify they have shut down */
1712 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1715 for (i = 0; i < 4; i++)
1716 rx_enabled |= rd32(E1000_RXDCTL(i));
1717 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1722 hw_dbg("Queue disable timed out after 10ms\n");
1724 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1725 * incoming packets are rejected. Set enable and wait 2ms so that
1726 * any packet that was coming in as RCTL.EN was set is flushed
1728 rfctl = rd32(E1000_RFCTL);
1729 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1731 rlpml = rd32(E1000_RLPML);
1732 wr32(E1000_RLPML, 0);
1734 rctl = rd32(E1000_RCTL);
1735 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1736 temp_rctl |= E1000_RCTL_LPE;
1738 wr32(E1000_RCTL, temp_rctl);
1739 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1743 /* Enable RX queues that were previously enabled and restore our
1746 for (i = 0; i < 4; i++)
1747 wr32(E1000_RXDCTL(i), rxdctl[i]);
1748 wr32(E1000_RCTL, rctl);
1751 wr32(E1000_RLPML, rlpml);
1752 wr32(E1000_RFCTL, rfctl);
1754 /* Flush receive errors generated by workaround */
1761 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1762 * @hw: pointer to the HW structure
1764 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1765 * however the hardware default for these parts is 500us to 1ms which is less
1766 * than the 10ms recommended by the pci-e spec. To address this we need to
1767 * increase the value to either 10ms to 200ms for capability version 1 config,
1768 * or 16ms to 55ms for version 2.
1770 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1772 u32 gcr = rd32(E1000_GCR);
1776 /* only take action if timeout value is defaulted to 0 */
1777 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1781 * if capababilities version is type 1 we can write the
1782 * timeout of 10ms to 200ms through the GCR register
1784 if (!(gcr & E1000_GCR_CAP_VER2)) {
1785 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1790 * for version 2 capabilities we need to write the config space
1791 * directly in order to set the completion timeout value for
1794 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1799 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1801 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1804 /* disable completion timeout resend */
1805 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1807 wr32(E1000_GCR, gcr);
1812 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1813 * @hw: pointer to the hardware struct
1814 * @enable: state to enter, either enabled or disabled
1815 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1817 * enables/disables L2 switch anti-spoofing functionality.
1819 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1823 switch (hw->mac.type) {
1826 dtxswc = rd32(E1000_DTXSWC);
1828 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1829 E1000_DTXSWC_VLAN_SPOOF_MASK);
1830 /* The PF can spoof - it has to in order to
1831 * support emulation mode NICs */
1832 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1834 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1835 E1000_DTXSWC_VLAN_SPOOF_MASK);
1837 wr32(E1000_DTXSWC, dtxswc);
1845 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1846 * @hw: pointer to the hardware struct
1847 * @enable: state to enter, either enabled or disabled
1849 * enables/disables L2 switch loopback functionality.
1851 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1855 switch (hw->mac.type) {
1857 dtxswc = rd32(E1000_DTXSWC);
1859 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1861 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1862 wr32(E1000_DTXSWC, dtxswc);
1865 dtxswc = rd32(E1000_TXSWC);
1867 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1869 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1870 wr32(E1000_TXSWC, dtxswc);
1873 /* Currently no other hardware supports loopback */
1881 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1882 * @hw: pointer to the hardware struct
1883 * @enable: state to enter, either enabled or disabled
1885 * enables/disables replication of packets across multiple pools.
1887 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1889 u32 vt_ctl = rd32(E1000_VT_CTL);
1892 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1894 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1896 wr32(E1000_VT_CTL, vt_ctl);
1900 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1901 * @hw: pointer to the HW structure
1902 * @offset: register offset to be read
1903 * @data: pointer to the read data
1905 * Reads the MDI control register in the PHY at offset and stores the
1906 * information read to data.
1908 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1913 ret_val = hw->phy.ops.acquire(hw);
1917 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1919 hw->phy.ops.release(hw);
1926 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1927 * @hw: pointer to the HW structure
1928 * @offset: register offset to write to
1929 * @data: data to write to register at offset
1931 * Writes data to MDI control register in the PHY at offset.
1933 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1938 ret_val = hw->phy.ops.acquire(hw);
1942 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1944 hw->phy.ops.release(hw);
1951 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1952 * @hw: pointer to the HW structure
1954 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1955 * the values found in the EEPROM. This addresses an issue in which these
1956 * bits are not restored from EEPROM after reset.
1958 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1964 if (hw->mac.type != e1000_82580)
1966 if (!igb_sgmii_active_82575(hw))
1969 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1970 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1973 hw_dbg("NVM Read Error\n");
1977 mdicnfg = rd32(E1000_MDICNFG);
1978 if (nvm_data & NVM_WORD24_EXT_MDIO)
1979 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1980 if (nvm_data & NVM_WORD24_COM_MDIO)
1981 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1982 wr32(E1000_MDICNFG, mdicnfg);
1988 * igb_reset_hw_82580 - Reset hardware
1989 * @hw: pointer to the HW structure
1991 * This resets function or entire device (all ports, etc.)
1994 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1997 /* BH SW mailbox bit in SW_FW_SYNC */
1998 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2000 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2003 hw->dev_spec._82575.global_device_reset = false;
2005 /* due to hw errata, global device reset doesn't always
2008 if (hw->mac.type == e1000_82580)
2009 global_device_reset = false;
2011 /* Get current control state. */
2012 ctrl = rd32(E1000_CTRL);
2015 * Prevent the PCI-E bus from sticking if there is no TLP connection
2016 * on the last TLP read/write transaction when MAC is reset.
2018 ret_val = igb_disable_pcie_master(hw);
2020 hw_dbg("PCI-E Master disable polling has failed.\n");
2022 hw_dbg("Masking off all interrupts\n");
2023 wr32(E1000_IMC, 0xffffffff);
2024 wr32(E1000_RCTL, 0);
2025 wr32(E1000_TCTL, E1000_TCTL_PSP);
2030 /* Determine whether or not a global dev reset is requested */
2031 if (global_device_reset &&
2032 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2033 global_device_reset = false;
2035 if (global_device_reset &&
2036 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2037 ctrl |= E1000_CTRL_DEV_RST;
2039 ctrl |= E1000_CTRL_RST;
2041 wr32(E1000_CTRL, ctrl);
2044 /* Add delay to insure DEV_RST has time to complete */
2045 if (global_device_reset)
2048 ret_val = igb_get_auto_rd_done(hw);
2051 * When auto config read does not complete, do not
2052 * return with an error. This can happen in situations
2053 * where there is no eeprom and prevents getting link.
2055 hw_dbg("Auto Read Done did not complete\n");
2058 /* If EEPROM is not present, run manual init scripts */
2059 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2060 igb_reset_init_script_82575(hw);
2062 /* clear global device reset status bit */
2063 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2065 /* Clear any pending interrupt events. */
2066 wr32(E1000_IMC, 0xffffffff);
2067 icr = rd32(E1000_ICR);
2069 ret_val = igb_reset_mdicnfg_82580(hw);
2071 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2073 /* Install any alternate MAC address into RAR0 */
2074 ret_val = igb_check_alt_mac_addr(hw);
2076 /* Release semaphore */
2077 if (global_device_reset)
2078 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2084 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2085 * @data: data received by reading RXPBS register
2087 * The 82580 uses a table based approach for packet buffer allocation sizes.
2088 * This function converts the retrieved value into the correct table value
2089 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2090 * 0x0 36 72 144 1 2 4 8 16
2091 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2093 u16 igb_rxpbs_adjust_82580(u32 data)
2097 if (data < E1000_82580_RXPBS_TABLE_SIZE)
2098 ret_val = e1000_82580_rxpbs_table[data];
2104 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2106 * @hw: pointer to the HW structure
2107 * @offset: offset in words of the checksum protected region
2109 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2110 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2112 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2119 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2120 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2122 hw_dbg("NVM Read Error\n");
2125 checksum += nvm_data;
2128 if (checksum != (u16) NVM_SUM) {
2129 hw_dbg("NVM Checksum Invalid\n");
2130 ret_val = -E1000_ERR_NVM;
2139 * igb_update_nvm_checksum_with_offset - Update EEPROM
2141 * @hw: pointer to the HW structure
2142 * @offset: offset in words of the checksum protected region
2144 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2145 * up to the checksum. Then calculates the EEPROM checksum and writes the
2146 * value to the EEPROM.
2148 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2154 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2155 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2157 hw_dbg("NVM Read Error while updating checksum.\n");
2160 checksum += nvm_data;
2162 checksum = (u16) NVM_SUM - checksum;
2163 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2166 hw_dbg("NVM Write Error while updating checksum.\n");
2173 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2174 * @hw: pointer to the HW structure
2176 * Calculates the EEPROM section checksum by reading/adding each word of
2177 * the EEPROM and then verifies that the sum of the EEPROM is
2180 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2183 u16 eeprom_regions_count = 1;
2187 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2189 hw_dbg("NVM Read Error\n");
2193 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2194 /* if checksums compatibility bit is set validate checksums
2195 * for all 4 ports. */
2196 eeprom_regions_count = 4;
2199 for (j = 0; j < eeprom_regions_count; j++) {
2200 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2201 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2212 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2213 * @hw: pointer to the HW structure
2215 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2216 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2217 * checksum and writes the value to the EEPROM.
2219 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2225 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2227 hw_dbg("NVM Read Error while updating checksum"
2228 " compatibility bit.\n");
2232 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2233 /* set compatibility bit to validate checksums appropriately */
2234 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2235 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2238 hw_dbg("NVM Write Error while updating checksum"
2239 " compatibility bit.\n");
2244 for (j = 0; j < 4; j++) {
2245 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2246 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2256 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2257 * @hw: pointer to the HW structure
2259 * Calculates the EEPROM section checksum by reading/adding each word of
2260 * the EEPROM and then verifies that the sum of the EEPROM is
2263 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2269 for (j = 0; j < 4; j++) {
2270 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2271 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2282 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2283 * @hw: pointer to the HW structure
2285 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2286 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2287 * checksum and writes the value to the EEPROM.
2289 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2295 for (j = 0; j < 4; j++) {
2296 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2297 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2307 * igb_set_eee_i350 - Enable/disable EEE support
2308 * @hw: pointer to the HW structure
2310 * Enable/disable EEE based on setting in dev_spec structure.
2313 s32 igb_set_eee_i350(struct e1000_hw *hw)
2318 if ((hw->mac.type < e1000_i350) ||
2319 (hw->phy.media_type != e1000_media_type_copper))
2321 ipcnfg = rd32(E1000_IPCNFG);
2322 eeer = rd32(E1000_EEER);
2324 /* enable or disable per user setting */
2325 if (!(hw->dev_spec._82575.eee_disable)) {
2326 u32 eee_su = rd32(E1000_EEE_SU);
2328 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2329 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2332 /* This bit should not be set in normal operation. */
2333 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2334 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2338 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2339 E1000_IPCNFG_EEE_100M_AN);
2340 eeer &= ~(E1000_EEER_TX_LPI_EN |
2341 E1000_EEER_RX_LPI_EN |
2344 wr32(E1000_IPCNFG, ipcnfg);
2345 wr32(E1000_EEER, eeer);
2353 static const u8 e1000_emc_temp_data[4] = {
2354 E1000_EMC_INTERNAL_DATA,
2355 E1000_EMC_DIODE1_DATA,
2356 E1000_EMC_DIODE2_DATA,
2357 E1000_EMC_DIODE3_DATA
2359 static const u8 e1000_emc_therm_limit[4] = {
2360 E1000_EMC_INTERNAL_THERM_LIMIT,
2361 E1000_EMC_DIODE1_THERM_LIMIT,
2362 E1000_EMC_DIODE2_THERM_LIMIT,
2363 E1000_EMC_DIODE3_THERM_LIMIT
2366 /* igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2367 * @hw: pointer to hardware structure
2369 * Updates the temperatures in mac.thermal_sensor_data
2371 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2373 s32 status = E1000_SUCCESS;
2381 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2383 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2384 return E1000_NOT_IMPLEMENTED;
2386 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2388 /* Return the internal sensor only if ETS is unsupported */
2389 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2390 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2393 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2394 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2395 != NVM_ETS_TYPE_EMC)
2396 return E1000_NOT_IMPLEMENTED;
2398 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2399 if (num_sensors > E1000_MAX_SENSORS)
2400 num_sensors = E1000_MAX_SENSORS;
2402 for (i = 1; i < num_sensors; i++) {
2403 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2404 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2405 NVM_ETS_DATA_INDEX_SHIFT);
2406 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2407 NVM_ETS_DATA_LOC_SHIFT);
2409 if (sensor_location != 0)
2410 hw->phy.ops.read_i2c_byte(hw,
2411 e1000_emc_temp_data[sensor_index],
2412 E1000_I2C_THERMAL_SENSOR_ADDR,
2413 &data->sensor[i].temp);
2418 /* igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2419 * @hw: pointer to hardware structure
2421 * Sets the thermal sensor thresholds according to the NVM map
2422 * and save off the threshold and location values into mac.thermal_sensor_data
2424 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2426 s32 status = E1000_SUCCESS;
2430 u8 low_thresh_delta;
2436 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2438 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2439 return E1000_NOT_IMPLEMENTED;
2441 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2443 data->sensor[0].location = 0x1;
2444 data->sensor[0].caution_thresh =
2445 (rd32(E1000_THHIGHTC) & 0xFF);
2446 data->sensor[0].max_op_thresh =
2447 (rd32(E1000_THLOWTC) & 0xFF);
2449 /* Return the internal sensor only if ETS is unsupported */
2450 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2451 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2454 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2455 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2456 != NVM_ETS_TYPE_EMC)
2457 return E1000_NOT_IMPLEMENTED;
2459 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2460 NVM_ETS_LTHRES_DELTA_SHIFT);
2461 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2463 for (i = 1; i <= num_sensors; i++) {
2464 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2465 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2466 NVM_ETS_DATA_INDEX_SHIFT);
2467 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2468 NVM_ETS_DATA_LOC_SHIFT);
2469 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2471 hw->phy.ops.write_i2c_byte(hw,
2472 e1000_emc_therm_limit[sensor_index],
2473 E1000_I2C_THERMAL_SENSOR_ADDR,
2476 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2477 data->sensor[i].location = sensor_location;
2478 data->sensor[i].caution_thresh = therm_limit;
2479 data->sensor[i].max_op_thresh = therm_limit -
2486 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2487 .init_hw = igb_init_hw_82575,
2488 .check_for_link = igb_check_for_link_82575,
2489 .rar_set = igb_rar_set,
2490 .read_mac_addr = igb_read_mac_addr_82575,
2491 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2492 #ifdef CONFIG_IGB_HWMON
2493 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2494 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2498 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2499 .acquire = igb_acquire_phy_82575,
2500 .get_cfg_done = igb_get_cfg_done_82575,
2501 .release = igb_release_phy_82575,
2502 .write_i2c_byte = igb_write_i2c_byte,
2503 .read_i2c_byte = igb_read_i2c_byte,
2506 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2507 .acquire = igb_acquire_nvm_82575,
2508 .read = igb_read_nvm_eerd,
2509 .release = igb_release_nvm_82575,
2510 .write = igb_write_nvm_spi,
2513 const struct e1000_info e1000_82575_info = {
2514 .get_invariants = igb_get_invariants_82575,
2515 .mac_ops = &e1000_mac_ops_82575,
2516 .phy_ops = &e1000_phy_ops_82575,
2517 .nvm_ops = &e1000_nvm_ops_82575,