ksmbd: fix race condition between tree conn lookup and disconnect
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / intel / ice / ice_virtchnl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17                 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20         u32 vc_hdr;     /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21         u32 ice_hdr;    /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25         {VIRTCHNL_PROTO_HDR_NONE,       ICE_FLOW_SEG_HDR_NONE},
26         {VIRTCHNL_PROTO_HDR_ETH,        ICE_FLOW_SEG_HDR_ETH},
27         {VIRTCHNL_PROTO_HDR_S_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
28         {VIRTCHNL_PROTO_HDR_C_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
29         {VIRTCHNL_PROTO_HDR_IPV4,       ICE_FLOW_SEG_HDR_IPV4 |
30                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
31         {VIRTCHNL_PROTO_HDR_IPV6,       ICE_FLOW_SEG_HDR_IPV6 |
32                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
33         {VIRTCHNL_PROTO_HDR_TCP,        ICE_FLOW_SEG_HDR_TCP},
34         {VIRTCHNL_PROTO_HDR_UDP,        ICE_FLOW_SEG_HDR_UDP},
35         {VIRTCHNL_PROTO_HDR_SCTP,       ICE_FLOW_SEG_HDR_SCTP},
36         {VIRTCHNL_PROTO_HDR_PPPOE,      ICE_FLOW_SEG_HDR_PPPOE},
37         {VIRTCHNL_PROTO_HDR_GTPU_IP,    ICE_FLOW_SEG_HDR_GTPU_IP},
38         {VIRTCHNL_PROTO_HDR_GTPU_EH,    ICE_FLOW_SEG_HDR_GTPU_EH},
39         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40                                         ICE_FLOW_SEG_HDR_GTPU_DWN},
41         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42                                         ICE_FLOW_SEG_HDR_GTPU_UP},
43         {VIRTCHNL_PROTO_HDR_L2TPV3,     ICE_FLOW_SEG_HDR_L2TPV3},
44         {VIRTCHNL_PROTO_HDR_ESP,        ICE_FLOW_SEG_HDR_ESP},
45         {VIRTCHNL_PROTO_HDR_AH,         ICE_FLOW_SEG_HDR_AH},
46         {VIRTCHNL_PROTO_HDR_PFCP,       ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50         u32 vc_hdr;             /* virtchnl headers
51                                  * (VIRTCHNL_PROTO_HDR_XXX)
52                                  */
53         u32 vc_hash_field;      /* virtchnl hash fields selector
54                                  * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55                                  */
56         u64 ice_hash_field;     /* ice hash fields
57                                  * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58                                  */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69                 ICE_FLOW_HASH_ETH},
70         {VIRTCHNL_PROTO_HDR_ETH,
71                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73         {VIRTCHNL_PROTO_HDR_S_VLAN,
74                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75                 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76         {VIRTCHNL_PROTO_HDR_C_VLAN,
77                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78                 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85                 ICE_FLOW_HASH_IPV4},
86         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97                 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106                 ICE_FLOW_HASH_IPV6},
107         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118                 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121         {VIRTCHNL_PROTO_HDR_TCP,
122                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124         {VIRTCHNL_PROTO_HDR_TCP,
125                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127         {VIRTCHNL_PROTO_HDR_TCP,
128                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130                 ICE_FLOW_HASH_TCP_PORT},
131         {VIRTCHNL_PROTO_HDR_UDP,
132                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134         {VIRTCHNL_PROTO_HDR_UDP,
135                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137         {VIRTCHNL_PROTO_HDR_UDP,
138                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140                 ICE_FLOW_HASH_UDP_PORT},
141         {VIRTCHNL_PROTO_HDR_SCTP,
142                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144         {VIRTCHNL_PROTO_HDR_SCTP,
145                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147         {VIRTCHNL_PROTO_HDR_SCTP,
148                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150                 ICE_FLOW_HASH_SCTP_PORT},
151         {VIRTCHNL_PROTO_HDR_PPPOE,
152                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153                 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154         {VIRTCHNL_PROTO_HDR_GTPU_IP,
155                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156                 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157         {VIRTCHNL_PROTO_HDR_L2TPV3,
158                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159                 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160         {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161                 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162         {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163                 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164         {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165                 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178                     enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180         struct ice_hw *hw = &pf->hw;
181         struct ice_vf *vf;
182         unsigned int bkt;
183
184         mutex_lock(&pf->vfs.table_lock);
185         ice_for_each_vf(pf, bkt, vf) {
186                 /* Not all vfs are enabled so skip the ones that are not */
187                 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188                     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189                         continue;
190
191                 /* Ignore return value on purpose - a given VF may fail, but
192                  * we need to keep going and send to all of them
193                  */
194                 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195                                       msglen, NULL);
196         }
197         mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209                  int ice_link_speed, bool link_up)
210 {
211         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212                 pfe->event_data.link_event_adv.link_status = link_up;
213                 /* Speed in Mbps */
214                 pfe->event_data.link_event_adv.link_speed =
215                         ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216         } else {
217                 pfe->event_data.link_event.link_status = link_up;
218                 /* Legacy method for virtchnl link speeds */
219                 pfe->event_data.link_event.link_speed =
220                         (enum virtchnl_link_speed)
221                         ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222         }
223 }
224
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233         struct virtchnl_pf_event pfe = { 0 };
234         struct ice_hw *hw = &vf->pf->hw;
235
236         pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237         pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239         if (ice_is_vf_link_up(vf))
240                 ice_set_pfe_link(vf, &pfe,
241                                  hw->port_info->phy.link_info.link_speed, true);
242         else
243                 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245         ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246                               VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247                               sizeof(pfe), NULL);
248 }
249
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256         struct ice_vf *vf;
257         unsigned int bkt;
258
259         mutex_lock(&pf->vfs.table_lock);
260         ice_for_each_vf(pf, bkt, vf)
261                 ice_vc_notify_vf_link_state(vf);
262         mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273         struct virtchnl_pf_event pfe;
274
275         if (!ice_has_vfs(pf))
276                 return;
277
278         pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279         pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280         ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281                             (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296                       enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298         struct device *dev;
299         struct ice_pf *pf;
300         int aq_ret;
301
302         pf = vf->pf;
303         dev = ice_pf_to_dev(pf);
304
305         aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306                                        msg, msglen, NULL);
307         if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308                 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309                          vf->vf_id, aq_ret,
310                          ice_aq_str(pf->hw.mailboxq.sq_last_status));
311                 return -EIO;
312         }
313
314         return 0;
315 }
316
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326         struct virtchnl_version_info info = {
327                 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328         };
329
330         vf->vf_ver = *(struct virtchnl_version_info *)msg;
331         /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332         if (VF_IS_V10(&vf->vf_ver))
333                 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336                                      VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337                                      sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351         struct ice_port_info *pi = ice_vf_get_port_info(vf);
352         u16 max_frame_size;
353
354         max_frame_size = pi->phy.link_info.max_frame_size;
355
356         if (ice_vf_is_port_vlan_ena(vf))
357                 max_frame_size -= VLAN_HLEN;
358
359         return max_frame_size;
360 }
361
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373                      u32 driver_caps)
374 {
375         if (ice_is_eswitch_mode_switchdev(vf->pf))
376                 /* In switchdev setting VLAN from VF isn't supported */
377                 return 0;
378
379         if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380                 /* VLAN offloads based on current device configuration */
381                 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382         } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383                 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384                  * these two conditions, which amounts to guest VLAN filtering
385                  * and offloads being based on the inner VLAN or the
386                  * inner/single VLAN respectively and don't allow VF to
387                  * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388                  */
389                 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390                         return VIRTCHNL_VF_OFFLOAD_VLAN;
391                 } else if (!ice_is_dvm_ena(hw) &&
392                            !ice_vf_is_port_vlan_ena(vf)) {
393                         /* configure backward compatible support for VFs that
394                          * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395                          * configured in SVM, and no port VLAN is configured
396                          */
397                         ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398                         return VIRTCHNL_VF_OFFLOAD_VLAN;
399                 } else if (ice_is_dvm_ena(hw)) {
400                         /* configure software offloaded VLAN support when DVM
401                          * is enabled, but no port VLAN is enabled
402                          */
403                         ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404                 }
405         }
406
407         return 0;
408 }
409
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420         struct virtchnl_vf_resource *vfres = NULL;
421         struct ice_hw *hw = &vf->pf->hw;
422         struct ice_vsi *vsi;
423         int len = 0;
424         int ret;
425
426         if (ice_check_vf_init(vf)) {
427                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428                 goto err;
429         }
430
431         len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433         vfres = kzalloc(len, GFP_KERNEL);
434         if (!vfres) {
435                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436                 len = 0;
437                 goto err;
438         }
439         if (VF_IS_V11(&vf->vf_ver))
440                 vf->driver_caps = *(u32 *)msg;
441         else
442                 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443                                   VIRTCHNL_VF_OFFLOAD_RSS_REG |
444                                   VIRTCHNL_VF_OFFLOAD_VLAN;
445
446         vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447         vsi = ice_get_vf_vsi(vf);
448         if (!vsi) {
449                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450                 goto err;
451         }
452
453         vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454                                                     vf->driver_caps);
455
456         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458         } else {
459                 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461                 else
462                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463         }
464
465         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467
468         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470
471         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473
474         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476
477         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479
480         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482
483         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485
486         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488
489         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490                 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498         vfres->num_vsis = 1;
499         /* Tx and Rx queue are equal for VF */
500         vfres->num_queue_pairs = vsi->num_txq;
501         vfres->max_vectors = vf->pf->vfs.num_msix_per;
502         vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503         vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
504         vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505
506         vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
507         vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508         vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509         ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510                         vf->hw_lan_addr);
511
512         /* match guest capabilities */
513         vf->driver_caps = vfres->vf_cap_flags;
514
515         ice_vc_set_caps_allowlist(vf);
516         ice_vc_set_working_allowlist(vf);
517
518         set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519
520 err:
521         /* send the response back to the VF */
522         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523                                     (u8 *)vfres, len);
524
525         kfree(vfres);
526         return ret;
527 }
528
529 /**
530  * ice_vc_reset_vf_msg
531  * @vf: pointer to the VF info
532  *
533  * called from the VF to reset itself,
534  * unlike other virtchnl messages, PF driver
535  * doesn't send the response back to the VF
536  */
537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539         if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540                 ice_reset_vf(vf, 0);
541 }
542
543 /**
544  * ice_vc_isvalid_vsi_id
545  * @vf: pointer to the VF info
546  * @vsi_id: VF relative VSI ID
547  *
548  * check for the valid VSI ID
549  */
550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552         struct ice_pf *pf = vf->pf;
553         struct ice_vsi *vsi;
554
555         vsi = ice_find_vsi(pf, vsi_id);
556
557         return (vsi && (vsi->vf == vf));
558 }
559
560 /**
561  * ice_vc_isvalid_q_id
562  * @vf: pointer to the VF info
563  * @vsi_id: VSI ID
564  * @qid: VSI relative queue ID
565  *
566  * check for the valid queue ID
567  */
568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
569 {
570         struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
571         /* allocated Tx and Rx queues should be always equal for VF VSI */
572         return (vsi && (qid < vsi->alloc_txq));
573 }
574
575 /**
576  * ice_vc_isvalid_ring_len
577  * @ring_len: length of ring
578  *
579  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
580  * or zero
581  */
582 static bool ice_vc_isvalid_ring_len(u16 ring_len)
583 {
584         return ring_len == 0 ||
585                (ring_len >= ICE_MIN_NUM_DESC &&
586                 ring_len <= ICE_MAX_NUM_DESC &&
587                 !(ring_len % ICE_REQ_DESC_MULTIPLE));
588 }
589
590 /**
591  * ice_vc_validate_pattern
592  * @vf: pointer to the VF info
593  * @proto: virtchnl protocol headers
594  *
595  * validate the pattern is supported or not.
596  *
597  * Return: true on success, false on error.
598  */
599 bool
600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
601 {
602         bool is_ipv4 = false;
603         bool is_ipv6 = false;
604         bool is_udp = false;
605         u16 ptype = -1;
606         int i = 0;
607
608         while (i < proto->count &&
609                proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
610                 switch (proto->proto_hdr[i].type) {
611                 case VIRTCHNL_PROTO_HDR_ETH:
612                         ptype = ICE_PTYPE_MAC_PAY;
613                         break;
614                 case VIRTCHNL_PROTO_HDR_IPV4:
615                         ptype = ICE_PTYPE_IPV4_PAY;
616                         is_ipv4 = true;
617                         break;
618                 case VIRTCHNL_PROTO_HDR_IPV6:
619                         ptype = ICE_PTYPE_IPV6_PAY;
620                         is_ipv6 = true;
621                         break;
622                 case VIRTCHNL_PROTO_HDR_UDP:
623                         if (is_ipv4)
624                                 ptype = ICE_PTYPE_IPV4_UDP_PAY;
625                         else if (is_ipv6)
626                                 ptype = ICE_PTYPE_IPV6_UDP_PAY;
627                         is_udp = true;
628                         break;
629                 case VIRTCHNL_PROTO_HDR_TCP:
630                         if (is_ipv4)
631                                 ptype = ICE_PTYPE_IPV4_TCP_PAY;
632                         else if (is_ipv6)
633                                 ptype = ICE_PTYPE_IPV6_TCP_PAY;
634                         break;
635                 case VIRTCHNL_PROTO_HDR_SCTP:
636                         if (is_ipv4)
637                                 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
638                         else if (is_ipv6)
639                                 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
640                         break;
641                 case VIRTCHNL_PROTO_HDR_GTPU_IP:
642                 case VIRTCHNL_PROTO_HDR_GTPU_EH:
643                         if (is_ipv4)
644                                 ptype = ICE_MAC_IPV4_GTPU;
645                         else if (is_ipv6)
646                                 ptype = ICE_MAC_IPV6_GTPU;
647                         goto out;
648                 case VIRTCHNL_PROTO_HDR_L2TPV3:
649                         if (is_ipv4)
650                                 ptype = ICE_MAC_IPV4_L2TPV3;
651                         else if (is_ipv6)
652                                 ptype = ICE_MAC_IPV6_L2TPV3;
653                         goto out;
654                 case VIRTCHNL_PROTO_HDR_ESP:
655                         if (is_ipv4)
656                                 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
657                                                 ICE_MAC_IPV4_ESP;
658                         else if (is_ipv6)
659                                 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
660                                                 ICE_MAC_IPV6_ESP;
661                         goto out;
662                 case VIRTCHNL_PROTO_HDR_AH:
663                         if (is_ipv4)
664                                 ptype = ICE_MAC_IPV4_AH;
665                         else if (is_ipv6)
666                                 ptype = ICE_MAC_IPV6_AH;
667                         goto out;
668                 case VIRTCHNL_PROTO_HDR_PFCP:
669                         if (is_ipv4)
670                                 ptype = ICE_MAC_IPV4_PFCP_SESSION;
671                         else if (is_ipv6)
672                                 ptype = ICE_MAC_IPV6_PFCP_SESSION;
673                         goto out;
674                 default:
675                         break;
676                 }
677                 i++;
678         }
679
680 out:
681         return ice_hw_ptype_ena(&vf->pf->hw, ptype);
682 }
683
684 /**
685  * ice_vc_parse_rss_cfg - parses hash fields and headers from
686  * a specific virtchnl RSS cfg
687  * @hw: pointer to the hardware
688  * @rss_cfg: pointer to the virtchnl RSS cfg
689  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
690  * to configure
691  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
692  *
693  * Return true if all the protocol header and hash fields in the RSS cfg could
694  * be parsed, else return false
695  *
696  * This function parses the virtchnl RSS cfg to be the intended
697  * hash fields and the intended header for RSS configuration
698  */
699 static bool
700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
701                      u32 *addl_hdrs, u64 *hash_flds)
702 {
703         const struct ice_vc_hash_field_match_type *hf_list;
704         const struct ice_vc_hdr_match_type *hdr_list;
705         int i, hf_list_len, hdr_list_len;
706
707         hf_list = ice_vc_hash_field_list;
708         hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
709         hdr_list = ice_vc_hdr_list;
710         hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
711
712         for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
713                 struct virtchnl_proto_hdr *proto_hdr =
714                                         &rss_cfg->proto_hdrs.proto_hdr[i];
715                 bool hdr_found = false;
716                 int j;
717
718                 /* Find matched ice headers according to virtchnl headers. */
719                 for (j = 0; j < hdr_list_len; j++) {
720                         struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
721
722                         if (proto_hdr->type == hdr_map.vc_hdr) {
723                                 *addl_hdrs |= hdr_map.ice_hdr;
724                                 hdr_found = true;
725                         }
726                 }
727
728                 if (!hdr_found)
729                         return false;
730
731                 /* Find matched ice hash fields according to
732                  * virtchnl hash fields.
733                  */
734                 for (j = 0; j < hf_list_len; j++) {
735                         struct ice_vc_hash_field_match_type hf_map = hf_list[j];
736
737                         if (proto_hdr->type == hf_map.vc_hdr &&
738                             proto_hdr->field_selector == hf_map.vc_hash_field) {
739                                 *hash_flds |= hf_map.ice_hash_field;
740                                 break;
741                         }
742                 }
743         }
744
745         return true;
746 }
747
748 /**
749  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
750  * RSS offloads
751  * @caps: VF driver negotiated capabilities
752  *
753  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
754  * else return false
755  */
756 static bool ice_vf_adv_rss_offload_ena(u32 caps)
757 {
758         return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
759 }
760
761 /**
762  * ice_vc_handle_rss_cfg
763  * @vf: pointer to the VF info
764  * @msg: pointer to the message buffer
765  * @add: add a RSS config if true, otherwise delete a RSS config
766  *
767  * This function adds/deletes a RSS config
768  */
769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
770 {
771         u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
772         struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
773         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
774         struct device *dev = ice_pf_to_dev(vf->pf);
775         struct ice_hw *hw = &vf->pf->hw;
776         struct ice_vsi *vsi;
777
778         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
779                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
780                         vf->vf_id);
781                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
782                 goto error_param;
783         }
784
785         if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
786                 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
787                         vf->vf_id);
788                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
789                 goto error_param;
790         }
791
792         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
793                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
794                 goto error_param;
795         }
796
797         if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
798             rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
799             rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
800                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
801                         vf->vf_id);
802                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
803                 goto error_param;
804         }
805
806         vsi = ice_get_vf_vsi(vf);
807         if (!vsi) {
808                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
809                 goto error_param;
810         }
811
812         if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
813                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
814                 goto error_param;
815         }
816
817         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
818                 struct ice_vsi_ctx *ctx;
819                 u8 lut_type, hash_type;
820                 int status;
821
822                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
823                 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
824                                 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
825
826                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
827                 if (!ctx) {
828                         v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
829                         goto error_param;
830                 }
831
832                 ctx->info.q_opt_rss = ((lut_type <<
833                                         ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
834                                        ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
835                                        (hash_type &
836                                         ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
837
838                 /* Preserve existing queueing option setting */
839                 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
840                                           ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
841                 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
842                 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
843
844                 ctx->info.valid_sections =
845                                 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
846
847                 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
848                 if (status) {
849                         dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
850                                 status, ice_aq_str(hw->adminq.sq_last_status));
851                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
852                 } else {
853                         vsi->info.q_opt_rss = ctx->info.q_opt_rss;
854                 }
855
856                 kfree(ctx);
857         } else {
858                 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
859                 u64 hash_flds = ICE_HASH_INVALID;
860
861                 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
862                                           &hash_flds)) {
863                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
864                         goto error_param;
865                 }
866
867                 if (add) {
868                         if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
869                                             addl_hdrs)) {
870                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
871                                 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
872                                         vsi->vsi_num, v_ret);
873                         }
874                 } else {
875                         int status;
876
877                         status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
878                                                  addl_hdrs);
879                         /* We just ignore -ENOENT, because if two configurations
880                          * share the same profile remove one of them actually
881                          * removes both, since the profile is deleted.
882                          */
883                         if (status && status != -ENOENT) {
884                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885                                 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886                                         vf->vf_id, status);
887                         }
888                 }
889         }
890
891 error_param:
892         return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893 }
894
895 /**
896  * ice_vc_config_rss_key
897  * @vf: pointer to the VF info
898  * @msg: pointer to the msg buffer
899  *
900  * Configure the VF's RSS key
901  */
902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903 {
904         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905         struct virtchnl_rss_key *vrk =
906                 (struct virtchnl_rss_key *)msg;
907         struct ice_vsi *vsi;
908
909         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911                 goto error_param;
912         }
913
914         if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916                 goto error_param;
917         }
918
919         if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921                 goto error_param;
922         }
923
924         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926                 goto error_param;
927         }
928
929         vsi = ice_get_vf_vsi(vf);
930         if (!vsi) {
931                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932                 goto error_param;
933         }
934
935         if (ice_set_rss_key(vsi, vrk->key))
936                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937 error_param:
938         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939                                      NULL, 0);
940 }
941
942 /**
943  * ice_vc_config_rss_lut
944  * @vf: pointer to the VF info
945  * @msg: pointer to the msg buffer
946  *
947  * Configure the VF's RSS LUT
948  */
949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950 {
951         struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953         struct ice_vsi *vsi;
954
955         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957                 goto error_param;
958         }
959
960         if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962                 goto error_param;
963         }
964
965         if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
966                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967                 goto error_param;
968         }
969
970         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972                 goto error_param;
973         }
974
975         vsi = ice_get_vf_vsi(vf);
976         if (!vsi) {
977                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978                 goto error_param;
979         }
980
981         if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
982                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983 error_param:
984         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985                                      NULL, 0);
986 }
987
988 /**
989  * ice_vc_cfg_promiscuous_mode_msg
990  * @vf: pointer to the VF info
991  * @msg: pointer to the msg buffer
992  *
993  * called from the VF to configure VF VSIs promiscuous mode
994  */
995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
996 {
997         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
998         bool rm_promisc, alluni = false, allmulti = false;
999         struct virtchnl_promisc_info *info =
1000             (struct virtchnl_promisc_info *)msg;
1001         struct ice_vsi_vlan_ops *vlan_ops;
1002         int mcast_err = 0, ucast_err = 0;
1003         struct ice_pf *pf = vf->pf;
1004         struct ice_vsi *vsi;
1005         u8 mcast_m, ucast_m;
1006         struct device *dev;
1007         int ret = 0;
1008
1009         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011                 goto error_param;
1012         }
1013
1014         if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1015                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016                 goto error_param;
1017         }
1018
1019         vsi = ice_get_vf_vsi(vf);
1020         if (!vsi) {
1021                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022                 goto error_param;
1023         }
1024
1025         dev = ice_pf_to_dev(pf);
1026         if (!ice_is_vf_trusted(vf)) {
1027                 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1028                         vf->vf_id);
1029                 /* Leave v_ret alone, lie to the VF on purpose. */
1030                 goto error_param;
1031         }
1032
1033         if (info->flags & FLAG_VF_UNICAST_PROMISC)
1034                 alluni = true;
1035
1036         if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1037                 allmulti = true;
1038
1039         rm_promisc = !allmulti && !alluni;
1040
1041         vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1042         if (rm_promisc)
1043                 ret = vlan_ops->ena_rx_filtering(vsi);
1044         else
1045                 ret = vlan_ops->dis_rx_filtering(vsi);
1046         if (ret) {
1047                 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1048                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1049                 goto error_param;
1050         }
1051
1052         ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1053
1054         if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1055                 if (alluni) {
1056                         /* in this case we're turning on promiscuous mode */
1057                         ret = ice_set_dflt_vsi(vsi);
1058                 } else {
1059                         /* in this case we're turning off promiscuous mode */
1060                         if (ice_is_dflt_vsi_in_use(vsi->port_info))
1061                                 ret = ice_clear_dflt_vsi(vsi);
1062                 }
1063
1064                 /* in this case we're turning on/off only
1065                  * allmulticast
1066                  */
1067                 if (allmulti)
1068                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1069                 else
1070                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1071
1072                 if (ret) {
1073                         dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1074                                 vf->vf_id, ret);
1075                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1076                         goto error_param;
1077                 }
1078         } else {
1079                 if (alluni)
1080                         ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1081                 else
1082                         ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1083
1084                 if (allmulti)
1085                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1086                 else
1087                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1088
1089                 if (ucast_err || mcast_err)
1090                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1091         }
1092
1093         if (!mcast_err) {
1094                 if (allmulti &&
1095                     !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1096                         dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1097                                  vf->vf_id);
1098                 else if (!allmulti &&
1099                          test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1100                                             vf->vf_states))
1101                         dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1102                                  vf->vf_id);
1103         } else {
1104                 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1105                         vf->vf_id, mcast_err);
1106         }
1107
1108         if (!ucast_err) {
1109                 if (alluni &&
1110                     !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1111                         dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1112                                  vf->vf_id);
1113                 else if (!alluni &&
1114                          test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1115                                             vf->vf_states))
1116                         dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1117                                  vf->vf_id);
1118         } else {
1119                 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1120                         vf->vf_id, ucast_err);
1121         }
1122
1123 error_param:
1124         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1125                                      v_ret, NULL, 0);
1126 }
1127
1128 /**
1129  * ice_vc_get_stats_msg
1130  * @vf: pointer to the VF info
1131  * @msg: pointer to the msg buffer
1132  *
1133  * called from the VF to get VSI stats
1134  */
1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1136 {
1137         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1138         struct virtchnl_queue_select *vqs =
1139                 (struct virtchnl_queue_select *)msg;
1140         struct ice_eth_stats stats = { 0 };
1141         struct ice_vsi *vsi;
1142
1143         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1144                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1145                 goto error_param;
1146         }
1147
1148         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1149                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1150                 goto error_param;
1151         }
1152
1153         vsi = ice_get_vf_vsi(vf);
1154         if (!vsi) {
1155                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1156                 goto error_param;
1157         }
1158
1159         ice_update_eth_stats(vsi);
1160
1161         stats = vsi->eth_stats;
1162
1163 error_param:
1164         /* send the response to the VF */
1165         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1166                                      (u8 *)&stats, sizeof(stats));
1167 }
1168
1169 /**
1170  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1171  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1172  *
1173  * Return true on successful validation, else false
1174  */
1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1176 {
1177         if ((!vqs->rx_queues && !vqs->tx_queues) ||
1178             vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1179             vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1180                 return false;
1181
1182         return true;
1183 }
1184
1185 /**
1186  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1187  * @vsi: VSI of the VF to configure
1188  * @q_idx: VF queue index used to determine the queue in the PF's space
1189  */
1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1191 {
1192         struct ice_hw *hw = &vsi->back->hw;
1193         u32 pfq = vsi->txq_map[q_idx];
1194         u32 reg;
1195
1196         reg = rd32(hw, QINT_TQCTL(pfq));
1197
1198         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1199          * this is most likely a poll mode VF driver, so don't enable an
1200          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1201          */
1202         if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1203                 return;
1204
1205         wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1206 }
1207
1208 /**
1209  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1210  * @vsi: VSI of the VF to configure
1211  * @q_idx: VF queue index used to determine the queue in the PF's space
1212  */
1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1214 {
1215         struct ice_hw *hw = &vsi->back->hw;
1216         u32 pfq = vsi->rxq_map[q_idx];
1217         u32 reg;
1218
1219         reg = rd32(hw, QINT_RQCTL(pfq));
1220
1221         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1222          * this is most likely a poll mode VF driver, so don't enable an
1223          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1224          */
1225         if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1226                 return;
1227
1228         wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1229 }
1230
1231 /**
1232  * ice_vc_ena_qs_msg
1233  * @vf: pointer to the VF info
1234  * @msg: pointer to the msg buffer
1235  *
1236  * called from the VF to enable all or specific queue(s)
1237  */
1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1239 {
1240         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1241         struct virtchnl_queue_select *vqs =
1242             (struct virtchnl_queue_select *)msg;
1243         struct ice_vsi *vsi;
1244         unsigned long q_map;
1245         u16 vf_q_id;
1246
1247         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1248                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1249                 goto error_param;
1250         }
1251
1252         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1253                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1254                 goto error_param;
1255         }
1256
1257         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1258                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259                 goto error_param;
1260         }
1261
1262         vsi = ice_get_vf_vsi(vf);
1263         if (!vsi) {
1264                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1265                 goto error_param;
1266         }
1267
1268         /* Enable only Rx rings, Tx rings were enabled by the FW when the
1269          * Tx queue group list was configured and the context bits were
1270          * programmed using ice_vsi_cfg_txqs
1271          */
1272         q_map = vqs->rx_queues;
1273         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1274                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1275                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1276                         goto error_param;
1277                 }
1278
1279                 /* Skip queue if enabled */
1280                 if (test_bit(vf_q_id, vf->rxq_ena))
1281                         continue;
1282
1283                 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1284                         dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1285                                 vf_q_id, vsi->vsi_num);
1286                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1287                         goto error_param;
1288                 }
1289
1290                 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1291                 set_bit(vf_q_id, vf->rxq_ena);
1292         }
1293
1294         q_map = vqs->tx_queues;
1295         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1296                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1297                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298                         goto error_param;
1299                 }
1300
1301                 /* Skip queue if enabled */
1302                 if (test_bit(vf_q_id, vf->txq_ena))
1303                         continue;
1304
1305                 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1306                 set_bit(vf_q_id, vf->txq_ena);
1307         }
1308
1309         /* Set flag to indicate that queues are enabled */
1310         if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1311                 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1312
1313 error_param:
1314         /* send the response to the VF */
1315         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1316                                      NULL, 0);
1317 }
1318
1319 /**
1320  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1321  * @vf: VF to disable queue for
1322  * @vsi: VSI for the VF
1323  * @q_id: VF relative (0-based) queue ID
1324  *
1325  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1326  * disabled then clear q_id bit in the enabled queues bitmap and return
1327  * success. Otherwise return error.
1328  */
1329 static int
1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1331 {
1332         struct ice_txq_meta txq_meta = { 0 };
1333         struct ice_tx_ring *ring;
1334         int err;
1335
1336         if (!test_bit(q_id, vf->txq_ena))
1337                 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1338                         q_id, vsi->vsi_num);
1339
1340         ring = vsi->tx_rings[q_id];
1341         if (!ring)
1342                 return -EINVAL;
1343
1344         ice_fill_txq_meta(vsi, ring, &txq_meta);
1345
1346         err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1347         if (err) {
1348                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1349                         q_id, vsi->vsi_num);
1350                 return err;
1351         }
1352
1353         /* Clear enabled queues flag */
1354         clear_bit(q_id, vf->txq_ena);
1355
1356         return 0;
1357 }
1358
1359 /**
1360  * ice_vc_dis_qs_msg
1361  * @vf: pointer to the VF info
1362  * @msg: pointer to the msg buffer
1363  *
1364  * called from the VF to disable all or specific queue(s)
1365  */
1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1367 {
1368         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1369         struct virtchnl_queue_select *vqs =
1370             (struct virtchnl_queue_select *)msg;
1371         struct ice_vsi *vsi;
1372         unsigned long q_map;
1373         u16 vf_q_id;
1374
1375         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1376             !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1377                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1378                 goto error_param;
1379         }
1380
1381         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1382                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1383                 goto error_param;
1384         }
1385
1386         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1387                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1388                 goto error_param;
1389         }
1390
1391         vsi = ice_get_vf_vsi(vf);
1392         if (!vsi) {
1393                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394                 goto error_param;
1395         }
1396
1397         if (vqs->tx_queues) {
1398                 q_map = vqs->tx_queues;
1399
1400                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1401                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1402                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1403                                 goto error_param;
1404                         }
1405
1406                         if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1407                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408                                 goto error_param;
1409                         }
1410                 }
1411         }
1412
1413         q_map = vqs->rx_queues;
1414         /* speed up Rx queue disable by batching them if possible */
1415         if (q_map &&
1416             bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1417                 if (ice_vsi_stop_all_rx_rings(vsi)) {
1418                         dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1419                                 vsi->vsi_num);
1420                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1421                         goto error_param;
1422                 }
1423
1424                 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1425         } else if (q_map) {
1426                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1427                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1428                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1429                                 goto error_param;
1430                         }
1431
1432                         /* Skip queue if not enabled */
1433                         if (!test_bit(vf_q_id, vf->rxq_ena))
1434                                 continue;
1435
1436                         if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1437                                                      true)) {
1438                                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1439                                         vf_q_id, vsi->vsi_num);
1440                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1441                                 goto error_param;
1442                         }
1443
1444                         /* Clear enabled queues flag */
1445                         clear_bit(vf_q_id, vf->rxq_ena);
1446                 }
1447         }
1448
1449         /* Clear enabled queues flag */
1450         if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1451                 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1452
1453 error_param:
1454         /* send the response to the VF */
1455         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1456                                      NULL, 0);
1457 }
1458
1459 /**
1460  * ice_cfg_interrupt
1461  * @vf: pointer to the VF info
1462  * @vsi: the VSI being configured
1463  * @vector_id: vector ID
1464  * @map: vector map for mapping vectors to queues
1465  * @q_vector: structure for interrupt vector
1466  * configure the IRQ to queue map
1467  */
1468 static int
1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1470                   struct virtchnl_vector_map *map,
1471                   struct ice_q_vector *q_vector)
1472 {
1473         u16 vsi_q_id, vsi_q_id_idx;
1474         unsigned long qmap;
1475
1476         q_vector->num_ring_rx = 0;
1477         q_vector->num_ring_tx = 0;
1478
1479         qmap = map->rxq_map;
1480         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1481                 vsi_q_id = vsi_q_id_idx;
1482
1483                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1484                         return VIRTCHNL_STATUS_ERR_PARAM;
1485
1486                 q_vector->num_ring_rx++;
1487                 q_vector->rx.itr_idx = map->rxitr_idx;
1488                 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1489                 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1490                                       q_vector->rx.itr_idx);
1491         }
1492
1493         qmap = map->txq_map;
1494         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1495                 vsi_q_id = vsi_q_id_idx;
1496
1497                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1498                         return VIRTCHNL_STATUS_ERR_PARAM;
1499
1500                 q_vector->num_ring_tx++;
1501                 q_vector->tx.itr_idx = map->txitr_idx;
1502                 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1503                 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1504                                       q_vector->tx.itr_idx);
1505         }
1506
1507         return VIRTCHNL_STATUS_SUCCESS;
1508 }
1509
1510 /**
1511  * ice_vc_cfg_irq_map_msg
1512  * @vf: pointer to the VF info
1513  * @msg: pointer to the msg buffer
1514  *
1515  * called from the VF to configure the IRQ to queue map
1516  */
1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1518 {
1519         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1520         u16 num_q_vectors_mapped, vsi_id, vector_id;
1521         struct virtchnl_irq_map_info *irqmap_info;
1522         struct virtchnl_vector_map *map;
1523         struct ice_pf *pf = vf->pf;
1524         struct ice_vsi *vsi;
1525         int i;
1526
1527         irqmap_info = (struct virtchnl_irq_map_info *)msg;
1528         num_q_vectors_mapped = irqmap_info->num_vectors;
1529
1530         /* Check to make sure number of VF vectors mapped is not greater than
1531          * number of VF vectors originally allocated, and check that
1532          * there is actually at least a single VF queue vector mapped
1533          */
1534         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1535             pf->vfs.num_msix_per < num_q_vectors_mapped ||
1536             !num_q_vectors_mapped) {
1537                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1538                 goto error_param;
1539         }
1540
1541         vsi = ice_get_vf_vsi(vf);
1542         if (!vsi) {
1543                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1544                 goto error_param;
1545         }
1546
1547         for (i = 0; i < num_q_vectors_mapped; i++) {
1548                 struct ice_q_vector *q_vector;
1549
1550                 map = &irqmap_info->vecmap[i];
1551
1552                 vector_id = map->vector_id;
1553                 vsi_id = map->vsi_id;
1554                 /* vector_id is always 0-based for each VF, and can never be
1555                  * larger than or equal to the max allowed interrupts per VF
1556                  */
1557                 if (!(vector_id < pf->vfs.num_msix_per) ||
1558                     !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1559                     (!vector_id && (map->rxq_map || map->txq_map))) {
1560                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1561                         goto error_param;
1562                 }
1563
1564                 /* No need to map VF miscellaneous or rogue vector */
1565                 if (!vector_id)
1566                         continue;
1567
1568                 /* Subtract non queue vector from vector_id passed by VF
1569                  * to get actual number of VSI queue vector array index
1570                  */
1571                 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1572                 if (!q_vector) {
1573                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1574                         goto error_param;
1575                 }
1576
1577                 /* lookout for the invalid queue index */
1578                 v_ret = (enum virtchnl_status_code)
1579                         ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1580                 if (v_ret)
1581                         goto error_param;
1582         }
1583
1584 error_param:
1585         /* send the response to the VF */
1586         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1587                                      NULL, 0);
1588 }
1589
1590 /**
1591  * ice_vc_cfg_qs_msg
1592  * @vf: pointer to the VF info
1593  * @msg: pointer to the msg buffer
1594  *
1595  * called from the VF to configure the Rx/Tx queues
1596  */
1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1598 {
1599         struct virtchnl_vsi_queue_config_info *qci =
1600             (struct virtchnl_vsi_queue_config_info *)msg;
1601         struct virtchnl_queue_pair_info *qpi;
1602         struct ice_pf *pf = vf->pf;
1603         struct ice_vsi *vsi;
1604         int i = -1, q_idx;
1605
1606         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1607                 goto error_param;
1608
1609         if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1610                 goto error_param;
1611
1612         vsi = ice_get_vf_vsi(vf);
1613         if (!vsi)
1614                 goto error_param;
1615
1616         if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1617             qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1618                 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1619                         vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1620                 goto error_param;
1621         }
1622
1623         for (i = 0; i < qci->num_queue_pairs; i++) {
1624                 qpi = &qci->qpair[i];
1625                 if (qpi->txq.vsi_id != qci->vsi_id ||
1626                     qpi->rxq.vsi_id != qci->vsi_id ||
1627                     qpi->rxq.queue_id != qpi->txq.queue_id ||
1628                     qpi->txq.headwb_enabled ||
1629                     !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1630                     !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1631                     !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1632                         goto error_param;
1633                 }
1634
1635                 q_idx = qpi->rxq.queue_id;
1636
1637                 /* make sure selected "q_idx" is in valid range of queues
1638                  * for selected "vsi"
1639                  */
1640                 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1641                         goto error_param;
1642                 }
1643
1644                 /* copy Tx queue info from VF into VSI */
1645                 if (qpi->txq.ring_len > 0) {
1646                         vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1647                         vsi->tx_rings[i]->count = qpi->txq.ring_len;
1648
1649                         /* Disable any existing queue first */
1650                         if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1651                                 goto error_param;
1652
1653                         /* Configure a queue with the requested settings */
1654                         if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1655                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1656                                          vf->vf_id, i);
1657                                 goto error_param;
1658                         }
1659                 }
1660
1661                 /* copy Rx queue info from VF into VSI */
1662                 if (qpi->rxq.ring_len > 0) {
1663                         u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1664                         u32 rxdid;
1665
1666                         vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1667                         vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1668
1669                         if (qpi->rxq.databuffer_size != 0 &&
1670                             (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1671                              qpi->rxq.databuffer_size < 1024))
1672                                 goto error_param;
1673                         vsi->rx_buf_len = qpi->rxq.databuffer_size;
1674                         vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1675                         if (qpi->rxq.max_pkt_size > max_frame_size ||
1676                             qpi->rxq.max_pkt_size < 64)
1677                                 goto error_param;
1678
1679                         vsi->max_frame = qpi->rxq.max_pkt_size;
1680                         /* add space for the port VLAN since the VF driver is
1681                          * not expected to account for it in the MTU
1682                          * calculation
1683                          */
1684                         if (ice_vf_is_port_vlan_ena(vf))
1685                                 vsi->max_frame += VLAN_HLEN;
1686
1687                         if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1688                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1689                                          vf->vf_id, i);
1690                                 goto error_param;
1691                         }
1692
1693                         /* If Rx flex desc is supported, select RXDID for Rx
1694                          * queues. Otherwise, use legacy 32byte descriptor
1695                          * format. Legacy 16byte descriptor is not supported.
1696                          * If this RXDID is selected, return error.
1697                          */
1698                         if (vf->driver_caps &
1699                             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1700                                 rxdid = qpi->rxq.rxdid;
1701                                 if (!(BIT(rxdid) & pf->supported_rxdids))
1702                                         goto error_param;
1703                         } else {
1704                                 rxdid = ICE_RXDID_LEGACY_1;
1705                         }
1706
1707                         ice_write_qrxflxp_cntxt(&vsi->back->hw,
1708                                                 vsi->rxq_map[q_idx],
1709                                                 rxdid, 0x03, false);
1710                 }
1711         }
1712
1713         /* send the response to the VF */
1714         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1715                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1716 error_param:
1717         /* disable whatever we can */
1718         for (; i >= 0; i--) {
1719                 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1720                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1721                                 vf->vf_id, i);
1722                 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1723                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1724                                 vf->vf_id, i);
1725         }
1726
1727         ice_lag_move_new_vf_nodes(vf);
1728
1729         /* send the response to the VF */
1730         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1731                                      VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1732 }
1733
1734 /**
1735  * ice_can_vf_change_mac
1736  * @vf: pointer to the VF info
1737  *
1738  * Return true if the VF is allowed to change its MAC filters, false otherwise
1739  */
1740 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1741 {
1742         /* If the VF MAC address has been set administratively (via the
1743          * ndo_set_vf_mac command), then deny permission to the VF to
1744          * add/delete unicast MAC addresses, unless the VF is trusted
1745          */
1746         if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1747                 return false;
1748
1749         return true;
1750 }
1751
1752 /**
1753  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1754  * @vc_ether_addr: used to extract the type
1755  */
1756 static u8
1757 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1758 {
1759         return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1760 }
1761
1762 /**
1763  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1764  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1765  */
1766 static bool
1767 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1768 {
1769         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1770
1771         return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1772 }
1773
1774 /**
1775  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1776  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1777  *
1778  * This function should only be called when the MAC address in
1779  * virtchnl_ether_addr is a valid unicast MAC
1780  */
1781 static bool
1782 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1783 {
1784         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1785
1786         return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1787 }
1788
1789 /**
1790  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1791  * @vf: VF to update
1792  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1793  */
1794 static void
1795 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1796 {
1797         u8 *mac_addr = vc_ether_addr->addr;
1798
1799         if (!is_valid_ether_addr(mac_addr))
1800                 return;
1801
1802         /* only allow legacy VF drivers to set the device and hardware MAC if it
1803          * is zero and allow new VF drivers to set the hardware MAC if the type
1804          * was correctly specified over VIRTCHNL
1805          */
1806         if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1807              is_zero_ether_addr(vf->hw_lan_addr)) ||
1808             ice_is_vc_addr_primary(vc_ether_addr)) {
1809                 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1810                 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1811         }
1812
1813         /* hardware and device MACs are already set, but its possible that the
1814          * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1815          * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1816          * away for the legacy VF driver case as it will be updated in the
1817          * delete flow for this case
1818          */
1819         if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1820                 ether_addr_copy(vf->legacy_last_added_umac.addr,
1821                                 mac_addr);
1822                 vf->legacy_last_added_umac.time_modified = jiffies;
1823         }
1824 }
1825
1826 /**
1827  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1828  * @vf: pointer to the VF info
1829  * @vsi: pointer to the VF's VSI
1830  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1831  */
1832 static int
1833 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1834                     struct virtchnl_ether_addr *vc_ether_addr)
1835 {
1836         struct device *dev = ice_pf_to_dev(vf->pf);
1837         u8 *mac_addr = vc_ether_addr->addr;
1838         int ret;
1839
1840         /* device MAC already added */
1841         if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1842                 return 0;
1843
1844         if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1845                 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1846                 return -EPERM;
1847         }
1848
1849         ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1850         if (ret == -EEXIST) {
1851                 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1852                         vf->vf_id);
1853                 /* don't return since we might need to update
1854                  * the primary MAC in ice_vfhw_mac_add() below
1855                  */
1856         } else if (ret) {
1857                 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1858                         mac_addr, vf->vf_id, ret);
1859                 return ret;
1860         } else {
1861                 vf->num_mac++;
1862         }
1863
1864         ice_vfhw_mac_add(vf, vc_ether_addr);
1865
1866         return ret;
1867 }
1868
1869 /**
1870  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1871  * @last_added_umac: structure used to check expiration
1872  */
1873 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1874 {
1875 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME    msecs_to_jiffies(3000)
1876         return time_is_before_jiffies(last_added_umac->time_modified +
1877                                       ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1878 }
1879
1880 /**
1881  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1882  * @vf: VF to update
1883  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1884  *
1885  * only update cached hardware MAC for legacy VF drivers on delete
1886  * because we cannot guarantee order/type of MAC from the VF driver
1887  */
1888 static void
1889 ice_update_legacy_cached_mac(struct ice_vf *vf,
1890                              struct virtchnl_ether_addr *vc_ether_addr)
1891 {
1892         if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1893             ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1894                 return;
1895
1896         ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1897         ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1898 }
1899
1900 /**
1901  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1902  * @vf: VF to update
1903  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1904  */
1905 static void
1906 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1907 {
1908         u8 *mac_addr = vc_ether_addr->addr;
1909
1910         if (!is_valid_ether_addr(mac_addr) ||
1911             !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1912                 return;
1913
1914         /* allow the device MAC to be repopulated in the add flow and don't
1915          * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1916          * to be persistent on VM reboot and across driver unload/load, which
1917          * won't work if we clear the hardware MAC here
1918          */
1919         eth_zero_addr(vf->dev_lan_addr);
1920
1921         ice_update_legacy_cached_mac(vf, vc_ether_addr);
1922 }
1923
1924 /**
1925  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1926  * @vf: pointer to the VF info
1927  * @vsi: pointer to the VF's VSI
1928  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1929  */
1930 static int
1931 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1932                     struct virtchnl_ether_addr *vc_ether_addr)
1933 {
1934         struct device *dev = ice_pf_to_dev(vf->pf);
1935         u8 *mac_addr = vc_ether_addr->addr;
1936         int status;
1937
1938         if (!ice_can_vf_change_mac(vf) &&
1939             ether_addr_equal(vf->dev_lan_addr, mac_addr))
1940                 return 0;
1941
1942         status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1943         if (status == -ENOENT) {
1944                 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1945                         vf->vf_id);
1946                 return -ENOENT;
1947         } else if (status) {
1948                 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1949                         mac_addr, vf->vf_id, status);
1950                 return -EIO;
1951         }
1952
1953         ice_vfhw_mac_del(vf, vc_ether_addr);
1954
1955         vf->num_mac--;
1956
1957         return 0;
1958 }
1959
1960 /**
1961  * ice_vc_handle_mac_addr_msg
1962  * @vf: pointer to the VF info
1963  * @msg: pointer to the msg buffer
1964  * @set: true if MAC filters are being set, false otherwise
1965  *
1966  * add guest MAC address filter
1967  */
1968 static int
1969 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1970 {
1971         int (*ice_vc_cfg_mac)
1972                 (struct ice_vf *vf, struct ice_vsi *vsi,
1973                  struct virtchnl_ether_addr *virtchnl_ether_addr);
1974         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1975         struct virtchnl_ether_addr_list *al =
1976             (struct virtchnl_ether_addr_list *)msg;
1977         struct ice_pf *pf = vf->pf;
1978         enum virtchnl_ops vc_op;
1979         struct ice_vsi *vsi;
1980         int i;
1981
1982         if (set) {
1983                 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1984                 ice_vc_cfg_mac = ice_vc_add_mac_addr;
1985         } else {
1986                 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1987                 ice_vc_cfg_mac = ice_vc_del_mac_addr;
1988         }
1989
1990         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1991             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1992                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1993                 goto handle_mac_exit;
1994         }
1995
1996         /* If this VF is not privileged, then we can't add more than a
1997          * limited number of addresses. Check to make sure that the
1998          * additions do not push us over the limit.
1999          */
2000         if (set && !ice_is_vf_trusted(vf) &&
2001             (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2002                 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2003                         vf->vf_id);
2004                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2005                 goto handle_mac_exit;
2006         }
2007
2008         vsi = ice_get_vf_vsi(vf);
2009         if (!vsi) {
2010                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2011                 goto handle_mac_exit;
2012         }
2013
2014         for (i = 0; i < al->num_elements; i++) {
2015                 u8 *mac_addr = al->list[i].addr;
2016                 int result;
2017
2018                 if (is_broadcast_ether_addr(mac_addr) ||
2019                     is_zero_ether_addr(mac_addr))
2020                         continue;
2021
2022                 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2023                 if (result == -EEXIST || result == -ENOENT) {
2024                         continue;
2025                 } else if (result) {
2026                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2027                         goto handle_mac_exit;
2028                 }
2029         }
2030
2031 handle_mac_exit:
2032         /* send the response to the VF */
2033         return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2034 }
2035
2036 /**
2037  * ice_vc_add_mac_addr_msg
2038  * @vf: pointer to the VF info
2039  * @msg: pointer to the msg buffer
2040  *
2041  * add guest MAC address filter
2042  */
2043 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2044 {
2045         return ice_vc_handle_mac_addr_msg(vf, msg, true);
2046 }
2047
2048 /**
2049  * ice_vc_del_mac_addr_msg
2050  * @vf: pointer to the VF info
2051  * @msg: pointer to the msg buffer
2052  *
2053  * remove guest MAC address filter
2054  */
2055 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2056 {
2057         return ice_vc_handle_mac_addr_msg(vf, msg, false);
2058 }
2059
2060 /**
2061  * ice_vc_request_qs_msg
2062  * @vf: pointer to the VF info
2063  * @msg: pointer to the msg buffer
2064  *
2065  * VFs get a default number of queues but can use this message to request a
2066  * different number. If the request is successful, PF will reset the VF and
2067  * return 0. If unsuccessful, PF will send message informing VF of number of
2068  * available queue pairs via virtchnl message response to VF.
2069  */
2070 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2071 {
2072         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2073         struct virtchnl_vf_res_request *vfres =
2074                 (struct virtchnl_vf_res_request *)msg;
2075         u16 req_queues = vfres->num_queue_pairs;
2076         struct ice_pf *pf = vf->pf;
2077         u16 max_allowed_vf_queues;
2078         u16 tx_rx_queue_left;
2079         struct device *dev;
2080         u16 cur_queues;
2081
2082         dev = ice_pf_to_dev(pf);
2083         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2084                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2085                 goto error_param;
2086         }
2087
2088         cur_queues = vf->num_vf_qs;
2089         tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2090                                  ice_get_avail_rxq_count(pf));
2091         max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2092         if (!req_queues) {
2093                 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2094                         vf->vf_id);
2095         } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2096                 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2097                         vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2098                 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2099         } else if (req_queues > cur_queues &&
2100                    req_queues - cur_queues > tx_rx_queue_left) {
2101                 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2102                          vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2103                 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2104                                                ICE_MAX_RSS_QS_PER_VF);
2105         } else {
2106                 /* request is successful, then reset VF */
2107                 vf->num_req_qs = req_queues;
2108                 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2109                 dev_info(dev, "VF %d granted request of %u queues.\n",
2110                          vf->vf_id, req_queues);
2111                 return 0;
2112         }
2113
2114 error_param:
2115         /* send the response to the VF */
2116         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2117                                      v_ret, (u8 *)vfres, sizeof(*vfres));
2118 }
2119
2120 /**
2121  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2122  * @caps: VF driver negotiated capabilities
2123  *
2124  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2125  */
2126 static bool ice_vf_vlan_offload_ena(u32 caps)
2127 {
2128         return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2129 }
2130
2131 /**
2132  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2133  * @vf: VF used to determine if VLAN promiscuous config is allowed
2134  */
2135 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2136 {
2137         if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2138              test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2139             test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2140                 return true;
2141
2142         return false;
2143 }
2144
2145 /**
2146  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2147  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2148  * @vlan: VLAN used to enable VLAN promiscuous
2149  *
2150  * This function should only be called if VLAN promiscuous mode is allowed,
2151  * which can be determined via ice_is_vlan_promisc_allowed().
2152  */
2153 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2154 {
2155         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2156         int status;
2157
2158         status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2159                                           vlan->vid);
2160         if (status && status != -EEXIST)
2161                 return status;
2162
2163         return 0;
2164 }
2165
2166 /**
2167  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2168  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2169  * @vlan: VLAN used to disable VLAN promiscuous
2170  *
2171  * This function should only be called if VLAN promiscuous mode is allowed,
2172  * which can be determined via ice_is_vlan_promisc_allowed().
2173  */
2174 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2175 {
2176         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2177         int status;
2178
2179         status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2180                                             vlan->vid);
2181         if (status && status != -ENOENT)
2182                 return status;
2183
2184         return 0;
2185 }
2186
2187 /**
2188  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2189  * @vf: VF to check against
2190  * @vsi: VF's VSI
2191  *
2192  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2193  * wants to, so return false.
2194  *
2195  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2196  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2197  */
2198 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2199 {
2200         if (ice_is_vf_trusted(vf))
2201                 return false;
2202
2203 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS    1
2204         return ((ice_vsi_num_non_zero_vlans(vsi) +
2205                 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2206 }
2207
2208 /**
2209  * ice_vc_process_vlan_msg
2210  * @vf: pointer to the VF info
2211  * @msg: pointer to the msg buffer
2212  * @add_v: Add VLAN if true, otherwise delete VLAN
2213  *
2214  * Process virtchnl op to add or remove programmed guest VLAN ID
2215  */
2216 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2217 {
2218         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2219         struct virtchnl_vlan_filter_list *vfl =
2220             (struct virtchnl_vlan_filter_list *)msg;
2221         struct ice_pf *pf = vf->pf;
2222         bool vlan_promisc = false;
2223         struct ice_vsi *vsi;
2224         struct device *dev;
2225         int status = 0;
2226         int i;
2227
2228         dev = ice_pf_to_dev(pf);
2229         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2230                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2231                 goto error_param;
2232         }
2233
2234         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2235                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2236                 goto error_param;
2237         }
2238
2239         if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2240                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2241                 goto error_param;
2242         }
2243
2244         for (i = 0; i < vfl->num_elements; i++) {
2245                 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2246                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2247                         dev_err(dev, "invalid VF VLAN id %d\n",
2248                                 vfl->vlan_id[i]);
2249                         goto error_param;
2250                 }
2251         }
2252
2253         vsi = ice_get_vf_vsi(vf);
2254         if (!vsi) {
2255                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2256                 goto error_param;
2257         }
2258
2259         if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2260                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2261                          vf->vf_id);
2262                 /* There is no need to let VF know about being not trusted,
2263                  * so we can just return success message here
2264                  */
2265                 goto error_param;
2266         }
2267
2268         /* in DVM a VF can add/delete inner VLAN filters when
2269          * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2270          */
2271         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2272                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2273                 goto error_param;
2274         }
2275
2276         /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2277          * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2278          * allow vlan_promisc = true in SVM and if no port VLAN is configured
2279          */
2280         vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2281                 !ice_is_dvm_ena(&pf->hw) &&
2282                 !ice_vf_is_port_vlan_ena(vf);
2283
2284         if (add_v) {
2285                 for (i = 0; i < vfl->num_elements; i++) {
2286                         u16 vid = vfl->vlan_id[i];
2287                         struct ice_vlan vlan;
2288
2289                         if (ice_vf_has_max_vlans(vf, vsi)) {
2290                                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2291                                          vf->vf_id);
2292                                 /* There is no need to let VF know about being
2293                                  * not trusted, so we can just return success
2294                                  * message here as well.
2295                                  */
2296                                 goto error_param;
2297                         }
2298
2299                         /* we add VLAN 0 by default for each VF so we can enable
2300                          * Tx VLAN anti-spoof without triggering MDD events so
2301                          * we don't need to add it again here
2302                          */
2303                         if (!vid)
2304                                 continue;
2305
2306                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2307                         status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2308                         if (status) {
2309                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2310                                 goto error_param;
2311                         }
2312
2313                         /* Enable VLAN filtering on first non-zero VLAN */
2314                         if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2315                                 if (vf->spoofchk) {
2316                                         status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2317                                         if (status) {
2318                                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2319                                                 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2320                                                         vid, status);
2321                                                 goto error_param;
2322                                         }
2323                                 }
2324                                 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2325                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326                                         dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2327                                                 vid, status);
2328                                         goto error_param;
2329                                 }
2330                         } else if (vlan_promisc) {
2331                                 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2332                                 if (status) {
2333                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2334                                         dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2335                                                 vid, status);
2336                                 }
2337                         }
2338                 }
2339         } else {
2340                 /* In case of non_trusted VF, number of VLAN elements passed
2341                  * to PF for removal might be greater than number of VLANs
2342                  * filter programmed for that VF - So, use actual number of
2343                  * VLANS added earlier with add VLAN opcode. In order to avoid
2344                  * removing VLAN that doesn't exist, which result to sending
2345                  * erroneous failed message back to the VF
2346                  */
2347                 int num_vf_vlan;
2348
2349                 num_vf_vlan = vsi->num_vlan;
2350                 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2351                         u16 vid = vfl->vlan_id[i];
2352                         struct ice_vlan vlan;
2353
2354                         /* we add VLAN 0 by default for each VF so we can enable
2355                          * Tx VLAN anti-spoof without triggering MDD events so
2356                          * we don't want a VIRTCHNL request to remove it
2357                          */
2358                         if (!vid)
2359                                 continue;
2360
2361                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2362                         status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2363                         if (status) {
2364                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365                                 goto error_param;
2366                         }
2367
2368                         /* Disable VLAN filtering when only VLAN 0 is left */
2369                         if (!ice_vsi_has_non_zero_vlans(vsi)) {
2370                                 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2371                                 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2372                         }
2373
2374                         if (vlan_promisc)
2375                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2376                 }
2377         }
2378
2379 error_param:
2380         /* send the response to the VF */
2381         if (add_v)
2382                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2383                                              NULL, 0);
2384         else
2385                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2386                                              NULL, 0);
2387 }
2388
2389 /**
2390  * ice_vc_add_vlan_msg
2391  * @vf: pointer to the VF info
2392  * @msg: pointer to the msg buffer
2393  *
2394  * Add and program guest VLAN ID
2395  */
2396 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2397 {
2398         return ice_vc_process_vlan_msg(vf, msg, true);
2399 }
2400
2401 /**
2402  * ice_vc_remove_vlan_msg
2403  * @vf: pointer to the VF info
2404  * @msg: pointer to the msg buffer
2405  *
2406  * remove programmed guest VLAN ID
2407  */
2408 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2409 {
2410         return ice_vc_process_vlan_msg(vf, msg, false);
2411 }
2412
2413 /**
2414  * ice_vc_ena_vlan_stripping
2415  * @vf: pointer to the VF info
2416  *
2417  * Enable VLAN header stripping for a given VF
2418  */
2419 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2420 {
2421         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2422         struct ice_vsi *vsi;
2423
2424         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2425                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2426                 goto error_param;
2427         }
2428
2429         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2430                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2431                 goto error_param;
2432         }
2433
2434         vsi = ice_get_vf_vsi(vf);
2435         if (!vsi) {
2436                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2437                 goto error_param;
2438         }
2439
2440         if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2441                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2442
2443 error_param:
2444         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2445                                      v_ret, NULL, 0);
2446 }
2447
2448 /**
2449  * ice_vc_dis_vlan_stripping
2450  * @vf: pointer to the VF info
2451  *
2452  * Disable VLAN header stripping for a given VF
2453  */
2454 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2455 {
2456         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2457         struct ice_vsi *vsi;
2458
2459         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2460                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2461                 goto error_param;
2462         }
2463
2464         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2465                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2466                 goto error_param;
2467         }
2468
2469         vsi = ice_get_vf_vsi(vf);
2470         if (!vsi) {
2471                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2472                 goto error_param;
2473         }
2474
2475         if (vsi->inner_vlan_ops.dis_stripping(vsi))
2476                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2477
2478 error_param:
2479         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2480                                      v_ret, NULL, 0);
2481 }
2482
2483 /**
2484  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2485  * @vf: pointer to the VF info
2486  */
2487 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2488 {
2489         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2490         struct virtchnl_rss_hena *vrh = NULL;
2491         int len = 0, ret;
2492
2493         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495                 goto err;
2496         }
2497
2498         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2499                 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2500                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2501                 goto err;
2502         }
2503
2504         len = sizeof(struct virtchnl_rss_hena);
2505         vrh = kzalloc(len, GFP_KERNEL);
2506         if (!vrh) {
2507                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2508                 len = 0;
2509                 goto err;
2510         }
2511
2512         vrh->hena = ICE_DEFAULT_RSS_HENA;
2513 err:
2514         /* send the response back to the VF */
2515         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2516                                     (u8 *)vrh, len);
2517         kfree(vrh);
2518         return ret;
2519 }
2520
2521 /**
2522  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2523  * @vf: pointer to the VF info
2524  * @msg: pointer to the msg buffer
2525  */
2526 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2527 {
2528         struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2529         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2530         struct ice_pf *pf = vf->pf;
2531         struct ice_vsi *vsi;
2532         struct device *dev;
2533         int status;
2534
2535         dev = ice_pf_to_dev(pf);
2536
2537         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2538                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2539                 goto err;
2540         }
2541
2542         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2543                 dev_err(dev, "RSS not supported by PF\n");
2544                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2545                 goto err;
2546         }
2547
2548         vsi = ice_get_vf_vsi(vf);
2549         if (!vsi) {
2550                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2551                 goto err;
2552         }
2553
2554         /* clear all previously programmed RSS configuration to allow VF drivers
2555          * the ability to customize the RSS configuration and/or completely
2556          * disable RSS
2557          */
2558         status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2559         if (status && !vrh->hena) {
2560                 /* only report failure to clear the current RSS configuration if
2561                  * that was clearly the VF's intention (i.e. vrh->hena = 0)
2562                  */
2563                 v_ret = ice_err_to_virt_err(status);
2564                 goto err;
2565         } else if (status) {
2566                 /* allow the VF to update the RSS configuration even on failure
2567                  * to clear the current RSS confguration in an attempt to keep
2568                  * RSS in a working state
2569                  */
2570                 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2571                          vf->vf_id);
2572         }
2573
2574         if (vrh->hena) {
2575                 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2576                 v_ret = ice_err_to_virt_err(status);
2577         }
2578
2579         /* send the response to the VF */
2580 err:
2581         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2582                                      NULL, 0);
2583 }
2584
2585 /**
2586  * ice_vc_query_rxdid - query RXDID supported by DDP package
2587  * @vf: pointer to VF info
2588  *
2589  * Called from VF to query a bitmap of supported flexible
2590  * descriptor RXDIDs of a DDP package.
2591  */
2592 static int ice_vc_query_rxdid(struct ice_vf *vf)
2593 {
2594         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2595         struct virtchnl_supported_rxdids *rxdid = NULL;
2596         struct ice_hw *hw = &vf->pf->hw;
2597         struct ice_pf *pf = vf->pf;
2598         int len = 0;
2599         int ret, i;
2600         u32 regval;
2601
2602         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2603                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2604                 goto err;
2605         }
2606
2607         if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2608                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2609                 goto err;
2610         }
2611
2612         len = sizeof(struct virtchnl_supported_rxdids);
2613         rxdid = kzalloc(len, GFP_KERNEL);
2614         if (!rxdid) {
2615                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2616                 len = 0;
2617                 goto err;
2618         }
2619
2620         /* Read flexiflag registers to determine whether the
2621          * corresponding RXDID is configured and supported or not.
2622          * Since Legacy 16byte descriptor format is not supported,
2623          * start from Legacy 32byte descriptor.
2624          */
2625         for (i = ICE_RXDID_LEGACY_1; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2626                 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2627                 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2628                         & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2629                         rxdid->supported_rxdids |= BIT(i);
2630         }
2631
2632         pf->supported_rxdids = rxdid->supported_rxdids;
2633
2634 err:
2635         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2636                                     v_ret, (u8 *)rxdid, len);
2637         kfree(rxdid);
2638         return ret;
2639 }
2640
2641 /**
2642  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2643  * @vf: VF to enable/disable VLAN stripping for on initialization
2644  *
2645  * Set the default for VLAN stripping based on whether a port VLAN is configured
2646  * and the current VLAN mode of the device.
2647  */
2648 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2649 {
2650         struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2651
2652         if (!vsi)
2653                 return -EINVAL;
2654
2655         /* don't modify stripping if port VLAN is configured in SVM since the
2656          * port VLAN is based on the inner/single VLAN in SVM
2657          */
2658         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2659                 return 0;
2660
2661         if (ice_vf_vlan_offload_ena(vf->driver_caps))
2662                 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2663         else
2664                 return vsi->inner_vlan_ops.dis_stripping(vsi);
2665 }
2666
2667 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2668 {
2669         if (vf->trusted)
2670                 return VLAN_N_VID;
2671         else
2672                 return ICE_MAX_VLAN_PER_VF;
2673 }
2674
2675 /**
2676  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2677  * @vf: VF that being checked for
2678  *
2679  * When the device is in double VLAN mode, check whether or not the outer VLAN
2680  * is allowed.
2681  */
2682 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2683 {
2684         if (ice_vf_is_port_vlan_ena(vf))
2685                 return true;
2686
2687         return false;
2688 }
2689
2690 /**
2691  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2692  * @vf: VF that capabilities are being set for
2693  * @caps: VLAN capabilities to populate
2694  *
2695  * Determine VLAN capabilities support based on whether a port VLAN is
2696  * configured. If a port VLAN is configured then the VF should use the inner
2697  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2698  * capabilies.
2699  */
2700 static void
2701 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2702 {
2703         struct virtchnl_vlan_supported_caps *supported_caps;
2704
2705         if (ice_vf_outer_vlan_not_allowed(vf)) {
2706                 /* until support for inner VLAN filtering is added when a port
2707                  * VLAN is configured, only support software offloaded inner
2708                  * VLANs when a port VLAN is confgured in DVM
2709                  */
2710                 supported_caps = &caps->filtering.filtering_support;
2711                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2712
2713                 supported_caps = &caps->offloads.stripping_support;
2714                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2715                                         VIRTCHNL_VLAN_TOGGLE |
2716                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2717                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2718
2719                 supported_caps = &caps->offloads.insertion_support;
2720                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2721                                         VIRTCHNL_VLAN_TOGGLE |
2722                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2723                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2724
2725                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2726                 caps->offloads.ethertype_match =
2727                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2728         } else {
2729                 supported_caps = &caps->filtering.filtering_support;
2730                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2731                 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2732                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2733                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2734                                         VIRTCHNL_VLAN_ETHERTYPE_AND;
2735                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2736                                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2737                                                  VIRTCHNL_VLAN_ETHERTYPE_9100;
2738
2739                 supported_caps = &caps->offloads.stripping_support;
2740                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2741                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2742                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2743                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2744                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2745                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2746                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2747                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2748                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2749
2750                 supported_caps = &caps->offloads.insertion_support;
2751                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2752                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2753                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2754                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2755                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2756                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2757                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2758                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2759                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2760
2761                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2762
2763                 caps->offloads.ethertype_match =
2764                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2765         }
2766
2767         caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2768 }
2769
2770 /**
2771  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2772  * @vf: VF that capabilities are being set for
2773  * @caps: VLAN capabilities to populate
2774  *
2775  * Determine VLAN capabilities support based on whether a port VLAN is
2776  * configured. If a port VLAN is configured then the VF does not have any VLAN
2777  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2778  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2779  * VLAN fitlering and offload capabilities.
2780  */
2781 static void
2782 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2783 {
2784         struct virtchnl_vlan_supported_caps *supported_caps;
2785
2786         if (ice_vf_is_port_vlan_ena(vf)) {
2787                 supported_caps = &caps->filtering.filtering_support;
2788                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2789                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2790
2791                 supported_caps = &caps->offloads.stripping_support;
2792                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2793                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2794
2795                 supported_caps = &caps->offloads.insertion_support;
2796                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2797                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2798
2799                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2800                 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2801                 caps->filtering.max_filters = 0;
2802         } else {
2803                 supported_caps = &caps->filtering.filtering_support;
2804                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2805                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2806                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2807
2808                 supported_caps = &caps->offloads.stripping_support;
2809                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2810                                         VIRTCHNL_VLAN_TOGGLE |
2811                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2812                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2813
2814                 supported_caps = &caps->offloads.insertion_support;
2815                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2816                                         VIRTCHNL_VLAN_TOGGLE |
2817                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2818                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2819
2820                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2821                 caps->offloads.ethertype_match =
2822                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2823                 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2824         }
2825 }
2826
2827 /**
2828  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2829  * @vf: VF to determine VLAN capabilities for
2830  *
2831  * This will only be called if the VF and PF successfully negotiated
2832  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2833  *
2834  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2835  * is configured or not.
2836  */
2837 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2838 {
2839         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2840         struct virtchnl_vlan_caps *caps = NULL;
2841         int err, len = 0;
2842
2843         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2844                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2845                 goto out;
2846         }
2847
2848         caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2849         if (!caps) {
2850                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2851                 goto out;
2852         }
2853         len = sizeof(*caps);
2854
2855         if (ice_is_dvm_ena(&vf->pf->hw))
2856                 ice_vc_set_dvm_caps(vf, caps);
2857         else
2858                 ice_vc_set_svm_caps(vf, caps);
2859
2860         /* store negotiated caps to prevent invalid VF messages */
2861         memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2862
2863 out:
2864         err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2865                                     v_ret, (u8 *)caps, len);
2866         kfree(caps);
2867         return err;
2868 }
2869
2870 /**
2871  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2872  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2873  * @tpid: VLAN TPID used for validation
2874  *
2875  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2876  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2877  */
2878 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2879 {
2880         enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2881
2882         switch (tpid) {
2883         case ETH_P_8021Q:
2884                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2885                 break;
2886         case ETH_P_8021AD:
2887                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2888                 break;
2889         case ETH_P_QINQ1:
2890                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2891                 break;
2892         }
2893
2894         if (!(filtering_caps & vlan_ethertype))
2895                 return false;
2896
2897         return true;
2898 }
2899
2900 /**
2901  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2902  * @vc_vlan: virtchnl_vlan to validate
2903  *
2904  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2905  * false. Otherwise return true.
2906  */
2907 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2908 {
2909         if (!vc_vlan->tci || !vc_vlan->tpid)
2910                 return false;
2911
2912         return true;
2913 }
2914
2915 /**
2916  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2917  * @vfc: negotiated/supported VLAN filtering capabilities
2918  * @vfl: VLAN filter list from VF to validate
2919  *
2920  * Validate all of the filters in the VLAN filter list from the VF. If any of
2921  * the checks fail then return false. Otherwise return true.
2922  */
2923 static bool
2924 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2925                                  struct virtchnl_vlan_filter_list_v2 *vfl)
2926 {
2927         u16 i;
2928
2929         if (!vfl->num_elements)
2930                 return false;
2931
2932         for (i = 0; i < vfl->num_elements; i++) {
2933                 struct virtchnl_vlan_supported_caps *filtering_support =
2934                         &vfc->filtering_support;
2935                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2936                 struct virtchnl_vlan *outer = &vlan_fltr->outer;
2937                 struct virtchnl_vlan *inner = &vlan_fltr->inner;
2938
2939                 if ((ice_vc_is_valid_vlan(outer) &&
2940                      filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2941                     (ice_vc_is_valid_vlan(inner) &&
2942                      filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2943                         return false;
2944
2945                 if ((outer->tci_mask &&
2946                      !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2947                     (inner->tci_mask &&
2948                      !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2949                         return false;
2950
2951                 if (((outer->tci & VLAN_PRIO_MASK) &&
2952                      !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2953                     ((inner->tci & VLAN_PRIO_MASK) &&
2954                      !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2955                         return false;
2956
2957                 if ((ice_vc_is_valid_vlan(outer) &&
2958                      !ice_vc_validate_vlan_tpid(filtering_support->outer,
2959                                                 outer->tpid)) ||
2960                     (ice_vc_is_valid_vlan(inner) &&
2961                      !ice_vc_validate_vlan_tpid(filtering_support->inner,
2962                                                 inner->tpid)))
2963                         return false;
2964         }
2965
2966         return true;
2967 }
2968
2969 /**
2970  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2971  * @vc_vlan: struct virtchnl_vlan to transform
2972  */
2973 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2974 {
2975         struct ice_vlan vlan = { 0 };
2976
2977         vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2978         vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2979         vlan.tpid = vc_vlan->tpid;
2980
2981         return vlan;
2982 }
2983
2984 /**
2985  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2986  * @vsi: VF's VSI used to perform the action
2987  * @vlan_action: function to perform the action with (i.e. add/del)
2988  * @vlan: VLAN filter to perform the action with
2989  */
2990 static int
2991 ice_vc_vlan_action(struct ice_vsi *vsi,
2992                    int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2993                    struct ice_vlan *vlan)
2994 {
2995         int err;
2996
2997         err = vlan_action(vsi, vlan);
2998         if (err)
2999                 return err;
3000
3001         return 0;
3002 }
3003
3004 /**
3005  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3006  * @vf: VF used to delete the VLAN(s)
3007  * @vsi: VF's VSI used to delete the VLAN(s)
3008  * @vfl: virthchnl filter list used to delete the filters
3009  */
3010 static int
3011 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3012                  struct virtchnl_vlan_filter_list_v2 *vfl)
3013 {
3014         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3015         int err;
3016         u16 i;
3017
3018         for (i = 0; i < vfl->num_elements; i++) {
3019                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3020                 struct virtchnl_vlan *vc_vlan;
3021
3022                 vc_vlan = &vlan_fltr->outer;
3023                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3024                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3025
3026                         err = ice_vc_vlan_action(vsi,
3027                                                  vsi->outer_vlan_ops.del_vlan,
3028                                                  &vlan);
3029                         if (err)
3030                                 return err;
3031
3032                         if (vlan_promisc)
3033                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
3034
3035                         /* Disable VLAN filtering when only VLAN 0 is left */
3036                         if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3037                                 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3038                                 if (err)
3039                                         return err;
3040                         }
3041                 }
3042
3043                 vc_vlan = &vlan_fltr->inner;
3044                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3045                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3046
3047                         err = ice_vc_vlan_action(vsi,
3048                                                  vsi->inner_vlan_ops.del_vlan,
3049                                                  &vlan);
3050                         if (err)
3051                                 return err;
3052
3053                         /* no support for VLAN promiscuous on inner VLAN unless
3054                          * we are in Single VLAN Mode (SVM)
3055                          */
3056                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3057                                 if (vlan_promisc)
3058                                         ice_vf_dis_vlan_promisc(vsi, &vlan);
3059
3060                                 /* Disable VLAN filtering when only VLAN 0 is left */
3061                                 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3062                                         err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3063                                         if (err)
3064                                                 return err;
3065                                 }
3066                         }
3067                 }
3068         }
3069
3070         return 0;
3071 }
3072
3073 /**
3074  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3075  * @vf: VF the message was received from
3076  * @msg: message received from the VF
3077  */
3078 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3079 {
3080         struct virtchnl_vlan_filter_list_v2 *vfl =
3081                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3082         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3083         struct ice_vsi *vsi;
3084
3085         if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3086                                               vfl)) {
3087                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3088                 goto out;
3089         }
3090
3091         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3092                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3093                 goto out;
3094         }
3095
3096         vsi = ice_get_vf_vsi(vf);
3097         if (!vsi) {
3098                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3099                 goto out;
3100         }
3101
3102         if (ice_vc_del_vlans(vf, vsi, vfl))
3103                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3104
3105 out:
3106         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3107                                      0);
3108 }
3109
3110 /**
3111  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3112  * @vf: VF used to add the VLAN(s)
3113  * @vsi: VF's VSI used to add the VLAN(s)
3114  * @vfl: virthchnl filter list used to add the filters
3115  */
3116 static int
3117 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3118                  struct virtchnl_vlan_filter_list_v2 *vfl)
3119 {
3120         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3121         int err;
3122         u16 i;
3123
3124         for (i = 0; i < vfl->num_elements; i++) {
3125                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3126                 struct virtchnl_vlan *vc_vlan;
3127
3128                 vc_vlan = &vlan_fltr->outer;
3129                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3130                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3131
3132                         err = ice_vc_vlan_action(vsi,
3133                                                  vsi->outer_vlan_ops.add_vlan,
3134                                                  &vlan);
3135                         if (err)
3136                                 return err;
3137
3138                         if (vlan_promisc) {
3139                                 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3140                                 if (err)
3141                                         return err;
3142                         }
3143
3144                         /* Enable VLAN filtering on first non-zero VLAN */
3145                         if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3146                                 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3147                                 if (err)
3148                                         return err;
3149                         }
3150                 }
3151
3152                 vc_vlan = &vlan_fltr->inner;
3153                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3154                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3155
3156                         err = ice_vc_vlan_action(vsi,
3157                                                  vsi->inner_vlan_ops.add_vlan,
3158                                                  &vlan);
3159                         if (err)
3160                                 return err;
3161
3162                         /* no support for VLAN promiscuous on inner VLAN unless
3163                          * we are in Single VLAN Mode (SVM)
3164                          */
3165                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3166                                 if (vlan_promisc) {
3167                                         err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3168                                         if (err)
3169                                                 return err;
3170                                 }
3171
3172                                 /* Enable VLAN filtering on first non-zero VLAN */
3173                                 if (vf->spoofchk && vlan.vid) {
3174                                         err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3175                                         if (err)
3176                                                 return err;
3177                                 }
3178                         }
3179                 }
3180         }
3181
3182         return 0;
3183 }
3184
3185 /**
3186  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3187  * @vsi: VF VSI used to get number of existing VLAN filters
3188  * @vfc: negotiated/supported VLAN filtering capabilities
3189  * @vfl: VLAN filter list from VF to validate
3190  *
3191  * Validate all of the filters in the VLAN filter list from the VF during the
3192  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3193  * Otherwise return true.
3194  */
3195 static bool
3196 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3197                                      struct virtchnl_vlan_filtering_caps *vfc,
3198                                      struct virtchnl_vlan_filter_list_v2 *vfl)
3199 {
3200         u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3201                 vfl->num_elements;
3202
3203         if (num_requested_filters > vfc->max_filters)
3204                 return false;
3205
3206         return ice_vc_validate_vlan_filter_list(vfc, vfl);
3207 }
3208
3209 /**
3210  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3211  * @vf: VF the message was received from
3212  * @msg: message received from the VF
3213  */
3214 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3215 {
3216         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3217         struct virtchnl_vlan_filter_list_v2 *vfl =
3218                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3219         struct ice_vsi *vsi;
3220
3221         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3222                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3223                 goto out;
3224         }
3225
3226         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3227                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3228                 goto out;
3229         }
3230
3231         vsi = ice_get_vf_vsi(vf);
3232         if (!vsi) {
3233                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3234                 goto out;
3235         }
3236
3237         if (!ice_vc_validate_add_vlan_filter_list(vsi,
3238                                                   &vf->vlan_v2_caps.filtering,
3239                                                   vfl)) {
3240                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3241                 goto out;
3242         }
3243
3244         if (ice_vc_add_vlans(vf, vsi, vfl))
3245                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3246
3247 out:
3248         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3249                                      0);
3250 }
3251
3252 /**
3253  * ice_vc_valid_vlan_setting - validate VLAN setting
3254  * @negotiated_settings: negotiated VLAN settings during VF init
3255  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3256  */
3257 static bool
3258 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3259 {
3260         if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3261                 return false;
3262
3263         /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3264          * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3265          */
3266         if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3267             hweight32(ethertype_setting) > 1)
3268                 return false;
3269
3270         /* ability to modify the VLAN setting was not negotiated */
3271         if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3272                 return false;
3273
3274         return true;
3275 }
3276
3277 /**
3278  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3279  * @caps: negotiated VLAN settings during VF init
3280  * @msg: message to validate
3281  *
3282  * Used to validate any VLAN virtchnl message sent as a
3283  * virtchnl_vlan_setting structure. Validates the message against the
3284  * negotiated/supported caps during VF driver init.
3285  */
3286 static bool
3287 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3288                               struct virtchnl_vlan_setting *msg)
3289 {
3290         if ((!msg->outer_ethertype_setting &&
3291              !msg->inner_ethertype_setting) ||
3292             (!caps->outer && !caps->inner))
3293                 return false;
3294
3295         if (msg->outer_ethertype_setting &&
3296             !ice_vc_valid_vlan_setting(caps->outer,
3297                                        msg->outer_ethertype_setting))
3298                 return false;
3299
3300         if (msg->inner_ethertype_setting &&
3301             !ice_vc_valid_vlan_setting(caps->inner,
3302                                        msg->inner_ethertype_setting))
3303                 return false;
3304
3305         return true;
3306 }
3307
3308 /**
3309  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3310  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3311  * @tpid: VLAN TPID to populate
3312  */
3313 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3314 {
3315         switch (ethertype_setting) {
3316         case VIRTCHNL_VLAN_ETHERTYPE_8100:
3317                 *tpid = ETH_P_8021Q;
3318                 break;
3319         case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3320                 *tpid = ETH_P_8021AD;
3321                 break;
3322         case VIRTCHNL_VLAN_ETHERTYPE_9100:
3323                 *tpid = ETH_P_QINQ1;
3324                 break;
3325         default:
3326                 *tpid = 0;
3327                 return -EINVAL;
3328         }
3329
3330         return 0;
3331 }
3332
3333 /**
3334  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3335  * @vsi: VF's VSI used to enable the VLAN offload
3336  * @ena_offload: function used to enable the VLAN offload
3337  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3338  */
3339 static int
3340 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3341                         int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3342                         u32 ethertype_setting)
3343 {
3344         u16 tpid;
3345         int err;
3346
3347         err = ice_vc_get_tpid(ethertype_setting, &tpid);
3348         if (err)
3349                 return err;
3350
3351         err = ena_offload(vsi, tpid);
3352         if (err)
3353                 return err;
3354
3355         return 0;
3356 }
3357
3358 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX  3
3359 #define ICE_L2TSEL_BIT_OFFSET           23
3360 enum ice_l2tsel {
3361         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3362         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3363 };
3364
3365 /**
3366  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3367  * @vsi: VSI used to update l2tsel on
3368  * @l2tsel: l2tsel setting requested
3369  *
3370  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3371  * This will modify which descriptor field the first offloaded VLAN will be
3372  * stripped into.
3373  */
3374 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3375 {
3376         struct ice_hw *hw = &vsi->back->hw;
3377         u32 l2tsel_bit;
3378         int i;
3379
3380         if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3381                 l2tsel_bit = 0;
3382         else
3383                 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3384
3385         for (i = 0; i < vsi->alloc_rxq; i++) {
3386                 u16 pfq = vsi->rxq_map[i];
3387                 u32 qrx_context_offset;
3388                 u32 regval;
3389
3390                 qrx_context_offset =
3391                         QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3392
3393                 regval = rd32(hw, qrx_context_offset);
3394                 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3395                 regval |= l2tsel_bit;
3396                 wr32(hw, qrx_context_offset, regval);
3397         }
3398 }
3399
3400 /**
3401  * ice_vc_ena_vlan_stripping_v2_msg
3402  * @vf: VF the message was received from
3403  * @msg: message received from the VF
3404  *
3405  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3406  */
3407 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3408 {
3409         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3410         struct virtchnl_vlan_supported_caps *stripping_support;
3411         struct virtchnl_vlan_setting *strip_msg =
3412                 (struct virtchnl_vlan_setting *)msg;
3413         u32 ethertype_setting;
3414         struct ice_vsi *vsi;
3415
3416         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3417                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3418                 goto out;
3419         }
3420
3421         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3422                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3423                 goto out;
3424         }
3425
3426         vsi = ice_get_vf_vsi(vf);
3427         if (!vsi) {
3428                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3429                 goto out;
3430         }
3431
3432         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3433         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3434                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3435                 goto out;
3436         }
3437
3438         ethertype_setting = strip_msg->outer_ethertype_setting;
3439         if (ethertype_setting) {
3440                 if (ice_vc_ena_vlan_offload(vsi,
3441                                             vsi->outer_vlan_ops.ena_stripping,
3442                                             ethertype_setting)) {
3443                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3444                         goto out;
3445                 } else {
3446                         enum ice_l2tsel l2tsel =
3447                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3448
3449                         /* PF tells the VF that the outer VLAN tag is always
3450                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3451                          * inner is always extracted to
3452                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3453                          * support outer stripping so the first tag always ends
3454                          * up in L2TAG2_2ND and the second/inner tag, if
3455                          * enabled, is extracted in L2TAG1.
3456                          */
3457                         ice_vsi_update_l2tsel(vsi, l2tsel);
3458                 }
3459         }
3460
3461         ethertype_setting = strip_msg->inner_ethertype_setting;
3462         if (ethertype_setting &&
3463             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3464                                     ethertype_setting)) {
3465                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3466                 goto out;
3467         }
3468
3469 out:
3470         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3471                                      v_ret, NULL, 0);
3472 }
3473
3474 /**
3475  * ice_vc_dis_vlan_stripping_v2_msg
3476  * @vf: VF the message was received from
3477  * @msg: message received from the VF
3478  *
3479  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3480  */
3481 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3482 {
3483         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3484         struct virtchnl_vlan_supported_caps *stripping_support;
3485         struct virtchnl_vlan_setting *strip_msg =
3486                 (struct virtchnl_vlan_setting *)msg;
3487         u32 ethertype_setting;
3488         struct ice_vsi *vsi;
3489
3490         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3491                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3492                 goto out;
3493         }
3494
3495         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3496                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3497                 goto out;
3498         }
3499
3500         vsi = ice_get_vf_vsi(vf);
3501         if (!vsi) {
3502                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3503                 goto out;
3504         }
3505
3506         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3507         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3508                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3509                 goto out;
3510         }
3511
3512         ethertype_setting = strip_msg->outer_ethertype_setting;
3513         if (ethertype_setting) {
3514                 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3515                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3516                         goto out;
3517                 } else {
3518                         enum ice_l2tsel l2tsel =
3519                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3520
3521                         /* PF tells the VF that the outer VLAN tag is always
3522                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3523                          * inner is always extracted to
3524                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3525                          * support inner stripping while outer stripping is
3526                          * disabled so that the first and only tag is extracted
3527                          * in L2TAG1.
3528                          */
3529                         ice_vsi_update_l2tsel(vsi, l2tsel);
3530                 }
3531         }
3532
3533         ethertype_setting = strip_msg->inner_ethertype_setting;
3534         if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3535                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3536                 goto out;
3537         }
3538
3539 out:
3540         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3541                                      v_ret, NULL, 0);
3542 }
3543
3544 /**
3545  * ice_vc_ena_vlan_insertion_v2_msg
3546  * @vf: VF the message was received from
3547  * @msg: message received from the VF
3548  *
3549  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3550  */
3551 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3552 {
3553         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3554         struct virtchnl_vlan_supported_caps *insertion_support;
3555         struct virtchnl_vlan_setting *insertion_msg =
3556                 (struct virtchnl_vlan_setting *)msg;
3557         u32 ethertype_setting;
3558         struct ice_vsi *vsi;
3559
3560         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3561                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3562                 goto out;
3563         }
3564
3565         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3566                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3567                 goto out;
3568         }
3569
3570         vsi = ice_get_vf_vsi(vf);
3571         if (!vsi) {
3572                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3573                 goto out;
3574         }
3575
3576         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3577         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3578                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3579                 goto out;
3580         }
3581
3582         ethertype_setting = insertion_msg->outer_ethertype_setting;
3583         if (ethertype_setting &&
3584             ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3585                                     ethertype_setting)) {
3586                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3587                 goto out;
3588         }
3589
3590         ethertype_setting = insertion_msg->inner_ethertype_setting;
3591         if (ethertype_setting &&
3592             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3593                                     ethertype_setting)) {
3594                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3595                 goto out;
3596         }
3597
3598 out:
3599         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3600                                      v_ret, NULL, 0);
3601 }
3602
3603 /**
3604  * ice_vc_dis_vlan_insertion_v2_msg
3605  * @vf: VF the message was received from
3606  * @msg: message received from the VF
3607  *
3608  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3609  */
3610 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3611 {
3612         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3613         struct virtchnl_vlan_supported_caps *insertion_support;
3614         struct virtchnl_vlan_setting *insertion_msg =
3615                 (struct virtchnl_vlan_setting *)msg;
3616         u32 ethertype_setting;
3617         struct ice_vsi *vsi;
3618
3619         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3620                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3621                 goto out;
3622         }
3623
3624         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3625                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3626                 goto out;
3627         }
3628
3629         vsi = ice_get_vf_vsi(vf);
3630         if (!vsi) {
3631                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3632                 goto out;
3633         }
3634
3635         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3636         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3637                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3638                 goto out;
3639         }
3640
3641         ethertype_setting = insertion_msg->outer_ethertype_setting;
3642         if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3643                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3644                 goto out;
3645         }
3646
3647         ethertype_setting = insertion_msg->inner_ethertype_setting;
3648         if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3649                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650                 goto out;
3651         }
3652
3653 out:
3654         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3655                                      v_ret, NULL, 0);
3656 }
3657
3658 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3659         .get_ver_msg = ice_vc_get_ver_msg,
3660         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3661         .reset_vf = ice_vc_reset_vf_msg,
3662         .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3663         .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3664         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3665         .ena_qs_msg = ice_vc_ena_qs_msg,
3666         .dis_qs_msg = ice_vc_dis_qs_msg,
3667         .request_qs_msg = ice_vc_request_qs_msg,
3668         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3669         .config_rss_key = ice_vc_config_rss_key,
3670         .config_rss_lut = ice_vc_config_rss_lut,
3671         .get_stats_msg = ice_vc_get_stats_msg,
3672         .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3673         .add_vlan_msg = ice_vc_add_vlan_msg,
3674         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3675         .query_rxdid = ice_vc_query_rxdid,
3676         .get_rss_hena = ice_vc_get_rss_hena,
3677         .set_rss_hena_msg = ice_vc_set_rss_hena,
3678         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3679         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3680         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3681         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3682         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3683         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3684         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3685         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3686         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3687         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3688         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3689         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3690 };
3691
3692 /**
3693  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3694  * @vf: the VF to switch ops
3695  */
3696 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3697 {
3698         vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3699 }
3700
3701 /**
3702  * ice_vc_repr_add_mac
3703  * @vf: pointer to VF
3704  * @msg: virtchannel message
3705  *
3706  * When port representors are created, we do not add MAC rule
3707  * to firmware, we store it so that PF could report same
3708  * MAC as VF.
3709  */
3710 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3711 {
3712         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3713         struct virtchnl_ether_addr_list *al =
3714             (struct virtchnl_ether_addr_list *)msg;
3715         struct ice_vsi *vsi;
3716         struct ice_pf *pf;
3717         int i;
3718
3719         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3720             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3721                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3722                 goto handle_mac_exit;
3723         }
3724
3725         pf = vf->pf;
3726
3727         vsi = ice_get_vf_vsi(vf);
3728         if (!vsi) {
3729                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3730                 goto handle_mac_exit;
3731         }
3732
3733         for (i = 0; i < al->num_elements; i++) {
3734                 u8 *mac_addr = al->list[i].addr;
3735
3736                 if (!is_unicast_ether_addr(mac_addr) ||
3737                     ether_addr_equal(mac_addr, vf->hw_lan_addr))
3738                         continue;
3739
3740                 if (vf->pf_set_mac) {
3741                         dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3742                         v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3743                         goto handle_mac_exit;
3744                 }
3745
3746                 ice_vfhw_mac_add(vf, &al->list[i]);
3747                 vf->num_mac++;
3748                 break;
3749         }
3750
3751 handle_mac_exit:
3752         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3753                                      v_ret, NULL, 0);
3754 }
3755
3756 /**
3757  * ice_vc_repr_del_mac - response with success for deleting MAC
3758  * @vf: pointer to VF
3759  * @msg: virtchannel message
3760  *
3761  * Respond with success to not break normal VF flow.
3762  * For legacy VF driver try to update cached MAC address.
3763  */
3764 static int
3765 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3766 {
3767         struct virtchnl_ether_addr_list *al =
3768                 (struct virtchnl_ether_addr_list *)msg;
3769
3770         ice_update_legacy_cached_mac(vf, &al->list[0]);
3771
3772         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3773                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3774 }
3775
3776 static int
3777 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3778 {
3779         dev_dbg(ice_pf_to_dev(vf->pf),
3780                 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3781                 vf->vf_id);
3782         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3783                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3784                                      NULL, 0);
3785 }
3786
3787 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3788         .get_ver_msg = ice_vc_get_ver_msg,
3789         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3790         .reset_vf = ice_vc_reset_vf_msg,
3791         .add_mac_addr_msg = ice_vc_repr_add_mac,
3792         .del_mac_addr_msg = ice_vc_repr_del_mac,
3793         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3794         .ena_qs_msg = ice_vc_ena_qs_msg,
3795         .dis_qs_msg = ice_vc_dis_qs_msg,
3796         .request_qs_msg = ice_vc_request_qs_msg,
3797         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3798         .config_rss_key = ice_vc_config_rss_key,
3799         .config_rss_lut = ice_vc_config_rss_lut,
3800         .get_stats_msg = ice_vc_get_stats_msg,
3801         .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3802         .add_vlan_msg = ice_vc_add_vlan_msg,
3803         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3804         .query_rxdid = ice_vc_query_rxdid,
3805         .get_rss_hena = ice_vc_get_rss_hena,
3806         .set_rss_hena_msg = ice_vc_set_rss_hena,
3807         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3808         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3809         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3810         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3811         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3812         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3813         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3814         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3815         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3816         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3817         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3818         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3819 };
3820
3821 /**
3822  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3823  * @vf: the VF to switch ops
3824  */
3825 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3826 {
3827         vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3828 }
3829
3830 /**
3831  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3832  * @vf: the VF to check
3833  * @mbxdata: data about the state of the mailbox
3834  *
3835  * Detect if a given VF might be malicious and attempting to overflow the PF
3836  * mailbox. If so, log a warning message and ignore this event.
3837  */
3838 static bool
3839 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3840 {
3841         bool report_malvf = false;
3842         struct device *dev;
3843         struct ice_pf *pf;
3844         int status;
3845
3846         pf = vf->pf;
3847         dev = ice_pf_to_dev(pf);
3848
3849         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3850                 return vf->mbx_info.malicious;
3851
3852         /* check to see if we have a newly malicious VF */
3853         status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3854                                           &report_malvf);
3855         if (status)
3856                 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3857                                      vf->vf_id, vf->dev_lan_addr, status);
3858
3859         if (report_malvf) {
3860                 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3861                 u8 zero_addr[ETH_ALEN] = {};
3862
3863                 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3864                          vf->dev_lan_addr,
3865                          pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3866         }
3867
3868         return vf->mbx_info.malicious;
3869 }
3870
3871 /**
3872  * ice_vc_process_vf_msg - Process request from VF
3873  * @pf: pointer to the PF structure
3874  * @event: pointer to the AQ event
3875  * @mbxdata: information used to detect VF attempting mailbox overflow
3876  *
3877  * called from the common asq/arq handler to
3878  * process request from VF
3879  */
3880 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3881                            struct ice_mbx_data *mbxdata)
3882 {
3883         u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3884         s16 vf_id = le16_to_cpu(event->desc.retval);
3885         const struct ice_virtchnl_ops *ops;
3886         u16 msglen = event->msg_len;
3887         u8 *msg = event->msg_buf;
3888         struct ice_vf *vf = NULL;
3889         struct device *dev;
3890         int err = 0;
3891
3892         dev = ice_pf_to_dev(pf);
3893
3894         vf = ice_get_vf_by_id(pf, vf_id);
3895         if (!vf) {
3896                 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3897                         vf_id, v_opcode, msglen);
3898                 return;
3899         }
3900
3901         mutex_lock(&vf->cfg_lock);
3902
3903         /* Check if the VF is trying to overflow the mailbox */
3904         if (ice_is_malicious_vf(vf, mbxdata))
3905                 goto finish;
3906
3907         /* Check if VF is disabled. */
3908         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3909                 err = -EPERM;
3910                 goto error_handler;
3911         }
3912
3913         ops = vf->virtchnl_ops;
3914
3915         /* Perform basic checks on the msg */
3916         err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3917         if (err) {
3918                 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3919                         err = -EPERM;
3920                 else
3921                         err = -EINVAL;
3922         }
3923
3924 error_handler:
3925         if (err) {
3926                 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3927                                       NULL, 0);
3928                 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3929                         vf_id, v_opcode, msglen, err);
3930                 goto finish;
3931         }
3932
3933         if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3934                 ice_vc_send_msg_to_vf(vf, v_opcode,
3935                                       VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3936                                       0);
3937                 goto finish;
3938         }
3939
3940         switch (v_opcode) {
3941         case VIRTCHNL_OP_VERSION:
3942                 err = ops->get_ver_msg(vf, msg);
3943                 break;
3944         case VIRTCHNL_OP_GET_VF_RESOURCES:
3945                 err = ops->get_vf_res_msg(vf, msg);
3946                 if (ice_vf_init_vlan_stripping(vf))
3947                         dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3948                                 vf->vf_id);
3949                 ice_vc_notify_vf_link_state(vf);
3950                 break;
3951         case VIRTCHNL_OP_RESET_VF:
3952                 ops->reset_vf(vf);
3953                 break;
3954         case VIRTCHNL_OP_ADD_ETH_ADDR:
3955                 err = ops->add_mac_addr_msg(vf, msg);
3956                 break;
3957         case VIRTCHNL_OP_DEL_ETH_ADDR:
3958                 err = ops->del_mac_addr_msg(vf, msg);
3959                 break;
3960         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3961                 err = ops->cfg_qs_msg(vf, msg);
3962                 break;
3963         case VIRTCHNL_OP_ENABLE_QUEUES:
3964                 err = ops->ena_qs_msg(vf, msg);
3965                 ice_vc_notify_vf_link_state(vf);
3966                 break;
3967         case VIRTCHNL_OP_DISABLE_QUEUES:
3968                 err = ops->dis_qs_msg(vf, msg);
3969                 break;
3970         case VIRTCHNL_OP_REQUEST_QUEUES:
3971                 err = ops->request_qs_msg(vf, msg);
3972                 break;
3973         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3974                 err = ops->cfg_irq_map_msg(vf, msg);
3975                 break;
3976         case VIRTCHNL_OP_CONFIG_RSS_KEY:
3977                 err = ops->config_rss_key(vf, msg);
3978                 break;
3979         case VIRTCHNL_OP_CONFIG_RSS_LUT:
3980                 err = ops->config_rss_lut(vf, msg);
3981                 break;
3982         case VIRTCHNL_OP_GET_STATS:
3983                 err = ops->get_stats_msg(vf, msg);
3984                 break;
3985         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3986                 err = ops->cfg_promiscuous_mode_msg(vf, msg);
3987                 break;
3988         case VIRTCHNL_OP_ADD_VLAN:
3989                 err = ops->add_vlan_msg(vf, msg);
3990                 break;
3991         case VIRTCHNL_OP_DEL_VLAN:
3992                 err = ops->remove_vlan_msg(vf, msg);
3993                 break;
3994         case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
3995                 err = ops->query_rxdid(vf);
3996                 break;
3997         case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
3998                 err = ops->get_rss_hena(vf);
3999                 break;
4000         case VIRTCHNL_OP_SET_RSS_HENA:
4001                 err = ops->set_rss_hena_msg(vf, msg);
4002                 break;
4003         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4004                 err = ops->ena_vlan_stripping(vf);
4005                 break;
4006         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4007                 err = ops->dis_vlan_stripping(vf);
4008                 break;
4009         case VIRTCHNL_OP_ADD_FDIR_FILTER:
4010                 err = ops->add_fdir_fltr_msg(vf, msg);
4011                 break;
4012         case VIRTCHNL_OP_DEL_FDIR_FILTER:
4013                 err = ops->del_fdir_fltr_msg(vf, msg);
4014                 break;
4015         case VIRTCHNL_OP_ADD_RSS_CFG:
4016                 err = ops->handle_rss_cfg_msg(vf, msg, true);
4017                 break;
4018         case VIRTCHNL_OP_DEL_RSS_CFG:
4019                 err = ops->handle_rss_cfg_msg(vf, msg, false);
4020                 break;
4021         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4022                 err = ops->get_offload_vlan_v2_caps(vf);
4023                 break;
4024         case VIRTCHNL_OP_ADD_VLAN_V2:
4025                 err = ops->add_vlan_v2_msg(vf, msg);
4026                 break;
4027         case VIRTCHNL_OP_DEL_VLAN_V2:
4028                 err = ops->remove_vlan_v2_msg(vf, msg);
4029                 break;
4030         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4031                 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4032                 break;
4033         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4034                 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4035                 break;
4036         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4037                 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4038                 break;
4039         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4040                 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4041                 break;
4042         case VIRTCHNL_OP_UNKNOWN:
4043         default:
4044                 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4045                         vf_id);
4046                 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4047                                             VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4048                                             NULL, 0);
4049                 break;
4050         }
4051         if (err) {
4052                 /* Helper function cares less about error return values here
4053                  * as it is busy with pending work.
4054                  */
4055                 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4056                          vf_id, v_opcode, err);
4057         }
4058
4059 finish:
4060         mutex_unlock(&vf->cfg_lock);
4061         ice_put_vf(vf);
4062 }