1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
8 #define E810_OUT_PROP_DELAY_NS 1
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 /* name idx func chan */
14 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } },
16 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } },
18 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
22 * ice_get_sma_config_e810t
23 * @hw: pointer to the hw struct
24 * @ptp_pins: pointer to the ptp_pin_desc struture
26 * Read the configuration of the SMA control logic and put it into the
27 * ptp_pin_desc structure
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
35 /* Read initial pin state */
36 status = ice_read_sma_ctrl_e810t(hw, &data);
40 /* initialize with defaults */
41 for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43 "%s", ice_pin_desc_e810t[i].name);
44 ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
50 switch (data & ICE_SMA1_MASK_E810T) {
51 case ICE_SMA1_MASK_E810T:
53 ptp_pins[SMA1].func = PTP_PF_NONE;
54 ptp_pins[UFL1].func = PTP_PF_NONE;
56 case ICE_SMA1_DIR_EN_E810T:
57 ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 ptp_pins[UFL1].func = PTP_PF_NONE;
60 case ICE_SMA1_TX_EN_E810T:
61 ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 ptp_pins[UFL1].func = PTP_PF_NONE;
65 ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 ptp_pins[UFL1].func = PTP_PF_PEROUT;
71 switch (data & ICE_SMA2_MASK_E810T) {
72 case ICE_SMA2_MASK_E810T:
74 ptp_pins[SMA2].func = PTP_PF_NONE;
75 ptp_pins[UFL2].func = PTP_PF_NONE;
77 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 ptp_pins[UFL2].func = PTP_PF_NONE;
81 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 ptp_pins[UFL2].func = PTP_PF_NONE;
85 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 ptp_pins[SMA2].func = PTP_PF_NONE;
87 ptp_pins[UFL2].func = PTP_PF_EXTTS;
89 case ICE_SMA2_DIR_EN_E810T:
90 ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 ptp_pins[UFL2].func = PTP_PF_EXTTS;
99 * ice_ptp_set_sma_config_e810t
100 * @hw: pointer to the hw struct
101 * @ptp_pins: pointer to the ptp_pin_desc struture
103 * Set the configuration of the SMA control logic based on the configuration in
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 const struct ptp_pin_desc *ptp_pins)
113 /* SMA1 and UFL1 cannot be set to TX at the same time */
114 if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 ptp_pins[UFL1].func == PTP_PF_PEROUT)
118 /* SMA2 and UFL2 cannot be set to RX at the same time */
119 if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 ptp_pins[UFL2].func == PTP_PF_EXTTS)
123 /* Read initial pin state value */
124 status = ice_read_sma_ctrl_e810t(hw, &data);
128 /* Set the right sate based on the desired configuration */
129 data &= ~ICE_SMA1_MASK_E810T;
130 if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 ptp_pins[UFL1].func == PTP_PF_NONE) {
132 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 data |= ICE_SMA1_MASK_E810T;
134 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 ptp_pins[UFL1].func == PTP_PF_NONE) {
136 dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 data |= ICE_SMA1_TX_EN_E810T;
138 } else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 /* U.FL 1 TX will always enable SMA 1 RX */
141 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 ptp_pins[UFL1].func == PTP_PF_NONE) {
147 dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 data |= ICE_SMA1_DIR_EN_E810T;
151 data &= ~ICE_SMA2_MASK_E810T;
152 if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 ptp_pins[UFL2].func == PTP_PF_NONE) {
154 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 data |= ICE_SMA2_MASK_E810T;
156 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 ptp_pins[UFL2].func == PTP_PF_NONE) {
158 dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 data |= (ICE_SMA2_TX_EN_E810T |
160 ICE_SMA2_UFL2_RX_DIS_E810T);
161 } else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 ptp_pins[UFL2].func == PTP_PF_NONE) {
167 dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 data |= (ICE_SMA2_DIR_EN_E810T |
169 ICE_SMA2_UFL2_RX_DIS_E810T);
170 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 data |= ICE_SMA2_DIR_EN_E810T;
176 return ice_write_sma_ctrl_e810t(hw, data);
180 * ice_ptp_set_sma_e810t
181 * @info: the driver's PTP info structure
182 * @pin: pin index in kernel structure
183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
185 * Set the configuration of a single SMA pin
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 enum ptp_pin_function func)
191 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 struct ice_pf *pf = ptp_info_to_pf(info);
193 struct ice_hw *hw = &pf->hw;
196 if (pin < SMA1 || func > PTP_PF_PEROUT)
199 err = ice_get_sma_config_e810t(hw, ptp_pins);
203 /* Disable the same function on the other pin sharing the channel */
204 if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 ptp_pins[UFL1].func = PTP_PF_NONE;
206 if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 ptp_pins[SMA1].func = PTP_PF_NONE;
209 if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 ptp_pins[UFL2].func = PTP_PF_NONE;
211 if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 ptp_pins[SMA2].func = PTP_PF_NONE;
214 /* Set up new pin function in the temp table */
215 ptp_pins[pin].func = func;
217 return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
221 * ice_verify_pin_e810t
222 * @info: the driver's PTP info structure
224 * @func: Assigned function
225 * @chan: Assigned channel
227 * Verify if pin supports requested pin function. If the Check pins consistency.
228 * Reconfigure the SMA logic attached to the given pin to enable its
229 * desired functionality
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 enum ptp_pin_function func, unsigned int chan)
235 /* Don't allow channel reassignment */
236 if (chan != ice_pin_desc_e810t[pin].chan)
239 /* Check if functions are properly assigned */
248 if (pin == UFL2 || pin == GNSS)
255 return ice_ptp_set_sma_e810t(info, pin, func);
259 * ice_set_tx_tstamp - Enable or disable Tx timestamping
260 * @pf: The PF pointer to search in
261 * @on: bool value for whether timestamps are enabled or disabled
263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
269 vsi = ice_get_main_vsi(pf);
273 /* Set the timestamp enable flag for all the Tx rings */
274 ice_for_each_txq(vsi, i) {
275 if (!vsi->tx_rings[i])
277 vsi->tx_rings[i]->ptp_tx = on;
280 /* Configure the Tx timestamp interrupt */
281 val = rd32(&pf->hw, PFINT_OICR_ENA);
283 val |= PFINT_OICR_TSYN_TX_M;
285 val &= ~PFINT_OICR_TSYN_TX_M;
286 wr32(&pf->hw, PFINT_OICR_ENA, val);
288 pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
292 * ice_set_rx_tstamp - Enable or disable Rx timestamping
293 * @pf: The PF pointer to search in
294 * @on: bool value for whether timestamps are enabled or disabled
296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
301 vsi = ice_get_main_vsi(pf);
305 /* Set the timestamp flag for all the Rx rings */
306 ice_for_each_rxq(vsi, i) {
307 if (!vsi->rx_rings[i])
309 vsi->rx_rings[i]->ptp_rx = on;
312 pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313 HWTSTAMP_FILTER_NONE;
317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318 * @pf: Board private structure
319 * @ena: bool value to enable or disable time stamp
321 * This function will configure timestamping during PTP initialization
322 * and deinitialization
324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
326 ice_set_tx_tstamp(pf, ena);
327 ice_set_rx_tstamp(pf, ena);
331 * ice_get_ptp_clock_index - Get the PTP clock index
332 * @pf: the PF pointer
334 * Determine the clock index of the PTP clock associated with this device. If
335 * this is the PF controlling the clock, just use the local access to the
336 * clock device pointer.
338 * Otherwise, read from the driver shared parameters to determine the clock
341 * Returns: the index of the PTP clock associated with this device, or -1 if
342 * there is no associated clock.
344 int ice_get_ptp_clock_index(struct ice_pf *pf)
346 struct device *dev = ice_pf_to_dev(pf);
347 enum ice_aqc_driver_params param_idx;
348 struct ice_hw *hw = &pf->hw;
353 /* Use the ptp_clock structure if we're the main PF */
355 return ptp_clock_index(pf->ptp.clock);
357 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
359 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
361 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
363 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
365 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366 err, ice_aq_str(hw->adminq.sq_last_status));
370 /* The PTP clock index is an integer, and will be between 0 and
371 * INT_MAX. The highest bit of the driver shared parameter is used to
372 * indicate whether or not the currently stored clock index is valid.
374 if (!(value & PTP_SHARED_CLK_IDX_VALID))
377 return value & ~PTP_SHARED_CLK_IDX_VALID;
381 * ice_set_ptp_clock_index - Set the PTP clock index
382 * @pf: the PF pointer
384 * Set the PTP clock index for this device into the shared driver parameters,
385 * so that other PFs associated with this device can read it.
387 * If the PF is unable to store the clock index, it will log an error, but
388 * will continue operating PTP.
390 static void ice_set_ptp_clock_index(struct ice_pf *pf)
392 struct device *dev = ice_pf_to_dev(pf);
393 enum ice_aqc_driver_params param_idx;
394 struct ice_hw *hw = &pf->hw;
402 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
404 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
406 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
408 value = (u32)ptp_clock_index(pf->ptp.clock);
409 if (value > INT_MAX) {
410 dev_err(dev, "PTP Clock index is too large to store\n");
413 value |= PTP_SHARED_CLK_IDX_VALID;
415 err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
417 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418 err, ice_aq_str(hw->adminq.sq_last_status));
423 * ice_clear_ptp_clock_index - Clear the PTP clock index
424 * @pf: the PF pointer
426 * Clear the PTP clock index for this device. Must be called when
427 * unregistering the PTP clock, in order to ensure other PFs stop reporting
428 * a clock object that no longer exists.
430 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
432 struct device *dev = ice_pf_to_dev(pf);
433 enum ice_aqc_driver_params param_idx;
434 struct ice_hw *hw = &pf->hw;
438 /* Do not clear the index if we don't own the timer */
439 if (!hw->func_caps.ts_func_info.src_tmr_owned)
442 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
444 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
446 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
448 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
450 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451 err, ice_aq_str(hw->adminq.sq_last_status));
456 * ice_ptp_read_src_clk_reg - Read the source clock register
457 * @pf: Board private structure
458 * @sts: Optional parameter for holding a pair of system timestamps from
459 * the system clock. Will be ignored if NULL is given.
462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
464 struct ice_hw *hw = &pf->hw;
468 tmr_idx = ice_get_ptp_src_clock_index(hw);
469 /* Read the system timestamp pre PHC read */
470 ptp_read_system_prets(sts);
472 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
474 /* Read the system timestamp post PHC read */
475 ptp_read_system_postts(sts);
477 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
481 /* if TIME_L rolled over read TIME_L again and update
484 ptp_read_system_prets(sts);
485 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486 ptp_read_system_postts(sts);
487 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
490 return ((u64)hi << 32) | lo;
494 * ice_ptp_update_cached_phctime - Update the cached PHC time values
495 * @pf: Board specific private structure
497 * This function updates the system time values which are cached in the PF
498 * structure and the Rx rings.
500 * This function must be called periodically to ensure that the cached value
501 * is never more than 2 seconds old. It must also be called whenever the PHC
502 * time has been changed.
505 * * 0 - OK, successfully updated
506 * * -EAGAIN - PF was busy, need to reschedule the update
508 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
513 if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
516 /* Read the current PHC time */
517 systime = ice_ptp_read_src_clk_reg(pf, NULL);
519 /* Update the cached PHC time stored in the PF structure */
520 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
522 ice_for_each_vsi(pf, i) {
523 struct ice_vsi *vsi = pf->vsi[i];
529 if (vsi->type != ICE_VSI_PF)
532 ice_for_each_rxq(vsi, j) {
533 if (!vsi->rx_rings[j])
535 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
538 clear_bit(ICE_CFG_BUSY, pf->state);
544 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
545 * @cached_phc_time: recently cached copy of PHC time
546 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
548 * Hardware captures timestamps which contain only 32 bits of nominal
549 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
550 * Note that the captured timestamp values may be 40 bits, but the lower
551 * 8 bits are sub-nanoseconds and generally discarded.
553 * Extend the 32bit nanosecond timestamp using the following algorithm and
556 * 1) have a recently cached copy of the PHC time
557 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
558 * seconds) before or after the PHC time was captured.
559 * 3) calculate the delta between the cached time and the timestamp
560 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
561 * captured after the PHC time. In this case, the full timestamp is just
562 * the cached PHC time plus the delta.
563 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
564 * timestamp was captured *before* the PHC time, i.e. because the PHC
565 * cache was updated after the timestamp was captured by hardware. In this
566 * case, the full timestamp is the cached time minus the inverse delta.
568 * This algorithm works even if the PHC time was updated after a Tx timestamp
569 * was requested, but before the Tx timestamp event was reported from
572 * This calculation primarily relies on keeping the cached PHC time up to
573 * date. If the timestamp was captured more than 2^31 nanoseconds after the
574 * PHC time, it is possible that the lower 32bits of PHC time have
575 * overflowed more than once, and we might generate an incorrect timestamp.
577 * This is prevented by (a) periodically updating the cached PHC time once
578 * a second, and (b) discarding any Tx timestamp packet if it has waited for
579 * a timestamp for more than one second.
581 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
583 u32 delta, phc_time_lo;
586 /* Extract the lower 32 bits of the PHC time */
587 phc_time_lo = (u32)cached_phc_time;
589 /* Calculate the delta between the lower 32bits of the cached PHC
590 * time and the in_tstamp value
592 delta = (in_tstamp - phc_time_lo);
594 /* Do not assume that the in_tstamp is always more recent than the
595 * cached PHC time. If the delta is large, it indicates that the
596 * in_tstamp was taken in the past, and should be converted
599 if (delta > (U32_MAX / 2)) {
600 /* reverse the delta calculation here */
601 delta = (phc_time_lo - in_tstamp);
602 ns = cached_phc_time - delta;
604 ns = cached_phc_time + delta;
611 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
612 * @pf: Board private structure
613 * @in_tstamp: Ingress/egress 40b timestamp value
615 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
616 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
618 * *--------------------------------------------------------------*
619 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
620 * *--------------------------------------------------------------*
622 * The low bit is an indicator of whether the timestamp is valid. The next
623 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
624 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
626 * It is assumed that the caller verifies the timestamp is valid prior to
627 * calling this function.
629 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
630 * time stored in the device private PTP structure as the basis for timestamp
633 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
636 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
638 const u64 mask = GENMASK_ULL(31, 0);
640 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
641 (in_tstamp >> 8) & mask);
645 * ice_ptp_read_time - Read the time from the device
646 * @pf: Board private structure
647 * @ts: timespec structure to hold the current time value
648 * @sts: Optional parameter for holding a pair of system timestamps from
649 * the system clock. Will be ignored if NULL is given.
651 * This function reads the source clock registers and stores them in a timespec.
652 * However, since the registers are 64 bits of nanoseconds, we must convert the
653 * result to a timespec before we can return.
656 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
657 struct ptp_system_timestamp *sts)
659 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
661 *ts = ns_to_timespec64(time_ns);
665 * ice_ptp_write_init - Set PHC time to provided value
666 * @pf: Board private structure
667 * @ts: timespec structure that holds the new time value
669 * Set the PHC time to the specified time provided in the timespec.
671 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
673 u64 ns = timespec64_to_ns(ts);
674 struct ice_hw *hw = &pf->hw;
676 return ice_ptp_init_time(hw, ns);
680 * ice_ptp_write_adj - Adjust PHC clock time atomically
681 * @pf: Board private structure
682 * @adj: Adjustment in nanoseconds
684 * Perform an atomic adjustment of the PHC time by the specified number of
687 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
689 struct ice_hw *hw = &pf->hw;
691 return ice_ptp_adj_clock(hw, adj);
695 * ice_base_incval - Get base timer increment value
696 * @pf: Board private structure
698 * Look up the base timer increment value for this device. The base increment
699 * value is used to define the nominal clock tick rate. This increment value
700 * is programmed during device initialization. It is also used as the basis
701 * for calculating adjustments using scaled_ppm.
703 static u64 ice_base_incval(struct ice_pf *pf)
705 struct ice_hw *hw = &pf->hw;
709 incval = ICE_PTP_NOMINAL_INCVAL_E810;
710 else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
711 incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
713 incval = UNKNOWN_INCVAL_E822;
715 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
722 * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
723 * @pf: The PF private data structure
724 * @quad: The quad (0-4)
726 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
728 struct ice_hw *hw = &pf->hw;
730 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
731 ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
735 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
736 * @port: PTP port for which Tx FIFO is checked
738 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
740 int quad = port->port_num / ICE_PORTS_PER_QUAD;
741 int offs = port->port_num % ICE_PORTS_PER_QUAD;
747 pf = ptp_port_to_pf(port);
750 if (port->tx_fifo_busy_cnt == FIFO_OK)
753 /* need to read FIFO state */
754 if (offs == 0 || offs == 1)
755 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
758 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
762 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
763 port->port_num, err);
768 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
770 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
772 if (phy_sts & FIFO_EMPTY) {
773 port->tx_fifo_busy_cnt = FIFO_OK;
777 port->tx_fifo_busy_cnt++;
779 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
780 port->tx_fifo_busy_cnt, port->port_num);
782 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
783 dev_dbg(ice_pf_to_dev(pf),
784 "Port %d Tx FIFO still not empty; resetting quad %d\n",
785 port->port_num, quad);
786 ice_ptp_reset_ts_memory_quad(pf, quad);
787 port->tx_fifo_busy_cnt = FIFO_OK;
795 * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
796 * @port: the PTP port to check
798 * Checks whether the Tx offset for the PHY associated with this port is
799 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
802 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
804 struct ice_pf *pf = ptp_port_to_pf(port);
805 struct device *dev = ice_pf_to_dev(pf);
806 struct ice_hw *hw = &pf->hw;
810 err = ice_ptp_check_tx_fifo(port);
814 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
817 dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
818 port->port_num, err);
822 if (!(val & P_REG_TX_OV_STATUS_OV_M))
829 * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
830 * @port: the PTP port to check
832 * Checks whether the Rx offset for the PHY associated with this port is
833 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
836 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
838 struct ice_pf *pf = ptp_port_to_pf(port);
839 struct device *dev = ice_pf_to_dev(pf);
840 struct ice_hw *hw = &pf->hw;
844 err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
847 dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
848 port->port_num, err);
852 if (!(val & P_REG_RX_OV_STATUS_OV_M))
859 * ice_ptp_check_offset_valid - Check port offset valid bit
860 * @port: Port for which offset valid bit is checked
862 * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
863 * offset is not ready.
865 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
869 /* always check both Tx and Rx offset validity */
870 tx_err = ice_ptp_check_tx_offset_valid(port);
871 rx_err = ice_ptp_check_rx_offset_valid(port);
873 if (tx_err || rx_err)
880 * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
881 * @work: Pointer to the kthread_work structure for this task
883 * Check whether both the Tx and Rx offsets are valid for enabling the vernier
886 * Once we have valid offsets from hardware, update the total Tx and Rx
887 * offsets, and exit bypass mode. This enables more precise timestamps using
888 * the extra data measured during the vernier calibration process.
890 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
892 struct ice_ptp_port *port;
898 port = container_of(work, struct ice_ptp_port, ov_work.work);
899 pf = ptp_port_to_pf(port);
901 dev = ice_pf_to_dev(pf);
903 if (ice_ptp_check_offset_valid(port)) {
904 /* Offsets not ready yet, try again later */
905 kthread_queue_delayed_work(pf->ptp.kworker,
907 msecs_to_jiffies(100));
911 /* Offsets are valid, so it is safe to exit bypass mode */
912 err = ice_phy_exit_bypass_e822(hw, port->port_num);
914 dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
915 port->port_num, err);
921 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
922 * @ptp_port: PTP port to stop
925 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
927 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
928 u8 port = ptp_port->port_num;
929 struct ice_hw *hw = &pf->hw;
935 mutex_lock(&ptp_port->ps_lock);
937 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
939 err = ice_stop_phy_timer_e822(hw, port, true);
941 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
944 mutex_unlock(&ptp_port->ps_lock);
950 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
951 * @ptp_port: PTP port for which the PHY start is set
953 * Start the PHY timestamping block, and initiate Vernier timestamping
954 * calibration. If timestamping cannot be calibrated (such as if link is down)
955 * then disable the timestamping block instead.
958 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
960 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
961 u8 port = ptp_port->port_num;
962 struct ice_hw *hw = &pf->hw;
968 if (!ptp_port->link_up)
969 return ice_ptp_port_phy_stop(ptp_port);
971 mutex_lock(&ptp_port->ps_lock);
973 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
975 /* temporarily disable Tx timestamps while calibrating PHY offset */
976 ptp_port->tx.calibrating = true;
977 ptp_port->tx_fifo_busy_cnt = 0;
979 /* Start the PHY timer in bypass mode */
980 err = ice_start_phy_timer_e822(hw, port, true);
984 /* Enable Tx timestamps right away */
985 ptp_port->tx.calibrating = false;
987 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
991 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
994 mutex_unlock(&ptp_port->ps_lock);
1000 * ice_ptp_link_change - Set or clear port registers for timestamping
1001 * @pf: Board private structure
1002 * @port: Port for which the PHY start is set
1003 * @linkup: Link is up or down
1005 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1007 struct ice_ptp_port *ptp_port;
1009 if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
1012 if (port >= ICE_NUM_EXTERNAL_PORTS)
1015 ptp_port = &pf->ptp.port;
1016 if (ptp_port->port_num != port)
1019 /* Update cached link err for this port immediately */
1020 ptp_port->link_up = linkup;
1022 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1023 /* PTP is not setup */
1026 return ice_ptp_port_phy_restart(ptp_port);
1030 * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
1031 * @pf: The PF private data structure
1033 static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
1037 quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
1038 ice_ptp_reset_ts_memory_quad(pf, quad);
1042 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1043 * @pf: PF private structure
1044 * @ena: bool value to enable or disable interrupt
1045 * @threshold: Minimum number of packets at which intr is triggered
1047 * Utility function to enable or disable Tx timestamp interrupt and threshold
1049 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1051 struct ice_hw *hw = &pf->hw;
1056 ice_ptp_reset_ts_memory(pf);
1058 for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1059 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1065 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1066 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1067 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1068 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1070 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1073 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1080 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1086 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1087 * @pf: Board private structure
1089 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1091 ice_ptp_port_phy_restart(&pf->ptp.port);
1095 * ice_ptp_adjfine - Adjust clock increment rate
1096 * @info: the driver's PTP info structure
1097 * @scaled_ppm: Parts per million with 16-bit fractional field
1099 * Adjust the frequency of the clock by the indicated scaled ppm from the
1102 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1104 struct ice_pf *pf = ptp_info_to_pf(info);
1105 u64 freq, divisor = 1000000ULL;
1106 struct ice_hw *hw = &pf->hw;
1111 incval = ice_base_incval(pf);
1113 if (scaled_ppm < 0) {
1115 scaled_ppm = -scaled_ppm;
1118 while ((u64)scaled_ppm > div64_u64(U64_MAX, incval)) {
1119 /* handle overflow by scaling down the scaled_ppm and
1120 * the divisor, losing some precision
1126 freq = (incval * (u64)scaled_ppm) >> 16;
1127 diff = div_u64(freq, divisor);
1134 err = ice_ptp_write_incval_locked(hw, incval);
1136 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1145 * ice_ptp_extts_work - Workqueue task function
1146 * @work: external timestamp work structure
1148 * Service for PTP external clock event
1150 static void ice_ptp_extts_work(struct kthread_work *work)
1152 struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1153 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1154 struct ptp_clock_event event;
1155 struct ice_hw *hw = &pf->hw;
1159 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1160 /* Event time is captured by one of the two matched registers
1161 * GLTSYN_EVNT_L: 32 LSB of sampled time event
1162 * GLTSYN_EVNT_H: 32 MSB of sampled time event
1163 * Event is defined in GLTSYN_EVNT_0 register
1165 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1166 /* Check if channel is enabled */
1167 if (pf->ptp.ext_ts_irq & (1 << chan)) {
1168 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1169 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1170 event.timestamp = (((u64)hi) << 32) | lo;
1171 event.type = PTP_CLOCK_EXTTS;
1175 ptp_clock_event(pf->ptp.clock, &event);
1176 pf->ptp.ext_ts_irq &= ~(1 << chan);
1182 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1183 * @pf: Board private structure
1184 * @ena: true to enable; false to disable
1185 * @chan: GPIO channel (0-3)
1186 * @gpio_pin: GPIO pin
1187 * @extts_flags: request flags from the ptp_extts_request.flags
1190 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1191 unsigned int extts_flags)
1193 u32 func, aux_reg, gpio_reg, irq_reg;
1194 struct ice_hw *hw = &pf->hw;
1197 if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1200 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1202 irq_reg = rd32(hw, PFINT_OICR_ENA);
1205 /* Enable the interrupt */
1206 irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1207 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1209 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
1210 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
1212 /* set event level to requested edge */
1213 if (extts_flags & PTP_FALLING_EDGE)
1214 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1215 if (extts_flags & PTP_RISING_EDGE)
1216 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1218 /* Write GPIO CTL reg.
1219 * 0x1 is input sampled by EVENT register(channel)
1220 * + num_in_channels * tmr_idx
1222 func = 1 + chan + (tmr_idx * 3);
1223 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1224 GLGEN_GPIO_CTL_PIN_FUNC_M);
1225 pf->ptp.ext_ts_chan |= (1 << chan);
1227 /* clear the values we set to reset defaults */
1230 pf->ptp.ext_ts_chan &= ~(1 << chan);
1231 if (!pf->ptp.ext_ts_chan)
1232 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1235 wr32(hw, PFINT_OICR_ENA, irq_reg);
1236 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1237 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1243 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1244 * @pf: Board private structure
1245 * @chan: GPIO channel (0-3)
1246 * @config: desired periodic clk configuration. NULL will disable channel
1247 * @store: If set to true the values will be stored
1249 * Configure the internal clock generator modules to generate the clock wave of
1252 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1253 struct ice_perout_channel *config, bool store)
1255 u64 current_time, period, start_time, phase;
1256 struct ice_hw *hw = &pf->hw;
1257 u32 func, val, gpio_pin;
1260 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1262 /* 0. Reset mode & out_en in AUX_OUT */
1263 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1265 /* If we're disabling the output, clear out CLKO and TGT and keep
1268 if (!config || !config->ena) {
1269 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1270 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1271 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1273 val = GLGEN_GPIO_CTL_PIN_DIR_M;
1274 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1275 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1277 /* Store the value if requested */
1279 memset(&pf->ptp.perout_channels[chan], 0,
1280 sizeof(struct ice_perout_channel));
1284 period = config->period;
1285 start_time = config->start_time;
1286 div64_u64_rem(start_time, period, &phase);
1287 gpio_pin = config->gpio_pin;
1289 /* 1. Write clkout with half of required period value */
1291 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1297 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1300 if (period <= MIN_PULSE || period > U32_MAX) {
1301 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1306 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1308 /* Allow time for programming before start_time is hit */
1309 current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1311 /* if start time is in the past start the timer at the nearest second
1314 if (start_time < current_time)
1315 start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1316 NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1318 if (ice_is_e810(hw))
1319 start_time -= E810_OUT_PROP_DELAY_NS;
1321 start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1323 /* 2. Write TARGET time */
1324 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1325 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1327 /* 3. Write AUX_OUT register */
1328 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1329 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1331 /* 4. write GPIO CTL reg */
1332 func = 8 + chan + (tmr_idx * 4);
1333 val = GLGEN_GPIO_CTL_PIN_DIR_M |
1334 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1335 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1337 /* Store the value if requested */
1339 memcpy(&pf->ptp.perout_channels[chan], config,
1340 sizeof(struct ice_perout_channel));
1341 pf->ptp.perout_channels[chan].start_time = phase;
1346 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1351 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1352 * @pf: pointer to the PF structure
1354 * Disable all currently configured clock outputs. This is necessary before
1355 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1356 * re-enable the clocks again.
1358 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1362 for (i = 0; i < pf->ptp.info.n_per_out; i++)
1363 if (pf->ptp.perout_channels[i].ena)
1364 ice_ptp_cfg_clkout(pf, i, NULL, false);
1368 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1369 * @pf: pointer to the PF structure
1371 * Enable all currently configured clock outputs. Use this after
1372 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1373 * their configuration.
1375 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1379 for (i = 0; i < pf->ptp.info.n_per_out; i++)
1380 if (pf->ptp.perout_channels[i].ena)
1381 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1386 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1387 * @info: the driver's PTP info structure
1388 * @rq: The requested feature to change
1389 * @on: Enable/disable flag
1392 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1393 struct ptp_clock_request *rq, int on)
1395 struct ice_pf *pf = ptp_info_to_pf(info);
1396 struct ice_perout_channel clk_cfg = {0};
1397 bool sma_pres = false;
1402 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1406 case PTP_CLK_REQ_PEROUT:
1407 chan = rq->perout.index;
1409 if (chan == ice_pin_desc_e810t[SMA1].chan)
1410 clk_cfg.gpio_pin = GPIO_20;
1411 else if (chan == ice_pin_desc_e810t[SMA2].chan)
1412 clk_cfg.gpio_pin = GPIO_22;
1415 } else if (ice_is_e810t(&pf->hw)) {
1417 clk_cfg.gpio_pin = GPIO_20;
1419 clk_cfg.gpio_pin = GPIO_22;
1420 } else if (chan == PPS_CLK_GEN_CHAN) {
1421 clk_cfg.gpio_pin = PPS_PIN_INDEX;
1423 clk_cfg.gpio_pin = chan;
1426 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1427 rq->perout.period.nsec);
1428 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1429 rq->perout.start.nsec);
1432 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1434 case PTP_CLK_REQ_EXTTS:
1435 chan = rq->extts.index;
1437 if (chan < ice_pin_desc_e810t[SMA2].chan)
1441 } else if (ice_is_e810t(&pf->hw)) {
1450 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1461 * ice_ptp_gettimex64 - Get the time of the clock
1462 * @info: the driver's PTP info structure
1463 * @ts: timespec64 structure to hold the current time value
1464 * @sts: Optional parameter for holding a pair of system timestamps from
1465 * the system clock. Will be ignored if NULL is given.
1467 * Read the device clock and return the correct value on ns, after converting it
1468 * into a timespec struct.
1471 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1472 struct ptp_system_timestamp *sts)
1474 struct ice_pf *pf = ptp_info_to_pf(info);
1475 struct ice_hw *hw = &pf->hw;
1477 if (!ice_ptp_lock(hw)) {
1478 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1482 ice_ptp_read_time(pf, ts, sts);
1489 * ice_ptp_settime64 - Set the time of the clock
1490 * @info: the driver's PTP info structure
1491 * @ts: timespec64 structure that holds the new time value
1493 * Set the device clock to the user input value. The conversion from timespec
1494 * to ns happens in the write function.
1497 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1499 struct ice_pf *pf = ptp_info_to_pf(info);
1500 struct timespec64 ts64 = *ts;
1501 struct ice_hw *hw = &pf->hw;
1504 /* For Vernier mode, we need to recalibrate after new settime
1505 * Start with disabling timestamp block
1507 if (pf->ptp.port.link_up)
1508 ice_ptp_port_phy_stop(&pf->ptp.port);
1510 if (!ice_ptp_lock(hw)) {
1515 /* Disable periodic outputs */
1516 ice_ptp_disable_all_clkout(pf);
1518 err = ice_ptp_write_init(pf, &ts64);
1522 ice_ptp_update_cached_phctime(pf);
1524 /* Reenable periodic outputs */
1525 ice_ptp_enable_all_clkout(pf);
1527 /* Recalibrate and re-enable timestamp block */
1528 if (pf->ptp.port.link_up)
1529 ice_ptp_port_phy_restart(&pf->ptp.port);
1532 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1540 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1541 * @info: the driver's PTP info structure
1542 * @delta: Offset in nanoseconds to adjust the time by
1544 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1546 struct timespec64 now, then;
1549 then = ns_to_timespec64(delta);
1550 ret = ice_ptp_gettimex64(info, &now, NULL);
1553 now = timespec64_add(now, then);
1555 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1559 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1560 * @info: the driver's PTP info structure
1561 * @delta: Offset in nanoseconds to adjust the time by
1563 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1565 struct ice_pf *pf = ptp_info_to_pf(info);
1566 struct ice_hw *hw = &pf->hw;
1570 dev = ice_pf_to_dev(pf);
1572 /* Hardware only supports atomic adjustments using signed 32-bit
1573 * integers. For any adjustment outside this range, perform
1574 * a non-atomic get->adjust->set flow.
1576 if (delta > S32_MAX || delta < S32_MIN) {
1577 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1578 return ice_ptp_adjtime_nonatomic(info, delta);
1581 if (!ice_ptp_lock(hw)) {
1582 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1586 /* Disable periodic outputs */
1587 ice_ptp_disable_all_clkout(pf);
1589 err = ice_ptp_write_adj(pf, delta);
1591 /* Reenable periodic outputs */
1592 ice_ptp_enable_all_clkout(pf);
1597 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1601 ice_ptp_update_cached_phctime(pf);
1606 #ifdef CONFIG_ICE_HWTS
1608 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1609 * @device: Current device time
1610 * @system: System counter value read synchronously with device time
1611 * @ctx: Context provided by timekeeping code
1613 * Read device and system (ART) clock simultaneously and return the corrected
1614 * clock values in ns.
1617 ice_ptp_get_syncdevicetime(ktime_t *device,
1618 struct system_counterval_t *system,
1621 struct ice_pf *pf = (struct ice_pf *)ctx;
1622 struct ice_hw *hw = &pf->hw;
1623 u32 hh_lock, hh_art_ctl;
1626 /* Get the HW lock */
1627 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1628 if (hh_lock & PFHH_SEM_BUSY_M) {
1629 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1633 /* Start the ART and device clock sync sequence */
1634 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1635 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1636 wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1638 #define MAX_HH_LOCK_TRIES 100
1640 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1641 /* Wait for sync to complete */
1642 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1643 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1647 u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1650 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1652 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1653 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1654 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1655 *system = convert_art_ns_to_tsc(hh_ts);
1656 /* Read Device source clock time */
1657 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1658 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1659 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1660 *device = ns_to_ktime(hh_ts);
1664 /* Release HW lock */
1665 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1666 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1667 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1669 if (i == MAX_HH_LOCK_TRIES)
1676 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
1677 * @info: the driver's PTP info structure
1678 * @cts: The memory to fill the cross timestamp info
1680 * Capture a cross timestamp between the ART and the device PTP hardware
1681 * clock. Fill the cross timestamp information and report it back to the
1684 * This is only valid for E822 devices which have support for generating the
1685 * cross timestamp via PCIe PTM.
1687 * In order to correctly correlate the ART timestamp back to the TSC time, the
1688 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
1691 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
1692 struct system_device_crosststamp *cts)
1694 struct ice_pf *pf = ptp_info_to_pf(info);
1696 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
1699 #endif /* CONFIG_ICE_HWTS */
1702 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
1703 * @pf: Board private structure
1706 * Copy the timestamping config to user buffer
1708 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
1710 struct hwtstamp_config *config;
1712 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1715 config = &pf->ptp.tstamp_config;
1717 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1722 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
1723 * @pf: Board private structure
1724 * @config: hwtstamp settings requested or saved
1727 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
1729 switch (config->tx_type) {
1730 case HWTSTAMP_TX_OFF:
1731 ice_set_tx_tstamp(pf, false);
1733 case HWTSTAMP_TX_ON:
1734 ice_set_tx_tstamp(pf, true);
1740 switch (config->rx_filter) {
1741 case HWTSTAMP_FILTER_NONE:
1742 ice_set_rx_tstamp(pf, false);
1744 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1745 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1746 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1747 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1748 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1749 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1750 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1751 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1752 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1753 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1754 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1755 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1756 case HWTSTAMP_FILTER_NTP_ALL:
1757 case HWTSTAMP_FILTER_ALL:
1758 ice_set_rx_tstamp(pf, true);
1768 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
1769 * @pf: Board private structure
1772 * Get the user config and store it
1774 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
1776 struct hwtstamp_config config;
1779 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1782 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1785 err = ice_ptp_set_timestamp_mode(pf, &config);
1789 /* Return the actual configuration set */
1790 config = pf->ptp.tstamp_config;
1792 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1797 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
1798 * @rx_ring: Ring to get the VSI info
1799 * @rx_desc: Receive descriptor
1800 * @skb: Particular skb to send timestamp with
1802 * The driver receives a notification in the receive descriptor with timestamp.
1803 * The timestamp is in ns, so we must convert the result first.
1806 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
1807 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
1812 /* Populate timesync data into skb */
1813 if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
1814 struct skb_shared_hwtstamps *hwtstamps;
1816 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific
1817 * cached PHC value, rather than accessing the PF. This also
1818 * allows us to simply pass the upper 32bits of nanoseconds
1819 * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
1820 * it would just discard these bits itself.
1822 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
1823 ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
1825 hwtstamps = skb_hwtstamps(skb);
1826 memset(hwtstamps, 0, sizeof(*hwtstamps));
1827 hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
1832 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
1833 * @pf: pointer to the PF structure
1834 * @info: PTP clock info structure
1836 * Disable the OS access to the SMA pins. Called to clear out the OS
1837 * indications of pin support when we fail to setup the E810-T SMA control
1841 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1843 struct device *dev = ice_pf_to_dev(pf);
1845 dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
1847 info->enable = NULL;
1848 info->verify = NULL;
1851 info->n_per_out = 0;
1855 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
1856 * @pf: pointer to the PF structure
1857 * @info: PTP clock info structure
1859 * Finish setting up the SMA pins by allocating pin_config, and setting it up
1860 * according to the current status of the SMA. On failure, disable all of the
1861 * extended SMA pin support.
1864 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1866 struct device *dev = ice_pf_to_dev(pf);
1869 /* Allocate memory for kernel pins interface */
1870 info->pin_config = devm_kcalloc(dev, info->n_pins,
1871 sizeof(*info->pin_config), GFP_KERNEL);
1872 if (!info->pin_config) {
1873 ice_ptp_disable_sma_pins_e810t(pf, info);
1877 /* Read current SMA status */
1878 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
1880 ice_ptp_disable_sma_pins_e810t(pf, info);
1884 * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs
1885 * @pf: pointer to the PF instance
1886 * @info: PTP clock capabilities
1889 ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1891 /* Check if SMA controller is in the netlist */
1892 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) &&
1893 !ice_is_pca9575_present(&pf->hw))
1894 ice_clear_feature_support(pf, ICE_F_SMA_CTRL);
1896 if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1897 info->n_ext_ts = N_EXT_TS_E810_NO_SMA;
1898 info->n_per_out = N_PER_OUT_E810T_NO_SMA;
1902 info->n_per_out = N_PER_OUT_E810T;
1903 info->n_ext_ts = N_EXT_TS_E810;
1904 info->n_pins = NUM_PTP_PINS_E810T;
1905 info->verify = ice_verify_pin_e810t;
1907 /* Complete setup of the SMA pins */
1908 ice_ptp_setup_sma_pins_e810t(pf, info);
1912 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
1913 * @info: PTP clock capabilities
1915 static void ice_ptp_setup_pins_e810(struct ptp_clock_info *info)
1917 info->n_per_out = N_PER_OUT_E810;
1918 info->n_ext_ts = N_EXT_TS_E810;
1922 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
1923 * @pf: Board private structure
1924 * @info: PTP info to fill
1926 * Assign functions to the PTP capabiltiies structure for E822 devices.
1927 * Functions which operate across all device families should be set directly
1928 * in ice_ptp_set_caps. Only add functions here which are distinct for E822
1932 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
1934 #ifdef CONFIG_ICE_HWTS
1935 if (boot_cpu_has(X86_FEATURE_ART) &&
1936 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
1937 info->getcrosststamp = ice_ptp_getcrosststamp_e822;
1938 #endif /* CONFIG_ICE_HWTS */
1942 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
1943 * @pf: Board private structure
1944 * @info: PTP info to fill
1946 * Assign functions to the PTP capabiltiies structure for E810 devices.
1947 * Functions which operate across all device families should be set directly
1948 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
1952 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1954 info->enable = ice_ptp_gpio_enable_e810;
1956 if (ice_is_e810t(&pf->hw))
1957 ice_ptp_setup_pins_e810t(pf, info);
1959 ice_ptp_setup_pins_e810(info);
1963 * ice_ptp_set_caps - Set PTP capabilities
1964 * @pf: Board private structure
1966 static void ice_ptp_set_caps(struct ice_pf *pf)
1968 struct ptp_clock_info *info = &pf->ptp.info;
1969 struct device *dev = ice_pf_to_dev(pf);
1971 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
1972 dev_driver_string(dev), dev_name(dev));
1973 info->owner = THIS_MODULE;
1974 info->max_adj = 999999999;
1975 info->adjtime = ice_ptp_adjtime;
1976 info->adjfine = ice_ptp_adjfine;
1977 info->gettimex64 = ice_ptp_gettimex64;
1978 info->settime64 = ice_ptp_settime64;
1980 if (ice_is_e810(&pf->hw))
1981 ice_ptp_set_funcs_e810(pf, info);
1983 ice_ptp_set_funcs_e822(pf, info);
1987 * ice_ptp_create_clock - Create PTP clock device for userspace
1988 * @pf: Board private structure
1990 * This function creates a new PTP clock device. It only creates one if we
1991 * don't already have one. Will return error if it can't create one, but success
1992 * if we already have a device. Should be used by ice_ptp_init to create clock
1993 * initially, and prevent global resets from creating new clock devices.
1995 static long ice_ptp_create_clock(struct ice_pf *pf)
1997 struct ptp_clock_info *info;
1998 struct ptp_clock *clock;
2001 /* No need to create a clock device if we already have one */
2005 ice_ptp_set_caps(pf);
2007 info = &pf->ptp.info;
2008 dev = ice_pf_to_dev(pf);
2010 /* Attempt to register the clock before enabling the hardware. */
2011 clock = ptp_clock_register(info, dev);
2013 return PTR_ERR(clock);
2015 pf->ptp.clock = clock;
2021 * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
2022 * @work: pointer to the kthread_work struct
2024 * Process timestamps captured by the PHY associated with this port. To do
2025 * this, loop over each index with a waiting skb.
2027 * If a given index has a valid timestamp, perform the following steps:
2029 * 1) copy the timestamp out of the PHY register
2030 * 4) clear the timestamp valid bit in the PHY register
2031 * 5) unlock the index by clearing the associated in_use bit.
2032 * 2) extend the 40b timestamp value to get a 64bit timestamp
2033 * 3) send that timestamp to the stack
2035 * After looping, if we still have waiting SKBs, then re-queue the work. This
2036 * may cause us effectively poll even when not strictly necessary. We do this
2037 * because it's possible a new timestamp was requested around the same time as
2038 * the interrupt. In some cases hardware might not interrupt us again when the
2039 * timestamp is captured.
2041 * Note that we only take the tracking lock when clearing the bit and when
2042 * checking if we need to re-queue this task. The only place where bits can be
2043 * set is the hard xmit routine where an SKB has a request flag set. The only
2044 * places where we clear bits are this work function, or the periodic cleanup
2045 * thread. If the cleanup thread clears a bit we're processing we catch it
2046 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
2047 * starts a new timestamp, we might not begin processing it right away but we
2048 * will notice it at the end when we re-queue the work item. If a Tx thread
2049 * starts a new timestamp just after this function exits without re-queuing,
2050 * the interrupt when the timestamp finishes should trigger. Avoiding holding
2051 * the lock for the entire function is important in order to ensure that Tx
2052 * threads do not get blocked while waiting for the lock.
2054 static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
2056 struct ice_ptp_port *ptp_port;
2057 struct ice_ptp_tx *tx;
2062 tx = container_of(work, struct ice_ptp_tx, work);
2066 ptp_port = container_of(tx, struct ice_ptp_port, tx);
2067 pf = ptp_port_to_pf(ptp_port);
2070 for_each_set_bit(idx, tx->in_use, tx->len) {
2071 struct skb_shared_hwtstamps shhwtstamps = {};
2072 u8 phy_idx = idx + tx->quad_offset;
2073 u64 raw_tstamp, tstamp;
2074 struct sk_buff *skb;
2077 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
2079 err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
2084 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
2086 /* Check if the timestamp is invalid or stale */
2087 if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
2088 raw_tstamp == tx->tstamps[idx].cached_tstamp)
2091 /* The timestamp is valid, so we'll go ahead and clear this
2092 * index and then send the timestamp up to the stack.
2094 spin_lock(&tx->lock);
2095 tx->tstamps[idx].cached_tstamp = raw_tstamp;
2096 clear_bit(idx, tx->in_use);
2097 skb = tx->tstamps[idx].skb;
2098 tx->tstamps[idx].skb = NULL;
2099 spin_unlock(&tx->lock);
2101 /* it's (unlikely but) possible we raced with the cleanup
2102 * thread for discarding old timestamp requests.
2107 /* Extend the timestamp using cached PHC time */
2108 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
2109 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
2111 ice_trace(tx_tstamp_complete, skb, idx);
2113 skb_tstamp_tx(skb, &shhwtstamps);
2114 dev_kfree_skb_any(skb);
2117 /* Check if we still have work to do. If so, re-queue this task to
2118 * poll for remaining timestamps.
2120 spin_lock(&tx->lock);
2121 if (!bitmap_empty(tx->in_use, tx->len))
2122 kthread_queue_work(pf->ptp.kworker, &tx->work);
2123 spin_unlock(&tx->lock);
2127 * ice_ptp_request_ts - Request an available Tx timestamp index
2128 * @tx: the PTP Tx timestamp tracker to request from
2129 * @skb: the SKB to associate with this timestamp request
2131 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2135 /* Check if this tracker is initialized */
2136 if (!tx->init || tx->calibrating)
2139 spin_lock(&tx->lock);
2140 /* Find and set the first available index */
2141 idx = find_first_zero_bit(tx->in_use, tx->len);
2142 if (idx < tx->len) {
2143 /* We got a valid index that no other thread could have set. Store
2144 * a reference to the skb and the start time to allow discarding old
2147 set_bit(idx, tx->in_use);
2148 tx->tstamps[idx].start = jiffies;
2149 tx->tstamps[idx].skb = skb_get(skb);
2150 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2151 ice_trace(tx_tstamp_request, skb, idx);
2154 spin_unlock(&tx->lock);
2156 /* return the appropriate PHY timestamp register index, -1 if no
2157 * indexes were available.
2162 return idx + tx->quad_offset;
2166 * ice_ptp_process_ts - Spawn kthread work to handle timestamps
2167 * @pf: Board private structure
2169 * Queue work required to process the PTP Tx timestamps outside of interrupt
2172 void ice_ptp_process_ts(struct ice_pf *pf)
2174 if (pf->ptp.port.tx.init)
2175 kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
2179 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
2180 * @tx: Tx tracking structure to initialize
2182 * Assumes that the length has already been initialized. Do not call directly,
2183 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
2186 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
2188 tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
2192 tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
2199 spin_lock_init(&tx->lock);
2200 kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
2208 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
2209 * @pf: Board private structure
2210 * @tx: the tracker to flush
2213 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
2217 for (idx = 0; idx < tx->len; idx++) {
2218 u8 phy_idx = idx + tx->quad_offset;
2220 spin_lock(&tx->lock);
2221 if (tx->tstamps[idx].skb) {
2222 dev_kfree_skb_any(tx->tstamps[idx].skb);
2223 tx->tstamps[idx].skb = NULL;
2225 clear_bit(idx, tx->in_use);
2226 spin_unlock(&tx->lock);
2228 /* Clear any potential residual timestamp in the PHY block */
2229 if (!pf->hw.reset_ongoing)
2230 ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
2235 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
2236 * @pf: Board private structure
2237 * @tx: Tx tracking structure to release
2239 * Free memory associated with the Tx timestamp tracker.
2242 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
2246 kthread_cancel_work_sync(&tx->work);
2248 ice_ptp_flush_tx_tracker(pf, tx);
2253 bitmap_free(tx->in_use);
2260 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
2261 * @pf: Board private structure
2262 * @tx: the Tx tracking structure to initialize
2263 * @port: the port this structure tracks
2265 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
2266 * the timestamp block is shared for all ports in the same quad. To avoid
2267 * ports using the same timestamp index, logically break the block of
2268 * registers into chunks based on the port number.
2271 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
2273 tx->quad = port / ICE_PORTS_PER_QUAD;
2274 tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
2275 tx->len = INDEX_PER_PORT;
2277 return ice_ptp_alloc_tx_tracker(tx);
2281 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
2282 * @pf: Board private structure
2283 * @tx: the Tx tracking structure to initialize
2285 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
2286 * port has its own block of timestamps, independent of the other ports.
2289 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
2291 tx->quad = pf->hw.port_info->lport;
2292 tx->quad_offset = 0;
2293 tx->len = INDEX_PER_QUAD;
2295 return ice_ptp_alloc_tx_tracker(tx);
2299 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
2300 * @hw: pointer to the hw struct
2301 * @tx: PTP Tx tracker to clean up
2303 * Loop through the Tx timestamp requests and see if any of them have been
2304 * waiting for a long time. Discard any SKBs that have been waiting for more
2305 * than 2 seconds. This is long enough to be reasonably sure that the
2306 * timestamp will never be captured. This might happen if the packet gets
2307 * discarded before it reaches the PHY timestamping block.
2309 static void ice_ptp_tx_tstamp_cleanup(struct ice_hw *hw, struct ice_ptp_tx *tx)
2316 for_each_set_bit(idx, tx->in_use, tx->len) {
2317 struct sk_buff *skb;
2320 /* Check if this SKB has been waiting for too long */
2321 if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
2324 /* Read tstamp to be able to use this register again */
2325 ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
2328 spin_lock(&tx->lock);
2329 skb = tx->tstamps[idx].skb;
2330 tx->tstamps[idx].skb = NULL;
2331 clear_bit(idx, tx->in_use);
2332 spin_unlock(&tx->lock);
2334 /* Free the SKB after we've cleared the bit */
2335 dev_kfree_skb_any(skb);
2339 static void ice_ptp_periodic_work(struct kthread_work *work)
2341 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2342 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2345 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2348 err = ice_ptp_update_cached_phctime(pf);
2350 ice_ptp_tx_tstamp_cleanup(&pf->hw, &pf->ptp.port.tx);
2352 /* Run twice a second or reschedule if phc update failed */
2353 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2354 msecs_to_jiffies(err ? 10 : 500));
2358 * ice_ptp_reset - Initialize PTP hardware clock support after reset
2359 * @pf: Board private structure
2361 void ice_ptp_reset(struct ice_pf *pf)
2363 struct ice_ptp *ptp = &pf->ptp;
2364 struct ice_hw *hw = &pf->hw;
2365 struct timespec64 ts;
2369 if (test_bit(ICE_PFR_REQ, pf->state))
2372 if (!hw->func_caps.ts_func_info.src_tmr_owned)
2375 err = ice_ptp_init_phc(hw);
2379 /* Acquire the global hardware lock */
2380 if (!ice_ptp_lock(hw)) {
2385 /* Write the increment time value to PHY and LAN */
2386 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2392 /* Write the initial Time value to PHY and LAN using the cached PHC
2393 * time before the reset and time difference between stopping and
2394 * starting the clock.
2396 if (ptp->cached_phc_time) {
2397 time_diff = ktime_get_real_ns() - ptp->reset_time;
2398 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2400 ts = ktime_to_timespec64(ktime_get_real());
2402 err = ice_ptp_write_init(pf, &ts);
2408 /* Release the global hardware lock */
2411 if (!ice_is_e810(hw)) {
2412 /* Enable quad interrupts */
2413 err = ice_ptp_tx_ena_intr(pf, true, itr);
2419 /* Restart the PHY timestamping block */
2420 ice_ptp_reset_phy_timestamping(pf);
2423 /* Init Tx structures */
2424 if (ice_is_e810(&pf->hw)) {
2425 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2427 kthread_init_delayed_work(&ptp->port.ov_work,
2428 ice_ptp_wait_for_offset_valid);
2429 err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2430 ptp->port.port_num);
2435 set_bit(ICE_FLAG_PTP, pf->flags);
2437 /* Start periodic work going */
2438 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2440 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2444 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2448 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2449 * @pf: Board private structure
2451 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2453 struct ice_ptp *ptp = &pf->ptp;
2456 clear_bit(ICE_FLAG_PTP, pf->flags);
2458 /* Disable timestamping for both Tx and Rx */
2459 ice_ptp_cfg_timestamp(pf, false);
2461 kthread_cancel_delayed_work_sync(&ptp->work);
2462 kthread_cancel_work_sync(&ptp->extts_work);
2464 if (test_bit(ICE_PFR_REQ, pf->state))
2467 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2469 /* Disable periodic outputs */
2470 ice_ptp_disable_all_clkout(pf);
2472 src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2474 /* Disable source clock */
2475 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2477 /* Acquire PHC and system timer to restore after reset */
2478 ptp->reset_time = ktime_get_real_ns();
2482 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2483 * @pf: Board private structure
2485 * Setup and initialize a PTP clock device that represents the device hardware
2486 * clock. Save the clock index for other functions connected to the same
2487 * hardware resource.
2489 static int ice_ptp_init_owner(struct ice_pf *pf)
2491 struct ice_hw *hw = &pf->hw;
2492 struct timespec64 ts;
2495 err = ice_ptp_init_phc(hw);
2497 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2502 /* Acquire the global hardware lock */
2503 if (!ice_ptp_lock(hw)) {
2508 /* Write the increment time value to PHY and LAN */
2509 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2515 ts = ktime_to_timespec64(ktime_get_real());
2516 /* Write the initial Time value to PHY and LAN */
2517 err = ice_ptp_write_init(pf, &ts);
2523 /* Release the global hardware lock */
2526 if (!ice_is_e810(hw)) {
2527 /* Enable quad interrupts */
2528 err = ice_ptp_tx_ena_intr(pf, true, itr);
2533 /* Ensure we have a clock device */
2534 err = ice_ptp_create_clock(pf);
2538 /* Store the PTP clock index for other PFs */
2539 ice_set_ptp_clock_index(pf);
2544 pf->ptp.clock = NULL;
2550 * ice_ptp_init_work - Initialize PTP work threads
2551 * @pf: Board private structure
2552 * @ptp: PF PTP structure
2554 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2556 struct kthread_worker *kworker;
2558 /* Initialize work functions */
2559 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2560 kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2562 /* Allocate a kworker for handling work required for the ports
2563 * connected to the PTP hardware clock.
2565 kworker = kthread_create_worker(0, "ice-ptp-%s",
2566 dev_name(ice_pf_to_dev(pf)));
2567 if (IS_ERR(kworker))
2568 return PTR_ERR(kworker);
2570 ptp->kworker = kworker;
2572 /* Start periodic work going */
2573 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2579 * ice_ptp_init_port - Initialize PTP port structure
2580 * @pf: Board private structure
2581 * @ptp_port: PTP port structure
2583 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2585 mutex_init(&ptp_port->ps_lock);
2587 if (ice_is_e810(&pf->hw))
2588 return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2590 kthread_init_delayed_work(&ptp_port->ov_work,
2591 ice_ptp_wait_for_offset_valid);
2592 return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2596 * ice_ptp_init - Initialize PTP hardware clock support
2597 * @pf: Board private structure
2599 * Set up the device for interacting with the PTP hardware clock for all
2600 * functions, both the function that owns the clock hardware, and the
2601 * functions connected to the clock hardware.
2603 * The clock owner will allocate and register a ptp_clock with the
2604 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2605 * items used for asynchronous work such as Tx timestamps and periodic work.
2607 void ice_ptp_init(struct ice_pf *pf)
2609 struct ice_ptp *ptp = &pf->ptp;
2610 struct ice_hw *hw = &pf->hw;
2613 /* If this function owns the clock hardware, it must allocate and
2614 * configure the PTP clock device to represent it.
2616 if (hw->func_caps.ts_func_info.src_tmr_owned) {
2617 err = ice_ptp_init_owner(pf);
2622 ptp->port.port_num = hw->pf_id;
2623 err = ice_ptp_init_port(pf, &ptp->port);
2627 /* Start the PHY timestamping block */
2628 ice_ptp_reset_phy_timestamping(pf);
2630 set_bit(ICE_FLAG_PTP, pf->flags);
2631 err = ice_ptp_init_work(pf, ptp);
2635 dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2639 /* If we registered a PTP clock, release it */
2640 if (pf->ptp.clock) {
2641 ptp_clock_unregister(ptp->clock);
2642 pf->ptp.clock = NULL;
2644 clear_bit(ICE_FLAG_PTP, pf->flags);
2645 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2649 * ice_ptp_release - Disable the driver/HW support and unregister the clock
2650 * @pf: Board private structure
2652 * This function handles the cleanup work required from the initialization by
2653 * clearing out the important information and unregistering the clock
2655 void ice_ptp_release(struct ice_pf *pf)
2657 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2660 /* Disable timestamping for both Tx and Rx */
2661 ice_ptp_cfg_timestamp(pf, false);
2663 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2665 clear_bit(ICE_FLAG_PTP, pf->flags);
2667 kthread_cancel_delayed_work_sync(&pf->ptp.work);
2669 ice_ptp_port_phy_stop(&pf->ptp.port);
2670 mutex_destroy(&pf->ptp.port.ps_lock);
2671 if (pf->ptp.kworker) {
2672 kthread_destroy_worker(pf->ptp.kworker);
2673 pf->ptp.kworker = NULL;
2679 /* Disable periodic outputs */
2680 ice_ptp_disable_all_clkout(pf);
2682 ice_clear_ptp_clock_index(pf);
2683 ptp_clock_unregister(pf->ptp.clock);
2684 pf->ptp.clock = NULL;
2686 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");