Merge branch 'linus' into irq/core, to fix conflict
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25         "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40         /* required last entry */
41         {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55  * iavf_pdev_to_adapter - go from pci_dev to adapter
56  * @pdev: pci_dev pointer
57  */
58 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
59 {
60         return netdev_priv(pci_get_drvdata(pdev));
61 }
62
63 /**
64  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
65  * @hw:   pointer to the HW structure
66  * @mem:  ptr to mem struct to fill out
67  * @size: size of memory requested
68  * @alignment: what to align the allocation to
69  **/
70 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
71                                          struct iavf_dma_mem *mem,
72                                          u64 size, u32 alignment)
73 {
74         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
75
76         if (!mem)
77                 return IAVF_ERR_PARAM;
78
79         mem->size = ALIGN(size, alignment);
80         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
81                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
82         if (mem->va)
83                 return 0;
84         else
85                 return IAVF_ERR_NO_MEMORY;
86 }
87
88 /**
89  * iavf_free_dma_mem_d - OS specific memory free for shared code
90  * @hw:   pointer to the HW structure
91  * @mem:  ptr to mem struct to free
92  **/
93 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
94                                      struct iavf_dma_mem *mem)
95 {
96         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
97
98         if (!mem || !mem->va)
99                 return IAVF_ERR_PARAM;
100         dma_free_coherent(&adapter->pdev->dev, mem->size,
101                           mem->va, (dma_addr_t)mem->pa);
102         return 0;
103 }
104
105 /**
106  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
107  * @hw:   pointer to the HW structure
108  * @mem:  ptr to mem struct to fill out
109  * @size: size of memory requested
110  **/
111 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
112                                           struct iavf_virt_mem *mem, u32 size)
113 {
114         if (!mem)
115                 return IAVF_ERR_PARAM;
116
117         mem->size = size;
118         mem->va = kzalloc(size, GFP_KERNEL);
119
120         if (mem->va)
121                 return 0;
122         else
123                 return IAVF_ERR_NO_MEMORY;
124 }
125
126 /**
127  * iavf_free_virt_mem_d - OS specific memory free for shared code
128  * @hw:   pointer to the HW structure
129  * @mem:  ptr to mem struct to free
130  **/
131 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
132                                       struct iavf_virt_mem *mem)
133 {
134         if (!mem)
135                 return IAVF_ERR_PARAM;
136
137         /* it's ok to kfree a NULL pointer */
138         kfree(mem->va);
139
140         return 0;
141 }
142
143 /**
144  * iavf_lock_timeout - try to lock mutex but give up after timeout
145  * @lock: mutex that should be locked
146  * @msecs: timeout in msecs
147  *
148  * Returns 0 on success, negative on failure
149  **/
150 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
151 {
152         unsigned int wait, delay = 10;
153
154         for (wait = 0; wait < msecs; wait += delay) {
155                 if (mutex_trylock(lock))
156                         return 0;
157
158                 msleep(delay);
159         }
160
161         return -1;
162 }
163
164 /**
165  * iavf_schedule_reset - Set the flags and schedule a reset event
166  * @adapter: board private structure
167  **/
168 void iavf_schedule_reset(struct iavf_adapter *adapter)
169 {
170         if (!(adapter->flags &
171               (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
172                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
173                 queue_work(iavf_wq, &adapter->reset_task);
174         }
175 }
176
177 /**
178  * iavf_schedule_request_stats - Set the flags and schedule statistics request
179  * @adapter: board private structure
180  *
181  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
182  * request and refresh ethtool stats
183  **/
184 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
185 {
186         adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
187         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
188 }
189
190 /**
191  * iavf_tx_timeout - Respond to a Tx Hang
192  * @netdev: network interface device structure
193  * @txqueue: queue number that is timing out
194  **/
195 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
196 {
197         struct iavf_adapter *adapter = netdev_priv(netdev);
198
199         adapter->tx_timeout_count++;
200         iavf_schedule_reset(adapter);
201 }
202
203 /**
204  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
205  * @adapter: board private structure
206  **/
207 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
208 {
209         struct iavf_hw *hw = &adapter->hw;
210
211         if (!adapter->msix_entries)
212                 return;
213
214         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
215
216         iavf_flush(hw);
217
218         synchronize_irq(adapter->msix_entries[0].vector);
219 }
220
221 /**
222  * iavf_misc_irq_enable - Enable default interrupt generation settings
223  * @adapter: board private structure
224  **/
225 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
226 {
227         struct iavf_hw *hw = &adapter->hw;
228
229         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
230                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
231         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
232
233         iavf_flush(hw);
234 }
235
236 /**
237  * iavf_irq_disable - Mask off interrupt generation on the NIC
238  * @adapter: board private structure
239  **/
240 static void iavf_irq_disable(struct iavf_adapter *adapter)
241 {
242         int i;
243         struct iavf_hw *hw = &adapter->hw;
244
245         if (!adapter->msix_entries)
246                 return;
247
248         for (i = 1; i < adapter->num_msix_vectors; i++) {
249                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
250                 synchronize_irq(adapter->msix_entries[i].vector);
251         }
252         iavf_flush(hw);
253 }
254
255 /**
256  * iavf_irq_enable_queues - Enable interrupt for specified queues
257  * @adapter: board private structure
258  * @mask: bitmap of queues to enable
259  **/
260 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
261 {
262         struct iavf_hw *hw = &adapter->hw;
263         int i;
264
265         for (i = 1; i < adapter->num_msix_vectors; i++) {
266                 if (mask & BIT(i - 1)) {
267                         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
268                              IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
269                              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
270                 }
271         }
272 }
273
274 /**
275  * iavf_irq_enable - Enable default interrupt generation settings
276  * @adapter: board private structure
277  * @flush: boolean value whether to run rd32()
278  **/
279 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
280 {
281         struct iavf_hw *hw = &adapter->hw;
282
283         iavf_misc_irq_enable(adapter);
284         iavf_irq_enable_queues(adapter, ~0);
285
286         if (flush)
287                 iavf_flush(hw);
288 }
289
290 /**
291  * iavf_msix_aq - Interrupt handler for vector 0
292  * @irq: interrupt number
293  * @data: pointer to netdev
294  **/
295 static irqreturn_t iavf_msix_aq(int irq, void *data)
296 {
297         struct net_device *netdev = data;
298         struct iavf_adapter *adapter = netdev_priv(netdev);
299         struct iavf_hw *hw = &adapter->hw;
300
301         /* handle non-queue interrupts, these reads clear the registers */
302         rd32(hw, IAVF_VFINT_ICR01);
303         rd32(hw, IAVF_VFINT_ICR0_ENA1);
304
305         /* schedule work on the private workqueue */
306         queue_work(iavf_wq, &adapter->adminq_task);
307
308         return IRQ_HANDLED;
309 }
310
311 /**
312  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
313  * @irq: interrupt number
314  * @data: pointer to a q_vector
315  **/
316 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
317 {
318         struct iavf_q_vector *q_vector = data;
319
320         if (!q_vector->tx.ring && !q_vector->rx.ring)
321                 return IRQ_HANDLED;
322
323         napi_schedule_irqoff(&q_vector->napi);
324
325         return IRQ_HANDLED;
326 }
327
328 /**
329  * iavf_map_vector_to_rxq - associate irqs with rx queues
330  * @adapter: board private structure
331  * @v_idx: interrupt number
332  * @r_idx: queue number
333  **/
334 static void
335 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
336 {
337         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
338         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
339         struct iavf_hw *hw = &adapter->hw;
340
341         rx_ring->q_vector = q_vector;
342         rx_ring->next = q_vector->rx.ring;
343         rx_ring->vsi = &adapter->vsi;
344         q_vector->rx.ring = rx_ring;
345         q_vector->rx.count++;
346         q_vector->rx.next_update = jiffies + 1;
347         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
348         q_vector->ring_mask |= BIT(r_idx);
349         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
350              q_vector->rx.current_itr >> 1);
351         q_vector->rx.current_itr = q_vector->rx.target_itr;
352 }
353
354 /**
355  * iavf_map_vector_to_txq - associate irqs with tx queues
356  * @adapter: board private structure
357  * @v_idx: interrupt number
358  * @t_idx: queue number
359  **/
360 static void
361 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
362 {
363         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
364         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
365         struct iavf_hw *hw = &adapter->hw;
366
367         tx_ring->q_vector = q_vector;
368         tx_ring->next = q_vector->tx.ring;
369         tx_ring->vsi = &adapter->vsi;
370         q_vector->tx.ring = tx_ring;
371         q_vector->tx.count++;
372         q_vector->tx.next_update = jiffies + 1;
373         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
374         q_vector->num_ringpairs++;
375         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
376              q_vector->tx.target_itr >> 1);
377         q_vector->tx.current_itr = q_vector->tx.target_itr;
378 }
379
380 /**
381  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
382  * @adapter: board private structure to initialize
383  *
384  * This function maps descriptor rings to the queue-specific vectors
385  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
386  * one vector per ring/queue, but on a constrained vector budget, we
387  * group the rings as "efficiently" as possible.  You would add new
388  * mapping configurations in here.
389  **/
390 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
391 {
392         int rings_remaining = adapter->num_active_queues;
393         int ridx = 0, vidx = 0;
394         int q_vectors;
395
396         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
397
398         for (; ridx < rings_remaining; ridx++) {
399                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
400                 iavf_map_vector_to_txq(adapter, vidx, ridx);
401
402                 /* In the case where we have more queues than vectors, continue
403                  * round-robin on vectors until all queues are mapped.
404                  */
405                 if (++vidx >= q_vectors)
406                         vidx = 0;
407         }
408
409         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
410 }
411
412 /**
413  * iavf_irq_affinity_notify - Callback for affinity changes
414  * @notify: context as to what irq was changed
415  * @mask: the new affinity mask
416  *
417  * This is a callback function used by the irq_set_affinity_notifier function
418  * so that we may register to receive changes to the irq affinity masks.
419  **/
420 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
421                                      const cpumask_t *mask)
422 {
423         struct iavf_q_vector *q_vector =
424                 container_of(notify, struct iavf_q_vector, affinity_notify);
425
426         cpumask_copy(&q_vector->affinity_mask, mask);
427 }
428
429 /**
430  * iavf_irq_affinity_release - Callback for affinity notifier release
431  * @ref: internal core kernel usage
432  *
433  * This is a callback function used by the irq_set_affinity_notifier function
434  * to inform the current notification subscriber that they will no longer
435  * receive notifications.
436  **/
437 static void iavf_irq_affinity_release(struct kref *ref) {}
438
439 /**
440  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
441  * @adapter: board private structure
442  * @basename: device basename
443  *
444  * Allocates MSI-X vectors for tx and rx handling, and requests
445  * interrupts from the kernel.
446  **/
447 static int
448 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
449 {
450         unsigned int vector, q_vectors;
451         unsigned int rx_int_idx = 0, tx_int_idx = 0;
452         int irq_num, err;
453         int cpu;
454
455         iavf_irq_disable(adapter);
456         /* Decrement for Other and TCP Timer vectors */
457         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
458
459         for (vector = 0; vector < q_vectors; vector++) {
460                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
461
462                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463
464                 if (q_vector->tx.ring && q_vector->rx.ring) {
465                         snprintf(q_vector->name, sizeof(q_vector->name),
466                                  "iavf-%s-TxRx-%d", basename, rx_int_idx++);
467                         tx_int_idx++;
468                 } else if (q_vector->rx.ring) {
469                         snprintf(q_vector->name, sizeof(q_vector->name),
470                                  "iavf-%s-rx-%d", basename, rx_int_idx++);
471                 } else if (q_vector->tx.ring) {
472                         snprintf(q_vector->name, sizeof(q_vector->name),
473                                  "iavf-%s-tx-%d", basename, tx_int_idx++);
474                 } else {
475                         /* skip this unused q_vector */
476                         continue;
477                 }
478                 err = request_irq(irq_num,
479                                   iavf_msix_clean_rings,
480                                   0,
481                                   q_vector->name,
482                                   q_vector);
483                 if (err) {
484                         dev_info(&adapter->pdev->dev,
485                                  "Request_irq failed, error: %d\n", err);
486                         goto free_queue_irqs;
487                 }
488                 /* register for affinity change notifications */
489                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
490                 q_vector->affinity_notify.release =
491                                                    iavf_irq_affinity_release;
492                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
493                 /* Spread the IRQ affinity hints across online CPUs. Note that
494                  * get_cpu_mask returns a mask with a permanent lifetime so
495                  * it's safe to use as a hint for irq_update_affinity_hint.
496                  */
497                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
498                 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
499         }
500
501         return 0;
502
503 free_queue_irqs:
504         while (vector) {
505                 vector--;
506                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
507                 irq_set_affinity_notifier(irq_num, NULL);
508                 irq_update_affinity_hint(irq_num, NULL);
509                 free_irq(irq_num, &adapter->q_vectors[vector]);
510         }
511         return err;
512 }
513
514 /**
515  * iavf_request_misc_irq - Initialize MSI-X interrupts
516  * @adapter: board private structure
517  *
518  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
519  * vector is only for the admin queue, and stays active even when the netdev
520  * is closed.
521  **/
522 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
523 {
524         struct net_device *netdev = adapter->netdev;
525         int err;
526
527         snprintf(adapter->misc_vector_name,
528                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
529                  dev_name(&adapter->pdev->dev));
530         err = request_irq(adapter->msix_entries[0].vector,
531                           &iavf_msix_aq, 0,
532                           adapter->misc_vector_name, netdev);
533         if (err) {
534                 dev_err(&adapter->pdev->dev,
535                         "request_irq for %s failed: %d\n",
536                         adapter->misc_vector_name, err);
537                 free_irq(adapter->msix_entries[0].vector, netdev);
538         }
539         return err;
540 }
541
542 /**
543  * iavf_free_traffic_irqs - Free MSI-X interrupts
544  * @adapter: board private structure
545  *
546  * Frees all MSI-X vectors other than 0.
547  **/
548 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
549 {
550         int vector, irq_num, q_vectors;
551
552         if (!adapter->msix_entries)
553                 return;
554
555         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
556
557         for (vector = 0; vector < q_vectors; vector++) {
558                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
559                 irq_set_affinity_notifier(irq_num, NULL);
560                 irq_update_affinity_hint(irq_num, NULL);
561                 free_irq(irq_num, &adapter->q_vectors[vector]);
562         }
563 }
564
565 /**
566  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
567  * @adapter: board private structure
568  *
569  * Frees MSI-X vector 0.
570  **/
571 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
572 {
573         struct net_device *netdev = adapter->netdev;
574
575         if (!adapter->msix_entries)
576                 return;
577
578         free_irq(adapter->msix_entries[0].vector, netdev);
579 }
580
581 /**
582  * iavf_configure_tx - Configure Transmit Unit after Reset
583  * @adapter: board private structure
584  *
585  * Configure the Tx unit of the MAC after a reset.
586  **/
587 static void iavf_configure_tx(struct iavf_adapter *adapter)
588 {
589         struct iavf_hw *hw = &adapter->hw;
590         int i;
591
592         for (i = 0; i < adapter->num_active_queues; i++)
593                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
594 }
595
596 /**
597  * iavf_configure_rx - Configure Receive Unit after Reset
598  * @adapter: board private structure
599  *
600  * Configure the Rx unit of the MAC after a reset.
601  **/
602 static void iavf_configure_rx(struct iavf_adapter *adapter)
603 {
604         unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
605         struct iavf_hw *hw = &adapter->hw;
606         int i;
607
608         /* Legacy Rx will always default to a 2048 buffer size. */
609 #if (PAGE_SIZE < 8192)
610         if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
611                 struct net_device *netdev = adapter->netdev;
612
613                 /* For jumbo frames on systems with 4K pages we have to use
614                  * an order 1 page, so we might as well increase the size
615                  * of our Rx buffer to make better use of the available space
616                  */
617                 rx_buf_len = IAVF_RXBUFFER_3072;
618
619                 /* We use a 1536 buffer size for configurations with
620                  * standard Ethernet mtu.  On x86 this gives us enough room
621                  * for shared info and 192 bytes of padding.
622                  */
623                 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
624                     (netdev->mtu <= ETH_DATA_LEN))
625                         rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
626         }
627 #endif
628
629         for (i = 0; i < adapter->num_active_queues; i++) {
630                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
631                 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
632
633                 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
634                         clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
635                 else
636                         set_ring_build_skb_enabled(&adapter->rx_rings[i]);
637         }
638 }
639
640 /**
641  * iavf_find_vlan - Search filter list for specific vlan filter
642  * @adapter: board private structure
643  * @vlan: vlan tag
644  *
645  * Returns ptr to the filter object or NULL. Must be called while holding the
646  * mac_vlan_list_lock.
647  **/
648 static struct
649 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
650 {
651         struct iavf_vlan_filter *f;
652
653         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
654                 if (vlan == f->vlan)
655                         return f;
656         }
657         return NULL;
658 }
659
660 /**
661  * iavf_add_vlan - Add a vlan filter to the list
662  * @adapter: board private structure
663  * @vlan: VLAN tag
664  *
665  * Returns ptr to the filter object or NULL when no memory available.
666  **/
667 static struct
668 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
669 {
670         struct iavf_vlan_filter *f = NULL;
671
672         spin_lock_bh(&adapter->mac_vlan_list_lock);
673
674         f = iavf_find_vlan(adapter, vlan);
675         if (!f) {
676                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
677                 if (!f)
678                         goto clearout;
679
680                 f->vlan = vlan;
681
682                 list_add_tail(&f->list, &adapter->vlan_filter_list);
683                 f->add = true;
684                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
685         }
686
687 clearout:
688         spin_unlock_bh(&adapter->mac_vlan_list_lock);
689         return f;
690 }
691
692 /**
693  * iavf_del_vlan - Remove a vlan filter from the list
694  * @adapter: board private structure
695  * @vlan: VLAN tag
696  **/
697 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
698 {
699         struct iavf_vlan_filter *f;
700
701         spin_lock_bh(&adapter->mac_vlan_list_lock);
702
703         f = iavf_find_vlan(adapter, vlan);
704         if (f) {
705                 f->remove = true;
706                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
707         }
708
709         spin_unlock_bh(&adapter->mac_vlan_list_lock);
710 }
711
712 /**
713  * iavf_restore_filters
714  * @adapter: board private structure
715  *
716  * Restore existing non MAC filters when VF netdev comes back up
717  **/
718 static void iavf_restore_filters(struct iavf_adapter *adapter)
719 {
720         u16 vid;
721
722         /* re-add all VLAN filters */
723         for_each_set_bit(vid, adapter->vsi.active_vlans, VLAN_N_VID)
724                 iavf_add_vlan(adapter, vid);
725 }
726
727 /**
728  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
729  * @netdev: network device struct
730  * @proto: unused protocol data
731  * @vid: VLAN tag
732  **/
733 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
734                                 __always_unused __be16 proto, u16 vid)
735 {
736         struct iavf_adapter *adapter = netdev_priv(netdev);
737
738         if (!VLAN_ALLOWED(adapter))
739                 return -EIO;
740
741         if (iavf_add_vlan(adapter, vid) == NULL)
742                 return -ENOMEM;
743
744         set_bit(vid, adapter->vsi.active_vlans);
745         return 0;
746 }
747
748 /**
749  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
750  * @netdev: network device struct
751  * @proto: unused protocol data
752  * @vid: VLAN tag
753  **/
754 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
755                                  __always_unused __be16 proto, u16 vid)
756 {
757         struct iavf_adapter *adapter = netdev_priv(netdev);
758
759         iavf_del_vlan(adapter, vid);
760         clear_bit(vid, adapter->vsi.active_vlans);
761
762         return 0;
763 }
764
765 /**
766  * iavf_find_filter - Search filter list for specific mac filter
767  * @adapter: board private structure
768  * @macaddr: the MAC address
769  *
770  * Returns ptr to the filter object or NULL. Must be called while holding the
771  * mac_vlan_list_lock.
772  **/
773 static struct
774 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
775                                   const u8 *macaddr)
776 {
777         struct iavf_mac_filter *f;
778
779         if (!macaddr)
780                 return NULL;
781
782         list_for_each_entry(f, &adapter->mac_filter_list, list) {
783                 if (ether_addr_equal(macaddr, f->macaddr))
784                         return f;
785         }
786         return NULL;
787 }
788
789 /**
790  * iavf_add_filter - Add a mac filter to the filter list
791  * @adapter: board private structure
792  * @macaddr: the MAC address
793  *
794  * Returns ptr to the filter object or NULL when no memory available.
795  **/
796 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
797                                         const u8 *macaddr)
798 {
799         struct iavf_mac_filter *f;
800
801         if (!macaddr)
802                 return NULL;
803
804         f = iavf_find_filter(adapter, macaddr);
805         if (!f) {
806                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
807                 if (!f)
808                         return f;
809
810                 ether_addr_copy(f->macaddr, macaddr);
811
812                 list_add_tail(&f->list, &adapter->mac_filter_list);
813                 f->add = true;
814                 f->is_new_mac = true;
815                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
816         } else {
817                 f->remove = false;
818         }
819
820         return f;
821 }
822
823 /**
824  * iavf_set_mac - NDO callback to set port mac address
825  * @netdev: network interface device structure
826  * @p: pointer to an address structure
827  *
828  * Returns 0 on success, negative on failure
829  **/
830 static int iavf_set_mac(struct net_device *netdev, void *p)
831 {
832         struct iavf_adapter *adapter = netdev_priv(netdev);
833         struct iavf_hw *hw = &adapter->hw;
834         struct iavf_mac_filter *f;
835         struct sockaddr *addr = p;
836
837         if (!is_valid_ether_addr(addr->sa_data))
838                 return -EADDRNOTAVAIL;
839
840         if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
841                 return 0;
842
843         spin_lock_bh(&adapter->mac_vlan_list_lock);
844
845         f = iavf_find_filter(adapter, hw->mac.addr);
846         if (f) {
847                 f->remove = true;
848                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
849         }
850
851         f = iavf_add_filter(adapter, addr->sa_data);
852
853         spin_unlock_bh(&adapter->mac_vlan_list_lock);
854
855         if (f) {
856                 ether_addr_copy(hw->mac.addr, addr->sa_data);
857         }
858
859         return (f == NULL) ? -ENOMEM : 0;
860 }
861
862 /**
863  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
864  * @netdev: the netdevice
865  * @addr: address to add
866  *
867  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
868  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
869  */
870 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
871 {
872         struct iavf_adapter *adapter = netdev_priv(netdev);
873
874         if (iavf_add_filter(adapter, addr))
875                 return 0;
876         else
877                 return -ENOMEM;
878 }
879
880 /**
881  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
882  * @netdev: the netdevice
883  * @addr: address to add
884  *
885  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
886  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
887  */
888 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
889 {
890         struct iavf_adapter *adapter = netdev_priv(netdev);
891         struct iavf_mac_filter *f;
892
893         /* Under some circumstances, we might receive a request to delete
894          * our own device address from our uc list. Because we store the
895          * device address in the VSI's MAC/VLAN filter list, we need to ignore
896          * such requests and not delete our device address from this list.
897          */
898         if (ether_addr_equal(addr, netdev->dev_addr))
899                 return 0;
900
901         f = iavf_find_filter(adapter, addr);
902         if (f) {
903                 f->remove = true;
904                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
905         }
906         return 0;
907 }
908
909 /**
910  * iavf_set_rx_mode - NDO callback to set the netdev filters
911  * @netdev: network interface device structure
912  **/
913 static void iavf_set_rx_mode(struct net_device *netdev)
914 {
915         struct iavf_adapter *adapter = netdev_priv(netdev);
916
917         spin_lock_bh(&adapter->mac_vlan_list_lock);
918         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
919         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
920         spin_unlock_bh(&adapter->mac_vlan_list_lock);
921
922         if (netdev->flags & IFF_PROMISC &&
923             !(adapter->flags & IAVF_FLAG_PROMISC_ON))
924                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
925         else if (!(netdev->flags & IFF_PROMISC) &&
926                  adapter->flags & IAVF_FLAG_PROMISC_ON)
927                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
928
929         if (netdev->flags & IFF_ALLMULTI &&
930             !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
931                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
932         else if (!(netdev->flags & IFF_ALLMULTI) &&
933                  adapter->flags & IAVF_FLAG_ALLMULTI_ON)
934                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
935 }
936
937 /**
938  * iavf_napi_enable_all - enable NAPI on all queue vectors
939  * @adapter: board private structure
940  **/
941 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
942 {
943         int q_idx;
944         struct iavf_q_vector *q_vector;
945         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
946
947         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
948                 struct napi_struct *napi;
949
950                 q_vector = &adapter->q_vectors[q_idx];
951                 napi = &q_vector->napi;
952                 napi_enable(napi);
953         }
954 }
955
956 /**
957  * iavf_napi_disable_all - disable NAPI on all queue vectors
958  * @adapter: board private structure
959  **/
960 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
961 {
962         int q_idx;
963         struct iavf_q_vector *q_vector;
964         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
965
966         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
967                 q_vector = &adapter->q_vectors[q_idx];
968                 napi_disable(&q_vector->napi);
969         }
970 }
971
972 /**
973  * iavf_configure - set up transmit and receive data structures
974  * @adapter: board private structure
975  **/
976 static void iavf_configure(struct iavf_adapter *adapter)
977 {
978         struct net_device *netdev = adapter->netdev;
979         int i;
980
981         iavf_set_rx_mode(netdev);
982
983         iavf_configure_tx(adapter);
984         iavf_configure_rx(adapter);
985         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
986
987         for (i = 0; i < adapter->num_active_queues; i++) {
988                 struct iavf_ring *ring = &adapter->rx_rings[i];
989
990                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
991         }
992 }
993
994 /**
995  * iavf_up_complete - Finish the last steps of bringing up a connection
996  * @adapter: board private structure
997  *
998  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
999  **/
1000 static void iavf_up_complete(struct iavf_adapter *adapter)
1001 {
1002         iavf_change_state(adapter, __IAVF_RUNNING);
1003         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1004
1005         iavf_napi_enable_all(adapter);
1006
1007         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1008         if (CLIENT_ENABLED(adapter))
1009                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1010         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1011 }
1012
1013 /**
1014  * iavf_down - Shutdown the connection processing
1015  * @adapter: board private structure
1016  *
1017  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1018  **/
1019 void iavf_down(struct iavf_adapter *adapter)
1020 {
1021         struct net_device *netdev = adapter->netdev;
1022         struct iavf_vlan_filter *vlf;
1023         struct iavf_cloud_filter *cf;
1024         struct iavf_fdir_fltr *fdir;
1025         struct iavf_mac_filter *f;
1026         struct iavf_adv_rss *rss;
1027
1028         if (adapter->state <= __IAVF_DOWN_PENDING)
1029                 return;
1030
1031         netif_carrier_off(netdev);
1032         netif_tx_disable(netdev);
1033         adapter->link_up = false;
1034         iavf_napi_disable_all(adapter);
1035         iavf_irq_disable(adapter);
1036
1037         spin_lock_bh(&adapter->mac_vlan_list_lock);
1038
1039         /* clear the sync flag on all filters */
1040         __dev_uc_unsync(adapter->netdev, NULL);
1041         __dev_mc_unsync(adapter->netdev, NULL);
1042
1043         /* remove all MAC filters */
1044         list_for_each_entry(f, &adapter->mac_filter_list, list) {
1045                 f->remove = true;
1046         }
1047
1048         /* remove all VLAN filters */
1049         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1050                 vlf->remove = true;
1051         }
1052
1053         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1054
1055         /* remove all cloud filters */
1056         spin_lock_bh(&adapter->cloud_filter_list_lock);
1057         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1058                 cf->del = true;
1059         }
1060         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1061
1062         /* remove all Flow Director filters */
1063         spin_lock_bh(&adapter->fdir_fltr_lock);
1064         list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1065                 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1066         }
1067         spin_unlock_bh(&adapter->fdir_fltr_lock);
1068
1069         /* remove all advance RSS configuration */
1070         spin_lock_bh(&adapter->adv_rss_lock);
1071         list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1072                 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1073         spin_unlock_bh(&adapter->adv_rss_lock);
1074
1075         if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1076             adapter->state != __IAVF_RESETTING) {
1077                 /* cancel any current operation */
1078                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1079                 /* Schedule operations to close down the HW. Don't wait
1080                  * here for this to complete. The watchdog is still running
1081                  * and it will take care of this.
1082                  */
1083                 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1084                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1085                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1086                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1087                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1088                 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1089         }
1090
1091         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1092 }
1093
1094 /**
1095  * iavf_acquire_msix_vectors - Setup the MSIX capability
1096  * @adapter: board private structure
1097  * @vectors: number of vectors to request
1098  *
1099  * Work with the OS to set up the MSIX vectors needed.
1100  *
1101  * Returns 0 on success, negative on failure
1102  **/
1103 static int
1104 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1105 {
1106         int err, vector_threshold;
1107
1108         /* We'll want at least 3 (vector_threshold):
1109          * 0) Other (Admin Queue and link, mostly)
1110          * 1) TxQ[0] Cleanup
1111          * 2) RxQ[0] Cleanup
1112          */
1113         vector_threshold = MIN_MSIX_COUNT;
1114
1115         /* The more we get, the more we will assign to Tx/Rx Cleanup
1116          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1117          * Right now, we simply care about how many we'll get; we'll
1118          * set them up later while requesting irq's.
1119          */
1120         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1121                                     vector_threshold, vectors);
1122         if (err < 0) {
1123                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1124                 kfree(adapter->msix_entries);
1125                 adapter->msix_entries = NULL;
1126                 return err;
1127         }
1128
1129         /* Adjust for only the vectors we'll use, which is minimum
1130          * of max_msix_q_vectors + NONQ_VECS, or the number of
1131          * vectors we were allocated.
1132          */
1133         adapter->num_msix_vectors = err;
1134         return 0;
1135 }
1136
1137 /**
1138  * iavf_free_queues - Free memory for all rings
1139  * @adapter: board private structure to initialize
1140  *
1141  * Free all of the memory associated with queue pairs.
1142  **/
1143 static void iavf_free_queues(struct iavf_adapter *adapter)
1144 {
1145         if (!adapter->vsi_res)
1146                 return;
1147         adapter->num_active_queues = 0;
1148         kfree(adapter->tx_rings);
1149         adapter->tx_rings = NULL;
1150         kfree(adapter->rx_rings);
1151         adapter->rx_rings = NULL;
1152 }
1153
1154 /**
1155  * iavf_alloc_queues - Allocate memory for all rings
1156  * @adapter: board private structure to initialize
1157  *
1158  * We allocate one ring per queue at run-time since we don't know the
1159  * number of queues at compile-time.  The polling_netdev array is
1160  * intended for Multiqueue, but should work fine with a single queue.
1161  **/
1162 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1163 {
1164         int i, num_active_queues;
1165
1166         /* If we're in reset reallocating queues we don't actually know yet for
1167          * certain the PF gave us the number of queues we asked for but we'll
1168          * assume it did.  Once basic reset is finished we'll confirm once we
1169          * start negotiating config with PF.
1170          */
1171         if (adapter->num_req_queues)
1172                 num_active_queues = adapter->num_req_queues;
1173         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1174                  adapter->num_tc)
1175                 num_active_queues = adapter->ch_config.total_qps;
1176         else
1177                 num_active_queues = min_t(int,
1178                                           adapter->vsi_res->num_queue_pairs,
1179                                           (int)(num_online_cpus()));
1180
1181
1182         adapter->tx_rings = kcalloc(num_active_queues,
1183                                     sizeof(struct iavf_ring), GFP_KERNEL);
1184         if (!adapter->tx_rings)
1185                 goto err_out;
1186         adapter->rx_rings = kcalloc(num_active_queues,
1187                                     sizeof(struct iavf_ring), GFP_KERNEL);
1188         if (!adapter->rx_rings)
1189                 goto err_out;
1190
1191         for (i = 0; i < num_active_queues; i++) {
1192                 struct iavf_ring *tx_ring;
1193                 struct iavf_ring *rx_ring;
1194
1195                 tx_ring = &adapter->tx_rings[i];
1196
1197                 tx_ring->queue_index = i;
1198                 tx_ring->netdev = adapter->netdev;
1199                 tx_ring->dev = &adapter->pdev->dev;
1200                 tx_ring->count = adapter->tx_desc_count;
1201                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1202                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1203                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1204
1205                 rx_ring = &adapter->rx_rings[i];
1206                 rx_ring->queue_index = i;
1207                 rx_ring->netdev = adapter->netdev;
1208                 rx_ring->dev = &adapter->pdev->dev;
1209                 rx_ring->count = adapter->rx_desc_count;
1210                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1211         }
1212
1213         adapter->num_active_queues = num_active_queues;
1214
1215         return 0;
1216
1217 err_out:
1218         iavf_free_queues(adapter);
1219         return -ENOMEM;
1220 }
1221
1222 /**
1223  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1224  * @adapter: board private structure to initialize
1225  *
1226  * Attempt to configure the interrupts using the best available
1227  * capabilities of the hardware and the kernel.
1228  **/
1229 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1230 {
1231         int vector, v_budget;
1232         int pairs = 0;
1233         int err = 0;
1234
1235         if (!adapter->vsi_res) {
1236                 err = -EIO;
1237                 goto out;
1238         }
1239         pairs = adapter->num_active_queues;
1240
1241         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1242          * us much good if we have more vectors than CPUs. However, we already
1243          * limit the total number of queues by the number of CPUs so we do not
1244          * need any further limiting here.
1245          */
1246         v_budget = min_t(int, pairs + NONQ_VECS,
1247                          (int)adapter->vf_res->max_vectors);
1248
1249         adapter->msix_entries = kcalloc(v_budget,
1250                                         sizeof(struct msix_entry), GFP_KERNEL);
1251         if (!adapter->msix_entries) {
1252                 err = -ENOMEM;
1253                 goto out;
1254         }
1255
1256         for (vector = 0; vector < v_budget; vector++)
1257                 adapter->msix_entries[vector].entry = vector;
1258
1259         err = iavf_acquire_msix_vectors(adapter, v_budget);
1260
1261 out:
1262         netif_set_real_num_rx_queues(adapter->netdev, pairs);
1263         netif_set_real_num_tx_queues(adapter->netdev, pairs);
1264         return err;
1265 }
1266
1267 /**
1268  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1269  * @adapter: board private structure
1270  *
1271  * Return 0 on success, negative on failure
1272  **/
1273 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1274 {
1275         struct iavf_aqc_get_set_rss_key_data *rss_key =
1276                 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1277         struct iavf_hw *hw = &adapter->hw;
1278         int ret = 0;
1279
1280         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1281                 /* bail because we already have a command pending */
1282                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1283                         adapter->current_op);
1284                 return -EBUSY;
1285         }
1286
1287         ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1288         if (ret) {
1289                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1290                         iavf_stat_str(hw, ret),
1291                         iavf_aq_str(hw, hw->aq.asq_last_status));
1292                 return ret;
1293
1294         }
1295
1296         ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1297                                   adapter->rss_lut, adapter->rss_lut_size);
1298         if (ret) {
1299                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1300                         iavf_stat_str(hw, ret),
1301                         iavf_aq_str(hw, hw->aq.asq_last_status));
1302         }
1303
1304         return ret;
1305
1306 }
1307
1308 /**
1309  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1310  * @adapter: board private structure
1311  *
1312  * Returns 0 on success, negative on failure
1313  **/
1314 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1315 {
1316         struct iavf_hw *hw = &adapter->hw;
1317         u32 *dw;
1318         u16 i;
1319
1320         dw = (u32 *)adapter->rss_key;
1321         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1322                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1323
1324         dw = (u32 *)adapter->rss_lut;
1325         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1326                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1327
1328         iavf_flush(hw);
1329
1330         return 0;
1331 }
1332
1333 /**
1334  * iavf_config_rss - Configure RSS keys and lut
1335  * @adapter: board private structure
1336  *
1337  * Returns 0 on success, negative on failure
1338  **/
1339 int iavf_config_rss(struct iavf_adapter *adapter)
1340 {
1341
1342         if (RSS_PF(adapter)) {
1343                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1344                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1345                 return 0;
1346         } else if (RSS_AQ(adapter)) {
1347                 return iavf_config_rss_aq(adapter);
1348         } else {
1349                 return iavf_config_rss_reg(adapter);
1350         }
1351 }
1352
1353 /**
1354  * iavf_fill_rss_lut - Fill the lut with default values
1355  * @adapter: board private structure
1356  **/
1357 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1358 {
1359         u16 i;
1360
1361         for (i = 0; i < adapter->rss_lut_size; i++)
1362                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1363 }
1364
1365 /**
1366  * iavf_init_rss - Prepare for RSS
1367  * @adapter: board private structure
1368  *
1369  * Return 0 on success, negative on failure
1370  **/
1371 static int iavf_init_rss(struct iavf_adapter *adapter)
1372 {
1373         struct iavf_hw *hw = &adapter->hw;
1374         int ret;
1375
1376         if (!RSS_PF(adapter)) {
1377                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1378                 if (adapter->vf_res->vf_cap_flags &
1379                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1380                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1381                 else
1382                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1383
1384                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1385                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1386         }
1387
1388         iavf_fill_rss_lut(adapter);
1389         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1390         ret = iavf_config_rss(adapter);
1391
1392         return ret;
1393 }
1394
1395 /**
1396  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1397  * @adapter: board private structure to initialize
1398  *
1399  * We allocate one q_vector per queue interrupt.  If allocation fails we
1400  * return -ENOMEM.
1401  **/
1402 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1403 {
1404         int q_idx = 0, num_q_vectors;
1405         struct iavf_q_vector *q_vector;
1406
1407         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1408         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1409                                      GFP_KERNEL);
1410         if (!adapter->q_vectors)
1411                 return -ENOMEM;
1412
1413         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1414                 q_vector = &adapter->q_vectors[q_idx];
1415                 q_vector->adapter = adapter;
1416                 q_vector->vsi = &adapter->vsi;
1417                 q_vector->v_idx = q_idx;
1418                 q_vector->reg_idx = q_idx;
1419                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1420                 netif_napi_add(adapter->netdev, &q_vector->napi,
1421                                iavf_napi_poll, NAPI_POLL_WEIGHT);
1422         }
1423
1424         return 0;
1425 }
1426
1427 /**
1428  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1429  * @adapter: board private structure to initialize
1430  *
1431  * This function frees the memory allocated to the q_vectors.  In addition if
1432  * NAPI is enabled it will delete any references to the NAPI struct prior
1433  * to freeing the q_vector.
1434  **/
1435 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1436 {
1437         int q_idx, num_q_vectors;
1438         int napi_vectors;
1439
1440         if (!adapter->q_vectors)
1441                 return;
1442
1443         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1444         napi_vectors = adapter->num_active_queues;
1445
1446         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1447                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1448
1449                 if (q_idx < napi_vectors)
1450                         netif_napi_del(&q_vector->napi);
1451         }
1452         kfree(adapter->q_vectors);
1453         adapter->q_vectors = NULL;
1454 }
1455
1456 /**
1457  * iavf_reset_interrupt_capability - Reset MSIX setup
1458  * @adapter: board private structure
1459  *
1460  **/
1461 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1462 {
1463         if (!adapter->msix_entries)
1464                 return;
1465
1466         pci_disable_msix(adapter->pdev);
1467         kfree(adapter->msix_entries);
1468         adapter->msix_entries = NULL;
1469 }
1470
1471 /**
1472  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1473  * @adapter: board private structure to initialize
1474  *
1475  **/
1476 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1477 {
1478         int err;
1479
1480         err = iavf_alloc_queues(adapter);
1481         if (err) {
1482                 dev_err(&adapter->pdev->dev,
1483                         "Unable to allocate memory for queues\n");
1484                 goto err_alloc_queues;
1485         }
1486
1487         rtnl_lock();
1488         err = iavf_set_interrupt_capability(adapter);
1489         rtnl_unlock();
1490         if (err) {
1491                 dev_err(&adapter->pdev->dev,
1492                         "Unable to setup interrupt capabilities\n");
1493                 goto err_set_interrupt;
1494         }
1495
1496         err = iavf_alloc_q_vectors(adapter);
1497         if (err) {
1498                 dev_err(&adapter->pdev->dev,
1499                         "Unable to allocate memory for queue vectors\n");
1500                 goto err_alloc_q_vectors;
1501         }
1502
1503         /* If we've made it so far while ADq flag being ON, then we haven't
1504          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1505          * resources have been allocated in the reset path.
1506          * Now we can truly claim that ADq is enabled.
1507          */
1508         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1509             adapter->num_tc)
1510                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1511                          adapter->num_tc);
1512
1513         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1514                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1515                  adapter->num_active_queues);
1516
1517         return 0;
1518 err_alloc_q_vectors:
1519         iavf_reset_interrupt_capability(adapter);
1520 err_set_interrupt:
1521         iavf_free_queues(adapter);
1522 err_alloc_queues:
1523         return err;
1524 }
1525
1526 /**
1527  * iavf_free_rss - Free memory used by RSS structs
1528  * @adapter: board private structure
1529  **/
1530 static void iavf_free_rss(struct iavf_adapter *adapter)
1531 {
1532         kfree(adapter->rss_key);
1533         adapter->rss_key = NULL;
1534
1535         kfree(adapter->rss_lut);
1536         adapter->rss_lut = NULL;
1537 }
1538
1539 /**
1540  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1541  * @adapter: board private structure
1542  *
1543  * Returns 0 on success, negative on failure
1544  **/
1545 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1546 {
1547         struct net_device *netdev = adapter->netdev;
1548         int err;
1549
1550         if (netif_running(netdev))
1551                 iavf_free_traffic_irqs(adapter);
1552         iavf_free_misc_irq(adapter);
1553         iavf_reset_interrupt_capability(adapter);
1554         iavf_free_q_vectors(adapter);
1555         iavf_free_queues(adapter);
1556
1557         err =  iavf_init_interrupt_scheme(adapter);
1558         if (err)
1559                 goto err;
1560
1561         netif_tx_stop_all_queues(netdev);
1562
1563         err = iavf_request_misc_irq(adapter);
1564         if (err)
1565                 goto err;
1566
1567         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1568
1569         iavf_map_rings_to_vectors(adapter);
1570 err:
1571         return err;
1572 }
1573
1574 /**
1575  * iavf_process_aq_command - process aq_required flags
1576  * and sends aq command
1577  * @adapter: pointer to iavf adapter structure
1578  *
1579  * Returns 0 on success
1580  * Returns error code if no command was sent
1581  * or error code if the command failed.
1582  **/
1583 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1584 {
1585         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1586                 return iavf_send_vf_config_msg(adapter);
1587         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1588                 iavf_disable_queues(adapter);
1589                 return 0;
1590         }
1591
1592         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1593                 iavf_map_queues(adapter);
1594                 return 0;
1595         }
1596
1597         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1598                 iavf_add_ether_addrs(adapter);
1599                 return 0;
1600         }
1601
1602         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1603                 iavf_add_vlans(adapter);
1604                 return 0;
1605         }
1606
1607         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1608                 iavf_del_ether_addrs(adapter);
1609                 return 0;
1610         }
1611
1612         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1613                 iavf_del_vlans(adapter);
1614                 return 0;
1615         }
1616
1617         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1618                 iavf_enable_vlan_stripping(adapter);
1619                 return 0;
1620         }
1621
1622         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1623                 iavf_disable_vlan_stripping(adapter);
1624                 return 0;
1625         }
1626
1627         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1628                 iavf_configure_queues(adapter);
1629                 return 0;
1630         }
1631
1632         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1633                 iavf_enable_queues(adapter);
1634                 return 0;
1635         }
1636
1637         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1638                 /* This message goes straight to the firmware, not the
1639                  * PF, so we don't have to set current_op as we will
1640                  * not get a response through the ARQ.
1641                  */
1642                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1643                 return 0;
1644         }
1645         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1646                 iavf_get_hena(adapter);
1647                 return 0;
1648         }
1649         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1650                 iavf_set_hena(adapter);
1651                 return 0;
1652         }
1653         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1654                 iavf_set_rss_key(adapter);
1655                 return 0;
1656         }
1657         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1658                 iavf_set_rss_lut(adapter);
1659                 return 0;
1660         }
1661
1662         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1663                 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1664                                        FLAG_VF_MULTICAST_PROMISC);
1665                 return 0;
1666         }
1667
1668         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1669                 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1670                 return 0;
1671         }
1672         if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1673             (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1674                 iavf_set_promiscuous(adapter, 0);
1675                 return 0;
1676         }
1677
1678         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1679                 iavf_enable_channels(adapter);
1680                 return 0;
1681         }
1682
1683         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1684                 iavf_disable_channels(adapter);
1685                 return 0;
1686         }
1687         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1688                 iavf_add_cloud_filter(adapter);
1689                 return 0;
1690         }
1691
1692         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1693                 iavf_del_cloud_filter(adapter);
1694                 return 0;
1695         }
1696         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1697                 iavf_del_cloud_filter(adapter);
1698                 return 0;
1699         }
1700         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1701                 iavf_add_cloud_filter(adapter);
1702                 return 0;
1703         }
1704         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1705                 iavf_add_fdir_filter(adapter);
1706                 return IAVF_SUCCESS;
1707         }
1708         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1709                 iavf_del_fdir_filter(adapter);
1710                 return IAVF_SUCCESS;
1711         }
1712         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1713                 iavf_add_adv_rss_cfg(adapter);
1714                 return 0;
1715         }
1716         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1717                 iavf_del_adv_rss_cfg(adapter);
1718                 return 0;
1719         }
1720         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
1721                 iavf_request_stats(adapter);
1722                 return 0;
1723         }
1724
1725         return -EAGAIN;
1726 }
1727
1728 /**
1729  * iavf_startup - first step of driver startup
1730  * @adapter: board private structure
1731  *
1732  * Function process __IAVF_STARTUP driver state.
1733  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1734  * when fails the state is changed to __IAVF_INIT_FAILED
1735  **/
1736 static void iavf_startup(struct iavf_adapter *adapter)
1737 {
1738         struct pci_dev *pdev = adapter->pdev;
1739         struct iavf_hw *hw = &adapter->hw;
1740         int err;
1741
1742         WARN_ON(adapter->state != __IAVF_STARTUP);
1743
1744         /* driver loaded, probe complete */
1745         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1746         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1747         err = iavf_set_mac_type(hw);
1748         if (err) {
1749                 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1750                 goto err;
1751         }
1752
1753         err = iavf_check_reset_complete(hw);
1754         if (err) {
1755                 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1756                          err);
1757                 goto err;
1758         }
1759         hw->aq.num_arq_entries = IAVF_AQ_LEN;
1760         hw->aq.num_asq_entries = IAVF_AQ_LEN;
1761         hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1762         hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1763
1764         err = iavf_init_adminq(hw);
1765         if (err) {
1766                 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1767                 goto err;
1768         }
1769         err = iavf_send_api_ver(adapter);
1770         if (err) {
1771                 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1772                 iavf_shutdown_adminq(hw);
1773                 goto err;
1774         }
1775         iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
1776         return;
1777 err:
1778         iavf_change_state(adapter, __IAVF_INIT_FAILED);
1779 }
1780
1781 /**
1782  * iavf_init_version_check - second step of driver startup
1783  * @adapter: board private structure
1784  *
1785  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1786  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1787  * when fails the state is changed to __IAVF_INIT_FAILED
1788  **/
1789 static void iavf_init_version_check(struct iavf_adapter *adapter)
1790 {
1791         struct pci_dev *pdev = adapter->pdev;
1792         struct iavf_hw *hw = &adapter->hw;
1793         int err = -EAGAIN;
1794
1795         WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1796
1797         if (!iavf_asq_done(hw)) {
1798                 dev_err(&pdev->dev, "Admin queue command never completed\n");
1799                 iavf_shutdown_adminq(hw);
1800                 iavf_change_state(adapter, __IAVF_STARTUP);
1801                 goto err;
1802         }
1803
1804         /* aq msg sent, awaiting reply */
1805         err = iavf_verify_api_ver(adapter);
1806         if (err) {
1807                 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1808                         err = iavf_send_api_ver(adapter);
1809                 else
1810                         dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1811                                 adapter->pf_version.major,
1812                                 adapter->pf_version.minor,
1813                                 VIRTCHNL_VERSION_MAJOR,
1814                                 VIRTCHNL_VERSION_MINOR);
1815                 goto err;
1816         }
1817         err = iavf_send_vf_config_msg(adapter);
1818         if (err) {
1819                 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1820                         err);
1821                 goto err;
1822         }
1823         iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
1824         return;
1825 err:
1826         iavf_change_state(adapter, __IAVF_INIT_FAILED);
1827 }
1828
1829 /**
1830  * iavf_init_get_resources - third step of driver startup
1831  * @adapter: board private structure
1832  *
1833  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1834  * finishes driver initialization procedure.
1835  * When success the state is changed to __IAVF_DOWN
1836  * when fails the state is changed to __IAVF_INIT_FAILED
1837  **/
1838 static void iavf_init_get_resources(struct iavf_adapter *adapter)
1839 {
1840         struct net_device *netdev = adapter->netdev;
1841         struct pci_dev *pdev = adapter->pdev;
1842         struct iavf_hw *hw = &adapter->hw;
1843         int err;
1844
1845         WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1846         /* aq msg sent, awaiting reply */
1847         if (!adapter->vf_res) {
1848                 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1849                                           GFP_KERNEL);
1850                 if (!adapter->vf_res) {
1851                         err = -ENOMEM;
1852                         goto err;
1853                 }
1854         }
1855         err = iavf_get_vf_config(adapter);
1856         if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1857                 err = iavf_send_vf_config_msg(adapter);
1858                 goto err;
1859         } else if (err == IAVF_ERR_PARAM) {
1860                 /* We only get ERR_PARAM if the device is in a very bad
1861                  * state or if we've been disabled for previous bad
1862                  * behavior. Either way, we're done now.
1863                  */
1864                 iavf_shutdown_adminq(hw);
1865                 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1866                 return;
1867         }
1868         if (err) {
1869                 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1870                 goto err_alloc;
1871         }
1872
1873         err = iavf_process_config(adapter);
1874         if (err)
1875                 goto err_alloc;
1876         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1877
1878         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1879
1880         netdev->netdev_ops = &iavf_netdev_ops;
1881         iavf_set_ethtool_ops(netdev);
1882         netdev->watchdog_timeo = 5 * HZ;
1883
1884         /* MTU range: 68 - 9710 */
1885         netdev->min_mtu = ETH_MIN_MTU;
1886         netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1887
1888         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1889                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1890                          adapter->hw.mac.addr);
1891                 eth_hw_addr_random(netdev);
1892                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1893         } else {
1894                 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1895                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1896         }
1897
1898         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1899         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1900         err = iavf_init_interrupt_scheme(adapter);
1901         if (err)
1902                 goto err_sw_init;
1903         iavf_map_rings_to_vectors(adapter);
1904         if (adapter->vf_res->vf_cap_flags &
1905                 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1906                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1907
1908         err = iavf_request_misc_irq(adapter);
1909         if (err)
1910                 goto err_sw_init;
1911
1912         netif_carrier_off(netdev);
1913         adapter->link_up = false;
1914
1915         /* set the semaphore to prevent any callbacks after device registration
1916          * up to time when state of driver will be set to __IAVF_DOWN
1917          */
1918         rtnl_lock();
1919         if (!adapter->netdev_registered) {
1920                 err = register_netdevice(netdev);
1921                 if (err) {
1922                         rtnl_unlock();
1923                         goto err_register;
1924                 }
1925         }
1926
1927         adapter->netdev_registered = true;
1928
1929         netif_tx_stop_all_queues(netdev);
1930         if (CLIENT_ALLOWED(adapter)) {
1931                 err = iavf_lan_add_device(adapter);
1932                 if (err)
1933                         dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1934                                  err);
1935         }
1936         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1937         if (netdev->features & NETIF_F_GRO)
1938                 dev_info(&pdev->dev, "GRO is enabled\n");
1939
1940         iavf_change_state(adapter, __IAVF_DOWN);
1941         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1942         rtnl_unlock();
1943
1944         iavf_misc_irq_enable(adapter);
1945         wake_up(&adapter->down_waitqueue);
1946
1947         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1948         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1949         if (!adapter->rss_key || !adapter->rss_lut) {
1950                 err = -ENOMEM;
1951                 goto err_mem;
1952         }
1953         if (RSS_AQ(adapter))
1954                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1955         else
1956                 iavf_init_rss(adapter);
1957
1958         return;
1959 err_mem:
1960         iavf_free_rss(adapter);
1961 err_register:
1962         iavf_free_misc_irq(adapter);
1963 err_sw_init:
1964         iavf_reset_interrupt_capability(adapter);
1965 err_alloc:
1966         kfree(adapter->vf_res);
1967         adapter->vf_res = NULL;
1968 err:
1969         iavf_change_state(adapter, __IAVF_INIT_FAILED);
1970 }
1971
1972 /**
1973  * iavf_watchdog_task - Periodic call-back task
1974  * @work: pointer to work_struct
1975  **/
1976 static void iavf_watchdog_task(struct work_struct *work)
1977 {
1978         struct iavf_adapter *adapter = container_of(work,
1979                                                     struct iavf_adapter,
1980                                                     watchdog_task.work);
1981         struct iavf_hw *hw = &adapter->hw;
1982         u32 reg_val;
1983
1984         if (!mutex_trylock(&adapter->crit_lock))
1985                 goto restart_watchdog;
1986
1987         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1988                 iavf_change_state(adapter, __IAVF_COMM_FAILED);
1989
1990         if (adapter->flags & IAVF_FLAG_RESET_NEEDED &&
1991             adapter->state != __IAVF_RESETTING) {
1992                 iavf_change_state(adapter, __IAVF_RESETTING);
1993                 adapter->aq_required = 0;
1994                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1995         }
1996
1997         switch (adapter->state) {
1998         case __IAVF_STARTUP:
1999                 iavf_startup(adapter);
2000                 mutex_unlock(&adapter->crit_lock);
2001                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2002                                    msecs_to_jiffies(30));
2003                 return;
2004         case __IAVF_INIT_VERSION_CHECK:
2005                 iavf_init_version_check(adapter);
2006                 mutex_unlock(&adapter->crit_lock);
2007                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2008                                    msecs_to_jiffies(30));
2009                 return;
2010         case __IAVF_INIT_GET_RESOURCES:
2011                 iavf_init_get_resources(adapter);
2012                 mutex_unlock(&adapter->crit_lock);
2013                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2014                                    msecs_to_jiffies(1));
2015                 return;
2016         case __IAVF_INIT_FAILED:
2017                 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2018                         dev_err(&adapter->pdev->dev,
2019                                 "Failed to communicate with PF; waiting before retry\n");
2020                         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2021                         iavf_shutdown_adminq(hw);
2022                         mutex_unlock(&adapter->crit_lock);
2023                         queue_delayed_work(iavf_wq,
2024                                            &adapter->watchdog_task, (5 * HZ));
2025                         return;
2026                 }
2027                 /* Try again from failed step*/
2028                 iavf_change_state(adapter, adapter->last_state);
2029                 mutex_unlock(&adapter->crit_lock);
2030                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2031                 return;
2032         case __IAVF_COMM_FAILED:
2033                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2034                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2035                 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2036                     reg_val == VIRTCHNL_VFR_COMPLETED) {
2037                         /* A chance for redemption! */
2038                         dev_err(&adapter->pdev->dev,
2039                                 "Hardware came out of reset. Attempting reinit.\n");
2040                         /* When init task contacts the PF and
2041                          * gets everything set up again, it'll restart the
2042                          * watchdog for us. Down, boy. Sit. Stay. Woof.
2043                          */
2044                         iavf_change_state(adapter, __IAVF_STARTUP);
2045                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2046                 }
2047                 adapter->aq_required = 0;
2048                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2049                 mutex_unlock(&adapter->crit_lock);
2050                 queue_delayed_work(iavf_wq,
2051                                    &adapter->watchdog_task,
2052                                    msecs_to_jiffies(10));
2053                 return;
2054         case __IAVF_RESETTING:
2055                 mutex_unlock(&adapter->crit_lock);
2056                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2057                 return;
2058         case __IAVF_DOWN:
2059         case __IAVF_DOWN_PENDING:
2060         case __IAVF_TESTING:
2061         case __IAVF_RUNNING:
2062                 if (adapter->current_op) {
2063                         if (!iavf_asq_done(hw)) {
2064                                 dev_dbg(&adapter->pdev->dev,
2065                                         "Admin queue timeout\n");
2066                                 iavf_send_api_ver(adapter);
2067                         }
2068                 } else {
2069                         /* An error will be returned if no commands were
2070                          * processed; use this opportunity to update stats
2071                          */
2072                         if (iavf_process_aq_command(adapter) &&
2073                             adapter->state == __IAVF_RUNNING)
2074                                 iavf_request_stats(adapter);
2075                 }
2076                 if (adapter->state == __IAVF_RUNNING)
2077                         iavf_detect_recover_hung(&adapter->vsi);
2078                 break;
2079         case __IAVF_REMOVE:
2080         default:
2081                 mutex_unlock(&adapter->crit_lock);
2082                 return;
2083         }
2084
2085         /* check for hw reset */
2086         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2087         if (!reg_val) {
2088                 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2089                 adapter->aq_required = 0;
2090                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2091                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2092                 queue_work(iavf_wq, &adapter->reset_task);
2093                 mutex_unlock(&adapter->crit_lock);
2094                 queue_delayed_work(iavf_wq,
2095                                    &adapter->watchdog_task, HZ * 2);
2096                 return;
2097         }
2098
2099         schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2100         mutex_unlock(&adapter->crit_lock);
2101 restart_watchdog:
2102         queue_work(iavf_wq, &adapter->adminq_task);
2103         if (adapter->aq_required)
2104                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2105                                    msecs_to_jiffies(20));
2106         else
2107                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2108 }
2109
2110 static void iavf_disable_vf(struct iavf_adapter *adapter)
2111 {
2112         struct iavf_mac_filter *f, *ftmp;
2113         struct iavf_vlan_filter *fv, *fvtmp;
2114         struct iavf_cloud_filter *cf, *cftmp;
2115
2116         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2117
2118         /* We don't use netif_running() because it may be true prior to
2119          * ndo_open() returning, so we can't assume it means all our open
2120          * tasks have finished, since we're not holding the rtnl_lock here.
2121          */
2122         if (adapter->state == __IAVF_RUNNING) {
2123                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2124                 netif_carrier_off(adapter->netdev);
2125                 netif_tx_disable(adapter->netdev);
2126                 adapter->link_up = false;
2127                 iavf_napi_disable_all(adapter);
2128                 iavf_irq_disable(adapter);
2129                 iavf_free_traffic_irqs(adapter);
2130                 iavf_free_all_tx_resources(adapter);
2131                 iavf_free_all_rx_resources(adapter);
2132         }
2133
2134         spin_lock_bh(&adapter->mac_vlan_list_lock);
2135
2136         /* Delete all of the filters */
2137         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2138                 list_del(&f->list);
2139                 kfree(f);
2140         }
2141
2142         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2143                 list_del(&fv->list);
2144                 kfree(fv);
2145         }
2146
2147         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2148
2149         spin_lock_bh(&adapter->cloud_filter_list_lock);
2150         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2151                 list_del(&cf->list);
2152                 kfree(cf);
2153                 adapter->num_cloud_filters--;
2154         }
2155         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2156
2157         iavf_free_misc_irq(adapter);
2158         iavf_reset_interrupt_capability(adapter);
2159         iavf_free_q_vectors(adapter);
2160         iavf_free_queues(adapter);
2161         memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2162         iavf_shutdown_adminq(&adapter->hw);
2163         adapter->netdev->flags &= ~IFF_UP;
2164         mutex_unlock(&adapter->crit_lock);
2165         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2166         iavf_change_state(adapter, __IAVF_DOWN);
2167         wake_up(&adapter->down_waitqueue);
2168         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2169 }
2170
2171 /**
2172  * iavf_reset_task - Call-back task to handle hardware reset
2173  * @work: pointer to work_struct
2174  *
2175  * During reset we need to shut down and reinitialize the admin queue
2176  * before we can use it to communicate with the PF again. We also clear
2177  * and reinit the rings because that context is lost as well.
2178  **/
2179 static void iavf_reset_task(struct work_struct *work)
2180 {
2181         struct iavf_adapter *adapter = container_of(work,
2182                                                       struct iavf_adapter,
2183                                                       reset_task);
2184         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2185         struct net_device *netdev = adapter->netdev;
2186         struct iavf_hw *hw = &adapter->hw;
2187         struct iavf_mac_filter *f, *ftmp;
2188         struct iavf_cloud_filter *cf;
2189         u32 reg_val;
2190         int i = 0, err;
2191         bool running;
2192
2193         /* When device is being removed it doesn't make sense to run the reset
2194          * task, just return in such a case.
2195          */
2196         if (mutex_is_locked(&adapter->remove_lock))
2197                 return;
2198
2199         if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2200                 schedule_work(&adapter->reset_task);
2201                 return;
2202         }
2203         while (!mutex_trylock(&adapter->client_lock))
2204                 usleep_range(500, 1000);
2205         if (CLIENT_ENABLED(adapter)) {
2206                 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2207                                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2208                                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2209                                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2210                 cancel_delayed_work_sync(&adapter->client_task);
2211                 iavf_notify_client_close(&adapter->vsi, true);
2212         }
2213         iavf_misc_irq_disable(adapter);
2214         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2215                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2216                 /* Restart the AQ here. If we have been reset but didn't
2217                  * detect it, or if the PF had to reinit, our AQ will be hosed.
2218                  */
2219                 iavf_shutdown_adminq(hw);
2220                 iavf_init_adminq(hw);
2221                 iavf_request_reset(adapter);
2222         }
2223         adapter->flags |= IAVF_FLAG_RESET_PENDING;
2224
2225         /* poll until we see the reset actually happen */
2226         for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2227                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2228                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2229                 if (!reg_val)
2230                         break;
2231                 usleep_range(5000, 10000);
2232         }
2233         if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2234                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2235                 goto continue_reset; /* act like the reset happened */
2236         }
2237
2238         /* wait until the reset is complete and the PF is responding to us */
2239         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2240                 /* sleep first to make sure a minimum wait time is met */
2241                 msleep(IAVF_RESET_WAIT_MS);
2242
2243                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2244                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2245                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2246                         break;
2247         }
2248
2249         pci_set_master(adapter->pdev);
2250         pci_restore_msi_state(adapter->pdev);
2251
2252         if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2253                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2254                         reg_val);
2255                 iavf_disable_vf(adapter);
2256                 mutex_unlock(&adapter->client_lock);
2257                 return; /* Do not attempt to reinit. It's dead, Jim. */
2258         }
2259
2260 continue_reset:
2261         /* We don't use netif_running() because it may be true prior to
2262          * ndo_open() returning, so we can't assume it means all our open
2263          * tasks have finished, since we're not holding the rtnl_lock here.
2264          */
2265         running = ((adapter->state == __IAVF_RUNNING) ||
2266                    (adapter->state == __IAVF_RESETTING));
2267
2268         if (running) {
2269                 netdev->flags &= ~IFF_UP;
2270                 netif_carrier_off(netdev);
2271                 netif_tx_stop_all_queues(netdev);
2272                 adapter->link_up = false;
2273                 iavf_napi_disable_all(adapter);
2274         }
2275         iavf_irq_disable(adapter);
2276
2277         iavf_change_state(adapter, __IAVF_RESETTING);
2278         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2279
2280         /* free the Tx/Rx rings and descriptors, might be better to just
2281          * re-use them sometime in the future
2282          */
2283         iavf_free_all_rx_resources(adapter);
2284         iavf_free_all_tx_resources(adapter);
2285
2286         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2287         /* kill and reinit the admin queue */
2288         iavf_shutdown_adminq(hw);
2289         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2290         err = iavf_init_adminq(hw);
2291         if (err)
2292                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2293                          err);
2294         adapter->aq_required = 0;
2295
2296         if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2297                 err = iavf_reinit_interrupt_scheme(adapter);
2298                 if (err)
2299                         goto reset_err;
2300         }
2301
2302         if (RSS_AQ(adapter)) {
2303                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2304         } else {
2305                 err = iavf_init_rss(adapter);
2306                 if (err)
2307                         goto reset_err;
2308         }
2309
2310         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2311         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2312
2313         spin_lock_bh(&adapter->mac_vlan_list_lock);
2314
2315         /* Delete filter for the current MAC address, it could have
2316          * been changed by the PF via administratively set MAC.
2317          * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2318          */
2319         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2320                 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2321                         list_del(&f->list);
2322                         kfree(f);
2323                 }
2324         }
2325         /* re-add all MAC filters */
2326         list_for_each_entry(f, &adapter->mac_filter_list, list) {
2327                 f->add = true;
2328         }
2329         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2330
2331         /* check if TCs are running and re-add all cloud filters */
2332         spin_lock_bh(&adapter->cloud_filter_list_lock);
2333         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2334             adapter->num_tc) {
2335                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2336                         cf->add = true;
2337                 }
2338         }
2339         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2340
2341         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2342         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2343         iavf_misc_irq_enable(adapter);
2344
2345         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2346
2347         /* We were running when the reset started, so we need to restore some
2348          * state here.
2349          */
2350         if (running) {
2351                 /* allocate transmit descriptors */
2352                 err = iavf_setup_all_tx_resources(adapter);
2353                 if (err)
2354                         goto reset_err;
2355
2356                 /* allocate receive descriptors */
2357                 err = iavf_setup_all_rx_resources(adapter);
2358                 if (err)
2359                         goto reset_err;
2360
2361                 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2362                         err = iavf_request_traffic_irqs(adapter, netdev->name);
2363                         if (err)
2364                                 goto reset_err;
2365
2366                         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2367                 }
2368
2369                 iavf_configure(adapter);
2370
2371                 /* iavf_up_complete() will switch device back
2372                  * to __IAVF_RUNNING
2373                  */
2374                 iavf_up_complete(adapter);
2375                 netdev->flags |= IFF_UP;
2376                 iavf_irq_enable(adapter, true);
2377         } else {
2378                 iavf_change_state(adapter, __IAVF_DOWN);
2379                 wake_up(&adapter->down_waitqueue);
2380         }
2381         mutex_unlock(&adapter->client_lock);
2382         mutex_unlock(&adapter->crit_lock);
2383
2384         return;
2385 reset_err:
2386         mutex_unlock(&adapter->client_lock);
2387         mutex_unlock(&adapter->crit_lock);
2388         if (running) {
2389                 iavf_change_state(adapter, __IAVF_RUNNING);
2390                 netdev->flags |= IFF_UP;
2391         }
2392         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2393         iavf_close(netdev);
2394 }
2395
2396 /**
2397  * iavf_adminq_task - worker thread to clean the admin queue
2398  * @work: pointer to work_struct containing our data
2399  **/
2400 static void iavf_adminq_task(struct work_struct *work)
2401 {
2402         struct iavf_adapter *adapter =
2403                 container_of(work, struct iavf_adapter, adminq_task);
2404         struct iavf_hw *hw = &adapter->hw;
2405         struct iavf_arq_event_info event;
2406         enum virtchnl_ops v_op;
2407         enum iavf_status ret, v_ret;
2408         u32 val, oldval;
2409         u16 pending;
2410
2411         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2412                 goto out;
2413
2414         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2415         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2416         if (!event.msg_buf)
2417                 goto out;
2418
2419         if (iavf_lock_timeout(&adapter->crit_lock, 200))
2420                 goto freedom;
2421         do {
2422                 ret = iavf_clean_arq_element(hw, &event, &pending);
2423                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2424                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2425
2426                 if (ret || !v_op)
2427                         break; /* No event to process or error cleaning ARQ */
2428
2429                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2430                                          event.msg_len);
2431                 if (pending != 0)
2432                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2433         } while (pending);
2434         mutex_unlock(&adapter->crit_lock);
2435
2436         if ((adapter->flags &
2437              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2438             adapter->state == __IAVF_RESETTING)
2439                 goto freedom;
2440
2441         /* check for error indications */
2442         val = rd32(hw, hw->aq.arq.len);
2443         if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2444                 goto freedom;
2445         oldval = val;
2446         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2447                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2448                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2449         }
2450         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2451                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2452                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2453         }
2454         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2455                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2456                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2457         }
2458         if (oldval != val)
2459                 wr32(hw, hw->aq.arq.len, val);
2460
2461         val = rd32(hw, hw->aq.asq.len);
2462         oldval = val;
2463         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2464                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2465                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2466         }
2467         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2468                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2469                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2470         }
2471         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2472                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2473                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2474         }
2475         if (oldval != val)
2476                 wr32(hw, hw->aq.asq.len, val);
2477
2478 freedom:
2479         kfree(event.msg_buf);
2480 out:
2481         /* re-enable Admin queue interrupt cause */
2482         iavf_misc_irq_enable(adapter);
2483 }
2484
2485 /**
2486  * iavf_client_task - worker thread to perform client work
2487  * @work: pointer to work_struct containing our data
2488  *
2489  * This task handles client interactions. Because client calls can be
2490  * reentrant, we can't handle them in the watchdog.
2491  **/
2492 static void iavf_client_task(struct work_struct *work)
2493 {
2494         struct iavf_adapter *adapter =
2495                 container_of(work, struct iavf_adapter, client_task.work);
2496
2497         /* If we can't get the client bit, just give up. We'll be rescheduled
2498          * later.
2499          */
2500
2501         if (!mutex_trylock(&adapter->client_lock))
2502                 return;
2503
2504         if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2505                 iavf_client_subtask(adapter);
2506                 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2507                 goto out;
2508         }
2509         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2510                 iavf_notify_client_l2_params(&adapter->vsi);
2511                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2512                 goto out;
2513         }
2514         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2515                 iavf_notify_client_close(&adapter->vsi, false);
2516                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2517                 goto out;
2518         }
2519         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2520                 iavf_notify_client_open(&adapter->vsi);
2521                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2522         }
2523 out:
2524         mutex_unlock(&adapter->client_lock);
2525 }
2526
2527 /**
2528  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2529  * @adapter: board private structure
2530  *
2531  * Free all transmit software resources
2532  **/
2533 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2534 {
2535         int i;
2536
2537         if (!adapter->tx_rings)
2538                 return;
2539
2540         for (i = 0; i < adapter->num_active_queues; i++)
2541                 if (adapter->tx_rings[i].desc)
2542                         iavf_free_tx_resources(&adapter->tx_rings[i]);
2543 }
2544
2545 /**
2546  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2547  * @adapter: board private structure
2548  *
2549  * If this function returns with an error, then it's possible one or
2550  * more of the rings is populated (while the rest are not).  It is the
2551  * callers duty to clean those orphaned rings.
2552  *
2553  * Return 0 on success, negative on failure
2554  **/
2555 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2556 {
2557         int i, err = 0;
2558
2559         for (i = 0; i < adapter->num_active_queues; i++) {
2560                 adapter->tx_rings[i].count = adapter->tx_desc_count;
2561                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2562                 if (!err)
2563                         continue;
2564                 dev_err(&adapter->pdev->dev,
2565                         "Allocation for Tx Queue %u failed\n", i);
2566                 break;
2567         }
2568
2569         return err;
2570 }
2571
2572 /**
2573  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2574  * @adapter: board private structure
2575  *
2576  * If this function returns with an error, then it's possible one or
2577  * more of the rings is populated (while the rest are not).  It is the
2578  * callers duty to clean those orphaned rings.
2579  *
2580  * Return 0 on success, negative on failure
2581  **/
2582 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2583 {
2584         int i, err = 0;
2585
2586         for (i = 0; i < adapter->num_active_queues; i++) {
2587                 adapter->rx_rings[i].count = adapter->rx_desc_count;
2588                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2589                 if (!err)
2590                         continue;
2591                 dev_err(&adapter->pdev->dev,
2592                         "Allocation for Rx Queue %u failed\n", i);
2593                 break;
2594         }
2595         return err;
2596 }
2597
2598 /**
2599  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2600  * @adapter: board private structure
2601  *
2602  * Free all receive software resources
2603  **/
2604 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2605 {
2606         int i;
2607
2608         if (!adapter->rx_rings)
2609                 return;
2610
2611         for (i = 0; i < adapter->num_active_queues; i++)
2612                 if (adapter->rx_rings[i].desc)
2613                         iavf_free_rx_resources(&adapter->rx_rings[i]);
2614 }
2615
2616 /**
2617  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2618  * @adapter: board private structure
2619  * @max_tx_rate: max Tx bw for a tc
2620  **/
2621 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2622                                       u64 max_tx_rate)
2623 {
2624         int speed = 0, ret = 0;
2625
2626         if (ADV_LINK_SUPPORT(adapter)) {
2627                 if (adapter->link_speed_mbps < U32_MAX) {
2628                         speed = adapter->link_speed_mbps;
2629                         goto validate_bw;
2630                 } else {
2631                         dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2632                         return -EINVAL;
2633                 }
2634         }
2635
2636         switch (adapter->link_speed) {
2637         case VIRTCHNL_LINK_SPEED_40GB:
2638                 speed = SPEED_40000;
2639                 break;
2640         case VIRTCHNL_LINK_SPEED_25GB:
2641                 speed = SPEED_25000;
2642                 break;
2643         case VIRTCHNL_LINK_SPEED_20GB:
2644                 speed = SPEED_20000;
2645                 break;
2646         case VIRTCHNL_LINK_SPEED_10GB:
2647                 speed = SPEED_10000;
2648                 break;
2649         case VIRTCHNL_LINK_SPEED_5GB:
2650                 speed = SPEED_5000;
2651                 break;
2652         case VIRTCHNL_LINK_SPEED_2_5GB:
2653                 speed = SPEED_2500;
2654                 break;
2655         case VIRTCHNL_LINK_SPEED_1GB:
2656                 speed = SPEED_1000;
2657                 break;
2658         case VIRTCHNL_LINK_SPEED_100MB:
2659                 speed = SPEED_100;
2660                 break;
2661         default:
2662                 break;
2663         }
2664
2665 validate_bw:
2666         if (max_tx_rate > speed) {
2667                 dev_err(&adapter->pdev->dev,
2668                         "Invalid tx rate specified\n");
2669                 ret = -EINVAL;
2670         }
2671
2672         return ret;
2673 }
2674
2675 /**
2676  * iavf_validate_ch_config - validate queue mapping info
2677  * @adapter: board private structure
2678  * @mqprio_qopt: queue parameters
2679  *
2680  * This function validates if the config provided by the user to
2681  * configure queue channels is valid or not. Returns 0 on a valid
2682  * config.
2683  **/
2684 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2685                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
2686 {
2687         u64 total_max_rate = 0;
2688         int i, num_qps = 0;
2689         u64 tx_rate = 0;
2690         int ret = 0;
2691
2692         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2693             mqprio_qopt->qopt.num_tc < 1)
2694                 return -EINVAL;
2695
2696         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2697                 if (!mqprio_qopt->qopt.count[i] ||
2698                     mqprio_qopt->qopt.offset[i] != num_qps)
2699                         return -EINVAL;
2700                 if (mqprio_qopt->min_rate[i]) {
2701                         dev_err(&adapter->pdev->dev,
2702                                 "Invalid min tx rate (greater than 0) specified\n");
2703                         return -EINVAL;
2704                 }
2705                 /*convert to Mbps */
2706                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2707                                   IAVF_MBPS_DIVISOR);
2708                 total_max_rate += tx_rate;
2709                 num_qps += mqprio_qopt->qopt.count[i];
2710         }
2711         if (num_qps > adapter->num_active_queues) {
2712                 dev_err(&adapter->pdev->dev,
2713                         "Cannot support requested number of queues\n");
2714                 return -EINVAL;
2715         }
2716
2717         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2718         return ret;
2719 }
2720
2721 /**
2722  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2723  * @adapter: board private structure
2724  **/
2725 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2726 {
2727         struct iavf_cloud_filter *cf, *cftmp;
2728
2729         spin_lock_bh(&adapter->cloud_filter_list_lock);
2730         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2731                                  list) {
2732                 list_del(&cf->list);
2733                 kfree(cf);
2734                 adapter->num_cloud_filters--;
2735         }
2736         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2737 }
2738
2739 /**
2740  * __iavf_setup_tc - configure multiple traffic classes
2741  * @netdev: network interface device structure
2742  * @type_data: tc offload data
2743  *
2744  * This function processes the config information provided by the
2745  * user to configure traffic classes/queue channels and packages the
2746  * information to request the PF to setup traffic classes.
2747  *
2748  * Returns 0 on success.
2749  **/
2750 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2751 {
2752         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2753         struct iavf_adapter *adapter = netdev_priv(netdev);
2754         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2755         u8 num_tc = 0, total_qps = 0;
2756         int ret = 0, netdev_tc = 0;
2757         u64 max_tx_rate;
2758         u16 mode;
2759         int i;
2760
2761         num_tc = mqprio_qopt->qopt.num_tc;
2762         mode = mqprio_qopt->mode;
2763
2764         /* delete queue_channel */
2765         if (!mqprio_qopt->qopt.hw) {
2766                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2767                         /* reset the tc configuration */
2768                         netdev_reset_tc(netdev);
2769                         adapter->num_tc = 0;
2770                         netif_tx_stop_all_queues(netdev);
2771                         netif_tx_disable(netdev);
2772                         iavf_del_all_cloud_filters(adapter);
2773                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2774                         goto exit;
2775                 } else {
2776                         return -EINVAL;
2777                 }
2778         }
2779
2780         /* add queue channel */
2781         if (mode == TC_MQPRIO_MODE_CHANNEL) {
2782                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2783                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
2784                         return -EOPNOTSUPP;
2785                 }
2786                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2787                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2788                         return -EINVAL;
2789                 }
2790
2791                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2792                 if (ret)
2793                         return ret;
2794                 /* Return if same TC config is requested */
2795                 if (adapter->num_tc == num_tc)
2796                         return 0;
2797                 adapter->num_tc = num_tc;
2798
2799                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2800                         if (i < num_tc) {
2801                                 adapter->ch_config.ch_info[i].count =
2802                                         mqprio_qopt->qopt.count[i];
2803                                 adapter->ch_config.ch_info[i].offset =
2804                                         mqprio_qopt->qopt.offset[i];
2805                                 total_qps += mqprio_qopt->qopt.count[i];
2806                                 max_tx_rate = mqprio_qopt->max_rate[i];
2807                                 /* convert to Mbps */
2808                                 max_tx_rate = div_u64(max_tx_rate,
2809                                                       IAVF_MBPS_DIVISOR);
2810                                 adapter->ch_config.ch_info[i].max_tx_rate =
2811                                         max_tx_rate;
2812                         } else {
2813                                 adapter->ch_config.ch_info[i].count = 1;
2814                                 adapter->ch_config.ch_info[i].offset = 0;
2815                         }
2816                 }
2817                 adapter->ch_config.total_qps = total_qps;
2818                 netif_tx_stop_all_queues(netdev);
2819                 netif_tx_disable(netdev);
2820                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2821                 netdev_reset_tc(netdev);
2822                 /* Report the tc mapping up the stack */
2823                 netdev_set_num_tc(adapter->netdev, num_tc);
2824                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2825                         u16 qcount = mqprio_qopt->qopt.count[i];
2826                         u16 qoffset = mqprio_qopt->qopt.offset[i];
2827
2828                         if (i < num_tc)
2829                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2830                                                     qoffset);
2831                 }
2832         }
2833 exit:
2834         return ret;
2835 }
2836
2837 /**
2838  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2839  * @adapter: board private structure
2840  * @f: pointer to struct flow_cls_offload
2841  * @filter: pointer to cloud filter structure
2842  */
2843 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2844                                  struct flow_cls_offload *f,
2845                                  struct iavf_cloud_filter *filter)
2846 {
2847         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2848         struct flow_dissector *dissector = rule->match.dissector;
2849         u16 n_proto_mask = 0;
2850         u16 n_proto_key = 0;
2851         u8 field_flags = 0;
2852         u16 addr_type = 0;
2853         u16 n_proto = 0;
2854         int i = 0;
2855         struct virtchnl_filter *vf = &filter->f;
2856
2857         if (dissector->used_keys &
2858             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2859               BIT(FLOW_DISSECTOR_KEY_BASIC) |
2860               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2861               BIT(FLOW_DISSECTOR_KEY_VLAN) |
2862               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2863               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2864               BIT(FLOW_DISSECTOR_KEY_PORTS) |
2865               BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2866                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2867                         dissector->used_keys);
2868                 return -EOPNOTSUPP;
2869         }
2870
2871         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2872                 struct flow_match_enc_keyid match;
2873
2874                 flow_rule_match_enc_keyid(rule, &match);
2875                 if (match.mask->keyid != 0)
2876                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2877         }
2878
2879         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2880                 struct flow_match_basic match;
2881
2882                 flow_rule_match_basic(rule, &match);
2883                 n_proto_key = ntohs(match.key->n_proto);
2884                 n_proto_mask = ntohs(match.mask->n_proto);
2885
2886                 if (n_proto_key == ETH_P_ALL) {
2887                         n_proto_key = 0;
2888                         n_proto_mask = 0;
2889                 }
2890                 n_proto = n_proto_key & n_proto_mask;
2891                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2892                         return -EINVAL;
2893                 if (n_proto == ETH_P_IPV6) {
2894                         /* specify flow type as TCP IPv6 */
2895                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2896                 }
2897
2898                 if (match.key->ip_proto != IPPROTO_TCP) {
2899                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2900                         return -EINVAL;
2901                 }
2902         }
2903
2904         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2905                 struct flow_match_eth_addrs match;
2906
2907                 flow_rule_match_eth_addrs(rule, &match);
2908
2909                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2910                 if (!is_zero_ether_addr(match.mask->dst)) {
2911                         if (is_broadcast_ether_addr(match.mask->dst)) {
2912                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2913                         } else {
2914                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2915                                         match.mask->dst);
2916                                 return IAVF_ERR_CONFIG;
2917                         }
2918                 }
2919
2920                 if (!is_zero_ether_addr(match.mask->src)) {
2921                         if (is_broadcast_ether_addr(match.mask->src)) {
2922                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2923                         } else {
2924                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2925                                         match.mask->src);
2926                                 return IAVF_ERR_CONFIG;
2927                         }
2928                 }
2929
2930                 if (!is_zero_ether_addr(match.key->dst))
2931                         if (is_valid_ether_addr(match.key->dst) ||
2932                             is_multicast_ether_addr(match.key->dst)) {
2933                                 /* set the mask if a valid dst_mac address */
2934                                 for (i = 0; i < ETH_ALEN; i++)
2935                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2936                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2937                                                 match.key->dst);
2938                         }
2939
2940                 if (!is_zero_ether_addr(match.key->src))
2941                         if (is_valid_ether_addr(match.key->src) ||
2942                             is_multicast_ether_addr(match.key->src)) {
2943                                 /* set the mask if a valid dst_mac address */
2944                                 for (i = 0; i < ETH_ALEN; i++)
2945                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
2946                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
2947                                                 match.key->src);
2948                 }
2949         }
2950
2951         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2952                 struct flow_match_vlan match;
2953
2954                 flow_rule_match_vlan(rule, &match);
2955                 if (match.mask->vlan_id) {
2956                         if (match.mask->vlan_id == VLAN_VID_MASK) {
2957                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2958                         } else {
2959                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2960                                         match.mask->vlan_id);
2961                                 return IAVF_ERR_CONFIG;
2962                         }
2963                 }
2964                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2965                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2966         }
2967
2968         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2969                 struct flow_match_control match;
2970
2971                 flow_rule_match_control(rule, &match);
2972                 addr_type = match.key->addr_type;
2973         }
2974
2975         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2976                 struct flow_match_ipv4_addrs match;
2977
2978                 flow_rule_match_ipv4_addrs(rule, &match);
2979                 if (match.mask->dst) {
2980                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2981                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2982                         } else {
2983                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2984                                         be32_to_cpu(match.mask->dst));
2985                                 return IAVF_ERR_CONFIG;
2986                         }
2987                 }
2988
2989                 if (match.mask->src) {
2990                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
2991                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2992                         } else {
2993                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2994                                         be32_to_cpu(match.mask->dst));
2995                                 return IAVF_ERR_CONFIG;
2996                         }
2997                 }
2998
2999                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3000                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3001                         return IAVF_ERR_CONFIG;
3002                 }
3003                 if (match.key->dst) {
3004                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3005                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3006                 }
3007                 if (match.key->src) {
3008                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3009                         vf->data.tcp_spec.src_ip[0] = match.key->src;
3010                 }
3011         }
3012
3013         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3014                 struct flow_match_ipv6_addrs match;
3015
3016                 flow_rule_match_ipv6_addrs(rule, &match);
3017
3018                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3019                 if (ipv6_addr_any(&match.mask->dst)) {
3020                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3021                                 IPV6_ADDR_ANY);
3022                         return IAVF_ERR_CONFIG;
3023                 }
3024
3025                 /* src and dest IPv6 address should not be LOOPBACK
3026                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
3027                  */
3028                 if (ipv6_addr_loopback(&match.key->dst) ||
3029                     ipv6_addr_loopback(&match.key->src)) {
3030                         dev_err(&adapter->pdev->dev,
3031                                 "ipv6 addr should not be loopback\n");
3032                         return IAVF_ERR_CONFIG;
3033                 }
3034                 if (!ipv6_addr_any(&match.mask->dst) ||
3035                     !ipv6_addr_any(&match.mask->src))
3036                         field_flags |= IAVF_CLOUD_FIELD_IIP;
3037
3038                 for (i = 0; i < 4; i++)
3039                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3040                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3041                        sizeof(vf->data.tcp_spec.dst_ip));
3042                 for (i = 0; i < 4; i++)
3043                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3044                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3045                        sizeof(vf->data.tcp_spec.src_ip));
3046         }
3047         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3048                 struct flow_match_ports match;
3049
3050                 flow_rule_match_ports(rule, &match);
3051                 if (match.mask->src) {
3052                         if (match.mask->src == cpu_to_be16(0xffff)) {
3053                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3054                         } else {
3055                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3056                                         be16_to_cpu(match.mask->src));
3057                                 return IAVF_ERR_CONFIG;
3058                         }
3059                 }
3060
3061                 if (match.mask->dst) {
3062                         if (match.mask->dst == cpu_to_be16(0xffff)) {
3063                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3064                         } else {
3065                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3066                                         be16_to_cpu(match.mask->dst));
3067                                 return IAVF_ERR_CONFIG;
3068                         }
3069                 }
3070                 if (match.key->dst) {
3071                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3072                         vf->data.tcp_spec.dst_port = match.key->dst;
3073                 }
3074
3075                 if (match.key->src) {
3076                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3077                         vf->data.tcp_spec.src_port = match.key->src;
3078                 }
3079         }
3080         vf->field_flags = field_flags;
3081
3082         return 0;
3083 }
3084
3085 /**
3086  * iavf_handle_tclass - Forward to a traffic class on the device
3087  * @adapter: board private structure
3088  * @tc: traffic class index on the device
3089  * @filter: pointer to cloud filter structure
3090  */
3091 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3092                               struct iavf_cloud_filter *filter)
3093 {
3094         if (tc == 0)
3095                 return 0;
3096         if (tc < adapter->num_tc) {
3097                 if (!filter->f.data.tcp_spec.dst_port) {
3098                         dev_err(&adapter->pdev->dev,
3099                                 "Specify destination port to redirect to traffic class other than TC0\n");
3100                         return -EINVAL;
3101                 }
3102         }
3103         /* redirect to a traffic class on the same device */
3104         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3105         filter->f.action_meta = tc;
3106         return 0;
3107 }
3108
3109 /**
3110  * iavf_configure_clsflower - Add tc flower filters
3111  * @adapter: board private structure
3112  * @cls_flower: Pointer to struct flow_cls_offload
3113  */
3114 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3115                                     struct flow_cls_offload *cls_flower)
3116 {
3117         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3118         struct iavf_cloud_filter *filter = NULL;
3119         int err = -EINVAL, count = 50;
3120
3121         if (tc < 0) {
3122                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3123                 return -EINVAL;
3124         }
3125
3126         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3127         if (!filter)
3128                 return -ENOMEM;
3129
3130         while (!mutex_trylock(&adapter->crit_lock)) {
3131                 if (--count == 0) {
3132                         kfree(filter);
3133                         return err;
3134                 }
3135                 udelay(1);
3136         }
3137
3138         filter->cookie = cls_flower->cookie;
3139
3140         /* set the mask to all zeroes to begin with */
3141         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3142         /* start out with flow type and eth type IPv4 to begin with */
3143         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3144         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3145         if (err)
3146                 goto err;
3147
3148         err = iavf_handle_tclass(adapter, tc, filter);
3149         if (err)
3150                 goto err;
3151
3152         /* add filter to the list */
3153         spin_lock_bh(&adapter->cloud_filter_list_lock);
3154         list_add_tail(&filter->list, &adapter->cloud_filter_list);
3155         adapter->num_cloud_filters++;
3156         filter->add = true;
3157         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3158         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3159 err:
3160         if (err)
3161                 kfree(filter);
3162
3163         mutex_unlock(&adapter->crit_lock);
3164         return err;
3165 }
3166
3167 /* iavf_find_cf - Find the cloud filter in the list
3168  * @adapter: Board private structure
3169  * @cookie: filter specific cookie
3170  *
3171  * Returns ptr to the filter object or NULL. Must be called while holding the
3172  * cloud_filter_list_lock.
3173  */
3174 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3175                                               unsigned long *cookie)
3176 {
3177         struct iavf_cloud_filter *filter = NULL;
3178
3179         if (!cookie)
3180                 return NULL;
3181
3182         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3183                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3184                         return filter;
3185         }
3186         return NULL;
3187 }
3188
3189 /**
3190  * iavf_delete_clsflower - Remove tc flower filters
3191  * @adapter: board private structure
3192  * @cls_flower: Pointer to struct flow_cls_offload
3193  */
3194 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3195                                  struct flow_cls_offload *cls_flower)
3196 {
3197         struct iavf_cloud_filter *filter = NULL;
3198         int err = 0;
3199
3200         spin_lock_bh(&adapter->cloud_filter_list_lock);
3201         filter = iavf_find_cf(adapter, &cls_flower->cookie);
3202         if (filter) {
3203                 filter->del = true;
3204                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3205         } else {
3206                 err = -EINVAL;
3207         }
3208         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3209
3210         return err;
3211 }
3212
3213 /**
3214  * iavf_setup_tc_cls_flower - flower classifier offloads
3215  * @adapter: board private structure
3216  * @cls_flower: pointer to flow_cls_offload struct with flow info
3217  */
3218 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3219                                     struct flow_cls_offload *cls_flower)
3220 {
3221         switch (cls_flower->command) {
3222         case FLOW_CLS_REPLACE:
3223                 return iavf_configure_clsflower(adapter, cls_flower);
3224         case FLOW_CLS_DESTROY:
3225                 return iavf_delete_clsflower(adapter, cls_flower);
3226         case FLOW_CLS_STATS:
3227                 return -EOPNOTSUPP;
3228         default:
3229                 return -EOPNOTSUPP;
3230         }
3231 }
3232
3233 /**
3234  * iavf_setup_tc_block_cb - block callback for tc
3235  * @type: type of offload
3236  * @type_data: offload data
3237  * @cb_priv:
3238  *
3239  * This function is the block callback for traffic classes
3240  **/
3241 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3242                                   void *cb_priv)
3243 {
3244         struct iavf_adapter *adapter = cb_priv;
3245
3246         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3247                 return -EOPNOTSUPP;
3248
3249         switch (type) {
3250         case TC_SETUP_CLSFLOWER:
3251                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3252         default:
3253                 return -EOPNOTSUPP;
3254         }
3255 }
3256
3257 static LIST_HEAD(iavf_block_cb_list);
3258
3259 /**
3260  * iavf_setup_tc - configure multiple traffic classes
3261  * @netdev: network interface device structure
3262  * @type: type of offload
3263  * @type_data: tc offload data
3264  *
3265  * This function is the callback to ndo_setup_tc in the
3266  * netdev_ops.
3267  *
3268  * Returns 0 on success
3269  **/
3270 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3271                          void *type_data)
3272 {
3273         struct iavf_adapter *adapter = netdev_priv(netdev);
3274
3275         switch (type) {
3276         case TC_SETUP_QDISC_MQPRIO:
3277                 return __iavf_setup_tc(netdev, type_data);
3278         case TC_SETUP_BLOCK:
3279                 return flow_block_cb_setup_simple(type_data,
3280                                                   &iavf_block_cb_list,
3281                                                   iavf_setup_tc_block_cb,
3282                                                   adapter, adapter, true);
3283         default:
3284                 return -EOPNOTSUPP;
3285         }
3286 }
3287
3288 /**
3289  * iavf_open - Called when a network interface is made active
3290  * @netdev: network interface device structure
3291  *
3292  * Returns 0 on success, negative value on failure
3293  *
3294  * The open entry point is called when a network interface is made
3295  * active by the system (IFF_UP).  At this point all resources needed
3296  * for transmit and receive operations are allocated, the interrupt
3297  * handler is registered with the OS, the watchdog is started,
3298  * and the stack is notified that the interface is ready.
3299  **/
3300 static int iavf_open(struct net_device *netdev)
3301 {
3302         struct iavf_adapter *adapter = netdev_priv(netdev);
3303         int err;
3304
3305         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3306                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3307                 return -EIO;
3308         }
3309
3310         while (!mutex_trylock(&adapter->crit_lock))
3311                 usleep_range(500, 1000);
3312
3313         if (adapter->state != __IAVF_DOWN) {
3314                 err = -EBUSY;
3315                 goto err_unlock;
3316         }
3317
3318         if (adapter->state == __IAVF_RUNNING &&
3319             !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3320                 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3321                 err = 0;
3322                 goto err_unlock;
3323         }
3324
3325         /* allocate transmit descriptors */
3326         err = iavf_setup_all_tx_resources(adapter);
3327         if (err)
3328                 goto err_setup_tx;
3329
3330         /* allocate receive descriptors */
3331         err = iavf_setup_all_rx_resources(adapter);
3332         if (err)
3333                 goto err_setup_rx;
3334
3335         /* clear any pending interrupts, may auto mask */
3336         err = iavf_request_traffic_irqs(adapter, netdev->name);
3337         if (err)
3338                 goto err_req_irq;
3339
3340         spin_lock_bh(&adapter->mac_vlan_list_lock);
3341
3342         iavf_add_filter(adapter, adapter->hw.mac.addr);
3343
3344         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3345
3346         /* Restore VLAN filters that were removed with IFF_DOWN */
3347         iavf_restore_filters(adapter);
3348
3349         iavf_configure(adapter);
3350
3351         iavf_up_complete(adapter);
3352
3353         iavf_irq_enable(adapter, true);
3354
3355         mutex_unlock(&adapter->crit_lock);
3356
3357         return 0;
3358
3359 err_req_irq:
3360         iavf_down(adapter);
3361         iavf_free_traffic_irqs(adapter);
3362 err_setup_rx:
3363         iavf_free_all_rx_resources(adapter);
3364 err_setup_tx:
3365         iavf_free_all_tx_resources(adapter);
3366 err_unlock:
3367         mutex_unlock(&adapter->crit_lock);
3368
3369         return err;
3370 }
3371
3372 /**
3373  * iavf_close - Disables a network interface
3374  * @netdev: network interface device structure
3375  *
3376  * Returns 0, this is not allowed to fail
3377  *
3378  * The close entry point is called when an interface is de-activated
3379  * by the OS.  The hardware is still under the drivers control, but
3380  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3381  * are freed, along with all transmit and receive resources.
3382  **/
3383 static int iavf_close(struct net_device *netdev)
3384 {
3385         struct iavf_adapter *adapter = netdev_priv(netdev);
3386         int status;
3387
3388         if (adapter->state <= __IAVF_DOWN_PENDING)
3389                 return 0;
3390
3391         while (!mutex_trylock(&adapter->crit_lock))
3392                 usleep_range(500, 1000);
3393
3394         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3395         if (CLIENT_ENABLED(adapter))
3396                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3397
3398         iavf_down(adapter);
3399         iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3400         iavf_free_traffic_irqs(adapter);
3401
3402         mutex_unlock(&adapter->crit_lock);
3403
3404         /* We explicitly don't free resources here because the hardware is
3405          * still active and can DMA into memory. Resources are cleared in
3406          * iavf_virtchnl_completion() after we get confirmation from the PF
3407          * driver that the rings have been stopped.
3408          *
3409          * Also, we wait for state to transition to __IAVF_DOWN before
3410          * returning. State change occurs in iavf_virtchnl_completion() after
3411          * VF resources are released (which occurs after PF driver processes and
3412          * responds to admin queue commands).
3413          */
3414
3415         status = wait_event_timeout(adapter->down_waitqueue,
3416                                     adapter->state == __IAVF_DOWN,
3417                                     msecs_to_jiffies(500));
3418         if (!status)
3419                 netdev_warn(netdev, "Device resources not yet released\n");
3420         return 0;
3421 }
3422
3423 /**
3424  * iavf_change_mtu - Change the Maximum Transfer Unit
3425  * @netdev: network interface device structure
3426  * @new_mtu: new value for maximum frame size
3427  *
3428  * Returns 0 on success, negative on failure
3429  **/
3430 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3431 {
3432         struct iavf_adapter *adapter = netdev_priv(netdev);
3433
3434         netdev->mtu = new_mtu;
3435         if (CLIENT_ENABLED(adapter)) {
3436                 iavf_notify_client_l2_params(&adapter->vsi);
3437                 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3438         }
3439         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3440         queue_work(iavf_wq, &adapter->reset_task);
3441
3442         return 0;
3443 }
3444
3445 /**
3446  * iavf_set_features - set the netdev feature flags
3447  * @netdev: ptr to the netdev being adjusted
3448  * @features: the feature set that the stack is suggesting
3449  * Note: expects to be called while under rtnl_lock()
3450  **/
3451 static int iavf_set_features(struct net_device *netdev,
3452                              netdev_features_t features)
3453 {
3454         struct iavf_adapter *adapter = netdev_priv(netdev);
3455
3456         /* Don't allow enabling VLAN features when adapter is not capable
3457          * of VLAN offload/filtering
3458          */
3459         if (!VLAN_ALLOWED(adapter)) {
3460                 netdev->hw_features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
3461                                          NETIF_F_HW_VLAN_CTAG_TX |
3462                                          NETIF_F_HW_VLAN_CTAG_FILTER);
3463                 if (features & (NETIF_F_HW_VLAN_CTAG_RX |
3464                                 NETIF_F_HW_VLAN_CTAG_TX |
3465                                 NETIF_F_HW_VLAN_CTAG_FILTER))
3466                         return -EINVAL;
3467         } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3468                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3469                         adapter->aq_required |=
3470                                 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3471                 else
3472                         adapter->aq_required |=
3473                                 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3474         }
3475
3476         return 0;
3477 }
3478
3479 /**
3480  * iavf_features_check - Validate encapsulated packet conforms to limits
3481  * @skb: skb buff
3482  * @dev: This physical port's netdev
3483  * @features: Offload features that the stack believes apply
3484  **/
3485 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3486                                              struct net_device *dev,
3487                                              netdev_features_t features)
3488 {
3489         size_t len;
3490
3491         /* No point in doing any of this if neither checksum nor GSO are
3492          * being requested for this frame.  We can rule out both by just
3493          * checking for CHECKSUM_PARTIAL
3494          */
3495         if (skb->ip_summed != CHECKSUM_PARTIAL)
3496                 return features;
3497
3498         /* We cannot support GSO if the MSS is going to be less than
3499          * 64 bytes.  If it is then we need to drop support for GSO.
3500          */
3501         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3502                 features &= ~NETIF_F_GSO_MASK;
3503
3504         /* MACLEN can support at most 63 words */
3505         len = skb_network_header(skb) - skb->data;
3506         if (len & ~(63 * 2))
3507                 goto out_err;
3508
3509         /* IPLEN and EIPLEN can support at most 127 dwords */
3510         len = skb_transport_header(skb) - skb_network_header(skb);
3511         if (len & ~(127 * 4))
3512                 goto out_err;
3513
3514         if (skb->encapsulation) {
3515                 /* L4TUNLEN can support 127 words */
3516                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3517                 if (len & ~(127 * 2))
3518                         goto out_err;
3519
3520                 /* IPLEN can support at most 127 dwords */
3521                 len = skb_inner_transport_header(skb) -
3522                       skb_inner_network_header(skb);
3523                 if (len & ~(127 * 4))
3524                         goto out_err;
3525         }
3526
3527         /* No need to validate L4LEN as TCP is the only protocol with a
3528          * a flexible value and we support all possible values supported
3529          * by TCP, which is at most 15 dwords
3530          */
3531
3532         return features;
3533 out_err:
3534         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3535 }
3536
3537 /**
3538  * iavf_fix_features - fix up the netdev feature bits
3539  * @netdev: our net device
3540  * @features: desired feature bits
3541  *
3542  * Returns fixed-up features bits
3543  **/
3544 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3545                                            netdev_features_t features)
3546 {
3547         struct iavf_adapter *adapter = netdev_priv(netdev);
3548
3549         if (adapter->vf_res &&
3550             !(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3551                 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3552                               NETIF_F_HW_VLAN_CTAG_RX |
3553                               NETIF_F_HW_VLAN_CTAG_FILTER);
3554
3555         return features;
3556 }
3557
3558 static const struct net_device_ops iavf_netdev_ops = {
3559         .ndo_open               = iavf_open,
3560         .ndo_stop               = iavf_close,
3561         .ndo_start_xmit         = iavf_xmit_frame,
3562         .ndo_set_rx_mode        = iavf_set_rx_mode,
3563         .ndo_validate_addr      = eth_validate_addr,
3564         .ndo_set_mac_address    = iavf_set_mac,
3565         .ndo_change_mtu         = iavf_change_mtu,
3566         .ndo_tx_timeout         = iavf_tx_timeout,
3567         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
3568         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
3569         .ndo_features_check     = iavf_features_check,
3570         .ndo_fix_features       = iavf_fix_features,
3571         .ndo_set_features       = iavf_set_features,
3572         .ndo_setup_tc           = iavf_setup_tc,
3573 };
3574
3575 /**
3576  * iavf_check_reset_complete - check that VF reset is complete
3577  * @hw: pointer to hw struct
3578  *
3579  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3580  **/
3581 static int iavf_check_reset_complete(struct iavf_hw *hw)
3582 {
3583         u32 rstat;
3584         int i;
3585
3586         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3587                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3588                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3589                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3590                     (rstat == VIRTCHNL_VFR_COMPLETED))
3591                         return 0;
3592                 usleep_range(10, 20);
3593         }
3594         return -EBUSY;
3595 }
3596
3597 /**
3598  * iavf_process_config - Process the config information we got from the PF
3599  * @adapter: board private structure
3600  *
3601  * Verify that we have a valid config struct, and set up our netdev features
3602  * and our VSI struct.
3603  **/
3604 int iavf_process_config(struct iavf_adapter *adapter)
3605 {
3606         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3607         int i, num_req_queues = adapter->num_req_queues;
3608         struct net_device *netdev = adapter->netdev;
3609         struct iavf_vsi *vsi = &adapter->vsi;
3610         netdev_features_t hw_enc_features;
3611         netdev_features_t hw_features;
3612
3613         /* got VF config message back from PF, now we can parse it */
3614         for (i = 0; i < vfres->num_vsis; i++) {
3615                 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3616                         adapter->vsi_res = &vfres->vsi_res[i];
3617         }
3618         if (!adapter->vsi_res) {
3619                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3620                 return -ENODEV;
3621         }
3622
3623         if (num_req_queues &&
3624             num_req_queues > adapter->vsi_res->num_queue_pairs) {
3625                 /* Problem.  The PF gave us fewer queues than what we had
3626                  * negotiated in our request.  Need a reset to see if we can't
3627                  * get back to a working state.
3628                  */
3629                 dev_err(&adapter->pdev->dev,
3630                         "Requested %d queues, but PF only gave us %d.\n",
3631                         num_req_queues,
3632                         adapter->vsi_res->num_queue_pairs);
3633                 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3634                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3635                 iavf_schedule_reset(adapter);
3636                 return -ENODEV;
3637         }
3638         adapter->num_req_queues = 0;
3639
3640         hw_enc_features = NETIF_F_SG                    |
3641                           NETIF_F_IP_CSUM               |
3642                           NETIF_F_IPV6_CSUM             |
3643                           NETIF_F_HIGHDMA               |
3644                           NETIF_F_SOFT_FEATURES |
3645                           NETIF_F_TSO                   |
3646                           NETIF_F_TSO_ECN               |
3647                           NETIF_F_TSO6                  |
3648                           NETIF_F_SCTP_CRC              |
3649                           NETIF_F_RXHASH                |
3650                           NETIF_F_RXCSUM                |
3651                           0;
3652
3653         /* advertise to stack only if offloads for encapsulated packets is
3654          * supported
3655          */
3656         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3657                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
3658                                    NETIF_F_GSO_GRE              |
3659                                    NETIF_F_GSO_GRE_CSUM         |
3660                                    NETIF_F_GSO_IPXIP4           |
3661                                    NETIF_F_GSO_IPXIP6           |
3662                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
3663                                    NETIF_F_GSO_PARTIAL          |
3664                                    0;
3665
3666                 if (!(vfres->vf_cap_flags &
3667                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3668                         netdev->gso_partial_features |=
3669                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3670
3671                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3672                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3673                 netdev->hw_enc_features |= hw_enc_features;
3674         }
3675         /* record features VLANs can make use of */
3676         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3677
3678         /* Write features and hw_features separately to avoid polluting
3679          * with, or dropping, features that are set when we registered.
3680          */
3681         hw_features = hw_enc_features;
3682
3683         /* Enable VLAN features if supported */
3684         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3685                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3686                                 NETIF_F_HW_VLAN_CTAG_RX);
3687         /* Enable cloud filter if ADQ is supported */
3688         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3689                 hw_features |= NETIF_F_HW_TC;
3690         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3691                 hw_features |= NETIF_F_GSO_UDP_L4;
3692
3693         netdev->hw_features |= hw_features;
3694
3695         netdev->features |= hw_features;
3696
3697         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3698                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3699
3700         netdev->priv_flags |= IFF_UNICAST_FLT;
3701
3702         /* Do not turn on offloads when they are requested to be turned off.
3703          * TSO needs minimum 576 bytes to work correctly.
3704          */
3705         if (netdev->wanted_features) {
3706                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3707                     netdev->mtu < 576)
3708                         netdev->features &= ~NETIF_F_TSO;
3709                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3710                     netdev->mtu < 576)
3711                         netdev->features &= ~NETIF_F_TSO6;
3712                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3713                         netdev->features &= ~NETIF_F_TSO_ECN;
3714                 if (!(netdev->wanted_features & NETIF_F_GRO))
3715                         netdev->features &= ~NETIF_F_GRO;
3716                 if (!(netdev->wanted_features & NETIF_F_GSO))
3717                         netdev->features &= ~NETIF_F_GSO;
3718         }
3719
3720         adapter->vsi.id = adapter->vsi_res->vsi_id;
3721
3722         adapter->vsi.back = adapter;
3723         adapter->vsi.base_vector = 1;
3724         adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3725         vsi->netdev = adapter->netdev;
3726         vsi->qs_handle = adapter->vsi_res->qset_handle;
3727         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3728                 adapter->rss_key_size = vfres->rss_key_size;
3729                 adapter->rss_lut_size = vfres->rss_lut_size;
3730         } else {
3731                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3732                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3733         }
3734
3735         return 0;
3736 }
3737
3738 /**
3739  * iavf_shutdown - Shutdown the device in preparation for a reboot
3740  * @pdev: pci device structure
3741  **/
3742 static void iavf_shutdown(struct pci_dev *pdev)
3743 {
3744         struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
3745         struct net_device *netdev = adapter->netdev;
3746
3747         netif_device_detach(netdev);
3748
3749         if (netif_running(netdev))
3750                 iavf_close(netdev);
3751
3752         if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3753                 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3754         /* Prevent the watchdog from running. */
3755         iavf_change_state(adapter, __IAVF_REMOVE);
3756         adapter->aq_required = 0;
3757         mutex_unlock(&adapter->crit_lock);
3758
3759 #ifdef CONFIG_PM
3760         pci_save_state(pdev);
3761
3762 #endif
3763         pci_disable_device(pdev);
3764 }
3765
3766 /**
3767  * iavf_probe - Device Initialization Routine
3768  * @pdev: PCI device information struct
3769  * @ent: entry in iavf_pci_tbl
3770  *
3771  * Returns 0 on success, negative on failure
3772  *
3773  * iavf_probe initializes an adapter identified by a pci_dev structure.
3774  * The OS initialization, configuring of the adapter private structure,
3775  * and a hardware reset occur.
3776  **/
3777 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3778 {
3779         struct net_device *netdev;
3780         struct iavf_adapter *adapter = NULL;
3781         struct iavf_hw *hw = NULL;
3782         int err;
3783
3784         err = pci_enable_device(pdev);
3785         if (err)
3786                 return err;
3787
3788         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3789         if (err) {
3790                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3791                 if (err) {
3792                         dev_err(&pdev->dev,
3793                                 "DMA configuration failed: 0x%x\n", err);
3794                         goto err_dma;
3795                 }
3796         }
3797
3798         err = pci_request_regions(pdev, iavf_driver_name);
3799         if (err) {
3800                 dev_err(&pdev->dev,
3801                         "pci_request_regions failed 0x%x\n", err);
3802                 goto err_pci_reg;
3803         }
3804
3805         pci_enable_pcie_error_reporting(pdev);
3806
3807         pci_set_master(pdev);
3808
3809         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3810                                    IAVF_MAX_REQ_QUEUES);
3811         if (!netdev) {
3812                 err = -ENOMEM;
3813                 goto err_alloc_etherdev;
3814         }
3815
3816         SET_NETDEV_DEV(netdev, &pdev->dev);
3817
3818         pci_set_drvdata(pdev, netdev);
3819         adapter = netdev_priv(netdev);
3820
3821         adapter->netdev = netdev;
3822         adapter->pdev = pdev;
3823
3824         hw = &adapter->hw;
3825         hw->back = adapter;
3826
3827         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3828         iavf_change_state(adapter, __IAVF_STARTUP);
3829
3830         /* Call save state here because it relies on the adapter struct. */
3831         pci_save_state(pdev);
3832
3833         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3834                               pci_resource_len(pdev, 0));
3835         if (!hw->hw_addr) {
3836                 err = -EIO;
3837                 goto err_ioremap;
3838         }
3839         hw->vendor_id = pdev->vendor;
3840         hw->device_id = pdev->device;
3841         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3842         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3843         hw->subsystem_device_id = pdev->subsystem_device;
3844         hw->bus.device = PCI_SLOT(pdev->devfn);
3845         hw->bus.func = PCI_FUNC(pdev->devfn);
3846         hw->bus.bus_id = pdev->bus->number;
3847
3848         /* set up the locks for the AQ, do this only once in probe
3849          * and destroy them only once in remove
3850          */
3851         mutex_init(&adapter->crit_lock);
3852         mutex_init(&adapter->client_lock);
3853         mutex_init(&adapter->remove_lock);
3854         mutex_init(&hw->aq.asq_mutex);
3855         mutex_init(&hw->aq.arq_mutex);
3856
3857         spin_lock_init(&adapter->mac_vlan_list_lock);
3858         spin_lock_init(&adapter->cloud_filter_list_lock);
3859         spin_lock_init(&adapter->fdir_fltr_lock);
3860         spin_lock_init(&adapter->adv_rss_lock);
3861
3862         INIT_LIST_HEAD(&adapter->mac_filter_list);
3863         INIT_LIST_HEAD(&adapter->vlan_filter_list);
3864         INIT_LIST_HEAD(&adapter->cloud_filter_list);
3865         INIT_LIST_HEAD(&adapter->fdir_list_head);
3866         INIT_LIST_HEAD(&adapter->adv_rss_list_head);
3867
3868         INIT_WORK(&adapter->reset_task, iavf_reset_task);
3869         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3870         INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3871         INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3872         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
3873                            msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3874
3875         /* Setup the wait queue for indicating transition to down status */
3876         init_waitqueue_head(&adapter->down_waitqueue);
3877
3878         return 0;
3879
3880 err_ioremap:
3881         free_netdev(netdev);
3882 err_alloc_etherdev:
3883         pci_disable_pcie_error_reporting(pdev);
3884         pci_release_regions(pdev);
3885 err_pci_reg:
3886 err_dma:
3887         pci_disable_device(pdev);
3888         return err;
3889 }
3890
3891 /**
3892  * iavf_suspend - Power management suspend routine
3893  * @dev_d: device info pointer
3894  *
3895  * Called when the system (VM) is entering sleep/suspend.
3896  **/
3897 static int __maybe_unused iavf_suspend(struct device *dev_d)
3898 {
3899         struct net_device *netdev = dev_get_drvdata(dev_d);
3900         struct iavf_adapter *adapter = netdev_priv(netdev);
3901
3902         netif_device_detach(netdev);
3903
3904         while (!mutex_trylock(&adapter->crit_lock))
3905                 usleep_range(500, 1000);
3906
3907         if (netif_running(netdev)) {
3908                 rtnl_lock();
3909                 iavf_down(adapter);
3910                 rtnl_unlock();
3911         }
3912         iavf_free_misc_irq(adapter);
3913         iavf_reset_interrupt_capability(adapter);
3914
3915         mutex_unlock(&adapter->crit_lock);
3916
3917         return 0;
3918 }
3919
3920 /**
3921  * iavf_resume - Power management resume routine
3922  * @dev_d: device info pointer
3923  *
3924  * Called when the system (VM) is resumed from sleep/suspend.
3925  **/
3926 static int __maybe_unused iavf_resume(struct device *dev_d)
3927 {
3928         struct pci_dev *pdev = to_pci_dev(dev_d);
3929         struct iavf_adapter *adapter;
3930         u32 err;
3931
3932         adapter = iavf_pdev_to_adapter(pdev);
3933
3934         pci_set_master(pdev);
3935
3936         rtnl_lock();
3937         err = iavf_set_interrupt_capability(adapter);
3938         if (err) {
3939                 rtnl_unlock();
3940                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3941                 return err;
3942         }
3943         err = iavf_request_misc_irq(adapter);
3944         rtnl_unlock();
3945         if (err) {
3946                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3947                 return err;
3948         }
3949
3950         queue_work(iavf_wq, &adapter->reset_task);
3951
3952         netif_device_attach(adapter->netdev);
3953
3954         return err;
3955 }
3956
3957 /**
3958  * iavf_remove - Device Removal Routine
3959  * @pdev: PCI device information struct
3960  *
3961  * iavf_remove is called by the PCI subsystem to alert the driver
3962  * that it should release a PCI device.  The could be caused by a
3963  * Hot-Plug event, or because the driver is going to be removed from
3964  * memory.
3965  **/
3966 static void iavf_remove(struct pci_dev *pdev)
3967 {
3968         struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
3969         enum iavf_state_t prev_state = adapter->last_state;
3970         struct net_device *netdev = adapter->netdev;
3971         struct iavf_fdir_fltr *fdir, *fdirtmp;
3972         struct iavf_vlan_filter *vlf, *vlftmp;
3973         struct iavf_adv_rss *rss, *rsstmp;
3974         struct iavf_mac_filter *f, *ftmp;
3975         struct iavf_cloud_filter *cf, *cftmp;
3976         struct iavf_hw *hw = &adapter->hw;
3977         int err;
3978         /* Indicate we are in remove and not to run reset_task */
3979         mutex_lock(&adapter->remove_lock);
3980         cancel_work_sync(&adapter->reset_task);
3981         cancel_delayed_work_sync(&adapter->watchdog_task);
3982         cancel_delayed_work_sync(&adapter->client_task);
3983         if (adapter->netdev_registered) {
3984                 unregister_netdev(netdev);
3985                 adapter->netdev_registered = false;
3986         }
3987         if (CLIENT_ALLOWED(adapter)) {
3988                 err = iavf_lan_del_device(adapter);
3989                 if (err)
3990                         dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3991                                  err);
3992         }
3993
3994         iavf_request_reset(adapter);
3995         msleep(50);
3996         /* If the FW isn't responding, kick it once, but only once. */
3997         if (!iavf_asq_done(hw)) {
3998                 iavf_request_reset(adapter);
3999                 msleep(50);
4000         }
4001         if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4002                 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4003
4004         /* Shut down all the garbage mashers on the detention level */
4005         iavf_change_state(adapter, __IAVF_REMOVE);
4006         adapter->aq_required = 0;
4007         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4008
4009         iavf_free_all_tx_resources(adapter);
4010         iavf_free_all_rx_resources(adapter);
4011         iavf_misc_irq_disable(adapter);
4012         iavf_free_misc_irq(adapter);
4013
4014         /* In case we enter iavf_remove from erroneous state, free traffic irqs
4015          * here, so as to not cause a kernel crash, when calling
4016          * iavf_reset_interrupt_capability.
4017          */
4018         if ((adapter->last_state == __IAVF_RESETTING &&
4019              prev_state != __IAVF_DOWN) ||
4020             (adapter->last_state == __IAVF_RUNNING &&
4021              !(netdev->flags & IFF_UP)))
4022                 iavf_free_traffic_irqs(adapter);
4023
4024         iavf_reset_interrupt_capability(adapter);
4025         iavf_free_q_vectors(adapter);
4026
4027         cancel_delayed_work_sync(&adapter->watchdog_task);
4028
4029         cancel_work_sync(&adapter->adminq_task);
4030
4031         iavf_free_rss(adapter);
4032
4033         if (hw->aq.asq.count)
4034                 iavf_shutdown_adminq(hw);
4035
4036         /* destroy the locks only once, here */
4037         mutex_destroy(&hw->aq.arq_mutex);
4038         mutex_destroy(&hw->aq.asq_mutex);
4039         mutex_destroy(&adapter->client_lock);
4040         mutex_unlock(&adapter->crit_lock);
4041         mutex_destroy(&adapter->crit_lock);
4042         mutex_unlock(&adapter->remove_lock);
4043         mutex_destroy(&adapter->remove_lock);
4044
4045         iounmap(hw->hw_addr);
4046         pci_release_regions(pdev);
4047         iavf_free_queues(adapter);
4048         kfree(adapter->vf_res);
4049         spin_lock_bh(&adapter->mac_vlan_list_lock);
4050         /* If we got removed before an up/down sequence, we've got a filter
4051          * hanging out there that we need to get rid of.
4052          */
4053         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4054                 list_del(&f->list);
4055                 kfree(f);
4056         }
4057         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4058                                  list) {
4059                 list_del(&vlf->list);
4060                 kfree(vlf);
4061         }
4062
4063         spin_unlock_bh(&adapter->mac_vlan_list_lock);
4064
4065         spin_lock_bh(&adapter->cloud_filter_list_lock);
4066         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4067                 list_del(&cf->list);
4068                 kfree(cf);
4069         }
4070         spin_unlock_bh(&adapter->cloud_filter_list_lock);
4071
4072         spin_lock_bh(&adapter->fdir_fltr_lock);
4073         list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4074                 list_del(&fdir->list);
4075                 kfree(fdir);
4076         }
4077         spin_unlock_bh(&adapter->fdir_fltr_lock);
4078
4079         spin_lock_bh(&adapter->adv_rss_lock);
4080         list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4081                                  list) {
4082                 list_del(&rss->list);
4083                 kfree(rss);
4084         }
4085         spin_unlock_bh(&adapter->adv_rss_lock);
4086
4087         free_netdev(netdev);
4088
4089         pci_disable_pcie_error_reporting(pdev);
4090
4091         pci_disable_device(pdev);
4092 }
4093
4094 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4095
4096 static struct pci_driver iavf_driver = {
4097         .name      = iavf_driver_name,
4098         .id_table  = iavf_pci_tbl,
4099         .probe     = iavf_probe,
4100         .remove    = iavf_remove,
4101         .driver.pm = &iavf_pm_ops,
4102         .shutdown  = iavf_shutdown,
4103 };
4104
4105 /**
4106  * iavf_init_module - Driver Registration Routine
4107  *
4108  * iavf_init_module is the first routine called when the driver is
4109  * loaded. All it does is register with the PCI subsystem.
4110  **/
4111 static int __init iavf_init_module(void)
4112 {
4113         int ret;
4114
4115         pr_info("iavf: %s\n", iavf_driver_string);
4116
4117         pr_info("%s\n", iavf_copyright);
4118
4119         iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4120                                   iavf_driver_name);
4121         if (!iavf_wq) {
4122                 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4123                 return -ENOMEM;
4124         }
4125         ret = pci_register_driver(&iavf_driver);
4126         return ret;
4127 }
4128
4129 module_init(iavf_init_module);
4130
4131 /**
4132  * iavf_exit_module - Driver Exit Cleanup Routine
4133  *
4134  * iavf_exit_module is called just before the driver is removed
4135  * from memory.
4136  **/
4137 static void __exit iavf_exit_module(void)
4138 {
4139         pci_unregister_driver(&iavf_driver);
4140         destroy_workqueue(iavf_wq);
4141 }
4142
4143 module_exit(iavf_exit_module);
4144
4145 /* iavf_main.c */