Input: vmmouse - disable vmmouse before entering suspend mode
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25         "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40         /* required last entry */
41         {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55  * iavf_pdev_to_adapter - go from pci_dev to adapter
56  * @pdev: pci_dev pointer
57  */
58 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
59 {
60         return netdev_priv(pci_get_drvdata(pdev));
61 }
62
63 /**
64  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
65  * @hw:   pointer to the HW structure
66  * @mem:  ptr to mem struct to fill out
67  * @size: size of memory requested
68  * @alignment: what to align the allocation to
69  **/
70 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
71                                          struct iavf_dma_mem *mem,
72                                          u64 size, u32 alignment)
73 {
74         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
75
76         if (!mem)
77                 return IAVF_ERR_PARAM;
78
79         mem->size = ALIGN(size, alignment);
80         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
81                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
82         if (mem->va)
83                 return 0;
84         else
85                 return IAVF_ERR_NO_MEMORY;
86 }
87
88 /**
89  * iavf_free_dma_mem_d - OS specific memory free for shared code
90  * @hw:   pointer to the HW structure
91  * @mem:  ptr to mem struct to free
92  **/
93 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
94                                      struct iavf_dma_mem *mem)
95 {
96         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
97
98         if (!mem || !mem->va)
99                 return IAVF_ERR_PARAM;
100         dma_free_coherent(&adapter->pdev->dev, mem->size,
101                           mem->va, (dma_addr_t)mem->pa);
102         return 0;
103 }
104
105 /**
106  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
107  * @hw:   pointer to the HW structure
108  * @mem:  ptr to mem struct to fill out
109  * @size: size of memory requested
110  **/
111 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
112                                           struct iavf_virt_mem *mem, u32 size)
113 {
114         if (!mem)
115                 return IAVF_ERR_PARAM;
116
117         mem->size = size;
118         mem->va = kzalloc(size, GFP_KERNEL);
119
120         if (mem->va)
121                 return 0;
122         else
123                 return IAVF_ERR_NO_MEMORY;
124 }
125
126 /**
127  * iavf_free_virt_mem_d - OS specific memory free for shared code
128  * @hw:   pointer to the HW structure
129  * @mem:  ptr to mem struct to free
130  **/
131 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
132                                       struct iavf_virt_mem *mem)
133 {
134         if (!mem)
135                 return IAVF_ERR_PARAM;
136
137         /* it's ok to kfree a NULL pointer */
138         kfree(mem->va);
139
140         return 0;
141 }
142
143 /**
144  * iavf_lock_timeout - try to lock mutex but give up after timeout
145  * @lock: mutex that should be locked
146  * @msecs: timeout in msecs
147  *
148  * Returns 0 on success, negative on failure
149  **/
150 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
151 {
152         unsigned int wait, delay = 10;
153
154         for (wait = 0; wait < msecs; wait += delay) {
155                 if (mutex_trylock(lock))
156                         return 0;
157
158                 msleep(delay);
159         }
160
161         return -1;
162 }
163
164 /**
165  * iavf_schedule_reset - Set the flags and schedule a reset event
166  * @adapter: board private structure
167  **/
168 void iavf_schedule_reset(struct iavf_adapter *adapter)
169 {
170         if (!(adapter->flags &
171               (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
172                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
173                 queue_work(iavf_wq, &adapter->reset_task);
174         }
175 }
176
177 /**
178  * iavf_schedule_request_stats - Set the flags and schedule statistics request
179  * @adapter: board private structure
180  *
181  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
182  * request and refresh ethtool stats
183  **/
184 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
185 {
186         adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
187         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
188 }
189
190 /**
191  * iavf_tx_timeout - Respond to a Tx Hang
192  * @netdev: network interface device structure
193  * @txqueue: queue number that is timing out
194  **/
195 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
196 {
197         struct iavf_adapter *adapter = netdev_priv(netdev);
198
199         adapter->tx_timeout_count++;
200         iavf_schedule_reset(adapter);
201 }
202
203 /**
204  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
205  * @adapter: board private structure
206  **/
207 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
208 {
209         struct iavf_hw *hw = &adapter->hw;
210
211         if (!adapter->msix_entries)
212                 return;
213
214         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
215
216         iavf_flush(hw);
217
218         synchronize_irq(adapter->msix_entries[0].vector);
219 }
220
221 /**
222  * iavf_misc_irq_enable - Enable default interrupt generation settings
223  * @adapter: board private structure
224  **/
225 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
226 {
227         struct iavf_hw *hw = &adapter->hw;
228
229         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
230                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
231         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
232
233         iavf_flush(hw);
234 }
235
236 /**
237  * iavf_irq_disable - Mask off interrupt generation on the NIC
238  * @adapter: board private structure
239  **/
240 static void iavf_irq_disable(struct iavf_adapter *adapter)
241 {
242         int i;
243         struct iavf_hw *hw = &adapter->hw;
244
245         if (!adapter->msix_entries)
246                 return;
247
248         for (i = 1; i < adapter->num_msix_vectors; i++) {
249                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
250                 synchronize_irq(adapter->msix_entries[i].vector);
251         }
252         iavf_flush(hw);
253 }
254
255 /**
256  * iavf_irq_enable_queues - Enable interrupt for specified queues
257  * @adapter: board private structure
258  * @mask: bitmap of queues to enable
259  **/
260 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
261 {
262         struct iavf_hw *hw = &adapter->hw;
263         int i;
264
265         for (i = 1; i < adapter->num_msix_vectors; i++) {
266                 if (mask & BIT(i - 1)) {
267                         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
268                              IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
269                              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
270                 }
271         }
272 }
273
274 /**
275  * iavf_irq_enable - Enable default interrupt generation settings
276  * @adapter: board private structure
277  * @flush: boolean value whether to run rd32()
278  **/
279 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
280 {
281         struct iavf_hw *hw = &adapter->hw;
282
283         iavf_misc_irq_enable(adapter);
284         iavf_irq_enable_queues(adapter, ~0);
285
286         if (flush)
287                 iavf_flush(hw);
288 }
289
290 /**
291  * iavf_msix_aq - Interrupt handler for vector 0
292  * @irq: interrupt number
293  * @data: pointer to netdev
294  **/
295 static irqreturn_t iavf_msix_aq(int irq, void *data)
296 {
297         struct net_device *netdev = data;
298         struct iavf_adapter *adapter = netdev_priv(netdev);
299         struct iavf_hw *hw = &adapter->hw;
300
301         /* handle non-queue interrupts, these reads clear the registers */
302         rd32(hw, IAVF_VFINT_ICR01);
303         rd32(hw, IAVF_VFINT_ICR0_ENA1);
304
305         if (adapter->state != __IAVF_REMOVE)
306                 /* schedule work on the private workqueue */
307                 queue_work(iavf_wq, &adapter->adminq_task);
308
309         return IRQ_HANDLED;
310 }
311
312 /**
313  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
314  * @irq: interrupt number
315  * @data: pointer to a q_vector
316  **/
317 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
318 {
319         struct iavf_q_vector *q_vector = data;
320
321         if (!q_vector->tx.ring && !q_vector->rx.ring)
322                 return IRQ_HANDLED;
323
324         napi_schedule_irqoff(&q_vector->napi);
325
326         return IRQ_HANDLED;
327 }
328
329 /**
330  * iavf_map_vector_to_rxq - associate irqs with rx queues
331  * @adapter: board private structure
332  * @v_idx: interrupt number
333  * @r_idx: queue number
334  **/
335 static void
336 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
337 {
338         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
339         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
340         struct iavf_hw *hw = &adapter->hw;
341
342         rx_ring->q_vector = q_vector;
343         rx_ring->next = q_vector->rx.ring;
344         rx_ring->vsi = &adapter->vsi;
345         q_vector->rx.ring = rx_ring;
346         q_vector->rx.count++;
347         q_vector->rx.next_update = jiffies + 1;
348         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
349         q_vector->ring_mask |= BIT(r_idx);
350         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
351              q_vector->rx.current_itr >> 1);
352         q_vector->rx.current_itr = q_vector->rx.target_itr;
353 }
354
355 /**
356  * iavf_map_vector_to_txq - associate irqs with tx queues
357  * @adapter: board private structure
358  * @v_idx: interrupt number
359  * @t_idx: queue number
360  **/
361 static void
362 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
363 {
364         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
365         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
366         struct iavf_hw *hw = &adapter->hw;
367
368         tx_ring->q_vector = q_vector;
369         tx_ring->next = q_vector->tx.ring;
370         tx_ring->vsi = &adapter->vsi;
371         q_vector->tx.ring = tx_ring;
372         q_vector->tx.count++;
373         q_vector->tx.next_update = jiffies + 1;
374         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
375         q_vector->num_ringpairs++;
376         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
377              q_vector->tx.target_itr >> 1);
378         q_vector->tx.current_itr = q_vector->tx.target_itr;
379 }
380
381 /**
382  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
383  * @adapter: board private structure to initialize
384  *
385  * This function maps descriptor rings to the queue-specific vectors
386  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
387  * one vector per ring/queue, but on a constrained vector budget, we
388  * group the rings as "efficiently" as possible.  You would add new
389  * mapping configurations in here.
390  **/
391 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
392 {
393         int rings_remaining = adapter->num_active_queues;
394         int ridx = 0, vidx = 0;
395         int q_vectors;
396
397         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
398
399         for (; ridx < rings_remaining; ridx++) {
400                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
401                 iavf_map_vector_to_txq(adapter, vidx, ridx);
402
403                 /* In the case where we have more queues than vectors, continue
404                  * round-robin on vectors until all queues are mapped.
405                  */
406                 if (++vidx >= q_vectors)
407                         vidx = 0;
408         }
409
410         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
411 }
412
413 /**
414  * iavf_irq_affinity_notify - Callback for affinity changes
415  * @notify: context as to what irq was changed
416  * @mask: the new affinity mask
417  *
418  * This is a callback function used by the irq_set_affinity_notifier function
419  * so that we may register to receive changes to the irq affinity masks.
420  **/
421 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
422                                      const cpumask_t *mask)
423 {
424         struct iavf_q_vector *q_vector =
425                 container_of(notify, struct iavf_q_vector, affinity_notify);
426
427         cpumask_copy(&q_vector->affinity_mask, mask);
428 }
429
430 /**
431  * iavf_irq_affinity_release - Callback for affinity notifier release
432  * @ref: internal core kernel usage
433  *
434  * This is a callback function used by the irq_set_affinity_notifier function
435  * to inform the current notification subscriber that they will no longer
436  * receive notifications.
437  **/
438 static void iavf_irq_affinity_release(struct kref *ref) {}
439
440 /**
441  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
442  * @adapter: board private structure
443  * @basename: device basename
444  *
445  * Allocates MSI-X vectors for tx and rx handling, and requests
446  * interrupts from the kernel.
447  **/
448 static int
449 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
450 {
451         unsigned int vector, q_vectors;
452         unsigned int rx_int_idx = 0, tx_int_idx = 0;
453         int irq_num, err;
454         int cpu;
455
456         iavf_irq_disable(adapter);
457         /* Decrement for Other and TCP Timer vectors */
458         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
459
460         for (vector = 0; vector < q_vectors; vector++) {
461                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
462
463                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
464
465                 if (q_vector->tx.ring && q_vector->rx.ring) {
466                         snprintf(q_vector->name, sizeof(q_vector->name),
467                                  "iavf-%s-TxRx-%u", basename, rx_int_idx++);
468                         tx_int_idx++;
469                 } else if (q_vector->rx.ring) {
470                         snprintf(q_vector->name, sizeof(q_vector->name),
471                                  "iavf-%s-rx-%u", basename, rx_int_idx++);
472                 } else if (q_vector->tx.ring) {
473                         snprintf(q_vector->name, sizeof(q_vector->name),
474                                  "iavf-%s-tx-%u", basename, tx_int_idx++);
475                 } else {
476                         /* skip this unused q_vector */
477                         continue;
478                 }
479                 err = request_irq(irq_num,
480                                   iavf_msix_clean_rings,
481                                   0,
482                                   q_vector->name,
483                                   q_vector);
484                 if (err) {
485                         dev_info(&adapter->pdev->dev,
486                                  "Request_irq failed, error: %d\n", err);
487                         goto free_queue_irqs;
488                 }
489                 /* register for affinity change notifications */
490                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
491                 q_vector->affinity_notify.release =
492                                                    iavf_irq_affinity_release;
493                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
494                 /* Spread the IRQ affinity hints across online CPUs. Note that
495                  * get_cpu_mask returns a mask with a permanent lifetime so
496                  * it's safe to use as a hint for irq_update_affinity_hint.
497                  */
498                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
499                 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
500         }
501
502         return 0;
503
504 free_queue_irqs:
505         while (vector) {
506                 vector--;
507                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
508                 irq_set_affinity_notifier(irq_num, NULL);
509                 irq_update_affinity_hint(irq_num, NULL);
510                 free_irq(irq_num, &adapter->q_vectors[vector]);
511         }
512         return err;
513 }
514
515 /**
516  * iavf_request_misc_irq - Initialize MSI-X interrupts
517  * @adapter: board private structure
518  *
519  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
520  * vector is only for the admin queue, and stays active even when the netdev
521  * is closed.
522  **/
523 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
524 {
525         struct net_device *netdev = adapter->netdev;
526         int err;
527
528         snprintf(adapter->misc_vector_name,
529                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
530                  dev_name(&adapter->pdev->dev));
531         err = request_irq(adapter->msix_entries[0].vector,
532                           &iavf_msix_aq, 0,
533                           adapter->misc_vector_name, netdev);
534         if (err) {
535                 dev_err(&adapter->pdev->dev,
536                         "request_irq for %s failed: %d\n",
537                         adapter->misc_vector_name, err);
538                 free_irq(adapter->msix_entries[0].vector, netdev);
539         }
540         return err;
541 }
542
543 /**
544  * iavf_free_traffic_irqs - Free MSI-X interrupts
545  * @adapter: board private structure
546  *
547  * Frees all MSI-X vectors other than 0.
548  **/
549 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
550 {
551         int vector, irq_num, q_vectors;
552
553         if (!adapter->msix_entries)
554                 return;
555
556         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
557
558         for (vector = 0; vector < q_vectors; vector++) {
559                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
560                 irq_set_affinity_notifier(irq_num, NULL);
561                 irq_update_affinity_hint(irq_num, NULL);
562                 free_irq(irq_num, &adapter->q_vectors[vector]);
563         }
564 }
565
566 /**
567  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
568  * @adapter: board private structure
569  *
570  * Frees MSI-X vector 0.
571  **/
572 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
573 {
574         struct net_device *netdev = adapter->netdev;
575
576         if (!adapter->msix_entries)
577                 return;
578
579         free_irq(adapter->msix_entries[0].vector, netdev);
580 }
581
582 /**
583  * iavf_configure_tx - Configure Transmit Unit after Reset
584  * @adapter: board private structure
585  *
586  * Configure the Tx unit of the MAC after a reset.
587  **/
588 static void iavf_configure_tx(struct iavf_adapter *adapter)
589 {
590         struct iavf_hw *hw = &adapter->hw;
591         int i;
592
593         for (i = 0; i < adapter->num_active_queues; i++)
594                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
595 }
596
597 /**
598  * iavf_configure_rx - Configure Receive Unit after Reset
599  * @adapter: board private structure
600  *
601  * Configure the Rx unit of the MAC after a reset.
602  **/
603 static void iavf_configure_rx(struct iavf_adapter *adapter)
604 {
605         unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
606         struct iavf_hw *hw = &adapter->hw;
607         int i;
608
609         /* Legacy Rx will always default to a 2048 buffer size. */
610 #if (PAGE_SIZE < 8192)
611         if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
612                 struct net_device *netdev = adapter->netdev;
613
614                 /* For jumbo frames on systems with 4K pages we have to use
615                  * an order 1 page, so we might as well increase the size
616                  * of our Rx buffer to make better use of the available space
617                  */
618                 rx_buf_len = IAVF_RXBUFFER_3072;
619
620                 /* We use a 1536 buffer size for configurations with
621                  * standard Ethernet mtu.  On x86 this gives us enough room
622                  * for shared info and 192 bytes of padding.
623                  */
624                 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
625                     (netdev->mtu <= ETH_DATA_LEN))
626                         rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
627         }
628 #endif
629
630         for (i = 0; i < adapter->num_active_queues; i++) {
631                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
632                 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
633
634                 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
635                         clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
636                 else
637                         set_ring_build_skb_enabled(&adapter->rx_rings[i]);
638         }
639 }
640
641 /**
642  * iavf_find_vlan - Search filter list for specific vlan filter
643  * @adapter: board private structure
644  * @vlan: vlan tag
645  *
646  * Returns ptr to the filter object or NULL. Must be called while holding the
647  * mac_vlan_list_lock.
648  **/
649 static struct
650 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
651                                  struct iavf_vlan vlan)
652 {
653         struct iavf_vlan_filter *f;
654
655         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
656                 if (f->vlan.vid == vlan.vid &&
657                     f->vlan.tpid == vlan.tpid)
658                         return f;
659         }
660
661         return NULL;
662 }
663
664 /**
665  * iavf_add_vlan - Add a vlan filter to the list
666  * @adapter: board private structure
667  * @vlan: VLAN tag
668  *
669  * Returns ptr to the filter object or NULL when no memory available.
670  **/
671 static struct
672 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
673                                 struct iavf_vlan vlan)
674 {
675         struct iavf_vlan_filter *f = NULL;
676
677         spin_lock_bh(&adapter->mac_vlan_list_lock);
678
679         f = iavf_find_vlan(adapter, vlan);
680         if (!f) {
681                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
682                 if (!f)
683                         goto clearout;
684
685                 f->vlan = vlan;
686
687                 list_add_tail(&f->list, &adapter->vlan_filter_list);
688                 f->add = true;
689                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
690         }
691
692 clearout:
693         spin_unlock_bh(&adapter->mac_vlan_list_lock);
694         return f;
695 }
696
697 /**
698  * iavf_del_vlan - Remove a vlan filter from the list
699  * @adapter: board private structure
700  * @vlan: VLAN tag
701  **/
702 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
703 {
704         struct iavf_vlan_filter *f;
705
706         spin_lock_bh(&adapter->mac_vlan_list_lock);
707
708         f = iavf_find_vlan(adapter, vlan);
709         if (f) {
710                 f->remove = true;
711                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
712         }
713
714         spin_unlock_bh(&adapter->mac_vlan_list_lock);
715 }
716
717 /**
718  * iavf_restore_filters
719  * @adapter: board private structure
720  *
721  * Restore existing non MAC filters when VF netdev comes back up
722  **/
723 static void iavf_restore_filters(struct iavf_adapter *adapter)
724 {
725         u16 vid;
726
727         /* re-add all VLAN filters */
728         for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
729                 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
730
731         for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
732                 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
733 }
734
735 /**
736  * iavf_get_num_vlans_added - get number of VLANs added
737  * @adapter: board private structure
738  */
739 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
740 {
741         return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
742                 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
743 }
744
745 /**
746  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
747  * @adapter: board private structure
748  *
749  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
750  * do not impose a limit as that maintains current behavior and for
751  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
752  **/
753 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
754 {
755         /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
756          * never been a limit on the VF driver side
757          */
758         if (VLAN_ALLOWED(adapter))
759                 return VLAN_N_VID;
760         else if (VLAN_V2_ALLOWED(adapter))
761                 return adapter->vlan_v2_caps.filtering.max_filters;
762
763         return 0;
764 }
765
766 /**
767  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
768  * @adapter: board private structure
769  **/
770 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
771 {
772         if (iavf_get_num_vlans_added(adapter) <
773             iavf_get_max_vlans_allowed(adapter))
774                 return false;
775
776         return true;
777 }
778
779 /**
780  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
781  * @netdev: network device struct
782  * @proto: unused protocol data
783  * @vid: VLAN tag
784  **/
785 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
786                                 __always_unused __be16 proto, u16 vid)
787 {
788         struct iavf_adapter *adapter = netdev_priv(netdev);
789
790         if (!VLAN_FILTERING_ALLOWED(adapter))
791                 return -EIO;
792
793         if (iavf_max_vlans_added(adapter)) {
794                 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
795                            iavf_get_max_vlans_allowed(adapter));
796                 return -EIO;
797         }
798
799         if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
800                 return -ENOMEM;
801
802         if (proto == cpu_to_be16(ETH_P_8021Q))
803                 set_bit(vid, adapter->vsi.active_cvlans);
804         else
805                 set_bit(vid, adapter->vsi.active_svlans);
806
807         return 0;
808 }
809
810 /**
811  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
812  * @netdev: network device struct
813  * @proto: unused protocol data
814  * @vid: VLAN tag
815  **/
816 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
817                                  __always_unused __be16 proto, u16 vid)
818 {
819         struct iavf_adapter *adapter = netdev_priv(netdev);
820
821         iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
822         if (proto == cpu_to_be16(ETH_P_8021Q))
823                 clear_bit(vid, adapter->vsi.active_cvlans);
824         else
825                 clear_bit(vid, adapter->vsi.active_svlans);
826
827         return 0;
828 }
829
830 /**
831  * iavf_find_filter - Search filter list for specific mac filter
832  * @adapter: board private structure
833  * @macaddr: the MAC address
834  *
835  * Returns ptr to the filter object or NULL. Must be called while holding the
836  * mac_vlan_list_lock.
837  **/
838 static struct
839 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
840                                   const u8 *macaddr)
841 {
842         struct iavf_mac_filter *f;
843
844         if (!macaddr)
845                 return NULL;
846
847         list_for_each_entry(f, &adapter->mac_filter_list, list) {
848                 if (ether_addr_equal(macaddr, f->macaddr))
849                         return f;
850         }
851         return NULL;
852 }
853
854 /**
855  * iavf_add_filter - Add a mac filter to the filter list
856  * @adapter: board private structure
857  * @macaddr: the MAC address
858  *
859  * Returns ptr to the filter object or NULL when no memory available.
860  **/
861 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
862                                         const u8 *macaddr)
863 {
864         struct iavf_mac_filter *f;
865
866         if (!macaddr)
867                 return NULL;
868
869         f = iavf_find_filter(adapter, macaddr);
870         if (!f) {
871                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
872                 if (!f)
873                         return f;
874
875                 ether_addr_copy(f->macaddr, macaddr);
876
877                 list_add_tail(&f->list, &adapter->mac_filter_list);
878                 f->add = true;
879                 f->is_new_mac = true;
880                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
881         } else {
882                 f->remove = false;
883         }
884
885         return f;
886 }
887
888 /**
889  * iavf_set_mac - NDO callback to set port mac address
890  * @netdev: network interface device structure
891  * @p: pointer to an address structure
892  *
893  * Returns 0 on success, negative on failure
894  **/
895 static int iavf_set_mac(struct net_device *netdev, void *p)
896 {
897         struct iavf_adapter *adapter = netdev_priv(netdev);
898         struct iavf_hw *hw = &adapter->hw;
899         struct iavf_mac_filter *f;
900         struct sockaddr *addr = p;
901
902         if (!is_valid_ether_addr(addr->sa_data))
903                 return -EADDRNOTAVAIL;
904
905         if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
906                 return 0;
907
908         spin_lock_bh(&adapter->mac_vlan_list_lock);
909
910         f = iavf_find_filter(adapter, hw->mac.addr);
911         if (f) {
912                 f->remove = true;
913                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
914         }
915
916         f = iavf_add_filter(adapter, addr->sa_data);
917
918         spin_unlock_bh(&adapter->mac_vlan_list_lock);
919
920         if (f) {
921                 ether_addr_copy(hw->mac.addr, addr->sa_data);
922         }
923
924         return (f == NULL) ? -ENOMEM : 0;
925 }
926
927 /**
928  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
929  * @netdev: the netdevice
930  * @addr: address to add
931  *
932  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
933  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
934  */
935 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
936 {
937         struct iavf_adapter *adapter = netdev_priv(netdev);
938
939         if (iavf_add_filter(adapter, addr))
940                 return 0;
941         else
942                 return -ENOMEM;
943 }
944
945 /**
946  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
947  * @netdev: the netdevice
948  * @addr: address to add
949  *
950  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
951  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
952  */
953 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
954 {
955         struct iavf_adapter *adapter = netdev_priv(netdev);
956         struct iavf_mac_filter *f;
957
958         /* Under some circumstances, we might receive a request to delete
959          * our own device address from our uc list. Because we store the
960          * device address in the VSI's MAC/VLAN filter list, we need to ignore
961          * such requests and not delete our device address from this list.
962          */
963         if (ether_addr_equal(addr, netdev->dev_addr))
964                 return 0;
965
966         f = iavf_find_filter(adapter, addr);
967         if (f) {
968                 f->remove = true;
969                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
970         }
971         return 0;
972 }
973
974 /**
975  * iavf_set_rx_mode - NDO callback to set the netdev filters
976  * @netdev: network interface device structure
977  **/
978 static void iavf_set_rx_mode(struct net_device *netdev)
979 {
980         struct iavf_adapter *adapter = netdev_priv(netdev);
981
982         spin_lock_bh(&adapter->mac_vlan_list_lock);
983         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
984         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
985         spin_unlock_bh(&adapter->mac_vlan_list_lock);
986
987         if (netdev->flags & IFF_PROMISC &&
988             !(adapter->flags & IAVF_FLAG_PROMISC_ON))
989                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
990         else if (!(netdev->flags & IFF_PROMISC) &&
991                  adapter->flags & IAVF_FLAG_PROMISC_ON)
992                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
993
994         if (netdev->flags & IFF_ALLMULTI &&
995             !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
996                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
997         else if (!(netdev->flags & IFF_ALLMULTI) &&
998                  adapter->flags & IAVF_FLAG_ALLMULTI_ON)
999                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1000 }
1001
1002 /**
1003  * iavf_napi_enable_all - enable NAPI on all queue vectors
1004  * @adapter: board private structure
1005  **/
1006 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1007 {
1008         int q_idx;
1009         struct iavf_q_vector *q_vector;
1010         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1011
1012         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1013                 struct napi_struct *napi;
1014
1015                 q_vector = &adapter->q_vectors[q_idx];
1016                 napi = &q_vector->napi;
1017                 napi_enable(napi);
1018         }
1019 }
1020
1021 /**
1022  * iavf_napi_disable_all - disable NAPI on all queue vectors
1023  * @adapter: board private structure
1024  **/
1025 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1026 {
1027         int q_idx;
1028         struct iavf_q_vector *q_vector;
1029         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1030
1031         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1032                 q_vector = &adapter->q_vectors[q_idx];
1033                 napi_disable(&q_vector->napi);
1034         }
1035 }
1036
1037 /**
1038  * iavf_configure - set up transmit and receive data structures
1039  * @adapter: board private structure
1040  **/
1041 static void iavf_configure(struct iavf_adapter *adapter)
1042 {
1043         struct net_device *netdev = adapter->netdev;
1044         int i;
1045
1046         iavf_set_rx_mode(netdev);
1047
1048         iavf_configure_tx(adapter);
1049         iavf_configure_rx(adapter);
1050         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1051
1052         for (i = 0; i < adapter->num_active_queues; i++) {
1053                 struct iavf_ring *ring = &adapter->rx_rings[i];
1054
1055                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1056         }
1057 }
1058
1059 /**
1060  * iavf_up_complete - Finish the last steps of bringing up a connection
1061  * @adapter: board private structure
1062  *
1063  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1064  **/
1065 static void iavf_up_complete(struct iavf_adapter *adapter)
1066 {
1067         iavf_change_state(adapter, __IAVF_RUNNING);
1068         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1069
1070         iavf_napi_enable_all(adapter);
1071
1072         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1073         if (CLIENT_ENABLED(adapter))
1074                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1075         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1076 }
1077
1078 /**
1079  * iavf_down - Shutdown the connection processing
1080  * @adapter: board private structure
1081  *
1082  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1083  **/
1084 void iavf_down(struct iavf_adapter *adapter)
1085 {
1086         struct net_device *netdev = adapter->netdev;
1087         struct iavf_vlan_filter *vlf;
1088         struct iavf_cloud_filter *cf;
1089         struct iavf_fdir_fltr *fdir;
1090         struct iavf_mac_filter *f;
1091         struct iavf_adv_rss *rss;
1092
1093         if (adapter->state <= __IAVF_DOWN_PENDING)
1094                 return;
1095
1096         netif_carrier_off(netdev);
1097         netif_tx_disable(netdev);
1098         adapter->link_up = false;
1099         iavf_napi_disable_all(adapter);
1100         iavf_irq_disable(adapter);
1101
1102         spin_lock_bh(&adapter->mac_vlan_list_lock);
1103
1104         /* clear the sync flag on all filters */
1105         __dev_uc_unsync(adapter->netdev, NULL);
1106         __dev_mc_unsync(adapter->netdev, NULL);
1107
1108         /* remove all MAC filters */
1109         list_for_each_entry(f, &adapter->mac_filter_list, list) {
1110                 f->remove = true;
1111         }
1112
1113         /* remove all VLAN filters */
1114         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1115                 vlf->remove = true;
1116         }
1117
1118         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1119
1120         /* remove all cloud filters */
1121         spin_lock_bh(&adapter->cloud_filter_list_lock);
1122         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1123                 cf->del = true;
1124         }
1125         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1126
1127         /* remove all Flow Director filters */
1128         spin_lock_bh(&adapter->fdir_fltr_lock);
1129         list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1130                 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1131         }
1132         spin_unlock_bh(&adapter->fdir_fltr_lock);
1133
1134         /* remove all advance RSS configuration */
1135         spin_lock_bh(&adapter->adv_rss_lock);
1136         list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1137                 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1138         spin_unlock_bh(&adapter->adv_rss_lock);
1139
1140         if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1141                 /* cancel any current operation */
1142                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1143                 /* Schedule operations to close down the HW. Don't wait
1144                  * here for this to complete. The watchdog is still running
1145                  * and it will take care of this.
1146                  */
1147                 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1148                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1149                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1150                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1151                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1152                 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1153         }
1154
1155         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1156 }
1157
1158 /**
1159  * iavf_acquire_msix_vectors - Setup the MSIX capability
1160  * @adapter: board private structure
1161  * @vectors: number of vectors to request
1162  *
1163  * Work with the OS to set up the MSIX vectors needed.
1164  *
1165  * Returns 0 on success, negative on failure
1166  **/
1167 static int
1168 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1169 {
1170         int err, vector_threshold;
1171
1172         /* We'll want at least 3 (vector_threshold):
1173          * 0) Other (Admin Queue and link, mostly)
1174          * 1) TxQ[0] Cleanup
1175          * 2) RxQ[0] Cleanup
1176          */
1177         vector_threshold = MIN_MSIX_COUNT;
1178
1179         /* The more we get, the more we will assign to Tx/Rx Cleanup
1180          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1181          * Right now, we simply care about how many we'll get; we'll
1182          * set them up later while requesting irq's.
1183          */
1184         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1185                                     vector_threshold, vectors);
1186         if (err < 0) {
1187                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1188                 kfree(adapter->msix_entries);
1189                 adapter->msix_entries = NULL;
1190                 return err;
1191         }
1192
1193         /* Adjust for only the vectors we'll use, which is minimum
1194          * of max_msix_q_vectors + NONQ_VECS, or the number of
1195          * vectors we were allocated.
1196          */
1197         adapter->num_msix_vectors = err;
1198         return 0;
1199 }
1200
1201 /**
1202  * iavf_free_queues - Free memory for all rings
1203  * @adapter: board private structure to initialize
1204  *
1205  * Free all of the memory associated with queue pairs.
1206  **/
1207 static void iavf_free_queues(struct iavf_adapter *adapter)
1208 {
1209         if (!adapter->vsi_res)
1210                 return;
1211         adapter->num_active_queues = 0;
1212         kfree(adapter->tx_rings);
1213         adapter->tx_rings = NULL;
1214         kfree(adapter->rx_rings);
1215         adapter->rx_rings = NULL;
1216 }
1217
1218 /**
1219  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1220  * @adapter: board private structure
1221  *
1222  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1223  * stripped in certain descriptor fields. Instead of checking the offload
1224  * capability bits in the hot path, cache the location the ring specific
1225  * flags.
1226  */
1227 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1228 {
1229         int i;
1230
1231         for (i = 0; i < adapter->num_active_queues; i++) {
1232                 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1233                 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1234
1235                 /* prevent multiple L2TAG bits being set after VFR */
1236                 tx_ring->flags &=
1237                         ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1238                           IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1239                 rx_ring->flags &=
1240                         ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1241                           IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1242
1243                 if (VLAN_ALLOWED(adapter)) {
1244                         tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1245                         rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1246                 } else if (VLAN_V2_ALLOWED(adapter)) {
1247                         struct virtchnl_vlan_supported_caps *stripping_support;
1248                         struct virtchnl_vlan_supported_caps *insertion_support;
1249
1250                         stripping_support =
1251                                 &adapter->vlan_v2_caps.offloads.stripping_support;
1252                         insertion_support =
1253                                 &adapter->vlan_v2_caps.offloads.insertion_support;
1254
1255                         if (stripping_support->outer) {
1256                                 if (stripping_support->outer &
1257                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1258                                         rx_ring->flags |=
1259                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1260                                 else if (stripping_support->outer &
1261                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1262                                         rx_ring->flags |=
1263                                                 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1264                         } else if (stripping_support->inner) {
1265                                 if (stripping_support->inner &
1266                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1267                                         rx_ring->flags |=
1268                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1269                                 else if (stripping_support->inner &
1270                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1271                                         rx_ring->flags |=
1272                                                 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1273                         }
1274
1275                         if (insertion_support->outer) {
1276                                 if (insertion_support->outer &
1277                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1278                                         tx_ring->flags |=
1279                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1280                                 else if (insertion_support->outer &
1281                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1282                                         tx_ring->flags |=
1283                                                 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1284                         } else if (insertion_support->inner) {
1285                                 if (insertion_support->inner &
1286                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1287                                         tx_ring->flags |=
1288                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1289                                 else if (insertion_support->inner &
1290                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1291                                         tx_ring->flags |=
1292                                                 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1293                         }
1294                 }
1295         }
1296 }
1297
1298 /**
1299  * iavf_alloc_queues - Allocate memory for all rings
1300  * @adapter: board private structure to initialize
1301  *
1302  * We allocate one ring per queue at run-time since we don't know the
1303  * number of queues at compile-time.  The polling_netdev array is
1304  * intended for Multiqueue, but should work fine with a single queue.
1305  **/
1306 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1307 {
1308         int i, num_active_queues;
1309
1310         /* If we're in reset reallocating queues we don't actually know yet for
1311          * certain the PF gave us the number of queues we asked for but we'll
1312          * assume it did.  Once basic reset is finished we'll confirm once we
1313          * start negotiating config with PF.
1314          */
1315         if (adapter->num_req_queues)
1316                 num_active_queues = adapter->num_req_queues;
1317         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1318                  adapter->num_tc)
1319                 num_active_queues = adapter->ch_config.total_qps;
1320         else
1321                 num_active_queues = min_t(int,
1322                                           adapter->vsi_res->num_queue_pairs,
1323                                           (int)(num_online_cpus()));
1324
1325
1326         adapter->tx_rings = kcalloc(num_active_queues,
1327                                     sizeof(struct iavf_ring), GFP_KERNEL);
1328         if (!adapter->tx_rings)
1329                 goto err_out;
1330         adapter->rx_rings = kcalloc(num_active_queues,
1331                                     sizeof(struct iavf_ring), GFP_KERNEL);
1332         if (!adapter->rx_rings)
1333                 goto err_out;
1334
1335         for (i = 0; i < num_active_queues; i++) {
1336                 struct iavf_ring *tx_ring;
1337                 struct iavf_ring *rx_ring;
1338
1339                 tx_ring = &adapter->tx_rings[i];
1340
1341                 tx_ring->queue_index = i;
1342                 tx_ring->netdev = adapter->netdev;
1343                 tx_ring->dev = &adapter->pdev->dev;
1344                 tx_ring->count = adapter->tx_desc_count;
1345                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1346                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1347                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1348
1349                 rx_ring = &adapter->rx_rings[i];
1350                 rx_ring->queue_index = i;
1351                 rx_ring->netdev = adapter->netdev;
1352                 rx_ring->dev = &adapter->pdev->dev;
1353                 rx_ring->count = adapter->rx_desc_count;
1354                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1355         }
1356
1357         adapter->num_active_queues = num_active_queues;
1358
1359         iavf_set_queue_vlan_tag_loc(adapter);
1360
1361         return 0;
1362
1363 err_out:
1364         iavf_free_queues(adapter);
1365         return -ENOMEM;
1366 }
1367
1368 /**
1369  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1370  * @adapter: board private structure to initialize
1371  *
1372  * Attempt to configure the interrupts using the best available
1373  * capabilities of the hardware and the kernel.
1374  **/
1375 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1376 {
1377         int vector, v_budget;
1378         int pairs = 0;
1379         int err = 0;
1380
1381         if (!adapter->vsi_res) {
1382                 err = -EIO;
1383                 goto out;
1384         }
1385         pairs = adapter->num_active_queues;
1386
1387         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1388          * us much good if we have more vectors than CPUs. However, we already
1389          * limit the total number of queues by the number of CPUs so we do not
1390          * need any further limiting here.
1391          */
1392         v_budget = min_t(int, pairs + NONQ_VECS,
1393                          (int)adapter->vf_res->max_vectors);
1394
1395         adapter->msix_entries = kcalloc(v_budget,
1396                                         sizeof(struct msix_entry), GFP_KERNEL);
1397         if (!adapter->msix_entries) {
1398                 err = -ENOMEM;
1399                 goto out;
1400         }
1401
1402         for (vector = 0; vector < v_budget; vector++)
1403                 adapter->msix_entries[vector].entry = vector;
1404
1405         err = iavf_acquire_msix_vectors(adapter, v_budget);
1406
1407 out:
1408         netif_set_real_num_rx_queues(adapter->netdev, pairs);
1409         netif_set_real_num_tx_queues(adapter->netdev, pairs);
1410         return err;
1411 }
1412
1413 /**
1414  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1415  * @adapter: board private structure
1416  *
1417  * Return 0 on success, negative on failure
1418  **/
1419 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1420 {
1421         struct iavf_aqc_get_set_rss_key_data *rss_key =
1422                 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1423         struct iavf_hw *hw = &adapter->hw;
1424         int ret = 0;
1425
1426         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1427                 /* bail because we already have a command pending */
1428                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1429                         adapter->current_op);
1430                 return -EBUSY;
1431         }
1432
1433         ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1434         if (ret) {
1435                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1436                         iavf_stat_str(hw, ret),
1437                         iavf_aq_str(hw, hw->aq.asq_last_status));
1438                 return ret;
1439
1440         }
1441
1442         ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1443                                   adapter->rss_lut, adapter->rss_lut_size);
1444         if (ret) {
1445                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1446                         iavf_stat_str(hw, ret),
1447                         iavf_aq_str(hw, hw->aq.asq_last_status));
1448         }
1449
1450         return ret;
1451
1452 }
1453
1454 /**
1455  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1456  * @adapter: board private structure
1457  *
1458  * Returns 0 on success, negative on failure
1459  **/
1460 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1461 {
1462         struct iavf_hw *hw = &adapter->hw;
1463         u32 *dw;
1464         u16 i;
1465
1466         dw = (u32 *)adapter->rss_key;
1467         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1468                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1469
1470         dw = (u32 *)adapter->rss_lut;
1471         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1472                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1473
1474         iavf_flush(hw);
1475
1476         return 0;
1477 }
1478
1479 /**
1480  * iavf_config_rss - Configure RSS keys and lut
1481  * @adapter: board private structure
1482  *
1483  * Returns 0 on success, negative on failure
1484  **/
1485 int iavf_config_rss(struct iavf_adapter *adapter)
1486 {
1487
1488         if (RSS_PF(adapter)) {
1489                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1490                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1491                 return 0;
1492         } else if (RSS_AQ(adapter)) {
1493                 return iavf_config_rss_aq(adapter);
1494         } else {
1495                 return iavf_config_rss_reg(adapter);
1496         }
1497 }
1498
1499 /**
1500  * iavf_fill_rss_lut - Fill the lut with default values
1501  * @adapter: board private structure
1502  **/
1503 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1504 {
1505         u16 i;
1506
1507         for (i = 0; i < adapter->rss_lut_size; i++)
1508                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1509 }
1510
1511 /**
1512  * iavf_init_rss - Prepare for RSS
1513  * @adapter: board private structure
1514  *
1515  * Return 0 on success, negative on failure
1516  **/
1517 static int iavf_init_rss(struct iavf_adapter *adapter)
1518 {
1519         struct iavf_hw *hw = &adapter->hw;
1520         int ret;
1521
1522         if (!RSS_PF(adapter)) {
1523                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1524                 if (adapter->vf_res->vf_cap_flags &
1525                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1526                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1527                 else
1528                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1529
1530                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1531                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1532         }
1533
1534         iavf_fill_rss_lut(adapter);
1535         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1536         ret = iavf_config_rss(adapter);
1537
1538         return ret;
1539 }
1540
1541 /**
1542  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1543  * @adapter: board private structure to initialize
1544  *
1545  * We allocate one q_vector per queue interrupt.  If allocation fails we
1546  * return -ENOMEM.
1547  **/
1548 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1549 {
1550         int q_idx = 0, num_q_vectors;
1551         struct iavf_q_vector *q_vector;
1552
1553         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1554         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1555                                      GFP_KERNEL);
1556         if (!adapter->q_vectors)
1557                 return -ENOMEM;
1558
1559         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1560                 q_vector = &adapter->q_vectors[q_idx];
1561                 q_vector->adapter = adapter;
1562                 q_vector->vsi = &adapter->vsi;
1563                 q_vector->v_idx = q_idx;
1564                 q_vector->reg_idx = q_idx;
1565                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1566                 netif_napi_add(adapter->netdev, &q_vector->napi,
1567                                iavf_napi_poll, NAPI_POLL_WEIGHT);
1568         }
1569
1570         return 0;
1571 }
1572
1573 /**
1574  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1575  * @adapter: board private structure to initialize
1576  *
1577  * This function frees the memory allocated to the q_vectors.  In addition if
1578  * NAPI is enabled it will delete any references to the NAPI struct prior
1579  * to freeing the q_vector.
1580  **/
1581 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1582 {
1583         int q_idx, num_q_vectors;
1584         int napi_vectors;
1585
1586         if (!adapter->q_vectors)
1587                 return;
1588
1589         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1590         napi_vectors = adapter->num_active_queues;
1591
1592         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1593                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1594
1595                 if (q_idx < napi_vectors)
1596                         netif_napi_del(&q_vector->napi);
1597         }
1598         kfree(adapter->q_vectors);
1599         adapter->q_vectors = NULL;
1600 }
1601
1602 /**
1603  * iavf_reset_interrupt_capability - Reset MSIX setup
1604  * @adapter: board private structure
1605  *
1606  **/
1607 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1608 {
1609         if (!adapter->msix_entries)
1610                 return;
1611
1612         pci_disable_msix(adapter->pdev);
1613         kfree(adapter->msix_entries);
1614         adapter->msix_entries = NULL;
1615 }
1616
1617 /**
1618  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1619  * @adapter: board private structure to initialize
1620  *
1621  **/
1622 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1623 {
1624         int err;
1625
1626         err = iavf_alloc_queues(adapter);
1627         if (err) {
1628                 dev_err(&adapter->pdev->dev,
1629                         "Unable to allocate memory for queues\n");
1630                 goto err_alloc_queues;
1631         }
1632
1633         rtnl_lock();
1634         err = iavf_set_interrupt_capability(adapter);
1635         rtnl_unlock();
1636         if (err) {
1637                 dev_err(&adapter->pdev->dev,
1638                         "Unable to setup interrupt capabilities\n");
1639                 goto err_set_interrupt;
1640         }
1641
1642         err = iavf_alloc_q_vectors(adapter);
1643         if (err) {
1644                 dev_err(&adapter->pdev->dev,
1645                         "Unable to allocate memory for queue vectors\n");
1646                 goto err_alloc_q_vectors;
1647         }
1648
1649         /* If we've made it so far while ADq flag being ON, then we haven't
1650          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1651          * resources have been allocated in the reset path.
1652          * Now we can truly claim that ADq is enabled.
1653          */
1654         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1655             adapter->num_tc)
1656                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1657                          adapter->num_tc);
1658
1659         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1660                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1661                  adapter->num_active_queues);
1662
1663         return 0;
1664 err_alloc_q_vectors:
1665         iavf_reset_interrupt_capability(adapter);
1666 err_set_interrupt:
1667         iavf_free_queues(adapter);
1668 err_alloc_queues:
1669         return err;
1670 }
1671
1672 /**
1673  * iavf_free_rss - Free memory used by RSS structs
1674  * @adapter: board private structure
1675  **/
1676 static void iavf_free_rss(struct iavf_adapter *adapter)
1677 {
1678         kfree(adapter->rss_key);
1679         adapter->rss_key = NULL;
1680
1681         kfree(adapter->rss_lut);
1682         adapter->rss_lut = NULL;
1683 }
1684
1685 /**
1686  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1687  * @adapter: board private structure
1688  *
1689  * Returns 0 on success, negative on failure
1690  **/
1691 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1692 {
1693         struct net_device *netdev = adapter->netdev;
1694         int err;
1695
1696         if (netif_running(netdev))
1697                 iavf_free_traffic_irqs(adapter);
1698         iavf_free_misc_irq(adapter);
1699         iavf_reset_interrupt_capability(adapter);
1700         iavf_free_q_vectors(adapter);
1701         iavf_free_queues(adapter);
1702
1703         err =  iavf_init_interrupt_scheme(adapter);
1704         if (err)
1705                 goto err;
1706
1707         netif_tx_stop_all_queues(netdev);
1708
1709         err = iavf_request_misc_irq(adapter);
1710         if (err)
1711                 goto err;
1712
1713         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1714
1715         iavf_map_rings_to_vectors(adapter);
1716 err:
1717         return err;
1718 }
1719
1720 /**
1721  * iavf_process_aq_command - process aq_required flags
1722  * and sends aq command
1723  * @adapter: pointer to iavf adapter structure
1724  *
1725  * Returns 0 on success
1726  * Returns error code if no command was sent
1727  * or error code if the command failed.
1728  **/
1729 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1730 {
1731         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1732                 return iavf_send_vf_config_msg(adapter);
1733         if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1734                 return iavf_send_vf_offload_vlan_v2_msg(adapter);
1735         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1736                 iavf_disable_queues(adapter);
1737                 return 0;
1738         }
1739
1740         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1741                 iavf_map_queues(adapter);
1742                 return 0;
1743         }
1744
1745         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1746                 iavf_add_ether_addrs(adapter);
1747                 return 0;
1748         }
1749
1750         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1751                 iavf_add_vlans(adapter);
1752                 return 0;
1753         }
1754
1755         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1756                 iavf_del_ether_addrs(adapter);
1757                 return 0;
1758         }
1759
1760         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1761                 iavf_del_vlans(adapter);
1762                 return 0;
1763         }
1764
1765         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1766                 iavf_enable_vlan_stripping(adapter);
1767                 return 0;
1768         }
1769
1770         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1771                 iavf_disable_vlan_stripping(adapter);
1772                 return 0;
1773         }
1774
1775         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1776                 iavf_configure_queues(adapter);
1777                 return 0;
1778         }
1779
1780         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1781                 iavf_enable_queues(adapter);
1782                 return 0;
1783         }
1784
1785         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1786                 /* This message goes straight to the firmware, not the
1787                  * PF, so we don't have to set current_op as we will
1788                  * not get a response through the ARQ.
1789                  */
1790                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1791                 return 0;
1792         }
1793         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1794                 iavf_get_hena(adapter);
1795                 return 0;
1796         }
1797         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1798                 iavf_set_hena(adapter);
1799                 return 0;
1800         }
1801         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1802                 iavf_set_rss_key(adapter);
1803                 return 0;
1804         }
1805         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1806                 iavf_set_rss_lut(adapter);
1807                 return 0;
1808         }
1809
1810         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1811                 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1812                                        FLAG_VF_MULTICAST_PROMISC);
1813                 return 0;
1814         }
1815
1816         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1817                 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1818                 return 0;
1819         }
1820         if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1821             (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1822                 iavf_set_promiscuous(adapter, 0);
1823                 return 0;
1824         }
1825
1826         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1827                 iavf_enable_channels(adapter);
1828                 return 0;
1829         }
1830
1831         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1832                 iavf_disable_channels(adapter);
1833                 return 0;
1834         }
1835         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1836                 iavf_add_cloud_filter(adapter);
1837                 return 0;
1838         }
1839
1840         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1841                 iavf_del_cloud_filter(adapter);
1842                 return 0;
1843         }
1844         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1845                 iavf_del_cloud_filter(adapter);
1846                 return 0;
1847         }
1848         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1849                 iavf_add_cloud_filter(adapter);
1850                 return 0;
1851         }
1852         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1853                 iavf_add_fdir_filter(adapter);
1854                 return IAVF_SUCCESS;
1855         }
1856         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1857                 iavf_del_fdir_filter(adapter);
1858                 return IAVF_SUCCESS;
1859         }
1860         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1861                 iavf_add_adv_rss_cfg(adapter);
1862                 return 0;
1863         }
1864         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1865                 iavf_del_adv_rss_cfg(adapter);
1866                 return 0;
1867         }
1868         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
1869                 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1870                 return 0;
1871         }
1872         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
1873                 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1874                 return 0;
1875         }
1876         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
1877                 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1878                 return 0;
1879         }
1880         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
1881                 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1882                 return 0;
1883         }
1884         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
1885                 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1886                 return 0;
1887         }
1888         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
1889                 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1890                 return 0;
1891         }
1892         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
1893                 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1894                 return 0;
1895         }
1896         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
1897                 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1898                 return 0;
1899         }
1900
1901         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
1902                 iavf_request_stats(adapter);
1903                 return 0;
1904         }
1905
1906         return -EAGAIN;
1907 }
1908
1909 /**
1910  * iavf_set_vlan_offload_features - set VLAN offload configuration
1911  * @adapter: board private structure
1912  * @prev_features: previous features used for comparison
1913  * @features: updated features used for configuration
1914  *
1915  * Set the aq_required bit(s) based on the requested features passed in to
1916  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
1917  * the watchdog if any changes are requested to expedite the request via
1918  * virtchnl.
1919  **/
1920 void
1921 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
1922                                netdev_features_t prev_features,
1923                                netdev_features_t features)
1924 {
1925         bool enable_stripping = true, enable_insertion = true;
1926         u16 vlan_ethertype = 0;
1927         u64 aq_required = 0;
1928
1929         /* keep cases separate because one ethertype for offloads can be
1930          * disabled at the same time as another is disabled, so check for an
1931          * enabled ethertype first, then check for disabled. Default to
1932          * ETH_P_8021Q so an ethertype is specified if disabling insertion and
1933          * stripping.
1934          */
1935         if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
1936                 vlan_ethertype = ETH_P_8021AD;
1937         else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
1938                 vlan_ethertype = ETH_P_8021Q;
1939         else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
1940                 vlan_ethertype = ETH_P_8021AD;
1941         else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
1942                 vlan_ethertype = ETH_P_8021Q;
1943         else
1944                 vlan_ethertype = ETH_P_8021Q;
1945
1946         if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
1947                 enable_stripping = false;
1948         if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
1949                 enable_insertion = false;
1950
1951         if (VLAN_ALLOWED(adapter)) {
1952                 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
1953                  * stripping via virtchnl. VLAN insertion can be toggled on the
1954                  * netdev, but it doesn't require a virtchnl message
1955                  */
1956                 if (enable_stripping)
1957                         aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
1958                 else
1959                         aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
1960
1961         } else if (VLAN_V2_ALLOWED(adapter)) {
1962                 switch (vlan_ethertype) {
1963                 case ETH_P_8021Q:
1964                         if (enable_stripping)
1965                                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
1966                         else
1967                                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
1968
1969                         if (enable_insertion)
1970                                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
1971                         else
1972                                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
1973                         break;
1974                 case ETH_P_8021AD:
1975                         if (enable_stripping)
1976                                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
1977                         else
1978                                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
1979
1980                         if (enable_insertion)
1981                                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
1982                         else
1983                                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
1984                         break;
1985                 }
1986         }
1987
1988         if (aq_required) {
1989                 adapter->aq_required |= aq_required;
1990                 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1991         }
1992 }
1993
1994 /**
1995  * iavf_startup - first step of driver startup
1996  * @adapter: board private structure
1997  *
1998  * Function process __IAVF_STARTUP driver state.
1999  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2000  * when fails the state is changed to __IAVF_INIT_FAILED
2001  **/
2002 static void iavf_startup(struct iavf_adapter *adapter)
2003 {
2004         struct pci_dev *pdev = adapter->pdev;
2005         struct iavf_hw *hw = &adapter->hw;
2006         int err;
2007
2008         WARN_ON(adapter->state != __IAVF_STARTUP);
2009
2010         /* driver loaded, probe complete */
2011         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2012         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2013         err = iavf_set_mac_type(hw);
2014         if (err) {
2015                 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
2016                 goto err;
2017         }
2018
2019         err = iavf_check_reset_complete(hw);
2020         if (err) {
2021                 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2022                          err);
2023                 goto err;
2024         }
2025         hw->aq.num_arq_entries = IAVF_AQ_LEN;
2026         hw->aq.num_asq_entries = IAVF_AQ_LEN;
2027         hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2028         hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2029
2030         err = iavf_init_adminq(hw);
2031         if (err) {
2032                 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
2033                 goto err;
2034         }
2035         err = iavf_send_api_ver(adapter);
2036         if (err) {
2037                 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
2038                 iavf_shutdown_adminq(hw);
2039                 goto err;
2040         }
2041         iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2042         return;
2043 err:
2044         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2045 }
2046
2047 /**
2048  * iavf_init_version_check - second step of driver startup
2049  * @adapter: board private structure
2050  *
2051  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2052  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2053  * when fails the state is changed to __IAVF_INIT_FAILED
2054  **/
2055 static void iavf_init_version_check(struct iavf_adapter *adapter)
2056 {
2057         struct pci_dev *pdev = adapter->pdev;
2058         struct iavf_hw *hw = &adapter->hw;
2059         int err = -EAGAIN;
2060
2061         WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2062
2063         if (!iavf_asq_done(hw)) {
2064                 dev_err(&pdev->dev, "Admin queue command never completed\n");
2065                 iavf_shutdown_adminq(hw);
2066                 iavf_change_state(adapter, __IAVF_STARTUP);
2067                 goto err;
2068         }
2069
2070         /* aq msg sent, awaiting reply */
2071         err = iavf_verify_api_ver(adapter);
2072         if (err) {
2073                 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
2074                         err = iavf_send_api_ver(adapter);
2075                 else
2076                         dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2077                                 adapter->pf_version.major,
2078                                 adapter->pf_version.minor,
2079                                 VIRTCHNL_VERSION_MAJOR,
2080                                 VIRTCHNL_VERSION_MINOR);
2081                 goto err;
2082         }
2083         err = iavf_send_vf_config_msg(adapter);
2084         if (err) {
2085                 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2086                         err);
2087                 goto err;
2088         }
2089         iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2090         return;
2091 err:
2092         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2093 }
2094
2095 /**
2096  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2097  * @adapter: board private structure
2098  */
2099 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2100 {
2101         int i, num_req_queues = adapter->num_req_queues;
2102         struct iavf_vsi *vsi = &adapter->vsi;
2103
2104         for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2105                 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2106                         adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2107         }
2108         if (!adapter->vsi_res) {
2109                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2110                 return -ENODEV;
2111         }
2112
2113         if (num_req_queues &&
2114             num_req_queues > adapter->vsi_res->num_queue_pairs) {
2115                 /* Problem.  The PF gave us fewer queues than what we had
2116                  * negotiated in our request.  Need a reset to see if we can't
2117                  * get back to a working state.
2118                  */
2119                 dev_err(&adapter->pdev->dev,
2120                         "Requested %d queues, but PF only gave us %d.\n",
2121                         num_req_queues,
2122                         adapter->vsi_res->num_queue_pairs);
2123                 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2124                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2125                 iavf_schedule_reset(adapter);
2126
2127                 return -EAGAIN;
2128         }
2129         adapter->num_req_queues = 0;
2130         adapter->vsi.id = adapter->vsi_res->vsi_id;
2131
2132         adapter->vsi.back = adapter;
2133         adapter->vsi.base_vector = 1;
2134         adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
2135         vsi->netdev = adapter->netdev;
2136         vsi->qs_handle = adapter->vsi_res->qset_handle;
2137         if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2138                 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2139                 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2140         } else {
2141                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2142                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2143         }
2144
2145         return 0;
2146 }
2147
2148 /**
2149  * iavf_init_get_resources - third step of driver startup
2150  * @adapter: board private structure
2151  *
2152  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2153  * finishes driver initialization procedure.
2154  * When success the state is changed to __IAVF_DOWN
2155  * when fails the state is changed to __IAVF_INIT_FAILED
2156  **/
2157 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2158 {
2159         struct pci_dev *pdev = adapter->pdev;
2160         struct iavf_hw *hw = &adapter->hw;
2161         int err;
2162
2163         WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2164         /* aq msg sent, awaiting reply */
2165         if (!adapter->vf_res) {
2166                 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2167                                           GFP_KERNEL);
2168                 if (!adapter->vf_res) {
2169                         err = -ENOMEM;
2170                         goto err;
2171                 }
2172         }
2173         err = iavf_get_vf_config(adapter);
2174         if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
2175                 err = iavf_send_vf_config_msg(adapter);
2176                 goto err_alloc;
2177         } else if (err == IAVF_ERR_PARAM) {
2178                 /* We only get ERR_PARAM if the device is in a very bad
2179                  * state or if we've been disabled for previous bad
2180                  * behavior. Either way, we're done now.
2181                  */
2182                 iavf_shutdown_adminq(hw);
2183                 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2184                 return;
2185         }
2186         if (err) {
2187                 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2188                 goto err_alloc;
2189         }
2190
2191         err = iavf_parse_vf_resource_msg(adapter);
2192         if (err)
2193                 goto err_alloc;
2194
2195         err = iavf_send_vf_offload_vlan_v2_msg(adapter);
2196         if (err == -EOPNOTSUPP) {
2197                 /* underlying PF doesn't support VIRTCHNL_VF_OFFLOAD_VLAN_V2, so
2198                  * go directly to finishing initialization
2199                  */
2200                 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2201                 return;
2202         } else if (err) {
2203                 dev_err(&pdev->dev, "Unable to send offload vlan v2 request (%d)\n",
2204                         err);
2205                 goto err_alloc;
2206         }
2207
2208         /* underlying PF supports VIRTCHNL_VF_OFFLOAD_VLAN_V2, so update the
2209          * state accordingly
2210          */
2211         iavf_change_state(adapter, __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS);
2212         return;
2213
2214 err_alloc:
2215         kfree(adapter->vf_res);
2216         adapter->vf_res = NULL;
2217 err:
2218         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2219 }
2220
2221 /**
2222  * iavf_init_get_offload_vlan_v2_caps - part of driver startup
2223  * @adapter: board private structure
2224  *
2225  * Function processes __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS driver state if the
2226  * VF negotiates VIRTCHNL_VF_OFFLOAD_VLAN_V2. If VIRTCHNL_VF_OFFLOAD_VLAN_V2 is
2227  * not negotiated, then this state will never be entered.
2228  **/
2229 static void iavf_init_get_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2230 {
2231         int ret;
2232
2233         WARN_ON(adapter->state != __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS);
2234
2235         memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2236
2237         ret = iavf_get_vf_vlan_v2_caps(adapter);
2238         if (ret) {
2239                 if (ret == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
2240                         iavf_send_vf_offload_vlan_v2_msg(adapter);
2241                 goto err;
2242         }
2243
2244         iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2245         return;
2246 err:
2247         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2248 }
2249
2250 /**
2251  * iavf_init_config_adapter - last part of driver startup
2252  * @adapter: board private structure
2253  *
2254  * After all the supported capabilities are negotiated, then the
2255  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2256  */
2257 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2258 {
2259         struct net_device *netdev = adapter->netdev;
2260         struct pci_dev *pdev = adapter->pdev;
2261         int err;
2262
2263         WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2264
2265         if (iavf_process_config(adapter))
2266                 goto err;
2267
2268         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2269
2270         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2271
2272         netdev->netdev_ops = &iavf_netdev_ops;
2273         iavf_set_ethtool_ops(netdev);
2274         netdev->watchdog_timeo = 5 * HZ;
2275
2276         /* MTU range: 68 - 9710 */
2277         netdev->min_mtu = ETH_MIN_MTU;
2278         netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2279
2280         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2281                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2282                          adapter->hw.mac.addr);
2283                 eth_hw_addr_random(netdev);
2284                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2285         } else {
2286                 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2287                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2288         }
2289
2290         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2291         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2292         err = iavf_init_interrupt_scheme(adapter);
2293         if (err)
2294                 goto err_sw_init;
2295         iavf_map_rings_to_vectors(adapter);
2296         if (adapter->vf_res->vf_cap_flags &
2297                 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2298                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2299
2300         err = iavf_request_misc_irq(adapter);
2301         if (err)
2302                 goto err_sw_init;
2303
2304         netif_carrier_off(netdev);
2305         adapter->link_up = false;
2306
2307         /* set the semaphore to prevent any callbacks after device registration
2308          * up to time when state of driver will be set to __IAVF_DOWN
2309          */
2310         rtnl_lock();
2311         if (!adapter->netdev_registered) {
2312                 err = register_netdevice(netdev);
2313                 if (err) {
2314                         rtnl_unlock();
2315                         goto err_register;
2316                 }
2317         }
2318
2319         adapter->netdev_registered = true;
2320
2321         netif_tx_stop_all_queues(netdev);
2322         if (CLIENT_ALLOWED(adapter)) {
2323                 err = iavf_lan_add_device(adapter);
2324                 if (err)
2325                         dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2326                                  err);
2327         }
2328         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2329         if (netdev->features & NETIF_F_GRO)
2330                 dev_info(&pdev->dev, "GRO is enabled\n");
2331
2332         iavf_change_state(adapter, __IAVF_DOWN);
2333         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2334         rtnl_unlock();
2335
2336         iavf_misc_irq_enable(adapter);
2337         wake_up(&adapter->down_waitqueue);
2338
2339         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2340         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2341         if (!adapter->rss_key || !adapter->rss_lut) {
2342                 err = -ENOMEM;
2343                 goto err_mem;
2344         }
2345         if (RSS_AQ(adapter))
2346                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2347         else
2348                 iavf_init_rss(adapter);
2349
2350         if (VLAN_V2_ALLOWED(adapter))
2351                 /* request initial VLAN offload settings */
2352                 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2353
2354         return;
2355 err_mem:
2356         iavf_free_rss(adapter);
2357 err_register:
2358         iavf_free_misc_irq(adapter);
2359 err_sw_init:
2360         iavf_reset_interrupt_capability(adapter);
2361 err:
2362         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2363 }
2364
2365 /**
2366  * iavf_watchdog_task - Periodic call-back task
2367  * @work: pointer to work_struct
2368  **/
2369 static void iavf_watchdog_task(struct work_struct *work)
2370 {
2371         struct iavf_adapter *adapter = container_of(work,
2372                                                     struct iavf_adapter,
2373                                                     watchdog_task.work);
2374         struct iavf_hw *hw = &adapter->hw;
2375         u32 reg_val;
2376
2377         if (!mutex_trylock(&adapter->crit_lock)) {
2378                 if (adapter->state == __IAVF_REMOVE)
2379                         return;
2380
2381                 goto restart_watchdog;
2382         }
2383
2384         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2385                 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2386
2387         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2388                 adapter->aq_required = 0;
2389                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2390                 mutex_unlock(&adapter->crit_lock);
2391                 queue_work(iavf_wq, &adapter->reset_task);
2392                 return;
2393         }
2394
2395         switch (adapter->state) {
2396         case __IAVF_STARTUP:
2397                 iavf_startup(adapter);
2398                 mutex_unlock(&adapter->crit_lock);
2399                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2400                                    msecs_to_jiffies(30));
2401                 return;
2402         case __IAVF_INIT_VERSION_CHECK:
2403                 iavf_init_version_check(adapter);
2404                 mutex_unlock(&adapter->crit_lock);
2405                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2406                                    msecs_to_jiffies(30));
2407                 return;
2408         case __IAVF_INIT_GET_RESOURCES:
2409                 iavf_init_get_resources(adapter);
2410                 mutex_unlock(&adapter->crit_lock);
2411                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2412                                    msecs_to_jiffies(1));
2413                 return;
2414         case __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS:
2415                 iavf_init_get_offload_vlan_v2_caps(adapter);
2416                 mutex_unlock(&adapter->crit_lock);
2417                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2418                                    msecs_to_jiffies(1));
2419                 return;
2420         case __IAVF_INIT_CONFIG_ADAPTER:
2421                 iavf_init_config_adapter(adapter);
2422                 mutex_unlock(&adapter->crit_lock);
2423                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2424                                    msecs_to_jiffies(1));
2425                 return;
2426         case __IAVF_INIT_FAILED:
2427                 if (test_bit(__IAVF_IN_REMOVE_TASK,
2428                              &adapter->crit_section)) {
2429                         /* Do not update the state and do not reschedule
2430                          * watchdog task, iavf_remove should handle this state
2431                          * as it can loop forever
2432                          */
2433                         mutex_unlock(&adapter->crit_lock);
2434                         return;
2435                 }
2436                 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2437                         dev_err(&adapter->pdev->dev,
2438                                 "Failed to communicate with PF; waiting before retry\n");
2439                         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2440                         iavf_shutdown_adminq(hw);
2441                         mutex_unlock(&adapter->crit_lock);
2442                         queue_delayed_work(iavf_wq,
2443                                            &adapter->watchdog_task, (5 * HZ));
2444                         return;
2445                 }
2446                 /* Try again from failed step*/
2447                 iavf_change_state(adapter, adapter->last_state);
2448                 mutex_unlock(&adapter->crit_lock);
2449                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2450                 return;
2451         case __IAVF_COMM_FAILED:
2452                 if (test_bit(__IAVF_IN_REMOVE_TASK,
2453                              &adapter->crit_section)) {
2454                         /* Set state to __IAVF_INIT_FAILED and perform remove
2455                          * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2456                          * doesn't bring the state back to __IAVF_COMM_FAILED.
2457                          */
2458                         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2459                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2460                         mutex_unlock(&adapter->crit_lock);
2461                         return;
2462                 }
2463                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2464                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2465                 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2466                     reg_val == VIRTCHNL_VFR_COMPLETED) {
2467                         /* A chance for redemption! */
2468                         dev_err(&adapter->pdev->dev,
2469                                 "Hardware came out of reset. Attempting reinit.\n");
2470                         /* When init task contacts the PF and
2471                          * gets everything set up again, it'll restart the
2472                          * watchdog for us. Down, boy. Sit. Stay. Woof.
2473                          */
2474                         iavf_change_state(adapter, __IAVF_STARTUP);
2475                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2476                 }
2477                 adapter->aq_required = 0;
2478                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2479                 mutex_unlock(&adapter->crit_lock);
2480                 queue_delayed_work(iavf_wq,
2481                                    &adapter->watchdog_task,
2482                                    msecs_to_jiffies(10));
2483                 return;
2484         case __IAVF_RESETTING:
2485                 mutex_unlock(&adapter->crit_lock);
2486                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2487                 return;
2488         case __IAVF_DOWN:
2489         case __IAVF_DOWN_PENDING:
2490         case __IAVF_TESTING:
2491         case __IAVF_RUNNING:
2492                 if (adapter->current_op) {
2493                         if (!iavf_asq_done(hw)) {
2494                                 dev_dbg(&adapter->pdev->dev,
2495                                         "Admin queue timeout\n");
2496                                 iavf_send_api_ver(adapter);
2497                         }
2498                 } else {
2499                         int ret = iavf_process_aq_command(adapter);
2500
2501                         /* An error will be returned if no commands were
2502                          * processed; use this opportunity to update stats
2503                          * if the error isn't -ENOTSUPP
2504                          */
2505                         if (ret && ret != -EOPNOTSUPP &&
2506                             adapter->state == __IAVF_RUNNING)
2507                                 iavf_request_stats(adapter);
2508                 }
2509                 if (adapter->state == __IAVF_RUNNING)
2510                         iavf_detect_recover_hung(&adapter->vsi);
2511                 break;
2512         case __IAVF_REMOVE:
2513         default:
2514                 mutex_unlock(&adapter->crit_lock);
2515                 return;
2516         }
2517
2518         /* check for hw reset */
2519         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2520         if (!reg_val) {
2521                 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2522                 adapter->aq_required = 0;
2523                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2524                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2525                 queue_work(iavf_wq, &adapter->reset_task);
2526                 mutex_unlock(&adapter->crit_lock);
2527                 queue_delayed_work(iavf_wq,
2528                                    &adapter->watchdog_task, HZ * 2);
2529                 return;
2530         }
2531
2532         schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2533         mutex_unlock(&adapter->crit_lock);
2534 restart_watchdog:
2535         if (adapter->state >= __IAVF_DOWN)
2536                 queue_work(iavf_wq, &adapter->adminq_task);
2537         if (adapter->aq_required)
2538                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2539                                    msecs_to_jiffies(20));
2540         else
2541                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2542 }
2543
2544 static void iavf_disable_vf(struct iavf_adapter *adapter)
2545 {
2546         struct iavf_mac_filter *f, *ftmp;
2547         struct iavf_vlan_filter *fv, *fvtmp;
2548         struct iavf_cloud_filter *cf, *cftmp;
2549
2550         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2551
2552         /* We don't use netif_running() because it may be true prior to
2553          * ndo_open() returning, so we can't assume it means all our open
2554          * tasks have finished, since we're not holding the rtnl_lock here.
2555          */
2556         if (adapter->state == __IAVF_RUNNING) {
2557                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2558                 netif_carrier_off(adapter->netdev);
2559                 netif_tx_disable(adapter->netdev);
2560                 adapter->link_up = false;
2561                 iavf_napi_disable_all(adapter);
2562                 iavf_irq_disable(adapter);
2563                 iavf_free_traffic_irqs(adapter);
2564                 iavf_free_all_tx_resources(adapter);
2565                 iavf_free_all_rx_resources(adapter);
2566         }
2567
2568         spin_lock_bh(&adapter->mac_vlan_list_lock);
2569
2570         /* Delete all of the filters */
2571         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2572                 list_del(&f->list);
2573                 kfree(f);
2574         }
2575
2576         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2577                 list_del(&fv->list);
2578                 kfree(fv);
2579         }
2580
2581         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2582
2583         spin_lock_bh(&adapter->cloud_filter_list_lock);
2584         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2585                 list_del(&cf->list);
2586                 kfree(cf);
2587                 adapter->num_cloud_filters--;
2588         }
2589         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2590
2591         iavf_free_misc_irq(adapter);
2592         iavf_reset_interrupt_capability(adapter);
2593         iavf_free_q_vectors(adapter);
2594         iavf_free_queues(adapter);
2595         memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2596         iavf_shutdown_adminq(&adapter->hw);
2597         adapter->netdev->flags &= ~IFF_UP;
2598         mutex_unlock(&adapter->crit_lock);
2599         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2600         iavf_change_state(adapter, __IAVF_DOWN);
2601         wake_up(&adapter->down_waitqueue);
2602         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2603 }
2604
2605 /**
2606  * iavf_reset_task - Call-back task to handle hardware reset
2607  * @work: pointer to work_struct
2608  *
2609  * During reset we need to shut down and reinitialize the admin queue
2610  * before we can use it to communicate with the PF again. We also clear
2611  * and reinit the rings because that context is lost as well.
2612  **/
2613 static void iavf_reset_task(struct work_struct *work)
2614 {
2615         struct iavf_adapter *adapter = container_of(work,
2616                                                       struct iavf_adapter,
2617                                                       reset_task);
2618         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2619         struct net_device *netdev = adapter->netdev;
2620         struct iavf_hw *hw = &adapter->hw;
2621         struct iavf_mac_filter *f, *ftmp;
2622         struct iavf_cloud_filter *cf;
2623         u32 reg_val;
2624         int i = 0, err;
2625         bool running;
2626
2627         /* When device is being removed it doesn't make sense to run the reset
2628          * task, just return in such a case.
2629          */
2630         if (!mutex_trylock(&adapter->crit_lock)) {
2631                 if (adapter->state != __IAVF_REMOVE)
2632                         queue_work(iavf_wq, &adapter->reset_task);
2633
2634                 return;
2635         }
2636
2637         while (!mutex_trylock(&adapter->client_lock))
2638                 usleep_range(500, 1000);
2639         if (CLIENT_ENABLED(adapter)) {
2640                 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2641                                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2642                                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2643                                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2644                 cancel_delayed_work_sync(&adapter->client_task);
2645                 iavf_notify_client_close(&adapter->vsi, true);
2646         }
2647         iavf_misc_irq_disable(adapter);
2648         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2649                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2650                 /* Restart the AQ here. If we have been reset but didn't
2651                  * detect it, or if the PF had to reinit, our AQ will be hosed.
2652                  */
2653                 iavf_shutdown_adminq(hw);
2654                 iavf_init_adminq(hw);
2655                 iavf_request_reset(adapter);
2656         }
2657         adapter->flags |= IAVF_FLAG_RESET_PENDING;
2658
2659         /* poll until we see the reset actually happen */
2660         for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2661                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2662                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2663                 if (!reg_val)
2664                         break;
2665                 usleep_range(5000, 10000);
2666         }
2667         if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2668                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2669                 goto continue_reset; /* act like the reset happened */
2670         }
2671
2672         /* wait until the reset is complete and the PF is responding to us */
2673         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2674                 /* sleep first to make sure a minimum wait time is met */
2675                 msleep(IAVF_RESET_WAIT_MS);
2676
2677                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2678                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2679                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2680                         break;
2681         }
2682
2683         pci_set_master(adapter->pdev);
2684         pci_restore_msi_state(adapter->pdev);
2685
2686         if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2687                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2688                         reg_val);
2689                 iavf_disable_vf(adapter);
2690                 mutex_unlock(&adapter->client_lock);
2691                 mutex_unlock(&adapter->crit_lock);
2692                 return; /* Do not attempt to reinit. It's dead, Jim. */
2693         }
2694
2695 continue_reset:
2696         /* We don't use netif_running() because it may be true prior to
2697          * ndo_open() returning, so we can't assume it means all our open
2698          * tasks have finished, since we're not holding the rtnl_lock here.
2699          */
2700         running = adapter->state == __IAVF_RUNNING;
2701
2702         if (running) {
2703                 netdev->flags &= ~IFF_UP;
2704                 netif_carrier_off(netdev);
2705                 netif_tx_stop_all_queues(netdev);
2706                 adapter->link_up = false;
2707                 iavf_napi_disable_all(adapter);
2708         }
2709         iavf_irq_disable(adapter);
2710
2711         iavf_change_state(adapter, __IAVF_RESETTING);
2712         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2713
2714         /* free the Tx/Rx rings and descriptors, might be better to just
2715          * re-use them sometime in the future
2716          */
2717         iavf_free_all_rx_resources(adapter);
2718         iavf_free_all_tx_resources(adapter);
2719
2720         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2721         /* kill and reinit the admin queue */
2722         iavf_shutdown_adminq(hw);
2723         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2724         err = iavf_init_adminq(hw);
2725         if (err)
2726                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2727                          err);
2728         adapter->aq_required = 0;
2729
2730         if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2731             (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2732                 err = iavf_reinit_interrupt_scheme(adapter);
2733                 if (err)
2734                         goto reset_err;
2735         }
2736
2737         if (RSS_AQ(adapter)) {
2738                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2739         } else {
2740                 err = iavf_init_rss(adapter);
2741                 if (err)
2742                         goto reset_err;
2743         }
2744
2745         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2746         /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
2747          * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
2748          * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
2749          * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
2750          * been successfully sent and negotiated
2751          */
2752         adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
2753         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2754
2755         spin_lock_bh(&adapter->mac_vlan_list_lock);
2756
2757         /* Delete filter for the current MAC address, it could have
2758          * been changed by the PF via administratively set MAC.
2759          * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2760          */
2761         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2762                 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2763                         list_del(&f->list);
2764                         kfree(f);
2765                 }
2766         }
2767         /* re-add all MAC filters */
2768         list_for_each_entry(f, &adapter->mac_filter_list, list) {
2769                 f->add = true;
2770         }
2771         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2772
2773         /* check if TCs are running and re-add all cloud filters */
2774         spin_lock_bh(&adapter->cloud_filter_list_lock);
2775         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2776             adapter->num_tc) {
2777                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2778                         cf->add = true;
2779                 }
2780         }
2781         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2782
2783         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2784         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2785         iavf_misc_irq_enable(adapter);
2786
2787         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2788
2789         /* We were running when the reset started, so we need to restore some
2790          * state here.
2791          */
2792         if (running) {
2793                 /* allocate transmit descriptors */
2794                 err = iavf_setup_all_tx_resources(adapter);
2795                 if (err)
2796                         goto reset_err;
2797
2798                 /* allocate receive descriptors */
2799                 err = iavf_setup_all_rx_resources(adapter);
2800                 if (err)
2801                         goto reset_err;
2802
2803                 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2804                     (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2805                         err = iavf_request_traffic_irqs(adapter, netdev->name);
2806                         if (err)
2807                                 goto reset_err;
2808
2809                         adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
2810                 }
2811
2812                 iavf_configure(adapter);
2813
2814                 /* iavf_up_complete() will switch device back
2815                  * to __IAVF_RUNNING
2816                  */
2817                 iavf_up_complete(adapter);
2818                 netdev->flags |= IFF_UP;
2819                 iavf_irq_enable(adapter, true);
2820         } else {
2821                 iavf_change_state(adapter, __IAVF_DOWN);
2822                 wake_up(&adapter->down_waitqueue);
2823         }
2824
2825         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2826
2827         mutex_unlock(&adapter->client_lock);
2828         mutex_unlock(&adapter->crit_lock);
2829
2830         return;
2831 reset_err:
2832         mutex_unlock(&adapter->client_lock);
2833         mutex_unlock(&adapter->crit_lock);
2834         if (running) {
2835                 iavf_change_state(adapter, __IAVF_RUNNING);
2836                 netdev->flags |= IFF_UP;
2837         }
2838         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2839         iavf_close(netdev);
2840 }
2841
2842 /**
2843  * iavf_adminq_task - worker thread to clean the admin queue
2844  * @work: pointer to work_struct containing our data
2845  **/
2846 static void iavf_adminq_task(struct work_struct *work)
2847 {
2848         struct iavf_adapter *adapter =
2849                 container_of(work, struct iavf_adapter, adminq_task);
2850         struct iavf_hw *hw = &adapter->hw;
2851         struct iavf_arq_event_info event;
2852         enum virtchnl_ops v_op;
2853         enum iavf_status ret, v_ret;
2854         u32 val, oldval;
2855         u16 pending;
2856
2857         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2858                 goto out;
2859
2860         if (!mutex_trylock(&adapter->crit_lock)) {
2861                 if (adapter->state == __IAVF_REMOVE)
2862                         return;
2863
2864                 queue_work(iavf_wq, &adapter->adminq_task);
2865                 goto out;
2866         }
2867
2868         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2869         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2870         if (!event.msg_buf)
2871                 goto out;
2872
2873         do {
2874                 ret = iavf_clean_arq_element(hw, &event, &pending);
2875                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2876                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2877
2878                 if (ret || !v_op)
2879                         break; /* No event to process or error cleaning ARQ */
2880
2881                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2882                                          event.msg_len);
2883                 if (pending != 0)
2884                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2885         } while (pending);
2886         mutex_unlock(&adapter->crit_lock);
2887
2888         if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
2889                 if (adapter->netdev_registered ||
2890                     !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2891                         struct net_device *netdev = adapter->netdev;
2892
2893                         rtnl_lock();
2894                         netdev_update_features(netdev);
2895                         rtnl_unlock();
2896                         /* Request VLAN offload settings */
2897                         if (VLAN_V2_ALLOWED(adapter))
2898                                 iavf_set_vlan_offload_features
2899                                         (adapter, 0, netdev->features);
2900
2901                         iavf_set_queue_vlan_tag_loc(adapter);
2902                 }
2903
2904                 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2905         }
2906         if ((adapter->flags &
2907              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2908             adapter->state == __IAVF_RESETTING)
2909                 goto freedom;
2910
2911         /* check for error indications */
2912         val = rd32(hw, hw->aq.arq.len);
2913         if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2914                 goto freedom;
2915         oldval = val;
2916         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2917                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2918                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2919         }
2920         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2921                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2922                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2923         }
2924         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2925                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2926                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2927         }
2928         if (oldval != val)
2929                 wr32(hw, hw->aq.arq.len, val);
2930
2931         val = rd32(hw, hw->aq.asq.len);
2932         oldval = val;
2933         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2934                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2935                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2936         }
2937         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2938                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2939                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2940         }
2941         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2942                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2943                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2944         }
2945         if (oldval != val)
2946                 wr32(hw, hw->aq.asq.len, val);
2947
2948 freedom:
2949         kfree(event.msg_buf);
2950 out:
2951         /* re-enable Admin queue interrupt cause */
2952         iavf_misc_irq_enable(adapter);
2953 }
2954
2955 /**
2956  * iavf_client_task - worker thread to perform client work
2957  * @work: pointer to work_struct containing our data
2958  *
2959  * This task handles client interactions. Because client calls can be
2960  * reentrant, we can't handle them in the watchdog.
2961  **/
2962 static void iavf_client_task(struct work_struct *work)
2963 {
2964         struct iavf_adapter *adapter =
2965                 container_of(work, struct iavf_adapter, client_task.work);
2966
2967         /* If we can't get the client bit, just give up. We'll be rescheduled
2968          * later.
2969          */
2970
2971         if (!mutex_trylock(&adapter->client_lock))
2972                 return;
2973
2974         if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2975                 iavf_client_subtask(adapter);
2976                 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2977                 goto out;
2978         }
2979         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2980                 iavf_notify_client_l2_params(&adapter->vsi);
2981                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2982                 goto out;
2983         }
2984         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2985                 iavf_notify_client_close(&adapter->vsi, false);
2986                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2987                 goto out;
2988         }
2989         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2990                 iavf_notify_client_open(&adapter->vsi);
2991                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2992         }
2993 out:
2994         mutex_unlock(&adapter->client_lock);
2995 }
2996
2997 /**
2998  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2999  * @adapter: board private structure
3000  *
3001  * Free all transmit software resources
3002  **/
3003 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3004 {
3005         int i;
3006
3007         if (!adapter->tx_rings)
3008                 return;
3009
3010         for (i = 0; i < adapter->num_active_queues; i++)
3011                 if (adapter->tx_rings[i].desc)
3012                         iavf_free_tx_resources(&adapter->tx_rings[i]);
3013 }
3014
3015 /**
3016  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3017  * @adapter: board private structure
3018  *
3019  * If this function returns with an error, then it's possible one or
3020  * more of the rings is populated (while the rest are not).  It is the
3021  * callers duty to clean those orphaned rings.
3022  *
3023  * Return 0 on success, negative on failure
3024  **/
3025 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3026 {
3027         int i, err = 0;
3028
3029         for (i = 0; i < adapter->num_active_queues; i++) {
3030                 adapter->tx_rings[i].count = adapter->tx_desc_count;
3031                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3032                 if (!err)
3033                         continue;
3034                 dev_err(&adapter->pdev->dev,
3035                         "Allocation for Tx Queue %u failed\n", i);
3036                 break;
3037         }
3038
3039         return err;
3040 }
3041
3042 /**
3043  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3044  * @adapter: board private structure
3045  *
3046  * If this function returns with an error, then it's possible one or
3047  * more of the rings is populated (while the rest are not).  It is the
3048  * callers duty to clean those orphaned rings.
3049  *
3050  * Return 0 on success, negative on failure
3051  **/
3052 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3053 {
3054         int i, err = 0;
3055
3056         for (i = 0; i < adapter->num_active_queues; i++) {
3057                 adapter->rx_rings[i].count = adapter->rx_desc_count;
3058                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3059                 if (!err)
3060                         continue;
3061                 dev_err(&adapter->pdev->dev,
3062                         "Allocation for Rx Queue %u failed\n", i);
3063                 break;
3064         }
3065         return err;
3066 }
3067
3068 /**
3069  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3070  * @adapter: board private structure
3071  *
3072  * Free all receive software resources
3073  **/
3074 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3075 {
3076         int i;
3077
3078         if (!adapter->rx_rings)
3079                 return;
3080
3081         for (i = 0; i < adapter->num_active_queues; i++)
3082                 if (adapter->rx_rings[i].desc)
3083                         iavf_free_rx_resources(&adapter->rx_rings[i]);
3084 }
3085
3086 /**
3087  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3088  * @adapter: board private structure
3089  * @max_tx_rate: max Tx bw for a tc
3090  **/
3091 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3092                                       u64 max_tx_rate)
3093 {
3094         int speed = 0, ret = 0;
3095
3096         if (ADV_LINK_SUPPORT(adapter)) {
3097                 if (adapter->link_speed_mbps < U32_MAX) {
3098                         speed = adapter->link_speed_mbps;
3099                         goto validate_bw;
3100                 } else {
3101                         dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3102                         return -EINVAL;
3103                 }
3104         }
3105
3106         switch (adapter->link_speed) {
3107         case VIRTCHNL_LINK_SPEED_40GB:
3108                 speed = SPEED_40000;
3109                 break;
3110         case VIRTCHNL_LINK_SPEED_25GB:
3111                 speed = SPEED_25000;
3112                 break;
3113         case VIRTCHNL_LINK_SPEED_20GB:
3114                 speed = SPEED_20000;
3115                 break;
3116         case VIRTCHNL_LINK_SPEED_10GB:
3117                 speed = SPEED_10000;
3118                 break;
3119         case VIRTCHNL_LINK_SPEED_5GB:
3120                 speed = SPEED_5000;
3121                 break;
3122         case VIRTCHNL_LINK_SPEED_2_5GB:
3123                 speed = SPEED_2500;
3124                 break;
3125         case VIRTCHNL_LINK_SPEED_1GB:
3126                 speed = SPEED_1000;
3127                 break;
3128         case VIRTCHNL_LINK_SPEED_100MB:
3129                 speed = SPEED_100;
3130                 break;
3131         default:
3132                 break;
3133         }
3134
3135 validate_bw:
3136         if (max_tx_rate > speed) {
3137                 dev_err(&adapter->pdev->dev,
3138                         "Invalid tx rate specified\n");
3139                 ret = -EINVAL;
3140         }
3141
3142         return ret;
3143 }
3144
3145 /**
3146  * iavf_validate_ch_config - validate queue mapping info
3147  * @adapter: board private structure
3148  * @mqprio_qopt: queue parameters
3149  *
3150  * This function validates if the config provided by the user to
3151  * configure queue channels is valid or not. Returns 0 on a valid
3152  * config.
3153  **/
3154 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3155                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
3156 {
3157         u64 total_max_rate = 0;
3158         int i, num_qps = 0;
3159         u64 tx_rate = 0;
3160         int ret = 0;
3161
3162         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3163             mqprio_qopt->qopt.num_tc < 1)
3164                 return -EINVAL;
3165
3166         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3167                 if (!mqprio_qopt->qopt.count[i] ||
3168                     mqprio_qopt->qopt.offset[i] != num_qps)
3169                         return -EINVAL;
3170                 if (mqprio_qopt->min_rate[i]) {
3171                         dev_err(&adapter->pdev->dev,
3172                                 "Invalid min tx rate (greater than 0) specified\n");
3173                         return -EINVAL;
3174                 }
3175                 /*convert to Mbps */
3176                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3177                                   IAVF_MBPS_DIVISOR);
3178                 total_max_rate += tx_rate;
3179                 num_qps += mqprio_qopt->qopt.count[i];
3180         }
3181         if (num_qps > adapter->num_active_queues) {
3182                 dev_err(&adapter->pdev->dev,
3183                         "Cannot support requested number of queues\n");
3184                 return -EINVAL;
3185         }
3186
3187         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3188         return ret;
3189 }
3190
3191 /**
3192  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3193  * @adapter: board private structure
3194  **/
3195 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3196 {
3197         struct iavf_cloud_filter *cf, *cftmp;
3198
3199         spin_lock_bh(&adapter->cloud_filter_list_lock);
3200         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3201                                  list) {
3202                 list_del(&cf->list);
3203                 kfree(cf);
3204                 adapter->num_cloud_filters--;
3205         }
3206         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3207 }
3208
3209 /**
3210  * __iavf_setup_tc - configure multiple traffic classes
3211  * @netdev: network interface device structure
3212  * @type_data: tc offload data
3213  *
3214  * This function processes the config information provided by the
3215  * user to configure traffic classes/queue channels and packages the
3216  * information to request the PF to setup traffic classes.
3217  *
3218  * Returns 0 on success.
3219  **/
3220 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3221 {
3222         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3223         struct iavf_adapter *adapter = netdev_priv(netdev);
3224         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3225         u8 num_tc = 0, total_qps = 0;
3226         int ret = 0, netdev_tc = 0;
3227         u64 max_tx_rate;
3228         u16 mode;
3229         int i;
3230
3231         num_tc = mqprio_qopt->qopt.num_tc;
3232         mode = mqprio_qopt->mode;
3233
3234         /* delete queue_channel */
3235         if (!mqprio_qopt->qopt.hw) {
3236                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3237                         /* reset the tc configuration */
3238                         netdev_reset_tc(netdev);
3239                         adapter->num_tc = 0;
3240                         netif_tx_stop_all_queues(netdev);
3241                         netif_tx_disable(netdev);
3242                         iavf_del_all_cloud_filters(adapter);
3243                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3244                         goto exit;
3245                 } else {
3246                         return -EINVAL;
3247                 }
3248         }
3249
3250         /* add queue channel */
3251         if (mode == TC_MQPRIO_MODE_CHANNEL) {
3252                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3253                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
3254                         return -EOPNOTSUPP;
3255                 }
3256                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3257                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3258                         return -EINVAL;
3259                 }
3260
3261                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3262                 if (ret)
3263                         return ret;
3264                 /* Return if same TC config is requested */
3265                 if (adapter->num_tc == num_tc)
3266                         return 0;
3267                 adapter->num_tc = num_tc;
3268
3269                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3270                         if (i < num_tc) {
3271                                 adapter->ch_config.ch_info[i].count =
3272                                         mqprio_qopt->qopt.count[i];
3273                                 adapter->ch_config.ch_info[i].offset =
3274                                         mqprio_qopt->qopt.offset[i];
3275                                 total_qps += mqprio_qopt->qopt.count[i];
3276                                 max_tx_rate = mqprio_qopt->max_rate[i];
3277                                 /* convert to Mbps */
3278                                 max_tx_rate = div_u64(max_tx_rate,
3279                                                       IAVF_MBPS_DIVISOR);
3280                                 adapter->ch_config.ch_info[i].max_tx_rate =
3281                                         max_tx_rate;
3282                         } else {
3283                                 adapter->ch_config.ch_info[i].count = 1;
3284                                 adapter->ch_config.ch_info[i].offset = 0;
3285                         }
3286                 }
3287                 adapter->ch_config.total_qps = total_qps;
3288                 netif_tx_stop_all_queues(netdev);
3289                 netif_tx_disable(netdev);
3290                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3291                 netdev_reset_tc(netdev);
3292                 /* Report the tc mapping up the stack */
3293                 netdev_set_num_tc(adapter->netdev, num_tc);
3294                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3295                         u16 qcount = mqprio_qopt->qopt.count[i];
3296                         u16 qoffset = mqprio_qopt->qopt.offset[i];
3297
3298                         if (i < num_tc)
3299                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3300                                                     qoffset);
3301                 }
3302         }
3303 exit:
3304         return ret;
3305 }
3306
3307 /**
3308  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3309  * @adapter: board private structure
3310  * @f: pointer to struct flow_cls_offload
3311  * @filter: pointer to cloud filter structure
3312  */
3313 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3314                                  struct flow_cls_offload *f,
3315                                  struct iavf_cloud_filter *filter)
3316 {
3317         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3318         struct flow_dissector *dissector = rule->match.dissector;
3319         u16 n_proto_mask = 0;
3320         u16 n_proto_key = 0;
3321         u8 field_flags = 0;
3322         u16 addr_type = 0;
3323         u16 n_proto = 0;
3324         int i = 0;
3325         struct virtchnl_filter *vf = &filter->f;
3326
3327         if (dissector->used_keys &
3328             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3329               BIT(FLOW_DISSECTOR_KEY_BASIC) |
3330               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3331               BIT(FLOW_DISSECTOR_KEY_VLAN) |
3332               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3333               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3334               BIT(FLOW_DISSECTOR_KEY_PORTS) |
3335               BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3336                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3337                         dissector->used_keys);
3338                 return -EOPNOTSUPP;
3339         }
3340
3341         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3342                 struct flow_match_enc_keyid match;
3343
3344                 flow_rule_match_enc_keyid(rule, &match);
3345                 if (match.mask->keyid != 0)
3346                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3347         }
3348
3349         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3350                 struct flow_match_basic match;
3351
3352                 flow_rule_match_basic(rule, &match);
3353                 n_proto_key = ntohs(match.key->n_proto);
3354                 n_proto_mask = ntohs(match.mask->n_proto);
3355
3356                 if (n_proto_key == ETH_P_ALL) {
3357                         n_proto_key = 0;
3358                         n_proto_mask = 0;
3359                 }
3360                 n_proto = n_proto_key & n_proto_mask;
3361                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3362                         return -EINVAL;
3363                 if (n_proto == ETH_P_IPV6) {
3364                         /* specify flow type as TCP IPv6 */
3365                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3366                 }
3367
3368                 if (match.key->ip_proto != IPPROTO_TCP) {
3369                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3370                         return -EINVAL;
3371                 }
3372         }
3373
3374         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3375                 struct flow_match_eth_addrs match;
3376
3377                 flow_rule_match_eth_addrs(rule, &match);
3378
3379                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3380                 if (!is_zero_ether_addr(match.mask->dst)) {
3381                         if (is_broadcast_ether_addr(match.mask->dst)) {
3382                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3383                         } else {
3384                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3385                                         match.mask->dst);
3386                                 return -EINVAL;
3387                         }
3388                 }
3389
3390                 if (!is_zero_ether_addr(match.mask->src)) {
3391                         if (is_broadcast_ether_addr(match.mask->src)) {
3392                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3393                         } else {
3394                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3395                                         match.mask->src);
3396                                 return -EINVAL;
3397                         }
3398                 }
3399
3400                 if (!is_zero_ether_addr(match.key->dst))
3401                         if (is_valid_ether_addr(match.key->dst) ||
3402                             is_multicast_ether_addr(match.key->dst)) {
3403                                 /* set the mask if a valid dst_mac address */
3404                                 for (i = 0; i < ETH_ALEN; i++)
3405                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3406                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3407                                                 match.key->dst);
3408                         }
3409
3410                 if (!is_zero_ether_addr(match.key->src))
3411                         if (is_valid_ether_addr(match.key->src) ||
3412                             is_multicast_ether_addr(match.key->src)) {
3413                                 /* set the mask if a valid dst_mac address */
3414                                 for (i = 0; i < ETH_ALEN; i++)
3415                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
3416                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
3417                                                 match.key->src);
3418                 }
3419         }
3420
3421         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3422                 struct flow_match_vlan match;
3423
3424                 flow_rule_match_vlan(rule, &match);
3425                 if (match.mask->vlan_id) {
3426                         if (match.mask->vlan_id == VLAN_VID_MASK) {
3427                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3428                         } else {
3429                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3430                                         match.mask->vlan_id);
3431                                 return -EINVAL;
3432                         }
3433                 }
3434                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3435                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3436         }
3437
3438         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3439                 struct flow_match_control match;
3440
3441                 flow_rule_match_control(rule, &match);
3442                 addr_type = match.key->addr_type;
3443         }
3444
3445         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3446                 struct flow_match_ipv4_addrs match;
3447
3448                 flow_rule_match_ipv4_addrs(rule, &match);
3449                 if (match.mask->dst) {
3450                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3451                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3452                         } else {
3453                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3454                                         be32_to_cpu(match.mask->dst));
3455                                 return -EINVAL;
3456                         }
3457                 }
3458
3459                 if (match.mask->src) {
3460                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
3461                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3462                         } else {
3463                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3464                                         be32_to_cpu(match.mask->dst));
3465                                 return -EINVAL;
3466                         }
3467                 }
3468
3469                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3470                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3471                         return -EINVAL;
3472                 }
3473                 if (match.key->dst) {
3474                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3475                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3476                 }
3477                 if (match.key->src) {
3478                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3479                         vf->data.tcp_spec.src_ip[0] = match.key->src;
3480                 }
3481         }
3482
3483         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3484                 struct flow_match_ipv6_addrs match;
3485
3486                 flow_rule_match_ipv6_addrs(rule, &match);
3487
3488                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3489                 if (ipv6_addr_any(&match.mask->dst)) {
3490                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3491                                 IPV6_ADDR_ANY);
3492                         return -EINVAL;
3493                 }
3494
3495                 /* src and dest IPv6 address should not be LOOPBACK
3496                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
3497                  */
3498                 if (ipv6_addr_loopback(&match.key->dst) ||
3499                     ipv6_addr_loopback(&match.key->src)) {
3500                         dev_err(&adapter->pdev->dev,
3501                                 "ipv6 addr should not be loopback\n");
3502                         return -EINVAL;
3503                 }
3504                 if (!ipv6_addr_any(&match.mask->dst) ||
3505                     !ipv6_addr_any(&match.mask->src))
3506                         field_flags |= IAVF_CLOUD_FIELD_IIP;
3507
3508                 for (i = 0; i < 4; i++)
3509                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3510                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3511                        sizeof(vf->data.tcp_spec.dst_ip));
3512                 for (i = 0; i < 4; i++)
3513                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3514                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3515                        sizeof(vf->data.tcp_spec.src_ip));
3516         }
3517         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3518                 struct flow_match_ports match;
3519
3520                 flow_rule_match_ports(rule, &match);
3521                 if (match.mask->src) {
3522                         if (match.mask->src == cpu_to_be16(0xffff)) {
3523                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3524                         } else {
3525                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3526                                         be16_to_cpu(match.mask->src));
3527                                 return -EINVAL;
3528                         }
3529                 }
3530
3531                 if (match.mask->dst) {
3532                         if (match.mask->dst == cpu_to_be16(0xffff)) {
3533                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3534                         } else {
3535                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3536                                         be16_to_cpu(match.mask->dst));
3537                                 return -EINVAL;
3538                         }
3539                 }
3540                 if (match.key->dst) {
3541                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3542                         vf->data.tcp_spec.dst_port = match.key->dst;
3543                 }
3544
3545                 if (match.key->src) {
3546                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3547                         vf->data.tcp_spec.src_port = match.key->src;
3548                 }
3549         }
3550         vf->field_flags = field_flags;
3551
3552         return 0;
3553 }
3554
3555 /**
3556  * iavf_handle_tclass - Forward to a traffic class on the device
3557  * @adapter: board private structure
3558  * @tc: traffic class index on the device
3559  * @filter: pointer to cloud filter structure
3560  */
3561 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3562                               struct iavf_cloud_filter *filter)
3563 {
3564         if (tc == 0)
3565                 return 0;
3566         if (tc < adapter->num_tc) {
3567                 if (!filter->f.data.tcp_spec.dst_port) {
3568                         dev_err(&adapter->pdev->dev,
3569                                 "Specify destination port to redirect to traffic class other than TC0\n");
3570                         return -EINVAL;
3571                 }
3572         }
3573         /* redirect to a traffic class on the same device */
3574         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3575         filter->f.action_meta = tc;
3576         return 0;
3577 }
3578
3579 /**
3580  * iavf_configure_clsflower - Add tc flower filters
3581  * @adapter: board private structure
3582  * @cls_flower: Pointer to struct flow_cls_offload
3583  */
3584 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3585                                     struct flow_cls_offload *cls_flower)
3586 {
3587         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3588         struct iavf_cloud_filter *filter = NULL;
3589         int err = -EINVAL, count = 50;
3590
3591         if (tc < 0) {
3592                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3593                 return -EINVAL;
3594         }
3595
3596         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3597         if (!filter)
3598                 return -ENOMEM;
3599
3600         while (!mutex_trylock(&adapter->crit_lock)) {
3601                 if (--count == 0) {
3602                         kfree(filter);
3603                         return err;
3604                 }
3605                 udelay(1);
3606         }
3607
3608         filter->cookie = cls_flower->cookie;
3609
3610         /* set the mask to all zeroes to begin with */
3611         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3612         /* start out with flow type and eth type IPv4 to begin with */
3613         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3614         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3615         if (err)
3616                 goto err;
3617
3618         err = iavf_handle_tclass(adapter, tc, filter);
3619         if (err)
3620                 goto err;
3621
3622         /* add filter to the list */
3623         spin_lock_bh(&adapter->cloud_filter_list_lock);
3624         list_add_tail(&filter->list, &adapter->cloud_filter_list);
3625         adapter->num_cloud_filters++;
3626         filter->add = true;
3627         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3628         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3629 err:
3630         if (err)
3631                 kfree(filter);
3632
3633         mutex_unlock(&adapter->crit_lock);
3634         return err;
3635 }
3636
3637 /* iavf_find_cf - Find the cloud filter in the list
3638  * @adapter: Board private structure
3639  * @cookie: filter specific cookie
3640  *
3641  * Returns ptr to the filter object or NULL. Must be called while holding the
3642  * cloud_filter_list_lock.
3643  */
3644 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3645                                               unsigned long *cookie)
3646 {
3647         struct iavf_cloud_filter *filter = NULL;
3648
3649         if (!cookie)
3650                 return NULL;
3651
3652         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3653                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3654                         return filter;
3655         }
3656         return NULL;
3657 }
3658
3659 /**
3660  * iavf_delete_clsflower - Remove tc flower filters
3661  * @adapter: board private structure
3662  * @cls_flower: Pointer to struct flow_cls_offload
3663  */
3664 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3665                                  struct flow_cls_offload *cls_flower)
3666 {
3667         struct iavf_cloud_filter *filter = NULL;
3668         int err = 0;
3669
3670         spin_lock_bh(&adapter->cloud_filter_list_lock);
3671         filter = iavf_find_cf(adapter, &cls_flower->cookie);
3672         if (filter) {
3673                 filter->del = true;
3674                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3675         } else {
3676                 err = -EINVAL;
3677         }
3678         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3679
3680         return err;
3681 }
3682
3683 /**
3684  * iavf_setup_tc_cls_flower - flower classifier offloads
3685  * @adapter: board private structure
3686  * @cls_flower: pointer to flow_cls_offload struct with flow info
3687  */
3688 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3689                                     struct flow_cls_offload *cls_flower)
3690 {
3691         switch (cls_flower->command) {
3692         case FLOW_CLS_REPLACE:
3693                 return iavf_configure_clsflower(adapter, cls_flower);
3694         case FLOW_CLS_DESTROY:
3695                 return iavf_delete_clsflower(adapter, cls_flower);
3696         case FLOW_CLS_STATS:
3697                 return -EOPNOTSUPP;
3698         default:
3699                 return -EOPNOTSUPP;
3700         }
3701 }
3702
3703 /**
3704  * iavf_setup_tc_block_cb - block callback for tc
3705  * @type: type of offload
3706  * @type_data: offload data
3707  * @cb_priv:
3708  *
3709  * This function is the block callback for traffic classes
3710  **/
3711 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3712                                   void *cb_priv)
3713 {
3714         struct iavf_adapter *adapter = cb_priv;
3715
3716         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3717                 return -EOPNOTSUPP;
3718
3719         switch (type) {
3720         case TC_SETUP_CLSFLOWER:
3721                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3722         default:
3723                 return -EOPNOTSUPP;
3724         }
3725 }
3726
3727 static LIST_HEAD(iavf_block_cb_list);
3728
3729 /**
3730  * iavf_setup_tc - configure multiple traffic classes
3731  * @netdev: network interface device structure
3732  * @type: type of offload
3733  * @type_data: tc offload data
3734  *
3735  * This function is the callback to ndo_setup_tc in the
3736  * netdev_ops.
3737  *
3738  * Returns 0 on success
3739  **/
3740 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3741                          void *type_data)
3742 {
3743         struct iavf_adapter *adapter = netdev_priv(netdev);
3744
3745         switch (type) {
3746         case TC_SETUP_QDISC_MQPRIO:
3747                 return __iavf_setup_tc(netdev, type_data);
3748         case TC_SETUP_BLOCK:
3749                 return flow_block_cb_setup_simple(type_data,
3750                                                   &iavf_block_cb_list,
3751                                                   iavf_setup_tc_block_cb,
3752                                                   adapter, adapter, true);
3753         default:
3754                 return -EOPNOTSUPP;
3755         }
3756 }
3757
3758 /**
3759  * iavf_open - Called when a network interface is made active
3760  * @netdev: network interface device structure
3761  *
3762  * Returns 0 on success, negative value on failure
3763  *
3764  * The open entry point is called when a network interface is made
3765  * active by the system (IFF_UP).  At this point all resources needed
3766  * for transmit and receive operations are allocated, the interrupt
3767  * handler is registered with the OS, the watchdog is started,
3768  * and the stack is notified that the interface is ready.
3769  **/
3770 static int iavf_open(struct net_device *netdev)
3771 {
3772         struct iavf_adapter *adapter = netdev_priv(netdev);
3773         int err;
3774
3775         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3776                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3777                 return -EIO;
3778         }
3779
3780         while (!mutex_trylock(&adapter->crit_lock))
3781                 usleep_range(500, 1000);
3782
3783         if (adapter->state != __IAVF_DOWN) {
3784                 err = -EBUSY;
3785                 goto err_unlock;
3786         }
3787
3788         if (adapter->state == __IAVF_RUNNING &&
3789             !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3790                 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3791                 err = 0;
3792                 goto err_unlock;
3793         }
3794
3795         /* allocate transmit descriptors */
3796         err = iavf_setup_all_tx_resources(adapter);
3797         if (err)
3798                 goto err_setup_tx;
3799
3800         /* allocate receive descriptors */
3801         err = iavf_setup_all_rx_resources(adapter);
3802         if (err)
3803                 goto err_setup_rx;
3804
3805         /* clear any pending interrupts, may auto mask */
3806         err = iavf_request_traffic_irqs(adapter, netdev->name);
3807         if (err)
3808                 goto err_req_irq;
3809
3810         spin_lock_bh(&adapter->mac_vlan_list_lock);
3811
3812         iavf_add_filter(adapter, adapter->hw.mac.addr);
3813
3814         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3815
3816         /* Restore VLAN filters that were removed with IFF_DOWN */
3817         iavf_restore_filters(adapter);
3818
3819         iavf_configure(adapter);
3820
3821         iavf_up_complete(adapter);
3822
3823         iavf_irq_enable(adapter, true);
3824
3825         mutex_unlock(&adapter->crit_lock);
3826
3827         return 0;
3828
3829 err_req_irq:
3830         iavf_down(adapter);
3831         iavf_free_traffic_irqs(adapter);
3832 err_setup_rx:
3833         iavf_free_all_rx_resources(adapter);
3834 err_setup_tx:
3835         iavf_free_all_tx_resources(adapter);
3836 err_unlock:
3837         mutex_unlock(&adapter->crit_lock);
3838
3839         return err;
3840 }
3841
3842 /**
3843  * iavf_close - Disables a network interface
3844  * @netdev: network interface device structure
3845  *
3846  * Returns 0, this is not allowed to fail
3847  *
3848  * The close entry point is called when an interface is de-activated
3849  * by the OS.  The hardware is still under the drivers control, but
3850  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3851  * are freed, along with all transmit and receive resources.
3852  **/
3853 static int iavf_close(struct net_device *netdev)
3854 {
3855         struct iavf_adapter *adapter = netdev_priv(netdev);
3856         int status;
3857
3858         mutex_lock(&adapter->crit_lock);
3859
3860         if (adapter->state <= __IAVF_DOWN_PENDING) {
3861                 mutex_unlock(&adapter->crit_lock);
3862                 return 0;
3863         }
3864
3865         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3866         if (CLIENT_ENABLED(adapter))
3867                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3868
3869         iavf_down(adapter);
3870         iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3871         iavf_free_traffic_irqs(adapter);
3872
3873         mutex_unlock(&adapter->crit_lock);
3874
3875         /* We explicitly don't free resources here because the hardware is
3876          * still active and can DMA into memory. Resources are cleared in
3877          * iavf_virtchnl_completion() after we get confirmation from the PF
3878          * driver that the rings have been stopped.
3879          *
3880          * Also, we wait for state to transition to __IAVF_DOWN before
3881          * returning. State change occurs in iavf_virtchnl_completion() after
3882          * VF resources are released (which occurs after PF driver processes and
3883          * responds to admin queue commands).
3884          */
3885
3886         status = wait_event_timeout(adapter->down_waitqueue,
3887                                     adapter->state == __IAVF_DOWN,
3888                                     msecs_to_jiffies(500));
3889         if (!status)
3890                 netdev_warn(netdev, "Device resources not yet released\n");
3891         return 0;
3892 }
3893
3894 /**
3895  * iavf_change_mtu - Change the Maximum Transfer Unit
3896  * @netdev: network interface device structure
3897  * @new_mtu: new value for maximum frame size
3898  *
3899  * Returns 0 on success, negative on failure
3900  **/
3901 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3902 {
3903         struct iavf_adapter *adapter = netdev_priv(netdev);
3904
3905         netdev_dbg(netdev, "changing MTU from %d to %d\n",
3906                    netdev->mtu, new_mtu);
3907         netdev->mtu = new_mtu;
3908         if (CLIENT_ENABLED(adapter)) {
3909                 iavf_notify_client_l2_params(&adapter->vsi);
3910                 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3911         }
3912
3913         if (netif_running(netdev)) {
3914                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3915                 queue_work(iavf_wq, &adapter->reset_task);
3916         }
3917
3918         return 0;
3919 }
3920
3921 #define NETIF_VLAN_OFFLOAD_FEATURES     (NETIF_F_HW_VLAN_CTAG_RX | \
3922                                          NETIF_F_HW_VLAN_CTAG_TX | \
3923                                          NETIF_F_HW_VLAN_STAG_RX | \
3924                                          NETIF_F_HW_VLAN_STAG_TX)
3925
3926 /**
3927  * iavf_set_features - set the netdev feature flags
3928  * @netdev: ptr to the netdev being adjusted
3929  * @features: the feature set that the stack is suggesting
3930  * Note: expects to be called while under rtnl_lock()
3931  **/
3932 static int iavf_set_features(struct net_device *netdev,
3933                              netdev_features_t features)
3934 {
3935         struct iavf_adapter *adapter = netdev_priv(netdev);
3936
3937         /* trigger update on any VLAN feature change */
3938         if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
3939             (features & NETIF_VLAN_OFFLOAD_FEATURES))
3940                 iavf_set_vlan_offload_features(adapter, netdev->features,
3941                                                features);
3942
3943         return 0;
3944 }
3945
3946 /**
3947  * iavf_features_check - Validate encapsulated packet conforms to limits
3948  * @skb: skb buff
3949  * @dev: This physical port's netdev
3950  * @features: Offload features that the stack believes apply
3951  **/
3952 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3953                                              struct net_device *dev,
3954                                              netdev_features_t features)
3955 {
3956         size_t len;
3957
3958         /* No point in doing any of this if neither checksum nor GSO are
3959          * being requested for this frame.  We can rule out both by just
3960          * checking for CHECKSUM_PARTIAL
3961          */
3962         if (skb->ip_summed != CHECKSUM_PARTIAL)
3963                 return features;
3964
3965         /* We cannot support GSO if the MSS is going to be less than
3966          * 64 bytes.  If it is then we need to drop support for GSO.
3967          */
3968         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3969                 features &= ~NETIF_F_GSO_MASK;
3970
3971         /* MACLEN can support at most 63 words */
3972         len = skb_network_header(skb) - skb->data;
3973         if (len & ~(63 * 2))
3974                 goto out_err;
3975
3976         /* IPLEN and EIPLEN can support at most 127 dwords */
3977         len = skb_transport_header(skb) - skb_network_header(skb);
3978         if (len & ~(127 * 4))
3979                 goto out_err;
3980
3981         if (skb->encapsulation) {
3982                 /* L4TUNLEN can support 127 words */
3983                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3984                 if (len & ~(127 * 2))
3985                         goto out_err;
3986
3987                 /* IPLEN can support at most 127 dwords */
3988                 len = skb_inner_transport_header(skb) -
3989                       skb_inner_network_header(skb);
3990                 if (len & ~(127 * 4))
3991                         goto out_err;
3992         }
3993
3994         /* No need to validate L4LEN as TCP is the only protocol with a
3995          * a flexible value and we support all possible values supported
3996          * by TCP, which is at most 15 dwords
3997          */
3998
3999         return features;
4000 out_err:
4001         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4002 }
4003
4004 /**
4005  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4006  * @adapter: board private structure
4007  *
4008  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4009  * were negotiated determine the VLAN features that can be toggled on and off.
4010  **/
4011 static netdev_features_t
4012 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4013 {
4014         netdev_features_t hw_features = 0;
4015
4016         if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4017                 return hw_features;
4018
4019         /* Enable VLAN features if supported */
4020         if (VLAN_ALLOWED(adapter)) {
4021                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4022                                 NETIF_F_HW_VLAN_CTAG_RX);
4023         } else if (VLAN_V2_ALLOWED(adapter)) {
4024                 struct virtchnl_vlan_caps *vlan_v2_caps =
4025                         &adapter->vlan_v2_caps;
4026                 struct virtchnl_vlan_supported_caps *stripping_support =
4027                         &vlan_v2_caps->offloads.stripping_support;
4028                 struct virtchnl_vlan_supported_caps *insertion_support =
4029                         &vlan_v2_caps->offloads.insertion_support;
4030
4031                 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4032                     stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4033                         if (stripping_support->outer &
4034                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4035                                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4036                         if (stripping_support->outer &
4037                             VIRTCHNL_VLAN_ETHERTYPE_88A8)
4038                                 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4039                 } else if (stripping_support->inner !=
4040                            VIRTCHNL_VLAN_UNSUPPORTED &&
4041                            stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4042                         if (stripping_support->inner &
4043                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4044                                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4045                 }
4046
4047                 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4048                     insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4049                         if (insertion_support->outer &
4050                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4051                                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4052                         if (insertion_support->outer &
4053                             VIRTCHNL_VLAN_ETHERTYPE_88A8)
4054                                 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4055                 } else if (insertion_support->inner &&
4056                            insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4057                         if (insertion_support->inner &
4058                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4059                                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4060                 }
4061         }
4062
4063         return hw_features;
4064 }
4065
4066 /**
4067  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4068  * @adapter: board private structure
4069  *
4070  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4071  * were negotiated determine the VLAN features that are enabled by default.
4072  **/
4073 static netdev_features_t
4074 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4075 {
4076         netdev_features_t features = 0;
4077
4078         if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4079                 return features;
4080
4081         if (VLAN_ALLOWED(adapter)) {
4082                 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4083                         NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4084         } else if (VLAN_V2_ALLOWED(adapter)) {
4085                 struct virtchnl_vlan_caps *vlan_v2_caps =
4086                         &adapter->vlan_v2_caps;
4087                 struct virtchnl_vlan_supported_caps *filtering_support =
4088                         &vlan_v2_caps->filtering.filtering_support;
4089                 struct virtchnl_vlan_supported_caps *stripping_support =
4090                         &vlan_v2_caps->offloads.stripping_support;
4091                 struct virtchnl_vlan_supported_caps *insertion_support =
4092                         &vlan_v2_caps->offloads.insertion_support;
4093                 u32 ethertype_init;
4094
4095                 /* give priority to outer stripping and don't support both outer
4096                  * and inner stripping
4097                  */
4098                 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4099                 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4100                         if (stripping_support->outer &
4101                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4102                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4103                                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4104                         else if (stripping_support->outer &
4105                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4106                                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4107                                 features |= NETIF_F_HW_VLAN_STAG_RX;
4108                 } else if (stripping_support->inner !=
4109                            VIRTCHNL_VLAN_UNSUPPORTED) {
4110                         if (stripping_support->inner &
4111                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4112                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4113                                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4114                 }
4115
4116                 /* give priority to outer insertion and don't support both outer
4117                  * and inner insertion
4118                  */
4119                 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4120                         if (insertion_support->outer &
4121                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4122                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4123                                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4124                         else if (insertion_support->outer &
4125                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4126                                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4127                                 features |= NETIF_F_HW_VLAN_STAG_TX;
4128                 } else if (insertion_support->inner !=
4129                            VIRTCHNL_VLAN_UNSUPPORTED) {
4130                         if (insertion_support->inner &
4131                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4132                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4133                                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4134                 }
4135
4136                 /* give priority to outer filtering and don't bother if both
4137                  * outer and inner filtering are enabled
4138                  */
4139                 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4140                 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4141                         if (filtering_support->outer &
4142                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4143                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4144                                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4145                         if (filtering_support->outer &
4146                             VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4147                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4148                                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4149                 } else if (filtering_support->inner !=
4150                            VIRTCHNL_VLAN_UNSUPPORTED) {
4151                         if (filtering_support->inner &
4152                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4153                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4154                                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4155                         if (filtering_support->inner &
4156                             VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4157                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4158                                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4159                 }
4160         }
4161
4162         return features;
4163 }
4164
4165 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4166         (!(((requested) & (feature_bit)) && \
4167            !((allowed) & (feature_bit))))
4168
4169 /**
4170  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4171  * @adapter: board private structure
4172  * @requested_features: stack requested NETDEV features
4173  **/
4174 static netdev_features_t
4175 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4176                               netdev_features_t requested_features)
4177 {
4178         netdev_features_t allowed_features;
4179
4180         allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4181                 iavf_get_netdev_vlan_features(adapter);
4182
4183         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4184                                               allowed_features,
4185                                               NETIF_F_HW_VLAN_CTAG_TX))
4186                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4187
4188         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4189                                               allowed_features,
4190                                               NETIF_F_HW_VLAN_CTAG_RX))
4191                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4192
4193         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4194                                               allowed_features,
4195                                               NETIF_F_HW_VLAN_STAG_TX))
4196                 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4197         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4198                                               allowed_features,
4199                                               NETIF_F_HW_VLAN_STAG_RX))
4200                 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4201
4202         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4203                                               allowed_features,
4204                                               NETIF_F_HW_VLAN_CTAG_FILTER))
4205                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4206
4207         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4208                                               allowed_features,
4209                                               NETIF_F_HW_VLAN_STAG_FILTER))
4210                 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4211
4212         if ((requested_features &
4213              (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4214             (requested_features &
4215              (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4216             adapter->vlan_v2_caps.offloads.ethertype_match ==
4217             VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4218                 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4219                 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4220                                         NETIF_F_HW_VLAN_STAG_TX);
4221         }
4222
4223         return requested_features;
4224 }
4225
4226 /**
4227  * iavf_fix_features - fix up the netdev feature bits
4228  * @netdev: our net device
4229  * @features: desired feature bits
4230  *
4231  * Returns fixed-up features bits
4232  **/
4233 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4234                                            netdev_features_t features)
4235 {
4236         struct iavf_adapter *adapter = netdev_priv(netdev);
4237
4238         return iavf_fix_netdev_vlan_features(adapter, features);
4239 }
4240
4241 static const struct net_device_ops iavf_netdev_ops = {
4242         .ndo_open               = iavf_open,
4243         .ndo_stop               = iavf_close,
4244         .ndo_start_xmit         = iavf_xmit_frame,
4245         .ndo_set_rx_mode        = iavf_set_rx_mode,
4246         .ndo_validate_addr      = eth_validate_addr,
4247         .ndo_set_mac_address    = iavf_set_mac,
4248         .ndo_change_mtu         = iavf_change_mtu,
4249         .ndo_tx_timeout         = iavf_tx_timeout,
4250         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
4251         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
4252         .ndo_features_check     = iavf_features_check,
4253         .ndo_fix_features       = iavf_fix_features,
4254         .ndo_set_features       = iavf_set_features,
4255         .ndo_setup_tc           = iavf_setup_tc,
4256 };
4257
4258 /**
4259  * iavf_check_reset_complete - check that VF reset is complete
4260  * @hw: pointer to hw struct
4261  *
4262  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4263  **/
4264 static int iavf_check_reset_complete(struct iavf_hw *hw)
4265 {
4266         u32 rstat;
4267         int i;
4268
4269         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4270                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4271                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4272                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4273                     (rstat == VIRTCHNL_VFR_COMPLETED))
4274                         return 0;
4275                 usleep_range(10, 20);
4276         }
4277         return -EBUSY;
4278 }
4279
4280 /**
4281  * iavf_process_config - Process the config information we got from the PF
4282  * @adapter: board private structure
4283  *
4284  * Verify that we have a valid config struct, and set up our netdev features
4285  * and our VSI struct.
4286  **/
4287 int iavf_process_config(struct iavf_adapter *adapter)
4288 {
4289         struct virtchnl_vf_resource *vfres = adapter->vf_res;
4290         netdev_features_t hw_vlan_features, vlan_features;
4291         struct net_device *netdev = adapter->netdev;
4292         netdev_features_t hw_enc_features;
4293         netdev_features_t hw_features;
4294
4295         hw_enc_features = NETIF_F_SG                    |
4296                           NETIF_F_IP_CSUM               |
4297                           NETIF_F_IPV6_CSUM             |
4298                           NETIF_F_HIGHDMA               |
4299                           NETIF_F_SOFT_FEATURES |
4300                           NETIF_F_TSO                   |
4301                           NETIF_F_TSO_ECN               |
4302                           NETIF_F_TSO6                  |
4303                           NETIF_F_SCTP_CRC              |
4304                           NETIF_F_RXHASH                |
4305                           NETIF_F_RXCSUM                |
4306                           0;
4307
4308         /* advertise to stack only if offloads for encapsulated packets is
4309          * supported
4310          */
4311         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4312                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
4313                                    NETIF_F_GSO_GRE              |
4314                                    NETIF_F_GSO_GRE_CSUM         |
4315                                    NETIF_F_GSO_IPXIP4           |
4316                                    NETIF_F_GSO_IPXIP6           |
4317                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
4318                                    NETIF_F_GSO_PARTIAL          |
4319                                    0;
4320
4321                 if (!(vfres->vf_cap_flags &
4322                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4323                         netdev->gso_partial_features |=
4324                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4325
4326                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4327                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4328                 netdev->hw_enc_features |= hw_enc_features;
4329         }
4330         /* record features VLANs can make use of */
4331         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4332
4333         /* Write features and hw_features separately to avoid polluting
4334          * with, or dropping, features that are set when we registered.
4335          */
4336         hw_features = hw_enc_features;
4337
4338         /* get HW VLAN features that can be toggled */
4339         hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4340
4341         /* Enable cloud filter if ADQ is supported */
4342         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4343                 hw_features |= NETIF_F_HW_TC;
4344         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4345                 hw_features |= NETIF_F_GSO_UDP_L4;
4346
4347         netdev->hw_features |= hw_features | hw_vlan_features;
4348         vlan_features = iavf_get_netdev_vlan_features(adapter);
4349
4350         netdev->features |= hw_features | vlan_features;
4351
4352         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4353                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4354
4355         netdev->priv_flags |= IFF_UNICAST_FLT;
4356
4357         /* Do not turn on offloads when they are requested to be turned off.
4358          * TSO needs minimum 576 bytes to work correctly.
4359          */
4360         if (netdev->wanted_features) {
4361                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4362                     netdev->mtu < 576)
4363                         netdev->features &= ~NETIF_F_TSO;
4364                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4365                     netdev->mtu < 576)
4366                         netdev->features &= ~NETIF_F_TSO6;
4367                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4368                         netdev->features &= ~NETIF_F_TSO_ECN;
4369                 if (!(netdev->wanted_features & NETIF_F_GRO))
4370                         netdev->features &= ~NETIF_F_GRO;
4371                 if (!(netdev->wanted_features & NETIF_F_GSO))
4372                         netdev->features &= ~NETIF_F_GSO;
4373         }
4374
4375         return 0;
4376 }
4377
4378 /**
4379  * iavf_shutdown - Shutdown the device in preparation for a reboot
4380  * @pdev: pci device structure
4381  **/
4382 static void iavf_shutdown(struct pci_dev *pdev)
4383 {
4384         struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4385         struct net_device *netdev = adapter->netdev;
4386
4387         netif_device_detach(netdev);
4388
4389         if (netif_running(netdev))
4390                 iavf_close(netdev);
4391
4392         if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4393                 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4394         /* Prevent the watchdog from running. */
4395         iavf_change_state(adapter, __IAVF_REMOVE);
4396         adapter->aq_required = 0;
4397         mutex_unlock(&adapter->crit_lock);
4398
4399 #ifdef CONFIG_PM
4400         pci_save_state(pdev);
4401
4402 #endif
4403         pci_disable_device(pdev);
4404 }
4405
4406 /**
4407  * iavf_probe - Device Initialization Routine
4408  * @pdev: PCI device information struct
4409  * @ent: entry in iavf_pci_tbl
4410  *
4411  * Returns 0 on success, negative on failure
4412  *
4413  * iavf_probe initializes an adapter identified by a pci_dev structure.
4414  * The OS initialization, configuring of the adapter private structure,
4415  * and a hardware reset occur.
4416  **/
4417 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4418 {
4419         struct net_device *netdev;
4420         struct iavf_adapter *adapter = NULL;
4421         struct iavf_hw *hw = NULL;
4422         int err;
4423
4424         err = pci_enable_device(pdev);
4425         if (err)
4426                 return err;
4427
4428         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4429         if (err) {
4430                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4431                 if (err) {
4432                         dev_err(&pdev->dev,
4433                                 "DMA configuration failed: 0x%x\n", err);
4434                         goto err_dma;
4435                 }
4436         }
4437
4438         err = pci_request_regions(pdev, iavf_driver_name);
4439         if (err) {
4440                 dev_err(&pdev->dev,
4441                         "pci_request_regions failed 0x%x\n", err);
4442                 goto err_pci_reg;
4443         }
4444
4445         pci_enable_pcie_error_reporting(pdev);
4446
4447         pci_set_master(pdev);
4448
4449         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4450                                    IAVF_MAX_REQ_QUEUES);
4451         if (!netdev) {
4452                 err = -ENOMEM;
4453                 goto err_alloc_etherdev;
4454         }
4455
4456         SET_NETDEV_DEV(netdev, &pdev->dev);
4457
4458         pci_set_drvdata(pdev, netdev);
4459         adapter = netdev_priv(netdev);
4460
4461         adapter->netdev = netdev;
4462         adapter->pdev = pdev;
4463
4464         hw = &adapter->hw;
4465         hw->back = adapter;
4466
4467         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4468         iavf_change_state(adapter, __IAVF_STARTUP);
4469
4470         /* Call save state here because it relies on the adapter struct. */
4471         pci_save_state(pdev);
4472
4473         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4474                               pci_resource_len(pdev, 0));
4475         if (!hw->hw_addr) {
4476                 err = -EIO;
4477                 goto err_ioremap;
4478         }
4479         hw->vendor_id = pdev->vendor;
4480         hw->device_id = pdev->device;
4481         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4482         hw->subsystem_vendor_id = pdev->subsystem_vendor;
4483         hw->subsystem_device_id = pdev->subsystem_device;
4484         hw->bus.device = PCI_SLOT(pdev->devfn);
4485         hw->bus.func = PCI_FUNC(pdev->devfn);
4486         hw->bus.bus_id = pdev->bus->number;
4487
4488         /* set up the locks for the AQ, do this only once in probe
4489          * and destroy them only once in remove
4490          */
4491         mutex_init(&adapter->crit_lock);
4492         mutex_init(&adapter->client_lock);
4493         mutex_init(&hw->aq.asq_mutex);
4494         mutex_init(&hw->aq.arq_mutex);
4495
4496         spin_lock_init(&adapter->mac_vlan_list_lock);
4497         spin_lock_init(&adapter->cloud_filter_list_lock);
4498         spin_lock_init(&adapter->fdir_fltr_lock);
4499         spin_lock_init(&adapter->adv_rss_lock);
4500
4501         INIT_LIST_HEAD(&adapter->mac_filter_list);
4502         INIT_LIST_HEAD(&adapter->vlan_filter_list);
4503         INIT_LIST_HEAD(&adapter->cloud_filter_list);
4504         INIT_LIST_HEAD(&adapter->fdir_list_head);
4505         INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4506
4507         INIT_WORK(&adapter->reset_task, iavf_reset_task);
4508         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4509         INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4510         INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4511         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4512                            msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4513
4514         /* Setup the wait queue for indicating transition to down status */
4515         init_waitqueue_head(&adapter->down_waitqueue);
4516
4517         return 0;
4518
4519 err_ioremap:
4520         free_netdev(netdev);
4521 err_alloc_etherdev:
4522         pci_disable_pcie_error_reporting(pdev);
4523         pci_release_regions(pdev);
4524 err_pci_reg:
4525 err_dma:
4526         pci_disable_device(pdev);
4527         return err;
4528 }
4529
4530 /**
4531  * iavf_suspend - Power management suspend routine
4532  * @dev_d: device info pointer
4533  *
4534  * Called when the system (VM) is entering sleep/suspend.
4535  **/
4536 static int __maybe_unused iavf_suspend(struct device *dev_d)
4537 {
4538         struct net_device *netdev = dev_get_drvdata(dev_d);
4539         struct iavf_adapter *adapter = netdev_priv(netdev);
4540
4541         netif_device_detach(netdev);
4542
4543         while (!mutex_trylock(&adapter->crit_lock))
4544                 usleep_range(500, 1000);
4545
4546         if (netif_running(netdev)) {
4547                 rtnl_lock();
4548                 iavf_down(adapter);
4549                 rtnl_unlock();
4550         }
4551         iavf_free_misc_irq(adapter);
4552         iavf_reset_interrupt_capability(adapter);
4553
4554         mutex_unlock(&adapter->crit_lock);
4555
4556         return 0;
4557 }
4558
4559 /**
4560  * iavf_resume - Power management resume routine
4561  * @dev_d: device info pointer
4562  *
4563  * Called when the system (VM) is resumed from sleep/suspend.
4564  **/
4565 static int __maybe_unused iavf_resume(struct device *dev_d)
4566 {
4567         struct pci_dev *pdev = to_pci_dev(dev_d);
4568         struct iavf_adapter *adapter;
4569         u32 err;
4570
4571         adapter = iavf_pdev_to_adapter(pdev);
4572
4573         pci_set_master(pdev);
4574
4575         rtnl_lock();
4576         err = iavf_set_interrupt_capability(adapter);
4577         if (err) {
4578                 rtnl_unlock();
4579                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4580                 return err;
4581         }
4582         err = iavf_request_misc_irq(adapter);
4583         rtnl_unlock();
4584         if (err) {
4585                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4586                 return err;
4587         }
4588
4589         queue_work(iavf_wq, &adapter->reset_task);
4590
4591         netif_device_attach(adapter->netdev);
4592
4593         return err;
4594 }
4595
4596 /**
4597  * iavf_remove - Device Removal Routine
4598  * @pdev: PCI device information struct
4599  *
4600  * iavf_remove is called by the PCI subsystem to alert the driver
4601  * that it should release a PCI device.  The could be caused by a
4602  * Hot-Plug event, or because the driver is going to be removed from
4603  * memory.
4604  **/
4605 static void iavf_remove(struct pci_dev *pdev)
4606 {
4607         struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4608         struct net_device *netdev = adapter->netdev;
4609         struct iavf_fdir_fltr *fdir, *fdirtmp;
4610         struct iavf_vlan_filter *vlf, *vlftmp;
4611         struct iavf_adv_rss *rss, *rsstmp;
4612         struct iavf_mac_filter *f, *ftmp;
4613         struct iavf_cloud_filter *cf, *cftmp;
4614         struct iavf_hw *hw = &adapter->hw;
4615         int err;
4616
4617         set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
4618         /* Wait until port initialization is complete.
4619          * There are flows where register/unregister netdev may race.
4620          */
4621         while (1) {
4622                 mutex_lock(&adapter->crit_lock);
4623                 if (adapter->state == __IAVF_RUNNING ||
4624                     adapter->state == __IAVF_DOWN ||
4625                     adapter->state == __IAVF_INIT_FAILED) {
4626                         mutex_unlock(&adapter->crit_lock);
4627                         break;
4628                 }
4629
4630                 mutex_unlock(&adapter->crit_lock);
4631                 usleep_range(500, 1000);
4632         }
4633         cancel_delayed_work_sync(&adapter->watchdog_task);
4634
4635         if (adapter->netdev_registered) {
4636                 rtnl_lock();
4637                 unregister_netdevice(netdev);
4638                 adapter->netdev_registered = false;
4639                 rtnl_unlock();
4640         }
4641         if (CLIENT_ALLOWED(adapter)) {
4642                 err = iavf_lan_del_device(adapter);
4643                 if (err)
4644                         dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4645                                  err);
4646         }
4647
4648         mutex_lock(&adapter->crit_lock);
4649         dev_info(&adapter->pdev->dev, "Remove device\n");
4650         iavf_change_state(adapter, __IAVF_REMOVE);
4651
4652         iavf_request_reset(adapter);
4653         msleep(50);
4654         /* If the FW isn't responding, kick it once, but only once. */
4655         if (!iavf_asq_done(hw)) {
4656                 iavf_request_reset(adapter);
4657                 msleep(50);
4658         }
4659
4660         iavf_misc_irq_disable(adapter);
4661         /* Shut down all the garbage mashers on the detention level */
4662         cancel_work_sync(&adapter->reset_task);
4663         cancel_delayed_work_sync(&adapter->watchdog_task);
4664         cancel_work_sync(&adapter->adminq_task);
4665         cancel_delayed_work_sync(&adapter->client_task);
4666
4667         adapter->aq_required = 0;
4668         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4669
4670         iavf_free_all_tx_resources(adapter);
4671         iavf_free_all_rx_resources(adapter);
4672         iavf_free_misc_irq(adapter);
4673
4674         iavf_reset_interrupt_capability(adapter);
4675         iavf_free_q_vectors(adapter);
4676
4677         iavf_free_rss(adapter);
4678
4679         if (hw->aq.asq.count)
4680                 iavf_shutdown_adminq(hw);
4681
4682         /* destroy the locks only once, here */
4683         mutex_destroy(&hw->aq.arq_mutex);
4684         mutex_destroy(&hw->aq.asq_mutex);
4685         mutex_destroy(&adapter->client_lock);
4686         mutex_unlock(&adapter->crit_lock);
4687         mutex_destroy(&adapter->crit_lock);
4688
4689         iounmap(hw->hw_addr);
4690         pci_release_regions(pdev);
4691         iavf_free_queues(adapter);
4692         kfree(adapter->vf_res);
4693         spin_lock_bh(&adapter->mac_vlan_list_lock);
4694         /* If we got removed before an up/down sequence, we've got a filter
4695          * hanging out there that we need to get rid of.
4696          */
4697         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4698                 list_del(&f->list);
4699                 kfree(f);
4700         }
4701         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4702                                  list) {
4703                 list_del(&vlf->list);
4704                 kfree(vlf);
4705         }
4706
4707         spin_unlock_bh(&adapter->mac_vlan_list_lock);
4708
4709         spin_lock_bh(&adapter->cloud_filter_list_lock);
4710         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4711                 list_del(&cf->list);
4712                 kfree(cf);
4713         }
4714         spin_unlock_bh(&adapter->cloud_filter_list_lock);
4715
4716         spin_lock_bh(&adapter->fdir_fltr_lock);
4717         list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4718                 list_del(&fdir->list);
4719                 kfree(fdir);
4720         }
4721         spin_unlock_bh(&adapter->fdir_fltr_lock);
4722
4723         spin_lock_bh(&adapter->adv_rss_lock);
4724         list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4725                                  list) {
4726                 list_del(&rss->list);
4727                 kfree(rss);
4728         }
4729         spin_unlock_bh(&adapter->adv_rss_lock);
4730
4731         free_netdev(netdev);
4732
4733         pci_disable_pcie_error_reporting(pdev);
4734
4735         pci_disable_device(pdev);
4736 }
4737
4738 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4739
4740 static struct pci_driver iavf_driver = {
4741         .name      = iavf_driver_name,
4742         .id_table  = iavf_pci_tbl,
4743         .probe     = iavf_probe,
4744         .remove    = iavf_remove,
4745         .driver.pm = &iavf_pm_ops,
4746         .shutdown  = iavf_shutdown,
4747 };
4748
4749 /**
4750  * iavf_init_module - Driver Registration Routine
4751  *
4752  * iavf_init_module is the first routine called when the driver is
4753  * loaded. All it does is register with the PCI subsystem.
4754  **/
4755 static int __init iavf_init_module(void)
4756 {
4757         int ret;
4758
4759         pr_info("iavf: %s\n", iavf_driver_string);
4760
4761         pr_info("%s\n", iavf_copyright);
4762
4763         iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4764                                   iavf_driver_name);
4765         if (!iavf_wq) {
4766                 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4767                 return -ENOMEM;
4768         }
4769         ret = pci_register_driver(&iavf_driver);
4770         return ret;
4771 }
4772
4773 module_init(iavf_init_module);
4774
4775 /**
4776  * iavf_exit_module - Driver Exit Cleanup Routine
4777  *
4778  * iavf_exit_module is called just before the driver is removed
4779  * from memory.
4780  **/
4781 static void __exit iavf_exit_module(void)
4782 {
4783         pci_unregister_driver(&iavf_driver);
4784         destroy_workqueue(iavf_wq);
4785 }
4786
4787 module_exit(iavf_exit_module);
4788
4789 /* iavf_main.c */