1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 #define I40E_FD_CLEAN_DELAY 10
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
84 * @add: True for add/update, False for remove
86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
104 tx_ring = vsi->tx_rings[0];
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 msleep_interruptible(1);
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
154 writel(tx_ring->next_to_use, tx_ring->tail);
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
168 * Returns address of layer 4 protocol dummy packet.
170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan;
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
206 memcpy(tmp, ð, sizeof(eth));
210 memcpy(tmp, &vlan, sizeof(vlan));
215 memcpy(tmp, &ip, sizeof(ip));
218 memcpy(tmp, &ipv6, sizeof(ipv6));
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
232 * Helper function to populate udp fields.
234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
253 * Helper function to populate tcp fields.
255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
279 * Helper function to populate sctp fields.
281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
283 struct i40e_fdir_filter *data)
285 struct sctphdr *sctp;
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
304 * Helper function to offset data of dummy packet, program it and
307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
314 if (fd_data->flex_filter) {
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
319 payload = packet_addr + payload_offset;
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
325 *((__force __be16 *)(payload + off)) = pattern;
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
357 * Update filter number field for pf.
359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
364 (*ipv4_filter_num)++;
366 (*ipv6_filter_num)++;
369 (*ipv4_filter_num)--;
371 (*ipv6_filter_num)--;
375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
384 * Returns 0 if the filters were successfully added or removed
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 struct i40e_fdir_filter *fd_data,
391 struct i40e_pf *pf = vsi->back;
395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
407 ret = i40e_prepare_fdir_filter
408 (pf, fd_data, add, raw_packet,
409 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 &pf->fd_udp6_filter_cnt);
423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
432 * Returns 0 if the filters were successfully added or removed
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 struct i40e_fdir_filter *fd_data,
439 struct i40e_pf *pf = vsi->back;
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
454 ret = i40e_prepare_fdir_filter
455 (pf, fd_data, add, raw_packet,
456 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 &pf->fd_tcp6_filter_cnt);
468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 I40E_DEBUG_FD & pf->hw.debug_mask)
470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
486 * Returns 0 if the filters were successfully added or removed
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 struct i40e_fdir_filter *fd_data,
493 struct i40e_pf *pf = vsi->back;
497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
509 ret = i40e_prepare_fdir_filter
510 (pf, fd_data, add, raw_packet,
511 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 &pf->fd_sctp6_filter_cnt);
525 #define I40E_IP_DUMMY_PACKET_LEN 34
526 #define I40E_IP6_DUMMY_PACKET_LEN 54
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
535 * Returns 0 if the filters were successfully added or removed
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 struct i40e_fdir_filter *fd_data,
542 struct i40e_pf *pf = vsi->back;
551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
558 for (i = iter_start; i <= iter_end; i++) {
559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
563 /* IPv6 no header option differs from IPv4 */
564 (void)i40e_create_dummy_packet
565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 I40E_IP6_DUMMY_PACKET_LEN;
570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 &pf->fd_ip6_filter_cnt);
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 struct i40e_fdir_filter *input, bool add)
595 enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 struct i40e_pf *pf = vsi->back;
599 switch (input->flow_type & ~FLOW_EXT) {
601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
619 switch (input->ipl4_proto) {
621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
633 /* We cannot support masking based on protocol */
634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
640 switch (input->ipl4_proto) {
642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
654 /* We cannot support masking based on protocol */
655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
666 /* The buffer allocated here will be normally be freed by
667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 * completion. In the event of an error adding the buffer to the FDIR
669 * ring, it will immediately be freed. It may also be freed by
670 * i40e_clean_tx_ring() when closing the VSI.
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 u64 qword1, u8 prog_id)
688 struct i40e_pf *pf = rx_ring->vsi->back;
689 struct pci_dev *pdev = pf->pdev;
690 struct i40e_16b_rx_wb_qw0 *qw0;
691 u32 fcnt_prog, fcnt_avail;
694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 if (qw0->hi_dword.fd_id != 0 ||
701 (I40E_DEBUG_FD & pf->hw.debug_mask))
702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
705 /* Check if the programming error is for ATR.
706 * If so, auto disable ATR and set a state for
707 * flush in progress. Next time we come here if flush is in
708 * progress do nothing, once flush is complete the state will
711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
715 /* store the current atr filter count */
716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
718 if (qw0->hi_dword.fd_id == 0 &&
719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 /* These set_bit() calls aren't atomic with the
721 * test_bit() here, but worse case we potentially
722 * disable ATR and queue a flush right after SB
723 * support is re-enabled. That shouldn't cause an
726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
730 /* filter programming failed most likely due to table full */
731 fcnt_prog = i40e_get_global_fd_count(pf);
732 fcnt_avail = pf->fdir_pf_filter_count;
733 /* If ATR is running fcnt_prog can quickly change,
734 * if we are very close to full, it makes sense to disable
735 * FD ATR/SB and then re-enable it when there is room.
737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
741 if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 qw0->hi_dword.fd_id);
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring: the ring that owns the buffer
754 * @tx_buffer: the buffer to free
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 struct i40e_tx_buffer *tx_buffer)
759 if (tx_buffer->skb) {
760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 kfree(tx_buffer->raw_buf);
762 else if (ring_is_xdp(ring))
763 xdp_return_frame(tx_buffer->xdpf);
765 dev_kfree_skb_any(tx_buffer->skb);
766 if (dma_unmap_len(tx_buffer, len))
767 dma_unmap_single(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
771 } else if (dma_unmap_len(tx_buffer, len)) {
772 dma_unmap_page(ring->dev,
773 dma_unmap_addr(tx_buffer, dma),
774 dma_unmap_len(tx_buffer, len),
778 tx_buffer->next_to_watch = NULL;
779 tx_buffer->skb = NULL;
780 dma_unmap_len_set(tx_buffer, len, 0);
781 /* tx_buffer must be completely set up in the transmit path */
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
790 unsigned long bi_size;
793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 i40e_xsk_clean_tx_ring(tx_ring);
796 /* ring already cleared, nothing to do */
800 /* Free all the Tx ring sk_buffs */
801 for (i = 0; i < tx_ring->count; i++)
802 i40e_unmap_and_free_tx_resource(tx_ring,
806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 memset(tx_ring->tx_bi, 0, bi_size);
809 /* Zero out the descriptor ring */
810 memset(tx_ring->desc, 0, tx_ring->size);
812 tx_ring->next_to_use = 0;
813 tx_ring->next_to_clean = 0;
815 if (!tx_ring->netdev)
818 /* cleanup Tx queue statistics */
819 netdev_tx_reset_queue(txring_txq(tx_ring));
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
826 * Free all transmit software resources
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
830 i40e_clean_tx_ring(tx_ring);
831 kfree(tx_ring->tx_bi);
832 tx_ring->tx_bi = NULL;
835 dma_free_coherent(tx_ring->dev, tx_ring->size,
836 tx_ring->desc, tx_ring->dma);
837 tx_ring->desc = NULL;
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
854 head = i40e_get_head(ring);
855 tail = readl(ring->tail);
857 head = ring->next_to_clean;
858 tail = ring->next_to_use;
862 return (head < tail) ?
863 tail - head : (tail + ring->count - head);
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi: pointer to vsi struct with tx queues
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
877 struct i40e_ring *tx_ring = NULL;
878 struct net_device *netdev;
885 if (test_bit(__I40E_VSI_DOWN, vsi->state))
888 netdev = vsi->netdev;
892 if (!netif_carrier_ok(netdev))
895 for (i = 0; i < vsi->num_queue_pairs; i++) {
896 tx_ring = vsi->tx_rings[i];
897 if (tx_ring && tx_ring->desc) {
898 /* If packet counter has not changed the queue is
899 * likely stalled, so force an interrupt for this
902 * prev_pkt_ctr would be negative if there was no
905 packets = tx_ring->stats.packets & INT_MAX;
906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 i40e_force_wb(vsi, tx_ring->q_vector);
911 /* Memory barrier between read of packet count and call
912 * to i40e_get_tx_pending()
915 tx_ring->tx_stats.prev_pkt_ctr =
916 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
927 * Returns true if there's any budget left (e.g. the clean is finished)
929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
930 struct i40e_ring *tx_ring, int napi_budget)
932 int i = tx_ring->next_to_clean;
933 struct i40e_tx_buffer *tx_buf;
934 struct i40e_tx_desc *tx_head;
935 struct i40e_tx_desc *tx_desc;
936 unsigned int total_bytes = 0, total_packets = 0;
937 unsigned int budget = vsi->work_limit;
939 tx_buf = &tx_ring->tx_bi[i];
940 tx_desc = I40E_TX_DESC(tx_ring, i);
943 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
948 /* if next_to_watch is not set then there is no work pending */
952 /* prevent any other reads prior to eop_desc */
955 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
956 /* we have caught up to head, no work left to do */
957 if (tx_head == tx_desc)
960 /* clear next_to_watch to prevent false hangs */
961 tx_buf->next_to_watch = NULL;
963 /* update the statistics for this packet */
964 total_bytes += tx_buf->bytecount;
965 total_packets += tx_buf->gso_segs;
967 /* free the skb/XDP data */
968 if (ring_is_xdp(tx_ring))
969 xdp_return_frame(tx_buf->xdpf);
971 napi_consume_skb(tx_buf->skb, napi_budget);
973 /* unmap skb header data */
974 dma_unmap_single(tx_ring->dev,
975 dma_unmap_addr(tx_buf, dma),
976 dma_unmap_len(tx_buf, len),
979 /* clear tx_buffer data */
981 dma_unmap_len_set(tx_buf, len, 0);
983 /* unmap remaining buffers */
984 while (tx_desc != eop_desc) {
985 i40e_trace(clean_tx_irq_unmap,
986 tx_ring, tx_desc, tx_buf);
993 tx_buf = tx_ring->tx_bi;
994 tx_desc = I40E_TX_DESC(tx_ring, 0);
997 /* unmap any remaining paged data */
998 if (dma_unmap_len(tx_buf, len)) {
999 dma_unmap_page(tx_ring->dev,
1000 dma_unmap_addr(tx_buf, dma),
1001 dma_unmap_len(tx_buf, len),
1003 dma_unmap_len_set(tx_buf, len, 0);
1007 /* move us one more past the eop_desc for start of next pkt */
1012 i -= tx_ring->count;
1013 tx_buf = tx_ring->tx_bi;
1014 tx_desc = I40E_TX_DESC(tx_ring, 0);
1019 /* update budget accounting */
1021 } while (likely(budget));
1023 i += tx_ring->count;
1024 tx_ring->next_to_clean = i;
1025 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1026 i40e_arm_wb(tx_ring, vsi, budget);
1028 if (ring_is_xdp(tx_ring))
1031 /* notify netdev of completed buffers */
1032 netdev_tx_completed_queue(txring_txq(tx_ring),
1033 total_packets, total_bytes);
1035 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1036 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1037 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1038 /* Make sure that anybody stopping the queue after this
1039 * sees the new next_to_clean.
1042 if (__netif_subqueue_stopped(tx_ring->netdev,
1043 tx_ring->queue_index) &&
1044 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1045 netif_wake_subqueue(tx_ring->netdev,
1046 tx_ring->queue_index);
1047 ++tx_ring->tx_stats.restart_queue;
1055 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056 * @vsi: the VSI we care about
1057 * @q_vector: the vector on which to enable writeback
1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 struct i40e_q_vector *q_vector)
1063 u16 flags = q_vector->tx.ring[0].flags;
1066 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1069 if (q_vector->arm_wb_state)
1072 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1073 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1076 wr32(&vsi->back->hw,
1077 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1080 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1083 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1085 q_vector->arm_wb_state = true;
1089 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090 * @vsi: the VSI we care about
1091 * @q_vector: the vector on which to force writeback
1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1096 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1097 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 /* allow 00 to be written to the index */
1103 wr32(&vsi->back->hw,
1104 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1106 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 /* allow 00 to be written to the index */
1112 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 struct i40e_ring_container *rc)
1119 return &q_vector->rx == rc;
1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1124 unsigned int divisor;
1126 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 case I40E_LINK_SPEED_40GB:
1128 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1130 case I40E_LINK_SPEED_25GB:
1131 case I40E_LINK_SPEED_20GB:
1132 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1135 case I40E_LINK_SPEED_10GB:
1136 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1138 case I40E_LINK_SPEED_1GB:
1139 case I40E_LINK_SPEED_100MB:
1140 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1148 * i40e_update_itr - update the dynamic ITR value based on statistics
1149 * @q_vector: structure containing interrupt and ring information
1150 * @rc: structure containing ring performance data
1152 * Stores a new ITR value based on packets and byte
1153 * counts during the last interrupt. The advantage of per interrupt
1154 * computation is faster updates and more accurate ITR for the current
1155 * traffic pattern. Constants in this function were computed
1156 * based on theoretical maximum wire speed and thresholds were set based
1157 * on testing data as well as attempting to minimize response time
1158 * while increasing bulk throughput.
1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 struct i40e_ring_container *rc)
1163 unsigned int avg_wire_size, packets, bytes, itr;
1164 unsigned long next_update = jiffies;
1166 /* If we don't have any rings just leave ourselves set for maximum
1167 * possible latency so we take ourselves out of the equation.
1169 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1172 /* For Rx we want to push the delay up and default to low latency.
1173 * for Tx we want to pull the delay down and default to high latency.
1175 itr = i40e_container_is_rx(q_vector, rc) ?
1176 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1179 /* If we didn't update within up to 1 - 2 jiffies we can assume
1180 * that either packets are coming in so slow there hasn't been
1181 * any work, or that there is so much work that NAPI is dealing
1182 * with interrupt moderation and we don't need to do anything.
1184 if (time_after(next_update, rc->next_update))
1187 /* If itr_countdown is set it means we programmed an ITR within
1188 * the last 4 interrupt cycles. This has a side effect of us
1189 * potentially firing an early interrupt. In order to work around
1190 * this we need to throw out any data received for a few
1191 * interrupts following the update.
1193 if (q_vector->itr_countdown) {
1194 itr = rc->target_itr;
1198 packets = rc->total_packets;
1199 bytes = rc->total_bytes;
1201 if (i40e_container_is_rx(q_vector, rc)) {
1202 /* If Rx there are 1 to 4 packets and bytes are less than
1203 * 9000 assume insufficient data to use bulk rate limiting
1204 * approach unless Tx is already in bulk rate limiting. We
1205 * are likely latency driven.
1207 if (packets && packets < 4 && bytes < 9000 &&
1208 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 goto adjust_by_size;
1212 } else if (packets < 4) {
1213 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 * bulk mode and we are receiving 4 or fewer packets just
1215 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 * that the Rx can relax.
1218 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 I40E_ITR_ADAPTIVE_MAX_USECS)
1222 } else if (packets > 32) {
1223 /* If we have processed over 32 packets in a single interrupt
1224 * for Tx assume we need to switch over to "bulk" mode.
1226 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1229 /* We have no packets to actually measure against. This means
1230 * either one of the other queues on this vector is active or
1231 * we are a Tx queue doing TSO with too high of an interrupt rate.
1233 * Between 4 and 56 we can assume that our current interrupt delay
1234 * is only slightly too low. As such we should increase it by a small
1238 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1246 if (packets <= 256) {
1247 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 itr &= I40E_ITR_MASK;
1250 /* Between 56 and 112 is our "goldilocks" zone where we are
1251 * working out "just right". Just report that our current
1252 * ITR is good for us.
1257 /* If packet count is 128 or greater we are likely looking
1258 * at a slight overrun of the delay we want. Try halving
1259 * our delay to see if that will cut the number of packets
1260 * in half per interrupt.
1263 itr &= I40E_ITR_MASK;
1264 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1270 /* The paths below assume we are dealing with a bulk ITR since
1271 * number of packets is greater than 256. We are just going to have
1272 * to compute a value and try to bring the count under control,
1273 * though for smaller packet sizes there isn't much we can do as
1274 * NAPI polling will likely be kicking in sooner rather than later.
1276 itr = I40E_ITR_ADAPTIVE_BULK;
1279 /* If packet counts are 256 or greater we can assume we have a gross
1280 * overestimation of what the rate should be. Instead of trying to fine
1281 * tune it just use the formula below to try and dial in an exact value
1282 * give the current packet size of the frame.
1284 avg_wire_size = bytes / packets;
1286 /* The following is a crude approximation of:
1287 * wmem_default / (size + overhead) = desired_pkts_per_int
1288 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1291 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1295 * (170 * (size + 24)) / (size + 640) = ITR
1297 * We first do some math on the packet size and then finally bitshift
1298 * by 8 after rounding up. We also have to account for PCIe link speed
1299 * difference as ITR scales based on this.
1301 if (avg_wire_size <= 60) {
1302 /* Start at 250k ints/sec */
1303 avg_wire_size = 4096;
1304 } else if (avg_wire_size <= 380) {
1305 /* 250K ints/sec to 60K ints/sec */
1306 avg_wire_size *= 40;
1307 avg_wire_size += 1696;
1308 } else if (avg_wire_size <= 1084) {
1309 /* 60K ints/sec to 36K ints/sec */
1310 avg_wire_size *= 15;
1311 avg_wire_size += 11452;
1312 } else if (avg_wire_size <= 1980) {
1313 /* 36K ints/sec to 30K ints/sec */
1315 avg_wire_size += 22420;
1317 /* plateau at a limit of 30K ints/sec */
1318 avg_wire_size = 32256;
1321 /* If we are in low latency mode halve our delay which doubles the
1322 * rate to somewhere between 100K to 16K ints/sec
1324 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1327 /* Resultant value is 256 times larger than it needs to be. This
1328 * gives us room to adjust the value as needed to either increase
1329 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1331 * Use addition as we have already recorded the new latency flag
1332 * for the ITR value.
1334 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 I40E_ITR_ADAPTIVE_MIN_INC;
1337 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343 /* write back value */
1344 rc->target_itr = itr;
1346 /* next update should occur within next jiffy */
1347 rc->next_update = next_update + 1;
1349 rc->total_bytes = 0;
1350 rc->total_packets = 0;
1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1355 return &rx_ring->rx_bi[idx];
1359 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360 * @rx_ring: rx descriptor ring to store buffers on
1361 * @old_buff: donor buffer to have page reused
1363 * Synchronizes page for reuse by the adapter
1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 struct i40e_rx_buffer *old_buff)
1368 struct i40e_rx_buffer *new_buff;
1369 u16 nta = rx_ring->next_to_alloc;
1371 new_buff = i40e_rx_bi(rx_ring, nta);
1373 /* update, and store next to alloc */
1375 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1377 /* transfer page from old buffer to new buffer */
1378 new_buff->dma = old_buff->dma;
1379 new_buff->page = old_buff->page;
1380 new_buff->page_offset = old_buff->page_offset;
1381 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1383 /* clear contents of buffer_info */
1384 old_buff->page = NULL;
1388 * i40e_clean_programming_status - clean the programming status descriptor
1389 * @rx_ring: the rx ring that has this descriptor
1390 * @qword0_raw: qword0
1391 * @qword1: qword1 representing status_error_len in CPU ordering
1393 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394 * status being successful or not and take actions accordingly. FCoE should
1395 * handle its context/filter programming/invalidation status and take actions.
1397 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1404 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1405 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1407 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1408 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1413 * @tx_ring: the tx ring to set up
1415 * Return 0 on success, negative on error
1417 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1419 struct device *dev = tx_ring->dev;
1425 /* warn if we are about to overwrite the pointer */
1426 WARN_ON(tx_ring->tx_bi);
1427 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1428 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1429 if (!tx_ring->tx_bi)
1432 u64_stats_init(&tx_ring->syncp);
1434 /* round up to nearest 4K */
1435 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1436 /* add u32 for head writeback, align after this takes care of
1437 * guaranteeing this is at least one cache line in size
1439 tx_ring->size += sizeof(u32);
1440 tx_ring->size = ALIGN(tx_ring->size, 4096);
1441 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1442 &tx_ring->dma, GFP_KERNEL);
1443 if (!tx_ring->desc) {
1444 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1449 tx_ring->next_to_use = 0;
1450 tx_ring->next_to_clean = 0;
1451 tx_ring->tx_stats.prev_pkt_ctr = -1;
1455 kfree(tx_ring->tx_bi);
1456 tx_ring->tx_bi = NULL;
1460 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1462 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1464 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1465 return rx_ring->rx_bi ? 0 : -ENOMEM;
1468 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1470 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1474 * i40e_clean_rx_ring - Free Rx buffers
1475 * @rx_ring: ring to be cleaned
1477 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1481 /* ring already cleared, nothing to do */
1482 if (!rx_ring->rx_bi)
1485 dev_kfree_skb(rx_ring->skb);
1486 rx_ring->skb = NULL;
1488 if (rx_ring->xsk_pool) {
1489 i40e_xsk_clean_rx_ring(rx_ring);
1493 /* Free all the Rx ring sk_buffs */
1494 for (i = 0; i < rx_ring->count; i++) {
1495 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1500 /* Invalidate cache lines that may have been written to by
1501 * device so that we avoid corrupting memory.
1503 dma_sync_single_range_for_cpu(rx_ring->dev,
1506 rx_ring->rx_buf_len,
1509 /* free resources associated with mapping */
1510 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1511 i40e_rx_pg_size(rx_ring),
1515 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1518 rx_bi->page_offset = 0;
1522 if (rx_ring->xsk_pool)
1523 i40e_clear_rx_bi_zc(rx_ring);
1525 i40e_clear_rx_bi(rx_ring);
1527 /* Zero out the descriptor ring */
1528 memset(rx_ring->desc, 0, rx_ring->size);
1530 rx_ring->next_to_alloc = 0;
1531 rx_ring->next_to_clean = 0;
1532 rx_ring->next_to_use = 0;
1536 * i40e_free_rx_resources - Free Rx resources
1537 * @rx_ring: ring to clean the resources from
1539 * Free all receive software resources
1541 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1543 i40e_clean_rx_ring(rx_ring);
1544 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1545 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1546 rx_ring->xdp_prog = NULL;
1547 kfree(rx_ring->rx_bi);
1548 rx_ring->rx_bi = NULL;
1550 if (rx_ring->desc) {
1551 dma_free_coherent(rx_ring->dev, rx_ring->size,
1552 rx_ring->desc, rx_ring->dma);
1553 rx_ring->desc = NULL;
1558 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1559 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1561 * Returns 0 on success, negative on failure
1563 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1565 struct device *dev = rx_ring->dev;
1568 u64_stats_init(&rx_ring->syncp);
1570 /* Round up to nearest 4K */
1571 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1572 rx_ring->size = ALIGN(rx_ring->size, 4096);
1573 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1574 &rx_ring->dma, GFP_KERNEL);
1576 if (!rx_ring->desc) {
1577 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1582 rx_ring->next_to_alloc = 0;
1583 rx_ring->next_to_clean = 0;
1584 rx_ring->next_to_use = 0;
1586 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1587 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1588 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1589 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1594 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1600 * i40e_release_rx_desc - Store the new tail and head values
1601 * @rx_ring: ring to bump
1602 * @val: new head index
1604 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1606 rx_ring->next_to_use = val;
1608 /* update next to alloc since we have filled the ring */
1609 rx_ring->next_to_alloc = val;
1611 /* Force memory writes to complete before letting h/w
1612 * know there are new descriptors to fetch. (Only
1613 * applicable for weak-ordered memory model archs,
1617 writel(val, rx_ring->tail);
1620 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1623 unsigned int truesize;
1625 #if (PAGE_SIZE < 8192)
1626 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1628 truesize = rx_ring->rx_offset ?
1629 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1630 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1631 SKB_DATA_ALIGN(size);
1637 * i40e_alloc_mapped_page - recycle or make a new page
1638 * @rx_ring: ring to use
1639 * @bi: rx_buffer struct to modify
1641 * Returns true if the page was successfully allocated or
1644 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1645 struct i40e_rx_buffer *bi)
1647 struct page *page = bi->page;
1650 /* since we are recycling buffers we should seldom need to alloc */
1652 rx_ring->rx_stats.page_reuse_count++;
1656 /* alloc new page for storage */
1657 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1658 if (unlikely(!page)) {
1659 rx_ring->rx_stats.alloc_page_failed++;
1663 rx_ring->rx_stats.page_alloc_count++;
1665 /* map page for use */
1666 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1667 i40e_rx_pg_size(rx_ring),
1671 /* if mapping failed free memory back to system since
1672 * there isn't much point in holding memory we can't use
1674 if (dma_mapping_error(rx_ring->dev, dma)) {
1675 __free_pages(page, i40e_rx_pg_order(rx_ring));
1676 rx_ring->rx_stats.alloc_page_failed++;
1682 bi->page_offset = rx_ring->rx_offset;
1683 page_ref_add(page, USHRT_MAX - 1);
1684 bi->pagecnt_bias = USHRT_MAX;
1690 * i40e_alloc_rx_buffers - Replace used receive buffers
1691 * @rx_ring: ring to place buffers on
1692 * @cleaned_count: number of buffers to replace
1694 * Returns false if all allocations were successful, true if any fail
1696 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1698 u16 ntu = rx_ring->next_to_use;
1699 union i40e_rx_desc *rx_desc;
1700 struct i40e_rx_buffer *bi;
1702 /* do nothing if no valid netdev defined */
1703 if (!rx_ring->netdev || !cleaned_count)
1706 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1707 bi = i40e_rx_bi(rx_ring, ntu);
1710 if (!i40e_alloc_mapped_page(rx_ring, bi))
1713 /* sync the buffer for use by the device */
1714 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1716 rx_ring->rx_buf_len,
1719 /* Refresh the desc even if buffer_addrs didn't change
1720 * because each write-back erases this info.
1722 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1727 if (unlikely(ntu == rx_ring->count)) {
1728 rx_desc = I40E_RX_DESC(rx_ring, 0);
1729 bi = i40e_rx_bi(rx_ring, 0);
1733 /* clear the status bits for the next_to_use descriptor */
1734 rx_desc->wb.qword1.status_error_len = 0;
1737 } while (cleaned_count);
1739 if (rx_ring->next_to_use != ntu)
1740 i40e_release_rx_desc(rx_ring, ntu);
1745 if (rx_ring->next_to_use != ntu)
1746 i40e_release_rx_desc(rx_ring, ntu);
1748 /* make sure to come back via polling to try again after
1749 * allocation failure
1755 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1756 * @vsi: the VSI we care about
1757 * @skb: skb currently being received and modified
1758 * @rx_desc: the receive descriptor
1760 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1761 struct sk_buff *skb,
1762 union i40e_rx_desc *rx_desc)
1764 struct i40e_rx_ptype_decoded decoded;
1765 u32 rx_error, rx_status;
1770 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1771 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1772 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1773 I40E_RXD_QW1_ERROR_SHIFT;
1774 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1775 I40E_RXD_QW1_STATUS_SHIFT;
1776 decoded = decode_rx_desc_ptype(ptype);
1778 skb->ip_summed = CHECKSUM_NONE;
1780 skb_checksum_none_assert(skb);
1782 /* Rx csum enabled and ip headers found? */
1783 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1786 /* did the hardware decode the packet and checksum? */
1787 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1790 /* both known and outer_ip must be set for the below code to work */
1791 if (!(decoded.known && decoded.outer_ip))
1794 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1795 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1796 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1797 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1800 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1801 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1804 /* likely incorrect csum if alternate IP extension headers found */
1806 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1807 /* don't increment checksum err here, non-fatal err */
1810 /* there was some L4 error, count error and punt packet to the stack */
1811 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1814 /* handle packets that were not able to be checksummed due
1815 * to arrival speed, in this case the stack can compute
1818 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1821 /* If there is an outer header present that might contain a checksum
1822 * we need to bump the checksum level by 1 to reflect the fact that
1823 * we are indicating we validated the inner checksum.
1825 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1826 skb->csum_level = 1;
1828 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1829 switch (decoded.inner_prot) {
1830 case I40E_RX_PTYPE_INNER_PROT_TCP:
1831 case I40E_RX_PTYPE_INNER_PROT_UDP:
1832 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1833 skb->ip_summed = CHECKSUM_UNNECESSARY;
1842 vsi->back->hw_csum_rx_error++;
1846 * i40e_ptype_to_htype - get a hash type
1847 * @ptype: the ptype value from the descriptor
1849 * Returns a hash type to be used by skb_set_hash
1851 static inline int i40e_ptype_to_htype(u8 ptype)
1853 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1856 return PKT_HASH_TYPE_NONE;
1858 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1860 return PKT_HASH_TYPE_L4;
1861 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1862 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1863 return PKT_HASH_TYPE_L3;
1865 return PKT_HASH_TYPE_L2;
1869 * i40e_rx_hash - set the hash value in the skb
1870 * @ring: descriptor ring
1871 * @rx_desc: specific descriptor
1872 * @skb: skb currently being received and modified
1873 * @rx_ptype: Rx packet type
1875 static inline void i40e_rx_hash(struct i40e_ring *ring,
1876 union i40e_rx_desc *rx_desc,
1877 struct sk_buff *skb,
1881 const __le64 rss_mask =
1882 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1883 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1885 if (!(ring->netdev->features & NETIF_F_RXHASH))
1888 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1889 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1890 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1895 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1896 * @rx_ring: rx descriptor ring packet is being transacted on
1897 * @rx_desc: pointer to the EOP Rx descriptor
1898 * @skb: pointer to current skb being populated
1900 * This function checks the ring, descriptor, and packet information in
1901 * order to populate the hash, checksum, VLAN, protocol, and
1902 * other fields within the skb.
1904 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1905 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1907 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1908 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1909 I40E_RXD_QW1_STATUS_SHIFT;
1910 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1911 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1912 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1913 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1914 I40E_RXD_QW1_PTYPE_SHIFT;
1916 if (unlikely(tsynvalid))
1917 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1919 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1921 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1923 skb_record_rx_queue(skb, rx_ring->queue_index);
1925 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1926 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1928 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1929 le16_to_cpu(vlan_tag));
1932 /* modifies the skb - consumes the enet header */
1933 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1937 * i40e_cleanup_headers - Correct empty headers
1938 * @rx_ring: rx descriptor ring packet is being transacted on
1939 * @skb: pointer to current skb being fixed
1940 * @rx_desc: pointer to the EOP Rx descriptor
1942 * In addition if skb is not at least 60 bytes we need to pad it so that
1943 * it is large enough to qualify as a valid Ethernet frame.
1945 * Returns true if an error was encountered and skb was freed.
1947 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1948 union i40e_rx_desc *rx_desc)
1951 /* ERR_MASK will only have valid bits if EOP set, and
1952 * what we are doing here is actually checking
1953 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1956 if (unlikely(i40e_test_staterr(rx_desc,
1957 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1958 dev_kfree_skb_any(skb);
1962 /* if eth_skb_pad returns an error the skb was freed */
1963 if (eth_skb_pad(skb))
1970 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1971 * @rx_buffer: buffer containing the page
1972 * @rx_stats: rx stats structure for the rx ring
1973 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1975 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1976 * which will assign the current buffer to the buffer that next_to_alloc is
1977 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1980 * rx_stats will be updated to indicate whether the page was waived
1981 * or busy if it could not be reused.
1983 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1984 struct i40e_rx_queue_stats *rx_stats,
1985 int rx_buffer_pgcnt)
1987 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1988 struct page *page = rx_buffer->page;
1990 /* Is any reuse possible? */
1991 if (!dev_page_is_reusable(page)) {
1992 rx_stats->page_waive_count++;
1996 #if (PAGE_SIZE < 8192)
1997 /* if we are only owner of page we can reuse it */
1998 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
1999 rx_stats->page_busy_count++;
2003 #define I40E_LAST_OFFSET \
2004 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2005 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2006 rx_stats->page_busy_count++;
2011 /* If we have drained the page fragment pool we need to update
2012 * the pagecnt_bias and page count so that we fully restock the
2013 * number of references the driver holds.
2015 if (unlikely(pagecnt_bias == 1)) {
2016 page_ref_add(page, USHRT_MAX - 1);
2017 rx_buffer->pagecnt_bias = USHRT_MAX;
2024 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2025 * @rx_ring: rx descriptor ring to transact packets on
2026 * @rx_buffer: buffer containing page to add
2027 * @skb: sk_buff to place the data into
2028 * @size: packet length from rx_desc
2030 * This function will add the data contained in rx_buffer->page to the skb.
2031 * It will just attach the page as a frag to the skb.
2033 * The function will then update the page offset.
2035 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2036 struct i40e_rx_buffer *rx_buffer,
2037 struct sk_buff *skb,
2040 #if (PAGE_SIZE < 8192)
2041 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2043 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2046 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2047 rx_buffer->page_offset, size, truesize);
2049 /* page is being used so we must update the page offset */
2050 #if (PAGE_SIZE < 8192)
2051 rx_buffer->page_offset ^= truesize;
2053 rx_buffer->page_offset += truesize;
2058 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2059 * @rx_ring: rx descriptor ring to transact packets on
2060 * @size: size of buffer to add to skb
2061 * @rx_buffer_pgcnt: buffer page refcount
2063 * This function will pull an Rx buffer from the ring and synchronize it
2064 * for use by the CPU.
2066 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2067 const unsigned int size,
2068 int *rx_buffer_pgcnt)
2070 struct i40e_rx_buffer *rx_buffer;
2072 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2074 #if (PAGE_SIZE < 8192)
2075 page_count(rx_buffer->page);
2079 prefetch_page_address(rx_buffer->page);
2081 /* we are reusing so sync this buffer for CPU use */
2082 dma_sync_single_range_for_cpu(rx_ring->dev,
2084 rx_buffer->page_offset,
2088 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2089 rx_buffer->pagecnt_bias--;
2095 * i40e_construct_skb - Allocate skb and populate it
2096 * @rx_ring: rx descriptor ring to transact packets on
2097 * @rx_buffer: rx buffer to pull data from
2098 * @xdp: xdp_buff pointing to the data
2100 * This function allocates an skb. It then populates it with the page
2101 * data from the current receive descriptor, taking care to set up the
2104 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2105 struct i40e_rx_buffer *rx_buffer,
2106 struct xdp_buff *xdp)
2108 unsigned int size = xdp->data_end - xdp->data;
2109 #if (PAGE_SIZE < 8192)
2110 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2112 unsigned int truesize = SKB_DATA_ALIGN(size);
2114 unsigned int headlen;
2115 struct sk_buff *skb;
2117 /* prefetch first cache line of first page */
2118 net_prefetch(xdp->data);
2120 /* Note, we get here by enabling legacy-rx via:
2122 * ethtool --set-priv-flags <dev> legacy-rx on
2124 * In this mode, we currently get 0 extra XDP headroom as
2125 * opposed to having legacy-rx off, where we process XDP
2126 * packets going to stack via i40e_build_skb(). The latter
2127 * provides us currently with 192 bytes of headroom.
2129 * For i40e_construct_skb() mode it means that the
2130 * xdp->data_meta will always point to xdp->data, since
2131 * the helper cannot expand the head. Should this ever
2132 * change in future for legacy-rx mode on, then lets also
2133 * add xdp->data_meta handling here.
2136 /* allocate a skb to store the frags */
2137 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2139 GFP_ATOMIC | __GFP_NOWARN);
2143 /* Determine available headroom for copy */
2145 if (headlen > I40E_RX_HDR_SIZE)
2146 headlen = eth_get_headlen(skb->dev, xdp->data,
2149 /* align pull length to size of long to optimize memcpy performance */
2150 memcpy(__skb_put(skb, headlen), xdp->data,
2151 ALIGN(headlen, sizeof(long)));
2153 /* update all of the pointers */
2156 skb_add_rx_frag(skb, 0, rx_buffer->page,
2157 rx_buffer->page_offset + headlen,
2160 /* buffer is used by skb, update page_offset */
2161 #if (PAGE_SIZE < 8192)
2162 rx_buffer->page_offset ^= truesize;
2164 rx_buffer->page_offset += truesize;
2167 /* buffer is unused, reset bias back to rx_buffer */
2168 rx_buffer->pagecnt_bias++;
2175 * i40e_build_skb - Build skb around an existing buffer
2176 * @rx_ring: Rx descriptor ring to transact packets on
2177 * @rx_buffer: Rx buffer to pull data from
2178 * @xdp: xdp_buff pointing to the data
2180 * This function builds an skb around an existing Rx buffer, taking care
2181 * to set up the skb correctly and avoid any memcpy overhead.
2183 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2184 struct i40e_rx_buffer *rx_buffer,
2185 struct xdp_buff *xdp)
2187 unsigned int metasize = xdp->data - xdp->data_meta;
2188 #if (PAGE_SIZE < 8192)
2189 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2191 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2192 SKB_DATA_ALIGN(xdp->data_end -
2193 xdp->data_hard_start);
2195 struct sk_buff *skb;
2197 /* Prefetch first cache line of first page. If xdp->data_meta
2198 * is unused, this points exactly as xdp->data, otherwise we
2199 * likely have a consumer accessing first few bytes of meta
2200 * data, and then actual data.
2202 net_prefetch(xdp->data_meta);
2204 /* build an skb around the page buffer */
2205 skb = napi_build_skb(xdp->data_hard_start, truesize);
2209 /* update pointers within the skb to store the data */
2210 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2211 __skb_put(skb, xdp->data_end - xdp->data);
2213 skb_metadata_set(skb, metasize);
2215 /* buffer is used by skb, update page_offset */
2216 #if (PAGE_SIZE < 8192)
2217 rx_buffer->page_offset ^= truesize;
2219 rx_buffer->page_offset += truesize;
2226 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2227 * @rx_ring: rx descriptor ring to transact packets on
2228 * @rx_buffer: rx buffer to pull data from
2229 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2231 * This function will clean up the contents of the rx_buffer. It will
2232 * either recycle the buffer or unmap it and free the associated resources.
2234 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2235 struct i40e_rx_buffer *rx_buffer,
2236 int rx_buffer_pgcnt)
2238 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2239 /* hand second half of page back to the ring */
2240 i40e_reuse_rx_page(rx_ring, rx_buffer);
2242 /* we are not reusing the buffer so unmap it */
2243 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2244 i40e_rx_pg_size(rx_ring),
2245 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2246 __page_frag_cache_drain(rx_buffer->page,
2247 rx_buffer->pagecnt_bias);
2248 /* clear contents of buffer_info */
2249 rx_buffer->page = NULL;
2254 * i40e_is_non_eop - process handling of non-EOP buffers
2255 * @rx_ring: Rx ring being processed
2256 * @rx_desc: Rx descriptor for current buffer
2258 * If the buffer is an EOP buffer, this function exits returning false,
2259 * otherwise return true indicating that this is in fact a non-EOP buffer.
2261 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2262 union i40e_rx_desc *rx_desc)
2264 /* if we are the last buffer then there is nothing else to do */
2265 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2266 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2269 rx_ring->rx_stats.non_eop_descs++;
2274 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2275 struct i40e_ring *xdp_ring);
2277 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2279 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2281 if (unlikely(!xdpf))
2282 return I40E_XDP_CONSUMED;
2284 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2288 * i40e_run_xdp - run an XDP program
2289 * @rx_ring: Rx ring being processed
2290 * @xdp: XDP buffer containing the frame
2291 * @xdp_prog: XDP program to run
2293 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2295 int err, result = I40E_XDP_PASS;
2296 struct i40e_ring *xdp_ring;
2302 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2304 act = bpf_prog_run_xdp(xdp_prog, xdp);
2309 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2310 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2311 if (result == I40E_XDP_CONSUMED)
2315 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2318 result = I40E_XDP_REDIR;
2321 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2325 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2326 fallthrough; /* handle aborts by dropping packet */
2328 result = I40E_XDP_CONSUMED;
2336 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2338 * @rx_buffer: Rx buffer to adjust
2339 * @size: Size of adjustment
2341 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2342 struct i40e_rx_buffer *rx_buffer,
2345 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2347 #if (PAGE_SIZE < 8192)
2348 rx_buffer->page_offset ^= truesize;
2350 rx_buffer->page_offset += truesize;
2355 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2356 * @xdp_ring: XDP Tx ring
2358 * This function updates the XDP Tx ring tail register.
2360 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2362 /* Force memory writes to complete before letting h/w
2363 * know there are new descriptors to fetch.
2366 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2370 * i40e_update_rx_stats - Update Rx ring statistics
2371 * @rx_ring: rx descriptor ring
2372 * @total_rx_bytes: number of bytes received
2373 * @total_rx_packets: number of packets received
2375 * This function updates the Rx ring statistics.
2377 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2378 unsigned int total_rx_bytes,
2379 unsigned int total_rx_packets)
2381 u64_stats_update_begin(&rx_ring->syncp);
2382 rx_ring->stats.packets += total_rx_packets;
2383 rx_ring->stats.bytes += total_rx_bytes;
2384 u64_stats_update_end(&rx_ring->syncp);
2385 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2386 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2390 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2392 * @xdp_res: Result of the receive batch
2394 * This function bumps XDP Tx tail and/or flush redirect map, and
2395 * should be called when a batch of packets has been processed in the
2398 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2400 if (xdp_res & I40E_XDP_REDIR)
2403 if (xdp_res & I40E_XDP_TX) {
2404 struct i40e_ring *xdp_ring =
2405 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2407 i40e_xdp_ring_update_tail(xdp_ring);
2412 * i40e_inc_ntc: Advance the next_to_clean index
2415 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2417 u32 ntc = rx_ring->next_to_clean + 1;
2419 ntc = (ntc < rx_ring->count) ? ntc : 0;
2420 rx_ring->next_to_clean = ntc;
2421 prefetch(I40E_RX_DESC(rx_ring, ntc));
2425 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2426 * @rx_ring: rx descriptor ring to transact packets on
2427 * @budget: Total limit on number of packets to process
2429 * This function provides a "bounce buffer" approach to Rx interrupt
2430 * processing. The advantage to this is that on systems that have
2431 * expensive overhead for IOMMU access this provides a means of avoiding
2432 * it by maintaining the mapping of the page to the system.
2434 * Returns amount of work completed
2436 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2438 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2439 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2440 unsigned int offset = rx_ring->rx_offset;
2441 struct sk_buff *skb = rx_ring->skb;
2442 unsigned int xdp_xmit = 0;
2443 struct bpf_prog *xdp_prog;
2444 bool failure = false;
2445 struct xdp_buff xdp;
2448 #if (PAGE_SIZE < 8192)
2449 frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2451 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2453 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2455 while (likely(total_rx_packets < (unsigned int)budget)) {
2456 struct i40e_rx_buffer *rx_buffer;
2457 union i40e_rx_desc *rx_desc;
2458 int rx_buffer_pgcnt;
2462 /* return some buffers to hardware, one at a time is too slow */
2463 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2464 failure = failure ||
2465 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2469 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2471 /* status_error_len will always be zero for unused descriptors
2472 * because it's cleared in cleanup, and overlaps with hdr_addr
2473 * which is always zero because packet split isn't used, if the
2474 * hardware wrote DD then the length will be non-zero
2476 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2478 /* This memory barrier is needed to keep us from reading
2479 * any other fields out of the rx_desc until we have
2480 * verified the descriptor has been written back.
2484 if (i40e_rx_is_programming_status(qword)) {
2485 i40e_clean_programming_status(rx_ring,
2486 rx_desc->raw.qword[0],
2488 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2489 i40e_inc_ntc(rx_ring);
2490 i40e_reuse_rx_page(rx_ring, rx_buffer);
2495 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2496 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2500 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2501 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2503 /* retrieve a buffer from the ring */
2505 unsigned char *hard_start;
2507 hard_start = page_address(rx_buffer->page) +
2508 rx_buffer->page_offset - offset;
2509 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2510 xdp_buff_clear_frags_flag(&xdp);
2511 #if (PAGE_SIZE > 4096)
2512 /* At larger PAGE_SIZE, frame_sz depend on len size */
2513 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2515 xdp_res = i40e_run_xdp(rx_ring, &xdp, xdp_prog);
2519 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2520 xdp_xmit |= xdp_res;
2521 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2523 rx_buffer->pagecnt_bias++;
2525 total_rx_bytes += size;
2528 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2529 } else if (ring_uses_build_skb(rx_ring)) {
2530 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2532 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2535 /* exit if we failed to retrieve a buffer */
2536 if (!xdp_res && !skb) {
2537 rx_ring->rx_stats.alloc_buff_failed++;
2538 rx_buffer->pagecnt_bias++;
2542 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2545 i40e_inc_ntc(rx_ring);
2546 if (i40e_is_non_eop(rx_ring, rx_desc))
2549 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2554 /* probably a little skewed due to removing CRC */
2555 total_rx_bytes += skb->len;
2557 /* populate checksum, VLAN, and protocol */
2558 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2560 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2561 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2564 /* update budget accounting */
2568 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2571 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2573 /* guarantee a trip back through this routine if there was a failure */
2574 return failure ? budget : (int)total_rx_packets;
2577 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2581 /* We don't bother with setting the CLEARPBA bit as the data sheet
2582 * points out doing so is "meaningless since it was already
2583 * auto-cleared". The auto-clearing happens when the interrupt is
2586 * Hardware errata 28 for also indicates that writing to a
2587 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2588 * an event in the PBA anyway so we need to rely on the automask
2589 * to hold pending events for us until the interrupt is re-enabled
2591 * The itr value is reported in microseconds, and the register
2592 * value is recorded in 2 microsecond units. For this reason we
2593 * only need to shift by the interval shift - 1 instead of the
2596 itr &= I40E_ITR_MASK;
2598 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2599 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2600 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2605 /* a small macro to shorten up some long lines */
2606 #define INTREG I40E_PFINT_DYN_CTLN
2608 /* The act of updating the ITR will cause it to immediately trigger. In order
2609 * to prevent this from throwing off adaptive update statistics we defer the
2610 * update so that it can only happen so often. So after either Tx or Rx are
2611 * updated we make the adaptive scheme wait until either the ITR completely
2612 * expires via the next_update expiration or we have been through at least
2615 #define ITR_COUNTDOWN_START 3
2618 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2619 * @vsi: the VSI we care about
2620 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2623 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2624 struct i40e_q_vector *q_vector)
2626 struct i40e_hw *hw = &vsi->back->hw;
2629 /* If we don't have MSIX, then we only need to re-enable icr0 */
2630 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2631 i40e_irq_dynamic_enable_icr0(vsi->back);
2635 /* These will do nothing if dynamic updates are not enabled */
2636 i40e_update_itr(q_vector, &q_vector->tx);
2637 i40e_update_itr(q_vector, &q_vector->rx);
2639 /* This block of logic allows us to get away with only updating
2640 * one ITR value with each interrupt. The idea is to perform a
2641 * pseudo-lazy update with the following criteria.
2643 * 1. Rx is given higher priority than Tx if both are in same state
2644 * 2. If we must reduce an ITR that is given highest priority.
2645 * 3. We then give priority to increasing ITR based on amount.
2647 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2648 /* Rx ITR needs to be reduced, this is highest priority */
2649 intval = i40e_buildreg_itr(I40E_RX_ITR,
2650 q_vector->rx.target_itr);
2651 q_vector->rx.current_itr = q_vector->rx.target_itr;
2652 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2653 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2654 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2655 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2656 /* Tx ITR needs to be reduced, this is second priority
2657 * Tx ITR needs to be increased more than Rx, fourth priority
2659 intval = i40e_buildreg_itr(I40E_TX_ITR,
2660 q_vector->tx.target_itr);
2661 q_vector->tx.current_itr = q_vector->tx.target_itr;
2662 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2663 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2664 /* Rx ITR needs to be increased, third priority */
2665 intval = i40e_buildreg_itr(I40E_RX_ITR,
2666 q_vector->rx.target_itr);
2667 q_vector->rx.current_itr = q_vector->rx.target_itr;
2668 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2670 /* No ITR update, lowest priority */
2671 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2672 if (q_vector->itr_countdown)
2673 q_vector->itr_countdown--;
2676 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2677 wr32(hw, INTREG(q_vector->reg_idx), intval);
2681 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2682 * @napi: napi struct with our devices info in it
2683 * @budget: amount of work driver is allowed to do this pass, in packets
2685 * This function will clean all queues associated with a q_vector.
2687 * Returns the amount of work done
2689 int i40e_napi_poll(struct napi_struct *napi, int budget)
2691 struct i40e_q_vector *q_vector =
2692 container_of(napi, struct i40e_q_vector, napi);
2693 struct i40e_vsi *vsi = q_vector->vsi;
2694 struct i40e_ring *ring;
2695 bool clean_complete = true;
2696 bool arm_wb = false;
2697 int budget_per_ring;
2700 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2701 napi_complete(napi);
2705 /* Since the actual Tx work is minimal, we can give the Tx a larger
2706 * budget and be more aggressive about cleaning up the Tx descriptors.
2708 i40e_for_each_ring(ring, q_vector->tx) {
2709 bool wd = ring->xsk_pool ?
2710 i40e_clean_xdp_tx_irq(vsi, ring) :
2711 i40e_clean_tx_irq(vsi, ring, budget);
2714 clean_complete = false;
2717 arm_wb |= ring->arm_wb;
2718 ring->arm_wb = false;
2721 /* Handle case where we are called by netpoll with a budget of 0 */
2725 /* normally we have 1 Rx ring per q_vector */
2726 if (unlikely(q_vector->num_ringpairs > 1))
2727 /* We attempt to distribute budget to each Rx queue fairly, but
2728 * don't allow the budget to go below 1 because that would exit
2731 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2733 /* Max of 1 Rx ring in this q_vector so give it the budget */
2734 budget_per_ring = budget;
2736 i40e_for_each_ring(ring, q_vector->rx) {
2737 int cleaned = ring->xsk_pool ?
2738 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2739 i40e_clean_rx_irq(ring, budget_per_ring);
2741 work_done += cleaned;
2742 /* if we clean as many as budgeted, we must not be done */
2743 if (cleaned >= budget_per_ring)
2744 clean_complete = false;
2747 /* If work not completed, return budget and polling will return */
2748 if (!clean_complete) {
2749 int cpu_id = smp_processor_id();
2751 /* It is possible that the interrupt affinity has changed but,
2752 * if the cpu is pegged at 100%, polling will never exit while
2753 * traffic continues and the interrupt will be stuck on this
2754 * cpu. We check to make sure affinity is correct before we
2755 * continue to poll, otherwise we must stop polling so the
2756 * interrupt can move to the correct cpu.
2758 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2759 /* Tell napi that we are done polling */
2760 napi_complete_done(napi, work_done);
2762 /* Force an interrupt */
2763 i40e_force_wb(vsi, q_vector);
2765 /* Return budget-1 so that polling stops */
2770 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2771 i40e_enable_wb_on_itr(vsi, q_vector);
2776 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2777 q_vector->arm_wb_state = false;
2779 /* Exit the polling mode, but don't re-enable interrupts if stack might
2780 * poll us due to busy-polling
2782 if (likely(napi_complete_done(napi, work_done)))
2783 i40e_update_enable_itr(vsi, q_vector);
2785 return min(work_done, budget - 1);
2789 * i40e_atr - Add a Flow Director ATR filter
2790 * @tx_ring: ring to add programming descriptor to
2792 * @tx_flags: send tx flags
2794 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2797 struct i40e_filter_program_desc *fdir_desc;
2798 struct i40e_pf *pf = tx_ring->vsi->back;
2800 unsigned char *network;
2802 struct ipv6hdr *ipv6;
2806 u32 flex_ptype, dtype_cmd;
2810 /* make sure ATR is enabled */
2811 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2814 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2817 /* if sampling is disabled do nothing */
2818 if (!tx_ring->atr_sample_rate)
2821 /* Currently only IPv4/IPv6 with TCP is supported */
2822 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2825 /* snag network header to get L4 type and address */
2826 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2827 skb_inner_network_header(skb) : skb_network_header(skb);
2829 /* Note: tx_flags gets modified to reflect inner protocols in
2830 * tx_enable_csum function if encap is enabled.
2832 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2833 /* access ihl as u8 to avoid unaligned access on ia64 */
2834 hlen = (hdr.network[0] & 0x0F) << 2;
2835 l4_proto = hdr.ipv4->protocol;
2837 /* find the start of the innermost ipv6 header */
2838 unsigned int inner_hlen = hdr.network - skb->data;
2839 unsigned int h_offset = inner_hlen;
2841 /* this function updates h_offset to the end of the header */
2843 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2844 /* hlen will contain our best estimate of the tcp header */
2845 hlen = h_offset - inner_hlen;
2848 if (l4_proto != IPPROTO_TCP)
2851 th = (struct tcphdr *)(hdr.network + hlen);
2853 /* Due to lack of space, no more new filters can be programmed */
2854 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2856 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2857 /* HW ATR eviction will take care of removing filters on FIN
2860 if (th->fin || th->rst)
2864 tx_ring->atr_count++;
2866 /* sample on all syn/fin/rst packets or once every atr sample rate */
2870 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2873 tx_ring->atr_count = 0;
2875 /* grab the next descriptor */
2876 i = tx_ring->next_to_use;
2877 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2880 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2882 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2883 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2884 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2885 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2886 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2887 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2888 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2890 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2892 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2894 dtype_cmd |= (th->fin || th->rst) ?
2895 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2896 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2897 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2898 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2900 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2901 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2903 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2904 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2906 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2907 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2909 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2910 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2911 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2914 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2915 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2916 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2918 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2919 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2921 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2922 fdir_desc->rsvd = cpu_to_le32(0);
2923 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2924 fdir_desc->fd_id = cpu_to_le32(0);
2928 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2930 * @tx_ring: ring to send buffer on
2931 * @flags: the tx flags to be set
2933 * Checks the skb and set up correspondingly several generic transmit flags
2934 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2936 * Returns error code indicate the frame should be dropped upon error and the
2937 * otherwise returns 0 to indicate the flags has been set properly.
2939 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2940 struct i40e_ring *tx_ring,
2943 __be16 protocol = skb->protocol;
2946 if (protocol == htons(ETH_P_8021Q) &&
2947 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2948 /* When HW VLAN acceleration is turned off by the user the
2949 * stack sets the protocol to 8021q so that the driver
2950 * can take any steps required to support the SW only
2951 * VLAN handling. In our case the driver doesn't need
2952 * to take any further steps so just set the protocol
2953 * to the encapsulated ethertype.
2955 skb->protocol = vlan_get_protocol(skb);
2959 /* if we have a HW VLAN tag being added, default to the HW one */
2960 if (skb_vlan_tag_present(skb)) {
2961 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2962 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2963 /* else if it is a SW VLAN, check the next protocol and store the tag */
2964 } else if (protocol == htons(ETH_P_8021Q)) {
2965 struct vlan_hdr *vhdr, _vhdr;
2967 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2971 protocol = vhdr->h_vlan_encapsulated_proto;
2972 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2973 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2976 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2979 /* Insert 802.1p priority into VLAN header */
2980 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2981 (skb->priority != TC_PRIO_CONTROL)) {
2982 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2983 tx_flags |= (skb->priority & 0x7) <<
2984 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2985 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2986 struct vlan_ethhdr *vhdr;
2989 rc = skb_cow_head(skb, 0);
2992 vhdr = (struct vlan_ethhdr *)skb->data;
2993 vhdr->h_vlan_TCI = htons(tx_flags >>
2994 I40E_TX_FLAGS_VLAN_SHIFT);
2996 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3006 * i40e_tso - set up the tso context descriptor
3007 * @first: pointer to first Tx buffer for xmit
3008 * @hdr_len: ptr to the size of the packet header
3009 * @cd_type_cmd_tso_mss: Quad Word 1
3011 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3013 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3014 u64 *cd_type_cmd_tso_mss)
3016 struct sk_buff *skb = first->skb;
3017 u64 cd_cmd, cd_tso_len, cd_mss;
3029 u32 paylen, l4_offset;
3033 if (skb->ip_summed != CHECKSUM_PARTIAL)
3036 if (!skb_is_gso(skb))
3039 err = skb_cow_head(skb, 0);
3043 protocol = vlan_get_protocol(skb);
3045 if (eth_p_mpls(protocol))
3046 ip.hdr = skb_inner_network_header(skb);
3048 ip.hdr = skb_network_header(skb);
3049 l4.hdr = skb_checksum_start(skb);
3051 /* initialize outer IP header fields */
3052 if (ip.v4->version == 4) {
3056 first->tx_flags |= I40E_TX_FLAGS_TSO;
3058 ip.v6->payload_len = 0;
3059 first->tx_flags |= I40E_TX_FLAGS_TSO;
3062 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3066 SKB_GSO_UDP_TUNNEL |
3067 SKB_GSO_UDP_TUNNEL_CSUM)) {
3068 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3069 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3072 /* determine offset of outer transport header */
3073 l4_offset = l4.hdr - skb->data;
3075 /* remove payload length from outer checksum */
3076 paylen = skb->len - l4_offset;
3077 csum_replace_by_diff(&l4.udp->check,
3078 (__force __wsum)htonl(paylen));
3081 /* reset pointers to inner headers */
3082 ip.hdr = skb_inner_network_header(skb);
3083 l4.hdr = skb_inner_transport_header(skb);
3085 /* initialize inner IP header fields */
3086 if (ip.v4->version == 4) {
3090 ip.v6->payload_len = 0;
3094 /* determine offset of inner transport header */
3095 l4_offset = l4.hdr - skb->data;
3097 /* remove payload length from inner checksum */
3098 paylen = skb->len - l4_offset;
3100 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3101 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3102 /* compute length of segmentation header */
3103 *hdr_len = sizeof(*l4.udp) + l4_offset;
3105 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3106 /* compute length of segmentation header */
3107 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3110 /* pull values out of skb_shinfo */
3111 gso_size = skb_shinfo(skb)->gso_size;
3113 /* update GSO size and bytecount with header size */
3114 first->gso_segs = skb_shinfo(skb)->gso_segs;
3115 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3117 /* find the field values */
3118 cd_cmd = I40E_TX_CTX_DESC_TSO;
3119 cd_tso_len = skb->len - *hdr_len;
3121 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3122 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3123 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3128 * i40e_tsyn - set up the tsyn context descriptor
3129 * @tx_ring: ptr to the ring to send
3130 * @skb: ptr to the skb we're sending
3131 * @tx_flags: the collected send information
3132 * @cd_type_cmd_tso_mss: Quad Word 1
3134 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3136 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3137 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3141 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3144 /* Tx timestamps cannot be sampled when doing TSO */
3145 if (tx_flags & I40E_TX_FLAGS_TSO)
3148 /* only timestamp the outbound packet if the user has requested it and
3149 * we are not already transmitting a packet to be timestamped
3151 pf = i40e_netdev_to_pf(tx_ring->netdev);
3152 if (!(pf->flags & I40E_FLAG_PTP))
3156 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3157 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3158 pf->ptp_tx_start = jiffies;
3159 pf->ptp_tx_skb = skb_get(skb);
3161 pf->tx_hwtstamp_skipped++;
3165 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3166 I40E_TXD_CTX_QW1_CMD_SHIFT;
3172 * i40e_tx_enable_csum - Enable Tx checksum offloads
3174 * @tx_flags: pointer to Tx flags currently set
3175 * @td_cmd: Tx descriptor command bits to set
3176 * @td_offset: Tx descriptor header offsets to set
3177 * @tx_ring: Tx descriptor ring
3178 * @cd_tunneling: ptr to context desc bits
3180 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3181 u32 *td_cmd, u32 *td_offset,
3182 struct i40e_ring *tx_ring,
3195 unsigned char *exthdr;
3196 u32 offset, cmd = 0;
3201 if (skb->ip_summed != CHECKSUM_PARTIAL)
3204 protocol = vlan_get_protocol(skb);
3206 if (eth_p_mpls(protocol))
3207 ip.hdr = skb_inner_network_header(skb);
3209 ip.hdr = skb_network_header(skb);
3210 l4.hdr = skb_checksum_start(skb);
3212 /* set the tx_flags to indicate the IP protocol type. this is
3213 * required so that checksum header computation below is accurate.
3215 if (ip.v4->version == 4)
3216 *tx_flags |= I40E_TX_FLAGS_IPV4;
3218 *tx_flags |= I40E_TX_FLAGS_IPV6;
3220 /* compute outer L2 header size */
3221 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3223 if (skb->encapsulation) {
3225 /* define outer network header type */
3226 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3227 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3228 I40E_TX_CTX_EXT_IP_IPV4 :
3229 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3231 l4_proto = ip.v4->protocol;
3232 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3235 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3237 exthdr = ip.hdr + sizeof(*ip.v6);
3238 l4_proto = ip.v6->nexthdr;
3239 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3240 &l4_proto, &frag_off);
3245 /* define outer transport */
3248 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3249 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3252 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3253 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3257 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3258 l4.hdr = skb_inner_network_header(skb);
3261 if (*tx_flags & I40E_TX_FLAGS_TSO)
3264 skb_checksum_help(skb);
3268 /* compute outer L3 header size */
3269 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3270 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3272 /* switch IP header pointer from outer to inner header */
3273 ip.hdr = skb_inner_network_header(skb);
3275 /* compute tunnel header size */
3276 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3277 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3279 /* indicate if we need to offload outer UDP header */
3280 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3281 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3282 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3283 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3285 /* record tunnel offload values */
3286 *cd_tunneling |= tunnel;
3288 /* switch L4 header pointer from outer to inner */
3289 l4.hdr = skb_inner_transport_header(skb);
3292 /* reset type as we transition from outer to inner headers */
3293 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3294 if (ip.v4->version == 4)
3295 *tx_flags |= I40E_TX_FLAGS_IPV4;
3296 if (ip.v6->version == 6)
3297 *tx_flags |= I40E_TX_FLAGS_IPV6;
3300 /* Enable IP checksum offloads */
3301 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3302 l4_proto = ip.v4->protocol;
3303 /* the stack computes the IP header already, the only time we
3304 * need the hardware to recompute it is in the case of TSO.
3306 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3307 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3308 I40E_TX_DESC_CMD_IIPT_IPV4;
3309 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3310 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3312 exthdr = ip.hdr + sizeof(*ip.v6);
3313 l4_proto = ip.v6->nexthdr;
3314 if (l4.hdr != exthdr)
3315 ipv6_skip_exthdr(skb, exthdr - skb->data,
3316 &l4_proto, &frag_off);
3319 /* compute inner L3 header size */
3320 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3322 /* Enable L4 checksum offloads */
3325 /* enable checksum offloads */
3326 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3327 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3330 /* enable SCTP checksum offload */
3331 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3332 offset |= (sizeof(struct sctphdr) >> 2) <<
3333 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3336 /* enable UDP checksum offload */
3337 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3338 offset |= (sizeof(struct udphdr) >> 2) <<
3339 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3342 if (*tx_flags & I40E_TX_FLAGS_TSO)
3344 skb_checksum_help(skb);
3349 *td_offset |= offset;
3355 * i40e_create_tx_ctx - Build the Tx context descriptor
3356 * @tx_ring: ring to create the descriptor on
3357 * @cd_type_cmd_tso_mss: Quad Word 1
3358 * @cd_tunneling: Quad Word 0 - bits 0-31
3359 * @cd_l2tag2: Quad Word 0 - bits 32-63
3361 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3362 const u64 cd_type_cmd_tso_mss,
3363 const u32 cd_tunneling, const u32 cd_l2tag2)
3365 struct i40e_tx_context_desc *context_desc;
3366 int i = tx_ring->next_to_use;
3368 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3369 !cd_tunneling && !cd_l2tag2)
3372 /* grab the next descriptor */
3373 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3376 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3378 /* cpu_to_le32 and assign to struct fields */
3379 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3380 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3381 context_desc->rsvd = cpu_to_le16(0);
3382 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3386 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3387 * @tx_ring: the ring to be checked
3388 * @size: the size buffer we want to assure is available
3390 * Returns -EBUSY if a stop is needed, else 0
3392 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3394 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3395 /* Memory barrier before checking head and tail */
3398 ++tx_ring->tx_stats.tx_stopped;
3400 /* Check again in a case another CPU has just made room available. */
3401 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3404 /* A reprieve! - use start_queue because it doesn't call schedule */
3405 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3406 ++tx_ring->tx_stats.restart_queue;
3411 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3414 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3415 * and so we need to figure out the cases where we need to linearize the skb.
3417 * For TSO we need to count the TSO header and segment payload separately.
3418 * As such we need to check cases where we have 7 fragments or more as we
3419 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3420 * the segment payload in the first descriptor, and another 7 for the
3423 bool __i40e_chk_linearize(struct sk_buff *skb)
3425 const skb_frag_t *frag, *stale;
3428 /* no need to check if number of frags is less than 7 */
3429 nr_frags = skb_shinfo(skb)->nr_frags;
3430 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3433 /* We need to walk through the list and validate that each group
3434 * of 6 fragments totals at least gso_size.
3436 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3437 frag = &skb_shinfo(skb)->frags[0];
3439 /* Initialize size to the negative value of gso_size minus 1. We
3440 * use this as the worst case scenerio in which the frag ahead
3441 * of us only provides one byte which is why we are limited to 6
3442 * descriptors for a single transmit as the header and previous
3443 * fragment are already consuming 2 descriptors.
3445 sum = 1 - skb_shinfo(skb)->gso_size;
3447 /* Add size of frags 0 through 4 to create our initial sum */
3448 sum += skb_frag_size(frag++);
3449 sum += skb_frag_size(frag++);
3450 sum += skb_frag_size(frag++);
3451 sum += skb_frag_size(frag++);
3452 sum += skb_frag_size(frag++);
3454 /* Walk through fragments adding latest fragment, testing it, and
3455 * then removing stale fragments from the sum.
3457 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3458 int stale_size = skb_frag_size(stale);
3460 sum += skb_frag_size(frag++);
3462 /* The stale fragment may present us with a smaller
3463 * descriptor than the actual fragment size. To account
3464 * for that we need to remove all the data on the front and
3465 * figure out what the remainder would be in the last
3466 * descriptor associated with the fragment.
3468 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3469 int align_pad = -(skb_frag_off(stale)) &
3470 (I40E_MAX_READ_REQ_SIZE - 1);
3473 stale_size -= align_pad;
3476 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3477 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3478 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3481 /* if sum is negative we failed to make sufficient progress */
3495 * i40e_tx_map - Build the Tx descriptor
3496 * @tx_ring: ring to send buffer on
3498 * @first: first buffer info buffer to use
3499 * @tx_flags: collected send information
3500 * @hdr_len: size of the packet header
3501 * @td_cmd: the command field in the descriptor
3502 * @td_offset: offset for checksum or crc
3504 * Returns 0 on success, -1 on failure to DMA
3506 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3507 struct i40e_tx_buffer *first, u32 tx_flags,
3508 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3510 unsigned int data_len = skb->data_len;
3511 unsigned int size = skb_headlen(skb);
3513 struct i40e_tx_buffer *tx_bi;
3514 struct i40e_tx_desc *tx_desc;
3515 u16 i = tx_ring->next_to_use;
3520 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3521 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3522 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3523 I40E_TX_FLAGS_VLAN_SHIFT;
3526 first->tx_flags = tx_flags;
3528 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3530 tx_desc = I40E_TX_DESC(tx_ring, i);
3533 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3534 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3536 if (dma_mapping_error(tx_ring->dev, dma))
3539 /* record length, and DMA address */
3540 dma_unmap_len_set(tx_bi, len, size);
3541 dma_unmap_addr_set(tx_bi, dma, dma);
3543 /* align size to end of page */
3544 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3545 tx_desc->buffer_addr = cpu_to_le64(dma);
3547 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3548 tx_desc->cmd_type_offset_bsz =
3549 build_ctob(td_cmd, td_offset,
3556 if (i == tx_ring->count) {
3557 tx_desc = I40E_TX_DESC(tx_ring, 0);
3564 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3565 tx_desc->buffer_addr = cpu_to_le64(dma);
3568 if (likely(!data_len))
3571 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3578 if (i == tx_ring->count) {
3579 tx_desc = I40E_TX_DESC(tx_ring, 0);
3583 size = skb_frag_size(frag);
3586 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3589 tx_bi = &tx_ring->tx_bi[i];
3592 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3595 if (i == tx_ring->count)
3598 tx_ring->next_to_use = i;
3600 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3602 /* write last descriptor with EOP bit */
3603 td_cmd |= I40E_TX_DESC_CMD_EOP;
3605 /* We OR these values together to check both against 4 (WB_STRIDE)
3606 * below. This is safe since we don't re-use desc_count afterwards.
3608 desc_count |= ++tx_ring->packet_stride;
3610 if (desc_count >= WB_STRIDE) {
3611 /* write last descriptor with RS bit set */
3612 td_cmd |= I40E_TX_DESC_CMD_RS;
3613 tx_ring->packet_stride = 0;
3616 tx_desc->cmd_type_offset_bsz =
3617 build_ctob(td_cmd, td_offset, size, td_tag);
3619 skb_tx_timestamp(skb);
3621 /* Force memory writes to complete before letting h/w know there
3622 * are new descriptors to fetch.
3624 * We also use this memory barrier to make certain all of the
3625 * status bits have been updated before next_to_watch is written.
3629 /* set next_to_watch value indicating a packet is present */
3630 first->next_to_watch = tx_desc;
3632 /* notify HW of packet */
3633 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3634 writel(i, tx_ring->tail);
3640 dev_info(tx_ring->dev, "TX DMA map failed\n");
3642 /* clear dma mappings for failed tx_bi map */
3644 tx_bi = &tx_ring->tx_bi[i];
3645 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3653 tx_ring->next_to_use = i;
3658 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3659 const struct sk_buff *skb,
3662 u32 jhash_initval_salt = 0xd631614b;
3665 if (skb->sk && skb->sk->sk_hash)
3666 hash = skb->sk->sk_hash;
3668 hash = (__force u16)skb->protocol ^ skb->hash;
3670 hash = jhash_1word(hash, jhash_initval_salt);
3672 return (u16)(((u64)hash * num_tx_queues) >> 32);
3675 u16 i40e_lan_select_queue(struct net_device *netdev,
3676 struct sk_buff *skb,
3677 struct net_device __always_unused *sb_dev)
3679 struct i40e_netdev_priv *np = netdev_priv(netdev);
3680 struct i40e_vsi *vsi = np->vsi;
3688 /* is DCB enabled at all? */
3689 if (vsi->tc_config.numtc == 1)
3690 return netdev_pick_tx(netdev, skb, sb_dev);
3692 prio = skb->priority;
3693 hw = &vsi->back->hw;
3694 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3696 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3699 /* select a queue assigned for the given TC */
3700 qcount = vsi->tc_config.tc_info[tclass].qcount;
3701 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3703 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3704 return qoffset + hash;
3708 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3709 * @xdpf: data to transmit
3710 * @xdp_ring: XDP Tx ring
3712 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3713 struct i40e_ring *xdp_ring)
3715 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3716 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3717 u16 i = 0, index = xdp_ring->next_to_use;
3718 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3719 struct i40e_tx_buffer *tx_bi = tx_head;
3720 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3721 void *data = xdpf->data;
3722 u32 size = xdpf->len;
3724 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3725 xdp_ring->tx_stats.tx_busy++;
3726 return I40E_XDP_CONSUMED;
3729 tx_head->bytecount = xdp_get_frame_len(xdpf);
3730 tx_head->gso_segs = 1;
3731 tx_head->xdpf = xdpf;
3736 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3737 if (dma_mapping_error(xdp_ring->dev, dma))
3740 /* record length, and DMA address */
3741 dma_unmap_len_set(tx_bi, len, size);
3742 dma_unmap_addr_set(tx_bi, dma, dma);
3744 tx_desc->buffer_addr = cpu_to_le64(dma);
3745 tx_desc->cmd_type_offset_bsz =
3746 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3748 if (++index == xdp_ring->count)
3754 tx_bi = &xdp_ring->tx_bi[index];
3755 tx_desc = I40E_TX_DESC(xdp_ring, index);
3757 data = skb_frag_address(&sinfo->frags[i]);
3758 size = skb_frag_size(&sinfo->frags[i]);
3762 tx_desc->cmd_type_offset_bsz |=
3763 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3765 /* Make certain all of the status bits have been updated
3766 * before next_to_watch is written.
3770 xdp_ring->xdp_tx_active++;
3772 tx_head->next_to_watch = tx_desc;
3773 xdp_ring->next_to_use = index;
3779 tx_bi = &xdp_ring->tx_bi[index];
3780 if (dma_unmap_len(tx_bi, len))
3781 dma_unmap_page(xdp_ring->dev,
3782 dma_unmap_addr(tx_bi, dma),
3783 dma_unmap_len(tx_bi, len),
3785 dma_unmap_len_set(tx_bi, len, 0);
3786 if (tx_bi == tx_head)
3790 index += xdp_ring->count;
3794 return I40E_XDP_CONSUMED;
3798 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3800 * @tx_ring: ring to send buffer on
3802 * Returns NETDEV_TX_OK if sent, else an error code
3804 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3805 struct i40e_ring *tx_ring)
3807 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3808 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3809 struct i40e_tx_buffer *first;
3817 /* prefetch the data, we'll need it later */
3818 prefetch(skb->data);
3820 i40e_trace(xmit_frame_ring, skb, tx_ring);
3822 count = i40e_xmit_descriptor_count(skb);
3823 if (i40e_chk_linearize(skb, count)) {
3824 if (__skb_linearize(skb)) {
3825 dev_kfree_skb_any(skb);
3826 return NETDEV_TX_OK;
3828 count = i40e_txd_use_count(skb->len);
3829 tx_ring->tx_stats.tx_linearize++;
3832 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3833 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3834 * + 4 desc gap to avoid the cache line where head is,
3835 * + 1 desc for context descriptor,
3836 * otherwise try next time
3838 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3839 tx_ring->tx_stats.tx_busy++;
3840 return NETDEV_TX_BUSY;
3843 /* record the location of the first descriptor for this packet */
3844 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3846 first->bytecount = skb->len;
3847 first->gso_segs = 1;
3849 /* prepare the xmit flags */
3850 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3853 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3858 tx_flags |= I40E_TX_FLAGS_TSO;
3860 /* Always offload the checksum, since it's in the data descriptor */
3861 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3862 tx_ring, &cd_tunneling);
3866 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3869 tx_flags |= I40E_TX_FLAGS_TSYN;
3871 /* always enable CRC insertion offload */
3872 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3874 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3875 cd_tunneling, cd_l2tag2);
3877 /* Add Flow Director ATR if it's enabled.
3879 * NOTE: this must always be directly before the data descriptor.
3881 i40e_atr(tx_ring, skb, tx_flags);
3883 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3885 goto cleanup_tx_tstamp;
3887 return NETDEV_TX_OK;
3890 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3891 dev_kfree_skb_any(first->skb);
3894 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3895 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3897 dev_kfree_skb_any(pf->ptp_tx_skb);
3898 pf->ptp_tx_skb = NULL;
3899 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3902 return NETDEV_TX_OK;
3906 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3908 * @netdev: network interface device structure
3910 * Returns NETDEV_TX_OK if sent, else an error code
3912 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3914 struct i40e_netdev_priv *np = netdev_priv(netdev);
3915 struct i40e_vsi *vsi = np->vsi;
3916 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3918 /* hardware can't handle really short frames, hardware padding works
3921 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3922 return NETDEV_TX_OK;
3924 return i40e_xmit_frame_ring(skb, tx_ring);
3928 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3930 * @n: number of frames
3931 * @frames: array of XDP buffer pointers
3932 * @flags: XDP extra info
3934 * Returns number of frames successfully sent. Failed frames
3935 * will be free'ed by XDP core.
3937 * For error cases, a negative errno code is returned and no-frames
3938 * are transmitted (caller must handle freeing frames).
3940 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3943 struct i40e_netdev_priv *np = netdev_priv(dev);
3944 unsigned int queue_index = smp_processor_id();
3945 struct i40e_vsi *vsi = np->vsi;
3946 struct i40e_pf *pf = vsi->back;
3947 struct i40e_ring *xdp_ring;
3951 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3954 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3955 test_bit(__I40E_CONFIG_BUSY, pf->state))
3958 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3961 xdp_ring = vsi->xdp_rings[queue_index];
3963 for (i = 0; i < n; i++) {
3964 struct xdp_frame *xdpf = frames[i];
3967 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3968 if (err != I40E_XDP_TX)
3973 if (unlikely(flags & XDP_XMIT_FLUSH))
3974 i40e_xdp_ring_update_tail(xdp_ring);