1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 #define I40E_FD_CLEAN_DELAY 10
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
84 * @add: True for add/update, False for remove
86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
104 tx_ring = vsi->tx_rings[0];
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 msleep_interruptible(1);
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
154 writel(tx_ring->next_to_use, tx_ring->tail);
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
168 * Returns address of layer 4 protocol dummy packet.
170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan = {};
175 struct ipv6hdr ipv6 = {};
176 struct ethhdr eth = {};
177 struct iphdr ip = {};
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
206 memcpy(tmp, ð, sizeof(eth));
210 memcpy(tmp, &vlan, sizeof(vlan));
215 memcpy(tmp, &ip, sizeof(ip));
218 memcpy(tmp, &ipv6, sizeof(ipv6));
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
232 * Helper function to populate udp fields.
234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
253 * Helper function to populate tcp fields.
255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
279 * Helper function to populate sctp fields.
281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
283 struct i40e_fdir_filter *data)
285 struct sctphdr *sctp;
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
304 * Helper function to offset data of dummy packet, program it and
307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
314 if (fd_data->flex_filter) {
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
319 payload = packet_addr + payload_offset;
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
325 *((__force __be16 *)(payload + off)) = pattern;
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
357 * Update filter number field for pf.
359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
364 (*ipv4_filter_num)++;
366 (*ipv6_filter_num)++;
369 (*ipv4_filter_num)--;
371 (*ipv6_filter_num)--;
375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
384 * Returns 0 if the filters were successfully added or removed
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 struct i40e_fdir_filter *fd_data,
391 struct i40e_pf *pf = vsi->back;
395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
407 ret = i40e_prepare_fdir_filter
408 (pf, fd_data, add, raw_packet,
409 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 &pf->fd_udp6_filter_cnt);
423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
432 * Returns 0 if the filters were successfully added or removed
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 struct i40e_fdir_filter *fd_data,
439 struct i40e_pf *pf = vsi->back;
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
454 ret = i40e_prepare_fdir_filter
455 (pf, fd_data, add, raw_packet,
456 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 &pf->fd_tcp6_filter_cnt);
468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 I40E_DEBUG_FD & pf->hw.debug_mask)
470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
486 * Returns 0 if the filters were successfully added or removed
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 struct i40e_fdir_filter *fd_data,
493 struct i40e_pf *pf = vsi->back;
497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
509 ret = i40e_prepare_fdir_filter
510 (pf, fd_data, add, raw_packet,
511 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 &pf->fd_sctp6_filter_cnt);
525 #define I40E_IP_DUMMY_PACKET_LEN 34
526 #define I40E_IP6_DUMMY_PACKET_LEN 54
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
535 * Returns 0 if the filters were successfully added or removed
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 struct i40e_fdir_filter *fd_data,
542 struct i40e_pf *pf = vsi->back;
551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
558 for (i = iter_start; i <= iter_end; i++) {
559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
563 /* IPv6 no header option differs from IPv4 */
564 (void)i40e_create_dummy_packet
565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 I40E_IP6_DUMMY_PACKET_LEN;
570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 &pf->fd_ip6_filter_cnt);
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 struct i40e_fdir_filter *input, bool add)
595 enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 struct i40e_pf *pf = vsi->back;
599 switch (input->flow_type & ~FLOW_EXT) {
601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
619 switch (input->ipl4_proto) {
621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
633 /* We cannot support masking based on protocol */
634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
640 switch (input->ipl4_proto) {
642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
654 /* We cannot support masking based on protocol */
655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
666 /* The buffer allocated here will be normally be freed by
667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 * completion. In the event of an error adding the buffer to the FDIR
669 * ring, it will immediately be freed. It may also be freed by
670 * i40e_clean_tx_ring() when closing the VSI.
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 u64 qword1, u8 prog_id)
688 struct i40e_pf *pf = rx_ring->vsi->back;
689 struct pci_dev *pdev = pf->pdev;
690 struct i40e_16b_rx_wb_qw0 *qw0;
691 u32 fcnt_prog, fcnt_avail;
694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 if (qw0->hi_dword.fd_id != 0 ||
701 (I40E_DEBUG_FD & pf->hw.debug_mask))
702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
705 /* Check if the programming error is for ATR.
706 * If so, auto disable ATR and set a state for
707 * flush in progress. Next time we come here if flush is in
708 * progress do nothing, once flush is complete the state will
711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
715 /* store the current atr filter count */
716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
718 if (qw0->hi_dword.fd_id == 0 &&
719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 /* These set_bit() calls aren't atomic with the
721 * test_bit() here, but worse case we potentially
722 * disable ATR and queue a flush right after SB
723 * support is re-enabled. That shouldn't cause an
726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
730 /* filter programming failed most likely due to table full */
731 fcnt_prog = i40e_get_global_fd_count(pf);
732 fcnt_avail = pf->fdir_pf_filter_count;
733 /* If ATR is running fcnt_prog can quickly change,
734 * if we are very close to full, it makes sense to disable
735 * FD ATR/SB and then re-enable it when there is room.
737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
741 if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 qw0->hi_dword.fd_id);
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring: the ring that owns the buffer
754 * @tx_buffer: the buffer to free
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 struct i40e_tx_buffer *tx_buffer)
759 if (tx_buffer->skb) {
760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 kfree(tx_buffer->raw_buf);
762 else if (ring_is_xdp(ring))
763 xdp_return_frame(tx_buffer->xdpf);
765 dev_kfree_skb_any(tx_buffer->skb);
766 if (dma_unmap_len(tx_buffer, len))
767 dma_unmap_single(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
771 } else if (dma_unmap_len(tx_buffer, len)) {
772 dma_unmap_page(ring->dev,
773 dma_unmap_addr(tx_buffer, dma),
774 dma_unmap_len(tx_buffer, len),
778 tx_buffer->next_to_watch = NULL;
779 tx_buffer->skb = NULL;
780 dma_unmap_len_set(tx_buffer, len, 0);
781 /* tx_buffer must be completely set up in the transmit path */
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
790 unsigned long bi_size;
793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 i40e_xsk_clean_tx_ring(tx_ring);
796 /* ring already cleared, nothing to do */
800 /* Free all the Tx ring sk_buffs */
801 for (i = 0; i < tx_ring->count; i++)
802 i40e_unmap_and_free_tx_resource(tx_ring,
806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 memset(tx_ring->tx_bi, 0, bi_size);
809 /* Zero out the descriptor ring */
810 memset(tx_ring->desc, 0, tx_ring->size);
812 tx_ring->next_to_use = 0;
813 tx_ring->next_to_clean = 0;
815 if (!tx_ring->netdev)
818 /* cleanup Tx queue statistics */
819 netdev_tx_reset_queue(txring_txq(tx_ring));
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
826 * Free all transmit software resources
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
830 i40e_clean_tx_ring(tx_ring);
831 kfree(tx_ring->tx_bi);
832 tx_ring->tx_bi = NULL;
835 dma_free_coherent(tx_ring->dev, tx_ring->size,
836 tx_ring->desc, tx_ring->dma);
837 tx_ring->desc = NULL;
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
854 head = i40e_get_head(ring);
855 tail = readl(ring->tail);
857 head = ring->next_to_clean;
858 tail = ring->next_to_use;
862 return (head < tail) ?
863 tail - head : (tail + ring->count - head);
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi: pointer to vsi struct with tx queues
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
877 struct i40e_ring *tx_ring = NULL;
878 struct net_device *netdev;
885 if (test_bit(__I40E_VSI_DOWN, vsi->state))
888 netdev = vsi->netdev;
892 if (!netif_carrier_ok(netdev))
895 for (i = 0; i < vsi->num_queue_pairs; i++) {
896 tx_ring = vsi->tx_rings[i];
897 if (tx_ring && tx_ring->desc) {
898 /* If packet counter has not changed the queue is
899 * likely stalled, so force an interrupt for this
902 * prev_pkt_ctr would be negative if there was no
905 packets = tx_ring->stats.packets & INT_MAX;
906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 i40e_force_wb(vsi, tx_ring->q_vector);
911 /* Memory barrier between read of packet count and call
912 * to i40e_get_tx_pending()
915 tx_ring->tx_stats.prev_pkt_ctr =
916 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
926 * @tx_cleaned: Out parameter set to the number of TXes cleaned
928 * Returns true if there's any budget left (e.g. the clean is finished)
930 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 struct i40e_ring *tx_ring, int napi_budget,
932 unsigned int *tx_cleaned)
934 int i = tx_ring->next_to_clean;
935 struct i40e_tx_buffer *tx_buf;
936 struct i40e_tx_desc *tx_head;
937 struct i40e_tx_desc *tx_desc;
938 unsigned int total_bytes = 0, total_packets = 0;
939 unsigned int budget = vsi->work_limit;
941 tx_buf = &tx_ring->tx_bi[i];
942 tx_desc = I40E_TX_DESC(tx_ring, i);
945 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
948 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
950 /* if next_to_watch is not set then there is no work pending */
954 /* prevent any other reads prior to eop_desc */
957 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 /* we have caught up to head, no work left to do */
959 if (tx_head == tx_desc)
962 /* clear next_to_watch to prevent false hangs */
963 tx_buf->next_to_watch = NULL;
965 /* update the statistics for this packet */
966 total_bytes += tx_buf->bytecount;
967 total_packets += tx_buf->gso_segs;
969 /* free the skb/XDP data */
970 if (ring_is_xdp(tx_ring))
971 xdp_return_frame(tx_buf->xdpf);
973 napi_consume_skb(tx_buf->skb, napi_budget);
975 /* unmap skb header data */
976 dma_unmap_single(tx_ring->dev,
977 dma_unmap_addr(tx_buf, dma),
978 dma_unmap_len(tx_buf, len),
981 /* clear tx_buffer data */
983 dma_unmap_len_set(tx_buf, len, 0);
985 /* unmap remaining buffers */
986 while (tx_desc != eop_desc) {
987 i40e_trace(clean_tx_irq_unmap,
988 tx_ring, tx_desc, tx_buf);
995 tx_buf = tx_ring->tx_bi;
996 tx_desc = I40E_TX_DESC(tx_ring, 0);
999 /* unmap any remaining paged data */
1000 if (dma_unmap_len(tx_buf, len)) {
1001 dma_unmap_page(tx_ring->dev,
1002 dma_unmap_addr(tx_buf, dma),
1003 dma_unmap_len(tx_buf, len),
1005 dma_unmap_len_set(tx_buf, len, 0);
1009 /* move us one more past the eop_desc for start of next pkt */
1014 i -= tx_ring->count;
1015 tx_buf = tx_ring->tx_bi;
1016 tx_desc = I40E_TX_DESC(tx_ring, 0);
1021 /* update budget accounting */
1023 } while (likely(budget));
1025 i += tx_ring->count;
1026 tx_ring->next_to_clean = i;
1027 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 i40e_arm_wb(tx_ring, vsi, budget);
1030 if (ring_is_xdp(tx_ring))
1033 /* notify netdev of completed buffers */
1034 netdev_tx_completed_queue(txring_txq(tx_ring),
1035 total_packets, total_bytes);
1037 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 /* Make sure that anybody stopping the queue after this
1041 * sees the new next_to_clean.
1044 if (__netif_subqueue_stopped(tx_ring->netdev,
1045 tx_ring->queue_index) &&
1046 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 netif_wake_subqueue(tx_ring->netdev,
1048 tx_ring->queue_index);
1049 ++tx_ring->tx_stats.restart_queue;
1053 *tx_cleaned = total_packets;
1058 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059 * @vsi: the VSI we care about
1060 * @q_vector: the vector on which to enable writeback
1063 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064 struct i40e_q_vector *q_vector)
1066 u16 flags = q_vector->tx.ring[0].flags;
1069 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1072 if (q_vector->arm_wb_state)
1075 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1079 wr32(&vsi->back->hw,
1080 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1083 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1086 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1088 q_vector->arm_wb_state = true;
1092 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093 * @vsi: the VSI we care about
1094 * @q_vector: the vector on which to force writeback
1097 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1099 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104 /* allow 00 to be written to the index */
1106 wr32(&vsi->back->hw,
1107 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1109 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113 /* allow 00 to be written to the index */
1115 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1119 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120 struct i40e_ring_container *rc)
1122 return &q_vector->rx == rc;
1125 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1127 unsigned int divisor;
1129 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130 case I40E_LINK_SPEED_40GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1133 case I40E_LINK_SPEED_25GB:
1134 case I40E_LINK_SPEED_20GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1138 case I40E_LINK_SPEED_10GB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1141 case I40E_LINK_SPEED_1GB:
1142 case I40E_LINK_SPEED_100MB:
1143 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1151 * i40e_update_itr - update the dynamic ITR value based on statistics
1152 * @q_vector: structure containing interrupt and ring information
1153 * @rc: structure containing ring performance data
1155 * Stores a new ITR value based on packets and byte
1156 * counts during the last interrupt. The advantage of per interrupt
1157 * computation is faster updates and more accurate ITR for the current
1158 * traffic pattern. Constants in this function were computed
1159 * based on theoretical maximum wire speed and thresholds were set based
1160 * on testing data as well as attempting to minimize response time
1161 * while increasing bulk throughput.
1163 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164 struct i40e_ring_container *rc)
1166 unsigned int avg_wire_size, packets, bytes, itr;
1167 unsigned long next_update = jiffies;
1169 /* If we don't have any rings just leave ourselves set for maximum
1170 * possible latency so we take ourselves out of the equation.
1172 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1175 /* For Rx we want to push the delay up and default to low latency.
1176 * for Tx we want to pull the delay down and default to high latency.
1178 itr = i40e_container_is_rx(q_vector, rc) ?
1179 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1182 /* If we didn't update within up to 1 - 2 jiffies we can assume
1183 * that either packets are coming in so slow there hasn't been
1184 * any work, or that there is so much work that NAPI is dealing
1185 * with interrupt moderation and we don't need to do anything.
1187 if (time_after(next_update, rc->next_update))
1190 /* If itr_countdown is set it means we programmed an ITR within
1191 * the last 4 interrupt cycles. This has a side effect of us
1192 * potentially firing an early interrupt. In order to work around
1193 * this we need to throw out any data received for a few
1194 * interrupts following the update.
1196 if (q_vector->itr_countdown) {
1197 itr = rc->target_itr;
1201 packets = rc->total_packets;
1202 bytes = rc->total_bytes;
1204 if (i40e_container_is_rx(q_vector, rc)) {
1205 /* If Rx there are 1 to 4 packets and bytes are less than
1206 * 9000 assume insufficient data to use bulk rate limiting
1207 * approach unless Tx is already in bulk rate limiting. We
1208 * are likely latency driven.
1210 if (packets && packets < 4 && bytes < 9000 &&
1211 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212 itr = I40E_ITR_ADAPTIVE_LATENCY;
1213 goto adjust_by_size;
1215 } else if (packets < 4) {
1216 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217 * bulk mode and we are receiving 4 or fewer packets just
1218 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219 * that the Rx can relax.
1221 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223 I40E_ITR_ADAPTIVE_MAX_USECS)
1225 } else if (packets > 32) {
1226 /* If we have processed over 32 packets in a single interrupt
1227 * for Tx assume we need to switch over to "bulk" mode.
1229 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1232 /* We have no packets to actually measure against. This means
1233 * either one of the other queues on this vector is active or
1234 * we are a Tx queue doing TSO with too high of an interrupt rate.
1236 * Between 4 and 56 we can assume that our current interrupt delay
1237 * is only slightly too low. As such we should increase it by a small
1241 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1249 if (packets <= 256) {
1250 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251 itr &= I40E_ITR_MASK;
1253 /* Between 56 and 112 is our "goldilocks" zone where we are
1254 * working out "just right". Just report that our current
1255 * ITR is good for us.
1260 /* If packet count is 128 or greater we are likely looking
1261 * at a slight overrun of the delay we want. Try halving
1262 * our delay to see if that will cut the number of packets
1263 * in half per interrupt.
1266 itr &= I40E_ITR_MASK;
1267 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1273 /* The paths below assume we are dealing with a bulk ITR since
1274 * number of packets is greater than 256. We are just going to have
1275 * to compute a value and try to bring the count under control,
1276 * though for smaller packet sizes there isn't much we can do as
1277 * NAPI polling will likely be kicking in sooner rather than later.
1279 itr = I40E_ITR_ADAPTIVE_BULK;
1282 /* If packet counts are 256 or greater we can assume we have a gross
1283 * overestimation of what the rate should be. Instead of trying to fine
1284 * tune it just use the formula below to try and dial in an exact value
1285 * give the current packet size of the frame.
1287 avg_wire_size = bytes / packets;
1289 /* The following is a crude approximation of:
1290 * wmem_default / (size + overhead) = desired_pkts_per_int
1291 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1294 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1298 * (170 * (size + 24)) / (size + 640) = ITR
1300 * We first do some math on the packet size and then finally bitshift
1301 * by 8 after rounding up. We also have to account for PCIe link speed
1302 * difference as ITR scales based on this.
1304 if (avg_wire_size <= 60) {
1305 /* Start at 250k ints/sec */
1306 avg_wire_size = 4096;
1307 } else if (avg_wire_size <= 380) {
1308 /* 250K ints/sec to 60K ints/sec */
1309 avg_wire_size *= 40;
1310 avg_wire_size += 1696;
1311 } else if (avg_wire_size <= 1084) {
1312 /* 60K ints/sec to 36K ints/sec */
1313 avg_wire_size *= 15;
1314 avg_wire_size += 11452;
1315 } else if (avg_wire_size <= 1980) {
1316 /* 36K ints/sec to 30K ints/sec */
1318 avg_wire_size += 22420;
1320 /* plateau at a limit of 30K ints/sec */
1321 avg_wire_size = 32256;
1324 /* If we are in low latency mode halve our delay which doubles the
1325 * rate to somewhere between 100K to 16K ints/sec
1327 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1330 /* Resultant value is 256 times larger than it needs to be. This
1331 * gives us room to adjust the value as needed to either increase
1332 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1334 * Use addition as we have already recorded the new latency flag
1335 * for the ITR value.
1337 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338 I40E_ITR_ADAPTIVE_MIN_INC;
1340 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1346 /* write back value */
1347 rc->target_itr = itr;
1349 /* next update should occur within next jiffy */
1350 rc->next_update = next_update + 1;
1352 rc->total_bytes = 0;
1353 rc->total_packets = 0;
1356 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1358 return &rx_ring->rx_bi[idx];
1362 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363 * @rx_ring: rx descriptor ring to store buffers on
1364 * @old_buff: donor buffer to have page reused
1366 * Synchronizes page for reuse by the adapter
1368 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369 struct i40e_rx_buffer *old_buff)
1371 struct i40e_rx_buffer *new_buff;
1372 u16 nta = rx_ring->next_to_alloc;
1374 new_buff = i40e_rx_bi(rx_ring, nta);
1376 /* update, and store next to alloc */
1378 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1380 /* transfer page from old buffer to new buffer */
1381 new_buff->dma = old_buff->dma;
1382 new_buff->page = old_buff->page;
1383 new_buff->page_offset = old_buff->page_offset;
1384 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1386 /* clear contents of buffer_info */
1387 old_buff->page = NULL;
1391 * i40e_clean_programming_status - clean the programming status descriptor
1392 * @rx_ring: the rx ring that has this descriptor
1393 * @qword0_raw: qword0
1394 * @qword1: qword1 representing status_error_len in CPU ordering
1396 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397 * status being successful or not and take actions accordingly. FCoE should
1398 * handle its context/filter programming/invalidation status and take actions.
1400 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1402 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1407 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1410 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1415 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416 * @tx_ring: the tx ring to set up
1418 * Return 0 on success, negative on error
1420 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1422 struct device *dev = tx_ring->dev;
1428 /* warn if we are about to overwrite the pointer */
1429 WARN_ON(tx_ring->tx_bi);
1430 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432 if (!tx_ring->tx_bi)
1435 u64_stats_init(&tx_ring->syncp);
1437 /* round up to nearest 4K */
1438 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439 /* add u32 for head writeback, align after this takes care of
1440 * guaranteeing this is at least one cache line in size
1442 tx_ring->size += sizeof(u32);
1443 tx_ring->size = ALIGN(tx_ring->size, 4096);
1444 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445 &tx_ring->dma, GFP_KERNEL);
1446 if (!tx_ring->desc) {
1447 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1452 tx_ring->next_to_use = 0;
1453 tx_ring->next_to_clean = 0;
1454 tx_ring->tx_stats.prev_pkt_ctr = -1;
1458 kfree(tx_ring->tx_bi);
1459 tx_ring->tx_bi = NULL;
1463 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1465 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1469 * i40e_clean_rx_ring - Free Rx buffers
1470 * @rx_ring: ring to be cleaned
1472 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1476 /* ring already cleared, nothing to do */
1477 if (!rx_ring->rx_bi)
1480 if (rx_ring->xsk_pool) {
1481 i40e_xsk_clean_rx_ring(rx_ring);
1485 /* Free all the Rx ring sk_buffs */
1486 for (i = 0; i < rx_ring->count; i++) {
1487 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1492 /* Invalidate cache lines that may have been written to by
1493 * device so that we avoid corrupting memory.
1495 dma_sync_single_range_for_cpu(rx_ring->dev,
1498 rx_ring->rx_buf_len,
1501 /* free resources associated with mapping */
1502 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503 i40e_rx_pg_size(rx_ring),
1507 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1510 rx_bi->page_offset = 0;
1514 if (rx_ring->xsk_pool)
1515 i40e_clear_rx_bi_zc(rx_ring);
1517 i40e_clear_rx_bi(rx_ring);
1519 /* Zero out the descriptor ring */
1520 memset(rx_ring->desc, 0, rx_ring->size);
1522 rx_ring->next_to_alloc = 0;
1523 rx_ring->next_to_clean = 0;
1524 rx_ring->next_to_process = 0;
1525 rx_ring->next_to_use = 0;
1529 * i40e_free_rx_resources - Free Rx resources
1530 * @rx_ring: ring to clean the resources from
1532 * Free all receive software resources
1534 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1536 i40e_clean_rx_ring(rx_ring);
1537 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1538 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1539 rx_ring->xdp_prog = NULL;
1540 kfree(rx_ring->rx_bi);
1541 rx_ring->rx_bi = NULL;
1543 if (rx_ring->desc) {
1544 dma_free_coherent(rx_ring->dev, rx_ring->size,
1545 rx_ring->desc, rx_ring->dma);
1546 rx_ring->desc = NULL;
1551 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1552 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1554 * Returns 0 on success, negative on failure
1556 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1558 struct device *dev = rx_ring->dev;
1561 u64_stats_init(&rx_ring->syncp);
1563 /* Round up to nearest 4K */
1564 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1565 rx_ring->size = ALIGN(rx_ring->size, 4096);
1566 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1567 &rx_ring->dma, GFP_KERNEL);
1569 if (!rx_ring->desc) {
1570 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1575 rx_ring->next_to_alloc = 0;
1576 rx_ring->next_to_clean = 0;
1577 rx_ring->next_to_process = 0;
1578 rx_ring->next_to_use = 0;
1580 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1581 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1582 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1583 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1588 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1591 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1592 if (!rx_ring->rx_bi)
1599 * i40e_release_rx_desc - Store the new tail and head values
1600 * @rx_ring: ring to bump
1601 * @val: new head index
1603 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1605 rx_ring->next_to_use = val;
1607 /* update next to alloc since we have filled the ring */
1608 rx_ring->next_to_alloc = val;
1610 /* Force memory writes to complete before letting h/w
1611 * know there are new descriptors to fetch. (Only
1612 * applicable for weak-ordered memory model archs,
1616 writel(val, rx_ring->tail);
1619 #if (PAGE_SIZE >= 8192)
1620 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1623 unsigned int truesize;
1625 truesize = rx_ring->rx_offset ?
1626 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1627 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1628 SKB_DATA_ALIGN(size);
1634 * i40e_alloc_mapped_page - recycle or make a new page
1635 * @rx_ring: ring to use
1636 * @bi: rx_buffer struct to modify
1638 * Returns true if the page was successfully allocated or
1641 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1642 struct i40e_rx_buffer *bi)
1644 struct page *page = bi->page;
1647 /* since we are recycling buffers we should seldom need to alloc */
1649 rx_ring->rx_stats.page_reuse_count++;
1653 /* alloc new page for storage */
1654 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1655 if (unlikely(!page)) {
1656 rx_ring->rx_stats.alloc_page_failed++;
1660 rx_ring->rx_stats.page_alloc_count++;
1662 /* map page for use */
1663 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1664 i40e_rx_pg_size(rx_ring),
1668 /* if mapping failed free memory back to system since
1669 * there isn't much point in holding memory we can't use
1671 if (dma_mapping_error(rx_ring->dev, dma)) {
1672 __free_pages(page, i40e_rx_pg_order(rx_ring));
1673 rx_ring->rx_stats.alloc_page_failed++;
1679 bi->page_offset = rx_ring->rx_offset;
1680 page_ref_add(page, USHRT_MAX - 1);
1681 bi->pagecnt_bias = USHRT_MAX;
1687 * i40e_alloc_rx_buffers - Replace used receive buffers
1688 * @rx_ring: ring to place buffers on
1689 * @cleaned_count: number of buffers to replace
1691 * Returns false if all allocations were successful, true if any fail
1693 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1695 u16 ntu = rx_ring->next_to_use;
1696 union i40e_rx_desc *rx_desc;
1697 struct i40e_rx_buffer *bi;
1699 /* do nothing if no valid netdev defined */
1700 if (!rx_ring->netdev || !cleaned_count)
1703 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1704 bi = i40e_rx_bi(rx_ring, ntu);
1707 if (!i40e_alloc_mapped_page(rx_ring, bi))
1710 /* sync the buffer for use by the device */
1711 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1713 rx_ring->rx_buf_len,
1716 /* Refresh the desc even if buffer_addrs didn't change
1717 * because each write-back erases this info.
1719 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1724 if (unlikely(ntu == rx_ring->count)) {
1725 rx_desc = I40E_RX_DESC(rx_ring, 0);
1726 bi = i40e_rx_bi(rx_ring, 0);
1730 /* clear the status bits for the next_to_use descriptor */
1731 rx_desc->wb.qword1.status_error_len = 0;
1734 } while (cleaned_count);
1736 if (rx_ring->next_to_use != ntu)
1737 i40e_release_rx_desc(rx_ring, ntu);
1742 if (rx_ring->next_to_use != ntu)
1743 i40e_release_rx_desc(rx_ring, ntu);
1745 /* make sure to come back via polling to try again after
1746 * allocation failure
1752 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1753 * @vsi: the VSI we care about
1754 * @skb: skb currently being received and modified
1755 * @rx_desc: the receive descriptor
1757 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1758 struct sk_buff *skb,
1759 union i40e_rx_desc *rx_desc)
1761 struct i40e_rx_ptype_decoded decoded;
1762 u32 rx_error, rx_status;
1767 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1769 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1770 I40E_RXD_QW1_ERROR_SHIFT;
1771 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1772 I40E_RXD_QW1_STATUS_SHIFT;
1773 decoded = decode_rx_desc_ptype(ptype);
1775 skb->ip_summed = CHECKSUM_NONE;
1777 skb_checksum_none_assert(skb);
1779 /* Rx csum enabled and ip headers found? */
1780 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1783 /* did the hardware decode the packet and checksum? */
1784 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1787 /* both known and outer_ip must be set for the below code to work */
1788 if (!(decoded.known && decoded.outer_ip))
1791 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1792 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1793 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1794 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1797 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1798 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1801 /* likely incorrect csum if alternate IP extension headers found */
1803 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1804 /* don't increment checksum err here, non-fatal err */
1807 /* there was some L4 error, count error and punt packet to the stack */
1808 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1811 /* handle packets that were not able to be checksummed due
1812 * to arrival speed, in this case the stack can compute
1815 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1818 /* If there is an outer header present that might contain a checksum
1819 * we need to bump the checksum level by 1 to reflect the fact that
1820 * we are indicating we validated the inner checksum.
1822 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1823 skb->csum_level = 1;
1825 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1826 switch (decoded.inner_prot) {
1827 case I40E_RX_PTYPE_INNER_PROT_TCP:
1828 case I40E_RX_PTYPE_INNER_PROT_UDP:
1829 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1830 skb->ip_summed = CHECKSUM_UNNECESSARY;
1839 vsi->back->hw_csum_rx_error++;
1843 * i40e_ptype_to_htype - get a hash type
1844 * @ptype: the ptype value from the descriptor
1846 * Returns a hash type to be used by skb_set_hash
1848 static inline int i40e_ptype_to_htype(u8 ptype)
1850 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1853 return PKT_HASH_TYPE_NONE;
1855 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1856 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1857 return PKT_HASH_TYPE_L4;
1858 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1860 return PKT_HASH_TYPE_L3;
1862 return PKT_HASH_TYPE_L2;
1866 * i40e_rx_hash - set the hash value in the skb
1867 * @ring: descriptor ring
1868 * @rx_desc: specific descriptor
1869 * @skb: skb currently being received and modified
1870 * @rx_ptype: Rx packet type
1872 static inline void i40e_rx_hash(struct i40e_ring *ring,
1873 union i40e_rx_desc *rx_desc,
1874 struct sk_buff *skb,
1878 const __le64 rss_mask =
1879 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1880 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1882 if (!(ring->netdev->features & NETIF_F_RXHASH))
1885 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1886 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1887 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1892 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1893 * @rx_ring: rx descriptor ring packet is being transacted on
1894 * @rx_desc: pointer to the EOP Rx descriptor
1895 * @skb: pointer to current skb being populated
1897 * This function checks the ring, descriptor, and packet information in
1898 * order to populate the hash, checksum, VLAN, protocol, and
1899 * other fields within the skb.
1901 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1902 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1904 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1905 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1906 I40E_RXD_QW1_STATUS_SHIFT;
1907 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1908 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1909 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1910 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1911 I40E_RXD_QW1_PTYPE_SHIFT;
1913 if (unlikely(tsynvalid))
1914 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1916 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1918 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1920 skb_record_rx_queue(skb, rx_ring->queue_index);
1922 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1923 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1925 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1926 le16_to_cpu(vlan_tag));
1929 /* modifies the skb - consumes the enet header */
1930 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1934 * i40e_cleanup_headers - Correct empty headers
1935 * @rx_ring: rx descriptor ring packet is being transacted on
1936 * @skb: pointer to current skb being fixed
1937 * @rx_desc: pointer to the EOP Rx descriptor
1939 * In addition if skb is not at least 60 bytes we need to pad it so that
1940 * it is large enough to qualify as a valid Ethernet frame.
1942 * Returns true if an error was encountered and skb was freed.
1944 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1945 union i40e_rx_desc *rx_desc)
1948 /* ERR_MASK will only have valid bits if EOP set, and
1949 * what we are doing here is actually checking
1950 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1953 if (unlikely(i40e_test_staterr(rx_desc,
1954 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1955 dev_kfree_skb_any(skb);
1959 /* if eth_skb_pad returns an error the skb was freed */
1960 if (eth_skb_pad(skb))
1967 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1968 * @rx_buffer: buffer containing the page
1969 * @rx_stats: rx stats structure for the rx ring
1971 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1972 * which will assign the current buffer to the buffer that next_to_alloc is
1973 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1976 * rx_stats will be updated to indicate whether the page was waived
1977 * or busy if it could not be reused.
1979 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1980 struct i40e_rx_queue_stats *rx_stats)
1982 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1983 struct page *page = rx_buffer->page;
1985 /* Is any reuse possible? */
1986 if (!dev_page_is_reusable(page)) {
1987 rx_stats->page_waive_count++;
1991 #if (PAGE_SIZE < 8192)
1992 /* if we are only owner of page we can reuse it */
1993 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1994 rx_stats->page_busy_count++;
1998 #define I40E_LAST_OFFSET \
1999 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2000 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2001 rx_stats->page_busy_count++;
2006 /* If we have drained the page fragment pool we need to update
2007 * the pagecnt_bias and page count so that we fully restock the
2008 * number of references the driver holds.
2010 if (unlikely(pagecnt_bias == 1)) {
2011 page_ref_add(page, USHRT_MAX - 1);
2012 rx_buffer->pagecnt_bias = USHRT_MAX;
2019 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2020 * @rx_buffer: Rx buffer to adjust
2021 * @truesize: Size of adjustment
2023 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2024 unsigned int truesize)
2026 #if (PAGE_SIZE < 8192)
2027 rx_buffer->page_offset ^= truesize;
2029 rx_buffer->page_offset += truesize;
2034 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2035 * @rx_ring: rx descriptor ring to transact packets on
2036 * @size: size of buffer to add to skb
2038 * This function will pull an Rx buffer from the ring and synchronize it
2039 * for use by the CPU.
2041 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2042 const unsigned int size)
2044 struct i40e_rx_buffer *rx_buffer;
2046 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2047 rx_buffer->page_count =
2048 #if (PAGE_SIZE < 8192)
2049 page_count(rx_buffer->page);
2053 prefetch_page_address(rx_buffer->page);
2055 /* we are reusing so sync this buffer for CPU use */
2056 dma_sync_single_range_for_cpu(rx_ring->dev,
2058 rx_buffer->page_offset,
2062 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2063 rx_buffer->pagecnt_bias--;
2069 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2070 * @rx_ring: rx descriptor ring to transact packets on
2071 * @rx_buffer: rx buffer to pull data from
2073 * This function will clean up the contents of the rx_buffer. It will
2074 * either recycle the buffer or unmap it and free the associated resources.
2076 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2077 struct i40e_rx_buffer *rx_buffer)
2079 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2080 /* hand second half of page back to the ring */
2081 i40e_reuse_rx_page(rx_ring, rx_buffer);
2083 /* we are not reusing the buffer so unmap it */
2084 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2085 i40e_rx_pg_size(rx_ring),
2086 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2087 __page_frag_cache_drain(rx_buffer->page,
2088 rx_buffer->pagecnt_bias);
2089 /* clear contents of buffer_info */
2090 rx_buffer->page = NULL;
2095 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2096 * @rx_ring: Rx descriptor ring to transact packets on
2097 * @xdp_res: Result of the XDP program
2098 * @xdp: xdp_buff pointing to the data
2100 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2101 struct xdp_buff *xdp)
2103 u32 next = rx_ring->next_to_clean;
2104 struct i40e_rx_buffer *rx_buffer;
2109 rx_buffer = i40e_rx_bi(rx_ring, next);
2110 if (++next == rx_ring->count)
2113 if (!rx_buffer->page)
2116 if (xdp_res == I40E_XDP_CONSUMED)
2117 rx_buffer->pagecnt_bias++;
2119 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2121 /* EOP buffer will be put in i40e_clean_rx_irq() */
2122 if (next == rx_ring->next_to_process)
2125 i40e_put_rx_buffer(rx_ring, rx_buffer);
2130 * i40e_construct_skb - Allocate skb and populate it
2131 * @rx_ring: rx descriptor ring to transact packets on
2132 * @xdp: xdp_buff pointing to the data
2133 * @nr_frags: number of buffers for the packet
2135 * This function allocates an skb. It then populates it with the page
2136 * data from the current receive descriptor, taking care to set up the
2139 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2140 struct xdp_buff *xdp,
2143 unsigned int size = xdp->data_end - xdp->data;
2144 struct i40e_rx_buffer *rx_buffer;
2145 unsigned int headlen;
2146 struct sk_buff *skb;
2148 /* prefetch first cache line of first page */
2149 net_prefetch(xdp->data);
2151 /* Note, we get here by enabling legacy-rx via:
2153 * ethtool --set-priv-flags <dev> legacy-rx on
2155 * In this mode, we currently get 0 extra XDP headroom as
2156 * opposed to having legacy-rx off, where we process XDP
2157 * packets going to stack via i40e_build_skb(). The latter
2158 * provides us currently with 192 bytes of headroom.
2160 * For i40e_construct_skb() mode it means that the
2161 * xdp->data_meta will always point to xdp->data, since
2162 * the helper cannot expand the head. Should this ever
2163 * change in future for legacy-rx mode on, then lets also
2164 * add xdp->data_meta handling here.
2167 /* allocate a skb to store the frags */
2168 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2170 GFP_ATOMIC | __GFP_NOWARN);
2174 /* Determine available headroom for copy */
2176 if (headlen > I40E_RX_HDR_SIZE)
2177 headlen = eth_get_headlen(skb->dev, xdp->data,
2180 /* align pull length to size of long to optimize memcpy performance */
2181 memcpy(__skb_put(skb, headlen), xdp->data,
2182 ALIGN(headlen, sizeof(long)));
2184 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2185 /* update all of the pointers */
2188 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2192 skb_add_rx_frag(skb, 0, rx_buffer->page,
2193 rx_buffer->page_offset + headlen,
2194 size, xdp->frame_sz);
2195 /* buffer is used by skb, update page_offset */
2196 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2198 /* buffer is unused, reset bias back to rx_buffer */
2199 rx_buffer->pagecnt_bias++;
2202 if (unlikely(xdp_buff_has_frags(xdp))) {
2203 struct skb_shared_info *sinfo, *skinfo = skb_shinfo(skb);
2205 sinfo = xdp_get_shared_info_from_buff(xdp);
2206 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2207 sizeof(skb_frag_t) * nr_frags);
2209 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2210 sinfo->xdp_frags_size,
2211 nr_frags * xdp->frame_sz,
2212 xdp_buff_is_frag_pfmemalloc(xdp));
2214 /* First buffer has already been processed, so bump ntc */
2215 if (++rx_ring->next_to_clean == rx_ring->count)
2216 rx_ring->next_to_clean = 0;
2218 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2225 * i40e_build_skb - Build skb around an existing buffer
2226 * @rx_ring: Rx descriptor ring to transact packets on
2227 * @xdp: xdp_buff pointing to the data
2228 * @nr_frags: number of buffers for the packet
2230 * This function builds an skb around an existing Rx buffer, taking care
2231 * to set up the skb correctly and avoid any memcpy overhead.
2233 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2234 struct xdp_buff *xdp,
2237 unsigned int metasize = xdp->data - xdp->data_meta;
2238 struct sk_buff *skb;
2240 /* Prefetch first cache line of first page. If xdp->data_meta
2241 * is unused, this points exactly as xdp->data, otherwise we
2242 * likely have a consumer accessing first few bytes of meta
2243 * data, and then actual data.
2245 net_prefetch(xdp->data_meta);
2247 /* build an skb around the page buffer */
2248 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2252 /* update pointers within the skb to store the data */
2253 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2254 __skb_put(skb, xdp->data_end - xdp->data);
2256 skb_metadata_set(skb, metasize);
2258 if (unlikely(xdp_buff_has_frags(xdp))) {
2259 struct skb_shared_info *sinfo;
2261 sinfo = xdp_get_shared_info_from_buff(xdp);
2262 xdp_update_skb_shared_info(skb, nr_frags,
2263 sinfo->xdp_frags_size,
2264 nr_frags * xdp->frame_sz,
2265 xdp_buff_is_frag_pfmemalloc(xdp));
2267 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2269 struct i40e_rx_buffer *rx_buffer;
2271 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2272 /* buffer is used by skb, update page_offset */
2273 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2280 * i40e_is_non_eop - process handling of non-EOP buffers
2281 * @rx_ring: Rx ring being processed
2282 * @rx_desc: Rx descriptor for current buffer
2284 * If the buffer is an EOP buffer, this function exits returning false,
2285 * otherwise return true indicating that this is in fact a non-EOP buffer.
2287 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2288 union i40e_rx_desc *rx_desc)
2290 /* if we are the last buffer then there is nothing else to do */
2291 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2292 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2295 rx_ring->rx_stats.non_eop_descs++;
2300 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2301 struct i40e_ring *xdp_ring);
2303 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2305 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2307 if (unlikely(!xdpf))
2308 return I40E_XDP_CONSUMED;
2310 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2314 * i40e_run_xdp - run an XDP program
2315 * @rx_ring: Rx ring being processed
2316 * @xdp: XDP buffer containing the frame
2317 * @xdp_prog: XDP program to run
2319 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2321 int err, result = I40E_XDP_PASS;
2322 struct i40e_ring *xdp_ring;
2328 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2330 act = bpf_prog_run_xdp(xdp_prog, xdp);
2335 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2336 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2337 if (result == I40E_XDP_CONSUMED)
2341 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2344 result = I40E_XDP_REDIR;
2347 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2351 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2352 fallthrough; /* handle aborts by dropping packet */
2354 result = I40E_XDP_CONSUMED;
2362 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2363 * @xdp_ring: XDP Tx ring
2365 * This function updates the XDP Tx ring tail register.
2367 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2369 /* Force memory writes to complete before letting h/w
2370 * know there are new descriptors to fetch.
2373 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2377 * i40e_update_rx_stats - Update Rx ring statistics
2378 * @rx_ring: rx descriptor ring
2379 * @total_rx_bytes: number of bytes received
2380 * @total_rx_packets: number of packets received
2382 * This function updates the Rx ring statistics.
2384 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2385 unsigned int total_rx_bytes,
2386 unsigned int total_rx_packets)
2388 u64_stats_update_begin(&rx_ring->syncp);
2389 rx_ring->stats.packets += total_rx_packets;
2390 rx_ring->stats.bytes += total_rx_bytes;
2391 u64_stats_update_end(&rx_ring->syncp);
2392 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2393 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2397 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2399 * @xdp_res: Result of the receive batch
2401 * This function bumps XDP Tx tail and/or flush redirect map, and
2402 * should be called when a batch of packets has been processed in the
2405 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2407 if (xdp_res & I40E_XDP_REDIR)
2410 if (xdp_res & I40E_XDP_TX) {
2411 struct i40e_ring *xdp_ring =
2412 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2414 i40e_xdp_ring_update_tail(xdp_ring);
2419 * i40e_inc_ntp: Advance the next_to_process index
2422 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2424 u32 ntp = rx_ring->next_to_process + 1;
2426 ntp = (ntp < rx_ring->count) ? ntp : 0;
2427 rx_ring->next_to_process = ntp;
2428 prefetch(I40E_RX_DESC(rx_ring, ntp));
2432 * i40e_add_xdp_frag: Add a frag to xdp_buff
2433 * @xdp: xdp_buff pointing to the data
2434 * @nr_frags: return number of buffers for the packet
2435 * @rx_buffer: rx_buffer holding data of the current frag
2436 * @size: size of data of current frag
2438 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2439 struct i40e_rx_buffer *rx_buffer, u32 size)
2441 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2443 if (!xdp_buff_has_frags(xdp)) {
2444 sinfo->nr_frags = 0;
2445 sinfo->xdp_frags_size = 0;
2446 xdp_buff_set_frags_flag(xdp);
2447 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2448 /* Overflowing packet: All frags need to be dropped */
2452 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2453 rx_buffer->page_offset, size);
2455 sinfo->xdp_frags_size += size;
2457 if (page_is_pfmemalloc(rx_buffer->page))
2458 xdp_buff_set_frag_pfmemalloc(xdp);
2459 *nr_frags = sinfo->nr_frags;
2465 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @xdp: xdp_buff pointing to the data
2468 * @rx_buffer: rx_buffer of eop desc
2470 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2471 struct xdp_buff *xdp,
2472 struct i40e_rx_buffer *rx_buffer)
2474 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2475 i40e_put_rx_buffer(rx_ring, rx_buffer);
2476 rx_ring->next_to_clean = rx_ring->next_to_process;
2481 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2482 * @rx_ring: rx descriptor ring to transact packets on
2483 * @budget: Total limit on number of packets to process
2484 * @rx_cleaned: Out parameter of the number of packets processed
2486 * This function provides a "bounce buffer" approach to Rx interrupt
2487 * processing. The advantage to this is that on systems that have
2488 * expensive overhead for IOMMU access this provides a means of avoiding
2489 * it by maintaining the mapping of the page to the system.
2491 * Returns amount of work completed
2493 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2494 unsigned int *rx_cleaned)
2496 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2497 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2498 u16 clean_threshold = rx_ring->count / 2;
2499 unsigned int offset = rx_ring->rx_offset;
2500 struct xdp_buff *xdp = &rx_ring->xdp;
2501 unsigned int xdp_xmit = 0;
2502 struct bpf_prog *xdp_prog;
2503 bool failure = false;
2506 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2508 while (likely(total_rx_packets < (unsigned int)budget)) {
2509 u16 ntp = rx_ring->next_to_process;
2510 struct i40e_rx_buffer *rx_buffer;
2511 union i40e_rx_desc *rx_desc;
2512 struct sk_buff *skb;
2518 /* return some buffers to hardware, one at a time is too slow */
2519 if (cleaned_count >= clean_threshold) {
2520 failure = failure ||
2521 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2525 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2527 /* status_error_len will always be zero for unused descriptors
2528 * because it's cleared in cleanup, and overlaps with hdr_addr
2529 * which is always zero because packet split isn't used, if the
2530 * hardware wrote DD then the length will be non-zero
2532 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2534 /* This memory barrier is needed to keep us from reading
2535 * any other fields out of the rx_desc until we have
2536 * verified the descriptor has been written back.
2540 if (i40e_rx_is_programming_status(qword)) {
2541 i40e_clean_programming_status(rx_ring,
2542 rx_desc->raw.qword[0],
2544 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2545 i40e_inc_ntp(rx_ring);
2546 i40e_reuse_rx_page(rx_ring, rx_buffer);
2547 /* Update ntc and bump cleaned count if not in the
2548 * middle of mb packet.
2550 if (rx_ring->next_to_clean == ntp) {
2551 rx_ring->next_to_clean =
2552 rx_ring->next_to_process;
2558 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2559 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2563 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2564 /* retrieve a buffer from the ring */
2565 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2567 neop = i40e_is_non_eop(rx_ring, rx_desc);
2568 i40e_inc_ntp(rx_ring);
2571 unsigned char *hard_start;
2573 hard_start = page_address(rx_buffer->page) +
2574 rx_buffer->page_offset - offset;
2575 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2576 #if (PAGE_SIZE > 4096)
2577 /* At larger PAGE_SIZE, frame_sz depend on len size */
2578 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2580 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2582 /* Overflowing packet: Drop all frags on EOP */
2583 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2590 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2593 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2595 if (unlikely(xdp_buff_has_frags(xdp))) {
2596 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2597 size = xdp_get_buff_len(xdp);
2598 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2599 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2601 rx_buffer->pagecnt_bias++;
2603 total_rx_bytes += size;
2605 if (ring_uses_build_skb(rx_ring))
2606 skb = i40e_build_skb(rx_ring, xdp, nfrags);
2608 skb = i40e_construct_skb(rx_ring, xdp, nfrags);
2610 /* drop if we failed to retrieve a buffer */
2612 rx_ring->rx_stats.alloc_buff_failed++;
2613 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2617 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2620 /* probably a little skewed due to removing CRC */
2621 total_rx_bytes += skb->len;
2623 /* populate checksum, VLAN, and protocol */
2624 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2626 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2627 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2630 /* update budget accounting */
2633 cleaned_count += nfrags + 1;
2634 i40e_put_rx_buffer(rx_ring, rx_buffer);
2635 rx_ring->next_to_clean = rx_ring->next_to_process;
2640 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2642 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2644 *rx_cleaned = total_rx_packets;
2646 /* guarantee a trip back through this routine if there was a failure */
2647 return failure ? budget : (int)total_rx_packets;
2650 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2654 /* We don't bother with setting the CLEARPBA bit as the data sheet
2655 * points out doing so is "meaningless since it was already
2656 * auto-cleared". The auto-clearing happens when the interrupt is
2659 * Hardware errata 28 for also indicates that writing to a
2660 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2661 * an event in the PBA anyway so we need to rely on the automask
2662 * to hold pending events for us until the interrupt is re-enabled
2664 * The itr value is reported in microseconds, and the register
2665 * value is recorded in 2 microsecond units. For this reason we
2666 * only need to shift by the interval shift - 1 instead of the
2669 itr &= I40E_ITR_MASK;
2671 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2672 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2673 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2678 /* a small macro to shorten up some long lines */
2679 #define INTREG I40E_PFINT_DYN_CTLN
2681 /* The act of updating the ITR will cause it to immediately trigger. In order
2682 * to prevent this from throwing off adaptive update statistics we defer the
2683 * update so that it can only happen so often. So after either Tx or Rx are
2684 * updated we make the adaptive scheme wait until either the ITR completely
2685 * expires via the next_update expiration or we have been through at least
2688 #define ITR_COUNTDOWN_START 3
2691 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2692 * @vsi: the VSI we care about
2693 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2696 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2697 struct i40e_q_vector *q_vector)
2699 struct i40e_hw *hw = &vsi->back->hw;
2702 /* If we don't have MSIX, then we only need to re-enable icr0 */
2703 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2704 i40e_irq_dynamic_enable_icr0(vsi->back);
2708 /* These will do nothing if dynamic updates are not enabled */
2709 i40e_update_itr(q_vector, &q_vector->tx);
2710 i40e_update_itr(q_vector, &q_vector->rx);
2712 /* This block of logic allows us to get away with only updating
2713 * one ITR value with each interrupt. The idea is to perform a
2714 * pseudo-lazy update with the following criteria.
2716 * 1. Rx is given higher priority than Tx if both are in same state
2717 * 2. If we must reduce an ITR that is given highest priority.
2718 * 3. We then give priority to increasing ITR based on amount.
2720 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2721 /* Rx ITR needs to be reduced, this is highest priority */
2722 intval = i40e_buildreg_itr(I40E_RX_ITR,
2723 q_vector->rx.target_itr);
2724 q_vector->rx.current_itr = q_vector->rx.target_itr;
2725 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2726 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2727 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2728 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2729 /* Tx ITR needs to be reduced, this is second priority
2730 * Tx ITR needs to be increased more than Rx, fourth priority
2732 intval = i40e_buildreg_itr(I40E_TX_ITR,
2733 q_vector->tx.target_itr);
2734 q_vector->tx.current_itr = q_vector->tx.target_itr;
2735 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2737 /* Rx ITR needs to be increased, third priority */
2738 intval = i40e_buildreg_itr(I40E_RX_ITR,
2739 q_vector->rx.target_itr);
2740 q_vector->rx.current_itr = q_vector->rx.target_itr;
2741 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2743 /* No ITR update, lowest priority */
2744 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2745 if (q_vector->itr_countdown)
2746 q_vector->itr_countdown--;
2749 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2750 wr32(hw, INTREG(q_vector->reg_idx), intval);
2754 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2755 * @napi: napi struct with our devices info in it
2756 * @budget: amount of work driver is allowed to do this pass, in packets
2758 * This function will clean all queues associated with a q_vector.
2760 * Returns the amount of work done
2762 int i40e_napi_poll(struct napi_struct *napi, int budget)
2764 struct i40e_q_vector *q_vector =
2765 container_of(napi, struct i40e_q_vector, napi);
2766 struct i40e_vsi *vsi = q_vector->vsi;
2767 struct i40e_ring *ring;
2768 bool tx_clean_complete = true;
2769 bool rx_clean_complete = true;
2770 unsigned int tx_cleaned = 0;
2771 unsigned int rx_cleaned = 0;
2772 bool clean_complete = true;
2773 bool arm_wb = false;
2774 int budget_per_ring;
2777 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2778 napi_complete(napi);
2782 /* Since the actual Tx work is minimal, we can give the Tx a larger
2783 * budget and be more aggressive about cleaning up the Tx descriptors.
2785 i40e_for_each_ring(ring, q_vector->tx) {
2786 bool wd = ring->xsk_pool ?
2787 i40e_clean_xdp_tx_irq(vsi, ring) :
2788 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2791 clean_complete = tx_clean_complete = false;
2794 arm_wb |= ring->arm_wb;
2795 ring->arm_wb = false;
2798 /* Handle case where we are called by netpoll with a budget of 0 */
2802 /* normally we have 1 Rx ring per q_vector */
2803 if (unlikely(q_vector->num_ringpairs > 1))
2804 /* We attempt to distribute budget to each Rx queue fairly, but
2805 * don't allow the budget to go below 1 because that would exit
2808 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2810 /* Max of 1 Rx ring in this q_vector so give it the budget */
2811 budget_per_ring = budget;
2813 i40e_for_each_ring(ring, q_vector->rx) {
2814 int cleaned = ring->xsk_pool ?
2815 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2816 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2818 work_done += cleaned;
2819 /* if we clean as many as budgeted, we must not be done */
2820 if (cleaned >= budget_per_ring)
2821 clean_complete = rx_clean_complete = false;
2824 if (!i40e_enabled_xdp_vsi(vsi))
2825 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2826 tx_cleaned, rx_clean_complete, tx_clean_complete);
2828 /* If work not completed, return budget and polling will return */
2829 if (!clean_complete) {
2830 int cpu_id = smp_processor_id();
2832 /* It is possible that the interrupt affinity has changed but,
2833 * if the cpu is pegged at 100%, polling will never exit while
2834 * traffic continues and the interrupt will be stuck on this
2835 * cpu. We check to make sure affinity is correct before we
2836 * continue to poll, otherwise we must stop polling so the
2837 * interrupt can move to the correct cpu.
2839 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2840 /* Tell napi that we are done polling */
2841 napi_complete_done(napi, work_done);
2843 /* Force an interrupt */
2844 i40e_force_wb(vsi, q_vector);
2846 /* Return budget-1 so that polling stops */
2851 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2852 i40e_enable_wb_on_itr(vsi, q_vector);
2857 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2858 q_vector->arm_wb_state = false;
2860 /* Exit the polling mode, but don't re-enable interrupts if stack might
2861 * poll us due to busy-polling
2863 if (likely(napi_complete_done(napi, work_done)))
2864 i40e_update_enable_itr(vsi, q_vector);
2866 return min(work_done, budget - 1);
2870 * i40e_atr - Add a Flow Director ATR filter
2871 * @tx_ring: ring to add programming descriptor to
2873 * @tx_flags: send tx flags
2875 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2878 struct i40e_filter_program_desc *fdir_desc;
2879 struct i40e_pf *pf = tx_ring->vsi->back;
2881 unsigned char *network;
2883 struct ipv6hdr *ipv6;
2887 u32 flex_ptype, dtype_cmd;
2891 /* make sure ATR is enabled */
2892 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2895 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2898 /* if sampling is disabled do nothing */
2899 if (!tx_ring->atr_sample_rate)
2902 /* Currently only IPv4/IPv6 with TCP is supported */
2903 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2906 /* snag network header to get L4 type and address */
2907 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2908 skb_inner_network_header(skb) : skb_network_header(skb);
2910 /* Note: tx_flags gets modified to reflect inner protocols in
2911 * tx_enable_csum function if encap is enabled.
2913 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2914 /* access ihl as u8 to avoid unaligned access on ia64 */
2915 hlen = (hdr.network[0] & 0x0F) << 2;
2916 l4_proto = hdr.ipv4->protocol;
2918 /* find the start of the innermost ipv6 header */
2919 unsigned int inner_hlen = hdr.network - skb->data;
2920 unsigned int h_offset = inner_hlen;
2922 /* this function updates h_offset to the end of the header */
2924 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2925 /* hlen will contain our best estimate of the tcp header */
2926 hlen = h_offset - inner_hlen;
2929 if (l4_proto != IPPROTO_TCP)
2932 th = (struct tcphdr *)(hdr.network + hlen);
2934 /* Due to lack of space, no more new filters can be programmed */
2935 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2937 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2938 /* HW ATR eviction will take care of removing filters on FIN
2941 if (th->fin || th->rst)
2945 tx_ring->atr_count++;
2947 /* sample on all syn/fin/rst packets or once every atr sample rate */
2951 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2954 tx_ring->atr_count = 0;
2956 /* grab the next descriptor */
2957 i = tx_ring->next_to_use;
2958 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2961 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2963 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2964 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2965 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2966 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2967 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2968 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2969 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2971 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2973 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2975 dtype_cmd |= (th->fin || th->rst) ?
2976 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2977 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2978 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2979 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2981 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2982 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2984 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2985 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2987 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2988 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2990 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2991 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2992 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2995 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2996 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2997 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2999 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
3000 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3002 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3003 fdir_desc->rsvd = cpu_to_le32(0);
3004 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3005 fdir_desc->fd_id = cpu_to_le32(0);
3009 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3011 * @tx_ring: ring to send buffer on
3012 * @flags: the tx flags to be set
3014 * Checks the skb and set up correspondingly several generic transmit flags
3015 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3017 * Returns error code indicate the frame should be dropped upon error and the
3018 * otherwise returns 0 to indicate the flags has been set properly.
3020 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3021 struct i40e_ring *tx_ring,
3024 __be16 protocol = skb->protocol;
3027 if (protocol == htons(ETH_P_8021Q) &&
3028 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3029 /* When HW VLAN acceleration is turned off by the user the
3030 * stack sets the protocol to 8021q so that the driver
3031 * can take any steps required to support the SW only
3032 * VLAN handling. In our case the driver doesn't need
3033 * to take any further steps so just set the protocol
3034 * to the encapsulated ethertype.
3036 skb->protocol = vlan_get_protocol(skb);
3040 /* if we have a HW VLAN tag being added, default to the HW one */
3041 if (skb_vlan_tag_present(skb)) {
3042 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3043 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3044 /* else if it is a SW VLAN, check the next protocol and store the tag */
3045 } else if (protocol == htons(ETH_P_8021Q)) {
3046 struct vlan_hdr *vhdr, _vhdr;
3048 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3052 protocol = vhdr->h_vlan_encapsulated_proto;
3053 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3054 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3057 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3060 /* Insert 802.1p priority into VLAN header */
3061 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3062 (skb->priority != TC_PRIO_CONTROL)) {
3063 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3064 tx_flags |= (skb->priority & 0x7) <<
3065 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3066 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3067 struct vlan_ethhdr *vhdr;
3070 rc = skb_cow_head(skb, 0);
3073 vhdr = skb_vlan_eth_hdr(skb);
3074 vhdr->h_vlan_TCI = htons(tx_flags >>
3075 I40E_TX_FLAGS_VLAN_SHIFT);
3077 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3087 * i40e_tso - set up the tso context descriptor
3088 * @first: pointer to first Tx buffer for xmit
3089 * @hdr_len: ptr to the size of the packet header
3090 * @cd_type_cmd_tso_mss: Quad Word 1
3092 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3094 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3095 u64 *cd_type_cmd_tso_mss)
3097 struct sk_buff *skb = first->skb;
3098 u64 cd_cmd, cd_tso_len, cd_mss;
3110 u32 paylen, l4_offset;
3114 if (skb->ip_summed != CHECKSUM_PARTIAL)
3117 if (!skb_is_gso(skb))
3120 err = skb_cow_head(skb, 0);
3124 protocol = vlan_get_protocol(skb);
3126 if (eth_p_mpls(protocol))
3127 ip.hdr = skb_inner_network_header(skb);
3129 ip.hdr = skb_network_header(skb);
3130 l4.hdr = skb_checksum_start(skb);
3132 /* initialize outer IP header fields */
3133 if (ip.v4->version == 4) {
3137 first->tx_flags |= I40E_TX_FLAGS_TSO;
3139 ip.v6->payload_len = 0;
3140 first->tx_flags |= I40E_TX_FLAGS_TSO;
3143 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3147 SKB_GSO_UDP_TUNNEL |
3148 SKB_GSO_UDP_TUNNEL_CSUM)) {
3149 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3153 /* determine offset of outer transport header */
3154 l4_offset = l4.hdr - skb->data;
3156 /* remove payload length from outer checksum */
3157 paylen = skb->len - l4_offset;
3158 csum_replace_by_diff(&l4.udp->check,
3159 (__force __wsum)htonl(paylen));
3162 /* reset pointers to inner headers */
3163 ip.hdr = skb_inner_network_header(skb);
3164 l4.hdr = skb_inner_transport_header(skb);
3166 /* initialize inner IP header fields */
3167 if (ip.v4->version == 4) {
3171 ip.v6->payload_len = 0;
3175 /* determine offset of inner transport header */
3176 l4_offset = l4.hdr - skb->data;
3178 /* remove payload length from inner checksum */
3179 paylen = skb->len - l4_offset;
3181 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3182 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3183 /* compute length of segmentation header */
3184 *hdr_len = sizeof(*l4.udp) + l4_offset;
3186 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3187 /* compute length of segmentation header */
3188 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3191 /* pull values out of skb_shinfo */
3192 gso_size = skb_shinfo(skb)->gso_size;
3194 /* update GSO size and bytecount with header size */
3195 first->gso_segs = skb_shinfo(skb)->gso_segs;
3196 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3198 /* find the field values */
3199 cd_cmd = I40E_TX_CTX_DESC_TSO;
3200 cd_tso_len = skb->len - *hdr_len;
3202 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3203 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3204 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3209 * i40e_tsyn - set up the tsyn context descriptor
3210 * @tx_ring: ptr to the ring to send
3211 * @skb: ptr to the skb we're sending
3212 * @tx_flags: the collected send information
3213 * @cd_type_cmd_tso_mss: Quad Word 1
3215 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3217 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3218 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3222 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3225 /* Tx timestamps cannot be sampled when doing TSO */
3226 if (tx_flags & I40E_TX_FLAGS_TSO)
3229 /* only timestamp the outbound packet if the user has requested it and
3230 * we are not already transmitting a packet to be timestamped
3232 pf = i40e_netdev_to_pf(tx_ring->netdev);
3233 if (!(pf->flags & I40E_FLAG_PTP))
3237 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3238 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3239 pf->ptp_tx_start = jiffies;
3240 pf->ptp_tx_skb = skb_get(skb);
3242 pf->tx_hwtstamp_skipped++;
3246 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3247 I40E_TXD_CTX_QW1_CMD_SHIFT;
3253 * i40e_tx_enable_csum - Enable Tx checksum offloads
3255 * @tx_flags: pointer to Tx flags currently set
3256 * @td_cmd: Tx descriptor command bits to set
3257 * @td_offset: Tx descriptor header offsets to set
3258 * @tx_ring: Tx descriptor ring
3259 * @cd_tunneling: ptr to context desc bits
3261 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3262 u32 *td_cmd, u32 *td_offset,
3263 struct i40e_ring *tx_ring,
3276 unsigned char *exthdr;
3277 u32 offset, cmd = 0;
3282 if (skb->ip_summed != CHECKSUM_PARTIAL)
3285 protocol = vlan_get_protocol(skb);
3287 if (eth_p_mpls(protocol)) {
3288 ip.hdr = skb_inner_network_header(skb);
3289 l4.hdr = skb_checksum_start(skb);
3291 ip.hdr = skb_network_header(skb);
3292 l4.hdr = skb_transport_header(skb);
3295 /* set the tx_flags to indicate the IP protocol type. this is
3296 * required so that checksum header computation below is accurate.
3298 if (ip.v4->version == 4)
3299 *tx_flags |= I40E_TX_FLAGS_IPV4;
3301 *tx_flags |= I40E_TX_FLAGS_IPV6;
3303 /* compute outer L2 header size */
3304 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3306 if (skb->encapsulation) {
3308 /* define outer network header type */
3309 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3310 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3311 I40E_TX_CTX_EXT_IP_IPV4 :
3312 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3314 l4_proto = ip.v4->protocol;
3315 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3318 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3320 exthdr = ip.hdr + sizeof(*ip.v6);
3321 l4_proto = ip.v6->nexthdr;
3322 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3323 &l4_proto, &frag_off);
3328 /* define outer transport */
3331 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3332 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3335 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3336 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3340 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3341 l4.hdr = skb_inner_network_header(skb);
3344 if (*tx_flags & I40E_TX_FLAGS_TSO)
3347 skb_checksum_help(skb);
3351 /* compute outer L3 header size */
3352 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3353 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3355 /* switch IP header pointer from outer to inner header */
3356 ip.hdr = skb_inner_network_header(skb);
3358 /* compute tunnel header size */
3359 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3360 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3362 /* indicate if we need to offload outer UDP header */
3363 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3364 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3365 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3366 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3368 /* record tunnel offload values */
3369 *cd_tunneling |= tunnel;
3371 /* switch L4 header pointer from outer to inner */
3372 l4.hdr = skb_inner_transport_header(skb);
3375 /* reset type as we transition from outer to inner headers */
3376 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3377 if (ip.v4->version == 4)
3378 *tx_flags |= I40E_TX_FLAGS_IPV4;
3379 if (ip.v6->version == 6)
3380 *tx_flags |= I40E_TX_FLAGS_IPV6;
3383 /* Enable IP checksum offloads */
3384 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3385 l4_proto = ip.v4->protocol;
3386 /* the stack computes the IP header already, the only time we
3387 * need the hardware to recompute it is in the case of TSO.
3389 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3390 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3391 I40E_TX_DESC_CMD_IIPT_IPV4;
3392 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3393 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3395 exthdr = ip.hdr + sizeof(*ip.v6);
3396 l4_proto = ip.v6->nexthdr;
3397 if (l4.hdr != exthdr)
3398 ipv6_skip_exthdr(skb, exthdr - skb->data,
3399 &l4_proto, &frag_off);
3402 /* compute inner L3 header size */
3403 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3405 /* Enable L4 checksum offloads */
3408 /* enable checksum offloads */
3409 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3410 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3413 /* enable SCTP checksum offload */
3414 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3415 offset |= (sizeof(struct sctphdr) >> 2) <<
3416 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3419 /* enable UDP checksum offload */
3420 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3421 offset |= (sizeof(struct udphdr) >> 2) <<
3422 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3425 if (*tx_flags & I40E_TX_FLAGS_TSO)
3427 skb_checksum_help(skb);
3432 *td_offset |= offset;
3438 * i40e_create_tx_ctx - Build the Tx context descriptor
3439 * @tx_ring: ring to create the descriptor on
3440 * @cd_type_cmd_tso_mss: Quad Word 1
3441 * @cd_tunneling: Quad Word 0 - bits 0-31
3442 * @cd_l2tag2: Quad Word 0 - bits 32-63
3444 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3445 const u64 cd_type_cmd_tso_mss,
3446 const u32 cd_tunneling, const u32 cd_l2tag2)
3448 struct i40e_tx_context_desc *context_desc;
3449 int i = tx_ring->next_to_use;
3451 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3452 !cd_tunneling && !cd_l2tag2)
3455 /* grab the next descriptor */
3456 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3459 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3461 /* cpu_to_le32 and assign to struct fields */
3462 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3463 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3464 context_desc->rsvd = cpu_to_le16(0);
3465 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3469 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3470 * @tx_ring: the ring to be checked
3471 * @size: the size buffer we want to assure is available
3473 * Returns -EBUSY if a stop is needed, else 0
3475 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3477 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3478 /* Memory barrier before checking head and tail */
3481 ++tx_ring->tx_stats.tx_stopped;
3483 /* Check again in a case another CPU has just made room available. */
3484 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3487 /* A reprieve! - use start_queue because it doesn't call schedule */
3488 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3489 ++tx_ring->tx_stats.restart_queue;
3494 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3497 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3498 * and so we need to figure out the cases where we need to linearize the skb.
3500 * For TSO we need to count the TSO header and segment payload separately.
3501 * As such we need to check cases where we have 7 fragments or more as we
3502 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3503 * the segment payload in the first descriptor, and another 7 for the
3506 bool __i40e_chk_linearize(struct sk_buff *skb)
3508 const skb_frag_t *frag, *stale;
3511 /* no need to check if number of frags is less than 7 */
3512 nr_frags = skb_shinfo(skb)->nr_frags;
3513 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3516 /* We need to walk through the list and validate that each group
3517 * of 6 fragments totals at least gso_size.
3519 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3520 frag = &skb_shinfo(skb)->frags[0];
3522 /* Initialize size to the negative value of gso_size minus 1. We
3523 * use this as the worst case scenerio in which the frag ahead
3524 * of us only provides one byte which is why we are limited to 6
3525 * descriptors for a single transmit as the header and previous
3526 * fragment are already consuming 2 descriptors.
3528 sum = 1 - skb_shinfo(skb)->gso_size;
3530 /* Add size of frags 0 through 4 to create our initial sum */
3531 sum += skb_frag_size(frag++);
3532 sum += skb_frag_size(frag++);
3533 sum += skb_frag_size(frag++);
3534 sum += skb_frag_size(frag++);
3535 sum += skb_frag_size(frag++);
3537 /* Walk through fragments adding latest fragment, testing it, and
3538 * then removing stale fragments from the sum.
3540 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3541 int stale_size = skb_frag_size(stale);
3543 sum += skb_frag_size(frag++);
3545 /* The stale fragment may present us with a smaller
3546 * descriptor than the actual fragment size. To account
3547 * for that we need to remove all the data on the front and
3548 * figure out what the remainder would be in the last
3549 * descriptor associated with the fragment.
3551 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3552 int align_pad = -(skb_frag_off(stale)) &
3553 (I40E_MAX_READ_REQ_SIZE - 1);
3556 stale_size -= align_pad;
3559 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3560 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3561 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3564 /* if sum is negative we failed to make sufficient progress */
3578 * i40e_tx_map - Build the Tx descriptor
3579 * @tx_ring: ring to send buffer on
3581 * @first: first buffer info buffer to use
3582 * @tx_flags: collected send information
3583 * @hdr_len: size of the packet header
3584 * @td_cmd: the command field in the descriptor
3585 * @td_offset: offset for checksum or crc
3587 * Returns 0 on success, -1 on failure to DMA
3589 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3590 struct i40e_tx_buffer *first, u32 tx_flags,
3591 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3593 unsigned int data_len = skb->data_len;
3594 unsigned int size = skb_headlen(skb);
3596 struct i40e_tx_buffer *tx_bi;
3597 struct i40e_tx_desc *tx_desc;
3598 u16 i = tx_ring->next_to_use;
3603 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3604 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3605 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3606 I40E_TX_FLAGS_VLAN_SHIFT;
3609 first->tx_flags = tx_flags;
3611 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3613 tx_desc = I40E_TX_DESC(tx_ring, i);
3616 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3617 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3619 if (dma_mapping_error(tx_ring->dev, dma))
3622 /* record length, and DMA address */
3623 dma_unmap_len_set(tx_bi, len, size);
3624 dma_unmap_addr_set(tx_bi, dma, dma);
3626 /* align size to end of page */
3627 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3628 tx_desc->buffer_addr = cpu_to_le64(dma);
3630 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3631 tx_desc->cmd_type_offset_bsz =
3632 build_ctob(td_cmd, td_offset,
3639 if (i == tx_ring->count) {
3640 tx_desc = I40E_TX_DESC(tx_ring, 0);
3647 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3648 tx_desc->buffer_addr = cpu_to_le64(dma);
3651 if (likely(!data_len))
3654 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3661 if (i == tx_ring->count) {
3662 tx_desc = I40E_TX_DESC(tx_ring, 0);
3666 size = skb_frag_size(frag);
3669 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3672 tx_bi = &tx_ring->tx_bi[i];
3675 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3678 if (i == tx_ring->count)
3681 tx_ring->next_to_use = i;
3683 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3685 /* write last descriptor with EOP bit */
3686 td_cmd |= I40E_TX_DESC_CMD_EOP;
3688 /* We OR these values together to check both against 4 (WB_STRIDE)
3689 * below. This is safe since we don't re-use desc_count afterwards.
3691 desc_count |= ++tx_ring->packet_stride;
3693 if (desc_count >= WB_STRIDE) {
3694 /* write last descriptor with RS bit set */
3695 td_cmd |= I40E_TX_DESC_CMD_RS;
3696 tx_ring->packet_stride = 0;
3699 tx_desc->cmd_type_offset_bsz =
3700 build_ctob(td_cmd, td_offset, size, td_tag);
3702 skb_tx_timestamp(skb);
3704 /* Force memory writes to complete before letting h/w know there
3705 * are new descriptors to fetch.
3707 * We also use this memory barrier to make certain all of the
3708 * status bits have been updated before next_to_watch is written.
3712 /* set next_to_watch value indicating a packet is present */
3713 first->next_to_watch = tx_desc;
3715 /* notify HW of packet */
3716 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3717 writel(i, tx_ring->tail);
3723 dev_info(tx_ring->dev, "TX DMA map failed\n");
3725 /* clear dma mappings for failed tx_bi map */
3727 tx_bi = &tx_ring->tx_bi[i];
3728 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3736 tx_ring->next_to_use = i;
3741 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3742 const struct sk_buff *skb,
3745 u32 jhash_initval_salt = 0xd631614b;
3748 if (skb->sk && skb->sk->sk_hash)
3749 hash = skb->sk->sk_hash;
3751 hash = (__force u16)skb->protocol ^ skb->hash;
3753 hash = jhash_1word(hash, jhash_initval_salt);
3755 return (u16)(((u64)hash * num_tx_queues) >> 32);
3758 u16 i40e_lan_select_queue(struct net_device *netdev,
3759 struct sk_buff *skb,
3760 struct net_device __always_unused *sb_dev)
3762 struct i40e_netdev_priv *np = netdev_priv(netdev);
3763 struct i40e_vsi *vsi = np->vsi;
3771 /* is DCB enabled at all? */
3772 if (vsi->tc_config.numtc == 1 ||
3773 i40e_is_tc_mqprio_enabled(vsi->back))
3774 return netdev_pick_tx(netdev, skb, sb_dev);
3776 prio = skb->priority;
3777 hw = &vsi->back->hw;
3778 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3780 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3783 /* select a queue assigned for the given TC */
3784 qcount = vsi->tc_config.tc_info[tclass].qcount;
3785 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3787 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3788 return qoffset + hash;
3792 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3793 * @xdpf: data to transmit
3794 * @xdp_ring: XDP Tx ring
3796 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3797 struct i40e_ring *xdp_ring)
3799 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3800 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3801 u16 i = 0, index = xdp_ring->next_to_use;
3802 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3803 struct i40e_tx_buffer *tx_bi = tx_head;
3804 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3805 void *data = xdpf->data;
3806 u32 size = xdpf->len;
3808 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3809 xdp_ring->tx_stats.tx_busy++;
3810 return I40E_XDP_CONSUMED;
3813 tx_head->bytecount = xdp_get_frame_len(xdpf);
3814 tx_head->gso_segs = 1;
3815 tx_head->xdpf = xdpf;
3820 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3821 if (dma_mapping_error(xdp_ring->dev, dma))
3824 /* record length, and DMA address */
3825 dma_unmap_len_set(tx_bi, len, size);
3826 dma_unmap_addr_set(tx_bi, dma, dma);
3828 tx_desc->buffer_addr = cpu_to_le64(dma);
3829 tx_desc->cmd_type_offset_bsz =
3830 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3832 if (++index == xdp_ring->count)
3838 tx_bi = &xdp_ring->tx_bi[index];
3839 tx_desc = I40E_TX_DESC(xdp_ring, index);
3841 data = skb_frag_address(&sinfo->frags[i]);
3842 size = skb_frag_size(&sinfo->frags[i]);
3846 tx_desc->cmd_type_offset_bsz |=
3847 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3849 /* Make certain all of the status bits have been updated
3850 * before next_to_watch is written.
3854 xdp_ring->xdp_tx_active++;
3856 tx_head->next_to_watch = tx_desc;
3857 xdp_ring->next_to_use = index;
3863 tx_bi = &xdp_ring->tx_bi[index];
3864 if (dma_unmap_len(tx_bi, len))
3865 dma_unmap_page(xdp_ring->dev,
3866 dma_unmap_addr(tx_bi, dma),
3867 dma_unmap_len(tx_bi, len),
3869 dma_unmap_len_set(tx_bi, len, 0);
3870 if (tx_bi == tx_head)
3874 index += xdp_ring->count;
3878 return I40E_XDP_CONSUMED;
3882 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3884 * @tx_ring: ring to send buffer on
3886 * Returns NETDEV_TX_OK if sent, else an error code
3888 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3889 struct i40e_ring *tx_ring)
3891 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3892 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3893 struct i40e_tx_buffer *first;
3901 /* prefetch the data, we'll need it later */
3902 prefetch(skb->data);
3904 i40e_trace(xmit_frame_ring, skb, tx_ring);
3906 count = i40e_xmit_descriptor_count(skb);
3907 if (i40e_chk_linearize(skb, count)) {
3908 if (__skb_linearize(skb)) {
3909 dev_kfree_skb_any(skb);
3910 return NETDEV_TX_OK;
3912 count = i40e_txd_use_count(skb->len);
3913 tx_ring->tx_stats.tx_linearize++;
3916 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3917 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3918 * + 4 desc gap to avoid the cache line where head is,
3919 * + 1 desc for context descriptor,
3920 * otherwise try next time
3922 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3923 tx_ring->tx_stats.tx_busy++;
3924 return NETDEV_TX_BUSY;
3927 /* record the location of the first descriptor for this packet */
3928 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3930 first->bytecount = skb->len;
3931 first->gso_segs = 1;
3933 /* prepare the xmit flags */
3934 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3937 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3942 tx_flags |= I40E_TX_FLAGS_TSO;
3944 /* Always offload the checksum, since it's in the data descriptor */
3945 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3946 tx_ring, &cd_tunneling);
3950 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3953 tx_flags |= I40E_TX_FLAGS_TSYN;
3955 /* always enable CRC insertion offload */
3956 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3958 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3959 cd_tunneling, cd_l2tag2);
3961 /* Add Flow Director ATR if it's enabled.
3963 * NOTE: this must always be directly before the data descriptor.
3965 i40e_atr(tx_ring, skb, tx_flags);
3967 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3969 goto cleanup_tx_tstamp;
3971 return NETDEV_TX_OK;
3974 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3975 dev_kfree_skb_any(first->skb);
3978 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3979 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3981 dev_kfree_skb_any(pf->ptp_tx_skb);
3982 pf->ptp_tx_skb = NULL;
3983 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3986 return NETDEV_TX_OK;
3990 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3992 * @netdev: network interface device structure
3994 * Returns NETDEV_TX_OK if sent, else an error code
3996 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3998 struct i40e_netdev_priv *np = netdev_priv(netdev);
3999 struct i40e_vsi *vsi = np->vsi;
4000 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4002 /* hardware can't handle really short frames, hardware padding works
4005 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4006 return NETDEV_TX_OK;
4008 return i40e_xmit_frame_ring(skb, tx_ring);
4012 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4014 * @n: number of frames
4015 * @frames: array of XDP buffer pointers
4016 * @flags: XDP extra info
4018 * Returns number of frames successfully sent. Failed frames
4019 * will be free'ed by XDP core.
4021 * For error cases, a negative errno code is returned and no-frames
4022 * are transmitted (caller must handle freeing frames).
4024 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4027 struct i40e_netdev_priv *np = netdev_priv(dev);
4028 unsigned int queue_index = smp_processor_id();
4029 struct i40e_vsi *vsi = np->vsi;
4030 struct i40e_pf *pf = vsi->back;
4031 struct i40e_ring *xdp_ring;
4035 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4038 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4039 test_bit(__I40E_CONFIG_BUSY, pf->state))
4042 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4045 xdp_ring = vsi->xdp_rings[queue_index];
4047 for (i = 0; i < n; i++) {
4048 struct xdp_frame *xdpf = frames[i];
4051 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4052 if (err != I40E_XDP_TX)
4057 if (unlikely(flags & XDP_XMIT_FLUSH))
4058 i40e_xdp_ring_update_tail(xdp_ring);