Merge tag 'drm-misc-next-fixes-2018-04-04' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74         [board_pch_cnp]         = &e1000_pch_cnp_info,
75 };
76
77 struct e1000_reg_info {
78         u32 ofs;
79         char *name;
80 };
81
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83         /* General Registers */
84         {E1000_CTRL, "CTRL"},
85         {E1000_STATUS, "STATUS"},
86         {E1000_CTRL_EXT, "CTRL_EXT"},
87
88         /* Interrupt Registers */
89         {E1000_ICR, "ICR"},
90
91         /* Rx Registers */
92         {E1000_RCTL, "RCTL"},
93         {E1000_RDLEN(0), "RDLEN"},
94         {E1000_RDH(0), "RDH"},
95         {E1000_RDT(0), "RDT"},
96         {E1000_RDTR, "RDTR"},
97         {E1000_RXDCTL(0), "RXDCTL"},
98         {E1000_ERT, "ERT"},
99         {E1000_RDBAL(0), "RDBAL"},
100         {E1000_RDBAH(0), "RDBAH"},
101         {E1000_RDFH, "RDFH"},
102         {E1000_RDFT, "RDFT"},
103         {E1000_RDFHS, "RDFHS"},
104         {E1000_RDFTS, "RDFTS"},
105         {E1000_RDFPC, "RDFPC"},
106
107         /* Tx Registers */
108         {E1000_TCTL, "TCTL"},
109         {E1000_TDBAL(0), "TDBAL"},
110         {E1000_TDBAH(0), "TDBAH"},
111         {E1000_TDLEN(0), "TDLEN"},
112         {E1000_TDH(0), "TDH"},
113         {E1000_TDT(0), "TDT"},
114         {E1000_TIDV, "TIDV"},
115         {E1000_TXDCTL(0), "TXDCTL"},
116         {E1000_TADV, "TADV"},
117         {E1000_TARC(0), "TARC"},
118         {E1000_TDFH, "TDFH"},
119         {E1000_TDFT, "TDFT"},
120         {E1000_TDFHS, "TDFHS"},
121         {E1000_TDFTS, "TDFTS"},
122         {E1000_TDFPC, "TDFPC"},
123
124         /* List Terminator */
125         {0, NULL}
126 };
127
128 /**
129  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130  * @hw: pointer to the HW structure
131  *
132  * When updating the MAC CSR registers, the Manageability Engine (ME) could
133  * be accessing the registers at the same time.  Normally, this is handled in
134  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135  * accesses later than it should which could result in the register to have
136  * an incorrect value.  Workaround this by checking the FWSM register which
137  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138  * and try again a number of times.
139  **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143
144         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145                 udelay(50);
146
147         return i;
148 }
149
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153                 __ew32_prepare(hw);
154
155         writel(val, hw->hw_addr + reg);
156 }
157
158 /**
159  * e1000_regdump - register printout routine
160  * @hw: pointer to the HW structure
161  * @reginfo: pointer to the register info table
162  **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165         int n = 0;
166         char rname[16];
167         u32 regs[8];
168
169         switch (reginfo->ofs) {
170         case E1000_RXDCTL(0):
171                 for (n = 0; n < 2; n++)
172                         regs[n] = __er32(hw, E1000_RXDCTL(n));
173                 break;
174         case E1000_TXDCTL(0):
175                 for (n = 0; n < 2; n++)
176                         regs[n] = __er32(hw, E1000_TXDCTL(n));
177                 break;
178         case E1000_TARC(0):
179                 for (n = 0; n < 2; n++)
180                         regs[n] = __er32(hw, E1000_TARC(n));
181                 break;
182         default:
183                 pr_info("%-15s %08x\n",
184                         reginfo->name, __er32(hw, reginfo->ofs));
185                 return;
186         }
187
188         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193                                  struct e1000_buffer *bi)
194 {
195         int i;
196         struct e1000_ps_page *ps_page;
197
198         for (i = 0; i < adapter->rx_ps_pages; i++) {
199                 ps_page = &bi->ps_pages[i];
200
201                 if (ps_page->page) {
202                         pr_info("packet dump for ps_page %d:\n", i);
203                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204                                        16, 1, page_address(ps_page->page),
205                                        PAGE_SIZE, true);
206                 }
207         }
208 }
209
210 /**
211  * e1000e_dump - Print registers, Tx-ring and Rx-ring
212  * @adapter: board private structure
213  **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216         struct net_device *netdev = adapter->netdev;
217         struct e1000_hw *hw = &adapter->hw;
218         struct e1000_reg_info *reginfo;
219         struct e1000_ring *tx_ring = adapter->tx_ring;
220         struct e1000_tx_desc *tx_desc;
221         struct my_u0 {
222                 __le64 a;
223                 __le64 b;
224         } *u0;
225         struct e1000_buffer *buffer_info;
226         struct e1000_ring *rx_ring = adapter->rx_ring;
227         union e1000_rx_desc_packet_split *rx_desc_ps;
228         union e1000_rx_desc_extended *rx_desc;
229         struct my_u1 {
230                 __le64 a;
231                 __le64 b;
232                 __le64 c;
233                 __le64 d;
234         } *u1;
235         u32 staterr;
236         int i = 0;
237
238         if (!netif_msg_hw(adapter))
239                 return;
240
241         /* Print netdevice Info */
242         if (netdev) {
243                 dev_info(&adapter->pdev->dev, "Net device Info\n");
244                 pr_info("Device Name     state            trans_start\n");
245                 pr_info("%-15s %016lX %016lX\n", netdev->name,
246                         netdev->state, dev_trans_start(netdev));
247         }
248
249         /* Print Registers */
250         dev_info(&adapter->pdev->dev, "Register Dump\n");
251         pr_info(" Register Name   Value\n");
252         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253              reginfo->name; reginfo++) {
254                 e1000_regdump(hw, reginfo);
255         }
256
257         /* Print Tx Ring Summary */
258         if (!netdev || !netif_running(netdev))
259                 return;
260
261         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
263         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266                 (unsigned long long)buffer_info->dma,
267                 buffer_info->length,
268                 buffer_info->next_to_watch,
269                 (unsigned long long)buffer_info->time_stamp);
270
271         /* Print Tx Ring */
272         if (!netif_msg_tx_done(adapter))
273                 goto rx_ring_summary;
274
275         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276
277         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278          *
279          * Legacy Transmit Descriptor
280          *   +--------------------------------------------------------------+
281          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
282          *   +--------------------------------------------------------------+
283          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
284          *   +--------------------------------------------------------------+
285          *   63       48 47        36 35    32 31     24 23    16 15        0
286          *
287          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288          *   63      48 47    40 39       32 31             16 15    8 7      0
289          *   +----------------------------------------------------------------+
290          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
291          *   +----------------------------------------------------------------+
292          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
293          *   +----------------------------------------------------------------+
294          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
295          *
296          * Extended Data Descriptor (DTYP=0x1)
297          *   +----------------------------------------------------------------+
298          * 0 |                     Buffer Address [63:0]                      |
299          *   +----------------------------------------------------------------+
300          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
301          *   +----------------------------------------------------------------+
302          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
303          */
304         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
305         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
306         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
307         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308                 const char *next_desc;
309                 tx_desc = E1000_TX_DESC(*tx_ring, i);
310                 buffer_info = &tx_ring->buffer_info[i];
311                 u0 = (struct my_u0 *)tx_desc;
312                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313                         next_desc = " NTC/U";
314                 else if (i == tx_ring->next_to_use)
315                         next_desc = " NTU";
316                 else if (i == tx_ring->next_to_clean)
317                         next_desc = " NTC";
318                 else
319                         next_desc = "";
320                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
321                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323                         i,
324                         (unsigned long long)le64_to_cpu(u0->a),
325                         (unsigned long long)le64_to_cpu(u0->b),
326                         (unsigned long long)buffer_info->dma,
327                         buffer_info->length, buffer_info->next_to_watch,
328                         (unsigned long long)buffer_info->time_stamp,
329                         buffer_info->skb, next_desc);
330
331                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333                                        16, 1, buffer_info->skb->data,
334                                        buffer_info->skb->len, true);
335         }
336
337         /* Print Rx Ring Summary */
338 rx_ring_summary:
339         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340         pr_info("Queue [NTU] [NTC]\n");
341         pr_info(" %5d %5X %5X\n",
342                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
343
344         /* Print Rx Ring */
345         if (!netif_msg_rx_status(adapter))
346                 return;
347
348         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349         switch (adapter->rx_ps_pages) {
350         case 1:
351         case 2:
352         case 3:
353                 /* [Extended] Packet Split Receive Descriptor Format
354                  *
355                  *    +-----------------------------------------------------+
356                  *  0 |                Buffer Address 0 [63:0]              |
357                  *    +-----------------------------------------------------+
358                  *  8 |                Buffer Address 1 [63:0]              |
359                  *    +-----------------------------------------------------+
360                  * 16 |                Buffer Address 2 [63:0]              |
361                  *    +-----------------------------------------------------+
362                  * 24 |                Buffer Address 3 [63:0]              |
363                  *    +-----------------------------------------------------+
364                  */
365                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
366                 /* [Extended] Receive Descriptor (Write-Back) Format
367                  *
368                  *   63       48 47    32 31     13 12    8 7    4 3        0
369                  *   +------------------------------------------------------+
370                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
371                  *   | Checksum | Ident  |         | Queue |      |  Type   |
372                  *   +------------------------------------------------------+
373                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374                  *   +------------------------------------------------------+
375                  *   63       48 47    32 31            20 19               0
376                  */
377                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378                 for (i = 0; i < rx_ring->count; i++) {
379                         const char *next_desc;
380                         buffer_info = &rx_ring->buffer_info[i];
381                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382                         u1 = (struct my_u1 *)rx_desc_ps;
383                         staterr =
384                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385
386                         if (i == rx_ring->next_to_use)
387                                 next_desc = " NTU";
388                         else if (i == rx_ring->next_to_clean)
389                                 next_desc = " NTC";
390                         else
391                                 next_desc = "";
392
393                         if (staterr & E1000_RXD_STAT_DD) {
394                                 /* Descriptor Done */
395                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396                                         "RWB", i,
397                                         (unsigned long long)le64_to_cpu(u1->a),
398                                         (unsigned long long)le64_to_cpu(u1->b),
399                                         (unsigned long long)le64_to_cpu(u1->c),
400                                         (unsigned long long)le64_to_cpu(u1->d),
401                                         buffer_info->skb, next_desc);
402                         } else {
403                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
404                                         "R  ", i,
405                                         (unsigned long long)le64_to_cpu(u1->a),
406                                         (unsigned long long)le64_to_cpu(u1->b),
407                                         (unsigned long long)le64_to_cpu(u1->c),
408                                         (unsigned long long)le64_to_cpu(u1->d),
409                                         (unsigned long long)buffer_info->dma,
410                                         buffer_info->skb, next_desc);
411
412                                 if (netif_msg_pktdata(adapter))
413                                         e1000e_dump_ps_pages(adapter,
414                                                              buffer_info);
415                         }
416                 }
417                 break;
418         default:
419         case 0:
420                 /* Extended Receive Descriptor (Read) Format
421                  *
422                  *   +-----------------------------------------------------+
423                  * 0 |                Buffer Address [63:0]                |
424                  *   +-----------------------------------------------------+
425                  * 8 |                      Reserved                       |
426                  *   +-----------------------------------------------------+
427                  */
428                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
429                 /* Extended Receive Descriptor (Write-Back) Format
430                  *
431                  *   63       48 47    32 31    24 23            4 3        0
432                  *   +------------------------------------------------------+
433                  *   |     RSS Hash      |        |               |         |
434                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
435                  *   | Packet   | IP     |        |               |  Type   |
436                  *   | Checksum | Ident  |        |               |         |
437                  *   +------------------------------------------------------+
438                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439                  *   +------------------------------------------------------+
440                  *   63       48 47    32 31            20 19               0
441                  */
442                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
443
444                 for (i = 0; i < rx_ring->count; i++) {
445                         const char *next_desc;
446
447                         buffer_info = &rx_ring->buffer_info[i];
448                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449                         u1 = (struct my_u1 *)rx_desc;
450                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451
452                         if (i == rx_ring->next_to_use)
453                                 next_desc = " NTU";
454                         else if (i == rx_ring->next_to_clean)
455                                 next_desc = " NTC";
456                         else
457                                 next_desc = "";
458
459                         if (staterr & E1000_RXD_STAT_DD) {
460                                 /* Descriptor Done */
461                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
462                                         "RWB", i,
463                                         (unsigned long long)le64_to_cpu(u1->a),
464                                         (unsigned long long)le64_to_cpu(u1->b),
465                                         buffer_info->skb, next_desc);
466                         } else {
467                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
468                                         "R  ", i,
469                                         (unsigned long long)le64_to_cpu(u1->a),
470                                         (unsigned long long)le64_to_cpu(u1->b),
471                                         (unsigned long long)buffer_info->dma,
472                                         buffer_info->skb, next_desc);
473
474                                 if (netif_msg_pktdata(adapter) &&
475                                     buffer_info->skb)
476                                         print_hex_dump(KERN_INFO, "",
477                                                        DUMP_PREFIX_ADDRESS, 16,
478                                                        1,
479                                                        buffer_info->skb->data,
480                                                        adapter->rx_buffer_len,
481                                                        true);
482                         }
483                 }
484         }
485 }
486
487 /**
488  * e1000_desc_unused - calculate if we have unused descriptors
489  **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492         if (ring->next_to_clean > ring->next_to_use)
493                 return ring->next_to_clean - ring->next_to_use - 1;
494
495         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497
498 /**
499  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500  * @adapter: board private structure
501  * @hwtstamps: time stamp structure to update
502  * @systim: unsigned 64bit system time value.
503  *
504  * Convert the system time value stored in the RX/TXSTMP registers into a
505  * hwtstamp which can be used by the upper level time stamping functions.
506  *
507  * The 'systim_lock' spinlock is used to protect the consistency of the
508  * system time value. This is needed because reading the 64 bit time
509  * value involves reading two 32 bit registers. The first read latches the
510  * value.
511  **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513                                       struct skb_shared_hwtstamps *hwtstamps,
514                                       u64 systim)
515 {
516         u64 ns;
517         unsigned long flags;
518
519         spin_lock_irqsave(&adapter->systim_lock, flags);
520         ns = timecounter_cyc2time(&adapter->tc, systim);
521         spin_unlock_irqrestore(&adapter->systim_lock, flags);
522
523         memset(hwtstamps, 0, sizeof(*hwtstamps));
524         hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526
527 /**
528  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529  * @adapter: board private structure
530  * @status: descriptor extended error and status field
531  * @skb: particular skb to include time stamp
532  *
533  * If the time stamp is valid, convert it into the timecounter ns value
534  * and store that result into the shhwtstamps structure which is passed
535  * up the network stack.
536  **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538                                struct sk_buff *skb)
539 {
540         struct e1000_hw *hw = &adapter->hw;
541         u64 rxstmp;
542
543         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544             !(status & E1000_RXDEXT_STATERR_TST) ||
545             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546                 return;
547
548         /* The Rx time stamp registers contain the time stamp.  No other
549          * received packet will be time stamped until the Rx time stamp
550          * registers are read.  Because only one packet can be time stamped
551          * at a time, the register values must belong to this packet and
552          * therefore none of the other additional attributes need to be
553          * compared.
554          */
555         rxstmp = (u64)er32(RXSTMPL);
556         rxstmp |= (u64)er32(RXSTMPH) << 32;
557         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558
559         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561
562 /**
563  * e1000_receive_skb - helper function to handle Rx indications
564  * @adapter: board private structure
565  * @staterr: descriptor extended error and status field as written by hardware
566  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567  * @skb: pointer to sk_buff to be indicated to stack
568  **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570                               struct net_device *netdev, struct sk_buff *skb,
571                               u32 staterr, __le16 vlan)
572 {
573         u16 tag = le16_to_cpu(vlan);
574
575         e1000e_rx_hwtstamp(adapter, staterr, skb);
576
577         skb->protocol = eth_type_trans(skb, netdev);
578
579         if (staterr & E1000_RXD_STAT_VP)
580                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581
582         napi_gro_receive(&adapter->napi, skb);
583 }
584
585 /**
586  * e1000_rx_checksum - Receive Checksum Offload
587  * @adapter: board private structure
588  * @status_err: receive descriptor status and error fields
589  * @csum: receive descriptor csum field
590  * @sk_buff: socket buffer with received data
591  **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593                               struct sk_buff *skb)
594 {
595         u16 status = (u16)status_err;
596         u8 errors = (u8)(status_err >> 24);
597
598         skb_checksum_none_assert(skb);
599
600         /* Rx checksum disabled */
601         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602                 return;
603
604         /* Ignore Checksum bit is set */
605         if (status & E1000_RXD_STAT_IXSM)
606                 return;
607
608         /* TCP/UDP checksum error bit or IP checksum error bit is set */
609         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610                 /* let the stack verify checksum errors */
611                 adapter->hw_csum_err++;
612                 return;
613         }
614
615         /* TCP/UDP Checksum has not been calculated */
616         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617                 return;
618
619         /* It must be a TCP or UDP packet with a valid checksum */
620         skb->ip_summed = CHECKSUM_UNNECESSARY;
621         adapter->hw_csum_good++;
622 }
623
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626         struct e1000_adapter *adapter = rx_ring->adapter;
627         struct e1000_hw *hw = &adapter->hw;
628         s32 ret_val = __ew32_prepare(hw);
629
630         writel(i, rx_ring->tail);
631
632         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633                 u32 rctl = er32(RCTL);
634
635                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636                 e_err("ME firmware caused invalid RDT - resetting\n");
637                 schedule_work(&adapter->reset_task);
638         }
639 }
640
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643         struct e1000_adapter *adapter = tx_ring->adapter;
644         struct e1000_hw *hw = &adapter->hw;
645         s32 ret_val = __ew32_prepare(hw);
646
647         writel(i, tx_ring->tail);
648
649         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650                 u32 tctl = er32(TCTL);
651
652                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653                 e_err("ME firmware caused invalid TDT - resetting\n");
654                 schedule_work(&adapter->reset_task);
655         }
656 }
657
658 /**
659  * e1000_alloc_rx_buffers - Replace used receive buffers
660  * @rx_ring: Rx descriptor ring
661  **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663                                    int cleaned_count, gfp_t gfp)
664 {
665         struct e1000_adapter *adapter = rx_ring->adapter;
666         struct net_device *netdev = adapter->netdev;
667         struct pci_dev *pdev = adapter->pdev;
668         union e1000_rx_desc_extended *rx_desc;
669         struct e1000_buffer *buffer_info;
670         struct sk_buff *skb;
671         unsigned int i;
672         unsigned int bufsz = adapter->rx_buffer_len;
673
674         i = rx_ring->next_to_use;
675         buffer_info = &rx_ring->buffer_info[i];
676
677         while (cleaned_count--) {
678                 skb = buffer_info->skb;
679                 if (skb) {
680                         skb_trim(skb, 0);
681                         goto map_skb;
682                 }
683
684                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685                 if (!skb) {
686                         /* Better luck next round */
687                         adapter->alloc_rx_buff_failed++;
688                         break;
689                 }
690
691                 buffer_info->skb = skb;
692 map_skb:
693                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694                                                   adapter->rx_buffer_len,
695                                                   DMA_FROM_DEVICE);
696                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697                         dev_err(&pdev->dev, "Rx DMA map failed\n");
698                         adapter->rx_dma_failed++;
699                         break;
700                 }
701
702                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704
705                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706                         /* Force memory writes to complete before letting h/w
707                          * know there are new descriptors to fetch.  (Only
708                          * applicable for weak-ordered memory model archs,
709                          * such as IA-64).
710                          */
711                         wmb();
712                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713                                 e1000e_update_rdt_wa(rx_ring, i);
714                         else
715                                 writel(i, rx_ring->tail);
716                 }
717                 i++;
718                 if (i == rx_ring->count)
719                         i = 0;
720                 buffer_info = &rx_ring->buffer_info[i];
721         }
722
723         rx_ring->next_to_use = i;
724 }
725
726 /**
727  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728  * @rx_ring: Rx descriptor ring
729  **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731                                       int cleaned_count, gfp_t gfp)
732 {
733         struct e1000_adapter *adapter = rx_ring->adapter;
734         struct net_device *netdev = adapter->netdev;
735         struct pci_dev *pdev = adapter->pdev;
736         union e1000_rx_desc_packet_split *rx_desc;
737         struct e1000_buffer *buffer_info;
738         struct e1000_ps_page *ps_page;
739         struct sk_buff *skb;
740         unsigned int i, j;
741
742         i = rx_ring->next_to_use;
743         buffer_info = &rx_ring->buffer_info[i];
744
745         while (cleaned_count--) {
746                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747
748                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749                         ps_page = &buffer_info->ps_pages[j];
750                         if (j >= adapter->rx_ps_pages) {
751                                 /* all unused desc entries get hw null ptr */
752                                 rx_desc->read.buffer_addr[j + 1] =
753                                     ~cpu_to_le64(0);
754                                 continue;
755                         }
756                         if (!ps_page->page) {
757                                 ps_page->page = alloc_page(gfp);
758                                 if (!ps_page->page) {
759                                         adapter->alloc_rx_buff_failed++;
760                                         goto no_buffers;
761                                 }
762                                 ps_page->dma = dma_map_page(&pdev->dev,
763                                                             ps_page->page,
764                                                             0, PAGE_SIZE,
765                                                             DMA_FROM_DEVICE);
766                                 if (dma_mapping_error(&pdev->dev,
767                                                       ps_page->dma)) {
768                                         dev_err(&adapter->pdev->dev,
769                                                 "Rx DMA page map failed\n");
770                                         adapter->rx_dma_failed++;
771                                         goto no_buffers;
772                                 }
773                         }
774                         /* Refresh the desc even if buffer_addrs
775                          * didn't change because each write-back
776                          * erases this info.
777                          */
778                         rx_desc->read.buffer_addr[j + 1] =
779                             cpu_to_le64(ps_page->dma);
780                 }
781
782                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783                                                   gfp);
784
785                 if (!skb) {
786                         adapter->alloc_rx_buff_failed++;
787                         break;
788                 }
789
790                 buffer_info->skb = skb;
791                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792                                                   adapter->rx_ps_bsize0,
793                                                   DMA_FROM_DEVICE);
794                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795                         dev_err(&pdev->dev, "Rx DMA map failed\n");
796                         adapter->rx_dma_failed++;
797                         /* cleanup skb */
798                         dev_kfree_skb_any(skb);
799                         buffer_info->skb = NULL;
800                         break;
801                 }
802
803                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804
805                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806                         /* Force memory writes to complete before letting h/w
807                          * know there are new descriptors to fetch.  (Only
808                          * applicable for weak-ordered memory model archs,
809                          * such as IA-64).
810                          */
811                         wmb();
812                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813                                 e1000e_update_rdt_wa(rx_ring, i << 1);
814                         else
815                                 writel(i << 1, rx_ring->tail);
816                 }
817
818                 i++;
819                 if (i == rx_ring->count)
820                         i = 0;
821                 buffer_info = &rx_ring->buffer_info[i];
822         }
823
824 no_buffers:
825         rx_ring->next_to_use = i;
826 }
827
828 /**
829  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830  * @rx_ring: Rx descriptor ring
831  * @cleaned_count: number of buffers to allocate this pass
832  **/
833
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835                                          int cleaned_count, gfp_t gfp)
836 {
837         struct e1000_adapter *adapter = rx_ring->adapter;
838         struct net_device *netdev = adapter->netdev;
839         struct pci_dev *pdev = adapter->pdev;
840         union e1000_rx_desc_extended *rx_desc;
841         struct e1000_buffer *buffer_info;
842         struct sk_buff *skb;
843         unsigned int i;
844         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
845
846         i = rx_ring->next_to_use;
847         buffer_info = &rx_ring->buffer_info[i];
848
849         while (cleaned_count--) {
850                 skb = buffer_info->skb;
851                 if (skb) {
852                         skb_trim(skb, 0);
853                         goto check_page;
854                 }
855
856                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857                 if (unlikely(!skb)) {
858                         /* Better luck next round */
859                         adapter->alloc_rx_buff_failed++;
860                         break;
861                 }
862
863                 buffer_info->skb = skb;
864 check_page:
865                 /* allocate a new page if necessary */
866                 if (!buffer_info->page) {
867                         buffer_info->page = alloc_page(gfp);
868                         if (unlikely(!buffer_info->page)) {
869                                 adapter->alloc_rx_buff_failed++;
870                                 break;
871                         }
872                 }
873
874                 if (!buffer_info->dma) {
875                         buffer_info->dma = dma_map_page(&pdev->dev,
876                                                         buffer_info->page, 0,
877                                                         PAGE_SIZE,
878                                                         DMA_FROM_DEVICE);
879                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880                                 adapter->alloc_rx_buff_failed++;
881                                 break;
882                         }
883                 }
884
885                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887
888                 if (unlikely(++i == rx_ring->count))
889                         i = 0;
890                 buffer_info = &rx_ring->buffer_info[i];
891         }
892
893         if (likely(rx_ring->next_to_use != i)) {
894                 rx_ring->next_to_use = i;
895                 if (unlikely(i-- == 0))
896                         i = (rx_ring->count - 1);
897
898                 /* Force memory writes to complete before letting h/w
899                  * know there are new descriptors to fetch.  (Only
900                  * applicable for weak-ordered memory model archs,
901                  * such as IA-64).
902                  */
903                 wmb();
904                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905                         e1000e_update_rdt_wa(rx_ring, i);
906                 else
907                         writel(i, rx_ring->tail);
908         }
909 }
910
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912                                  struct sk_buff *skb)
913 {
914         if (netdev->features & NETIF_F_RXHASH)
915                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917
918 /**
919  * e1000_clean_rx_irq - Send received data up the network stack
920  * @rx_ring: Rx descriptor ring
921  *
922  * the return value indicates whether actual cleaning was done, there
923  * is no guarantee that everything was cleaned
924  **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926                                int work_to_do)
927 {
928         struct e1000_adapter *adapter = rx_ring->adapter;
929         struct net_device *netdev = adapter->netdev;
930         struct pci_dev *pdev = adapter->pdev;
931         struct e1000_hw *hw = &adapter->hw;
932         union e1000_rx_desc_extended *rx_desc, *next_rxd;
933         struct e1000_buffer *buffer_info, *next_buffer;
934         u32 length, staterr;
935         unsigned int i;
936         int cleaned_count = 0;
937         bool cleaned = false;
938         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939
940         i = rx_ring->next_to_clean;
941         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943         buffer_info = &rx_ring->buffer_info[i];
944
945         while (staterr & E1000_RXD_STAT_DD) {
946                 struct sk_buff *skb;
947
948                 if (*work_done >= work_to_do)
949                         break;
950                 (*work_done)++;
951                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
952
953                 skb = buffer_info->skb;
954                 buffer_info->skb = NULL;
955
956                 prefetch(skb->data - NET_IP_ALIGN);
957
958                 i++;
959                 if (i == rx_ring->count)
960                         i = 0;
961                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962                 prefetch(next_rxd);
963
964                 next_buffer = &rx_ring->buffer_info[i];
965
966                 cleaned = true;
967                 cleaned_count++;
968                 dma_unmap_single(&pdev->dev, buffer_info->dma,
969                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
970                 buffer_info->dma = 0;
971
972                 length = le16_to_cpu(rx_desc->wb.upper.length);
973
974                 /* !EOP means multiple descriptors were used to store a single
975                  * packet, if that's the case we need to toss it.  In fact, we
976                  * need to toss every packet with the EOP bit clear and the
977                  * next frame that _does_ have the EOP bit set, as it is by
978                  * definition only a frame fragment
979                  */
980                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981                         adapter->flags2 |= FLAG2_IS_DISCARDING;
982
983                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984                         /* All receives must fit into a single buffer */
985                         e_dbg("Receive packet consumed multiple buffers\n");
986                         /* recycle */
987                         buffer_info->skb = skb;
988                         if (staterr & E1000_RXD_STAT_EOP)
989                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990                         goto next_desc;
991                 }
992
993                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994                              !(netdev->features & NETIF_F_RXALL))) {
995                         /* recycle */
996                         buffer_info->skb = skb;
997                         goto next_desc;
998                 }
999
1000                 /* adjust length to remove Ethernet CRC */
1001                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002                         /* If configured to store CRC, don't subtract FCS,
1003                          * but keep the FCS bytes out of the total_rx_bytes
1004                          * counter
1005                          */
1006                         if (netdev->features & NETIF_F_RXFCS)
1007                                 total_rx_bytes -= 4;
1008                         else
1009                                 length -= 4;
1010                 }
1011
1012                 total_rx_bytes += length;
1013                 total_rx_packets++;
1014
1015                 /* code added for copybreak, this should improve
1016                  * performance for small packets with large amounts
1017                  * of reassembly being done in the stack
1018                  */
1019                 if (length < copybreak) {
1020                         struct sk_buff *new_skb =
1021                                 napi_alloc_skb(&adapter->napi, length);
1022                         if (new_skb) {
1023                                 skb_copy_to_linear_data_offset(new_skb,
1024                                                                -NET_IP_ALIGN,
1025                                                                (skb->data -
1026                                                                 NET_IP_ALIGN),
1027                                                                (length +
1028                                                                 NET_IP_ALIGN));
1029                                 /* save the skb in buffer_info as good */
1030                                 buffer_info->skb = skb;
1031                                 skb = new_skb;
1032                         }
1033                         /* else just continue with the old one */
1034                 }
1035                 /* end copybreak code */
1036                 skb_put(skb, length);
1037
1038                 /* Receive Checksum Offload */
1039                 e1000_rx_checksum(adapter, staterr, skb);
1040
1041                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042
1043                 e1000_receive_skb(adapter, netdev, skb, staterr,
1044                                   rx_desc->wb.upper.vlan);
1045
1046 next_desc:
1047                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048
1049                 /* return some buffers to hardware, one at a time is too slow */
1050                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052                                               GFP_ATOMIC);
1053                         cleaned_count = 0;
1054                 }
1055
1056                 /* use prefetched values */
1057                 rx_desc = next_rxd;
1058                 buffer_info = next_buffer;
1059
1060                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061         }
1062         rx_ring->next_to_clean = i;
1063
1064         cleaned_count = e1000_desc_unused(rx_ring);
1065         if (cleaned_count)
1066                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067
1068         adapter->total_rx_bytes += total_rx_bytes;
1069         adapter->total_rx_packets += total_rx_packets;
1070         return cleaned;
1071 }
1072
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074                             struct e1000_buffer *buffer_info,
1075                             bool drop)
1076 {
1077         struct e1000_adapter *adapter = tx_ring->adapter;
1078
1079         if (buffer_info->dma) {
1080                 if (buffer_info->mapped_as_page)
1081                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1082                                        buffer_info->length, DMA_TO_DEVICE);
1083                 else
1084                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1085                                          buffer_info->length, DMA_TO_DEVICE);
1086                 buffer_info->dma = 0;
1087         }
1088         if (buffer_info->skb) {
1089                 if (drop)
1090                         dev_kfree_skb_any(buffer_info->skb);
1091                 else
1092                         dev_consume_skb_any(buffer_info->skb);
1093                 buffer_info->skb = NULL;
1094         }
1095         buffer_info->time_stamp = 0;
1096 }
1097
1098 static void e1000_print_hw_hang(struct work_struct *work)
1099 {
1100         struct e1000_adapter *adapter = container_of(work,
1101                                                      struct e1000_adapter,
1102                                                      print_hang_task);
1103         struct net_device *netdev = adapter->netdev;
1104         struct e1000_ring *tx_ring = adapter->tx_ring;
1105         unsigned int i = tx_ring->next_to_clean;
1106         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1107         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1108         struct e1000_hw *hw = &adapter->hw;
1109         u16 phy_status, phy_1000t_status, phy_ext_status;
1110         u16 pci_status;
1111
1112         if (test_bit(__E1000_DOWN, &adapter->state))
1113                 return;
1114
1115         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1116                 /* May be block on write-back, flush and detect again
1117                  * flush pending descriptor writebacks to memory
1118                  */
1119                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120                 /* execute the writes immediately */
1121                 e1e_flush();
1122                 /* Due to rare timing issues, write to TIDV again to ensure
1123                  * the write is successful
1124                  */
1125                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1126                 /* execute the writes immediately */
1127                 e1e_flush();
1128                 adapter->tx_hang_recheck = true;
1129                 return;
1130         }
1131         adapter->tx_hang_recheck = false;
1132
1133         if (er32(TDH(0)) == er32(TDT(0))) {
1134                 e_dbg("false hang detected, ignoring\n");
1135                 return;
1136         }
1137
1138         /* Real hang detected */
1139         netif_stop_queue(netdev);
1140
1141         e1e_rphy(hw, MII_BMSR, &phy_status);
1142         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1143         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1144
1145         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1146
1147         /* detected Hardware unit hang */
1148         e_err("Detected Hardware Unit Hang:\n"
1149               "  TDH                  <%x>\n"
1150               "  TDT                  <%x>\n"
1151               "  next_to_use          <%x>\n"
1152               "  next_to_clean        <%x>\n"
1153               "buffer_info[next_to_clean]:\n"
1154               "  time_stamp           <%lx>\n"
1155               "  next_to_watch        <%x>\n"
1156               "  jiffies              <%lx>\n"
1157               "  next_to_watch.status <%x>\n"
1158               "MAC Status             <%x>\n"
1159               "PHY Status             <%x>\n"
1160               "PHY 1000BASE-T Status  <%x>\n"
1161               "PHY Extended Status    <%x>\n"
1162               "PCI Status             <%x>\n",
1163               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1164               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1165               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1166               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1167
1168         e1000e_dump(adapter);
1169
1170         /* Suggest workaround for known h/w issue */
1171         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1172                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1173 }
1174
1175 /**
1176  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177  * @work: pointer to work struct
1178  *
1179  * This work function polls the TSYNCTXCTL valid bit to determine when a
1180  * timestamp has been taken for the current stored skb.  The timestamp must
1181  * be for this skb because only one such packet is allowed in the queue.
1182  */
1183 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1184 {
1185         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1186                                                      tx_hwtstamp_work);
1187         struct e1000_hw *hw = &adapter->hw;
1188
1189         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1190                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1191                 struct skb_shared_hwtstamps shhwtstamps;
1192                 u64 txstmp;
1193
1194                 txstmp = er32(TXSTMPL);
1195                 txstmp |= (u64)er32(TXSTMPH) << 32;
1196
1197                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1198
1199                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200                  * prior to notifying the stack of a Tx timestamp.
1201                  */
1202                 adapter->tx_hwtstamp_skb = NULL;
1203                 wmb(); /* force write prior to skb_tstamp_tx */
1204
1205                 skb_tstamp_tx(skb, &shhwtstamps);
1206                 dev_consume_skb_any(skb);
1207         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1208                               + adapter->tx_timeout_factor * HZ)) {
1209                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1210                 adapter->tx_hwtstamp_skb = NULL;
1211                 adapter->tx_hwtstamp_timeouts++;
1212                 e_warn("clearing Tx timestamp hang\n");
1213         } else {
1214                 /* reschedule to check later */
1215                 schedule_work(&adapter->tx_hwtstamp_work);
1216         }
1217 }
1218
1219 /**
1220  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221  * @tx_ring: Tx descriptor ring
1222  *
1223  * the return value indicates whether actual cleaning was done, there
1224  * is no guarantee that everything was cleaned
1225  **/
1226 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1227 {
1228         struct e1000_adapter *adapter = tx_ring->adapter;
1229         struct net_device *netdev = adapter->netdev;
1230         struct e1000_hw *hw = &adapter->hw;
1231         struct e1000_tx_desc *tx_desc, *eop_desc;
1232         struct e1000_buffer *buffer_info;
1233         unsigned int i, eop;
1234         unsigned int count = 0;
1235         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1236         unsigned int bytes_compl = 0, pkts_compl = 0;
1237
1238         i = tx_ring->next_to_clean;
1239         eop = tx_ring->buffer_info[i].next_to_watch;
1240         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1241
1242         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1243                (count < tx_ring->count)) {
1244                 bool cleaned = false;
1245
1246                 dma_rmb();              /* read buffer_info after eop_desc */
1247                 for (; !cleaned; count++) {
1248                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1249                         buffer_info = &tx_ring->buffer_info[i];
1250                         cleaned = (i == eop);
1251
1252                         if (cleaned) {
1253                                 total_tx_packets += buffer_info->segs;
1254                                 total_tx_bytes += buffer_info->bytecount;
1255                                 if (buffer_info->skb) {
1256                                         bytes_compl += buffer_info->skb->len;
1257                                         pkts_compl++;
1258                                 }
1259                         }
1260
1261                         e1000_put_txbuf(tx_ring, buffer_info, false);
1262                         tx_desc->upper.data = 0;
1263
1264                         i++;
1265                         if (i == tx_ring->count)
1266                                 i = 0;
1267                 }
1268
1269                 if (i == tx_ring->next_to_use)
1270                         break;
1271                 eop = tx_ring->buffer_info[i].next_to_watch;
1272                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1273         }
1274
1275         tx_ring->next_to_clean = i;
1276
1277         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1278
1279 #define TX_WAKE_THRESHOLD 32
1280         if (count && netif_carrier_ok(netdev) &&
1281             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1282                 /* Make sure that anybody stopping the queue after this
1283                  * sees the new next_to_clean.
1284                  */
1285                 smp_mb();
1286
1287                 if (netif_queue_stopped(netdev) &&
1288                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1289                         netif_wake_queue(netdev);
1290                         ++adapter->restart_queue;
1291                 }
1292         }
1293
1294         if (adapter->detect_tx_hung) {
1295                 /* Detect a transmit hang in hardware, this serializes the
1296                  * check with the clearing of time_stamp and movement of i
1297                  */
1298                 adapter->detect_tx_hung = false;
1299                 if (tx_ring->buffer_info[i].time_stamp &&
1300                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1301                                + (adapter->tx_timeout_factor * HZ)) &&
1302                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1303                         schedule_work(&adapter->print_hang_task);
1304                 else
1305                         adapter->tx_hang_recheck = false;
1306         }
1307         adapter->total_tx_bytes += total_tx_bytes;
1308         adapter->total_tx_packets += total_tx_packets;
1309         return count < tx_ring->count;
1310 }
1311
1312 /**
1313  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314  * @rx_ring: Rx descriptor ring
1315  *
1316  * the return value indicates whether actual cleaning was done, there
1317  * is no guarantee that everything was cleaned
1318  **/
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1320                                   int work_to_do)
1321 {
1322         struct e1000_adapter *adapter = rx_ring->adapter;
1323         struct e1000_hw *hw = &adapter->hw;
1324         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1325         struct net_device *netdev = adapter->netdev;
1326         struct pci_dev *pdev = adapter->pdev;
1327         struct e1000_buffer *buffer_info, *next_buffer;
1328         struct e1000_ps_page *ps_page;
1329         struct sk_buff *skb;
1330         unsigned int i, j;
1331         u32 length, staterr;
1332         int cleaned_count = 0;
1333         bool cleaned = false;
1334         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1335
1336         i = rx_ring->next_to_clean;
1337         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1338         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1339         buffer_info = &rx_ring->buffer_info[i];
1340
1341         while (staterr & E1000_RXD_STAT_DD) {
1342                 if (*work_done >= work_to_do)
1343                         break;
1344                 (*work_done)++;
1345                 skb = buffer_info->skb;
1346                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1347
1348                 /* in the packet split case this is header only */
1349                 prefetch(skb->data - NET_IP_ALIGN);
1350
1351                 i++;
1352                 if (i == rx_ring->count)
1353                         i = 0;
1354                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1355                 prefetch(next_rxd);
1356
1357                 next_buffer = &rx_ring->buffer_info[i];
1358
1359                 cleaned = true;
1360                 cleaned_count++;
1361                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1362                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1363                 buffer_info->dma = 0;
1364
1365                 /* see !EOP comment in other Rx routine */
1366                 if (!(staterr & E1000_RXD_STAT_EOP))
1367                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1368
1369                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1370                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371                         dev_kfree_skb_irq(skb);
1372                         if (staterr & E1000_RXD_STAT_EOP)
1373                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1374                         goto next_desc;
1375                 }
1376
1377                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1378                              !(netdev->features & NETIF_F_RXALL))) {
1379                         dev_kfree_skb_irq(skb);
1380                         goto next_desc;
1381                 }
1382
1383                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1384
1385                 if (!length) {
1386                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1387                         dev_kfree_skb_irq(skb);
1388                         goto next_desc;
1389                 }
1390
1391                 /* Good Receive */
1392                 skb_put(skb, length);
1393
1394                 {
1395                         /* this looks ugly, but it seems compiler issues make
1396                          * it more efficient than reusing j
1397                          */
1398                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1399
1400                         /* page alloc/put takes too long and effects small
1401                          * packet throughput, so unsplit small packets and
1402                          * save the alloc/put only valid in softirq (napi)
1403                          * context to call kmap_*
1404                          */
1405                         if (l1 && (l1 <= copybreak) &&
1406                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1407                                 u8 *vaddr;
1408
1409                                 ps_page = &buffer_info->ps_pages[0];
1410
1411                                 /* there is no documentation about how to call
1412                                  * kmap_atomic, so we can't hold the mapping
1413                                  * very long
1414                                  */
1415                                 dma_sync_single_for_cpu(&pdev->dev,
1416                                                         ps_page->dma,
1417                                                         PAGE_SIZE,
1418                                                         DMA_FROM_DEVICE);
1419                                 vaddr = kmap_atomic(ps_page->page);
1420                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1421                                 kunmap_atomic(vaddr);
1422                                 dma_sync_single_for_device(&pdev->dev,
1423                                                            ps_page->dma,
1424                                                            PAGE_SIZE,
1425                                                            DMA_FROM_DEVICE);
1426
1427                                 /* remove the CRC */
1428                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1429                                         if (!(netdev->features & NETIF_F_RXFCS))
1430                                                 l1 -= 4;
1431                                 }
1432
1433                                 skb_put(skb, l1);
1434                                 goto copydone;
1435                         }       /* if */
1436                 }
1437
1438                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1439                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1440                         if (!length)
1441                                 break;
1442
1443                         ps_page = &buffer_info->ps_pages[j];
1444                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1445                                        DMA_FROM_DEVICE);
1446                         ps_page->dma = 0;
1447                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1448                         ps_page->page = NULL;
1449                         skb->len += length;
1450                         skb->data_len += length;
1451                         skb->truesize += PAGE_SIZE;
1452                 }
1453
1454                 /* strip the ethernet crc, problem is we're using pages now so
1455                  * this whole operation can get a little cpu intensive
1456                  */
1457                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1458                         if (!(netdev->features & NETIF_F_RXFCS))
1459                                 pskb_trim(skb, skb->len - 4);
1460                 }
1461
1462 copydone:
1463                 total_rx_bytes += skb->len;
1464                 total_rx_packets++;
1465
1466                 e1000_rx_checksum(adapter, staterr, skb);
1467
1468                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1469
1470                 if (rx_desc->wb.upper.header_status &
1471                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1472                         adapter->rx_hdr_split++;
1473
1474                 e1000_receive_skb(adapter, netdev, skb, staterr,
1475                                   rx_desc->wb.middle.vlan);
1476
1477 next_desc:
1478                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1479                 buffer_info->skb = NULL;
1480
1481                 /* return some buffers to hardware, one at a time is too slow */
1482                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1483                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1484                                               GFP_ATOMIC);
1485                         cleaned_count = 0;
1486                 }
1487
1488                 /* use prefetched values */
1489                 rx_desc = next_rxd;
1490                 buffer_info = next_buffer;
1491
1492                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1493         }
1494         rx_ring->next_to_clean = i;
1495
1496         cleaned_count = e1000_desc_unused(rx_ring);
1497         if (cleaned_count)
1498                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1499
1500         adapter->total_rx_bytes += total_rx_bytes;
1501         adapter->total_rx_packets += total_rx_packets;
1502         return cleaned;
1503 }
1504
1505 /**
1506  * e1000_consume_page - helper function
1507  **/
1508 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1509                                u16 length)
1510 {
1511         bi->page = NULL;
1512         skb->len += length;
1513         skb->data_len += length;
1514         skb->truesize += PAGE_SIZE;
1515 }
1516
1517 /**
1518  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519  * @adapter: board private structure
1520  *
1521  * the return value indicates whether actual cleaning was done, there
1522  * is no guarantee that everything was cleaned
1523  **/
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1525                                      int work_to_do)
1526 {
1527         struct e1000_adapter *adapter = rx_ring->adapter;
1528         struct net_device *netdev = adapter->netdev;
1529         struct pci_dev *pdev = adapter->pdev;
1530         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1531         struct e1000_buffer *buffer_info, *next_buffer;
1532         u32 length, staterr;
1533         unsigned int i;
1534         int cleaned_count = 0;
1535         bool cleaned = false;
1536         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1537         struct skb_shared_info *shinfo;
1538
1539         i = rx_ring->next_to_clean;
1540         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1541         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1542         buffer_info = &rx_ring->buffer_info[i];
1543
1544         while (staterr & E1000_RXD_STAT_DD) {
1545                 struct sk_buff *skb;
1546
1547                 if (*work_done >= work_to_do)
1548                         break;
1549                 (*work_done)++;
1550                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1551
1552                 skb = buffer_info->skb;
1553                 buffer_info->skb = NULL;
1554
1555                 ++i;
1556                 if (i == rx_ring->count)
1557                         i = 0;
1558                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1559                 prefetch(next_rxd);
1560
1561                 next_buffer = &rx_ring->buffer_info[i];
1562
1563                 cleaned = true;
1564                 cleaned_count++;
1565                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1566                                DMA_FROM_DEVICE);
1567                 buffer_info->dma = 0;
1568
1569                 length = le16_to_cpu(rx_desc->wb.upper.length);
1570
1571                 /* errors is only valid for DD + EOP descriptors */
1572                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1573                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1574                               !(netdev->features & NETIF_F_RXALL)))) {
1575                         /* recycle both page and skb */
1576                         buffer_info->skb = skb;
1577                         /* an error means any chain goes out the window too */
1578                         if (rx_ring->rx_skb_top)
1579                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1580                         rx_ring->rx_skb_top = NULL;
1581                         goto next_desc;
1582                 }
1583 #define rxtop (rx_ring->rx_skb_top)
1584                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1585                         /* this descriptor is only the beginning (or middle) */
1586                         if (!rxtop) {
1587                                 /* this is the beginning of a chain */
1588                                 rxtop = skb;
1589                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1590                                                    0, length);
1591                         } else {
1592                                 /* this is the middle of a chain */
1593                                 shinfo = skb_shinfo(rxtop);
1594                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595                                                    buffer_info->page, 0,
1596                                                    length);
1597                                 /* re-use the skb, only consumed the page */
1598                                 buffer_info->skb = skb;
1599                         }
1600                         e1000_consume_page(buffer_info, rxtop, length);
1601                         goto next_desc;
1602                 } else {
1603                         if (rxtop) {
1604                                 /* end of the chain */
1605                                 shinfo = skb_shinfo(rxtop);
1606                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1607                                                    buffer_info->page, 0,
1608                                                    length);
1609                                 /* re-use the current skb, we only consumed the
1610                                  * page
1611                                  */
1612                                 buffer_info->skb = skb;
1613                                 skb = rxtop;
1614                                 rxtop = NULL;
1615                                 e1000_consume_page(buffer_info, skb, length);
1616                         } else {
1617                                 /* no chain, got EOP, this buf is the packet
1618                                  * copybreak to save the put_page/alloc_page
1619                                  */
1620                                 if (length <= copybreak &&
1621                                     skb_tailroom(skb) >= length) {
1622                                         u8 *vaddr;
1623                                         vaddr = kmap_atomic(buffer_info->page);
1624                                         memcpy(skb_tail_pointer(skb), vaddr,
1625                                                length);
1626                                         kunmap_atomic(vaddr);
1627                                         /* re-use the page, so don't erase
1628                                          * buffer_info->page
1629                                          */
1630                                         skb_put(skb, length);
1631                                 } else {
1632                                         skb_fill_page_desc(skb, 0,
1633                                                            buffer_info->page, 0,
1634                                                            length);
1635                                         e1000_consume_page(buffer_info, skb,
1636                                                            length);
1637                                 }
1638                         }
1639                 }
1640
1641                 /* Receive Checksum Offload */
1642                 e1000_rx_checksum(adapter, staterr, skb);
1643
1644                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1645
1646                 /* probably a little skewed due to removing CRC */
1647                 total_rx_bytes += skb->len;
1648                 total_rx_packets++;
1649
1650                 /* eth type trans needs skb->data to point to something */
1651                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1652                         e_err("pskb_may_pull failed.\n");
1653                         dev_kfree_skb_irq(skb);
1654                         goto next_desc;
1655                 }
1656
1657                 e1000_receive_skb(adapter, netdev, skb, staterr,
1658                                   rx_desc->wb.upper.vlan);
1659
1660 next_desc:
1661                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1662
1663                 /* return some buffers to hardware, one at a time is too slow */
1664                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1665                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1666                                               GFP_ATOMIC);
1667                         cleaned_count = 0;
1668                 }
1669
1670                 /* use prefetched values */
1671                 rx_desc = next_rxd;
1672                 buffer_info = next_buffer;
1673
1674                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1675         }
1676         rx_ring->next_to_clean = i;
1677
1678         cleaned_count = e1000_desc_unused(rx_ring);
1679         if (cleaned_count)
1680                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1681
1682         adapter->total_rx_bytes += total_rx_bytes;
1683         adapter->total_rx_packets += total_rx_packets;
1684         return cleaned;
1685 }
1686
1687 /**
1688  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689  * @rx_ring: Rx descriptor ring
1690  **/
1691 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1692 {
1693         struct e1000_adapter *adapter = rx_ring->adapter;
1694         struct e1000_buffer *buffer_info;
1695         struct e1000_ps_page *ps_page;
1696         struct pci_dev *pdev = adapter->pdev;
1697         unsigned int i, j;
1698
1699         /* Free all the Rx ring sk_buffs */
1700         for (i = 0; i < rx_ring->count; i++) {
1701                 buffer_info = &rx_ring->buffer_info[i];
1702                 if (buffer_info->dma) {
1703                         if (adapter->clean_rx == e1000_clean_rx_irq)
1704                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1705                                                  adapter->rx_buffer_len,
1706                                                  DMA_FROM_DEVICE);
1707                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1708                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1709                                                PAGE_SIZE, DMA_FROM_DEVICE);
1710                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1711                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1712                                                  adapter->rx_ps_bsize0,
1713                                                  DMA_FROM_DEVICE);
1714                         buffer_info->dma = 0;
1715                 }
1716
1717                 if (buffer_info->page) {
1718                         put_page(buffer_info->page);
1719                         buffer_info->page = NULL;
1720                 }
1721
1722                 if (buffer_info->skb) {
1723                         dev_kfree_skb(buffer_info->skb);
1724                         buffer_info->skb = NULL;
1725                 }
1726
1727                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1728                         ps_page = &buffer_info->ps_pages[j];
1729                         if (!ps_page->page)
1730                                 break;
1731                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1732                                        DMA_FROM_DEVICE);
1733                         ps_page->dma = 0;
1734                         put_page(ps_page->page);
1735                         ps_page->page = NULL;
1736                 }
1737         }
1738
1739         /* there also may be some cached data from a chained receive */
1740         if (rx_ring->rx_skb_top) {
1741                 dev_kfree_skb(rx_ring->rx_skb_top);
1742                 rx_ring->rx_skb_top = NULL;
1743         }
1744
1745         /* Zero out the descriptor ring */
1746         memset(rx_ring->desc, 0, rx_ring->size);
1747
1748         rx_ring->next_to_clean = 0;
1749         rx_ring->next_to_use = 0;
1750         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1751 }
1752
1753 static void e1000e_downshift_workaround(struct work_struct *work)
1754 {
1755         struct e1000_adapter *adapter = container_of(work,
1756                                                      struct e1000_adapter,
1757                                                      downshift_task);
1758
1759         if (test_bit(__E1000_DOWN, &adapter->state))
1760                 return;
1761
1762         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1763 }
1764
1765 /**
1766  * e1000_intr_msi - Interrupt Handler
1767  * @irq: interrupt number
1768  * @data: pointer to a network interface device structure
1769  **/
1770 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1771 {
1772         struct net_device *netdev = data;
1773         struct e1000_adapter *adapter = netdev_priv(netdev);
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 icr = er32(ICR);
1776
1777         /* read ICR disables interrupts using IAM */
1778         if (icr & E1000_ICR_LSC) {
1779                 hw->mac.get_link_status = true;
1780                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781                  * disconnect (LSC) before accessing any PHY registers
1782                  */
1783                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1784                     (!(er32(STATUS) & E1000_STATUS_LU)))
1785                         schedule_work(&adapter->downshift_task);
1786
1787                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788                  * link down event; disable receives here in the ISR and reset
1789                  * adapter in watchdog
1790                  */
1791                 if (netif_carrier_ok(netdev) &&
1792                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1793                         /* disable receives */
1794                         u32 rctl = er32(RCTL);
1795
1796                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1797                         adapter->flags |= FLAG_RESTART_NOW;
1798                 }
1799                 /* guard against interrupt when we're going down */
1800                 if (!test_bit(__E1000_DOWN, &adapter->state))
1801                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1802         }
1803
1804         /* Reset on uncorrectable ECC error */
1805         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1806                 u32 pbeccsts = er32(PBECCSTS);
1807
1808                 adapter->corr_errors +=
1809                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810                 adapter->uncorr_errors +=
1811                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813
1814                 /* Do the reset outside of interrupt context */
1815                 schedule_work(&adapter->reset_task);
1816
1817                 /* return immediately since reset is imminent */
1818                 return IRQ_HANDLED;
1819         }
1820
1821         if (napi_schedule_prep(&adapter->napi)) {
1822                 adapter->total_tx_bytes = 0;
1823                 adapter->total_tx_packets = 0;
1824                 adapter->total_rx_bytes = 0;
1825                 adapter->total_rx_packets = 0;
1826                 __napi_schedule(&adapter->napi);
1827         }
1828
1829         return IRQ_HANDLED;
1830 }
1831
1832 /**
1833  * e1000_intr - Interrupt Handler
1834  * @irq: interrupt number
1835  * @data: pointer to a network interface device structure
1836  **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839         struct net_device *netdev = data;
1840         struct e1000_adapter *adapter = netdev_priv(netdev);
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 rctl, icr = er32(ICR);
1843
1844         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845                 return IRQ_NONE;        /* Not our interrupt */
1846
1847         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848          * not set, then the adapter didn't send an interrupt
1849          */
1850         if (!(icr & E1000_ICR_INT_ASSERTED))
1851                 return IRQ_NONE;
1852
1853         /* Interrupt Auto-Mask...upon reading ICR,
1854          * interrupts are masked.  No need for the
1855          * IMC write
1856          */
1857
1858         if (icr & E1000_ICR_LSC) {
1859                 hw->mac.get_link_status = true;
1860                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861                  * disconnect (LSC) before accessing any PHY registers
1862                  */
1863                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864                     (!(er32(STATUS) & E1000_STATUS_LU)))
1865                         schedule_work(&adapter->downshift_task);
1866
1867                 /* 80003ES2LAN workaround--
1868                  * For packet buffer work-around on link down event;
1869                  * disable receives here in the ISR and
1870                  * reset adapter in watchdog
1871                  */
1872                 if (netif_carrier_ok(netdev) &&
1873                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874                         /* disable receives */
1875                         rctl = er32(RCTL);
1876                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877                         adapter->flags |= FLAG_RESTART_NOW;
1878                 }
1879                 /* guard against interrupt when we're going down */
1880                 if (!test_bit(__E1000_DOWN, &adapter->state))
1881                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882         }
1883
1884         /* Reset on uncorrectable ECC error */
1885         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1886                 u32 pbeccsts = er32(PBECCSTS);
1887
1888                 adapter->corr_errors +=
1889                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1890                 adapter->uncorr_errors +=
1891                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1892                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1893
1894                 /* Do the reset outside of interrupt context */
1895                 schedule_work(&adapter->reset_task);
1896
1897                 /* return immediately since reset is imminent */
1898                 return IRQ_HANDLED;
1899         }
1900
1901         if (napi_schedule_prep(&adapter->napi)) {
1902                 adapter->total_tx_bytes = 0;
1903                 adapter->total_tx_packets = 0;
1904                 adapter->total_rx_bytes = 0;
1905                 adapter->total_rx_packets = 0;
1906                 __napi_schedule(&adapter->napi);
1907         }
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1913 {
1914         struct net_device *netdev = data;
1915         struct e1000_adapter *adapter = netdev_priv(netdev);
1916         struct e1000_hw *hw = &adapter->hw;
1917         u32 icr = er32(ICR);
1918
1919         if (icr & adapter->eiac_mask)
1920                 ew32(ICS, (icr & adapter->eiac_mask));
1921
1922         if (icr & E1000_ICR_LSC) {
1923                 hw->mac.get_link_status = true;
1924                 /* guard against interrupt when we're going down */
1925                 if (!test_bit(__E1000_DOWN, &adapter->state))
1926                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1927         }
1928
1929         if (!test_bit(__E1000_DOWN, &adapter->state))
1930                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1931
1932         return IRQ_HANDLED;
1933 }
1934
1935 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1936 {
1937         struct net_device *netdev = data;
1938         struct e1000_adapter *adapter = netdev_priv(netdev);
1939         struct e1000_hw *hw = &adapter->hw;
1940         struct e1000_ring *tx_ring = adapter->tx_ring;
1941
1942         adapter->total_tx_bytes = 0;
1943         adapter->total_tx_packets = 0;
1944
1945         if (!e1000_clean_tx_irq(tx_ring))
1946                 /* Ring was not completely cleaned, so fire another interrupt */
1947                 ew32(ICS, tx_ring->ims_val);
1948
1949         if (!test_bit(__E1000_DOWN, &adapter->state))
1950                 ew32(IMS, adapter->tx_ring->ims_val);
1951
1952         return IRQ_HANDLED;
1953 }
1954
1955 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1956 {
1957         struct net_device *netdev = data;
1958         struct e1000_adapter *adapter = netdev_priv(netdev);
1959         struct e1000_ring *rx_ring = adapter->rx_ring;
1960
1961         /* Write the ITR value calculated at the end of the
1962          * previous interrupt.
1963          */
1964         if (rx_ring->set_itr) {
1965                 u32 itr = rx_ring->itr_val ?
1966                           1000000000 / (rx_ring->itr_val * 256) : 0;
1967
1968                 writel(itr, rx_ring->itr_register);
1969                 rx_ring->set_itr = 0;
1970         }
1971
1972         if (napi_schedule_prep(&adapter->napi)) {
1973                 adapter->total_rx_bytes = 0;
1974                 adapter->total_rx_packets = 0;
1975                 __napi_schedule(&adapter->napi);
1976         }
1977         return IRQ_HANDLED;
1978 }
1979
1980 /**
1981  * e1000_configure_msix - Configure MSI-X hardware
1982  *
1983  * e1000_configure_msix sets up the hardware to properly
1984  * generate MSI-X interrupts.
1985  **/
1986 static void e1000_configure_msix(struct e1000_adapter *adapter)
1987 {
1988         struct e1000_hw *hw = &adapter->hw;
1989         struct e1000_ring *rx_ring = adapter->rx_ring;
1990         struct e1000_ring *tx_ring = adapter->tx_ring;
1991         int vector = 0;
1992         u32 ctrl_ext, ivar = 0;
1993
1994         adapter->eiac_mask = 0;
1995
1996         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1997         if (hw->mac.type == e1000_82574) {
1998                 u32 rfctl = er32(RFCTL);
1999
2000                 rfctl |= E1000_RFCTL_ACK_DIS;
2001                 ew32(RFCTL, rfctl);
2002         }
2003
2004         /* Configure Rx vector */
2005         rx_ring->ims_val = E1000_IMS_RXQ0;
2006         adapter->eiac_mask |= rx_ring->ims_val;
2007         if (rx_ring->itr_val)
2008                 writel(1000000000 / (rx_ring->itr_val * 256),
2009                        rx_ring->itr_register);
2010         else
2011                 writel(1, rx_ring->itr_register);
2012         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2013
2014         /* Configure Tx vector */
2015         tx_ring->ims_val = E1000_IMS_TXQ0;
2016         vector++;
2017         if (tx_ring->itr_val)
2018                 writel(1000000000 / (tx_ring->itr_val * 256),
2019                        tx_ring->itr_register);
2020         else
2021                 writel(1, tx_ring->itr_register);
2022         adapter->eiac_mask |= tx_ring->ims_val;
2023         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2024
2025         /* set vector for Other Causes, e.g. link changes */
2026         vector++;
2027         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2028         if (rx_ring->itr_val)
2029                 writel(1000000000 / (rx_ring->itr_val * 256),
2030                        hw->hw_addr + E1000_EITR_82574(vector));
2031         else
2032                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2033
2034         /* Cause Tx interrupts on every write back */
2035         ivar |= BIT(31);
2036
2037         ew32(IVAR, ivar);
2038
2039         /* enable MSI-X PBA support */
2040         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2041         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2042         ew32(CTRL_EXT, ctrl_ext);
2043         e1e_flush();
2044 }
2045
2046 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2047 {
2048         if (adapter->msix_entries) {
2049                 pci_disable_msix(adapter->pdev);
2050                 kfree(adapter->msix_entries);
2051                 adapter->msix_entries = NULL;
2052         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2053                 pci_disable_msi(adapter->pdev);
2054                 adapter->flags &= ~FLAG_MSI_ENABLED;
2055         }
2056 }
2057
2058 /**
2059  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2060  *
2061  * Attempt to configure interrupts using the best available
2062  * capabilities of the hardware and kernel.
2063  **/
2064 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2065 {
2066         int err;
2067         int i;
2068
2069         switch (adapter->int_mode) {
2070         case E1000E_INT_MODE_MSIX:
2071                 if (adapter->flags & FLAG_HAS_MSIX) {
2072                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2073                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2074                                                         sizeof(struct
2075                                                                msix_entry),
2076                                                         GFP_KERNEL);
2077                         if (adapter->msix_entries) {
2078                                 struct e1000_adapter *a = adapter;
2079
2080                                 for (i = 0; i < adapter->num_vectors; i++)
2081                                         adapter->msix_entries[i].entry = i;
2082
2083                                 err = pci_enable_msix_range(a->pdev,
2084                                                             a->msix_entries,
2085                                                             a->num_vectors,
2086                                                             a->num_vectors);
2087                                 if (err > 0)
2088                                         return;
2089                         }
2090                         /* MSI-X failed, so fall through and try MSI */
2091                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2092                         e1000e_reset_interrupt_capability(adapter);
2093                 }
2094                 adapter->int_mode = E1000E_INT_MODE_MSI;
2095                 /* Fall through */
2096         case E1000E_INT_MODE_MSI:
2097                 if (!pci_enable_msi(adapter->pdev)) {
2098                         adapter->flags |= FLAG_MSI_ENABLED;
2099                 } else {
2100                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2101                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2102                 }
2103                 /* Fall through */
2104         case E1000E_INT_MODE_LEGACY:
2105                 /* Don't do anything; this is the system default */
2106                 break;
2107         }
2108
2109         /* store the number of vectors being used */
2110         adapter->num_vectors = 1;
2111 }
2112
2113 /**
2114  * e1000_request_msix - Initialize MSI-X interrupts
2115  *
2116  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2117  * kernel.
2118  **/
2119 static int e1000_request_msix(struct e1000_adapter *adapter)
2120 {
2121         struct net_device *netdev = adapter->netdev;
2122         int err = 0, vector = 0;
2123
2124         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2125                 snprintf(adapter->rx_ring->name,
2126                          sizeof(adapter->rx_ring->name) - 1,
2127                          "%s-rx-0", netdev->name);
2128         else
2129                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2130         err = request_irq(adapter->msix_entries[vector].vector,
2131                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2132                           netdev);
2133         if (err)
2134                 return err;
2135         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2136             E1000_EITR_82574(vector);
2137         adapter->rx_ring->itr_val = adapter->itr;
2138         vector++;
2139
2140         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2141                 snprintf(adapter->tx_ring->name,
2142                          sizeof(adapter->tx_ring->name) - 1,
2143                          "%s-tx-0", netdev->name);
2144         else
2145                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2146         err = request_irq(adapter->msix_entries[vector].vector,
2147                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2148                           netdev);
2149         if (err)
2150                 return err;
2151         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2152             E1000_EITR_82574(vector);
2153         adapter->tx_ring->itr_val = adapter->itr;
2154         vector++;
2155
2156         err = request_irq(adapter->msix_entries[vector].vector,
2157                           e1000_msix_other, 0, netdev->name, netdev);
2158         if (err)
2159                 return err;
2160
2161         e1000_configure_msix(adapter);
2162
2163         return 0;
2164 }
2165
2166 /**
2167  * e1000_request_irq - initialize interrupts
2168  *
2169  * Attempts to configure interrupts using the best available
2170  * capabilities of the hardware and kernel.
2171  **/
2172 static int e1000_request_irq(struct e1000_adapter *adapter)
2173 {
2174         struct net_device *netdev = adapter->netdev;
2175         int err;
2176
2177         if (adapter->msix_entries) {
2178                 err = e1000_request_msix(adapter);
2179                 if (!err)
2180                         return err;
2181                 /* fall back to MSI */
2182                 e1000e_reset_interrupt_capability(adapter);
2183                 adapter->int_mode = E1000E_INT_MODE_MSI;
2184                 e1000e_set_interrupt_capability(adapter);
2185         }
2186         if (adapter->flags & FLAG_MSI_ENABLED) {
2187                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2188                                   netdev->name, netdev);
2189                 if (!err)
2190                         return err;
2191
2192                 /* fall back to legacy interrupt */
2193                 e1000e_reset_interrupt_capability(adapter);
2194                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2195         }
2196
2197         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2198                           netdev->name, netdev);
2199         if (err)
2200                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2201
2202         return err;
2203 }
2204
2205 static void e1000_free_irq(struct e1000_adapter *adapter)
2206 {
2207         struct net_device *netdev = adapter->netdev;
2208
2209         if (adapter->msix_entries) {
2210                 int vector = 0;
2211
2212                 free_irq(adapter->msix_entries[vector].vector, netdev);
2213                 vector++;
2214
2215                 free_irq(adapter->msix_entries[vector].vector, netdev);
2216                 vector++;
2217
2218                 /* Other Causes interrupt vector */
2219                 free_irq(adapter->msix_entries[vector].vector, netdev);
2220                 return;
2221         }
2222
2223         free_irq(adapter->pdev->irq, netdev);
2224 }
2225
2226 /**
2227  * e1000_irq_disable - Mask off interrupt generation on the NIC
2228  **/
2229 static void e1000_irq_disable(struct e1000_adapter *adapter)
2230 {
2231         struct e1000_hw *hw = &adapter->hw;
2232
2233         ew32(IMC, ~0);
2234         if (adapter->msix_entries)
2235                 ew32(EIAC_82574, 0);
2236         e1e_flush();
2237
2238         if (adapter->msix_entries) {
2239                 int i;
2240
2241                 for (i = 0; i < adapter->num_vectors; i++)
2242                         synchronize_irq(adapter->msix_entries[i].vector);
2243         } else {
2244                 synchronize_irq(adapter->pdev->irq);
2245         }
2246 }
2247
2248 /**
2249  * e1000_irq_enable - Enable default interrupt generation settings
2250  **/
2251 static void e1000_irq_enable(struct e1000_adapter *adapter)
2252 {
2253         struct e1000_hw *hw = &adapter->hw;
2254
2255         if (adapter->msix_entries) {
2256                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2257                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2258                      IMS_OTHER_MASK);
2259         } else if (hw->mac.type >= e1000_pch_lpt) {
2260                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2261         } else {
2262                 ew32(IMS, IMS_ENABLE_MASK);
2263         }
2264         e1e_flush();
2265 }
2266
2267 /**
2268  * e1000e_get_hw_control - get control of the h/w from f/w
2269  * @adapter: address of board private structure
2270  *
2271  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2272  * For ASF and Pass Through versions of f/w this means that
2273  * the driver is loaded. For AMT version (only with 82573)
2274  * of the f/w this means that the network i/f is open.
2275  **/
2276 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2277 {
2278         struct e1000_hw *hw = &adapter->hw;
2279         u32 ctrl_ext;
2280         u32 swsm;
2281
2282         /* Let firmware know the driver has taken over */
2283         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2284                 swsm = er32(SWSM);
2285                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2286         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2287                 ctrl_ext = er32(CTRL_EXT);
2288                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2289         }
2290 }
2291
2292 /**
2293  * e1000e_release_hw_control - release control of the h/w to f/w
2294  * @adapter: address of board private structure
2295  *
2296  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2297  * For ASF and Pass Through versions of f/w this means that the
2298  * driver is no longer loaded. For AMT version (only with 82573) i
2299  * of the f/w this means that the network i/f is closed.
2300  *
2301  **/
2302 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2303 {
2304         struct e1000_hw *hw = &adapter->hw;
2305         u32 ctrl_ext;
2306         u32 swsm;
2307
2308         /* Let firmware taken over control of h/w */
2309         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2310                 swsm = er32(SWSM);
2311                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2312         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2313                 ctrl_ext = er32(CTRL_EXT);
2314                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2315         }
2316 }
2317
2318 /**
2319  * e1000_alloc_ring_dma - allocate memory for a ring structure
2320  **/
2321 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2322                                 struct e1000_ring *ring)
2323 {
2324         struct pci_dev *pdev = adapter->pdev;
2325
2326         ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2327                                          GFP_KERNEL);
2328         if (!ring->desc)
2329                 return -ENOMEM;
2330
2331         return 0;
2332 }
2333
2334 /**
2335  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2336  * @tx_ring: Tx descriptor ring
2337  *
2338  * Return 0 on success, negative on failure
2339  **/
2340 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2341 {
2342         struct e1000_adapter *adapter = tx_ring->adapter;
2343         int err = -ENOMEM, size;
2344
2345         size = sizeof(struct e1000_buffer) * tx_ring->count;
2346         tx_ring->buffer_info = vzalloc(size);
2347         if (!tx_ring->buffer_info)
2348                 goto err;
2349
2350         /* round up to nearest 4K */
2351         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2352         tx_ring->size = ALIGN(tx_ring->size, 4096);
2353
2354         err = e1000_alloc_ring_dma(adapter, tx_ring);
2355         if (err)
2356                 goto err;
2357
2358         tx_ring->next_to_use = 0;
2359         tx_ring->next_to_clean = 0;
2360
2361         return 0;
2362 err:
2363         vfree(tx_ring->buffer_info);
2364         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2365         return err;
2366 }
2367
2368 /**
2369  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2370  * @rx_ring: Rx descriptor ring
2371  *
2372  * Returns 0 on success, negative on failure
2373  **/
2374 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2375 {
2376         struct e1000_adapter *adapter = rx_ring->adapter;
2377         struct e1000_buffer *buffer_info;
2378         int i, size, desc_len, err = -ENOMEM;
2379
2380         size = sizeof(struct e1000_buffer) * rx_ring->count;
2381         rx_ring->buffer_info = vzalloc(size);
2382         if (!rx_ring->buffer_info)
2383                 goto err;
2384
2385         for (i = 0; i < rx_ring->count; i++) {
2386                 buffer_info = &rx_ring->buffer_info[i];
2387                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2388                                                 sizeof(struct e1000_ps_page),
2389                                                 GFP_KERNEL);
2390                 if (!buffer_info->ps_pages)
2391                         goto err_pages;
2392         }
2393
2394         desc_len = sizeof(union e1000_rx_desc_packet_split);
2395
2396         /* Round up to nearest 4K */
2397         rx_ring->size = rx_ring->count * desc_len;
2398         rx_ring->size = ALIGN(rx_ring->size, 4096);
2399
2400         err = e1000_alloc_ring_dma(adapter, rx_ring);
2401         if (err)
2402                 goto err_pages;
2403
2404         rx_ring->next_to_clean = 0;
2405         rx_ring->next_to_use = 0;
2406         rx_ring->rx_skb_top = NULL;
2407
2408         return 0;
2409
2410 err_pages:
2411         for (i = 0; i < rx_ring->count; i++) {
2412                 buffer_info = &rx_ring->buffer_info[i];
2413                 kfree(buffer_info->ps_pages);
2414         }
2415 err:
2416         vfree(rx_ring->buffer_info);
2417         e_err("Unable to allocate memory for the receive descriptor ring\n");
2418         return err;
2419 }
2420
2421 /**
2422  * e1000_clean_tx_ring - Free Tx Buffers
2423  * @tx_ring: Tx descriptor ring
2424  **/
2425 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2426 {
2427         struct e1000_adapter *adapter = tx_ring->adapter;
2428         struct e1000_buffer *buffer_info;
2429         unsigned long size;
2430         unsigned int i;
2431
2432         for (i = 0; i < tx_ring->count; i++) {
2433                 buffer_info = &tx_ring->buffer_info[i];
2434                 e1000_put_txbuf(tx_ring, buffer_info, false);
2435         }
2436
2437         netdev_reset_queue(adapter->netdev);
2438         size = sizeof(struct e1000_buffer) * tx_ring->count;
2439         memset(tx_ring->buffer_info, 0, size);
2440
2441         memset(tx_ring->desc, 0, tx_ring->size);
2442
2443         tx_ring->next_to_use = 0;
2444         tx_ring->next_to_clean = 0;
2445 }
2446
2447 /**
2448  * e1000e_free_tx_resources - Free Tx Resources per Queue
2449  * @tx_ring: Tx descriptor ring
2450  *
2451  * Free all transmit software resources
2452  **/
2453 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2454 {
2455         struct e1000_adapter *adapter = tx_ring->adapter;
2456         struct pci_dev *pdev = adapter->pdev;
2457
2458         e1000_clean_tx_ring(tx_ring);
2459
2460         vfree(tx_ring->buffer_info);
2461         tx_ring->buffer_info = NULL;
2462
2463         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2464                           tx_ring->dma);
2465         tx_ring->desc = NULL;
2466 }
2467
2468 /**
2469  * e1000e_free_rx_resources - Free Rx Resources
2470  * @rx_ring: Rx descriptor ring
2471  *
2472  * Free all receive software resources
2473  **/
2474 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2475 {
2476         struct e1000_adapter *adapter = rx_ring->adapter;
2477         struct pci_dev *pdev = adapter->pdev;
2478         int i;
2479
2480         e1000_clean_rx_ring(rx_ring);
2481
2482         for (i = 0; i < rx_ring->count; i++)
2483                 kfree(rx_ring->buffer_info[i].ps_pages);
2484
2485         vfree(rx_ring->buffer_info);
2486         rx_ring->buffer_info = NULL;
2487
2488         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2489                           rx_ring->dma);
2490         rx_ring->desc = NULL;
2491 }
2492
2493 /**
2494  * e1000_update_itr - update the dynamic ITR value based on statistics
2495  * @adapter: pointer to adapter
2496  * @itr_setting: current adapter->itr
2497  * @packets: the number of packets during this measurement interval
2498  * @bytes: the number of bytes during this measurement interval
2499  *
2500  *      Stores a new ITR value based on packets and byte
2501  *      counts during the last interrupt.  The advantage of per interrupt
2502  *      computation is faster updates and more accurate ITR for the current
2503  *      traffic pattern.  Constants in this function were computed
2504  *      based on theoretical maximum wire speed and thresholds were set based
2505  *      on testing data as well as attempting to minimize response time
2506  *      while increasing bulk throughput.  This functionality is controlled
2507  *      by the InterruptThrottleRate module parameter.
2508  **/
2509 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2510 {
2511         unsigned int retval = itr_setting;
2512
2513         if (packets == 0)
2514                 return itr_setting;
2515
2516         switch (itr_setting) {
2517         case lowest_latency:
2518                 /* handle TSO and jumbo frames */
2519                 if (bytes / packets > 8000)
2520                         retval = bulk_latency;
2521                 else if ((packets < 5) && (bytes > 512))
2522                         retval = low_latency;
2523                 break;
2524         case low_latency:       /* 50 usec aka 20000 ints/s */
2525                 if (bytes > 10000) {
2526                         /* this if handles the TSO accounting */
2527                         if (bytes / packets > 8000)
2528                                 retval = bulk_latency;
2529                         else if ((packets < 10) || ((bytes / packets) > 1200))
2530                                 retval = bulk_latency;
2531                         else if ((packets > 35))
2532                                 retval = lowest_latency;
2533                 } else if (bytes / packets > 2000) {
2534                         retval = bulk_latency;
2535                 } else if (packets <= 2 && bytes < 512) {
2536                         retval = lowest_latency;
2537                 }
2538                 break;
2539         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2540                 if (bytes > 25000) {
2541                         if (packets > 35)
2542                                 retval = low_latency;
2543                 } else if (bytes < 6000) {
2544                         retval = low_latency;
2545                 }
2546                 break;
2547         }
2548
2549         return retval;
2550 }
2551
2552 static void e1000_set_itr(struct e1000_adapter *adapter)
2553 {
2554         u16 current_itr;
2555         u32 new_itr = adapter->itr;
2556
2557         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2558         if (adapter->link_speed != SPEED_1000) {
2559                 current_itr = 0;
2560                 new_itr = 4000;
2561                 goto set_itr_now;
2562         }
2563
2564         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2565                 new_itr = 0;
2566                 goto set_itr_now;
2567         }
2568
2569         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2570                                            adapter->total_tx_packets,
2571                                            adapter->total_tx_bytes);
2572         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2573         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2574                 adapter->tx_itr = low_latency;
2575
2576         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2577                                            adapter->total_rx_packets,
2578                                            adapter->total_rx_bytes);
2579         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2581                 adapter->rx_itr = low_latency;
2582
2583         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2584
2585         /* counts and packets in update_itr are dependent on these numbers */
2586         switch (current_itr) {
2587         case lowest_latency:
2588                 new_itr = 70000;
2589                 break;
2590         case low_latency:
2591                 new_itr = 20000;        /* aka hwitr = ~200 */
2592                 break;
2593         case bulk_latency:
2594                 new_itr = 4000;
2595                 break;
2596         default:
2597                 break;
2598         }
2599
2600 set_itr_now:
2601         if (new_itr != adapter->itr) {
2602                 /* this attempts to bias the interrupt rate towards Bulk
2603                  * by adding intermediate steps when interrupt rate is
2604                  * increasing
2605                  */
2606                 new_itr = new_itr > adapter->itr ?
2607                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2608                 adapter->itr = new_itr;
2609                 adapter->rx_ring->itr_val = new_itr;
2610                 if (adapter->msix_entries)
2611                         adapter->rx_ring->set_itr = 1;
2612                 else
2613                         e1000e_write_itr(adapter, new_itr);
2614         }
2615 }
2616
2617 /**
2618  * e1000e_write_itr - write the ITR value to the appropriate registers
2619  * @adapter: address of board private structure
2620  * @itr: new ITR value to program
2621  *
2622  * e1000e_write_itr determines if the adapter is in MSI-X mode
2623  * and, if so, writes the EITR registers with the ITR value.
2624  * Otherwise, it writes the ITR value into the ITR register.
2625  **/
2626 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2627 {
2628         struct e1000_hw *hw = &adapter->hw;
2629         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2630
2631         if (adapter->msix_entries) {
2632                 int vector;
2633
2634                 for (vector = 0; vector < adapter->num_vectors; vector++)
2635                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2636         } else {
2637                 ew32(ITR, new_itr);
2638         }
2639 }
2640
2641 /**
2642  * e1000_alloc_queues - Allocate memory for all rings
2643  * @adapter: board private structure to initialize
2644  **/
2645 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2646 {
2647         int size = sizeof(struct e1000_ring);
2648
2649         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2650         if (!adapter->tx_ring)
2651                 goto err;
2652         adapter->tx_ring->count = adapter->tx_ring_count;
2653         adapter->tx_ring->adapter = adapter;
2654
2655         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2656         if (!adapter->rx_ring)
2657                 goto err;
2658         adapter->rx_ring->count = adapter->rx_ring_count;
2659         adapter->rx_ring->adapter = adapter;
2660
2661         return 0;
2662 err:
2663         e_err("Unable to allocate memory for queues\n");
2664         kfree(adapter->rx_ring);
2665         kfree(adapter->tx_ring);
2666         return -ENOMEM;
2667 }
2668
2669 /**
2670  * e1000e_poll - NAPI Rx polling callback
2671  * @napi: struct associated with this polling callback
2672  * @weight: number of packets driver is allowed to process this poll
2673  **/
2674 static int e1000e_poll(struct napi_struct *napi, int weight)
2675 {
2676         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2677                                                      napi);
2678         struct e1000_hw *hw = &adapter->hw;
2679         struct net_device *poll_dev = adapter->netdev;
2680         int tx_cleaned = 1, work_done = 0;
2681
2682         adapter = netdev_priv(poll_dev);
2683
2684         if (!adapter->msix_entries ||
2685             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2686                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2687
2688         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2689
2690         if (!tx_cleaned)
2691                 work_done = weight;
2692
2693         /* If weight not fully consumed, exit the polling mode */
2694         if (work_done < weight) {
2695                 if (adapter->itr_setting & 3)
2696                         e1000_set_itr(adapter);
2697                 napi_complete_done(napi, work_done);
2698                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2699                         if (adapter->msix_entries)
2700                                 ew32(IMS, adapter->rx_ring->ims_val);
2701                         else
2702                                 e1000_irq_enable(adapter);
2703                 }
2704         }
2705
2706         return work_done;
2707 }
2708
2709 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2710                                  __always_unused __be16 proto, u16 vid)
2711 {
2712         struct e1000_adapter *adapter = netdev_priv(netdev);
2713         struct e1000_hw *hw = &adapter->hw;
2714         u32 vfta, index;
2715
2716         /* don't update vlan cookie if already programmed */
2717         if ((adapter->hw.mng_cookie.status &
2718              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2719             (vid == adapter->mng_vlan_id))
2720                 return 0;
2721
2722         /* add VID to filter table */
2723         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2724                 index = (vid >> 5) & 0x7F;
2725                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2726                 vfta |= BIT((vid & 0x1F));
2727                 hw->mac.ops.write_vfta(hw, index, vfta);
2728         }
2729
2730         set_bit(vid, adapter->active_vlans);
2731
2732         return 0;
2733 }
2734
2735 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2736                                   __always_unused __be16 proto, u16 vid)
2737 {
2738         struct e1000_adapter *adapter = netdev_priv(netdev);
2739         struct e1000_hw *hw = &adapter->hw;
2740         u32 vfta, index;
2741
2742         if ((adapter->hw.mng_cookie.status &
2743              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2744             (vid == adapter->mng_vlan_id)) {
2745                 /* release control to f/w */
2746                 e1000e_release_hw_control(adapter);
2747                 return 0;
2748         }
2749
2750         /* remove VID from filter table */
2751         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2752                 index = (vid >> 5) & 0x7F;
2753                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2754                 vfta &= ~BIT((vid & 0x1F));
2755                 hw->mac.ops.write_vfta(hw, index, vfta);
2756         }
2757
2758         clear_bit(vid, adapter->active_vlans);
2759
2760         return 0;
2761 }
2762
2763 /**
2764  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2765  * @adapter: board private structure to initialize
2766  **/
2767 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2768 {
2769         struct net_device *netdev = adapter->netdev;
2770         struct e1000_hw *hw = &adapter->hw;
2771         u32 rctl;
2772
2773         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2774                 /* disable VLAN receive filtering */
2775                 rctl = er32(RCTL);
2776                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2777                 ew32(RCTL, rctl);
2778
2779                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2780                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2781                                                adapter->mng_vlan_id);
2782                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2783                 }
2784         }
2785 }
2786
2787 /**
2788  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2789  * @adapter: board private structure to initialize
2790  **/
2791 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2792 {
2793         struct e1000_hw *hw = &adapter->hw;
2794         u32 rctl;
2795
2796         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2797                 /* enable VLAN receive filtering */
2798                 rctl = er32(RCTL);
2799                 rctl |= E1000_RCTL_VFE;
2800                 rctl &= ~E1000_RCTL_CFIEN;
2801                 ew32(RCTL, rctl);
2802         }
2803 }
2804
2805 /**
2806  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2807  * @adapter: board private structure to initialize
2808  **/
2809 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2810 {
2811         struct e1000_hw *hw = &adapter->hw;
2812         u32 ctrl;
2813
2814         /* disable VLAN tag insert/strip */
2815         ctrl = er32(CTRL);
2816         ctrl &= ~E1000_CTRL_VME;
2817         ew32(CTRL, ctrl);
2818 }
2819
2820 /**
2821  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2822  * @adapter: board private structure to initialize
2823  **/
2824 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2825 {
2826         struct e1000_hw *hw = &adapter->hw;
2827         u32 ctrl;
2828
2829         /* enable VLAN tag insert/strip */
2830         ctrl = er32(CTRL);
2831         ctrl |= E1000_CTRL_VME;
2832         ew32(CTRL, ctrl);
2833 }
2834
2835 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2836 {
2837         struct net_device *netdev = adapter->netdev;
2838         u16 vid = adapter->hw.mng_cookie.vlan_id;
2839         u16 old_vid = adapter->mng_vlan_id;
2840
2841         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2842                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2843                 adapter->mng_vlan_id = vid;
2844         }
2845
2846         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2847                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2848 }
2849
2850 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2851 {
2852         u16 vid;
2853
2854         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2855
2856         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2857             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2858 }
2859
2860 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2861 {
2862         struct e1000_hw *hw = &adapter->hw;
2863         u32 manc, manc2h, mdef, i, j;
2864
2865         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2866                 return;
2867
2868         manc = er32(MANC);
2869
2870         /* enable receiving management packets to the host. this will probably
2871          * generate destination unreachable messages from the host OS, but
2872          * the packets will be handled on SMBUS
2873          */
2874         manc |= E1000_MANC_EN_MNG2HOST;
2875         manc2h = er32(MANC2H);
2876
2877         switch (hw->mac.type) {
2878         default:
2879                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2880                 break;
2881         case e1000_82574:
2882         case e1000_82583:
2883                 /* Check if IPMI pass-through decision filter already exists;
2884                  * if so, enable it.
2885                  */
2886                 for (i = 0, j = 0; i < 8; i++) {
2887                         mdef = er32(MDEF(i));
2888
2889                         /* Ignore filters with anything other than IPMI ports */
2890                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2891                                 continue;
2892
2893                         /* Enable this decision filter in MANC2H */
2894                         if (mdef)
2895                                 manc2h |= BIT(i);
2896
2897                         j |= mdef;
2898                 }
2899
2900                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2901                         break;
2902
2903                 /* Create new decision filter in an empty filter */
2904                 for (i = 0, j = 0; i < 8; i++)
2905                         if (er32(MDEF(i)) == 0) {
2906                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2907                                                E1000_MDEF_PORT_664));
2908                                 manc2h |= BIT(1);
2909                                 j++;
2910                                 break;
2911                         }
2912
2913                 if (!j)
2914                         e_warn("Unable to create IPMI pass-through filter\n");
2915                 break;
2916         }
2917
2918         ew32(MANC2H, manc2h);
2919         ew32(MANC, manc);
2920 }
2921
2922 /**
2923  * e1000_configure_tx - Configure Transmit Unit after Reset
2924  * @adapter: board private structure
2925  *
2926  * Configure the Tx unit of the MAC after a reset.
2927  **/
2928 static void e1000_configure_tx(struct e1000_adapter *adapter)
2929 {
2930         struct e1000_hw *hw = &adapter->hw;
2931         struct e1000_ring *tx_ring = adapter->tx_ring;
2932         u64 tdba;
2933         u32 tdlen, tctl, tarc;
2934
2935         /* Setup the HW Tx Head and Tail descriptor pointers */
2936         tdba = tx_ring->dma;
2937         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2938         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2939         ew32(TDBAH(0), (tdba >> 32));
2940         ew32(TDLEN(0), tdlen);
2941         ew32(TDH(0), 0);
2942         ew32(TDT(0), 0);
2943         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2944         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2945
2946         writel(0, tx_ring->head);
2947         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2948                 e1000e_update_tdt_wa(tx_ring, 0);
2949         else
2950                 writel(0, tx_ring->tail);
2951
2952         /* Set the Tx Interrupt Delay register */
2953         ew32(TIDV, adapter->tx_int_delay);
2954         /* Tx irq moderation */
2955         ew32(TADV, adapter->tx_abs_int_delay);
2956
2957         if (adapter->flags2 & FLAG2_DMA_BURST) {
2958                 u32 txdctl = er32(TXDCTL(0));
2959
2960                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2961                             E1000_TXDCTL_WTHRESH);
2962                 /* set up some performance related parameters to encourage the
2963                  * hardware to use the bus more efficiently in bursts, depends
2964                  * on the tx_int_delay to be enabled,
2965                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2966                  * hthresh = 1 ==> prefetch when one or more available
2967                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2968                  * BEWARE: this seems to work but should be considered first if
2969                  * there are Tx hangs or other Tx related bugs
2970                  */
2971                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2972                 ew32(TXDCTL(0), txdctl);
2973         }
2974         /* erratum work around: set txdctl the same for both queues */
2975         ew32(TXDCTL(1), er32(TXDCTL(0)));
2976
2977         /* Program the Transmit Control Register */
2978         tctl = er32(TCTL);
2979         tctl &= ~E1000_TCTL_CT;
2980         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2981                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2982
2983         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2984                 tarc = er32(TARC(0));
2985                 /* set the speed mode bit, we'll clear it if we're not at
2986                  * gigabit link later
2987                  */
2988 #define SPEED_MODE_BIT BIT(21)
2989                 tarc |= SPEED_MODE_BIT;
2990                 ew32(TARC(0), tarc);
2991         }
2992
2993         /* errata: program both queues to unweighted RR */
2994         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2995                 tarc = er32(TARC(0));
2996                 tarc |= 1;
2997                 ew32(TARC(0), tarc);
2998                 tarc = er32(TARC(1));
2999                 tarc |= 1;
3000                 ew32(TARC(1), tarc);
3001         }
3002
3003         /* Setup Transmit Descriptor Settings for eop descriptor */
3004         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3005
3006         /* only set IDE if we are delaying interrupts using the timers */
3007         if (adapter->tx_int_delay)
3008                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3009
3010         /* enable Report Status bit */
3011         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3012
3013         ew32(TCTL, tctl);
3014
3015         hw->mac.ops.config_collision_dist(hw);
3016
3017         /* SPT and KBL Si errata workaround to avoid data corruption */
3018         if (hw->mac.type == e1000_pch_spt) {
3019                 u32 reg_val;
3020
3021                 reg_val = er32(IOSFPC);
3022                 reg_val |= E1000_RCTL_RDMTS_HEX;
3023                 ew32(IOSFPC, reg_val);
3024
3025                 reg_val = er32(TARC(0));
3026                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3027                  * Dropping the number of outstanding requests from
3028                  * 3 to 2 in order to avoid a buffer overrun.
3029                  */
3030                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3031                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3032                 ew32(TARC(0), reg_val);
3033         }
3034 }
3035
3036 /**
3037  * e1000_setup_rctl - configure the receive control registers
3038  * @adapter: Board private structure
3039  **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044         struct e1000_hw *hw = &adapter->hw;
3045         u32 rctl, rfctl;
3046         u32 pages = 0;
3047
3048         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3049          * If jumbo frames not set, program related MAC/PHY registers
3050          * to h/w defaults
3051          */
3052         if (hw->mac.type >= e1000_pch2lan) {
3053                 s32 ret_val;
3054
3055                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3056                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057                 else
3058                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059
3060                 if (ret_val)
3061                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062         }
3063
3064         /* Program MC offset vector base */
3065         rctl = er32(RCTL);
3066         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070
3071         /* Do not Store bad packets */
3072         rctl &= ~E1000_RCTL_SBP;
3073
3074         /* Enable Long Packet receive */
3075         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076                 rctl &= ~E1000_RCTL_LPE;
3077         else
3078                 rctl |= E1000_RCTL_LPE;
3079
3080         /* Some systems expect that the CRC is included in SMBUS traffic. The
3081          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082          * host memory when this is enabled
3083          */
3084         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085                 rctl |= E1000_RCTL_SECRC;
3086
3087         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089                 u16 phy_data;
3090
3091                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092                 phy_data &= 0xfff8;
3093                 phy_data |= BIT(2);
3094                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095
3096                 e1e_rphy(hw, 22, &phy_data);
3097                 phy_data &= 0x0fff;
3098                 phy_data |= BIT(14);
3099                 e1e_wphy(hw, 0x10, 0x2823);
3100                 e1e_wphy(hw, 0x11, 0x0003);
3101                 e1e_wphy(hw, 22, phy_data);
3102         }
3103
3104         /* Setup buffer sizes */
3105         rctl &= ~E1000_RCTL_SZ_4096;
3106         rctl |= E1000_RCTL_BSEX;
3107         switch (adapter->rx_buffer_len) {
3108         case 2048:
3109         default:
3110                 rctl |= E1000_RCTL_SZ_2048;
3111                 rctl &= ~E1000_RCTL_BSEX;
3112                 break;
3113         case 4096:
3114                 rctl |= E1000_RCTL_SZ_4096;
3115                 break;
3116         case 8192:
3117                 rctl |= E1000_RCTL_SZ_8192;
3118                 break;
3119         case 16384:
3120                 rctl |= E1000_RCTL_SZ_16384;
3121                 break;
3122         }
3123
3124         /* Enable Extended Status in all Receive Descriptors */
3125         rfctl = er32(RFCTL);
3126         rfctl |= E1000_RFCTL_EXTEN;
3127         ew32(RFCTL, rfctl);
3128
3129         /* 82571 and greater support packet-split where the protocol
3130          * header is placed in skb->data and the packet data is
3131          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132          * In the case of a non-split, skb->data is linearly filled,
3133          * followed by the page buffers.  Therefore, skb->data is
3134          * sized to hold the largest protocol header.
3135          *
3136          * allocations using alloc_page take too long for regular MTU
3137          * so only enable packet split for jumbo frames
3138          *
3139          * Using pages when the page size is greater than 16k wastes
3140          * a lot of memory, since we allocate 3 pages at all times
3141          * per packet.
3142          */
3143         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145                 adapter->rx_ps_pages = pages;
3146         else
3147                 adapter->rx_ps_pages = 0;
3148
3149         if (adapter->rx_ps_pages) {
3150                 u32 psrctl = 0;
3151
3152                 /* Enable Packet split descriptors */
3153                 rctl |= E1000_RCTL_DTYP_PS;
3154
3155                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156
3157                 switch (adapter->rx_ps_pages) {
3158                 case 3:
3159                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160                         /* fall-through */
3161                 case 2:
3162                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163                         /* fall-through */
3164                 case 1:
3165                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166                         break;
3167                 }
3168
3169                 ew32(PSRCTL, psrctl);
3170         }
3171
3172         /* This is useful for sniffing bad packets. */
3173         if (adapter->netdev->features & NETIF_F_RXALL) {
3174                 /* UPE and MPE will be handled by normal PROMISC logic
3175                  * in e1000e_set_rx_mode
3176                  */
3177                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3178                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3179                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3180
3181                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3182                           E1000_RCTL_DPF |      /* Allow filtered pause */
3183                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3184                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185                  * and that breaks VLANs.
3186                  */
3187         }
3188
3189         ew32(RCTL, rctl);
3190         /* just started the receive unit, no need to restart */
3191         adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193
3194 /**
3195  * e1000_configure_rx - Configure Receive Unit after Reset
3196  * @adapter: board private structure
3197  *
3198  * Configure the Rx unit of the MAC after a reset.
3199  **/
3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202         struct e1000_hw *hw = &adapter->hw;
3203         struct e1000_ring *rx_ring = adapter->rx_ring;
3204         u64 rdba;
3205         u32 rdlen, rctl, rxcsum, ctrl_ext;
3206
3207         if (adapter->rx_ps_pages) {
3208                 /* this is a 32 byte descriptor */
3209                 rdlen = rx_ring->count *
3210                     sizeof(union e1000_rx_desc_packet_split);
3211                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3212                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217         } else {
3218                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219                 adapter->clean_rx = e1000_clean_rx_irq;
3220                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221         }
3222
3223         /* disable receives while setting up the descriptors */
3224         rctl = er32(RCTL);
3225         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227         e1e_flush();
3228         usleep_range(10000, 20000);
3229
3230         if (adapter->flags2 & FLAG2_DMA_BURST) {
3231                 /* set the writeback threshold (only takes effect if the RDTR
3232                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3233                  * enable prefetching of 0x20 Rx descriptors
3234                  * granularity = 01
3235                  * wthresh = 04,
3236                  * hthresh = 04,
3237                  * pthresh = 0x20
3238                  */
3239                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241         }
3242
3243         /* set the Receive Delay Timer Register */
3244         ew32(RDTR, adapter->rx_int_delay);
3245
3246         /* irq moderation */
3247         ew32(RADV, adapter->rx_abs_int_delay);
3248         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3249                 e1000e_write_itr(adapter, adapter->itr);
3250
3251         ctrl_ext = er32(CTRL_EXT);
3252         /* Auto-Mask interrupts upon ICR access */
3253         ctrl_ext |= E1000_CTRL_EXT_IAME;
3254         ew32(IAM, 0xffffffff);
3255         ew32(CTRL_EXT, ctrl_ext);
3256         e1e_flush();
3257
3258         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3259          * the Base and Length of the Rx Descriptor Ring
3260          */
3261         rdba = rx_ring->dma;
3262         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3263         ew32(RDBAH(0), (rdba >> 32));
3264         ew32(RDLEN(0), rdlen);
3265         ew32(RDH(0), 0);
3266         ew32(RDT(0), 0);
3267         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3268         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3269
3270         writel(0, rx_ring->head);
3271         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3272                 e1000e_update_rdt_wa(rx_ring, 0);
3273         else
3274                 writel(0, rx_ring->tail);
3275
3276         /* Enable Receive Checksum Offload for TCP and UDP */
3277         rxcsum = er32(RXCSUM);
3278         if (adapter->netdev->features & NETIF_F_RXCSUM)
3279                 rxcsum |= E1000_RXCSUM_TUOFL;
3280         else
3281                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3282         ew32(RXCSUM, rxcsum);
3283
3284         /* With jumbo frames, excessive C-state transition latencies result
3285          * in dropped transactions.
3286          */
3287         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3288                 u32 lat =
3289                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3290                      adapter->max_frame_size) * 8 / 1000;
3291
3292                 if (adapter->flags & FLAG_IS_ICH) {
3293                         u32 rxdctl = er32(RXDCTL(0));
3294
3295                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3296                 }
3297
3298                 dev_info(&adapter->pdev->dev,
3299                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3300                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3301         } else {
3302                 pm_qos_update_request(&adapter->pm_qos_req,
3303                                       PM_QOS_DEFAULT_VALUE);
3304         }
3305
3306         /* Enable Receives */
3307         ew32(RCTL, rctl);
3308 }
3309
3310 /**
3311  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312  * @netdev: network interface device structure
3313  *
3314  * Writes multicast address list to the MTA hash table.
3315  * Returns: -ENOMEM on failure
3316  *                0 on no addresses written
3317  *                X on writing X addresses to MTA
3318  */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321         struct e1000_adapter *adapter = netdev_priv(netdev);
3322         struct e1000_hw *hw = &adapter->hw;
3323         struct netdev_hw_addr *ha;
3324         u8 *mta_list;
3325         int i;
3326
3327         if (netdev_mc_empty(netdev)) {
3328                 /* nothing to program, so clear mc list */
3329                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330                 return 0;
3331         }
3332
3333         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334         if (!mta_list)
3335                 return -ENOMEM;
3336
3337         /* update_mc_addr_list expects a packed array of only addresses. */
3338         i = 0;
3339         netdev_for_each_mc_addr(ha, netdev)
3340             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341
3342         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343         kfree(mta_list);
3344
3345         return netdev_mc_count(netdev);
3346 }
3347
3348 /**
3349  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350  * @netdev: network interface device structure
3351  *
3352  * Writes unicast address list to the RAR table.
3353  * Returns: -ENOMEM on failure/insufficient address space
3354  *                0 on no addresses written
3355  *                X on writing X addresses to the RAR table
3356  **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359         struct e1000_adapter *adapter = netdev_priv(netdev);
3360         struct e1000_hw *hw = &adapter->hw;
3361         unsigned int rar_entries;
3362         int count = 0;
3363
3364         rar_entries = hw->mac.ops.rar_get_count(hw);
3365
3366         /* save a rar entry for our hardware address */
3367         rar_entries--;
3368
3369         /* save a rar entry for the LAA workaround */
3370         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371                 rar_entries--;
3372
3373         /* return ENOMEM indicating insufficient memory for addresses */
3374         if (netdev_uc_count(netdev) > rar_entries)
3375                 return -ENOMEM;
3376
3377         if (!netdev_uc_empty(netdev) && rar_entries) {
3378                 struct netdev_hw_addr *ha;
3379
3380                 /* write the addresses in reverse order to avoid write
3381                  * combining
3382                  */
3383                 netdev_for_each_uc_addr(ha, netdev) {
3384                         int ret_val;
3385
3386                         if (!rar_entries)
3387                                 break;
3388                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389                         if (ret_val < 0)
3390                                 return -ENOMEM;
3391                         count++;
3392                 }
3393         }
3394
3395         /* zero out the remaining RAR entries not used above */
3396         for (; rar_entries > 0; rar_entries--) {
3397                 ew32(RAH(rar_entries), 0);
3398                 ew32(RAL(rar_entries), 0);
3399         }
3400         e1e_flush();
3401
3402         return count;
3403 }
3404
3405 /**
3406  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407  * @netdev: network interface device structure
3408  *
3409  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410  * address list or the network interface flags are updated.  This routine is
3411  * responsible for configuring the hardware for proper unicast, multicast,
3412  * promiscuous mode, and all-multi behavior.
3413  **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416         struct e1000_adapter *adapter = netdev_priv(netdev);
3417         struct e1000_hw *hw = &adapter->hw;
3418         u32 rctl;
3419
3420         if (pm_runtime_suspended(netdev->dev.parent))
3421                 return;
3422
3423         /* Check for Promiscuous and All Multicast modes */
3424         rctl = er32(RCTL);
3425
3426         /* clear the affected bits */
3427         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428
3429         if (netdev->flags & IFF_PROMISC) {
3430                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431                 /* Do not hardware filter VLANs in promisc mode */
3432                 e1000e_vlan_filter_disable(adapter);
3433         } else {
3434                 int count;
3435
3436                 if (netdev->flags & IFF_ALLMULTI) {
3437                         rctl |= E1000_RCTL_MPE;
3438                 } else {
3439                         /* Write addresses to the MTA, if the attempt fails
3440                          * then we should just turn on promiscuous mode so
3441                          * that we can at least receive multicast traffic
3442                          */
3443                         count = e1000e_write_mc_addr_list(netdev);
3444                         if (count < 0)
3445                                 rctl |= E1000_RCTL_MPE;
3446                 }
3447                 e1000e_vlan_filter_enable(adapter);
3448                 /* Write addresses to available RAR registers, if there is not
3449                  * sufficient space to store all the addresses then enable
3450                  * unicast promiscuous mode
3451                  */
3452                 count = e1000e_write_uc_addr_list(netdev);
3453                 if (count < 0)
3454                         rctl |= E1000_RCTL_UPE;
3455         }
3456
3457         ew32(RCTL, rctl);
3458
3459         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460                 e1000e_vlan_strip_enable(adapter);
3461         else
3462                 e1000e_vlan_strip_disable(adapter);
3463 }
3464
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467         struct e1000_hw *hw = &adapter->hw;
3468         u32 mrqc, rxcsum;
3469         u32 rss_key[10];
3470         int i;
3471
3472         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473         for (i = 0; i < 10; i++)
3474                 ew32(RSSRK(i), rss_key[i]);
3475
3476         /* Direct all traffic to queue 0 */
3477         for (i = 0; i < 32; i++)
3478                 ew32(RETA(i), 0);
3479
3480         /* Disable raw packet checksumming so that RSS hash is placed in
3481          * descriptor on writeback.
3482          */
3483         rxcsum = er32(RXCSUM);
3484         rxcsum |= E1000_RXCSUM_PCSD;
3485
3486         ew32(RXCSUM, rxcsum);
3487
3488         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490                 E1000_MRQC_RSS_FIELD_IPV6 |
3491                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493
3494         ew32(MRQC, mrqc);
3495 }
3496
3497 /**
3498  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499  * @adapter: board private structure
3500  * @timinca: pointer to returned time increment attributes
3501  *
3502  * Get attributes for incrementing the System Time Register SYSTIML/H at
3503  * the default base frequency, and set the cyclecounter shift value.
3504  **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507         struct e1000_hw *hw = &adapter->hw;
3508         u32 incvalue, incperiod, shift;
3509
3510         /* Make sure clock is enabled on I217/I218/I219  before checking
3511          * the frequency
3512          */
3513         if ((hw->mac.type >= e1000_pch_lpt) &&
3514             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3515             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3516                 u32 fextnvm7 = er32(FEXTNVM7);
3517
3518                 if (!(fextnvm7 & BIT(0))) {
3519                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3520                         e1e_flush();
3521                 }
3522         }
3523
3524         switch (hw->mac.type) {
3525         case e1000_pch2lan:
3526                 /* Stable 96MHz frequency */
3527                 incperiod = INCPERIOD_96MHZ;
3528                 incvalue = INCVALUE_96MHZ;
3529                 shift = INCVALUE_SHIFT_96MHZ;
3530                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3531                 break;
3532         case e1000_pch_lpt:
3533                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3534                         /* Stable 96MHz frequency */
3535                         incperiod = INCPERIOD_96MHZ;
3536                         incvalue = INCVALUE_96MHZ;
3537                         shift = INCVALUE_SHIFT_96MHZ;
3538                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3539                 } else {
3540                         /* Stable 25MHz frequency */
3541                         incperiod = INCPERIOD_25MHZ;
3542                         incvalue = INCVALUE_25MHZ;
3543                         shift = INCVALUE_SHIFT_25MHZ;
3544                         adapter->cc.shift = shift;
3545                 }
3546                 break;
3547         case e1000_pch_spt:
3548                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3549                         /* Stable 24MHz frequency */
3550                         incperiod = INCPERIOD_24MHZ;
3551                         incvalue = INCVALUE_24MHZ;
3552                         shift = INCVALUE_SHIFT_24MHZ;
3553                         adapter->cc.shift = shift;
3554                         break;
3555                 }
3556                 return -EINVAL;
3557         case e1000_pch_cnp:
3558                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3559                         /* Stable 24MHz frequency */
3560                         incperiod = INCPERIOD_24MHZ;
3561                         incvalue = INCVALUE_24MHZ;
3562                         shift = INCVALUE_SHIFT_24MHZ;
3563                         adapter->cc.shift = shift;
3564                 } else {
3565                         /* Stable 38400KHz frequency */
3566                         incperiod = INCPERIOD_38400KHZ;
3567                         incvalue = INCVALUE_38400KHZ;
3568                         shift = INCVALUE_SHIFT_38400KHZ;
3569                         adapter->cc.shift = shift;
3570                 }
3571                 break;
3572         case e1000_82574:
3573         case e1000_82583:
3574                 /* Stable 25MHz frequency */
3575                 incperiod = INCPERIOD_25MHZ;
3576                 incvalue = INCVALUE_25MHZ;
3577                 shift = INCVALUE_SHIFT_25MHZ;
3578                 adapter->cc.shift = shift;
3579                 break;
3580         default:
3581                 return -EINVAL;
3582         }
3583
3584         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3585                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3586
3587         return 0;
3588 }
3589
3590 /**
3591  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3592  * @adapter: board private structure
3593  *
3594  * Outgoing time stamping can be enabled and disabled. Play nice and
3595  * disable it when requested, although it shouldn't cause any overhead
3596  * when no packet needs it. At most one packet in the queue may be
3597  * marked for time stamping, otherwise it would be impossible to tell
3598  * for sure to which packet the hardware time stamp belongs.
3599  *
3600  * Incoming time stamping has to be configured via the hardware filters.
3601  * Not all combinations are supported, in particular event type has to be
3602  * specified. Matching the kind of event packet is not supported, with the
3603  * exception of "all V2 events regardless of level 2 or 4".
3604  **/
3605 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3606                                   struct hwtstamp_config *config)
3607 {
3608         struct e1000_hw *hw = &adapter->hw;
3609         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3610         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3611         u32 rxmtrl = 0;
3612         u16 rxudp = 0;
3613         bool is_l4 = false;
3614         bool is_l2 = false;
3615         u32 regval;
3616
3617         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3618                 return -EINVAL;
3619
3620         /* flags reserved for future extensions - must be zero */
3621         if (config->flags)
3622                 return -EINVAL;
3623
3624         switch (config->tx_type) {
3625         case HWTSTAMP_TX_OFF:
3626                 tsync_tx_ctl = 0;
3627                 break;
3628         case HWTSTAMP_TX_ON:
3629                 break;
3630         default:
3631                 return -ERANGE;
3632         }
3633
3634         switch (config->rx_filter) {
3635         case HWTSTAMP_FILTER_NONE:
3636                 tsync_rx_ctl = 0;
3637                 break;
3638         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3639                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3640                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3641                 is_l4 = true;
3642                 break;
3643         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3644                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3645                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3646                 is_l4 = true;
3647                 break;
3648         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3649                 /* Also time stamps V2 L2 Path Delay Request/Response */
3650                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3651                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3652                 is_l2 = true;
3653                 break;
3654         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3655                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3656                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3657                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3658                 is_l2 = true;
3659                 break;
3660         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3661                 /* Hardware cannot filter just V2 L4 Sync messages;
3662                  * fall-through to V2 (both L2 and L4) Sync.
3663                  */
3664         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3665                 /* Also time stamps V2 Path Delay Request/Response. */
3666                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3667                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3668                 is_l2 = true;
3669                 is_l4 = true;
3670                 break;
3671         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3672                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3673                  * fall-through to V2 (both L2 and L4) Delay Request.
3674                  */
3675         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3676                 /* Also time stamps V2 Path Delay Request/Response. */
3677                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3678                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3679                 is_l2 = true;
3680                 is_l4 = true;
3681                 break;
3682         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3683         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3684                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3685                  * fall-through to all V2 (both L2 and L4) Events.
3686                  */
3687         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3688                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3689                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3690                 is_l2 = true;
3691                 is_l4 = true;
3692                 break;
3693         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3694                 /* For V1, the hardware can only filter Sync messages or
3695                  * Delay Request messages but not both so fall-through to
3696                  * time stamp all packets.
3697                  */
3698         case HWTSTAMP_FILTER_NTP_ALL:
3699         case HWTSTAMP_FILTER_ALL:
3700                 is_l2 = true;
3701                 is_l4 = true;
3702                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3703                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3704                 break;
3705         default:
3706                 return -ERANGE;
3707         }
3708
3709         adapter->hwtstamp_config = *config;
3710
3711         /* enable/disable Tx h/w time stamping */
3712         regval = er32(TSYNCTXCTL);
3713         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3714         regval |= tsync_tx_ctl;
3715         ew32(TSYNCTXCTL, regval);
3716         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3717             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3718                 e_err("Timesync Tx Control register not set as expected\n");
3719                 return -EAGAIN;
3720         }
3721
3722         /* enable/disable Rx h/w time stamping */
3723         regval = er32(TSYNCRXCTL);
3724         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3725         regval |= tsync_rx_ctl;
3726         ew32(TSYNCRXCTL, regval);
3727         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3728                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3729             (regval & (E1000_TSYNCRXCTL_ENABLED |
3730                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3731                 e_err("Timesync Rx Control register not set as expected\n");
3732                 return -EAGAIN;
3733         }
3734
3735         /* L2: define ethertype filter for time stamped packets */
3736         if (is_l2)
3737                 rxmtrl |= ETH_P_1588;
3738
3739         /* define which PTP packets get time stamped */
3740         ew32(RXMTRL, rxmtrl);
3741
3742         /* Filter by destination port */
3743         if (is_l4) {
3744                 rxudp = PTP_EV_PORT;
3745                 cpu_to_be16s(&rxudp);
3746         }
3747         ew32(RXUDP, rxudp);
3748
3749         e1e_flush();
3750
3751         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3752         er32(RXSTMPH);
3753         er32(TXSTMPH);
3754
3755         return 0;
3756 }
3757
3758 /**
3759  * e1000_configure - configure the hardware for Rx and Tx
3760  * @adapter: private board structure
3761  **/
3762 static void e1000_configure(struct e1000_adapter *adapter)
3763 {
3764         struct e1000_ring *rx_ring = adapter->rx_ring;
3765
3766         e1000e_set_rx_mode(adapter->netdev);
3767
3768         e1000_restore_vlan(adapter);
3769         e1000_init_manageability_pt(adapter);
3770
3771         e1000_configure_tx(adapter);
3772
3773         if (adapter->netdev->features & NETIF_F_RXHASH)
3774                 e1000e_setup_rss_hash(adapter);
3775         e1000_setup_rctl(adapter);
3776         e1000_configure_rx(adapter);
3777         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3778 }
3779
3780 /**
3781  * e1000e_power_up_phy - restore link in case the phy was powered down
3782  * @adapter: address of board private structure
3783  *
3784  * The phy may be powered down to save power and turn off link when the
3785  * driver is unloaded and wake on lan is not enabled (among others)
3786  * *** this routine MUST be followed by a call to e1000e_reset ***
3787  **/
3788 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3789 {
3790         if (adapter->hw.phy.ops.power_up)
3791                 adapter->hw.phy.ops.power_up(&adapter->hw);
3792
3793         adapter->hw.mac.ops.setup_link(&adapter->hw);
3794 }
3795
3796 /**
3797  * e1000_power_down_phy - Power down the PHY
3798  *
3799  * Power down the PHY so no link is implied when interface is down.
3800  * The PHY cannot be powered down if management or WoL is active.
3801  */
3802 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3803 {
3804         if (adapter->hw.phy.ops.power_down)
3805                 adapter->hw.phy.ops.power_down(&adapter->hw);
3806 }
3807
3808 /**
3809  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3810  *
3811  * We want to clear all pending descriptors from the TX ring.
3812  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3813  * the data of the next descriptor. We don't care about the data we are about
3814  * to reset the HW.
3815  */
3816 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3817 {
3818         struct e1000_hw *hw = &adapter->hw;
3819         struct e1000_ring *tx_ring = adapter->tx_ring;
3820         struct e1000_tx_desc *tx_desc = NULL;
3821         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3822         u16 size = 512;
3823
3824         tctl = er32(TCTL);
3825         ew32(TCTL, tctl | E1000_TCTL_EN);
3826         tdt = er32(TDT(0));
3827         BUG_ON(tdt != tx_ring->next_to_use);
3828         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3829         tx_desc->buffer_addr = tx_ring->dma;
3830
3831         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3832         tx_desc->upper.data = 0;
3833         /* flush descriptors to memory before notifying the HW */
3834         wmb();
3835         tx_ring->next_to_use++;
3836         if (tx_ring->next_to_use == tx_ring->count)
3837                 tx_ring->next_to_use = 0;
3838         ew32(TDT(0), tx_ring->next_to_use);
3839         mmiowb();
3840         usleep_range(200, 250);
3841 }
3842
3843 /**
3844  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3845  *
3846  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3847  */
3848 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3849 {
3850         u32 rctl, rxdctl;
3851         struct e1000_hw *hw = &adapter->hw;
3852
3853         rctl = er32(RCTL);
3854         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3855         e1e_flush();
3856         usleep_range(100, 150);
3857
3858         rxdctl = er32(RXDCTL(0));
3859         /* zero the lower 14 bits (prefetch and host thresholds) */
3860         rxdctl &= 0xffffc000;
3861
3862         /* update thresholds: prefetch threshold to 31, host threshold to 1
3863          * and make sure the granularity is "descriptors" and not "cache lines"
3864          */
3865         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3866
3867         ew32(RXDCTL(0), rxdctl);
3868         /* momentarily enable the RX ring for the changes to take effect */
3869         ew32(RCTL, rctl | E1000_RCTL_EN);
3870         e1e_flush();
3871         usleep_range(100, 150);
3872         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3873 }
3874
3875 /**
3876  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3877  *
3878  * In i219, the descriptor rings must be emptied before resetting the HW
3879  * or before changing the device state to D3 during runtime (runtime PM).
3880  *
3881  * Failure to do this will cause the HW to enter a unit hang state which can
3882  * only be released by PCI reset on the device
3883  *
3884  */
3885
3886 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3887 {
3888         u16 hang_state;
3889         u32 fext_nvm11, tdlen;
3890         struct e1000_hw *hw = &adapter->hw;
3891
3892         /* First, disable MULR fix in FEXTNVM11 */
3893         fext_nvm11 = er32(FEXTNVM11);
3894         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3895         ew32(FEXTNVM11, fext_nvm11);
3896         /* do nothing if we're not in faulty state, or if the queue is empty */
3897         tdlen = er32(TDLEN(0));
3898         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3899                              &hang_state);
3900         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3901                 return;
3902         e1000_flush_tx_ring(adapter);
3903         /* recheck, maybe the fault is caused by the rx ring */
3904         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3905                              &hang_state);
3906         if (hang_state & FLUSH_DESC_REQUIRED)
3907                 e1000_flush_rx_ring(adapter);
3908 }
3909
3910 /**
3911  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3912  * @adapter: board private structure
3913  *
3914  * When the MAC is reset, all hardware bits for timesync will be reset to the
3915  * default values. This function will restore the settings last in place.
3916  * Since the clock SYSTIME registers are reset, we will simply restore the
3917  * cyclecounter to the kernel real clock time.
3918  **/
3919 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3920 {
3921         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3922         struct e1000_hw *hw = &adapter->hw;
3923         unsigned long flags;
3924         u32 timinca;
3925         s32 ret_val;
3926
3927         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3928                 return;
3929
3930         if (info->adjfreq) {
3931                 /* restore the previous ptp frequency delta */
3932                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3933         } else {
3934                 /* set the default base frequency if no adjustment possible */
3935                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3936                 if (!ret_val)
3937                         ew32(TIMINCA, timinca);
3938         }
3939
3940         if (ret_val) {
3941                 dev_warn(&adapter->pdev->dev,
3942                          "Failed to restore TIMINCA clock rate delta: %d\n",
3943                          ret_val);
3944                 return;
3945         }
3946
3947         /* reset the systim ns time counter */
3948         spin_lock_irqsave(&adapter->systim_lock, flags);
3949         timecounter_init(&adapter->tc, &adapter->cc,
3950                          ktime_to_ns(ktime_get_real()));
3951         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3952
3953         /* restore the previous hwtstamp configuration settings */
3954         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3955 }
3956
3957 /**
3958  * e1000e_reset - bring the hardware into a known good state
3959  *
3960  * This function boots the hardware and enables some settings that
3961  * require a configuration cycle of the hardware - those cannot be
3962  * set/changed during runtime. After reset the device needs to be
3963  * properly configured for Rx, Tx etc.
3964  */
3965 void e1000e_reset(struct e1000_adapter *adapter)
3966 {
3967         struct e1000_mac_info *mac = &adapter->hw.mac;
3968         struct e1000_fc_info *fc = &adapter->hw.fc;
3969         struct e1000_hw *hw = &adapter->hw;
3970         u32 tx_space, min_tx_space, min_rx_space;
3971         u32 pba = adapter->pba;
3972         u16 hwm;
3973
3974         /* reset Packet Buffer Allocation to default */
3975         ew32(PBA, pba);
3976
3977         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3978                 /* To maintain wire speed transmits, the Tx FIFO should be
3979                  * large enough to accommodate two full transmit packets,
3980                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3981                  * the Rx FIFO should be large enough to accommodate at least
3982                  * one full receive packet and is similarly rounded up and
3983                  * expressed in KB.
3984                  */
3985                 pba = er32(PBA);
3986                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3987                 tx_space = pba >> 16;
3988                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3989                 pba &= 0xffff;
3990                 /* the Tx fifo also stores 16 bytes of information about the Tx
3991                  * but don't include ethernet FCS because hardware appends it
3992                  */
3993                 min_tx_space = (adapter->max_frame_size +
3994                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3995                 min_tx_space = ALIGN(min_tx_space, 1024);
3996                 min_tx_space >>= 10;
3997                 /* software strips receive CRC, so leave room for it */
3998                 min_rx_space = adapter->max_frame_size;
3999                 min_rx_space = ALIGN(min_rx_space, 1024);
4000                 min_rx_space >>= 10;
4001
4002                 /* If current Tx allocation is less than the min Tx FIFO size,
4003                  * and the min Tx FIFO size is less than the current Rx FIFO
4004                  * allocation, take space away from current Rx allocation
4005                  */
4006                 if ((tx_space < min_tx_space) &&
4007                     ((min_tx_space - tx_space) < pba)) {
4008                         pba -= min_tx_space - tx_space;
4009
4010                         /* if short on Rx space, Rx wins and must trump Tx
4011                          * adjustment
4012                          */
4013                         if (pba < min_rx_space)
4014                                 pba = min_rx_space;
4015                 }
4016
4017                 ew32(PBA, pba);
4018         }
4019
4020         /* flow control settings
4021          *
4022          * The high water mark must be low enough to fit one full frame
4023          * (or the size used for early receive) above it in the Rx FIFO.
4024          * Set it to the lower of:
4025          * - 90% of the Rx FIFO size, and
4026          * - the full Rx FIFO size minus one full frame
4027          */
4028         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4029                 fc->pause_time = 0xFFFF;
4030         else
4031                 fc->pause_time = E1000_FC_PAUSE_TIME;
4032         fc->send_xon = true;
4033         fc->current_mode = fc->requested_mode;
4034
4035         switch (hw->mac.type) {
4036         case e1000_ich9lan:
4037         case e1000_ich10lan:
4038                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4039                         pba = 14;
4040                         ew32(PBA, pba);
4041                         fc->high_water = 0x2800;
4042                         fc->low_water = fc->high_water - 8;
4043                         break;
4044                 }
4045                 /* fall-through */
4046         default:
4047                 hwm = min(((pba << 10) * 9 / 10),
4048                           ((pba << 10) - adapter->max_frame_size));
4049
4050                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4051                 fc->low_water = fc->high_water - 8;
4052                 break;
4053         case e1000_pchlan:
4054                 /* Workaround PCH LOM adapter hangs with certain network
4055                  * loads.  If hangs persist, try disabling Tx flow control.
4056                  */
4057                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4058                         fc->high_water = 0x3500;
4059                         fc->low_water = 0x1500;
4060                 } else {
4061                         fc->high_water = 0x5000;
4062                         fc->low_water = 0x3000;
4063                 }
4064                 fc->refresh_time = 0x1000;
4065                 break;
4066         case e1000_pch2lan:
4067         case e1000_pch_lpt:
4068         case e1000_pch_spt:
4069         case e1000_pch_cnp:
4070                 fc->refresh_time = 0x0400;
4071
4072                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4073                         fc->high_water = 0x05C20;
4074                         fc->low_water = 0x05048;
4075                         fc->pause_time = 0x0650;
4076                         break;
4077                 }
4078
4079                 pba = 14;
4080                 ew32(PBA, pba);
4081                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4082                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4083                 break;
4084         }
4085
4086         /* Alignment of Tx data is on an arbitrary byte boundary with the
4087          * maximum size per Tx descriptor limited only to the transmit
4088          * allocation of the packet buffer minus 96 bytes with an upper
4089          * limit of 24KB due to receive synchronization limitations.
4090          */
4091         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4092                                        24 << 10);
4093
4094         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095          * fit in receive buffer.
4096          */
4097         if (adapter->itr_setting & 0x3) {
4098                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4099                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4100                                 dev_info(&adapter->pdev->dev,
4101                                          "Interrupt Throttle Rate off\n");
4102                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4103                                 e1000e_write_itr(adapter, 0);
4104                         }
4105                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4106                         dev_info(&adapter->pdev->dev,
4107                                  "Interrupt Throttle Rate on\n");
4108                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4109                         adapter->itr = 20000;
4110                         e1000e_write_itr(adapter, adapter->itr);
4111                 }
4112         }
4113
4114         if (hw->mac.type >= e1000_pch_spt)
4115                 e1000_flush_desc_rings(adapter);
4116         /* Allow time for pending master requests to run */
4117         mac->ops.reset_hw(hw);
4118
4119         /* For parts with AMT enabled, let the firmware know
4120          * that the network interface is in control
4121          */
4122         if (adapter->flags & FLAG_HAS_AMT)
4123                 e1000e_get_hw_control(adapter);
4124
4125         ew32(WUC, 0);
4126
4127         if (mac->ops.init_hw(hw))
4128                 e_err("Hardware Error\n");
4129
4130         e1000_update_mng_vlan(adapter);
4131
4132         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133         ew32(VET, ETH_P_8021Q);
4134
4135         e1000e_reset_adaptive(hw);
4136
4137         /* restore systim and hwtstamp settings */
4138         e1000e_systim_reset(adapter);
4139
4140         /* Set EEE advertisement as appropriate */
4141         if (adapter->flags2 & FLAG2_HAS_EEE) {
4142                 s32 ret_val;
4143                 u16 adv_addr;
4144
4145                 switch (hw->phy.type) {
4146                 case e1000_phy_82579:
4147                         adv_addr = I82579_EEE_ADVERTISEMENT;
4148                         break;
4149                 case e1000_phy_i217:
4150                         adv_addr = I217_EEE_ADVERTISEMENT;
4151                         break;
4152                 default:
4153                         dev_err(&adapter->pdev->dev,
4154                                 "Invalid PHY type setting EEE advertisement\n");
4155                         return;
4156                 }
4157
4158                 ret_val = hw->phy.ops.acquire(hw);
4159                 if (ret_val) {
4160                         dev_err(&adapter->pdev->dev,
4161                                 "EEE advertisement - unable to acquire PHY\n");
4162                         return;
4163                 }
4164
4165                 e1000_write_emi_reg_locked(hw, adv_addr,
4166                                            hw->dev_spec.ich8lan.eee_disable ?
4167                                            0 : adapter->eee_advert);
4168
4169                 hw->phy.ops.release(hw);
4170         }
4171
4172         if (!netif_running(adapter->netdev) &&
4173             !test_bit(__E1000_TESTING, &adapter->state))
4174                 e1000_power_down_phy(adapter);
4175
4176         e1000_get_phy_info(hw);
4177
4178         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4179             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4180                 u16 phy_data = 0;
4181                 /* speed up time to link by disabling smart power down, ignore
4182                  * the return value of this function because there is nothing
4183                  * different we would do if it failed
4184                  */
4185                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4186                 phy_data &= ~IGP02E1000_PM_SPD;
4187                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4188         }
4189         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4190                 u32 reg;
4191
4192                 /* Fextnvm7 @ 0xe4[2] = 1 */
4193                 reg = er32(FEXTNVM7);
4194                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4195                 ew32(FEXTNVM7, reg);
4196                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197                 reg = er32(FEXTNVM9);
4198                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4199                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4200                 ew32(FEXTNVM9, reg);
4201         }
4202
4203 }
4204
4205 /**
4206  * e1000e_trigger_lsc - trigger an LSC interrupt
4207  * @adapter: 
4208  *
4209  * Fire a link status change interrupt to start the watchdog.
4210  **/
4211 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4212 {
4213         struct e1000_hw *hw = &adapter->hw;
4214
4215         if (adapter->msix_entries)
4216                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4217         else
4218                 ew32(ICS, E1000_ICS_LSC);
4219 }
4220
4221 void e1000e_up(struct e1000_adapter *adapter)
4222 {
4223         /* hardware has been reset, we need to reload some things */
4224         e1000_configure(adapter);
4225
4226         clear_bit(__E1000_DOWN, &adapter->state);
4227
4228         if (adapter->msix_entries)
4229                 e1000_configure_msix(adapter);
4230         e1000_irq_enable(adapter);
4231
4232         netif_start_queue(adapter->netdev);
4233
4234         e1000e_trigger_lsc(adapter);
4235 }
4236
4237 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4238 {
4239         struct e1000_hw *hw = &adapter->hw;
4240
4241         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4242                 return;
4243
4244         /* flush pending descriptor writebacks to memory */
4245         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247
4248         /* execute the writes immediately */
4249         e1e_flush();
4250
4251         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252          * write is successful
4253          */
4254         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256
4257         /* execute the writes immediately */
4258         e1e_flush();
4259 }
4260
4261 static void e1000e_update_stats(struct e1000_adapter *adapter);
4262
4263 /**
4264  * e1000e_down - quiesce the device and optionally reset the hardware
4265  * @adapter: board private structure
4266  * @reset: boolean flag to reset the hardware or not
4267  */
4268 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4269 {
4270         struct net_device *netdev = adapter->netdev;
4271         struct e1000_hw *hw = &adapter->hw;
4272         u32 tctl, rctl;
4273
4274         /* signal that we're down so the interrupt handler does not
4275          * reschedule our watchdog timer
4276          */
4277         set_bit(__E1000_DOWN, &adapter->state);
4278
4279         netif_carrier_off(netdev);
4280
4281         /* disable receives in the hardware */
4282         rctl = er32(RCTL);
4283         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4284                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4285         /* flush and sleep below */
4286
4287         netif_stop_queue(netdev);
4288
4289         /* disable transmits in the hardware */
4290         tctl = er32(TCTL);
4291         tctl &= ~E1000_TCTL_EN;
4292         ew32(TCTL, tctl);
4293
4294         /* flush both disables and wait for them to finish */
4295         e1e_flush();
4296         usleep_range(10000, 20000);
4297
4298         e1000_irq_disable(adapter);
4299
4300         napi_synchronize(&adapter->napi);
4301
4302         del_timer_sync(&adapter->watchdog_timer);
4303         del_timer_sync(&adapter->phy_info_timer);
4304
4305         spin_lock(&adapter->stats64_lock);
4306         e1000e_update_stats(adapter);
4307         spin_unlock(&adapter->stats64_lock);
4308
4309         e1000e_flush_descriptors(adapter);
4310
4311         adapter->link_speed = 0;
4312         adapter->link_duplex = 0;
4313
4314         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4315         if ((hw->mac.type >= e1000_pch2lan) &&
4316             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4317             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4318                 e_dbg("failed to disable jumbo frame workaround mode\n");
4319
4320         if (!pci_channel_offline(adapter->pdev)) {
4321                 if (reset)
4322                         e1000e_reset(adapter);
4323                 else if (hw->mac.type >= e1000_pch_spt)
4324                         e1000_flush_desc_rings(adapter);
4325         }
4326         e1000_clean_tx_ring(adapter->tx_ring);
4327         e1000_clean_rx_ring(adapter->rx_ring);
4328 }
4329
4330 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4331 {
4332         might_sleep();
4333         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4334                 usleep_range(1000, 2000);
4335         e1000e_down(adapter, true);
4336         e1000e_up(adapter);
4337         clear_bit(__E1000_RESETTING, &adapter->state);
4338 }
4339
4340 /**
4341  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342  * @hw: pointer to the HW structure
4343  * @systim: time value read, sanitized and returned
4344  *
4345  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4346  * check to see that the time is incrementing at a reasonable
4347  * rate and is a multiple of incvalue.
4348  **/
4349 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4350 {
4351         u64 time_delta, rem, temp;
4352         u64 systim_next;
4353         u32 incvalue;
4354         int i;
4355
4356         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4357         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4358                 /* latch SYSTIMH on read of SYSTIML */
4359                 systim_next = (u64)er32(SYSTIML);
4360                 systim_next |= (u64)er32(SYSTIMH) << 32;
4361
4362                 time_delta = systim_next - systim;
4363                 temp = time_delta;
4364                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4365                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4366
4367                 systim = systim_next;
4368
4369                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4370                         break;
4371         }
4372
4373         return systim;
4374 }
4375
4376 /**
4377  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4378  * @cc: cyclecounter structure
4379  **/
4380 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4381 {
4382         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4383                                                      cc);
4384         struct e1000_hw *hw = &adapter->hw;
4385         u32 systimel, systimeh;
4386         u64 systim;
4387         /* SYSTIMH latching upon SYSTIML read does not work well.
4388          * This means that if SYSTIML overflows after we read it but before
4389          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390          * will experience a huge non linear increment in the systime value
4391          * to fix that we test for overflow and if true, we re-read systime.
4392          */
4393         systimel = er32(SYSTIML);
4394         systimeh = er32(SYSTIMH);
4395         /* Is systimel is so large that overflow is possible? */
4396         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4397                 u32 systimel_2 = er32(SYSTIML);
4398                 if (systimel > systimel_2) {
4399                         /* There was an overflow, read again SYSTIMH, and use
4400                          * systimel_2
4401                          */
4402                         systimeh = er32(SYSTIMH);
4403                         systimel = systimel_2;
4404                 }
4405         }
4406         systim = (u64)systimel;
4407         systim |= (u64)systimeh << 32;
4408
4409         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4410                 systim = e1000e_sanitize_systim(hw, systim);
4411
4412         return systim;
4413 }
4414
4415 /**
4416  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4417  * @adapter: board private structure to initialize
4418  *
4419  * e1000_sw_init initializes the Adapter private data structure.
4420  * Fields are initialized based on PCI device information and
4421  * OS network device settings (MTU size).
4422  **/
4423 static int e1000_sw_init(struct e1000_adapter *adapter)
4424 {
4425         struct net_device *netdev = adapter->netdev;
4426
4427         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4428         adapter->rx_ps_bsize0 = 128;
4429         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4430         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4431         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4432         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4433
4434         spin_lock_init(&adapter->stats64_lock);
4435
4436         e1000e_set_interrupt_capability(adapter);
4437
4438         if (e1000_alloc_queues(adapter))
4439                 return -ENOMEM;
4440
4441         /* Setup hardware time stamping cyclecounter */
4442         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4443                 adapter->cc.read = e1000e_cyclecounter_read;
4444                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4445                 adapter->cc.mult = 1;
4446                 /* cc.shift set in e1000e_get_base_tininca() */
4447
4448                 spin_lock_init(&adapter->systim_lock);
4449                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4450         }
4451
4452         /* Explicitly disable IRQ since the NIC can be in any state. */
4453         e1000_irq_disable(adapter);
4454
4455         set_bit(__E1000_DOWN, &adapter->state);
4456         return 0;
4457 }
4458
4459 /**
4460  * e1000_intr_msi_test - Interrupt Handler
4461  * @irq: interrupt number
4462  * @data: pointer to a network interface device structure
4463  **/
4464 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4465 {
4466         struct net_device *netdev = data;
4467         struct e1000_adapter *adapter = netdev_priv(netdev);
4468         struct e1000_hw *hw = &adapter->hw;
4469         u32 icr = er32(ICR);
4470
4471         e_dbg("icr is %08X\n", icr);
4472         if (icr & E1000_ICR_RXSEQ) {
4473                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4474                 /* Force memory writes to complete before acknowledging the
4475                  * interrupt is handled.
4476                  */
4477                 wmb();
4478         }
4479
4480         return IRQ_HANDLED;
4481 }
4482
4483 /**
4484  * e1000_test_msi_interrupt - Returns 0 for successful test
4485  * @adapter: board private struct
4486  *
4487  * code flow taken from tg3.c
4488  **/
4489 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4490 {
4491         struct net_device *netdev = adapter->netdev;
4492         struct e1000_hw *hw = &adapter->hw;
4493         int err;
4494
4495         /* poll_enable hasn't been called yet, so don't need disable */
4496         /* clear any pending events */
4497         er32(ICR);
4498
4499         /* free the real vector and request a test handler */
4500         e1000_free_irq(adapter);
4501         e1000e_reset_interrupt_capability(adapter);
4502
4503         /* Assume that the test fails, if it succeeds then the test
4504          * MSI irq handler will unset this flag
4505          */
4506         adapter->flags |= FLAG_MSI_TEST_FAILED;
4507
4508         err = pci_enable_msi(adapter->pdev);
4509         if (err)
4510                 goto msi_test_failed;
4511
4512         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4513                           netdev->name, netdev);
4514         if (err) {
4515                 pci_disable_msi(adapter->pdev);
4516                 goto msi_test_failed;
4517         }
4518
4519         /* Force memory writes to complete before enabling and firing an
4520          * interrupt.
4521          */
4522         wmb();
4523
4524         e1000_irq_enable(adapter);
4525
4526         /* fire an unusual interrupt on the test handler */
4527         ew32(ICS, E1000_ICS_RXSEQ);
4528         e1e_flush();
4529         msleep(100);
4530
4531         e1000_irq_disable(adapter);
4532
4533         rmb();                  /* read flags after interrupt has been fired */
4534
4535         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4536                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4537                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4538         } else {
4539                 e_dbg("MSI interrupt test succeeded!\n");
4540         }
4541
4542         free_irq(adapter->pdev->irq, netdev);
4543         pci_disable_msi(adapter->pdev);
4544
4545 msi_test_failed:
4546         e1000e_set_interrupt_capability(adapter);
4547         return e1000_request_irq(adapter);
4548 }
4549
4550 /**
4551  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4552  * @adapter: board private struct
4553  *
4554  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4555  **/
4556 static int e1000_test_msi(struct e1000_adapter *adapter)
4557 {
4558         int err;
4559         u16 pci_cmd;
4560
4561         if (!(adapter->flags & FLAG_MSI_ENABLED))
4562                 return 0;
4563
4564         /* disable SERR in case the MSI write causes a master abort */
4565         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4566         if (pci_cmd & PCI_COMMAND_SERR)
4567                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4568                                       pci_cmd & ~PCI_COMMAND_SERR);
4569
4570         err = e1000_test_msi_interrupt(adapter);
4571
4572         /* re-enable SERR */
4573         if (pci_cmd & PCI_COMMAND_SERR) {
4574                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4575                 pci_cmd |= PCI_COMMAND_SERR;
4576                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4577         }
4578
4579         return err;
4580 }
4581
4582 /**
4583  * e1000e_open - Called when a network interface is made active
4584  * @netdev: network interface device structure
4585  *
4586  * Returns 0 on success, negative value on failure
4587  *
4588  * The open entry point is called when a network interface is made
4589  * active by the system (IFF_UP).  At this point all resources needed
4590  * for transmit and receive operations are allocated, the interrupt
4591  * handler is registered with the OS, the watchdog timer is started,
4592  * and the stack is notified that the interface is ready.
4593  **/
4594 int e1000e_open(struct net_device *netdev)
4595 {
4596         struct e1000_adapter *adapter = netdev_priv(netdev);
4597         struct e1000_hw *hw = &adapter->hw;
4598         struct pci_dev *pdev = adapter->pdev;
4599         int err;
4600
4601         /* disallow open during test */
4602         if (test_bit(__E1000_TESTING, &adapter->state))
4603                 return -EBUSY;
4604
4605         pm_runtime_get_sync(&pdev->dev);
4606
4607         netif_carrier_off(netdev);
4608
4609         /* allocate transmit descriptors */
4610         err = e1000e_setup_tx_resources(adapter->tx_ring);
4611         if (err)
4612                 goto err_setup_tx;
4613
4614         /* allocate receive descriptors */
4615         err = e1000e_setup_rx_resources(adapter->rx_ring);
4616         if (err)
4617                 goto err_setup_rx;
4618
4619         /* If AMT is enabled, let the firmware know that the network
4620          * interface is now open and reset the part to a known state.
4621          */
4622         if (adapter->flags & FLAG_HAS_AMT) {
4623                 e1000e_get_hw_control(adapter);
4624                 e1000e_reset(adapter);
4625         }
4626
4627         e1000e_power_up_phy(adapter);
4628
4629         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4630         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4631                 e1000_update_mng_vlan(adapter);
4632
4633         /* DMA latency requirement to workaround jumbo issue */
4634         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4635                            PM_QOS_DEFAULT_VALUE);
4636
4637         /* before we allocate an interrupt, we must be ready to handle it.
4638          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4639          * as soon as we call pci_request_irq, so we have to setup our
4640          * clean_rx handler before we do so.
4641          */
4642         e1000_configure(adapter);
4643
4644         err = e1000_request_irq(adapter);
4645         if (err)
4646                 goto err_req_irq;
4647
4648         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4649          * ignore e1000e MSI messages, which means we need to test our MSI
4650          * interrupt now
4651          */
4652         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4653                 err = e1000_test_msi(adapter);
4654                 if (err) {
4655                         e_err("Interrupt allocation failed\n");
4656                         goto err_req_irq;
4657                 }
4658         }
4659
4660         /* From here on the code is the same as e1000e_up() */
4661         clear_bit(__E1000_DOWN, &adapter->state);
4662
4663         napi_enable(&adapter->napi);
4664
4665         e1000_irq_enable(adapter);
4666
4667         adapter->tx_hang_recheck = false;
4668         netif_start_queue(netdev);
4669
4670         hw->mac.get_link_status = true;
4671         pm_runtime_put(&pdev->dev);
4672
4673         e1000e_trigger_lsc(adapter);
4674
4675         return 0;
4676
4677 err_req_irq:
4678         pm_qos_remove_request(&adapter->pm_qos_req);
4679         e1000e_release_hw_control(adapter);
4680         e1000_power_down_phy(adapter);
4681         e1000e_free_rx_resources(adapter->rx_ring);
4682 err_setup_rx:
4683         e1000e_free_tx_resources(adapter->tx_ring);
4684 err_setup_tx:
4685         e1000e_reset(adapter);
4686         pm_runtime_put_sync(&pdev->dev);
4687
4688         return err;
4689 }
4690
4691 /**
4692  * e1000e_close - Disables a network interface
4693  * @netdev: network interface device structure
4694  *
4695  * Returns 0, this is not allowed to fail
4696  *
4697  * The close entry point is called when an interface is de-activated
4698  * by the OS.  The hardware is still under the drivers control, but
4699  * needs to be disabled.  A global MAC reset is issued to stop the
4700  * hardware, and all transmit and receive resources are freed.
4701  **/
4702 int e1000e_close(struct net_device *netdev)
4703 {
4704         struct e1000_adapter *adapter = netdev_priv(netdev);
4705         struct pci_dev *pdev = adapter->pdev;
4706         int count = E1000_CHECK_RESET_COUNT;
4707
4708         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4709                 usleep_range(10000, 20000);
4710
4711         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4712
4713         pm_runtime_get_sync(&pdev->dev);
4714
4715         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4716                 e1000e_down(adapter, true);
4717                 e1000_free_irq(adapter);
4718
4719                 /* Link status message must follow this format */
4720                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4721         }
4722
4723         napi_disable(&adapter->napi);
4724
4725         e1000e_free_tx_resources(adapter->tx_ring);
4726         e1000e_free_rx_resources(adapter->rx_ring);
4727
4728         /* kill manageability vlan ID if supported, but not if a vlan with
4729          * the same ID is registered on the host OS (let 8021q kill it)
4730          */
4731         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4732                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4733                                        adapter->mng_vlan_id);
4734
4735         /* If AMT is enabled, let the firmware know that the network
4736          * interface is now closed
4737          */
4738         if ((adapter->flags & FLAG_HAS_AMT) &&
4739             !test_bit(__E1000_TESTING, &adapter->state))
4740                 e1000e_release_hw_control(adapter);
4741
4742         pm_qos_remove_request(&adapter->pm_qos_req);
4743
4744         pm_runtime_put_sync(&pdev->dev);
4745
4746         return 0;
4747 }
4748
4749 /**
4750  * e1000_set_mac - Change the Ethernet Address of the NIC
4751  * @netdev: network interface device structure
4752  * @p: pointer to an address structure
4753  *
4754  * Returns 0 on success, negative on failure
4755  **/
4756 static int e1000_set_mac(struct net_device *netdev, void *p)
4757 {
4758         struct e1000_adapter *adapter = netdev_priv(netdev);
4759         struct e1000_hw *hw = &adapter->hw;
4760         struct sockaddr *addr = p;
4761
4762         if (!is_valid_ether_addr(addr->sa_data))
4763                 return -EADDRNOTAVAIL;
4764
4765         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4766         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4767
4768         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4769
4770         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4771                 /* activate the work around */
4772                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4773
4774                 /* Hold a copy of the LAA in RAR[14] This is done so that
4775                  * between the time RAR[0] gets clobbered  and the time it
4776                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4777                  * of the RARs and no incoming packets directed to this port
4778                  * are dropped. Eventually the LAA will be in RAR[0] and
4779                  * RAR[14]
4780                  */
4781                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4782                                     adapter->hw.mac.rar_entry_count - 1);
4783         }
4784
4785         return 0;
4786 }
4787
4788 /**
4789  * e1000e_update_phy_task - work thread to update phy
4790  * @work: pointer to our work struct
4791  *
4792  * this worker thread exists because we must acquire a
4793  * semaphore to read the phy, which we could msleep while
4794  * waiting for it, and we can't msleep in a timer.
4795  **/
4796 static void e1000e_update_phy_task(struct work_struct *work)
4797 {
4798         struct e1000_adapter *adapter = container_of(work,
4799                                                      struct e1000_adapter,
4800                                                      update_phy_task);
4801         struct e1000_hw *hw = &adapter->hw;
4802
4803         if (test_bit(__E1000_DOWN, &adapter->state))
4804                 return;
4805
4806         e1000_get_phy_info(hw);
4807
4808         /* Enable EEE on 82579 after link up */
4809         if (hw->phy.type >= e1000_phy_82579)
4810                 e1000_set_eee_pchlan(hw);
4811 }
4812
4813 /**
4814  * e1000_update_phy_info - timre call-back to update PHY info
4815  * @data: pointer to adapter cast into an unsigned long
4816  *
4817  * Need to wait a few seconds after link up to get diagnostic information from
4818  * the phy
4819  **/
4820 static void e1000_update_phy_info(struct timer_list *t)
4821 {
4822         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4823
4824         if (test_bit(__E1000_DOWN, &adapter->state))
4825                 return;
4826
4827         schedule_work(&adapter->update_phy_task);
4828 }
4829
4830 /**
4831  * e1000e_update_phy_stats - Update the PHY statistics counters
4832  * @adapter: board private structure
4833  *
4834  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4835  **/
4836 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4837 {
4838         struct e1000_hw *hw = &adapter->hw;
4839         s32 ret_val;
4840         u16 phy_data;
4841
4842         ret_val = hw->phy.ops.acquire(hw);
4843         if (ret_val)
4844                 return;
4845
4846         /* A page set is expensive so check if already on desired page.
4847          * If not, set to the page with the PHY status registers.
4848          */
4849         hw->phy.addr = 1;
4850         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4851                                            &phy_data);
4852         if (ret_val)
4853                 goto release;
4854         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4855                 ret_val = hw->phy.ops.set_page(hw,
4856                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4857                 if (ret_val)
4858                         goto release;
4859         }
4860
4861         /* Single Collision Count */
4862         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4863         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4864         if (!ret_val)
4865                 adapter->stats.scc += phy_data;
4866
4867         /* Excessive Collision Count */
4868         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4869         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4870         if (!ret_val)
4871                 adapter->stats.ecol += phy_data;
4872
4873         /* Multiple Collision Count */
4874         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4875         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4876         if (!ret_val)
4877                 adapter->stats.mcc += phy_data;
4878
4879         /* Late Collision Count */
4880         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4881         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4882         if (!ret_val)
4883                 adapter->stats.latecol += phy_data;
4884
4885         /* Collision Count - also used for adaptive IFS */
4886         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4887         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4888         if (!ret_val)
4889                 hw->mac.collision_delta = phy_data;
4890
4891         /* Defer Count */
4892         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4893         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4894         if (!ret_val)
4895                 adapter->stats.dc += phy_data;
4896
4897         /* Transmit with no CRS */
4898         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4899         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4900         if (!ret_val)
4901                 adapter->stats.tncrs += phy_data;
4902
4903 release:
4904         hw->phy.ops.release(hw);
4905 }
4906
4907 /**
4908  * e1000e_update_stats - Update the board statistics counters
4909  * @adapter: board private structure
4910  **/
4911 static void e1000e_update_stats(struct e1000_adapter *adapter)
4912 {
4913         struct net_device *netdev = adapter->netdev;
4914         struct e1000_hw *hw = &adapter->hw;
4915         struct pci_dev *pdev = adapter->pdev;
4916
4917         /* Prevent stats update while adapter is being reset, or if the pci
4918          * connection is down.
4919          */
4920         if (adapter->link_speed == 0)
4921                 return;
4922         if (pci_channel_offline(pdev))
4923                 return;
4924
4925         adapter->stats.crcerrs += er32(CRCERRS);
4926         adapter->stats.gprc += er32(GPRC);
4927         adapter->stats.gorc += er32(GORCL);
4928         er32(GORCH);            /* Clear gorc */
4929         adapter->stats.bprc += er32(BPRC);
4930         adapter->stats.mprc += er32(MPRC);
4931         adapter->stats.roc += er32(ROC);
4932
4933         adapter->stats.mpc += er32(MPC);
4934
4935         /* Half-duplex statistics */
4936         if (adapter->link_duplex == HALF_DUPLEX) {
4937                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4938                         e1000e_update_phy_stats(adapter);
4939                 } else {
4940                         adapter->stats.scc += er32(SCC);
4941                         adapter->stats.ecol += er32(ECOL);
4942                         adapter->stats.mcc += er32(MCC);
4943                         adapter->stats.latecol += er32(LATECOL);
4944                         adapter->stats.dc += er32(DC);
4945
4946                         hw->mac.collision_delta = er32(COLC);
4947
4948                         if ((hw->mac.type != e1000_82574) &&
4949                             (hw->mac.type != e1000_82583))
4950                                 adapter->stats.tncrs += er32(TNCRS);
4951                 }
4952                 adapter->stats.colc += hw->mac.collision_delta;
4953         }
4954
4955         adapter->stats.xonrxc += er32(XONRXC);
4956         adapter->stats.xontxc += er32(XONTXC);
4957         adapter->stats.xoffrxc += er32(XOFFRXC);
4958         adapter->stats.xofftxc += er32(XOFFTXC);
4959         adapter->stats.gptc += er32(GPTC);
4960         adapter->stats.gotc += er32(GOTCL);
4961         er32(GOTCH);            /* Clear gotc */
4962         adapter->stats.rnbc += er32(RNBC);
4963         adapter->stats.ruc += er32(RUC);
4964
4965         adapter->stats.mptc += er32(MPTC);
4966         adapter->stats.bptc += er32(BPTC);
4967
4968         /* used for adaptive IFS */
4969
4970         hw->mac.tx_packet_delta = er32(TPT);
4971         adapter->stats.tpt += hw->mac.tx_packet_delta;
4972
4973         adapter->stats.algnerrc += er32(ALGNERRC);
4974         adapter->stats.rxerrc += er32(RXERRC);
4975         adapter->stats.cexterr += er32(CEXTERR);
4976         adapter->stats.tsctc += er32(TSCTC);
4977         adapter->stats.tsctfc += er32(TSCTFC);
4978
4979         /* Fill out the OS statistics structure */
4980         netdev->stats.multicast = adapter->stats.mprc;
4981         netdev->stats.collisions = adapter->stats.colc;
4982
4983         /* Rx Errors */
4984
4985         /* RLEC on some newer hardware can be incorrect so build
4986          * our own version based on RUC and ROC
4987          */
4988         netdev->stats.rx_errors = adapter->stats.rxerrc +
4989             adapter->stats.crcerrs + adapter->stats.algnerrc +
4990             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4991         netdev->stats.rx_length_errors = adapter->stats.ruc +
4992             adapter->stats.roc;
4993         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4994         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4995         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4996
4997         /* Tx Errors */
4998         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4999         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5000         netdev->stats.tx_window_errors = adapter->stats.latecol;
5001         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5002
5003         /* Tx Dropped needs to be maintained elsewhere */
5004
5005         /* Management Stats */
5006         adapter->stats.mgptc += er32(MGTPTC);
5007         adapter->stats.mgprc += er32(MGTPRC);
5008         adapter->stats.mgpdc += er32(MGTPDC);
5009
5010         /* Correctable ECC Errors */
5011         if (hw->mac.type >= e1000_pch_lpt) {
5012                 u32 pbeccsts = er32(PBECCSTS);
5013
5014                 adapter->corr_errors +=
5015                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5016                 adapter->uncorr_errors +=
5017                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5018                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5019         }
5020 }
5021
5022 /**
5023  * e1000_phy_read_status - Update the PHY register status snapshot
5024  * @adapter: board private structure
5025  **/
5026 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5027 {
5028         struct e1000_hw *hw = &adapter->hw;
5029         struct e1000_phy_regs *phy = &adapter->phy_regs;
5030
5031         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5032             (er32(STATUS) & E1000_STATUS_LU) &&
5033             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5034                 int ret_val;
5035
5036                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5037                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5038                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5039                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5040                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5041                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5042                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5043                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5044                 if (ret_val)
5045                         e_warn("Error reading PHY register\n");
5046         } else {
5047                 /* Do not read PHY registers if link is not up
5048                  * Set values to typical power-on defaults
5049                  */
5050                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5051                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5052                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5053                              BMSR_ERCAP);
5054                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5055                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5056                 phy->lpa = 0;
5057                 phy->expansion = EXPANSION_ENABLENPAGE;
5058                 phy->ctrl1000 = ADVERTISE_1000FULL;
5059                 phy->stat1000 = 0;
5060                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5061         }
5062 }
5063
5064 static void e1000_print_link_info(struct e1000_adapter *adapter)
5065 {
5066         struct e1000_hw *hw = &adapter->hw;
5067         u32 ctrl = er32(CTRL);
5068
5069         /* Link status message must follow this format for user tools */
5070         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5071                 adapter->netdev->name, adapter->link_speed,
5072                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5073                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5074                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5075                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5076 }
5077
5078 static bool e1000e_has_link(struct e1000_adapter *adapter)
5079 {
5080         struct e1000_hw *hw = &adapter->hw;
5081         bool link_active = false;
5082         s32 ret_val = 0;
5083
5084         /* get_link_status is set on LSC (link status) interrupt or
5085          * Rx sequence error interrupt.  get_link_status will stay
5086          * true until the check_for_link establishes link
5087          * for copper adapters ONLY
5088          */
5089         switch (hw->phy.media_type) {
5090         case e1000_media_type_copper:
5091                 if (hw->mac.get_link_status) {
5092                         ret_val = hw->mac.ops.check_for_link(hw);
5093                         link_active = !hw->mac.get_link_status;
5094                 } else {
5095                         link_active = true;
5096                 }
5097                 break;
5098         case e1000_media_type_fiber:
5099                 ret_val = hw->mac.ops.check_for_link(hw);
5100                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5101                 break;
5102         case e1000_media_type_internal_serdes:
5103                 ret_val = hw->mac.ops.check_for_link(hw);
5104                 link_active = hw->mac.serdes_has_link;
5105                 break;
5106         default:
5107         case e1000_media_type_unknown:
5108                 break;
5109         }
5110
5111         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5112             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5113                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5114                 e_info("Gigabit has been disabled, downgrading speed\n");
5115         }
5116
5117         return link_active;
5118 }
5119
5120 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5121 {
5122         /* make sure the receive unit is started */
5123         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5124             (adapter->flags & FLAG_RESTART_NOW)) {
5125                 struct e1000_hw *hw = &adapter->hw;
5126                 u32 rctl = er32(RCTL);
5127
5128                 ew32(RCTL, rctl | E1000_RCTL_EN);
5129                 adapter->flags &= ~FLAG_RESTART_NOW;
5130         }
5131 }
5132
5133 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5134 {
5135         struct e1000_hw *hw = &adapter->hw;
5136
5137         /* With 82574 controllers, PHY needs to be checked periodically
5138          * for hung state and reset, if two calls return true
5139          */
5140         if (e1000_check_phy_82574(hw))
5141                 adapter->phy_hang_count++;
5142         else
5143                 adapter->phy_hang_count = 0;
5144
5145         if (adapter->phy_hang_count > 1) {
5146                 adapter->phy_hang_count = 0;
5147                 e_dbg("PHY appears hung - resetting\n");
5148                 schedule_work(&adapter->reset_task);
5149         }
5150 }
5151
5152 /**
5153  * e1000_watchdog - Timer Call-back
5154  * @data: pointer to adapter cast into an unsigned long
5155  **/
5156 static void e1000_watchdog(struct timer_list *t)
5157 {
5158         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5159
5160         /* Do the rest outside of interrupt context */
5161         schedule_work(&adapter->watchdog_task);
5162
5163         /* TODO: make this use queue_delayed_work() */
5164 }
5165
5166 static void e1000_watchdog_task(struct work_struct *work)
5167 {
5168         struct e1000_adapter *adapter = container_of(work,
5169                                                      struct e1000_adapter,
5170                                                      watchdog_task);
5171         struct net_device *netdev = adapter->netdev;
5172         struct e1000_mac_info *mac = &adapter->hw.mac;
5173         struct e1000_phy_info *phy = &adapter->hw.phy;
5174         struct e1000_ring *tx_ring = adapter->tx_ring;
5175         struct e1000_hw *hw = &adapter->hw;
5176         u32 link, tctl;
5177
5178         if (test_bit(__E1000_DOWN, &adapter->state))
5179                 return;
5180
5181         link = e1000e_has_link(adapter);
5182         if ((netif_carrier_ok(netdev)) && link) {
5183                 /* Cancel scheduled suspend requests. */
5184                 pm_runtime_resume(netdev->dev.parent);
5185
5186                 e1000e_enable_receives(adapter);
5187                 goto link_up;
5188         }
5189
5190         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5191             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5192                 e1000_update_mng_vlan(adapter);
5193
5194         if (link) {
5195                 if (!netif_carrier_ok(netdev)) {
5196                         bool txb2b = true;
5197
5198                         /* Cancel scheduled suspend requests. */
5199                         pm_runtime_resume(netdev->dev.parent);
5200
5201                         /* update snapshot of PHY registers on LSC */
5202                         e1000_phy_read_status(adapter);
5203                         mac->ops.get_link_up_info(&adapter->hw,
5204                                                   &adapter->link_speed,
5205                                                   &adapter->link_duplex);
5206                         e1000_print_link_info(adapter);
5207
5208                         /* check if SmartSpeed worked */
5209                         e1000e_check_downshift(hw);
5210                         if (phy->speed_downgraded)
5211                                 netdev_warn(netdev,
5212                                             "Link Speed was downgraded by SmartSpeed\n");
5213
5214                         /* On supported PHYs, check for duplex mismatch only
5215                          * if link has autonegotiated at 10/100 half
5216                          */
5217                         if ((hw->phy.type == e1000_phy_igp_3 ||
5218                              hw->phy.type == e1000_phy_bm) &&
5219                             hw->mac.autoneg &&
5220                             (adapter->link_speed == SPEED_10 ||
5221                              adapter->link_speed == SPEED_100) &&
5222                             (adapter->link_duplex == HALF_DUPLEX)) {
5223                                 u16 autoneg_exp;
5224
5225                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5226
5227                                 if (!(autoneg_exp & EXPANSION_NWAY))
5228                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5229                         }
5230
5231                         /* adjust timeout factor according to speed/duplex */
5232                         adapter->tx_timeout_factor = 1;
5233                         switch (adapter->link_speed) {
5234                         case SPEED_10:
5235                                 txb2b = false;
5236                                 adapter->tx_timeout_factor = 16;
5237                                 break;
5238                         case SPEED_100:
5239                                 txb2b = false;
5240                                 adapter->tx_timeout_factor = 10;
5241                                 break;
5242                         }
5243
5244                         /* workaround: re-program speed mode bit after
5245                          * link-up event
5246                          */
5247                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5248                             !txb2b) {
5249                                 u32 tarc0;
5250
5251                                 tarc0 = er32(TARC(0));
5252                                 tarc0 &= ~SPEED_MODE_BIT;
5253                                 ew32(TARC(0), tarc0);
5254                         }
5255
5256                         /* disable TSO for pcie and 10/100 speeds, to avoid
5257                          * some hardware issues
5258                          */
5259                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5260                                 switch (adapter->link_speed) {
5261                                 case SPEED_10:
5262                                 case SPEED_100:
5263                                         e_info("10/100 speed: disabling TSO\n");
5264                                         netdev->features &= ~NETIF_F_TSO;
5265                                         netdev->features &= ~NETIF_F_TSO6;
5266                                         break;
5267                                 case SPEED_1000:
5268                                         netdev->features |= NETIF_F_TSO;
5269                                         netdev->features |= NETIF_F_TSO6;
5270                                         break;
5271                                 default:
5272                                         /* oops */
5273                                         break;
5274                                 }
5275                         }
5276
5277                         /* enable transmits in the hardware, need to do this
5278                          * after setting TARC(0)
5279                          */
5280                         tctl = er32(TCTL);
5281                         tctl |= E1000_TCTL_EN;
5282                         ew32(TCTL, tctl);
5283
5284                         /* Perform any post-link-up configuration before
5285                          * reporting link up.
5286                          */
5287                         if (phy->ops.cfg_on_link_up)
5288                                 phy->ops.cfg_on_link_up(hw);
5289
5290                         netif_carrier_on(netdev);
5291
5292                         if (!test_bit(__E1000_DOWN, &adapter->state))
5293                                 mod_timer(&adapter->phy_info_timer,
5294                                           round_jiffies(jiffies + 2 * HZ));
5295                 }
5296         } else {
5297                 if (netif_carrier_ok(netdev)) {
5298                         adapter->link_speed = 0;
5299                         adapter->link_duplex = 0;
5300                         /* Link status message must follow this format */
5301                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5302                         netif_carrier_off(netdev);
5303                         if (!test_bit(__E1000_DOWN, &adapter->state))
5304                                 mod_timer(&adapter->phy_info_timer,
5305                                           round_jiffies(jiffies + 2 * HZ));
5306
5307                         /* 8000ES2LAN requires a Rx packet buffer work-around
5308                          * on link down event; reset the controller to flush
5309                          * the Rx packet buffer.
5310                          */
5311                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5312                                 adapter->flags |= FLAG_RESTART_NOW;
5313                         else
5314                                 pm_schedule_suspend(netdev->dev.parent,
5315                                                     LINK_TIMEOUT);
5316                 }
5317         }
5318
5319 link_up:
5320         spin_lock(&adapter->stats64_lock);
5321         e1000e_update_stats(adapter);
5322
5323         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5324         adapter->tpt_old = adapter->stats.tpt;
5325         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5326         adapter->colc_old = adapter->stats.colc;
5327
5328         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5329         adapter->gorc_old = adapter->stats.gorc;
5330         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5331         adapter->gotc_old = adapter->stats.gotc;
5332         spin_unlock(&adapter->stats64_lock);
5333
5334         /* If the link is lost the controller stops DMA, but
5335          * if there is queued Tx work it cannot be done.  So
5336          * reset the controller to flush the Tx packet buffers.
5337          */
5338         if (!netif_carrier_ok(netdev) &&
5339             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5340                 adapter->flags |= FLAG_RESTART_NOW;
5341
5342         /* If reset is necessary, do it outside of interrupt context. */
5343         if (adapter->flags & FLAG_RESTART_NOW) {
5344                 schedule_work(&adapter->reset_task);
5345                 /* return immediately since reset is imminent */
5346                 return;
5347         }
5348
5349         e1000e_update_adaptive(&adapter->hw);
5350
5351         /* Simple mode for Interrupt Throttle Rate (ITR) */
5352         if (adapter->itr_setting == 4) {
5353                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5354                  * Total asymmetrical Tx or Rx gets ITR=8000;
5355                  * everyone else is between 2000-8000.
5356                  */
5357                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5358                 u32 dif = (adapter->gotc > adapter->gorc ?
5359                            adapter->gotc - adapter->gorc :
5360                            adapter->gorc - adapter->gotc) / 10000;
5361                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5362
5363                 e1000e_write_itr(adapter, itr);
5364         }
5365
5366         /* Cause software interrupt to ensure Rx ring is cleaned */
5367         if (adapter->msix_entries)
5368                 ew32(ICS, adapter->rx_ring->ims_val);
5369         else
5370                 ew32(ICS, E1000_ICS_RXDMT0);
5371
5372         /* flush pending descriptors to memory before detecting Tx hang */
5373         e1000e_flush_descriptors(adapter);
5374
5375         /* Force detection of hung controller every watchdog period */
5376         adapter->detect_tx_hung = true;
5377
5378         /* With 82571 controllers, LAA may be overwritten due to controller
5379          * reset from the other port. Set the appropriate LAA in RAR[0]
5380          */
5381         if (e1000e_get_laa_state_82571(hw))
5382                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5383
5384         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5385                 e1000e_check_82574_phy_workaround(adapter);
5386
5387         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5388         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5389                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5390                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5391                         er32(RXSTMPH);
5392                         adapter->rx_hwtstamp_cleared++;
5393                 } else {
5394                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5395                 }
5396         }
5397
5398         /* Reset the timer */
5399         if (!test_bit(__E1000_DOWN, &adapter->state))
5400                 mod_timer(&adapter->watchdog_timer,
5401                           round_jiffies(jiffies + 2 * HZ));
5402 }
5403
5404 #define E1000_TX_FLAGS_CSUM             0x00000001
5405 #define E1000_TX_FLAGS_VLAN             0x00000002
5406 #define E1000_TX_FLAGS_TSO              0x00000004
5407 #define E1000_TX_FLAGS_IPV4             0x00000008
5408 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5409 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5410 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5411 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5412
5413 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5414                      __be16 protocol)
5415 {
5416         struct e1000_context_desc *context_desc;
5417         struct e1000_buffer *buffer_info;
5418         unsigned int i;
5419         u32 cmd_length = 0;
5420         u16 ipcse = 0, mss;
5421         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5422         int err;
5423
5424         if (!skb_is_gso(skb))
5425                 return 0;
5426
5427         err = skb_cow_head(skb, 0);
5428         if (err < 0)
5429                 return err;
5430
5431         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5432         mss = skb_shinfo(skb)->gso_size;
5433         if (protocol == htons(ETH_P_IP)) {
5434                 struct iphdr *iph = ip_hdr(skb);
5435                 iph->tot_len = 0;
5436                 iph->check = 0;
5437                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5438                                                          0, IPPROTO_TCP, 0);
5439                 cmd_length = E1000_TXD_CMD_IP;
5440                 ipcse = skb_transport_offset(skb) - 1;
5441         } else if (skb_is_gso_v6(skb)) {
5442                 ipv6_hdr(skb)->payload_len = 0;
5443                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5444                                                        &ipv6_hdr(skb)->daddr,
5445                                                        0, IPPROTO_TCP, 0);
5446                 ipcse = 0;
5447         }
5448         ipcss = skb_network_offset(skb);
5449         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5450         tucss = skb_transport_offset(skb);
5451         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5452
5453         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5454                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5455
5456         i = tx_ring->next_to_use;
5457         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5458         buffer_info = &tx_ring->buffer_info[i];
5459
5460         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5461         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5462         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5463         context_desc->upper_setup.tcp_fields.tucss = tucss;
5464         context_desc->upper_setup.tcp_fields.tucso = tucso;
5465         context_desc->upper_setup.tcp_fields.tucse = 0;
5466         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5467         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5468         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5469
5470         buffer_info->time_stamp = jiffies;
5471         buffer_info->next_to_watch = i;
5472
5473         i++;
5474         if (i == tx_ring->count)
5475                 i = 0;
5476         tx_ring->next_to_use = i;
5477
5478         return 1;
5479 }
5480
5481 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5482                           __be16 protocol)
5483 {
5484         struct e1000_adapter *adapter = tx_ring->adapter;
5485         struct e1000_context_desc *context_desc;
5486         struct e1000_buffer *buffer_info;
5487         unsigned int i;
5488         u8 css;
5489         u32 cmd_len = E1000_TXD_CMD_DEXT;
5490
5491         if (skb->ip_summed != CHECKSUM_PARTIAL)
5492                 return false;
5493
5494         switch (protocol) {
5495         case cpu_to_be16(ETH_P_IP):
5496                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5497                         cmd_len |= E1000_TXD_CMD_TCP;
5498                 break;
5499         case cpu_to_be16(ETH_P_IPV6):
5500                 /* XXX not handling all IPV6 headers */
5501                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5502                         cmd_len |= E1000_TXD_CMD_TCP;
5503                 break;
5504         default:
5505                 if (unlikely(net_ratelimit()))
5506                         e_warn("checksum_partial proto=%x!\n",
5507                                be16_to_cpu(protocol));
5508                 break;
5509         }
5510
5511         css = skb_checksum_start_offset(skb);
5512
5513         i = tx_ring->next_to_use;
5514         buffer_info = &tx_ring->buffer_info[i];
5515         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5516
5517         context_desc->lower_setup.ip_config = 0;
5518         context_desc->upper_setup.tcp_fields.tucss = css;
5519         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5520         context_desc->upper_setup.tcp_fields.tucse = 0;
5521         context_desc->tcp_seg_setup.data = 0;
5522         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5523
5524         buffer_info->time_stamp = jiffies;
5525         buffer_info->next_to_watch = i;
5526
5527         i++;
5528         if (i == tx_ring->count)
5529                 i = 0;
5530         tx_ring->next_to_use = i;
5531
5532         return true;
5533 }
5534
5535 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5536                         unsigned int first, unsigned int max_per_txd,
5537                         unsigned int nr_frags)
5538 {
5539         struct e1000_adapter *adapter = tx_ring->adapter;
5540         struct pci_dev *pdev = adapter->pdev;
5541         struct e1000_buffer *buffer_info;
5542         unsigned int len = skb_headlen(skb);
5543         unsigned int offset = 0, size, count = 0, i;
5544         unsigned int f, bytecount, segs;
5545
5546         i = tx_ring->next_to_use;
5547
5548         while (len) {
5549                 buffer_info = &tx_ring->buffer_info[i];
5550                 size = min(len, max_per_txd);
5551
5552                 buffer_info->length = size;
5553                 buffer_info->time_stamp = jiffies;
5554                 buffer_info->next_to_watch = i;
5555                 buffer_info->dma = dma_map_single(&pdev->dev,
5556                                                   skb->data + offset,
5557                                                   size, DMA_TO_DEVICE);
5558                 buffer_info->mapped_as_page = false;
5559                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5560                         goto dma_error;
5561
5562                 len -= size;
5563                 offset += size;
5564                 count++;
5565
5566                 if (len) {
5567                         i++;
5568                         if (i == tx_ring->count)
5569                                 i = 0;
5570                 }
5571         }
5572
5573         for (f = 0; f < nr_frags; f++) {
5574                 const struct skb_frag_struct *frag;
5575
5576                 frag = &skb_shinfo(skb)->frags[f];
5577                 len = skb_frag_size(frag);
5578                 offset = 0;
5579
5580                 while (len) {
5581                         i++;
5582                         if (i == tx_ring->count)
5583                                 i = 0;
5584
5585                         buffer_info = &tx_ring->buffer_info[i];
5586                         size = min(len, max_per_txd);
5587
5588                         buffer_info->length = size;
5589                         buffer_info->time_stamp = jiffies;
5590                         buffer_info->next_to_watch = i;
5591                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5592                                                             offset, size,
5593                                                             DMA_TO_DEVICE);
5594                         buffer_info->mapped_as_page = true;
5595                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5596                                 goto dma_error;
5597
5598                         len -= size;
5599                         offset += size;
5600                         count++;
5601                 }
5602         }
5603
5604         segs = skb_shinfo(skb)->gso_segs ? : 1;
5605         /* multiply data chunks by size of headers */
5606         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5607
5608         tx_ring->buffer_info[i].skb = skb;
5609         tx_ring->buffer_info[i].segs = segs;
5610         tx_ring->buffer_info[i].bytecount = bytecount;
5611         tx_ring->buffer_info[first].next_to_watch = i;
5612
5613         return count;
5614
5615 dma_error:
5616         dev_err(&pdev->dev, "Tx DMA map failed\n");
5617         buffer_info->dma = 0;
5618         if (count)
5619                 count--;
5620
5621         while (count--) {
5622                 if (i == 0)
5623                         i += tx_ring->count;
5624                 i--;
5625                 buffer_info = &tx_ring->buffer_info[i];
5626                 e1000_put_txbuf(tx_ring, buffer_info, true);
5627         }
5628
5629         return 0;
5630 }
5631
5632 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5633 {
5634         struct e1000_adapter *adapter = tx_ring->adapter;
5635         struct e1000_tx_desc *tx_desc = NULL;
5636         struct e1000_buffer *buffer_info;
5637         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5638         unsigned int i;
5639
5640         if (tx_flags & E1000_TX_FLAGS_TSO) {
5641                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5642                     E1000_TXD_CMD_TSE;
5643                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5644
5645                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5646                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5647         }
5648
5649         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5650                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5651                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5652         }
5653
5654         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5655                 txd_lower |= E1000_TXD_CMD_VLE;
5656                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5657         }
5658
5659         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5660                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5661
5662         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5663                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5664                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5665         }
5666
5667         i = tx_ring->next_to_use;
5668
5669         do {
5670                 buffer_info = &tx_ring->buffer_info[i];
5671                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5672                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5673                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5674                                                   buffer_info->length);
5675                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5676
5677                 i++;
5678                 if (i == tx_ring->count)
5679                         i = 0;
5680         } while (--count > 0);
5681
5682         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5683
5684         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5685         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5686                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5687
5688         /* Force memory writes to complete before letting h/w
5689          * know there are new descriptors to fetch.  (Only
5690          * applicable for weak-ordered memory model archs,
5691          * such as IA-64).
5692          */
5693         wmb();
5694
5695         tx_ring->next_to_use = i;
5696 }
5697
5698 #define MINIMUM_DHCP_PACKET_SIZE 282
5699 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5700                                     struct sk_buff *skb)
5701 {
5702         struct e1000_hw *hw = &adapter->hw;
5703         u16 length, offset;
5704
5705         if (skb_vlan_tag_present(skb) &&
5706             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5707               (adapter->hw.mng_cookie.status &
5708                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5709                 return 0;
5710
5711         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5712                 return 0;
5713
5714         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5715                 return 0;
5716
5717         {
5718                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5719                 struct udphdr *udp;
5720
5721                 if (ip->protocol != IPPROTO_UDP)
5722                         return 0;
5723
5724                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5725                 if (ntohs(udp->dest) != 67)
5726                         return 0;
5727
5728                 offset = (u8 *)udp + 8 - skb->data;
5729                 length = skb->len - offset;
5730                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5731         }
5732
5733         return 0;
5734 }
5735
5736 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5737 {
5738         struct e1000_adapter *adapter = tx_ring->adapter;
5739
5740         netif_stop_queue(adapter->netdev);
5741         /* Herbert's original patch had:
5742          *  smp_mb__after_netif_stop_queue();
5743          * but since that doesn't exist yet, just open code it.
5744          */
5745         smp_mb();
5746
5747         /* We need to check again in a case another CPU has just
5748          * made room available.
5749          */
5750         if (e1000_desc_unused(tx_ring) < size)
5751                 return -EBUSY;
5752
5753         /* A reprieve! */
5754         netif_start_queue(adapter->netdev);
5755         ++adapter->restart_queue;
5756         return 0;
5757 }
5758
5759 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5760 {
5761         BUG_ON(size > tx_ring->count);
5762
5763         if (e1000_desc_unused(tx_ring) >= size)
5764                 return 0;
5765         return __e1000_maybe_stop_tx(tx_ring, size);
5766 }
5767
5768 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5769                                     struct net_device *netdev)
5770 {
5771         struct e1000_adapter *adapter = netdev_priv(netdev);
5772         struct e1000_ring *tx_ring = adapter->tx_ring;
5773         unsigned int first;
5774         unsigned int tx_flags = 0;
5775         unsigned int len = skb_headlen(skb);
5776         unsigned int nr_frags;
5777         unsigned int mss;
5778         int count = 0;
5779         int tso;
5780         unsigned int f;
5781         __be16 protocol = vlan_get_protocol(skb);
5782
5783         if (test_bit(__E1000_DOWN, &adapter->state)) {
5784                 dev_kfree_skb_any(skb);
5785                 return NETDEV_TX_OK;
5786         }
5787
5788         if (skb->len <= 0) {
5789                 dev_kfree_skb_any(skb);
5790                 return NETDEV_TX_OK;
5791         }
5792
5793         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5794          * pad skb in order to meet this minimum size requirement
5795          */
5796         if (skb_put_padto(skb, 17))
5797                 return NETDEV_TX_OK;
5798
5799         mss = skb_shinfo(skb)->gso_size;
5800         if (mss) {
5801                 u8 hdr_len;
5802
5803                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5804                  * points to just header, pull a few bytes of payload from
5805                  * frags into skb->data
5806                  */
5807                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5808                 /* we do this workaround for ES2LAN, but it is un-necessary,
5809                  * avoiding it could save a lot of cycles
5810                  */
5811                 if (skb->data_len && (hdr_len == len)) {
5812                         unsigned int pull_size;
5813
5814                         pull_size = min_t(unsigned int, 4, skb->data_len);
5815                         if (!__pskb_pull_tail(skb, pull_size)) {
5816                                 e_err("__pskb_pull_tail failed.\n");
5817                                 dev_kfree_skb_any(skb);
5818                                 return NETDEV_TX_OK;
5819                         }
5820                         len = skb_headlen(skb);
5821                 }
5822         }
5823
5824         /* reserve a descriptor for the offload context */
5825         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5826                 count++;
5827         count++;
5828
5829         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5830
5831         nr_frags = skb_shinfo(skb)->nr_frags;
5832         for (f = 0; f < nr_frags; f++)
5833                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5834                                       adapter->tx_fifo_limit);
5835
5836         if (adapter->hw.mac.tx_pkt_filtering)
5837                 e1000_transfer_dhcp_info(adapter, skb);
5838
5839         /* need: count + 2 desc gap to keep tail from touching
5840          * head, otherwise try next time
5841          */
5842         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5843                 return NETDEV_TX_BUSY;
5844
5845         if (skb_vlan_tag_present(skb)) {
5846                 tx_flags |= E1000_TX_FLAGS_VLAN;
5847                 tx_flags |= (skb_vlan_tag_get(skb) <<
5848                              E1000_TX_FLAGS_VLAN_SHIFT);
5849         }
5850
5851         first = tx_ring->next_to_use;
5852
5853         tso = e1000_tso(tx_ring, skb, protocol);
5854         if (tso < 0) {
5855                 dev_kfree_skb_any(skb);
5856                 return NETDEV_TX_OK;
5857         }
5858
5859         if (tso)
5860                 tx_flags |= E1000_TX_FLAGS_TSO;
5861         else if (e1000_tx_csum(tx_ring, skb, protocol))
5862                 tx_flags |= E1000_TX_FLAGS_CSUM;
5863
5864         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5865          * 82571 hardware supports TSO capabilities for IPv6 as well...
5866          * no longer assume, we must.
5867          */
5868         if (protocol == htons(ETH_P_IP))
5869                 tx_flags |= E1000_TX_FLAGS_IPV4;
5870
5871         if (unlikely(skb->no_fcs))
5872                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5873
5874         /* if count is 0 then mapping error has occurred */
5875         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5876                              nr_frags);
5877         if (count) {
5878                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5879                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5880                         if (!adapter->tx_hwtstamp_skb) {
5881                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5882                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5883                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5884                                 adapter->tx_hwtstamp_start = jiffies;
5885                                 schedule_work(&adapter->tx_hwtstamp_work);
5886                         } else {
5887                                 adapter->tx_hwtstamp_skipped++;
5888                         }
5889                 }
5890
5891                 skb_tx_timestamp(skb);
5892
5893                 netdev_sent_queue(netdev, skb->len);
5894                 e1000_tx_queue(tx_ring, tx_flags, count);
5895                 /* Make sure there is space in the ring for the next send. */
5896                 e1000_maybe_stop_tx(tx_ring,
5897                                     (MAX_SKB_FRAGS *
5898                                      DIV_ROUND_UP(PAGE_SIZE,
5899                                                   adapter->tx_fifo_limit) + 2));
5900
5901                 if (!skb->xmit_more ||
5902                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5903                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5904                                 e1000e_update_tdt_wa(tx_ring,
5905                                                      tx_ring->next_to_use);
5906                         else
5907                                 writel(tx_ring->next_to_use, tx_ring->tail);
5908
5909                         /* we need this if more than one processor can write
5910                          * to our tail at a time, it synchronizes IO on
5911                          *IA64/Altix systems
5912                          */
5913                         mmiowb();
5914                 }
5915         } else {
5916                 dev_kfree_skb_any(skb);
5917                 tx_ring->buffer_info[first].time_stamp = 0;
5918                 tx_ring->next_to_use = first;
5919         }
5920
5921         return NETDEV_TX_OK;
5922 }
5923
5924 /**
5925  * e1000_tx_timeout - Respond to a Tx Hang
5926  * @netdev: network interface device structure
5927  **/
5928 static void e1000_tx_timeout(struct net_device *netdev)
5929 {
5930         struct e1000_adapter *adapter = netdev_priv(netdev);
5931
5932         /* Do the reset outside of interrupt context */
5933         adapter->tx_timeout_count++;
5934         schedule_work(&adapter->reset_task);
5935 }
5936
5937 static void e1000_reset_task(struct work_struct *work)
5938 {
5939         struct e1000_adapter *adapter;
5940         adapter = container_of(work, struct e1000_adapter, reset_task);
5941
5942         /* don't run the task if already down */
5943         if (test_bit(__E1000_DOWN, &adapter->state))
5944                 return;
5945
5946         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5947                 e1000e_dump(adapter);
5948                 e_err("Reset adapter unexpectedly\n");
5949         }
5950         e1000e_reinit_locked(adapter);
5951 }
5952
5953 /**
5954  * e1000_get_stats64 - Get System Network Statistics
5955  * @netdev: network interface device structure
5956  * @stats: rtnl_link_stats64 pointer
5957  *
5958  * Returns the address of the device statistics structure.
5959  **/
5960 void e1000e_get_stats64(struct net_device *netdev,
5961                         struct rtnl_link_stats64 *stats)
5962 {
5963         struct e1000_adapter *adapter = netdev_priv(netdev);
5964
5965         spin_lock(&adapter->stats64_lock);
5966         e1000e_update_stats(adapter);
5967         /* Fill out the OS statistics structure */
5968         stats->rx_bytes = adapter->stats.gorc;
5969         stats->rx_packets = adapter->stats.gprc;
5970         stats->tx_bytes = adapter->stats.gotc;
5971         stats->tx_packets = adapter->stats.gptc;
5972         stats->multicast = adapter->stats.mprc;
5973         stats->collisions = adapter->stats.colc;
5974
5975         /* Rx Errors */
5976
5977         /* RLEC on some newer hardware can be incorrect so build
5978          * our own version based on RUC and ROC
5979          */
5980         stats->rx_errors = adapter->stats.rxerrc +
5981             adapter->stats.crcerrs + adapter->stats.algnerrc +
5982             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5983         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5984         stats->rx_crc_errors = adapter->stats.crcerrs;
5985         stats->rx_frame_errors = adapter->stats.algnerrc;
5986         stats->rx_missed_errors = adapter->stats.mpc;
5987
5988         /* Tx Errors */
5989         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5990         stats->tx_aborted_errors = adapter->stats.ecol;
5991         stats->tx_window_errors = adapter->stats.latecol;
5992         stats->tx_carrier_errors = adapter->stats.tncrs;
5993
5994         /* Tx Dropped needs to be maintained elsewhere */
5995
5996         spin_unlock(&adapter->stats64_lock);
5997 }
5998
5999 /**
6000  * e1000_change_mtu - Change the Maximum Transfer Unit
6001  * @netdev: network interface device structure
6002  * @new_mtu: new value for maximum frame size
6003  *
6004  * Returns 0 on success, negative on failure
6005  **/
6006 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6007 {
6008         struct e1000_adapter *adapter = netdev_priv(netdev);
6009         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6010
6011         /* Jumbo frame support */
6012         if ((new_mtu > ETH_DATA_LEN) &&
6013             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6014                 e_err("Jumbo Frames not supported.\n");
6015                 return -EINVAL;
6016         }
6017
6018         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6019         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6020             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6021             (new_mtu > ETH_DATA_LEN)) {
6022                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6023                 return -EINVAL;
6024         }
6025
6026         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6027                 usleep_range(1000, 2000);
6028         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6029         adapter->max_frame_size = max_frame;
6030         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6031         netdev->mtu = new_mtu;
6032
6033         pm_runtime_get_sync(netdev->dev.parent);
6034
6035         if (netif_running(netdev))
6036                 e1000e_down(adapter, true);
6037
6038         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6039          * means we reserve 2 more, this pushes us to allocate from the next
6040          * larger slab size.
6041          * i.e. RXBUFFER_2048 --> size-4096 slab
6042          * However with the new *_jumbo_rx* routines, jumbo receives will use
6043          * fragmented skbs
6044          */
6045
6046         if (max_frame <= 2048)
6047                 adapter->rx_buffer_len = 2048;
6048         else
6049                 adapter->rx_buffer_len = 4096;
6050
6051         /* adjust allocation if LPE protects us, and we aren't using SBP */
6052         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6053                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6054
6055         if (netif_running(netdev))
6056                 e1000e_up(adapter);
6057         else
6058                 e1000e_reset(adapter);
6059
6060         pm_runtime_put_sync(netdev->dev.parent);
6061
6062         clear_bit(__E1000_RESETTING, &adapter->state);
6063
6064         return 0;
6065 }
6066
6067 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6068                            int cmd)
6069 {
6070         struct e1000_adapter *adapter = netdev_priv(netdev);
6071         struct mii_ioctl_data *data = if_mii(ifr);
6072
6073         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6074                 return -EOPNOTSUPP;
6075
6076         switch (cmd) {
6077         case SIOCGMIIPHY:
6078                 data->phy_id = adapter->hw.phy.addr;
6079                 break;
6080         case SIOCGMIIREG:
6081                 e1000_phy_read_status(adapter);
6082
6083                 switch (data->reg_num & 0x1F) {
6084                 case MII_BMCR:
6085                         data->val_out = adapter->phy_regs.bmcr;
6086                         break;
6087                 case MII_BMSR:
6088                         data->val_out = adapter->phy_regs.bmsr;
6089                         break;
6090                 case MII_PHYSID1:
6091                         data->val_out = (adapter->hw.phy.id >> 16);
6092                         break;
6093                 case MII_PHYSID2:
6094                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6095                         break;
6096                 case MII_ADVERTISE:
6097                         data->val_out = adapter->phy_regs.advertise;
6098                         break;
6099                 case MII_LPA:
6100                         data->val_out = adapter->phy_regs.lpa;
6101                         break;
6102                 case MII_EXPANSION:
6103                         data->val_out = adapter->phy_regs.expansion;
6104                         break;
6105                 case MII_CTRL1000:
6106                         data->val_out = adapter->phy_regs.ctrl1000;
6107                         break;
6108                 case MII_STAT1000:
6109                         data->val_out = adapter->phy_regs.stat1000;
6110                         break;
6111                 case MII_ESTATUS:
6112                         data->val_out = adapter->phy_regs.estatus;
6113                         break;
6114                 default:
6115                         return -EIO;
6116                 }
6117                 break;
6118         case SIOCSMIIREG:
6119         default:
6120                 return -EOPNOTSUPP;
6121         }
6122         return 0;
6123 }
6124
6125 /**
6126  * e1000e_hwtstamp_ioctl - control hardware time stamping
6127  * @netdev: network interface device structure
6128  * @ifreq: interface request
6129  *
6130  * Outgoing time stamping can be enabled and disabled. Play nice and
6131  * disable it when requested, although it shouldn't cause any overhead
6132  * when no packet needs it. At most one packet in the queue may be
6133  * marked for time stamping, otherwise it would be impossible to tell
6134  * for sure to which packet the hardware time stamp belongs.
6135  *
6136  * Incoming time stamping has to be configured via the hardware filters.
6137  * Not all combinations are supported, in particular event type has to be
6138  * specified. Matching the kind of event packet is not supported, with the
6139  * exception of "all V2 events regardless of level 2 or 4".
6140  **/
6141 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6142 {
6143         struct e1000_adapter *adapter = netdev_priv(netdev);
6144         struct hwtstamp_config config;
6145         int ret_val;
6146
6147         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6148                 return -EFAULT;
6149
6150         ret_val = e1000e_config_hwtstamp(adapter, &config);
6151         if (ret_val)
6152                 return ret_val;
6153
6154         switch (config.rx_filter) {
6155         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6156         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6157         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6158         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6159         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6160         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6161                 /* With V2 type filters which specify a Sync or Delay Request,
6162                  * Path Delay Request/Response messages are also time stamped
6163                  * by hardware so notify the caller the requested packets plus
6164                  * some others are time stamped.
6165                  */
6166                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6167                 break;
6168         default:
6169                 break;
6170         }
6171
6172         return copy_to_user(ifr->ifr_data, &config,
6173                             sizeof(config)) ? -EFAULT : 0;
6174 }
6175
6176 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6177 {
6178         struct e1000_adapter *adapter = netdev_priv(netdev);
6179
6180         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6181                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6182 }
6183
6184 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6185 {
6186         switch (cmd) {
6187         case SIOCGMIIPHY:
6188         case SIOCGMIIREG:
6189         case SIOCSMIIREG:
6190                 return e1000_mii_ioctl(netdev, ifr, cmd);
6191         case SIOCSHWTSTAMP:
6192                 return e1000e_hwtstamp_set(netdev, ifr);
6193         case SIOCGHWTSTAMP:
6194                 return e1000e_hwtstamp_get(netdev, ifr);
6195         default:
6196                 return -EOPNOTSUPP;
6197         }
6198 }
6199
6200 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6201 {
6202         struct e1000_hw *hw = &adapter->hw;
6203         u32 i, mac_reg, wuc;
6204         u16 phy_reg, wuc_enable;
6205         int retval;
6206
6207         /* copy MAC RARs to PHY RARs */
6208         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6209
6210         retval = hw->phy.ops.acquire(hw);
6211         if (retval) {
6212                 e_err("Could not acquire PHY\n");
6213                 return retval;
6214         }
6215
6216         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6217         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6218         if (retval)
6219                 goto release;
6220
6221         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6222         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6223                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6224                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6225                                            (u16)(mac_reg & 0xFFFF));
6226                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6227                                            (u16)((mac_reg >> 16) & 0xFFFF));
6228         }
6229
6230         /* configure PHY Rx Control register */
6231         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6232         mac_reg = er32(RCTL);
6233         if (mac_reg & E1000_RCTL_UPE)
6234                 phy_reg |= BM_RCTL_UPE;
6235         if (mac_reg & E1000_RCTL_MPE)
6236                 phy_reg |= BM_RCTL_MPE;
6237         phy_reg &= ~(BM_RCTL_MO_MASK);
6238         if (mac_reg & E1000_RCTL_MO_3)
6239                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6240                             << BM_RCTL_MO_SHIFT);
6241         if (mac_reg & E1000_RCTL_BAM)
6242                 phy_reg |= BM_RCTL_BAM;
6243         if (mac_reg & E1000_RCTL_PMCF)
6244                 phy_reg |= BM_RCTL_PMCF;
6245         mac_reg = er32(CTRL);
6246         if (mac_reg & E1000_CTRL_RFCE)
6247                 phy_reg |= BM_RCTL_RFCE;
6248         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6249
6250         wuc = E1000_WUC_PME_EN;
6251         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6252                 wuc |= E1000_WUC_APME;
6253
6254         /* enable PHY wakeup in MAC register */
6255         ew32(WUFC, wufc);
6256         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6257                    E1000_WUC_PME_STATUS | wuc));
6258
6259         /* configure and enable PHY wakeup in PHY registers */
6260         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6261         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6262
6263         /* activate PHY wakeup */
6264         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6265         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6266         if (retval)
6267                 e_err("Could not set PHY Host Wakeup bit\n");
6268 release:
6269         hw->phy.ops.release(hw);
6270
6271         return retval;
6272 }
6273
6274 static void e1000e_flush_lpic(struct pci_dev *pdev)
6275 {
6276         struct net_device *netdev = pci_get_drvdata(pdev);
6277         struct e1000_adapter *adapter = netdev_priv(netdev);
6278         struct e1000_hw *hw = &adapter->hw;
6279         u32 ret_val;
6280
6281         pm_runtime_get_sync(netdev->dev.parent);
6282
6283         ret_val = hw->phy.ops.acquire(hw);
6284         if (ret_val)
6285                 goto fl_out;
6286
6287         pr_info("EEE TX LPI TIMER: %08X\n",
6288                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6289
6290         hw->phy.ops.release(hw);
6291
6292 fl_out:
6293         pm_runtime_put_sync(netdev->dev.parent);
6294 }
6295
6296 static int e1000e_pm_freeze(struct device *dev)
6297 {
6298         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6299         struct e1000_adapter *adapter = netdev_priv(netdev);
6300
6301         netif_device_detach(netdev);
6302
6303         if (netif_running(netdev)) {
6304                 int count = E1000_CHECK_RESET_COUNT;
6305
6306                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6307                         usleep_range(10000, 20000);
6308
6309                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6310
6311                 /* Quiesce the device without resetting the hardware */
6312                 e1000e_down(adapter, false);
6313                 e1000_free_irq(adapter);
6314         }
6315         e1000e_reset_interrupt_capability(adapter);
6316
6317         /* Allow time for pending master requests to run */
6318         e1000e_disable_pcie_master(&adapter->hw);
6319
6320         return 0;
6321 }
6322
6323 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6324 {
6325         struct net_device *netdev = pci_get_drvdata(pdev);
6326         struct e1000_adapter *adapter = netdev_priv(netdev);
6327         struct e1000_hw *hw = &adapter->hw;
6328         u32 ctrl, ctrl_ext, rctl, status;
6329         /* Runtime suspend should only enable wakeup for link changes */
6330         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6331         int retval = 0;
6332
6333         status = er32(STATUS);
6334         if (status & E1000_STATUS_LU)
6335                 wufc &= ~E1000_WUFC_LNKC;
6336
6337         if (wufc) {
6338                 e1000_setup_rctl(adapter);
6339                 e1000e_set_rx_mode(netdev);
6340
6341                 /* turn on all-multi mode if wake on multicast is enabled */
6342                 if (wufc & E1000_WUFC_MC) {
6343                         rctl = er32(RCTL);
6344                         rctl |= E1000_RCTL_MPE;
6345                         ew32(RCTL, rctl);
6346                 }
6347
6348                 ctrl = er32(CTRL);
6349                 ctrl |= E1000_CTRL_ADVD3WUC;
6350                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6351                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6352                 ew32(CTRL, ctrl);
6353
6354                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6355                     adapter->hw.phy.media_type ==
6356                     e1000_media_type_internal_serdes) {
6357                         /* keep the laser running in D3 */
6358                         ctrl_ext = er32(CTRL_EXT);
6359                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6360                         ew32(CTRL_EXT, ctrl_ext);
6361                 }
6362
6363                 if (!runtime)
6364                         e1000e_power_up_phy(adapter);
6365
6366                 if (adapter->flags & FLAG_IS_ICH)
6367                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6368
6369                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6370                         /* enable wakeup by the PHY */
6371                         retval = e1000_init_phy_wakeup(adapter, wufc);
6372                         if (retval)
6373                                 return retval;
6374                 } else {
6375                         /* enable wakeup by the MAC */
6376                         ew32(WUFC, wufc);
6377                         ew32(WUC, E1000_WUC_PME_EN);
6378                 }
6379         } else {
6380                 ew32(WUC, 0);
6381                 ew32(WUFC, 0);
6382
6383                 e1000_power_down_phy(adapter);
6384         }
6385
6386         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6387                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6388         } else if (hw->mac.type >= e1000_pch_lpt) {
6389                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6390                         /* ULP does not support wake from unicast, multicast
6391                          * or broadcast.
6392                          */
6393                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6394
6395                 if (retval)
6396                         return retval;
6397         }
6398
6399         /* Ensure that the appropriate bits are set in LPI_CTRL
6400          * for EEE in Sx
6401          */
6402         if ((hw->phy.type >= e1000_phy_i217) &&
6403             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6404                 u16 lpi_ctrl = 0;
6405
6406                 retval = hw->phy.ops.acquire(hw);
6407                 if (!retval) {
6408                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6409                                                  &lpi_ctrl);
6410                         if (!retval) {
6411                                 if (adapter->eee_advert &
6412                                     hw->dev_spec.ich8lan.eee_lp_ability &
6413                                     I82579_EEE_100_SUPPORTED)
6414                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6415                                 if (adapter->eee_advert &
6416                                     hw->dev_spec.ich8lan.eee_lp_ability &
6417                                     I82579_EEE_1000_SUPPORTED)
6418                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6419
6420                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6421                                                          lpi_ctrl);
6422                         }
6423                 }
6424                 hw->phy.ops.release(hw);
6425         }
6426
6427         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6428          * would have already happened in close and is redundant.
6429          */
6430         e1000e_release_hw_control(adapter);
6431
6432         pci_clear_master(pdev);
6433
6434         /* The pci-e switch on some quad port adapters will report a
6435          * correctable error when the MAC transitions from D0 to D3.  To
6436          * prevent this we need to mask off the correctable errors on the
6437          * downstream port of the pci-e switch.
6438          *
6439          * We don't have the associated upstream bridge while assigning
6440          * the PCI device into guest. For example, the KVM on power is
6441          * one of the cases.
6442          */
6443         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6444                 struct pci_dev *us_dev = pdev->bus->self;
6445                 u16 devctl;
6446
6447                 if (!us_dev)
6448                         return 0;
6449
6450                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6451                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6452                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6453
6454                 pci_save_state(pdev);
6455                 pci_prepare_to_sleep(pdev);
6456
6457                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6458         }
6459
6460         return 0;
6461 }
6462
6463 /**
6464  * __e1000e_disable_aspm - Disable ASPM states
6465  * @pdev: pointer to PCI device struct
6466  * @state: bit-mask of ASPM states to disable
6467  * @locked: indication if this context holds pci_bus_sem locked.
6468  *
6469  * Some devices *must* have certain ASPM states disabled per hardware errata.
6470  **/
6471 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6472 {
6473         struct pci_dev *parent = pdev->bus->self;
6474         u16 aspm_dis_mask = 0;
6475         u16 pdev_aspmc, parent_aspmc;
6476
6477         switch (state) {
6478         case PCIE_LINK_STATE_L0S:
6479         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6480                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6481                 /* fall-through - can't have L1 without L0s */
6482         case PCIE_LINK_STATE_L1:
6483                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6484                 break;
6485         default:
6486                 return;
6487         }
6488
6489         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6490         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6491
6492         if (parent) {
6493                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6494                                           &parent_aspmc);
6495                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6496         }
6497
6498         /* Nothing to do if the ASPM states to be disabled already are */
6499         if (!(pdev_aspmc & aspm_dis_mask) &&
6500             (!parent || !(parent_aspmc & aspm_dis_mask)))
6501                 return;
6502
6503         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6504                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6505                  "L0s" : "",
6506                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6507                  "L1" : "");
6508
6509 #ifdef CONFIG_PCIEASPM
6510         if (locked)
6511                 pci_disable_link_state_locked(pdev, state);
6512         else
6513                 pci_disable_link_state(pdev, state);
6514
6515         /* Double-check ASPM control.  If not disabled by the above, the
6516          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6517          * not enabled); override by writing PCI config space directly.
6518          */
6519         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6520         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6521
6522         if (!(aspm_dis_mask & pdev_aspmc))
6523                 return;
6524 #endif
6525
6526         /* Both device and parent should have the same ASPM setting.
6527          * Disable ASPM in downstream component first and then upstream.
6528          */
6529         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6530
6531         if (parent)
6532                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6533                                            aspm_dis_mask);
6534 }
6535
6536 /**
6537  * e1000e_disable_aspm - Disable ASPM states.
6538  * @pdev: pointer to PCI device struct
6539  * @state: bit-mask of ASPM states to disable
6540  *
6541  * This function acquires the pci_bus_sem!
6542  * Some devices *must* have certain ASPM states disabled per hardware errata.
6543  **/
6544 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6545 {
6546         __e1000e_disable_aspm(pdev, state, 0);
6547 }
6548
6549 /**
6550  * e1000e_disable_aspm_locked   Disable ASPM states.
6551  * @pdev: pointer to PCI device struct
6552  * @state: bit-mask of ASPM states to disable
6553  *
6554  * This function must be called with pci_bus_sem acquired!
6555  * Some devices *must* have certain ASPM states disabled per hardware errata.
6556  **/
6557 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6558 {
6559         __e1000e_disable_aspm(pdev, state, 1);
6560 }
6561
6562 #ifdef CONFIG_PM
6563 static int __e1000_resume(struct pci_dev *pdev)
6564 {
6565         struct net_device *netdev = pci_get_drvdata(pdev);
6566         struct e1000_adapter *adapter = netdev_priv(netdev);
6567         struct e1000_hw *hw = &adapter->hw;
6568         u16 aspm_disable_flag = 0;
6569
6570         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6571                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6572         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6573                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6574         if (aspm_disable_flag)
6575                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6576
6577         pci_set_master(pdev);
6578
6579         if (hw->mac.type >= e1000_pch2lan)
6580                 e1000_resume_workarounds_pchlan(&adapter->hw);
6581
6582         e1000e_power_up_phy(adapter);
6583
6584         /* report the system wakeup cause from S3/S4 */
6585         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6586                 u16 phy_data;
6587
6588                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6589                 if (phy_data) {
6590                         e_info("PHY Wakeup cause - %s\n",
6591                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6592                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6593                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6594                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6595                                phy_data & E1000_WUS_LNKC ?
6596                                "Link Status Change" : "other");
6597                 }
6598                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6599         } else {
6600                 u32 wus = er32(WUS);
6601
6602                 if (wus) {
6603                         e_info("MAC Wakeup cause - %s\n",
6604                                wus & E1000_WUS_EX ? "Unicast Packet" :
6605                                wus & E1000_WUS_MC ? "Multicast Packet" :
6606                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6607                                wus & E1000_WUS_MAG ? "Magic Packet" :
6608                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6609                                "other");
6610                 }
6611                 ew32(WUS, ~0);
6612         }
6613
6614         e1000e_reset(adapter);
6615
6616         e1000_init_manageability_pt(adapter);
6617
6618         /* If the controller has AMT, do not set DRV_LOAD until the interface
6619          * is up.  For all other cases, let the f/w know that the h/w is now
6620          * under the control of the driver.
6621          */
6622         if (!(adapter->flags & FLAG_HAS_AMT))
6623                 e1000e_get_hw_control(adapter);
6624
6625         return 0;
6626 }
6627
6628 #ifdef CONFIG_PM_SLEEP
6629 static int e1000e_pm_thaw(struct device *dev)
6630 {
6631         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6632         struct e1000_adapter *adapter = netdev_priv(netdev);
6633
6634         e1000e_set_interrupt_capability(adapter);
6635         if (netif_running(netdev)) {
6636                 u32 err = e1000_request_irq(adapter);
6637
6638                 if (err)
6639                         return err;
6640
6641                 e1000e_up(adapter);
6642         }
6643
6644         netif_device_attach(netdev);
6645
6646         return 0;
6647 }
6648
6649 static int e1000e_pm_suspend(struct device *dev)
6650 {
6651         struct pci_dev *pdev = to_pci_dev(dev);
6652         int rc;
6653
6654         e1000e_flush_lpic(pdev);
6655
6656         e1000e_pm_freeze(dev);
6657
6658         rc = __e1000_shutdown(pdev, false);
6659         if (rc)
6660                 e1000e_pm_thaw(dev);
6661
6662         return rc;
6663 }
6664
6665 static int e1000e_pm_resume(struct device *dev)
6666 {
6667         struct pci_dev *pdev = to_pci_dev(dev);
6668         int rc;
6669
6670         rc = __e1000_resume(pdev);
6671         if (rc)
6672                 return rc;
6673
6674         return e1000e_pm_thaw(dev);
6675 }
6676 #endif /* CONFIG_PM_SLEEP */
6677
6678 static int e1000e_pm_runtime_idle(struct device *dev)
6679 {
6680         struct pci_dev *pdev = to_pci_dev(dev);
6681         struct net_device *netdev = pci_get_drvdata(pdev);
6682         struct e1000_adapter *adapter = netdev_priv(netdev);
6683         u16 eee_lp;
6684
6685         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6686
6687         if (!e1000e_has_link(adapter)) {
6688                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6689                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6690         }
6691
6692         return -EBUSY;
6693 }
6694
6695 static int e1000e_pm_runtime_resume(struct device *dev)
6696 {
6697         struct pci_dev *pdev = to_pci_dev(dev);
6698         struct net_device *netdev = pci_get_drvdata(pdev);
6699         struct e1000_adapter *adapter = netdev_priv(netdev);
6700         int rc;
6701
6702         rc = __e1000_resume(pdev);
6703         if (rc)
6704                 return rc;
6705
6706         if (netdev->flags & IFF_UP)
6707                 e1000e_up(adapter);
6708
6709         return rc;
6710 }
6711
6712 static int e1000e_pm_runtime_suspend(struct device *dev)
6713 {
6714         struct pci_dev *pdev = to_pci_dev(dev);
6715         struct net_device *netdev = pci_get_drvdata(pdev);
6716         struct e1000_adapter *adapter = netdev_priv(netdev);
6717
6718         if (netdev->flags & IFF_UP) {
6719                 int count = E1000_CHECK_RESET_COUNT;
6720
6721                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6722                         usleep_range(10000, 20000);
6723
6724                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6725
6726                 /* Down the device without resetting the hardware */
6727                 e1000e_down(adapter, false);
6728         }
6729
6730         if (__e1000_shutdown(pdev, true)) {
6731                 e1000e_pm_runtime_resume(dev);
6732                 return -EBUSY;
6733         }
6734
6735         return 0;
6736 }
6737 #endif /* CONFIG_PM */
6738
6739 static void e1000_shutdown(struct pci_dev *pdev)
6740 {
6741         e1000e_flush_lpic(pdev);
6742
6743         e1000e_pm_freeze(&pdev->dev);
6744
6745         __e1000_shutdown(pdev, false);
6746 }
6747
6748 #ifdef CONFIG_NET_POLL_CONTROLLER
6749
6750 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6751 {
6752         struct net_device *netdev = data;
6753         struct e1000_adapter *adapter = netdev_priv(netdev);
6754
6755         if (adapter->msix_entries) {
6756                 int vector, msix_irq;
6757
6758                 vector = 0;
6759                 msix_irq = adapter->msix_entries[vector].vector;
6760                 if (disable_hardirq(msix_irq))
6761                         e1000_intr_msix_rx(msix_irq, netdev);
6762                 enable_irq(msix_irq);
6763
6764                 vector++;
6765                 msix_irq = adapter->msix_entries[vector].vector;
6766                 if (disable_hardirq(msix_irq))
6767                         e1000_intr_msix_tx(msix_irq, netdev);
6768                 enable_irq(msix_irq);
6769
6770                 vector++;
6771                 msix_irq = adapter->msix_entries[vector].vector;
6772                 if (disable_hardirq(msix_irq))
6773                         e1000_msix_other(msix_irq, netdev);
6774                 enable_irq(msix_irq);
6775         }
6776
6777         return IRQ_HANDLED;
6778 }
6779
6780 /**
6781  * e1000_netpoll
6782  * @netdev: network interface device structure
6783  *
6784  * Polling 'interrupt' - used by things like netconsole to send skbs
6785  * without having to re-enable interrupts. It's not called while
6786  * the interrupt routine is executing.
6787  */
6788 static void e1000_netpoll(struct net_device *netdev)
6789 {
6790         struct e1000_adapter *adapter = netdev_priv(netdev);
6791
6792         switch (adapter->int_mode) {
6793         case E1000E_INT_MODE_MSIX:
6794                 e1000_intr_msix(adapter->pdev->irq, netdev);
6795                 break;
6796         case E1000E_INT_MODE_MSI:
6797                 if (disable_hardirq(adapter->pdev->irq))
6798                         e1000_intr_msi(adapter->pdev->irq, netdev);
6799                 enable_irq(adapter->pdev->irq);
6800                 break;
6801         default:                /* E1000E_INT_MODE_LEGACY */
6802                 if (disable_hardirq(adapter->pdev->irq))
6803                         e1000_intr(adapter->pdev->irq, netdev);
6804                 enable_irq(adapter->pdev->irq);
6805                 break;
6806         }
6807 }
6808 #endif
6809
6810 /**
6811  * e1000_io_error_detected - called when PCI error is detected
6812  * @pdev: Pointer to PCI device
6813  * @state: The current pci connection state
6814  *
6815  * This function is called after a PCI bus error affecting
6816  * this device has been detected.
6817  */
6818 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6819                                                 pci_channel_state_t state)
6820 {
6821         struct net_device *netdev = pci_get_drvdata(pdev);
6822         struct e1000_adapter *adapter = netdev_priv(netdev);
6823
6824         netif_device_detach(netdev);
6825
6826         if (state == pci_channel_io_perm_failure)
6827                 return PCI_ERS_RESULT_DISCONNECT;
6828
6829         if (netif_running(netdev))
6830                 e1000e_down(adapter, true);
6831         pci_disable_device(pdev);
6832
6833         /* Request a slot slot reset. */
6834         return PCI_ERS_RESULT_NEED_RESET;
6835 }
6836
6837 /**
6838  * e1000_io_slot_reset - called after the pci bus has been reset.
6839  * @pdev: Pointer to PCI device
6840  *
6841  * Restart the card from scratch, as if from a cold-boot. Implementation
6842  * resembles the first-half of the e1000e_pm_resume routine.
6843  */
6844 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6845 {
6846         struct net_device *netdev = pci_get_drvdata(pdev);
6847         struct e1000_adapter *adapter = netdev_priv(netdev);
6848         struct e1000_hw *hw = &adapter->hw;
6849         u16 aspm_disable_flag = 0;
6850         int err;
6851         pci_ers_result_t result;
6852
6853         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6854                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6855         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6856                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6857         if (aspm_disable_flag)
6858                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6859
6860         err = pci_enable_device_mem(pdev);
6861         if (err) {
6862                 dev_err(&pdev->dev,
6863                         "Cannot re-enable PCI device after reset.\n");
6864                 result = PCI_ERS_RESULT_DISCONNECT;
6865         } else {
6866                 pdev->state_saved = true;
6867                 pci_restore_state(pdev);
6868                 pci_set_master(pdev);
6869
6870                 pci_enable_wake(pdev, PCI_D3hot, 0);
6871                 pci_enable_wake(pdev, PCI_D3cold, 0);
6872
6873                 e1000e_reset(adapter);
6874                 ew32(WUS, ~0);
6875                 result = PCI_ERS_RESULT_RECOVERED;
6876         }
6877
6878         pci_cleanup_aer_uncorrect_error_status(pdev);
6879
6880         return result;
6881 }
6882
6883 /**
6884  * e1000_io_resume - called when traffic can start flowing again.
6885  * @pdev: Pointer to PCI device
6886  *
6887  * This callback is called when the error recovery driver tells us that
6888  * its OK to resume normal operation. Implementation resembles the
6889  * second-half of the e1000e_pm_resume routine.
6890  */
6891 static void e1000_io_resume(struct pci_dev *pdev)
6892 {
6893         struct net_device *netdev = pci_get_drvdata(pdev);
6894         struct e1000_adapter *adapter = netdev_priv(netdev);
6895
6896         e1000_init_manageability_pt(adapter);
6897
6898         if (netif_running(netdev))
6899                 e1000e_up(adapter);
6900
6901         netif_device_attach(netdev);
6902
6903         /* If the controller has AMT, do not set DRV_LOAD until the interface
6904          * is up.  For all other cases, let the f/w know that the h/w is now
6905          * under the control of the driver.
6906          */
6907         if (!(adapter->flags & FLAG_HAS_AMT))
6908                 e1000e_get_hw_control(adapter);
6909 }
6910
6911 static void e1000_print_device_info(struct e1000_adapter *adapter)
6912 {
6913         struct e1000_hw *hw = &adapter->hw;
6914         struct net_device *netdev = adapter->netdev;
6915         u32 ret_val;
6916         u8 pba_str[E1000_PBANUM_LENGTH];
6917
6918         /* print bus type/speed/width info */
6919         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6920                /* bus width */
6921                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6922                 "Width x1"),
6923                /* MAC address */
6924                netdev->dev_addr);
6925         e_info("Intel(R) PRO/%s Network Connection\n",
6926                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6927         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6928                                                 E1000_PBANUM_LENGTH);
6929         if (ret_val)
6930                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6931         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6932                hw->mac.type, hw->phy.type, pba_str);
6933 }
6934
6935 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6936 {
6937         struct e1000_hw *hw = &adapter->hw;
6938         int ret_val;
6939         u16 buf = 0;
6940
6941         if (hw->mac.type != e1000_82573)
6942                 return;
6943
6944         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6945         le16_to_cpus(&buf);
6946         if (!ret_val && (!(buf & BIT(0)))) {
6947                 /* Deep Smart Power Down (DSPD) */
6948                 dev_warn(&adapter->pdev->dev,
6949                          "Warning: detected DSPD enabled in EEPROM\n");
6950         }
6951 }
6952
6953 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6954                                             netdev_features_t features)
6955 {
6956         struct e1000_adapter *adapter = netdev_priv(netdev);
6957         struct e1000_hw *hw = &adapter->hw;
6958
6959         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6960         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6961                 features &= ~NETIF_F_RXFCS;
6962
6963         /* Since there is no support for separate Rx/Tx vlan accel
6964          * enable/disable make sure Tx flag is always in same state as Rx.
6965          */
6966         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6967                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6968         else
6969                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6970
6971         return features;
6972 }
6973
6974 static int e1000_set_features(struct net_device *netdev,
6975                               netdev_features_t features)
6976 {
6977         struct e1000_adapter *adapter = netdev_priv(netdev);
6978         netdev_features_t changed = features ^ netdev->features;
6979
6980         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6981                 adapter->flags |= FLAG_TSO_FORCE;
6982
6983         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6984                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6985                          NETIF_F_RXALL)))
6986                 return 0;
6987
6988         if (changed & NETIF_F_RXFCS) {
6989                 if (features & NETIF_F_RXFCS) {
6990                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6991                 } else {
6992                         /* We need to take it back to defaults, which might mean
6993                          * stripping is still disabled at the adapter level.
6994                          */
6995                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6996                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6997                         else
6998                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6999                 }
7000         }
7001
7002         netdev->features = features;
7003
7004         if (netif_running(netdev))
7005                 e1000e_reinit_locked(adapter);
7006         else
7007                 e1000e_reset(adapter);
7008
7009         return 0;
7010 }
7011
7012 static const struct net_device_ops e1000e_netdev_ops = {
7013         .ndo_open               = e1000e_open,
7014         .ndo_stop               = e1000e_close,
7015         .ndo_start_xmit         = e1000_xmit_frame,
7016         .ndo_get_stats64        = e1000e_get_stats64,
7017         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7018         .ndo_set_mac_address    = e1000_set_mac,
7019         .ndo_change_mtu         = e1000_change_mtu,
7020         .ndo_do_ioctl           = e1000_ioctl,
7021         .ndo_tx_timeout         = e1000_tx_timeout,
7022         .ndo_validate_addr      = eth_validate_addr,
7023
7024         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7025         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7026 #ifdef CONFIG_NET_POLL_CONTROLLER
7027         .ndo_poll_controller    = e1000_netpoll,
7028 #endif
7029         .ndo_set_features = e1000_set_features,
7030         .ndo_fix_features = e1000_fix_features,
7031         .ndo_features_check     = passthru_features_check,
7032 };
7033
7034 /**
7035  * e1000_probe - Device Initialization Routine
7036  * @pdev: PCI device information struct
7037  * @ent: entry in e1000_pci_tbl
7038  *
7039  * Returns 0 on success, negative on failure
7040  *
7041  * e1000_probe initializes an adapter identified by a pci_dev structure.
7042  * The OS initialization, configuring of the adapter private structure,
7043  * and a hardware reset occur.
7044  **/
7045 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7046 {
7047         struct net_device *netdev;
7048         struct e1000_adapter *adapter;
7049         struct e1000_hw *hw;
7050         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7051         resource_size_t mmio_start, mmio_len;
7052         resource_size_t flash_start, flash_len;
7053         static int cards_found;
7054         u16 aspm_disable_flag = 0;
7055         int bars, i, err, pci_using_dac;
7056         u16 eeprom_data = 0;
7057         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7058         s32 ret_val = 0;
7059
7060         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7061                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7062         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7063                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7064         if (aspm_disable_flag)
7065                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7066
7067         err = pci_enable_device_mem(pdev);
7068         if (err)
7069                 return err;
7070
7071         pci_using_dac = 0;
7072         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7073         if (!err) {
7074                 pci_using_dac = 1;
7075         } else {
7076                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7077                 if (err) {
7078                         dev_err(&pdev->dev,
7079                                 "No usable DMA configuration, aborting\n");
7080                         goto err_dma;
7081                 }
7082         }
7083
7084         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7085         err = pci_request_selected_regions_exclusive(pdev, bars,
7086                                                      e1000e_driver_name);
7087         if (err)
7088                 goto err_pci_reg;
7089
7090         /* AER (Advanced Error Reporting) hooks */
7091         pci_enable_pcie_error_reporting(pdev);
7092
7093         pci_set_master(pdev);
7094         /* PCI config space info */
7095         err = pci_save_state(pdev);
7096         if (err)
7097                 goto err_alloc_etherdev;
7098
7099         err = -ENOMEM;
7100         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7101         if (!netdev)
7102                 goto err_alloc_etherdev;
7103
7104         SET_NETDEV_DEV(netdev, &pdev->dev);
7105
7106         netdev->irq = pdev->irq;
7107
7108         pci_set_drvdata(pdev, netdev);
7109         adapter = netdev_priv(netdev);
7110         hw = &adapter->hw;
7111         adapter->netdev = netdev;
7112         adapter->pdev = pdev;
7113         adapter->ei = ei;
7114         adapter->pba = ei->pba;
7115         adapter->flags = ei->flags;
7116         adapter->flags2 = ei->flags2;
7117         adapter->hw.adapter = adapter;
7118         adapter->hw.mac.type = ei->mac;
7119         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7120         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7121
7122         mmio_start = pci_resource_start(pdev, 0);
7123         mmio_len = pci_resource_len(pdev, 0);
7124
7125         err = -EIO;
7126         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7127         if (!adapter->hw.hw_addr)
7128                 goto err_ioremap;
7129
7130         if ((adapter->flags & FLAG_HAS_FLASH) &&
7131             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7132             (hw->mac.type < e1000_pch_spt)) {
7133                 flash_start = pci_resource_start(pdev, 1);
7134                 flash_len = pci_resource_len(pdev, 1);
7135                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7136                 if (!adapter->hw.flash_address)
7137                         goto err_flashmap;
7138         }
7139
7140         /* Set default EEE advertisement */
7141         if (adapter->flags2 & FLAG2_HAS_EEE)
7142                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7143
7144         /* construct the net_device struct */
7145         netdev->netdev_ops = &e1000e_netdev_ops;
7146         e1000e_set_ethtool_ops(netdev);
7147         netdev->watchdog_timeo = 5 * HZ;
7148         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7149         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7150
7151         netdev->mem_start = mmio_start;
7152         netdev->mem_end = mmio_start + mmio_len;
7153
7154         adapter->bd_number = cards_found++;
7155
7156         e1000e_check_options(adapter);
7157
7158         /* setup adapter struct */
7159         err = e1000_sw_init(adapter);
7160         if (err)
7161                 goto err_sw_init;
7162
7163         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7164         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7165         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7166
7167         err = ei->get_variants(adapter);
7168         if (err)
7169                 goto err_hw_init;
7170
7171         if ((adapter->flags & FLAG_IS_ICH) &&
7172             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7173             (hw->mac.type < e1000_pch_spt))
7174                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7175
7176         hw->mac.ops.get_bus_info(&adapter->hw);
7177
7178         adapter->hw.phy.autoneg_wait_to_complete = 0;
7179
7180         /* Copper options */
7181         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7182                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7183                 adapter->hw.phy.disable_polarity_correction = 0;
7184                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7185         }
7186
7187         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7188                 dev_info(&pdev->dev,
7189                          "PHY reset is blocked due to SOL/IDER session.\n");
7190
7191         /* Set initial default active device features */
7192         netdev->features = (NETIF_F_SG |
7193                             NETIF_F_HW_VLAN_CTAG_RX |
7194                             NETIF_F_HW_VLAN_CTAG_TX |
7195                             NETIF_F_TSO |
7196                             NETIF_F_TSO6 |
7197                             NETIF_F_RXHASH |
7198                             NETIF_F_RXCSUM |
7199                             NETIF_F_HW_CSUM);
7200
7201         /* Set user-changeable features (subset of all device features) */
7202         netdev->hw_features = netdev->features;
7203         netdev->hw_features |= NETIF_F_RXFCS;
7204         netdev->priv_flags |= IFF_SUPP_NOFCS;
7205         netdev->hw_features |= NETIF_F_RXALL;
7206
7207         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7208                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7209
7210         netdev->vlan_features |= (NETIF_F_SG |
7211                                   NETIF_F_TSO |
7212                                   NETIF_F_TSO6 |
7213                                   NETIF_F_HW_CSUM);
7214
7215         netdev->priv_flags |= IFF_UNICAST_FLT;
7216
7217         if (pci_using_dac) {
7218                 netdev->features |= NETIF_F_HIGHDMA;
7219                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7220         }
7221
7222         /* MTU range: 68 - max_hw_frame_size */
7223         netdev->min_mtu = ETH_MIN_MTU;
7224         netdev->max_mtu = adapter->max_hw_frame_size -
7225                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7226
7227         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7228                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7229
7230         /* before reading the NVM, reset the controller to
7231          * put the device in a known good starting state
7232          */
7233         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7234
7235         /* systems with ASPM and others may see the checksum fail on the first
7236          * attempt. Let's give it a few tries
7237          */
7238         for (i = 0;; i++) {
7239                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7240                         break;
7241                 if (i == 2) {
7242                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7243                         err = -EIO;
7244                         goto err_eeprom;
7245                 }
7246         }
7247
7248         e1000_eeprom_checks(adapter);
7249
7250         /* copy the MAC address */
7251         if (e1000e_read_mac_addr(&adapter->hw))
7252                 dev_err(&pdev->dev,
7253                         "NVM Read Error while reading MAC address\n");
7254
7255         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7256
7257         if (!is_valid_ether_addr(netdev->dev_addr)) {
7258                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7259                         netdev->dev_addr);
7260                 err = -EIO;
7261                 goto err_eeprom;
7262         }
7263
7264         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7265         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7266
7267         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7268         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7269         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7270         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7271         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7272
7273         /* Initialize link parameters. User can change them with ethtool */
7274         adapter->hw.mac.autoneg = 1;
7275         adapter->fc_autoneg = true;
7276         adapter->hw.fc.requested_mode = e1000_fc_default;
7277         adapter->hw.fc.current_mode = e1000_fc_default;
7278         adapter->hw.phy.autoneg_advertised = 0x2f;
7279
7280         /* Initial Wake on LAN setting - If APM wake is enabled in
7281          * the EEPROM, enable the ACPI Magic Packet filter
7282          */
7283         if (adapter->flags & FLAG_APME_IN_WUC) {
7284                 /* APME bit in EEPROM is mapped to WUC.APME */
7285                 eeprom_data = er32(WUC);
7286                 eeprom_apme_mask = E1000_WUC_APME;
7287                 if ((hw->mac.type > e1000_ich10lan) &&
7288                     (eeprom_data & E1000_WUC_PHY_WAKE))
7289                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7290         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7291                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7292                     (adapter->hw.bus.func == 1))
7293                         ret_val = e1000_read_nvm(&adapter->hw,
7294                                               NVM_INIT_CONTROL3_PORT_B,
7295                                               1, &eeprom_data);
7296                 else
7297                         ret_val = e1000_read_nvm(&adapter->hw,
7298                                               NVM_INIT_CONTROL3_PORT_A,
7299                                               1, &eeprom_data);
7300         }
7301
7302         /* fetch WoL from EEPROM */
7303         if (ret_val)
7304                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7305         else if (eeprom_data & eeprom_apme_mask)
7306                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7307
7308         /* now that we have the eeprom settings, apply the special cases
7309          * where the eeprom may be wrong or the board simply won't support
7310          * wake on lan on a particular port
7311          */
7312         if (!(adapter->flags & FLAG_HAS_WOL))
7313                 adapter->eeprom_wol = 0;
7314
7315         /* initialize the wol settings based on the eeprom settings */
7316         adapter->wol = adapter->eeprom_wol;
7317
7318         /* make sure adapter isn't asleep if manageability is enabled */
7319         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7320             (hw->mac.ops.check_mng_mode(hw)))
7321                 device_wakeup_enable(&pdev->dev);
7322
7323         /* save off EEPROM version number */
7324         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7325
7326         if (ret_val) {
7327                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7328                 adapter->eeprom_vers = 0;
7329         }
7330
7331         /* init PTP hardware clock */
7332         e1000e_ptp_init(adapter);
7333
7334         /* reset the hardware with the new settings */
7335         e1000e_reset(adapter);
7336
7337         /* If the controller has AMT, do not set DRV_LOAD until the interface
7338          * is up.  For all other cases, let the f/w know that the h/w is now
7339          * under the control of the driver.
7340          */
7341         if (!(adapter->flags & FLAG_HAS_AMT))
7342                 e1000e_get_hw_control(adapter);
7343
7344         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7345         err = register_netdev(netdev);
7346         if (err)
7347                 goto err_register;
7348
7349         /* carrier off reporting is important to ethtool even BEFORE open */
7350         netif_carrier_off(netdev);
7351
7352         e1000_print_device_info(adapter);
7353
7354         if (pci_dev_run_wake(pdev))
7355                 pm_runtime_put_noidle(&pdev->dev);
7356
7357         return 0;
7358
7359 err_register:
7360         if (!(adapter->flags & FLAG_HAS_AMT))
7361                 e1000e_release_hw_control(adapter);
7362 err_eeprom:
7363         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7364                 e1000_phy_hw_reset(&adapter->hw);
7365 err_hw_init:
7366         kfree(adapter->tx_ring);
7367         kfree(adapter->rx_ring);
7368 err_sw_init:
7369         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7370                 iounmap(adapter->hw.flash_address);
7371         e1000e_reset_interrupt_capability(adapter);
7372 err_flashmap:
7373         iounmap(adapter->hw.hw_addr);
7374 err_ioremap:
7375         free_netdev(netdev);
7376 err_alloc_etherdev:
7377         pci_release_mem_regions(pdev);
7378 err_pci_reg:
7379 err_dma:
7380         pci_disable_device(pdev);
7381         return err;
7382 }
7383
7384 /**
7385  * e1000_remove - Device Removal Routine
7386  * @pdev: PCI device information struct
7387  *
7388  * e1000_remove is called by the PCI subsystem to alert the driver
7389  * that it should release a PCI device.  The could be caused by a
7390  * Hot-Plug event, or because the driver is going to be removed from
7391  * memory.
7392  **/
7393 static void e1000_remove(struct pci_dev *pdev)
7394 {
7395         struct net_device *netdev = pci_get_drvdata(pdev);
7396         struct e1000_adapter *adapter = netdev_priv(netdev);
7397         bool down = test_bit(__E1000_DOWN, &adapter->state);
7398
7399         e1000e_ptp_remove(adapter);
7400
7401         /* The timers may be rescheduled, so explicitly disable them
7402          * from being rescheduled.
7403          */
7404         if (!down)
7405                 set_bit(__E1000_DOWN, &adapter->state);
7406         del_timer_sync(&adapter->watchdog_timer);
7407         del_timer_sync(&adapter->phy_info_timer);
7408
7409         cancel_work_sync(&adapter->reset_task);
7410         cancel_work_sync(&adapter->watchdog_task);
7411         cancel_work_sync(&adapter->downshift_task);
7412         cancel_work_sync(&adapter->update_phy_task);
7413         cancel_work_sync(&adapter->print_hang_task);
7414
7415         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7416                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7417                 if (adapter->tx_hwtstamp_skb) {
7418                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7419                         adapter->tx_hwtstamp_skb = NULL;
7420                 }
7421         }
7422
7423         /* Don't lie to e1000_close() down the road. */
7424         if (!down)
7425                 clear_bit(__E1000_DOWN, &adapter->state);
7426         unregister_netdev(netdev);
7427
7428         if (pci_dev_run_wake(pdev))
7429                 pm_runtime_get_noresume(&pdev->dev);
7430
7431         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7432          * would have already happened in close and is redundant.
7433          */
7434         e1000e_release_hw_control(adapter);
7435
7436         e1000e_reset_interrupt_capability(adapter);
7437         kfree(adapter->tx_ring);
7438         kfree(adapter->rx_ring);
7439
7440         iounmap(adapter->hw.hw_addr);
7441         if ((adapter->hw.flash_address) &&
7442             (adapter->hw.mac.type < e1000_pch_spt))
7443                 iounmap(adapter->hw.flash_address);
7444         pci_release_mem_regions(pdev);
7445
7446         free_netdev(netdev);
7447
7448         /* AER disable */
7449         pci_disable_pcie_error_reporting(pdev);
7450
7451         pci_disable_device(pdev);
7452 }
7453
7454 /* PCI Error Recovery (ERS) */
7455 static const struct pci_error_handlers e1000_err_handler = {
7456         .error_detected = e1000_io_error_detected,
7457         .slot_reset = e1000_io_slot_reset,
7458         .resume = e1000_io_resume,
7459 };
7460
7461 static const struct pci_device_id e1000_pci_tbl[] = {
7462         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7466           board_82571 },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7468         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7472
7473         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7477
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7481
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7485
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7487           board_80003es2lan },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7489           board_80003es2lan },
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7491           board_80003es2lan },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7493           board_80003es2lan },
7494
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7503
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7513
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7517
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7521
7522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7526
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7529
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7551         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7555
7556         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7557 };
7558 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7559
7560 static const struct dev_pm_ops e1000_pm_ops = {
7561 #ifdef CONFIG_PM_SLEEP
7562         .suspend        = e1000e_pm_suspend,
7563         .resume         = e1000e_pm_resume,
7564         .freeze         = e1000e_pm_freeze,
7565         .thaw           = e1000e_pm_thaw,
7566         .poweroff       = e1000e_pm_suspend,
7567         .restore        = e1000e_pm_resume,
7568 #endif
7569         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7570                            e1000e_pm_runtime_idle)
7571 };
7572
7573 /* PCI Device API Driver */
7574 static struct pci_driver e1000_driver = {
7575         .name     = e1000e_driver_name,
7576         .id_table = e1000_pci_tbl,
7577         .probe    = e1000_probe,
7578         .remove   = e1000_remove,
7579         .driver   = {
7580                 .pm = &e1000_pm_ops,
7581         },
7582         .shutdown = e1000_shutdown,
7583         .err_handler = &e1000_err_handler
7584 };
7585
7586 /**
7587  * e1000_init_module - Driver Registration Routine
7588  *
7589  * e1000_init_module is the first routine called when the driver is
7590  * loaded. All it does is register with the PCI subsystem.
7591  **/
7592 static int __init e1000_init_module(void)
7593 {
7594         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7595                 e1000e_driver_version);
7596         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7597
7598         return pci_register_driver(&e1000_driver);
7599 }
7600 module_init(e1000_init_module);
7601
7602 /**
7603  * e1000_exit_module - Driver Exit Cleanup Routine
7604  *
7605  * e1000_exit_module is called just before the driver is removed
7606  * from memory.
7607  **/
7608 static void __exit e1000_exit_module(void)
7609 {
7610         pci_unregister_driver(&e1000_driver);
7611 }
7612 module_exit(e1000_exit_module);
7613
7614 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7615 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7616 MODULE_LICENSE("GPL");
7617 MODULE_VERSION(DRV_VERSION);
7618
7619 /* netdev.c */