1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
32 char e1000e_driver_name[] = "e1000e";
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35 static int debug = -1;
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 static const struct e1000_info *e1000_info_tbl[] = {
40 [board_82571] = &e1000_82571_info,
41 [board_82572] = &e1000_82572_info,
42 [board_82573] = &e1000_82573_info,
43 [board_82574] = &e1000_82574_info,
44 [board_82583] = &e1000_82583_info,
45 [board_80003es2lan] = &e1000_es2_info,
46 [board_ich8lan] = &e1000_ich8_info,
47 [board_ich9lan] = &e1000_ich9_info,
48 [board_ich10lan] = &e1000_ich10_info,
49 [board_pchlan] = &e1000_pch_info,
50 [board_pch2lan] = &e1000_pch2_info,
51 [board_pch_lpt] = &e1000_pch_lpt_info,
52 [board_pch_spt] = &e1000_pch_spt_info,
53 [board_pch_cnp] = &e1000_pch_cnp_info,
56 struct e1000_reg_info {
61 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
62 /* General Registers */
64 {E1000_STATUS, "STATUS"},
65 {E1000_CTRL_EXT, "CTRL_EXT"},
67 /* Interrupt Registers */
72 {E1000_RDLEN(0), "RDLEN"},
73 {E1000_RDH(0), "RDH"},
74 {E1000_RDT(0), "RDT"},
76 {E1000_RXDCTL(0), "RXDCTL"},
78 {E1000_RDBAL(0), "RDBAL"},
79 {E1000_RDBAH(0), "RDBAH"},
82 {E1000_RDFHS, "RDFHS"},
83 {E1000_RDFTS, "RDFTS"},
84 {E1000_RDFPC, "RDFPC"},
88 {E1000_TDBAL(0), "TDBAL"},
89 {E1000_TDBAH(0), "TDBAH"},
90 {E1000_TDLEN(0), "TDLEN"},
91 {E1000_TDH(0), "TDH"},
92 {E1000_TDT(0), "TDT"},
94 {E1000_TXDCTL(0), "TXDCTL"},
96 {E1000_TARC(0), "TARC"},
99 {E1000_TDFHS, "TDFHS"},
100 {E1000_TDFTS, "TDFTS"},
101 {E1000_TDFPC, "TDFPC"},
103 /* List Terminator */
108 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
109 * @hw: pointer to the HW structure
111 * When updating the MAC CSR registers, the Manageability Engine (ME) could
112 * be accessing the registers at the same time. Normally, this is handled in
113 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
114 * accesses later than it should which could result in the register to have
115 * an incorrect value. Workaround this by checking the FWSM register which
116 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
117 * and try again a number of times.
119 static void __ew32_prepare(struct e1000_hw *hw)
121 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
123 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
129 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
132 writel(val, hw->hw_addr + reg);
136 * e1000_regdump - register printout routine
137 * @hw: pointer to the HW structure
138 * @reginfo: pointer to the register info table
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146 switch (reginfo->ofs) {
147 case E1000_RXDCTL(0):
148 for (n = 0; n < 2; n++)
149 regs[n] = __er32(hw, E1000_RXDCTL(n));
151 case E1000_TXDCTL(0):
152 for (n = 0; n < 2; n++)
153 regs[n] = __er32(hw, E1000_TXDCTL(n));
156 for (n = 0; n < 2; n++)
157 regs[n] = __er32(hw, E1000_TARC(n));
160 pr_info("%-15s %08x\n",
161 reginfo->name, __er32(hw, reginfo->ofs));
165 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170 struct e1000_buffer *bi)
173 struct e1000_ps_page *ps_page;
175 for (i = 0; i < adapter->rx_ps_pages; i++) {
176 ps_page = &bi->ps_pages[i];
179 pr_info("packet dump for ps_page %d:\n", i);
180 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181 16, 1, page_address(ps_page->page),
188 * e1000e_dump - Print registers, Tx-ring and Rx-ring
189 * @adapter: board private structure
191 static void e1000e_dump(struct e1000_adapter *adapter)
193 struct net_device *netdev = adapter->netdev;
194 struct e1000_hw *hw = &adapter->hw;
195 struct e1000_reg_info *reginfo;
196 struct e1000_ring *tx_ring = adapter->tx_ring;
197 struct e1000_tx_desc *tx_desc;
202 struct e1000_buffer *buffer_info;
203 struct e1000_ring *rx_ring = adapter->rx_ring;
204 union e1000_rx_desc_packet_split *rx_desc_ps;
205 union e1000_rx_desc_extended *rx_desc;
215 if (!netif_msg_hw(adapter))
218 /* Print netdevice Info */
220 dev_info(&adapter->pdev->dev, "Net device Info\n");
221 pr_info("Device Name state trans_start\n");
222 pr_info("%-15s %016lX %016lX\n", netdev->name,
223 netdev->state, dev_trans_start(netdev));
226 /* Print Registers */
227 dev_info(&adapter->pdev->dev, "Register Dump\n");
228 pr_info(" Register Name Value\n");
229 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
230 reginfo->name; reginfo++) {
231 e1000_regdump(hw, reginfo);
234 /* Print Tx Ring Summary */
235 if (!netdev || !netif_running(netdev))
238 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
239 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
240 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
241 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
242 0, tx_ring->next_to_use, tx_ring->next_to_clean,
243 (unsigned long long)buffer_info->dma,
245 buffer_info->next_to_watch,
246 (unsigned long long)buffer_info->time_stamp);
249 if (!netif_msg_tx_done(adapter))
250 goto rx_ring_summary;
252 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256 * Legacy Transmit Descriptor
257 * +--------------------------------------------------------------+
258 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
259 * +--------------------------------------------------------------+
260 * 8 | Special | CSS | Status | CMD | CSO | Length |
261 * +--------------------------------------------------------------+
262 * 63 48 47 36 35 32 31 24 23 16 15 0
264 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
265 * 63 48 47 40 39 32 31 16 15 8 7 0
266 * +----------------------------------------------------------------+
267 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
268 * +----------------------------------------------------------------+
269 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
270 * +----------------------------------------------------------------+
271 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
273 * Extended Data Descriptor (DTYP=0x1)
274 * +----------------------------------------------------------------+
275 * 0 | Buffer Address [63:0] |
276 * +----------------------------------------------------------------+
277 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
278 * +----------------------------------------------------------------+
279 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
281 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
282 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
283 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
284 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
285 const char *next_desc;
286 tx_desc = E1000_TX_DESC(*tx_ring, i);
287 buffer_info = &tx_ring->buffer_info[i];
288 u0 = (struct my_u0 *)tx_desc;
289 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
290 next_desc = " NTC/U";
291 else if (i == tx_ring->next_to_use)
293 else if (i == tx_ring->next_to_clean)
297 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
298 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
299 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
301 (unsigned long long)le64_to_cpu(u0->a),
302 (unsigned long long)le64_to_cpu(u0->b),
303 (unsigned long long)buffer_info->dma,
304 buffer_info->length, buffer_info->next_to_watch,
305 (unsigned long long)buffer_info->time_stamp,
306 buffer_info->skb, next_desc);
308 if (netif_msg_pktdata(adapter) && buffer_info->skb)
309 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
310 16, 1, buffer_info->skb->data,
311 buffer_info->skb->len, true);
314 /* Print Rx Ring Summary */
316 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
317 pr_info("Queue [NTU] [NTC]\n");
318 pr_info(" %5d %5X %5X\n",
319 0, rx_ring->next_to_use, rx_ring->next_to_clean);
322 if (!netif_msg_rx_status(adapter))
325 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
326 switch (adapter->rx_ps_pages) {
330 /* [Extended] Packet Split Receive Descriptor Format
332 * +-----------------------------------------------------+
333 * 0 | Buffer Address 0 [63:0] |
334 * +-----------------------------------------------------+
335 * 8 | Buffer Address 1 [63:0] |
336 * +-----------------------------------------------------+
337 * 16 | Buffer Address 2 [63:0] |
338 * +-----------------------------------------------------+
339 * 24 | Buffer Address 3 [63:0] |
340 * +-----------------------------------------------------+
342 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
343 /* [Extended] Receive Descriptor (Write-Back) Format
345 * 63 48 47 32 31 13 12 8 7 4 3 0
346 * +------------------------------------------------------+
347 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
348 * | Checksum | Ident | | Queue | | Type |
349 * +------------------------------------------------------+
350 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351 * +------------------------------------------------------+
352 * 63 48 47 32 31 20 19 0
354 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
355 for (i = 0; i < rx_ring->count; i++) {
356 const char *next_desc;
357 buffer_info = &rx_ring->buffer_info[i];
358 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
359 u1 = (struct my_u1 *)rx_desc_ps;
361 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363 if (i == rx_ring->next_to_use)
365 else if (i == rx_ring->next_to_clean)
370 if (staterr & E1000_RXD_STAT_DD) {
371 /* Descriptor Done */
372 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374 (unsigned long long)le64_to_cpu(u1->a),
375 (unsigned long long)le64_to_cpu(u1->b),
376 (unsigned long long)le64_to_cpu(u1->c),
377 (unsigned long long)le64_to_cpu(u1->d),
378 buffer_info->skb, next_desc);
380 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
382 (unsigned long long)le64_to_cpu(u1->a),
383 (unsigned long long)le64_to_cpu(u1->b),
384 (unsigned long long)le64_to_cpu(u1->c),
385 (unsigned long long)le64_to_cpu(u1->d),
386 (unsigned long long)buffer_info->dma,
387 buffer_info->skb, next_desc);
389 if (netif_msg_pktdata(adapter))
390 e1000e_dump_ps_pages(adapter,
397 /* Extended Receive Descriptor (Read) Format
399 * +-----------------------------------------------------+
400 * 0 | Buffer Address [63:0] |
401 * +-----------------------------------------------------+
403 * +-----------------------------------------------------+
405 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
406 /* Extended Receive Descriptor (Write-Back) Format
408 * 63 48 47 32 31 24 23 4 3 0
409 * +------------------------------------------------------+
411 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
412 * | Packet | IP | | | Type |
413 * | Checksum | Ident | | | |
414 * +------------------------------------------------------+
415 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
416 * +------------------------------------------------------+
417 * 63 48 47 32 31 20 19 0
419 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
421 for (i = 0; i < rx_ring->count; i++) {
422 const char *next_desc;
424 buffer_info = &rx_ring->buffer_info[i];
425 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
426 u1 = (struct my_u1 *)rx_desc;
427 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429 if (i == rx_ring->next_to_use)
431 else if (i == rx_ring->next_to_clean)
436 if (staterr & E1000_RXD_STAT_DD) {
437 /* Descriptor Done */
438 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
440 (unsigned long long)le64_to_cpu(u1->a),
441 (unsigned long long)le64_to_cpu(u1->b),
442 buffer_info->skb, next_desc);
444 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
446 (unsigned long long)le64_to_cpu(u1->a),
447 (unsigned long long)le64_to_cpu(u1->b),
448 (unsigned long long)buffer_info->dma,
449 buffer_info->skb, next_desc);
451 if (netif_msg_pktdata(adapter) &&
453 print_hex_dump(KERN_INFO, "",
454 DUMP_PREFIX_ADDRESS, 16,
456 buffer_info->skb->data,
457 adapter->rx_buffer_len,
465 * e1000_desc_unused - calculate if we have unused descriptors
466 * @ring: pointer to ring struct to perform calculation on
468 static int e1000_desc_unused(struct e1000_ring *ring)
470 if (ring->next_to_clean > ring->next_to_use)
471 return ring->next_to_clean - ring->next_to_use - 1;
473 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
477 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478 * @adapter: board private structure
479 * @hwtstamps: time stamp structure to update
480 * @systim: unsigned 64bit system time value.
482 * Convert the system time value stored in the RX/TXSTMP registers into a
483 * hwtstamp which can be used by the upper level time stamping functions.
485 * The 'systim_lock' spinlock is used to protect the consistency of the
486 * system time value. This is needed because reading the 64 bit time
487 * value involves reading two 32 bit registers. The first read latches the
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
491 struct skb_shared_hwtstamps *hwtstamps,
497 spin_lock_irqsave(&adapter->systim_lock, flags);
498 ns = timecounter_cyc2time(&adapter->tc, systim);
499 spin_unlock_irqrestore(&adapter->systim_lock, flags);
501 memset(hwtstamps, 0, sizeof(*hwtstamps));
502 hwtstamps->hwtstamp = ns_to_ktime(ns);
506 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507 * @adapter: board private structure
508 * @status: descriptor extended error and status field
509 * @skb: particular skb to include time stamp
511 * If the time stamp is valid, convert it into the timecounter ns value
512 * and store that result into the shhwtstamps structure which is passed
513 * up the network stack.
515 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518 struct e1000_hw *hw = &adapter->hw;
521 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
522 !(status & E1000_RXDEXT_STATERR_TST) ||
523 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526 /* The Rx time stamp registers contain the time stamp. No other
527 * received packet will be time stamped until the Rx time stamp
528 * registers are read. Because only one packet can be time stamped
529 * at a time, the register values must belong to this packet and
530 * therefore none of the other additional attributes need to be
533 rxstmp = (u64)er32(RXSTMPL);
534 rxstmp |= (u64)er32(RXSTMPH) << 32;
535 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
537 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
541 * e1000_receive_skb - helper function to handle Rx indications
542 * @adapter: board private structure
543 * @netdev: pointer to netdev struct
544 * @staterr: descriptor extended error and status field as written by hardware
545 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
546 * @skb: pointer to sk_buff to be indicated to stack
548 static void e1000_receive_skb(struct e1000_adapter *adapter,
549 struct net_device *netdev, struct sk_buff *skb,
550 u32 staterr, __le16 vlan)
552 u16 tag = le16_to_cpu(vlan);
554 e1000e_rx_hwtstamp(adapter, staterr, skb);
556 skb->protocol = eth_type_trans(skb, netdev);
558 if (staterr & E1000_RXD_STAT_VP)
559 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
561 napi_gro_receive(&adapter->napi, skb);
565 * e1000_rx_checksum - Receive Checksum Offload
566 * @adapter: board private structure
567 * @status_err: receive descriptor status and error fields
568 * @skb: socket buffer with received data
570 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
573 u16 status = (u16)status_err;
574 u8 errors = (u8)(status_err >> 24);
576 skb_checksum_none_assert(skb);
578 /* Rx checksum disabled */
579 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582 /* Ignore Checksum bit is set */
583 if (status & E1000_RXD_STAT_IXSM)
586 /* TCP/UDP checksum error bit or IP checksum error bit is set */
587 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
588 /* let the stack verify checksum errors */
589 adapter->hw_csum_err++;
593 /* TCP/UDP Checksum has not been calculated */
594 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597 /* It must be a TCP or UDP packet with a valid checksum */
598 skb->ip_summed = CHECKSUM_UNNECESSARY;
599 adapter->hw_csum_good++;
602 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
604 struct e1000_adapter *adapter = rx_ring->adapter;
605 struct e1000_hw *hw = &adapter->hw;
608 writel(i, rx_ring->tail);
610 if (unlikely(i != readl(rx_ring->tail))) {
611 u32 rctl = er32(RCTL);
613 ew32(RCTL, rctl & ~E1000_RCTL_EN);
614 e_err("ME firmware caused invalid RDT - resetting\n");
615 schedule_work(&adapter->reset_task);
619 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
621 struct e1000_adapter *adapter = tx_ring->adapter;
622 struct e1000_hw *hw = &adapter->hw;
625 writel(i, tx_ring->tail);
627 if (unlikely(i != readl(tx_ring->tail))) {
628 u32 tctl = er32(TCTL);
630 ew32(TCTL, tctl & ~E1000_TCTL_EN);
631 e_err("ME firmware caused invalid TDT - resetting\n");
632 schedule_work(&adapter->reset_task);
637 * e1000_alloc_rx_buffers - Replace used receive buffers
638 * @rx_ring: Rx descriptor ring
639 * @cleaned_count: number to reallocate
640 * @gfp: flags for allocation
642 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
643 int cleaned_count, gfp_t gfp)
645 struct e1000_adapter *adapter = rx_ring->adapter;
646 struct net_device *netdev = adapter->netdev;
647 struct pci_dev *pdev = adapter->pdev;
648 union e1000_rx_desc_extended *rx_desc;
649 struct e1000_buffer *buffer_info;
652 unsigned int bufsz = adapter->rx_buffer_len;
654 i = rx_ring->next_to_use;
655 buffer_info = &rx_ring->buffer_info[i];
657 while (cleaned_count--) {
658 skb = buffer_info->skb;
664 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
666 /* Better luck next round */
667 adapter->alloc_rx_buff_failed++;
671 buffer_info->skb = skb;
673 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
674 adapter->rx_buffer_len,
676 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
677 dev_err(&pdev->dev, "Rx DMA map failed\n");
678 adapter->rx_dma_failed++;
682 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
683 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
685 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
686 /* Force memory writes to complete before letting h/w
687 * know there are new descriptors to fetch. (Only
688 * applicable for weak-ordered memory model archs,
692 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
693 e1000e_update_rdt_wa(rx_ring, i);
695 writel(i, rx_ring->tail);
698 if (i == rx_ring->count)
700 buffer_info = &rx_ring->buffer_info[i];
703 rx_ring->next_to_use = i;
707 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
708 * @rx_ring: Rx descriptor ring
709 * @cleaned_count: number to reallocate
710 * @gfp: flags for allocation
712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
713 int cleaned_count, gfp_t gfp)
715 struct e1000_adapter *adapter = rx_ring->adapter;
716 struct net_device *netdev = adapter->netdev;
717 struct pci_dev *pdev = adapter->pdev;
718 union e1000_rx_desc_packet_split *rx_desc;
719 struct e1000_buffer *buffer_info;
720 struct e1000_ps_page *ps_page;
724 i = rx_ring->next_to_use;
725 buffer_info = &rx_ring->buffer_info[i];
727 while (cleaned_count--) {
728 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
730 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
731 ps_page = &buffer_info->ps_pages[j];
732 if (j >= adapter->rx_ps_pages) {
733 /* all unused desc entries get hw null ptr */
734 rx_desc->read.buffer_addr[j + 1] =
738 if (!ps_page->page) {
739 ps_page->page = alloc_page(gfp);
740 if (!ps_page->page) {
741 adapter->alloc_rx_buff_failed++;
744 ps_page->dma = dma_map_page(&pdev->dev,
748 if (dma_mapping_error(&pdev->dev,
750 dev_err(&adapter->pdev->dev,
751 "Rx DMA page map failed\n");
752 adapter->rx_dma_failed++;
756 /* Refresh the desc even if buffer_addrs
757 * didn't change because each write-back
760 rx_desc->read.buffer_addr[j + 1] =
761 cpu_to_le64(ps_page->dma);
764 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
768 adapter->alloc_rx_buff_failed++;
772 buffer_info->skb = skb;
773 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
774 adapter->rx_ps_bsize0,
776 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
777 dev_err(&pdev->dev, "Rx DMA map failed\n");
778 adapter->rx_dma_failed++;
780 dev_kfree_skb_any(skb);
781 buffer_info->skb = NULL;
785 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
787 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
788 /* Force memory writes to complete before letting h/w
789 * know there are new descriptors to fetch. (Only
790 * applicable for weak-ordered memory model archs,
794 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
795 e1000e_update_rdt_wa(rx_ring, i << 1);
797 writel(i << 1, rx_ring->tail);
801 if (i == rx_ring->count)
803 buffer_info = &rx_ring->buffer_info[i];
807 rx_ring->next_to_use = i;
811 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
812 * @rx_ring: Rx descriptor ring
813 * @cleaned_count: number of buffers to allocate this pass
814 * @gfp: flags for allocation
817 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
818 int cleaned_count, gfp_t gfp)
820 struct e1000_adapter *adapter = rx_ring->adapter;
821 struct net_device *netdev = adapter->netdev;
822 struct pci_dev *pdev = adapter->pdev;
823 union e1000_rx_desc_extended *rx_desc;
824 struct e1000_buffer *buffer_info;
827 unsigned int bufsz = 256 - 16; /* for skb_reserve */
829 i = rx_ring->next_to_use;
830 buffer_info = &rx_ring->buffer_info[i];
832 while (cleaned_count--) {
833 skb = buffer_info->skb;
839 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
840 if (unlikely(!skb)) {
841 /* Better luck next round */
842 adapter->alloc_rx_buff_failed++;
846 buffer_info->skb = skb;
848 /* allocate a new page if necessary */
849 if (!buffer_info->page) {
850 buffer_info->page = alloc_page(gfp);
851 if (unlikely(!buffer_info->page)) {
852 adapter->alloc_rx_buff_failed++;
857 if (!buffer_info->dma) {
858 buffer_info->dma = dma_map_page(&pdev->dev,
859 buffer_info->page, 0,
862 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
863 adapter->alloc_rx_buff_failed++;
868 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
869 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
871 if (unlikely(++i == rx_ring->count))
873 buffer_info = &rx_ring->buffer_info[i];
876 if (likely(rx_ring->next_to_use != i)) {
877 rx_ring->next_to_use = i;
878 if (unlikely(i-- == 0))
879 i = (rx_ring->count - 1);
881 /* Force memory writes to complete before letting h/w
882 * know there are new descriptors to fetch. (Only
883 * applicable for weak-ordered memory model archs,
887 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
888 e1000e_update_rdt_wa(rx_ring, i);
890 writel(i, rx_ring->tail);
894 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
897 if (netdev->features & NETIF_F_RXHASH)
898 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
902 * e1000_clean_rx_irq - Send received data up the network stack
903 * @rx_ring: Rx descriptor ring
904 * @work_done: output parameter for indicating completed work
905 * @work_to_do: how many packets we can clean
907 * the return value indicates whether actual cleaning was done, there
908 * is no guarantee that everything was cleaned
910 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
913 struct e1000_adapter *adapter = rx_ring->adapter;
914 struct net_device *netdev = adapter->netdev;
915 struct pci_dev *pdev = adapter->pdev;
916 struct e1000_hw *hw = &adapter->hw;
917 union e1000_rx_desc_extended *rx_desc, *next_rxd;
918 struct e1000_buffer *buffer_info, *next_buffer;
921 int cleaned_count = 0;
922 bool cleaned = false;
923 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
925 i = rx_ring->next_to_clean;
926 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
927 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
928 buffer_info = &rx_ring->buffer_info[i];
930 while (staterr & E1000_RXD_STAT_DD) {
933 if (*work_done >= work_to_do)
936 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
938 skb = buffer_info->skb;
939 buffer_info->skb = NULL;
941 prefetch(skb->data - NET_IP_ALIGN);
944 if (i == rx_ring->count)
946 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
949 next_buffer = &rx_ring->buffer_info[i];
953 dma_unmap_single(&pdev->dev, buffer_info->dma,
954 adapter->rx_buffer_len, DMA_FROM_DEVICE);
955 buffer_info->dma = 0;
957 length = le16_to_cpu(rx_desc->wb.upper.length);
959 /* !EOP means multiple descriptors were used to store a single
960 * packet, if that's the case we need to toss it. In fact, we
961 * need to toss every packet with the EOP bit clear and the
962 * next frame that _does_ have the EOP bit set, as it is by
963 * definition only a frame fragment
965 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
966 adapter->flags2 |= FLAG2_IS_DISCARDING;
968 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
969 /* All receives must fit into a single buffer */
970 e_dbg("Receive packet consumed multiple buffers\n");
972 buffer_info->skb = skb;
973 if (staterr & E1000_RXD_STAT_EOP)
974 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
978 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
979 !(netdev->features & NETIF_F_RXALL))) {
981 buffer_info->skb = skb;
985 /* adjust length to remove Ethernet CRC */
986 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
987 /* If configured to store CRC, don't subtract FCS,
988 * but keep the FCS bytes out of the total_rx_bytes
991 if (netdev->features & NETIF_F_RXFCS)
997 total_rx_bytes += length;
1000 /* code added for copybreak, this should improve
1001 * performance for small packets with large amounts
1002 * of reassembly being done in the stack
1004 if (length < copybreak) {
1005 struct sk_buff *new_skb =
1006 napi_alloc_skb(&adapter->napi, length);
1008 skb_copy_to_linear_data_offset(new_skb,
1014 /* save the skb in buffer_info as good */
1015 buffer_info->skb = skb;
1018 /* else just continue with the old one */
1020 /* end copybreak code */
1021 skb_put(skb, length);
1023 /* Receive Checksum Offload */
1024 e1000_rx_checksum(adapter, staterr, skb);
1026 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1028 e1000_receive_skb(adapter, netdev, skb, staterr,
1029 rx_desc->wb.upper.vlan);
1032 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1034 /* return some buffers to hardware, one at a time is too slow */
1035 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1036 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041 /* use prefetched values */
1043 buffer_info = next_buffer;
1045 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1047 rx_ring->next_to_clean = i;
1049 cleaned_count = e1000_desc_unused(rx_ring);
1051 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1053 adapter->total_rx_bytes += total_rx_bytes;
1054 adapter->total_rx_packets += total_rx_packets;
1058 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1059 struct e1000_buffer *buffer_info,
1062 struct e1000_adapter *adapter = tx_ring->adapter;
1064 if (buffer_info->dma) {
1065 if (buffer_info->mapped_as_page)
1066 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1067 buffer_info->length, DMA_TO_DEVICE);
1069 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1070 buffer_info->length, DMA_TO_DEVICE);
1071 buffer_info->dma = 0;
1073 if (buffer_info->skb) {
1075 dev_kfree_skb_any(buffer_info->skb);
1077 dev_consume_skb_any(buffer_info->skb);
1078 buffer_info->skb = NULL;
1080 buffer_info->time_stamp = 0;
1083 static void e1000_print_hw_hang(struct work_struct *work)
1085 struct e1000_adapter *adapter = container_of(work,
1086 struct e1000_adapter,
1088 struct net_device *netdev = adapter->netdev;
1089 struct e1000_ring *tx_ring = adapter->tx_ring;
1090 unsigned int i = tx_ring->next_to_clean;
1091 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1092 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1093 struct e1000_hw *hw = &adapter->hw;
1094 u16 phy_status, phy_1000t_status, phy_ext_status;
1097 if (test_bit(__E1000_DOWN, &adapter->state))
1100 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1101 /* May be block on write-back, flush and detect again
1102 * flush pending descriptor writebacks to memory
1104 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1105 /* execute the writes immediately */
1107 /* Due to rare timing issues, write to TIDV again to ensure
1108 * the write is successful
1110 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1111 /* execute the writes immediately */
1113 adapter->tx_hang_recheck = true;
1116 adapter->tx_hang_recheck = false;
1118 if (er32(TDH(0)) == er32(TDT(0))) {
1119 e_dbg("false hang detected, ignoring\n");
1123 /* Real hang detected */
1124 netif_stop_queue(netdev);
1126 e1e_rphy(hw, MII_BMSR, &phy_status);
1127 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1128 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1130 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1132 /* detected Hardware unit hang */
1133 e_err("Detected Hardware Unit Hang:\n"
1136 " next_to_use <%x>\n"
1137 " next_to_clean <%x>\n"
1138 "buffer_info[next_to_clean]:\n"
1139 " time_stamp <%lx>\n"
1140 " next_to_watch <%x>\n"
1142 " next_to_watch.status <%x>\n"
1145 "PHY 1000BASE-T Status <%x>\n"
1146 "PHY Extended Status <%x>\n"
1147 "PCI Status <%x>\n",
1148 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1149 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1150 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1151 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1153 e1000e_dump(adapter);
1155 /* Suggest workaround for known h/w issue */
1156 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1157 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1161 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1162 * @work: pointer to work struct
1164 * This work function polls the TSYNCTXCTL valid bit to determine when a
1165 * timestamp has been taken for the current stored skb. The timestamp must
1166 * be for this skb because only one such packet is allowed in the queue.
1168 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1170 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1172 struct e1000_hw *hw = &adapter->hw;
1174 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1175 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1176 struct skb_shared_hwtstamps shhwtstamps;
1179 txstmp = er32(TXSTMPL);
1180 txstmp |= (u64)er32(TXSTMPH) << 32;
1182 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1184 /* Clear the global tx_hwtstamp_skb pointer and force writes
1185 * prior to notifying the stack of a Tx timestamp.
1187 adapter->tx_hwtstamp_skb = NULL;
1188 wmb(); /* force write prior to skb_tstamp_tx */
1190 skb_tstamp_tx(skb, &shhwtstamps);
1191 dev_consume_skb_any(skb);
1192 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1193 + adapter->tx_timeout_factor * HZ)) {
1194 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 adapter->tx_hwtstamp_skb = NULL;
1196 adapter->tx_hwtstamp_timeouts++;
1197 e_warn("clearing Tx timestamp hang\n");
1199 /* reschedule to check later */
1200 schedule_work(&adapter->tx_hwtstamp_work);
1205 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1206 * @tx_ring: Tx descriptor ring
1208 * the return value indicates whether actual cleaning was done, there
1209 * is no guarantee that everything was cleaned
1211 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1213 struct e1000_adapter *adapter = tx_ring->adapter;
1214 struct net_device *netdev = adapter->netdev;
1215 struct e1000_hw *hw = &adapter->hw;
1216 struct e1000_tx_desc *tx_desc, *eop_desc;
1217 struct e1000_buffer *buffer_info;
1218 unsigned int i, eop;
1219 unsigned int count = 0;
1220 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1221 unsigned int bytes_compl = 0, pkts_compl = 0;
1223 i = tx_ring->next_to_clean;
1224 eop = tx_ring->buffer_info[i].next_to_watch;
1225 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1227 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1228 (count < tx_ring->count)) {
1229 bool cleaned = false;
1231 dma_rmb(); /* read buffer_info after eop_desc */
1232 for (; !cleaned; count++) {
1233 tx_desc = E1000_TX_DESC(*tx_ring, i);
1234 buffer_info = &tx_ring->buffer_info[i];
1235 cleaned = (i == eop);
1238 total_tx_packets += buffer_info->segs;
1239 total_tx_bytes += buffer_info->bytecount;
1240 if (buffer_info->skb) {
1241 bytes_compl += buffer_info->skb->len;
1246 e1000_put_txbuf(tx_ring, buffer_info, false);
1247 tx_desc->upper.data = 0;
1250 if (i == tx_ring->count)
1254 if (i == tx_ring->next_to_use)
1256 eop = tx_ring->buffer_info[i].next_to_watch;
1257 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1260 tx_ring->next_to_clean = i;
1262 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1264 #define TX_WAKE_THRESHOLD 32
1265 if (count && netif_carrier_ok(netdev) &&
1266 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1267 /* Make sure that anybody stopping the queue after this
1268 * sees the new next_to_clean.
1272 if (netif_queue_stopped(netdev) &&
1273 !(test_bit(__E1000_DOWN, &adapter->state))) {
1274 netif_wake_queue(netdev);
1275 ++adapter->restart_queue;
1279 if (adapter->detect_tx_hung) {
1280 /* Detect a transmit hang in hardware, this serializes the
1281 * check with the clearing of time_stamp and movement of i
1283 adapter->detect_tx_hung = false;
1284 if (tx_ring->buffer_info[i].time_stamp &&
1285 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1286 + (adapter->tx_timeout_factor * HZ)) &&
1287 !(er32(STATUS) & E1000_STATUS_TXOFF))
1288 schedule_work(&adapter->print_hang_task);
1290 adapter->tx_hang_recheck = false;
1292 adapter->total_tx_bytes += total_tx_bytes;
1293 adapter->total_tx_packets += total_tx_packets;
1294 return count < tx_ring->count;
1298 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1299 * @rx_ring: Rx descriptor ring
1300 * @work_done: output parameter for indicating completed work
1301 * @work_to_do: how many packets we can clean
1303 * the return value indicates whether actual cleaning was done, there
1304 * is no guarantee that everything was cleaned
1306 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 struct e1000_adapter *adapter = rx_ring->adapter;
1310 struct e1000_hw *hw = &adapter->hw;
1311 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1312 struct net_device *netdev = adapter->netdev;
1313 struct pci_dev *pdev = adapter->pdev;
1314 struct e1000_buffer *buffer_info, *next_buffer;
1315 struct e1000_ps_page *ps_page;
1316 struct sk_buff *skb;
1318 u32 length, staterr;
1319 int cleaned_count = 0;
1320 bool cleaned = false;
1321 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323 i = rx_ring->next_to_clean;
1324 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1325 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1326 buffer_info = &rx_ring->buffer_info[i];
1328 while (staterr & E1000_RXD_STAT_DD) {
1329 if (*work_done >= work_to_do)
1332 skb = buffer_info->skb;
1333 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1335 /* in the packet split case this is header only */
1336 prefetch(skb->data - NET_IP_ALIGN);
1339 if (i == rx_ring->count)
1341 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 next_buffer = &rx_ring->buffer_info[i];
1348 dma_unmap_single(&pdev->dev, buffer_info->dma,
1349 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1350 buffer_info->dma = 0;
1352 /* see !EOP comment in other Rx routine */
1353 if (!(staterr & E1000_RXD_STAT_EOP))
1354 adapter->flags2 |= FLAG2_IS_DISCARDING;
1356 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1357 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1358 dev_kfree_skb_irq(skb);
1359 if (staterr & E1000_RXD_STAT_EOP)
1360 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1364 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1365 !(netdev->features & NETIF_F_RXALL))) {
1366 dev_kfree_skb_irq(skb);
1370 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373 e_dbg("Last part of the packet spanning multiple descriptors\n");
1374 dev_kfree_skb_irq(skb);
1379 skb_put(skb, length);
1382 /* this looks ugly, but it seems compiler issues make
1383 * it more efficient than reusing j
1385 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387 /* page alloc/put takes too long and effects small
1388 * packet throughput, so unsplit small packets and
1389 * save the alloc/put only valid in softirq (napi)
1390 * context to call kmap_*
1392 if (l1 && (l1 <= copybreak) &&
1393 ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 ps_page = &buffer_info->ps_pages[0];
1398 /* there is no documentation about how to call
1399 * kmap_atomic, so we can't hold the mapping
1402 dma_sync_single_for_cpu(&pdev->dev,
1406 vaddr = kmap_atomic(ps_page->page);
1407 memcpy(skb_tail_pointer(skb), vaddr, l1);
1408 kunmap_atomic(vaddr);
1409 dma_sync_single_for_device(&pdev->dev,
1414 /* remove the CRC */
1415 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1416 if (!(netdev->features & NETIF_F_RXFCS))
1425 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1426 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1430 ps_page = &buffer_info->ps_pages[j];
1431 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1435 ps_page->page = NULL;
1437 skb->data_len += length;
1438 skb->truesize += PAGE_SIZE;
1441 /* strip the ethernet crc, problem is we're using pages now so
1442 * this whole operation can get a little cpu intensive
1444 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1445 if (!(netdev->features & NETIF_F_RXFCS))
1446 pskb_trim(skb, skb->len - 4);
1450 total_rx_bytes += skb->len;
1453 e1000_rx_checksum(adapter, staterr, skb);
1455 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457 if (rx_desc->wb.upper.header_status &
1458 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1459 adapter->rx_hdr_split++;
1461 e1000_receive_skb(adapter, netdev, skb, staterr,
1462 rx_desc->wb.middle.vlan);
1465 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1466 buffer_info->skb = NULL;
1468 /* return some buffers to hardware, one at a time is too slow */
1469 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1470 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1475 /* use prefetched values */
1477 buffer_info = next_buffer;
1479 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481 rx_ring->next_to_clean = i;
1483 cleaned_count = e1000_desc_unused(rx_ring);
1485 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487 adapter->total_rx_bytes += total_rx_bytes;
1488 adapter->total_rx_packets += total_rx_packets;
1492 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1497 skb->data_len += length;
1498 skb->truesize += PAGE_SIZE;
1502 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1503 * @rx_ring: Rx descriptor ring
1504 * @work_done: output parameter for indicating completed work
1505 * @work_to_do: how many packets we can clean
1507 * the return value indicates whether actual cleaning was done, there
1508 * is no guarantee that everything was cleaned
1510 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513 struct e1000_adapter *adapter = rx_ring->adapter;
1514 struct net_device *netdev = adapter->netdev;
1515 struct pci_dev *pdev = adapter->pdev;
1516 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1517 struct e1000_buffer *buffer_info, *next_buffer;
1518 u32 length, staterr;
1520 int cleaned_count = 0;
1521 bool cleaned = false;
1522 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1523 struct skb_shared_info *shinfo;
1525 i = rx_ring->next_to_clean;
1526 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1527 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1528 buffer_info = &rx_ring->buffer_info[i];
1530 while (staterr & E1000_RXD_STAT_DD) {
1531 struct sk_buff *skb;
1533 if (*work_done >= work_to_do)
1536 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1538 skb = buffer_info->skb;
1539 buffer_info->skb = NULL;
1542 if (i == rx_ring->count)
1544 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547 next_buffer = &rx_ring->buffer_info[i];
1551 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1553 buffer_info->dma = 0;
1555 length = le16_to_cpu(rx_desc->wb.upper.length);
1557 /* errors is only valid for DD + EOP descriptors */
1558 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1559 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1560 !(netdev->features & NETIF_F_RXALL)))) {
1561 /* recycle both page and skb */
1562 buffer_info->skb = skb;
1563 /* an error means any chain goes out the window too */
1564 if (rx_ring->rx_skb_top)
1565 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1566 rx_ring->rx_skb_top = NULL;
1569 #define rxtop (rx_ring->rx_skb_top)
1570 if (!(staterr & E1000_RXD_STAT_EOP)) {
1571 /* this descriptor is only the beginning (or middle) */
1573 /* this is the beginning of a chain */
1575 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578 /* this is the middle of a chain */
1579 shinfo = skb_shinfo(rxtop);
1580 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1581 buffer_info->page, 0,
1583 /* re-use the skb, only consumed the page */
1584 buffer_info->skb = skb;
1586 e1000_consume_page(buffer_info, rxtop, length);
1590 /* end of the chain */
1591 shinfo = skb_shinfo(rxtop);
1592 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1593 buffer_info->page, 0,
1595 /* re-use the current skb, we only consumed the
1598 buffer_info->skb = skb;
1601 e1000_consume_page(buffer_info, skb, length);
1603 /* no chain, got EOP, this buf is the packet
1604 * copybreak to save the put_page/alloc_page
1606 if (length <= copybreak &&
1607 skb_tailroom(skb) >= length) {
1609 vaddr = kmap_atomic(buffer_info->page);
1610 memcpy(skb_tail_pointer(skb), vaddr,
1612 kunmap_atomic(vaddr);
1613 /* re-use the page, so don't erase
1616 skb_put(skb, length);
1618 skb_fill_page_desc(skb, 0,
1619 buffer_info->page, 0,
1621 e1000_consume_page(buffer_info, skb,
1627 /* Receive Checksum Offload */
1628 e1000_rx_checksum(adapter, staterr, skb);
1630 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1632 /* probably a little skewed due to removing CRC */
1633 total_rx_bytes += skb->len;
1636 /* eth type trans needs skb->data to point to something */
1637 if (!pskb_may_pull(skb, ETH_HLEN)) {
1638 e_err("pskb_may_pull failed.\n");
1639 dev_kfree_skb_irq(skb);
1643 e1000_receive_skb(adapter, netdev, skb, staterr,
1644 rx_desc->wb.upper.vlan);
1647 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1649 /* return some buffers to hardware, one at a time is too slow */
1650 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1651 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1656 /* use prefetched values */
1658 buffer_info = next_buffer;
1660 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1662 rx_ring->next_to_clean = i;
1664 cleaned_count = e1000_desc_unused(rx_ring);
1666 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1668 adapter->total_rx_bytes += total_rx_bytes;
1669 adapter->total_rx_packets += total_rx_packets;
1674 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1675 * @rx_ring: Rx descriptor ring
1677 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1679 struct e1000_adapter *adapter = rx_ring->adapter;
1680 struct e1000_buffer *buffer_info;
1681 struct e1000_ps_page *ps_page;
1682 struct pci_dev *pdev = adapter->pdev;
1685 /* Free all the Rx ring sk_buffs */
1686 for (i = 0; i < rx_ring->count; i++) {
1687 buffer_info = &rx_ring->buffer_info[i];
1688 if (buffer_info->dma) {
1689 if (adapter->clean_rx == e1000_clean_rx_irq)
1690 dma_unmap_single(&pdev->dev, buffer_info->dma,
1691 adapter->rx_buffer_len,
1693 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1694 dma_unmap_page(&pdev->dev, buffer_info->dma,
1695 PAGE_SIZE, DMA_FROM_DEVICE);
1696 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1697 dma_unmap_single(&pdev->dev, buffer_info->dma,
1698 adapter->rx_ps_bsize0,
1700 buffer_info->dma = 0;
1703 if (buffer_info->page) {
1704 put_page(buffer_info->page);
1705 buffer_info->page = NULL;
1708 if (buffer_info->skb) {
1709 dev_kfree_skb(buffer_info->skb);
1710 buffer_info->skb = NULL;
1713 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1714 ps_page = &buffer_info->ps_pages[j];
1717 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720 put_page(ps_page->page);
1721 ps_page->page = NULL;
1725 /* there also may be some cached data from a chained receive */
1726 if (rx_ring->rx_skb_top) {
1727 dev_kfree_skb(rx_ring->rx_skb_top);
1728 rx_ring->rx_skb_top = NULL;
1731 /* Zero out the descriptor ring */
1732 memset(rx_ring->desc, 0, rx_ring->size);
1734 rx_ring->next_to_clean = 0;
1735 rx_ring->next_to_use = 0;
1736 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739 static void e1000e_downshift_workaround(struct work_struct *work)
1741 struct e1000_adapter *adapter = container_of(work,
1742 struct e1000_adapter,
1745 if (test_bit(__E1000_DOWN, &adapter->state))
1748 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1752 * e1000_intr_msi - Interrupt Handler
1753 * @irq: interrupt number
1754 * @data: pointer to a network interface device structure
1756 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1758 struct net_device *netdev = data;
1759 struct e1000_adapter *adapter = netdev_priv(netdev);
1760 struct e1000_hw *hw = &adapter->hw;
1761 u32 icr = er32(ICR);
1763 /* read ICR disables interrupts using IAM */
1764 if (icr & E1000_ICR_LSC) {
1765 hw->mac.get_link_status = true;
1766 /* ICH8 workaround-- Call gig speed drop workaround on cable
1767 * disconnect (LSC) before accessing any PHY registers
1769 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1770 (!(er32(STATUS) & E1000_STATUS_LU)))
1771 schedule_work(&adapter->downshift_task);
1773 /* 80003ES2LAN workaround-- For packet buffer work-around on
1774 * link down event; disable receives here in the ISR and reset
1775 * adapter in watchdog
1777 if (netif_carrier_ok(netdev) &&
1778 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1779 /* disable receives */
1780 u32 rctl = er32(RCTL);
1782 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1783 adapter->flags |= FLAG_RESTART_NOW;
1785 /* guard against interrupt when we're going down */
1786 if (!test_bit(__E1000_DOWN, &adapter->state))
1787 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1790 /* Reset on uncorrectable ECC error */
1791 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1792 u32 pbeccsts = er32(PBECCSTS);
1794 adapter->corr_errors +=
1795 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1796 adapter->uncorr_errors +=
1797 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1798 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1800 /* Do the reset outside of interrupt context */
1801 schedule_work(&adapter->reset_task);
1803 /* return immediately since reset is imminent */
1807 if (napi_schedule_prep(&adapter->napi)) {
1808 adapter->total_tx_bytes = 0;
1809 adapter->total_tx_packets = 0;
1810 adapter->total_rx_bytes = 0;
1811 adapter->total_rx_packets = 0;
1812 __napi_schedule(&adapter->napi);
1819 * e1000_intr - Interrupt Handler
1820 * @irq: interrupt number
1821 * @data: pointer to a network interface device structure
1823 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1825 struct net_device *netdev = data;
1826 struct e1000_adapter *adapter = netdev_priv(netdev);
1827 struct e1000_hw *hw = &adapter->hw;
1828 u32 rctl, icr = er32(ICR);
1830 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1831 return IRQ_NONE; /* Not our interrupt */
1833 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1834 * not set, then the adapter didn't send an interrupt
1836 if (!(icr & E1000_ICR_INT_ASSERTED))
1839 /* Interrupt Auto-Mask...upon reading ICR,
1840 * interrupts are masked. No need for the
1844 if (icr & E1000_ICR_LSC) {
1845 hw->mac.get_link_status = true;
1846 /* ICH8 workaround-- Call gig speed drop workaround on cable
1847 * disconnect (LSC) before accessing any PHY registers
1849 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1850 (!(er32(STATUS) & E1000_STATUS_LU)))
1851 schedule_work(&adapter->downshift_task);
1853 /* 80003ES2LAN workaround--
1854 * For packet buffer work-around on link down event;
1855 * disable receives here in the ISR and
1856 * reset adapter in watchdog
1858 if (netif_carrier_ok(netdev) &&
1859 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1860 /* disable receives */
1862 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1863 adapter->flags |= FLAG_RESTART_NOW;
1865 /* guard against interrupt when we're going down */
1866 if (!test_bit(__E1000_DOWN, &adapter->state))
1867 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1870 /* Reset on uncorrectable ECC error */
1871 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1872 u32 pbeccsts = er32(PBECCSTS);
1874 adapter->corr_errors +=
1875 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1876 adapter->uncorr_errors +=
1877 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1878 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1880 /* Do the reset outside of interrupt context */
1881 schedule_work(&adapter->reset_task);
1883 /* return immediately since reset is imminent */
1887 if (napi_schedule_prep(&adapter->napi)) {
1888 adapter->total_tx_bytes = 0;
1889 adapter->total_tx_packets = 0;
1890 adapter->total_rx_bytes = 0;
1891 adapter->total_rx_packets = 0;
1892 __napi_schedule(&adapter->napi);
1898 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1900 struct net_device *netdev = data;
1901 struct e1000_adapter *adapter = netdev_priv(netdev);
1902 struct e1000_hw *hw = &adapter->hw;
1903 u32 icr = er32(ICR);
1905 if (icr & adapter->eiac_mask)
1906 ew32(ICS, (icr & adapter->eiac_mask));
1908 if (icr & E1000_ICR_LSC) {
1909 hw->mac.get_link_status = true;
1910 /* guard against interrupt when we're going down */
1911 if (!test_bit(__E1000_DOWN, &adapter->state))
1912 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1915 if (!test_bit(__E1000_DOWN, &adapter->state))
1916 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1921 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1923 struct net_device *netdev = data;
1924 struct e1000_adapter *adapter = netdev_priv(netdev);
1925 struct e1000_hw *hw = &adapter->hw;
1926 struct e1000_ring *tx_ring = adapter->tx_ring;
1928 adapter->total_tx_bytes = 0;
1929 adapter->total_tx_packets = 0;
1931 if (!e1000_clean_tx_irq(tx_ring))
1932 /* Ring was not completely cleaned, so fire another interrupt */
1933 ew32(ICS, tx_ring->ims_val);
1935 if (!test_bit(__E1000_DOWN, &adapter->state))
1936 ew32(IMS, adapter->tx_ring->ims_val);
1941 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1943 struct net_device *netdev = data;
1944 struct e1000_adapter *adapter = netdev_priv(netdev);
1945 struct e1000_ring *rx_ring = adapter->rx_ring;
1947 /* Write the ITR value calculated at the end of the
1948 * previous interrupt.
1950 if (rx_ring->set_itr) {
1951 u32 itr = rx_ring->itr_val ?
1952 1000000000 / (rx_ring->itr_val * 256) : 0;
1954 writel(itr, rx_ring->itr_register);
1955 rx_ring->set_itr = 0;
1958 if (napi_schedule_prep(&adapter->napi)) {
1959 adapter->total_rx_bytes = 0;
1960 adapter->total_rx_packets = 0;
1961 __napi_schedule(&adapter->napi);
1967 * e1000_configure_msix - Configure MSI-X hardware
1968 * @adapter: board private structure
1970 * e1000_configure_msix sets up the hardware to properly
1971 * generate MSI-X interrupts.
1973 static void e1000_configure_msix(struct e1000_adapter *adapter)
1975 struct e1000_hw *hw = &adapter->hw;
1976 struct e1000_ring *rx_ring = adapter->rx_ring;
1977 struct e1000_ring *tx_ring = adapter->tx_ring;
1979 u32 ctrl_ext, ivar = 0;
1981 adapter->eiac_mask = 0;
1983 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1984 if (hw->mac.type == e1000_82574) {
1985 u32 rfctl = er32(RFCTL);
1987 rfctl |= E1000_RFCTL_ACK_DIS;
1991 /* Configure Rx vector */
1992 rx_ring->ims_val = E1000_IMS_RXQ0;
1993 adapter->eiac_mask |= rx_ring->ims_val;
1994 if (rx_ring->itr_val)
1995 writel(1000000000 / (rx_ring->itr_val * 256),
1996 rx_ring->itr_register);
1998 writel(1, rx_ring->itr_register);
1999 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2001 /* Configure Tx vector */
2002 tx_ring->ims_val = E1000_IMS_TXQ0;
2004 if (tx_ring->itr_val)
2005 writel(1000000000 / (tx_ring->itr_val * 256),
2006 tx_ring->itr_register);
2008 writel(1, tx_ring->itr_register);
2009 adapter->eiac_mask |= tx_ring->ims_val;
2010 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2012 /* set vector for Other Causes, e.g. link changes */
2014 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2015 if (rx_ring->itr_val)
2016 writel(1000000000 / (rx_ring->itr_val * 256),
2017 hw->hw_addr + E1000_EITR_82574(vector));
2019 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2021 /* Cause Tx interrupts on every write back */
2026 /* enable MSI-X PBA support */
2027 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2028 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2029 ew32(CTRL_EXT, ctrl_ext);
2033 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2035 if (adapter->msix_entries) {
2036 pci_disable_msix(adapter->pdev);
2037 kfree(adapter->msix_entries);
2038 adapter->msix_entries = NULL;
2039 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2040 pci_disable_msi(adapter->pdev);
2041 adapter->flags &= ~FLAG_MSI_ENABLED;
2046 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2047 * @adapter: board private structure
2049 * Attempt to configure interrupts using the best available
2050 * capabilities of the hardware and kernel.
2052 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2057 switch (adapter->int_mode) {
2058 case E1000E_INT_MODE_MSIX:
2059 if (adapter->flags & FLAG_HAS_MSIX) {
2060 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2061 adapter->msix_entries = kcalloc(adapter->num_vectors,
2065 if (adapter->msix_entries) {
2066 struct e1000_adapter *a = adapter;
2068 for (i = 0; i < adapter->num_vectors; i++)
2069 adapter->msix_entries[i].entry = i;
2071 err = pci_enable_msix_range(a->pdev,
2078 /* MSI-X failed, so fall through and try MSI */
2079 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2080 e1000e_reset_interrupt_capability(adapter);
2082 adapter->int_mode = E1000E_INT_MODE_MSI;
2084 case E1000E_INT_MODE_MSI:
2085 if (!pci_enable_msi(adapter->pdev)) {
2086 adapter->flags |= FLAG_MSI_ENABLED;
2088 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2089 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2092 case E1000E_INT_MODE_LEGACY:
2093 /* Don't do anything; this is the system default */
2097 /* store the number of vectors being used */
2098 adapter->num_vectors = 1;
2102 * e1000_request_msix - Initialize MSI-X interrupts
2103 * @adapter: board private structure
2105 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108 static int e1000_request_msix(struct e1000_adapter *adapter)
2110 struct net_device *netdev = adapter->netdev;
2111 int err = 0, vector = 0;
2113 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2114 snprintf(adapter->rx_ring->name,
2115 sizeof(adapter->rx_ring->name) - 1,
2116 "%.14s-rx-0", netdev->name);
2118 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2119 err = request_irq(adapter->msix_entries[vector].vector,
2120 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2124 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2125 E1000_EITR_82574(vector);
2126 adapter->rx_ring->itr_val = adapter->itr;
2129 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130 snprintf(adapter->tx_ring->name,
2131 sizeof(adapter->tx_ring->name) - 1,
2132 "%.14s-tx-0", netdev->name);
2134 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2135 err = request_irq(adapter->msix_entries[vector].vector,
2136 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2140 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2141 E1000_EITR_82574(vector);
2142 adapter->tx_ring->itr_val = adapter->itr;
2145 err = request_irq(adapter->msix_entries[vector].vector,
2146 e1000_msix_other, 0, netdev->name, netdev);
2150 e1000_configure_msix(adapter);
2156 * e1000_request_irq - initialize interrupts
2157 * @adapter: board private structure
2159 * Attempts to configure interrupts using the best available
2160 * capabilities of the hardware and kernel.
2162 static int e1000_request_irq(struct e1000_adapter *adapter)
2164 struct net_device *netdev = adapter->netdev;
2167 if (adapter->msix_entries) {
2168 err = e1000_request_msix(adapter);
2171 /* fall back to MSI */
2172 e1000e_reset_interrupt_capability(adapter);
2173 adapter->int_mode = E1000E_INT_MODE_MSI;
2174 e1000e_set_interrupt_capability(adapter);
2176 if (adapter->flags & FLAG_MSI_ENABLED) {
2177 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2178 netdev->name, netdev);
2182 /* fall back to legacy interrupt */
2183 e1000e_reset_interrupt_capability(adapter);
2184 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2187 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2188 netdev->name, netdev);
2190 e_err("Unable to allocate interrupt, Error: %d\n", err);
2195 static void e1000_free_irq(struct e1000_adapter *adapter)
2197 struct net_device *netdev = adapter->netdev;
2199 if (adapter->msix_entries) {
2202 free_irq(adapter->msix_entries[vector].vector, netdev);
2205 free_irq(adapter->msix_entries[vector].vector, netdev);
2208 /* Other Causes interrupt vector */
2209 free_irq(adapter->msix_entries[vector].vector, netdev);
2213 free_irq(adapter->pdev->irq, netdev);
2217 * e1000_irq_disable - Mask off interrupt generation on the NIC
2218 * @adapter: board private structure
2220 static void e1000_irq_disable(struct e1000_adapter *adapter)
2222 struct e1000_hw *hw = &adapter->hw;
2225 if (adapter->msix_entries)
2226 ew32(EIAC_82574, 0);
2229 if (adapter->msix_entries) {
2232 for (i = 0; i < adapter->num_vectors; i++)
2233 synchronize_irq(adapter->msix_entries[i].vector);
2235 synchronize_irq(adapter->pdev->irq);
2240 * e1000_irq_enable - Enable default interrupt generation settings
2241 * @adapter: board private structure
2243 static void e1000_irq_enable(struct e1000_adapter *adapter)
2245 struct e1000_hw *hw = &adapter->hw;
2247 if (adapter->msix_entries) {
2248 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2249 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2251 } else if (hw->mac.type >= e1000_pch_lpt) {
2252 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2254 ew32(IMS, IMS_ENABLE_MASK);
2260 * e1000e_get_hw_control - get control of the h/w from f/w
2261 * @adapter: address of board private structure
2263 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2264 * For ASF and Pass Through versions of f/w this means that
2265 * the driver is loaded. For AMT version (only with 82573)
2266 * of the f/w this means that the network i/f is open.
2268 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2270 struct e1000_hw *hw = &adapter->hw;
2274 /* Let firmware know the driver has taken over */
2275 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2277 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2278 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2279 ctrl_ext = er32(CTRL_EXT);
2280 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2285 * e1000e_release_hw_control - release control of the h/w to f/w
2286 * @adapter: address of board private structure
2288 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2289 * For ASF and Pass Through versions of f/w this means that the
2290 * driver is no longer loaded. For AMT version (only with 82573) i
2291 * of the f/w this means that the network i/f is closed.
2294 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2296 struct e1000_hw *hw = &adapter->hw;
2300 /* Let firmware taken over control of h/w */
2301 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2303 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2304 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2305 ctrl_ext = er32(CTRL_EXT);
2306 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2311 * e1000_alloc_ring_dma - allocate memory for a ring structure
2312 * @adapter: board private structure
2313 * @ring: ring struct for which to allocate dma
2315 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2316 struct e1000_ring *ring)
2318 struct pci_dev *pdev = adapter->pdev;
2320 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2329 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2330 * @tx_ring: Tx descriptor ring
2332 * Return 0 on success, negative on failure
2334 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2336 struct e1000_adapter *adapter = tx_ring->adapter;
2337 int err = -ENOMEM, size;
2339 size = sizeof(struct e1000_buffer) * tx_ring->count;
2340 tx_ring->buffer_info = vzalloc(size);
2341 if (!tx_ring->buffer_info)
2344 /* round up to nearest 4K */
2345 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2346 tx_ring->size = ALIGN(tx_ring->size, 4096);
2348 err = e1000_alloc_ring_dma(adapter, tx_ring);
2352 tx_ring->next_to_use = 0;
2353 tx_ring->next_to_clean = 0;
2357 vfree(tx_ring->buffer_info);
2358 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2363 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2364 * @rx_ring: Rx descriptor ring
2366 * Returns 0 on success, negative on failure
2368 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2370 struct e1000_adapter *adapter = rx_ring->adapter;
2371 struct e1000_buffer *buffer_info;
2372 int i, size, desc_len, err = -ENOMEM;
2374 size = sizeof(struct e1000_buffer) * rx_ring->count;
2375 rx_ring->buffer_info = vzalloc(size);
2376 if (!rx_ring->buffer_info)
2379 for (i = 0; i < rx_ring->count; i++) {
2380 buffer_info = &rx_ring->buffer_info[i];
2381 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2382 sizeof(struct e1000_ps_page),
2384 if (!buffer_info->ps_pages)
2388 desc_len = sizeof(union e1000_rx_desc_packet_split);
2390 /* Round up to nearest 4K */
2391 rx_ring->size = rx_ring->count * desc_len;
2392 rx_ring->size = ALIGN(rx_ring->size, 4096);
2394 err = e1000_alloc_ring_dma(adapter, rx_ring);
2398 rx_ring->next_to_clean = 0;
2399 rx_ring->next_to_use = 0;
2400 rx_ring->rx_skb_top = NULL;
2405 for (i = 0; i < rx_ring->count; i++) {
2406 buffer_info = &rx_ring->buffer_info[i];
2407 kfree(buffer_info->ps_pages);
2410 vfree(rx_ring->buffer_info);
2411 e_err("Unable to allocate memory for the receive descriptor ring\n");
2416 * e1000_clean_tx_ring - Free Tx Buffers
2417 * @tx_ring: Tx descriptor ring
2419 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2421 struct e1000_adapter *adapter = tx_ring->adapter;
2422 struct e1000_buffer *buffer_info;
2426 for (i = 0; i < tx_ring->count; i++) {
2427 buffer_info = &tx_ring->buffer_info[i];
2428 e1000_put_txbuf(tx_ring, buffer_info, false);
2431 netdev_reset_queue(adapter->netdev);
2432 size = sizeof(struct e1000_buffer) * tx_ring->count;
2433 memset(tx_ring->buffer_info, 0, size);
2435 memset(tx_ring->desc, 0, tx_ring->size);
2437 tx_ring->next_to_use = 0;
2438 tx_ring->next_to_clean = 0;
2442 * e1000e_free_tx_resources - Free Tx Resources per Queue
2443 * @tx_ring: Tx descriptor ring
2445 * Free all transmit software resources
2447 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2449 struct e1000_adapter *adapter = tx_ring->adapter;
2450 struct pci_dev *pdev = adapter->pdev;
2452 e1000_clean_tx_ring(tx_ring);
2454 vfree(tx_ring->buffer_info);
2455 tx_ring->buffer_info = NULL;
2457 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2459 tx_ring->desc = NULL;
2463 * e1000e_free_rx_resources - Free Rx Resources
2464 * @rx_ring: Rx descriptor ring
2466 * Free all receive software resources
2468 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2470 struct e1000_adapter *adapter = rx_ring->adapter;
2471 struct pci_dev *pdev = adapter->pdev;
2474 e1000_clean_rx_ring(rx_ring);
2476 for (i = 0; i < rx_ring->count; i++)
2477 kfree(rx_ring->buffer_info[i].ps_pages);
2479 vfree(rx_ring->buffer_info);
2480 rx_ring->buffer_info = NULL;
2482 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2484 rx_ring->desc = NULL;
2488 * e1000_update_itr - update the dynamic ITR value based on statistics
2489 * @itr_setting: current adapter->itr
2490 * @packets: the number of packets during this measurement interval
2491 * @bytes: the number of bytes during this measurement interval
2493 * Stores a new ITR value based on packets and byte
2494 * counts during the last interrupt. The advantage of per interrupt
2495 * computation is faster updates and more accurate ITR for the current
2496 * traffic pattern. Constants in this function were computed
2497 * based on theoretical maximum wire speed and thresholds were set based
2498 * on testing data as well as attempting to minimize response time
2499 * while increasing bulk throughput. This functionality is controlled
2500 * by the InterruptThrottleRate module parameter.
2502 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2504 unsigned int retval = itr_setting;
2509 switch (itr_setting) {
2510 case lowest_latency:
2511 /* handle TSO and jumbo frames */
2512 if (bytes / packets > 8000)
2513 retval = bulk_latency;
2514 else if ((packets < 5) && (bytes > 512))
2515 retval = low_latency;
2517 case low_latency: /* 50 usec aka 20000 ints/s */
2518 if (bytes > 10000) {
2519 /* this if handles the TSO accounting */
2520 if (bytes / packets > 8000)
2521 retval = bulk_latency;
2522 else if ((packets < 10) || ((bytes / packets) > 1200))
2523 retval = bulk_latency;
2524 else if ((packets > 35))
2525 retval = lowest_latency;
2526 } else if (bytes / packets > 2000) {
2527 retval = bulk_latency;
2528 } else if (packets <= 2 && bytes < 512) {
2529 retval = lowest_latency;
2532 case bulk_latency: /* 250 usec aka 4000 ints/s */
2533 if (bytes > 25000) {
2535 retval = low_latency;
2536 } else if (bytes < 6000) {
2537 retval = low_latency;
2545 static void e1000_set_itr(struct e1000_adapter *adapter)
2548 u32 new_itr = adapter->itr;
2550 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2551 if (adapter->link_speed != SPEED_1000) {
2557 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2562 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2563 adapter->total_tx_packets,
2564 adapter->total_tx_bytes);
2565 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2567 adapter->tx_itr = low_latency;
2569 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2570 adapter->total_rx_packets,
2571 adapter->total_rx_bytes);
2572 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2573 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2574 adapter->rx_itr = low_latency;
2576 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578 /* counts and packets in update_itr are dependent on these numbers */
2579 switch (current_itr) {
2580 case lowest_latency:
2584 new_itr = 20000; /* aka hwitr = ~200 */
2594 if (new_itr != adapter->itr) {
2595 /* this attempts to bias the interrupt rate towards Bulk
2596 * by adding intermediate steps when interrupt rate is
2599 new_itr = new_itr > adapter->itr ?
2600 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2601 adapter->itr = new_itr;
2602 adapter->rx_ring->itr_val = new_itr;
2603 if (adapter->msix_entries)
2604 adapter->rx_ring->set_itr = 1;
2606 e1000e_write_itr(adapter, new_itr);
2611 * e1000e_write_itr - write the ITR value to the appropriate registers
2612 * @adapter: address of board private structure
2613 * @itr: new ITR value to program
2615 * e1000e_write_itr determines if the adapter is in MSI-X mode
2616 * and, if so, writes the EITR registers with the ITR value.
2617 * Otherwise, it writes the ITR value into the ITR register.
2619 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621 struct e1000_hw *hw = &adapter->hw;
2622 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624 if (adapter->msix_entries) {
2627 for (vector = 0; vector < adapter->num_vectors; vector++)
2628 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2635 * e1000_alloc_queues - Allocate memory for all rings
2636 * @adapter: board private structure to initialize
2638 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640 int size = sizeof(struct e1000_ring);
2642 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2643 if (!adapter->tx_ring)
2645 adapter->tx_ring->count = adapter->tx_ring_count;
2646 adapter->tx_ring->adapter = adapter;
2648 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2649 if (!adapter->rx_ring)
2651 adapter->rx_ring->count = adapter->rx_ring_count;
2652 adapter->rx_ring->adapter = adapter;
2656 e_err("Unable to allocate memory for queues\n");
2657 kfree(adapter->rx_ring);
2658 kfree(adapter->tx_ring);
2663 * e1000e_poll - NAPI Rx polling callback
2664 * @napi: struct associated with this polling callback
2665 * @budget: number of packets driver is allowed to process this poll
2667 static int e1000e_poll(struct napi_struct *napi, int budget)
2669 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671 struct e1000_hw *hw = &adapter->hw;
2672 struct net_device *poll_dev = adapter->netdev;
2673 int tx_cleaned = 1, work_done = 0;
2675 adapter = netdev_priv(poll_dev);
2677 if (!adapter->msix_entries ||
2678 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2679 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683 if (!tx_cleaned || work_done == budget)
2686 /* Exit the polling mode, but don't re-enable interrupts if stack might
2687 * poll us due to busy-polling
2689 if (likely(napi_complete_done(napi, work_done))) {
2690 if (adapter->itr_setting & 3)
2691 e1000_set_itr(adapter);
2692 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2693 if (adapter->msix_entries)
2694 ew32(IMS, adapter->rx_ring->ims_val);
2696 e1000_irq_enable(adapter);
2703 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2704 __always_unused __be16 proto, u16 vid)
2706 struct e1000_adapter *adapter = netdev_priv(netdev);
2707 struct e1000_hw *hw = &adapter->hw;
2710 /* don't update vlan cookie if already programmed */
2711 if ((adapter->hw.mng_cookie.status &
2712 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2713 (vid == adapter->mng_vlan_id))
2716 /* add VID to filter table */
2717 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2718 index = (vid >> 5) & 0x7F;
2719 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2720 vfta |= BIT((vid & 0x1F));
2721 hw->mac.ops.write_vfta(hw, index, vfta);
2724 set_bit(vid, adapter->active_vlans);
2729 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2730 __always_unused __be16 proto, u16 vid)
2732 struct e1000_adapter *adapter = netdev_priv(netdev);
2733 struct e1000_hw *hw = &adapter->hw;
2736 if ((adapter->hw.mng_cookie.status &
2737 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2738 (vid == adapter->mng_vlan_id)) {
2739 /* release control to f/w */
2740 e1000e_release_hw_control(adapter);
2744 /* remove VID from filter table */
2745 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2746 index = (vid >> 5) & 0x7F;
2747 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2748 vfta &= ~BIT((vid & 0x1F));
2749 hw->mac.ops.write_vfta(hw, index, vfta);
2752 clear_bit(vid, adapter->active_vlans);
2758 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2759 * @adapter: board private structure to initialize
2761 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763 struct net_device *netdev = adapter->netdev;
2764 struct e1000_hw *hw = &adapter->hw;
2767 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768 /* disable VLAN receive filtering */
2770 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2773 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2774 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2775 adapter->mng_vlan_id);
2776 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2782 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2783 * @adapter: board private structure to initialize
2785 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787 struct e1000_hw *hw = &adapter->hw;
2790 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2791 /* enable VLAN receive filtering */
2793 rctl |= E1000_RCTL_VFE;
2794 rctl &= ~E1000_RCTL_CFIEN;
2800 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2801 * @adapter: board private structure to initialize
2803 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805 struct e1000_hw *hw = &adapter->hw;
2808 /* disable VLAN tag insert/strip */
2810 ctrl &= ~E1000_CTRL_VME;
2815 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2816 * @adapter: board private structure to initialize
2818 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820 struct e1000_hw *hw = &adapter->hw;
2823 /* enable VLAN tag insert/strip */
2825 ctrl |= E1000_CTRL_VME;
2829 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831 struct net_device *netdev = adapter->netdev;
2832 u16 vid = adapter->hw.mng_cookie.vlan_id;
2833 u16 old_vid = adapter->mng_vlan_id;
2835 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2836 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2837 adapter->mng_vlan_id = vid;
2840 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2841 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2844 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2848 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2851 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2854 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856 struct e1000_hw *hw = &adapter->hw;
2857 u32 manc, manc2h, mdef, i, j;
2859 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2864 /* enable receiving management packets to the host. this will probably
2865 * generate destination unreachable messages from the host OS, but
2866 * the packets will be handled on SMBUS
2868 manc |= E1000_MANC_EN_MNG2HOST;
2869 manc2h = er32(MANC2H);
2871 switch (hw->mac.type) {
2873 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2877 /* Check if IPMI pass-through decision filter already exists;
2880 for (i = 0, j = 0; i < 8; i++) {
2881 mdef = er32(MDEF(i));
2883 /* Ignore filters with anything other than IPMI ports */
2884 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887 /* Enable this decision filter in MANC2H */
2894 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2897 /* Create new decision filter in an empty filter */
2898 for (i = 0, j = 0; i < 8; i++)
2899 if (er32(MDEF(i)) == 0) {
2900 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2901 E1000_MDEF_PORT_664));
2908 e_warn("Unable to create IPMI pass-through filter\n");
2912 ew32(MANC2H, manc2h);
2917 * e1000_configure_tx - Configure Transmit Unit after Reset
2918 * @adapter: board private structure
2920 * Configure the Tx unit of the MAC after a reset.
2922 static void e1000_configure_tx(struct e1000_adapter *adapter)
2924 struct e1000_hw *hw = &adapter->hw;
2925 struct e1000_ring *tx_ring = adapter->tx_ring;
2927 u32 tdlen, tctl, tarc;
2929 /* Setup the HW Tx Head and Tail descriptor pointers */
2930 tdba = tx_ring->dma;
2931 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2932 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2933 ew32(TDBAH(0), (tdba >> 32));
2934 ew32(TDLEN(0), tdlen);
2937 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2938 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940 writel(0, tx_ring->head);
2941 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2942 e1000e_update_tdt_wa(tx_ring, 0);
2944 writel(0, tx_ring->tail);
2946 /* Set the Tx Interrupt Delay register */
2947 ew32(TIDV, adapter->tx_int_delay);
2948 /* Tx irq moderation */
2949 ew32(TADV, adapter->tx_abs_int_delay);
2951 if (adapter->flags2 & FLAG2_DMA_BURST) {
2952 u32 txdctl = er32(TXDCTL(0));
2954 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2955 E1000_TXDCTL_WTHRESH);
2956 /* set up some performance related parameters to encourage the
2957 * hardware to use the bus more efficiently in bursts, depends
2958 * on the tx_int_delay to be enabled,
2959 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2960 * hthresh = 1 ==> prefetch when one or more available
2961 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2962 * BEWARE: this seems to work but should be considered first if
2963 * there are Tx hangs or other Tx related bugs
2965 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2966 ew32(TXDCTL(0), txdctl);
2968 /* erratum work around: set txdctl the same for both queues */
2969 ew32(TXDCTL(1), er32(TXDCTL(0)));
2971 /* Program the Transmit Control Register */
2973 tctl &= ~E1000_TCTL_CT;
2974 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2975 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2978 tarc = er32(TARC(0));
2979 /* set the speed mode bit, we'll clear it if we're not at
2980 * gigabit link later
2982 #define SPEED_MODE_BIT BIT(21)
2983 tarc |= SPEED_MODE_BIT;
2984 ew32(TARC(0), tarc);
2987 /* errata: program both queues to unweighted RR */
2988 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2989 tarc = er32(TARC(0));
2991 ew32(TARC(0), tarc);
2992 tarc = er32(TARC(1));
2994 ew32(TARC(1), tarc);
2997 /* Setup Transmit Descriptor Settings for eop descriptor */
2998 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000 /* only set IDE if we are delaying interrupts using the timers */
3001 if (adapter->tx_int_delay)
3002 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004 /* enable Report Status bit */
3005 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3009 hw->mac.ops.config_collision_dist(hw);
3011 /* SPT and KBL Si errata workaround to avoid data corruption */
3012 if (hw->mac.type == e1000_pch_spt) {
3015 reg_val = er32(IOSFPC);
3016 reg_val |= E1000_RCTL_RDMTS_HEX;
3017 ew32(IOSFPC, reg_val);
3019 reg_val = er32(TARC(0));
3020 /* SPT and KBL Si errata workaround to avoid Tx hang.
3021 * Dropping the number of outstanding requests from
3022 * 3 to 2 in order to avoid a buffer overrun.
3024 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3025 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3026 ew32(TARC(0), reg_val);
3030 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3031 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3034 * e1000_setup_rctl - configure the receive control registers
3035 * @adapter: Board private structure
3037 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039 struct e1000_hw *hw = &adapter->hw;
3043 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3044 * If jumbo frames not set, program related MAC/PHY registers
3047 if (hw->mac.type >= e1000_pch2lan) {
3050 if (adapter->netdev->mtu > ETH_DATA_LEN)
3051 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3056 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3059 /* Program MC offset vector base */
3061 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3062 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3063 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3064 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066 /* Do not Store bad packets */
3067 rctl &= ~E1000_RCTL_SBP;
3069 /* Enable Long Packet receive */
3070 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3071 rctl &= ~E1000_RCTL_LPE;
3073 rctl |= E1000_RCTL_LPE;
3075 /* Some systems expect that the CRC is included in SMBUS traffic. The
3076 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3077 * host memory when this is enabled
3079 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3080 rctl |= E1000_RCTL_SECRC;
3082 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3083 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3086 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3089 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091 e1e_rphy(hw, 22, &phy_data);
3093 phy_data |= BIT(14);
3094 e1e_wphy(hw, 0x10, 0x2823);
3095 e1e_wphy(hw, 0x11, 0x0003);
3096 e1e_wphy(hw, 22, phy_data);
3099 /* Setup buffer sizes */
3100 rctl &= ~E1000_RCTL_SZ_4096;
3101 rctl |= E1000_RCTL_BSEX;
3102 switch (adapter->rx_buffer_len) {
3105 rctl |= E1000_RCTL_SZ_2048;
3106 rctl &= ~E1000_RCTL_BSEX;
3109 rctl |= E1000_RCTL_SZ_4096;
3112 rctl |= E1000_RCTL_SZ_8192;
3115 rctl |= E1000_RCTL_SZ_16384;
3119 /* Enable Extended Status in all Receive Descriptors */
3120 rfctl = er32(RFCTL);
3121 rfctl |= E1000_RFCTL_EXTEN;
3124 /* 82571 and greater support packet-split where the protocol
3125 * header is placed in skb->data and the packet data is
3126 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3127 * In the case of a non-split, skb->data is linearly filled,
3128 * followed by the page buffers. Therefore, skb->data is
3129 * sized to hold the largest protocol header.
3131 * allocations using alloc_page take too long for regular MTU
3132 * so only enable packet split for jumbo frames
3134 * Using pages when the page size is greater than 16k wastes
3135 * a lot of memory, since we allocate 3 pages at all times
3138 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3139 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3140 adapter->rx_ps_pages = pages;
3142 adapter->rx_ps_pages = 0;
3144 if (adapter->rx_ps_pages) {
3147 /* Enable Packet split descriptors */
3148 rctl |= E1000_RCTL_DTYP_PS;
3150 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152 switch (adapter->rx_ps_pages) {
3154 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3157 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3160 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3164 ew32(PSRCTL, psrctl);
3167 /* This is useful for sniffing bad packets. */
3168 if (adapter->netdev->features & NETIF_F_RXALL) {
3169 /* UPE and MPE will be handled by normal PROMISC logic
3170 * in e1000e_set_rx_mode
3172 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3173 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3174 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3176 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3177 E1000_RCTL_DPF | /* Allow filtered pause */
3178 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3179 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3180 * and that breaks VLANs.
3185 /* just started the receive unit, no need to restart */
3186 adapter->flags &= ~FLAG_RESTART_NOW;
3190 * e1000_configure_rx - Configure Receive Unit after Reset
3191 * @adapter: board private structure
3193 * Configure the Rx unit of the MAC after a reset.
3195 static void e1000_configure_rx(struct e1000_adapter *adapter)
3197 struct e1000_hw *hw = &adapter->hw;
3198 struct e1000_ring *rx_ring = adapter->rx_ring;
3200 u32 rdlen, rctl, rxcsum, ctrl_ext;
3202 if (adapter->rx_ps_pages) {
3203 /* this is a 32 byte descriptor */
3204 rdlen = rx_ring->count *
3205 sizeof(union e1000_rx_desc_packet_split);
3206 adapter->clean_rx = e1000_clean_rx_irq_ps;
3207 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3208 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3209 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3210 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3211 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3214 adapter->clean_rx = e1000_clean_rx_irq;
3215 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3218 /* disable receives while setting up the descriptors */
3220 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3221 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223 usleep_range(10000, 11000);
3225 if (adapter->flags2 & FLAG2_DMA_BURST) {
3226 /* set the writeback threshold (only takes effect if the RDTR
3227 * is set). set GRAN=1 and write back up to 0x4 worth, and
3228 * enable prefetching of 0x20 Rx descriptors
3234 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3235 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3238 /* set the Receive Delay Timer Register */
3239 ew32(RDTR, adapter->rx_int_delay);
3241 /* irq moderation */
3242 ew32(RADV, adapter->rx_abs_int_delay);
3243 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3244 e1000e_write_itr(adapter, adapter->itr);
3246 ctrl_ext = er32(CTRL_EXT);
3247 /* Auto-Mask interrupts upon ICR access */
3248 ctrl_ext |= E1000_CTRL_EXT_IAME;
3249 ew32(IAM, 0xffffffff);
3250 ew32(CTRL_EXT, ctrl_ext);
3253 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3254 * the Base and Length of the Rx Descriptor Ring
3256 rdba = rx_ring->dma;
3257 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3258 ew32(RDBAH(0), (rdba >> 32));
3259 ew32(RDLEN(0), rdlen);
3262 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3263 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265 writel(0, rx_ring->head);
3266 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3267 e1000e_update_rdt_wa(rx_ring, 0);
3269 writel(0, rx_ring->tail);
3271 /* Enable Receive Checksum Offload for TCP and UDP */
3272 rxcsum = er32(RXCSUM);
3273 if (adapter->netdev->features & NETIF_F_RXCSUM)
3274 rxcsum |= E1000_RXCSUM_TUOFL;
3276 rxcsum &= ~E1000_RXCSUM_TUOFL;
3277 ew32(RXCSUM, rxcsum);
3279 /* With jumbo frames, excessive C-state transition latencies result
3280 * in dropped transactions.
3282 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3285 adapter->max_frame_size) * 8 / 1000;
3287 if (adapter->flags & FLAG_IS_ICH) {
3288 u32 rxdctl = er32(RXDCTL(0));
3290 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3293 dev_info(&adapter->pdev->dev,
3294 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3295 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3298 PM_QOS_DEFAULT_VALUE);
3301 /* Enable Receives */
3306 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3307 * @netdev: network interface device structure
3309 * Writes multicast address list to the MTA hash table.
3310 * Returns: -ENOMEM on failure
3311 * 0 on no addresses written
3312 * X on writing X addresses to MTA
3314 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316 struct e1000_adapter *adapter = netdev_priv(netdev);
3317 struct e1000_hw *hw = &adapter->hw;
3318 struct netdev_hw_addr *ha;
3322 if (netdev_mc_empty(netdev)) {
3323 /* nothing to program, so clear mc list */
3324 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3328 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3332 /* update_mc_addr_list expects a packed array of only addresses. */
3334 netdev_for_each_mc_addr(ha, netdev)
3335 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3340 return netdev_mc_count(netdev);
3344 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3345 * @netdev: network interface device structure
3347 * Writes unicast address list to the RAR table.
3348 * Returns: -ENOMEM on failure/insufficient address space
3349 * 0 on no addresses written
3350 * X on writing X addresses to the RAR table
3352 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354 struct e1000_adapter *adapter = netdev_priv(netdev);
3355 struct e1000_hw *hw = &adapter->hw;
3356 unsigned int rar_entries;
3359 rar_entries = hw->mac.ops.rar_get_count(hw);
3361 /* save a rar entry for our hardware address */
3364 /* save a rar entry for the LAA workaround */
3365 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3368 /* return ENOMEM indicating insufficient memory for addresses */
3369 if (netdev_uc_count(netdev) > rar_entries)
3372 if (!netdev_uc_empty(netdev) && rar_entries) {
3373 struct netdev_hw_addr *ha;
3375 /* write the addresses in reverse order to avoid write
3378 netdev_for_each_uc_addr(ha, netdev) {
3383 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3390 /* zero out the remaining RAR entries not used above */
3391 for (; rar_entries > 0; rar_entries--) {
3392 ew32(RAH(rar_entries), 0);
3393 ew32(RAL(rar_entries), 0);
3401 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3402 * @netdev: network interface device structure
3404 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3405 * address list or the network interface flags are updated. This routine is
3406 * responsible for configuring the hardware for proper unicast, multicast,
3407 * promiscuous mode, and all-multi behavior.
3409 static void e1000e_set_rx_mode(struct net_device *netdev)
3411 struct e1000_adapter *adapter = netdev_priv(netdev);
3412 struct e1000_hw *hw = &adapter->hw;
3415 if (pm_runtime_suspended(netdev->dev.parent))
3418 /* Check for Promiscuous and All Multicast modes */
3421 /* clear the affected bits */
3422 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424 if (netdev->flags & IFF_PROMISC) {
3425 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3426 /* Do not hardware filter VLANs in promisc mode */
3427 e1000e_vlan_filter_disable(adapter);
3431 if (netdev->flags & IFF_ALLMULTI) {
3432 rctl |= E1000_RCTL_MPE;
3434 /* Write addresses to the MTA, if the attempt fails
3435 * then we should just turn on promiscuous mode so
3436 * that we can at least receive multicast traffic
3438 count = e1000e_write_mc_addr_list(netdev);
3440 rctl |= E1000_RCTL_MPE;
3442 e1000e_vlan_filter_enable(adapter);
3443 /* Write addresses to available RAR registers, if there is not
3444 * sufficient space to store all the addresses then enable
3445 * unicast promiscuous mode
3447 count = e1000e_write_uc_addr_list(netdev);
3449 rctl |= E1000_RCTL_UPE;
3454 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3455 e1000e_vlan_strip_enable(adapter);
3457 e1000e_vlan_strip_disable(adapter);
3460 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462 struct e1000_hw *hw = &adapter->hw;
3467 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3468 for (i = 0; i < 10; i++)
3469 ew32(RSSRK(i), rss_key[i]);
3471 /* Direct all traffic to queue 0 */
3472 for (i = 0; i < 32; i++)
3475 /* Disable raw packet checksumming so that RSS hash is placed in
3476 * descriptor on writeback.
3478 rxcsum = er32(RXCSUM);
3479 rxcsum |= E1000_RXCSUM_PCSD;
3481 ew32(RXCSUM, rxcsum);
3483 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3484 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3485 E1000_MRQC_RSS_FIELD_IPV6 |
3486 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3487 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3494 * @adapter: board private structure
3495 * @timinca: pointer to returned time increment attributes
3497 * Get attributes for incrementing the System Time Register SYSTIML/H at
3498 * the default base frequency, and set the cyclecounter shift value.
3500 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502 struct e1000_hw *hw = &adapter->hw;
3503 u32 incvalue, incperiod, shift;
3505 /* Make sure clock is enabled on I217/I218/I219 before checking
3508 if ((hw->mac.type >= e1000_pch_lpt) &&
3509 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3510 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3511 u32 fextnvm7 = er32(FEXTNVM7);
3513 if (!(fextnvm7 & BIT(0))) {
3514 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3519 switch (hw->mac.type) {
3521 /* Stable 96MHz frequency */
3522 incperiod = INCPERIOD_96MHZ;
3523 incvalue = INCVALUE_96MHZ;
3524 shift = INCVALUE_SHIFT_96MHZ;
3525 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3528 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3529 /* Stable 96MHz frequency */
3530 incperiod = INCPERIOD_96MHZ;
3531 incvalue = INCVALUE_96MHZ;
3532 shift = INCVALUE_SHIFT_96MHZ;
3533 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535 /* Stable 25MHz frequency */
3536 incperiod = INCPERIOD_25MHZ;
3537 incvalue = INCVALUE_25MHZ;
3538 shift = INCVALUE_SHIFT_25MHZ;
3539 adapter->cc.shift = shift;
3543 /* Stable 24MHz frequency */
3544 incperiod = INCPERIOD_24MHZ;
3545 incvalue = INCVALUE_24MHZ;
3546 shift = INCVALUE_SHIFT_24MHZ;
3547 adapter->cc.shift = shift;
3553 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3554 /* Stable 24MHz frequency */
3555 incperiod = INCPERIOD_24MHZ;
3556 incvalue = INCVALUE_24MHZ;
3557 shift = INCVALUE_SHIFT_24MHZ;
3558 adapter->cc.shift = shift;
3560 /* Stable 38400KHz frequency */
3561 incperiod = INCPERIOD_38400KHZ;
3562 incvalue = INCVALUE_38400KHZ;
3563 shift = INCVALUE_SHIFT_38400KHZ;
3564 adapter->cc.shift = shift;
3569 /* Stable 25MHz frequency */
3570 incperiod = INCPERIOD_25MHZ;
3571 incvalue = INCVALUE_25MHZ;
3572 shift = INCVALUE_SHIFT_25MHZ;
3573 adapter->cc.shift = shift;
3579 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3580 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3586 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3587 * @adapter: board private structure
3588 * @config: timestamp configuration
3590 * Outgoing time stamping can be enabled and disabled. Play nice and
3591 * disable it when requested, although it shouldn't cause any overhead
3592 * when no packet needs it. At most one packet in the queue may be
3593 * marked for time stamping, otherwise it would be impossible to tell
3594 * for sure to which packet the hardware time stamp belongs.
3596 * Incoming time stamping has to be configured via the hardware filters.
3597 * Not all combinations are supported, in particular event type has to be
3598 * specified. Matching the kind of event packet is not supported, with the
3599 * exception of "all V2 events regardless of level 2 or 4".
3601 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3602 struct hwtstamp_config *config)
3604 struct e1000_hw *hw = &adapter->hw;
3605 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3606 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3613 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3616 /* flags reserved for future extensions - must be zero */
3620 switch (config->tx_type) {
3621 case HWTSTAMP_TX_OFF:
3624 case HWTSTAMP_TX_ON:
3630 switch (config->rx_filter) {
3631 case HWTSTAMP_FILTER_NONE:
3634 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3635 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3636 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3639 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3640 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3641 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3644 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3645 /* Also time stamps V2 L2 Path Delay Request/Response */
3646 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3647 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3650 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3651 /* Also time stamps V2 L2 Path Delay Request/Response. */
3652 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3653 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3656 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3657 /* Hardware cannot filter just V2 L4 Sync messages */
3659 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3660 /* Also time stamps V2 Path Delay Request/Response. */
3661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3662 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3666 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3667 /* Hardware cannot filter just V2 L4 Delay Request messages */
3669 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3670 /* Also time stamps V2 Path Delay Request/Response. */
3671 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3672 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3676 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3677 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3678 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3680 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3681 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3682 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3686 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3687 /* For V1, the hardware can only filter Sync messages or
3688 * Delay Request messages but not both so fall-through to
3689 * time stamp all packets.
3692 case HWTSTAMP_FILTER_NTP_ALL:
3693 case HWTSTAMP_FILTER_ALL:
3696 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3697 config->rx_filter = HWTSTAMP_FILTER_ALL;
3703 adapter->hwtstamp_config = *config;
3705 /* enable/disable Tx h/w time stamping */
3706 regval = er32(TSYNCTXCTL);
3707 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3708 regval |= tsync_tx_ctl;
3709 ew32(TSYNCTXCTL, regval);
3710 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3711 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3712 e_err("Timesync Tx Control register not set as expected\n");
3716 /* enable/disable Rx h/w time stamping */
3717 regval = er32(TSYNCRXCTL);
3718 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3719 regval |= tsync_rx_ctl;
3720 ew32(TSYNCRXCTL, regval);
3721 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3722 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3723 (regval & (E1000_TSYNCRXCTL_ENABLED |
3724 E1000_TSYNCRXCTL_TYPE_MASK))) {
3725 e_err("Timesync Rx Control register not set as expected\n");
3729 /* L2: define ethertype filter for time stamped packets */
3731 rxmtrl |= ETH_P_1588;
3733 /* define which PTP packets get time stamped */
3734 ew32(RXMTRL, rxmtrl);
3736 /* Filter by destination port */
3738 rxudp = PTP_EV_PORT;
3739 cpu_to_be16s(&rxudp);
3745 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3753 * e1000_configure - configure the hardware for Rx and Tx
3754 * @adapter: private board structure
3756 static void e1000_configure(struct e1000_adapter *adapter)
3758 struct e1000_ring *rx_ring = adapter->rx_ring;
3760 e1000e_set_rx_mode(adapter->netdev);
3762 e1000_restore_vlan(adapter);
3763 e1000_init_manageability_pt(adapter);
3765 e1000_configure_tx(adapter);
3767 if (adapter->netdev->features & NETIF_F_RXHASH)
3768 e1000e_setup_rss_hash(adapter);
3769 e1000_setup_rctl(adapter);
3770 e1000_configure_rx(adapter);
3771 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3775 * e1000e_power_up_phy - restore link in case the phy was powered down
3776 * @adapter: address of board private structure
3778 * The phy may be powered down to save power and turn off link when the
3779 * driver is unloaded and wake on lan is not enabled (among others)
3780 * *** this routine MUST be followed by a call to e1000e_reset ***
3782 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3784 if (adapter->hw.phy.ops.power_up)
3785 adapter->hw.phy.ops.power_up(&adapter->hw);
3787 adapter->hw.mac.ops.setup_link(&adapter->hw);
3791 * e1000_power_down_phy - Power down the PHY
3792 * @adapter: board private structure
3794 * Power down the PHY so no link is implied when interface is down.
3795 * The PHY cannot be powered down if management or WoL is active.
3797 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3799 if (adapter->hw.phy.ops.power_down)
3800 adapter->hw.phy.ops.power_down(&adapter->hw);
3804 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3805 * @adapter: board private structure
3807 * We want to clear all pending descriptors from the TX ring.
3808 * zeroing happens when the HW reads the regs. We assign the ring itself as
3809 * the data of the next descriptor. We don't care about the data we are about
3812 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3814 struct e1000_hw *hw = &adapter->hw;
3815 struct e1000_ring *tx_ring = adapter->tx_ring;
3816 struct e1000_tx_desc *tx_desc = NULL;
3817 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3821 ew32(TCTL, tctl | E1000_TCTL_EN);
3823 BUG_ON(tdt != tx_ring->next_to_use);
3824 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3825 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3827 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3828 tx_desc->upper.data = 0;
3829 /* flush descriptors to memory before notifying the HW */
3831 tx_ring->next_to_use++;
3832 if (tx_ring->next_to_use == tx_ring->count)
3833 tx_ring->next_to_use = 0;
3834 ew32(TDT(0), tx_ring->next_to_use);
3835 usleep_range(200, 250);
3839 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3840 * @adapter: board private structure
3842 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3844 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3847 struct e1000_hw *hw = &adapter->hw;
3850 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3852 usleep_range(100, 150);
3854 rxdctl = er32(RXDCTL(0));
3855 /* zero the lower 14 bits (prefetch and host thresholds) */
3856 rxdctl &= 0xffffc000;
3858 /* update thresholds: prefetch threshold to 31, host threshold to 1
3859 * and make sure the granularity is "descriptors" and not "cache lines"
3861 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3863 ew32(RXDCTL(0), rxdctl);
3864 /* momentarily enable the RX ring for the changes to take effect */
3865 ew32(RCTL, rctl | E1000_RCTL_EN);
3867 usleep_range(100, 150);
3868 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3872 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3873 * @adapter: board private structure
3875 * In i219, the descriptor rings must be emptied before resetting the HW
3876 * or before changing the device state to D3 during runtime (runtime PM).
3878 * Failure to do this will cause the HW to enter a unit hang state which can
3879 * only be released by PCI reset on the device
3883 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3886 u32 fext_nvm11, tdlen;
3887 struct e1000_hw *hw = &adapter->hw;
3889 /* First, disable MULR fix in FEXTNVM11 */
3890 fext_nvm11 = er32(FEXTNVM11);
3891 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3892 ew32(FEXTNVM11, fext_nvm11);
3893 /* do nothing if we're not in faulty state, or if the queue is empty */
3894 tdlen = er32(TDLEN(0));
3895 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3897 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3899 e1000_flush_tx_ring(adapter);
3900 /* recheck, maybe the fault is caused by the rx ring */
3901 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3903 if (hang_state & FLUSH_DESC_REQUIRED)
3904 e1000_flush_rx_ring(adapter);
3908 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3909 * @adapter: board private structure
3911 * When the MAC is reset, all hardware bits for timesync will be reset to the
3912 * default values. This function will restore the settings last in place.
3913 * Since the clock SYSTIME registers are reset, we will simply restore the
3914 * cyclecounter to the kernel real clock time.
3916 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3918 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3919 struct e1000_hw *hw = &adapter->hw;
3920 unsigned long flags;
3924 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3927 if (info->adjfreq) {
3928 /* restore the previous ptp frequency delta */
3929 ret_val = info->adjfreq(info, adapter->ptp_delta);
3931 /* set the default base frequency if no adjustment possible */
3932 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3934 ew32(TIMINCA, timinca);
3938 dev_warn(&adapter->pdev->dev,
3939 "Failed to restore TIMINCA clock rate delta: %d\n",
3944 /* reset the systim ns time counter */
3945 spin_lock_irqsave(&adapter->systim_lock, flags);
3946 timecounter_init(&adapter->tc, &adapter->cc,
3947 ktime_to_ns(ktime_get_real()));
3948 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3950 /* restore the previous hwtstamp configuration settings */
3951 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3955 * e1000e_reset - bring the hardware into a known good state
3956 * @adapter: board private structure
3958 * This function boots the hardware and enables some settings that
3959 * require a configuration cycle of the hardware - those cannot be
3960 * set/changed during runtime. After reset the device needs to be
3961 * properly configured for Rx, Tx etc.
3963 void e1000e_reset(struct e1000_adapter *adapter)
3965 struct e1000_mac_info *mac = &adapter->hw.mac;
3966 struct e1000_fc_info *fc = &adapter->hw.fc;
3967 struct e1000_hw *hw = &adapter->hw;
3968 u32 tx_space, min_tx_space, min_rx_space;
3969 u32 pba = adapter->pba;
3972 /* reset Packet Buffer Allocation to default */
3975 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3976 /* To maintain wire speed transmits, the Tx FIFO should be
3977 * large enough to accommodate two full transmit packets,
3978 * rounded up to the next 1KB and expressed in KB. Likewise,
3979 * the Rx FIFO should be large enough to accommodate at least
3980 * one full receive packet and is similarly rounded up and
3984 /* upper 16 bits has Tx packet buffer allocation size in KB */
3985 tx_space = pba >> 16;
3986 /* lower 16 bits has Rx packet buffer allocation size in KB */
3988 /* the Tx fifo also stores 16 bytes of information about the Tx
3989 * but don't include ethernet FCS because hardware appends it
3991 min_tx_space = (adapter->max_frame_size +
3992 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3993 min_tx_space = ALIGN(min_tx_space, 1024);
3994 min_tx_space >>= 10;
3995 /* software strips receive CRC, so leave room for it */
3996 min_rx_space = adapter->max_frame_size;
3997 min_rx_space = ALIGN(min_rx_space, 1024);
3998 min_rx_space >>= 10;
4000 /* If current Tx allocation is less than the min Tx FIFO size,
4001 * and the min Tx FIFO size is less than the current Rx FIFO
4002 * allocation, take space away from current Rx allocation
4004 if ((tx_space < min_tx_space) &&
4005 ((min_tx_space - tx_space) < pba)) {
4006 pba -= min_tx_space - tx_space;
4008 /* if short on Rx space, Rx wins and must trump Tx
4011 if (pba < min_rx_space)
4018 /* flow control settings
4020 * The high water mark must be low enough to fit one full frame
4021 * (or the size used for early receive) above it in the Rx FIFO.
4022 * Set it to the lower of:
4023 * - 90% of the Rx FIFO size, and
4024 * - the full Rx FIFO size minus one full frame
4026 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4027 fc->pause_time = 0xFFFF;
4029 fc->pause_time = E1000_FC_PAUSE_TIME;
4030 fc->send_xon = true;
4031 fc->current_mode = fc->requested_mode;
4033 switch (hw->mac.type) {
4035 case e1000_ich10lan:
4036 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4039 fc->high_water = 0x2800;
4040 fc->low_water = fc->high_water - 8;
4045 hwm = min(((pba << 10) * 9 / 10),
4046 ((pba << 10) - adapter->max_frame_size));
4048 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4049 fc->low_water = fc->high_water - 8;
4052 /* Workaround PCH LOM adapter hangs with certain network
4053 * loads. If hangs persist, try disabling Tx flow control.
4055 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4056 fc->high_water = 0x3500;
4057 fc->low_water = 0x1500;
4059 fc->high_water = 0x5000;
4060 fc->low_water = 0x3000;
4062 fc->refresh_time = 0x1000;
4071 fc->refresh_time = 0xFFFF;
4072 fc->pause_time = 0xFFFF;
4074 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4075 fc->high_water = 0x05C20;
4076 fc->low_water = 0x05048;
4082 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4083 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4087 /* Alignment of Tx data is on an arbitrary byte boundary with the
4088 * maximum size per Tx descriptor limited only to the transmit
4089 * allocation of the packet buffer minus 96 bytes with an upper
4090 * limit of 24KB due to receive synchronization limitations.
4092 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4095 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4096 * fit in receive buffer.
4098 if (adapter->itr_setting & 0x3) {
4099 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4100 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4101 dev_info(&adapter->pdev->dev,
4102 "Interrupt Throttle Rate off\n");
4103 adapter->flags2 |= FLAG2_DISABLE_AIM;
4104 e1000e_write_itr(adapter, 0);
4106 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4107 dev_info(&adapter->pdev->dev,
4108 "Interrupt Throttle Rate on\n");
4109 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4110 adapter->itr = 20000;
4111 e1000e_write_itr(adapter, adapter->itr);
4115 if (hw->mac.type >= e1000_pch_spt)
4116 e1000_flush_desc_rings(adapter);
4117 /* Allow time for pending master requests to run */
4118 mac->ops.reset_hw(hw);
4120 /* For parts with AMT enabled, let the firmware know
4121 * that the network interface is in control
4123 if (adapter->flags & FLAG_HAS_AMT)
4124 e1000e_get_hw_control(adapter);
4128 if (mac->ops.init_hw(hw))
4129 e_err("Hardware Error\n");
4131 e1000_update_mng_vlan(adapter);
4133 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4134 ew32(VET, ETH_P_8021Q);
4136 e1000e_reset_adaptive(hw);
4138 /* restore systim and hwtstamp settings */
4139 e1000e_systim_reset(adapter);
4141 /* Set EEE advertisement as appropriate */
4142 if (adapter->flags2 & FLAG2_HAS_EEE) {
4146 switch (hw->phy.type) {
4147 case e1000_phy_82579:
4148 adv_addr = I82579_EEE_ADVERTISEMENT;
4150 case e1000_phy_i217:
4151 adv_addr = I217_EEE_ADVERTISEMENT;
4154 dev_err(&adapter->pdev->dev,
4155 "Invalid PHY type setting EEE advertisement\n");
4159 ret_val = hw->phy.ops.acquire(hw);
4161 dev_err(&adapter->pdev->dev,
4162 "EEE advertisement - unable to acquire PHY\n");
4166 e1000_write_emi_reg_locked(hw, adv_addr,
4167 hw->dev_spec.ich8lan.eee_disable ?
4168 0 : adapter->eee_advert);
4170 hw->phy.ops.release(hw);
4173 if (!netif_running(adapter->netdev) &&
4174 !test_bit(__E1000_TESTING, &adapter->state))
4175 e1000_power_down_phy(adapter);
4177 e1000_get_phy_info(hw);
4179 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4180 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4182 /* speed up time to link by disabling smart power down, ignore
4183 * the return value of this function because there is nothing
4184 * different we would do if it failed
4186 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4187 phy_data &= ~IGP02E1000_PM_SPD;
4188 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4190 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4193 /* Fextnvm7 @ 0xe4[2] = 1 */
4194 reg = er32(FEXTNVM7);
4195 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4196 ew32(FEXTNVM7, reg);
4197 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4198 reg = er32(FEXTNVM9);
4199 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4200 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4201 ew32(FEXTNVM9, reg);
4207 * e1000e_trigger_lsc - trigger an LSC interrupt
4210 * Fire a link status change interrupt to start the watchdog.
4212 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4214 struct e1000_hw *hw = &adapter->hw;
4216 if (adapter->msix_entries)
4217 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4219 ew32(ICS, E1000_ICS_LSC);
4222 void e1000e_up(struct e1000_adapter *adapter)
4224 /* hardware has been reset, we need to reload some things */
4225 e1000_configure(adapter);
4227 clear_bit(__E1000_DOWN, &adapter->state);
4229 if (adapter->msix_entries)
4230 e1000_configure_msix(adapter);
4231 e1000_irq_enable(adapter);
4233 /* Tx queue started by watchdog timer when link is up */
4235 e1000e_trigger_lsc(adapter);
4238 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4240 struct e1000_hw *hw = &adapter->hw;
4242 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4245 /* flush pending descriptor writebacks to memory */
4246 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4247 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4249 /* execute the writes immediately */
4252 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4253 * write is successful
4255 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4258 /* execute the writes immediately */
4262 static void e1000e_update_stats(struct e1000_adapter *adapter);
4265 * e1000e_down - quiesce the device and optionally reset the hardware
4266 * @adapter: board private structure
4267 * @reset: boolean flag to reset the hardware or not
4269 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4271 struct net_device *netdev = adapter->netdev;
4272 struct e1000_hw *hw = &adapter->hw;
4275 /* signal that we're down so the interrupt handler does not
4276 * reschedule our watchdog timer
4278 set_bit(__E1000_DOWN, &adapter->state);
4280 netif_carrier_off(netdev);
4282 /* disable receives in the hardware */
4284 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4285 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4286 /* flush and sleep below */
4288 netif_stop_queue(netdev);
4290 /* disable transmits in the hardware */
4292 tctl &= ~E1000_TCTL_EN;
4295 /* flush both disables and wait for them to finish */
4297 usleep_range(10000, 11000);
4299 e1000_irq_disable(adapter);
4301 napi_synchronize(&adapter->napi);
4303 del_timer_sync(&adapter->watchdog_timer);
4304 del_timer_sync(&adapter->phy_info_timer);
4306 spin_lock(&adapter->stats64_lock);
4307 e1000e_update_stats(adapter);
4308 spin_unlock(&adapter->stats64_lock);
4310 e1000e_flush_descriptors(adapter);
4312 adapter->link_speed = 0;
4313 adapter->link_duplex = 0;
4315 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4316 if ((hw->mac.type >= e1000_pch2lan) &&
4317 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4318 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4319 e_dbg("failed to disable jumbo frame workaround mode\n");
4321 if (!pci_channel_offline(adapter->pdev)) {
4323 e1000e_reset(adapter);
4324 else if (hw->mac.type >= e1000_pch_spt)
4325 e1000_flush_desc_rings(adapter);
4327 e1000_clean_tx_ring(adapter->tx_ring);
4328 e1000_clean_rx_ring(adapter->rx_ring);
4331 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4334 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4335 usleep_range(1000, 1100);
4336 e1000e_down(adapter, true);
4338 clear_bit(__E1000_RESETTING, &adapter->state);
4342 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4343 * @hw: pointer to the HW structure
4344 * @systim: PHC time value read, sanitized and returned
4345 * @sts: structure to hold system time before and after reading SYSTIML,
4348 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4349 * check to see that the time is incrementing at a reasonable
4350 * rate and is a multiple of incvalue.
4352 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4353 struct ptp_system_timestamp *sts)
4355 u64 time_delta, rem, temp;
4360 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4361 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4362 /* latch SYSTIMH on read of SYSTIML */
4363 ptp_read_system_prets(sts);
4364 systim_next = (u64)er32(SYSTIML);
4365 ptp_read_system_postts(sts);
4366 systim_next |= (u64)er32(SYSTIMH) << 32;
4368 time_delta = systim_next - systim;
4370 /* VMWare users have seen incvalue of zero, don't div / 0 */
4371 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4373 systim = systim_next;
4375 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4383 * e1000e_read_systim - read SYSTIM register
4384 * @adapter: board private structure
4385 * @sts: structure which will contain system time before and after reading
4386 * SYSTIML, may be NULL
4388 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4389 struct ptp_system_timestamp *sts)
4391 struct e1000_hw *hw = &adapter->hw;
4392 u32 systimel, systimel_2, systimeh;
4394 /* SYSTIMH latching upon SYSTIML read does not work well.
4395 * This means that if SYSTIML overflows after we read it but before
4396 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4397 * will experience a huge non linear increment in the systime value
4398 * to fix that we test for overflow and if true, we re-read systime.
4400 ptp_read_system_prets(sts);
4401 systimel = er32(SYSTIML);
4402 ptp_read_system_postts(sts);
4403 systimeh = er32(SYSTIMH);
4404 /* Is systimel is so large that overflow is possible? */
4405 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4406 ptp_read_system_prets(sts);
4407 systimel_2 = er32(SYSTIML);
4408 ptp_read_system_postts(sts);
4409 if (systimel > systimel_2) {
4410 /* There was an overflow, read again SYSTIMH, and use
4413 systimeh = er32(SYSTIMH);
4414 systimel = systimel_2;
4417 systim = (u64)systimel;
4418 systim |= (u64)systimeh << 32;
4420 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4421 systim = e1000e_sanitize_systim(hw, systim, sts);
4427 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4428 * @cc: cyclecounter structure
4430 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4432 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4435 return e1000e_read_systim(adapter, NULL);
4439 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4440 * @adapter: board private structure to initialize
4442 * e1000_sw_init initializes the Adapter private data structure.
4443 * Fields are initialized based on PCI device information and
4444 * OS network device settings (MTU size).
4446 static int e1000_sw_init(struct e1000_adapter *adapter)
4448 struct net_device *netdev = adapter->netdev;
4450 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4451 adapter->rx_ps_bsize0 = 128;
4452 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4453 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4454 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4455 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4457 spin_lock_init(&adapter->stats64_lock);
4459 e1000e_set_interrupt_capability(adapter);
4461 if (e1000_alloc_queues(adapter))
4464 /* Setup hardware time stamping cyclecounter */
4465 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4466 adapter->cc.read = e1000e_cyclecounter_read;
4467 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4468 adapter->cc.mult = 1;
4469 /* cc.shift set in e1000e_get_base_tininca() */
4471 spin_lock_init(&adapter->systim_lock);
4472 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4475 /* Explicitly disable IRQ since the NIC can be in any state. */
4476 e1000_irq_disable(adapter);
4478 set_bit(__E1000_DOWN, &adapter->state);
4483 * e1000_intr_msi_test - Interrupt Handler
4484 * @irq: interrupt number
4485 * @data: pointer to a network interface device structure
4487 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4489 struct net_device *netdev = data;
4490 struct e1000_adapter *adapter = netdev_priv(netdev);
4491 struct e1000_hw *hw = &adapter->hw;
4492 u32 icr = er32(ICR);
4494 e_dbg("icr is %08X\n", icr);
4495 if (icr & E1000_ICR_RXSEQ) {
4496 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4497 /* Force memory writes to complete before acknowledging the
4498 * interrupt is handled.
4507 * e1000_test_msi_interrupt - Returns 0 for successful test
4508 * @adapter: board private struct
4510 * code flow taken from tg3.c
4512 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4514 struct net_device *netdev = adapter->netdev;
4515 struct e1000_hw *hw = &adapter->hw;
4518 /* poll_enable hasn't been called yet, so don't need disable */
4519 /* clear any pending events */
4522 /* free the real vector and request a test handler */
4523 e1000_free_irq(adapter);
4524 e1000e_reset_interrupt_capability(adapter);
4526 /* Assume that the test fails, if it succeeds then the test
4527 * MSI irq handler will unset this flag
4529 adapter->flags |= FLAG_MSI_TEST_FAILED;
4531 err = pci_enable_msi(adapter->pdev);
4533 goto msi_test_failed;
4535 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4536 netdev->name, netdev);
4538 pci_disable_msi(adapter->pdev);
4539 goto msi_test_failed;
4542 /* Force memory writes to complete before enabling and firing an
4547 e1000_irq_enable(adapter);
4549 /* fire an unusual interrupt on the test handler */
4550 ew32(ICS, E1000_ICS_RXSEQ);
4554 e1000_irq_disable(adapter);
4556 rmb(); /* read flags after interrupt has been fired */
4558 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4559 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4560 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4562 e_dbg("MSI interrupt test succeeded!\n");
4565 free_irq(adapter->pdev->irq, netdev);
4566 pci_disable_msi(adapter->pdev);
4569 e1000e_set_interrupt_capability(adapter);
4570 return e1000_request_irq(adapter);
4574 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4575 * @adapter: board private struct
4577 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4579 static int e1000_test_msi(struct e1000_adapter *adapter)
4584 if (!(adapter->flags & FLAG_MSI_ENABLED))
4587 /* disable SERR in case the MSI write causes a master abort */
4588 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4589 if (pci_cmd & PCI_COMMAND_SERR)
4590 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4591 pci_cmd & ~PCI_COMMAND_SERR);
4593 err = e1000_test_msi_interrupt(adapter);
4595 /* re-enable SERR */
4596 if (pci_cmd & PCI_COMMAND_SERR) {
4597 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4598 pci_cmd |= PCI_COMMAND_SERR;
4599 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4606 * e1000e_open - Called when a network interface is made active
4607 * @netdev: network interface device structure
4609 * Returns 0 on success, negative value on failure
4611 * The open entry point is called when a network interface is made
4612 * active by the system (IFF_UP). At this point all resources needed
4613 * for transmit and receive operations are allocated, the interrupt
4614 * handler is registered with the OS, the watchdog timer is started,
4615 * and the stack is notified that the interface is ready.
4617 int e1000e_open(struct net_device *netdev)
4619 struct e1000_adapter *adapter = netdev_priv(netdev);
4620 struct e1000_hw *hw = &adapter->hw;
4621 struct pci_dev *pdev = adapter->pdev;
4624 /* disallow open during test */
4625 if (test_bit(__E1000_TESTING, &adapter->state))
4628 pm_runtime_get_sync(&pdev->dev);
4630 netif_carrier_off(netdev);
4631 netif_stop_queue(netdev);
4633 /* allocate transmit descriptors */
4634 err = e1000e_setup_tx_resources(adapter->tx_ring);
4638 /* allocate receive descriptors */
4639 err = e1000e_setup_rx_resources(adapter->rx_ring);
4643 /* If AMT is enabled, let the firmware know that the network
4644 * interface is now open and reset the part to a known state.
4646 if (adapter->flags & FLAG_HAS_AMT) {
4647 e1000e_get_hw_control(adapter);
4648 e1000e_reset(adapter);
4651 e1000e_power_up_phy(adapter);
4653 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4654 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4655 e1000_update_mng_vlan(adapter);
4657 /* DMA latency requirement to workaround jumbo issue */
4658 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4660 /* before we allocate an interrupt, we must be ready to handle it.
4661 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4662 * as soon as we call pci_request_irq, so we have to setup our
4663 * clean_rx handler before we do so.
4665 e1000_configure(adapter);
4667 err = e1000_request_irq(adapter);
4671 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4672 * ignore e1000e MSI messages, which means we need to test our MSI
4675 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4676 err = e1000_test_msi(adapter);
4678 e_err("Interrupt allocation failed\n");
4683 /* From here on the code is the same as e1000e_up() */
4684 clear_bit(__E1000_DOWN, &adapter->state);
4686 napi_enable(&adapter->napi);
4688 e1000_irq_enable(adapter);
4690 adapter->tx_hang_recheck = false;
4692 hw->mac.get_link_status = true;
4693 pm_runtime_put(&pdev->dev);
4695 e1000e_trigger_lsc(adapter);
4700 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4701 e1000e_release_hw_control(adapter);
4702 e1000_power_down_phy(adapter);
4703 e1000e_free_rx_resources(adapter->rx_ring);
4705 e1000e_free_tx_resources(adapter->tx_ring);
4707 e1000e_reset(adapter);
4708 pm_runtime_put_sync(&pdev->dev);
4714 * e1000e_close - Disables a network interface
4715 * @netdev: network interface device structure
4717 * Returns 0, this is not allowed to fail
4719 * The close entry point is called when an interface is de-activated
4720 * by the OS. The hardware is still under the drivers control, but
4721 * needs to be disabled. A global MAC reset is issued to stop the
4722 * hardware, and all transmit and receive resources are freed.
4724 int e1000e_close(struct net_device *netdev)
4726 struct e1000_adapter *adapter = netdev_priv(netdev);
4727 struct pci_dev *pdev = adapter->pdev;
4728 int count = E1000_CHECK_RESET_COUNT;
4730 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4731 usleep_range(10000, 11000);
4733 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4735 pm_runtime_get_sync(&pdev->dev);
4737 if (netif_device_present(netdev)) {
4738 e1000e_down(adapter, true);
4739 e1000_free_irq(adapter);
4741 /* Link status message must follow this format */
4742 netdev_info(netdev, "NIC Link is Down\n");
4745 napi_disable(&adapter->napi);
4747 e1000e_free_tx_resources(adapter->tx_ring);
4748 e1000e_free_rx_resources(adapter->rx_ring);
4750 /* kill manageability vlan ID if supported, but not if a vlan with
4751 * the same ID is registered on the host OS (let 8021q kill it)
4753 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4754 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4755 adapter->mng_vlan_id);
4757 /* If AMT is enabled, let the firmware know that the network
4758 * interface is now closed
4760 if ((adapter->flags & FLAG_HAS_AMT) &&
4761 !test_bit(__E1000_TESTING, &adapter->state))
4762 e1000e_release_hw_control(adapter);
4764 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4766 pm_runtime_put_sync(&pdev->dev);
4772 * e1000_set_mac - Change the Ethernet Address of the NIC
4773 * @netdev: network interface device structure
4774 * @p: pointer to an address structure
4776 * Returns 0 on success, negative on failure
4778 static int e1000_set_mac(struct net_device *netdev, void *p)
4780 struct e1000_adapter *adapter = netdev_priv(netdev);
4781 struct e1000_hw *hw = &adapter->hw;
4782 struct sockaddr *addr = p;
4784 if (!is_valid_ether_addr(addr->sa_data))
4785 return -EADDRNOTAVAIL;
4787 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4788 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4790 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4792 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4793 /* activate the work around */
4794 e1000e_set_laa_state_82571(&adapter->hw, 1);
4796 /* Hold a copy of the LAA in RAR[14] This is done so that
4797 * between the time RAR[0] gets clobbered and the time it
4798 * gets fixed (in e1000_watchdog), the actual LAA is in one
4799 * of the RARs and no incoming packets directed to this port
4800 * are dropped. Eventually the LAA will be in RAR[0] and
4803 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4804 adapter->hw.mac.rar_entry_count - 1);
4811 * e1000e_update_phy_task - work thread to update phy
4812 * @work: pointer to our work struct
4814 * this worker thread exists because we must acquire a
4815 * semaphore to read the phy, which we could msleep while
4816 * waiting for it, and we can't msleep in a timer.
4818 static void e1000e_update_phy_task(struct work_struct *work)
4820 struct e1000_adapter *adapter = container_of(work,
4821 struct e1000_adapter,
4823 struct e1000_hw *hw = &adapter->hw;
4825 if (test_bit(__E1000_DOWN, &adapter->state))
4828 e1000_get_phy_info(hw);
4830 /* Enable EEE on 82579 after link up */
4831 if (hw->phy.type >= e1000_phy_82579)
4832 e1000_set_eee_pchlan(hw);
4836 * e1000_update_phy_info - timre call-back to update PHY info
4837 * @t: pointer to timer_list containing private info adapter
4839 * Need to wait a few seconds after link up to get diagnostic information from
4842 static void e1000_update_phy_info(struct timer_list *t)
4844 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4846 if (test_bit(__E1000_DOWN, &adapter->state))
4849 schedule_work(&adapter->update_phy_task);
4853 * e1000e_update_phy_stats - Update the PHY statistics counters
4854 * @adapter: board private structure
4856 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4858 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4860 struct e1000_hw *hw = &adapter->hw;
4864 ret_val = hw->phy.ops.acquire(hw);
4868 /* A page set is expensive so check if already on desired page.
4869 * If not, set to the page with the PHY status registers.
4872 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4876 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4877 ret_val = hw->phy.ops.set_page(hw,
4878 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4883 /* Single Collision Count */
4884 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4885 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4887 adapter->stats.scc += phy_data;
4889 /* Excessive Collision Count */
4890 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4891 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4893 adapter->stats.ecol += phy_data;
4895 /* Multiple Collision Count */
4896 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4897 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4899 adapter->stats.mcc += phy_data;
4901 /* Late Collision Count */
4902 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4903 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4905 adapter->stats.latecol += phy_data;
4907 /* Collision Count - also used for adaptive IFS */
4908 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4909 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4911 hw->mac.collision_delta = phy_data;
4914 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4915 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4917 adapter->stats.dc += phy_data;
4919 /* Transmit with no CRS */
4920 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4921 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4923 adapter->stats.tncrs += phy_data;
4926 hw->phy.ops.release(hw);
4930 * e1000e_update_stats - Update the board statistics counters
4931 * @adapter: board private structure
4933 static void e1000e_update_stats(struct e1000_adapter *adapter)
4935 struct net_device *netdev = adapter->netdev;
4936 struct e1000_hw *hw = &adapter->hw;
4937 struct pci_dev *pdev = adapter->pdev;
4939 /* Prevent stats update while adapter is being reset, or if the pci
4940 * connection is down.
4942 if (adapter->link_speed == 0)
4944 if (pci_channel_offline(pdev))
4947 adapter->stats.crcerrs += er32(CRCERRS);
4948 adapter->stats.gprc += er32(GPRC);
4949 adapter->stats.gorc += er32(GORCL);
4950 er32(GORCH); /* Clear gorc */
4951 adapter->stats.bprc += er32(BPRC);
4952 adapter->stats.mprc += er32(MPRC);
4953 adapter->stats.roc += er32(ROC);
4955 adapter->stats.mpc += er32(MPC);
4957 /* Half-duplex statistics */
4958 if (adapter->link_duplex == HALF_DUPLEX) {
4959 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4960 e1000e_update_phy_stats(adapter);
4962 adapter->stats.scc += er32(SCC);
4963 adapter->stats.ecol += er32(ECOL);
4964 adapter->stats.mcc += er32(MCC);
4965 adapter->stats.latecol += er32(LATECOL);
4966 adapter->stats.dc += er32(DC);
4968 hw->mac.collision_delta = er32(COLC);
4970 if ((hw->mac.type != e1000_82574) &&
4971 (hw->mac.type != e1000_82583))
4972 adapter->stats.tncrs += er32(TNCRS);
4974 adapter->stats.colc += hw->mac.collision_delta;
4977 adapter->stats.xonrxc += er32(XONRXC);
4978 adapter->stats.xontxc += er32(XONTXC);
4979 adapter->stats.xoffrxc += er32(XOFFRXC);
4980 adapter->stats.xofftxc += er32(XOFFTXC);
4981 adapter->stats.gptc += er32(GPTC);
4982 adapter->stats.gotc += er32(GOTCL);
4983 er32(GOTCH); /* Clear gotc */
4984 adapter->stats.rnbc += er32(RNBC);
4985 adapter->stats.ruc += er32(RUC);
4987 adapter->stats.mptc += er32(MPTC);
4988 adapter->stats.bptc += er32(BPTC);
4990 /* used for adaptive IFS */
4992 hw->mac.tx_packet_delta = er32(TPT);
4993 adapter->stats.tpt += hw->mac.tx_packet_delta;
4995 adapter->stats.algnerrc += er32(ALGNERRC);
4996 adapter->stats.rxerrc += er32(RXERRC);
4997 adapter->stats.cexterr += er32(CEXTERR);
4998 adapter->stats.tsctc += er32(TSCTC);
4999 adapter->stats.tsctfc += er32(TSCTFC);
5001 /* Fill out the OS statistics structure */
5002 netdev->stats.multicast = adapter->stats.mprc;
5003 netdev->stats.collisions = adapter->stats.colc;
5007 /* RLEC on some newer hardware can be incorrect so build
5008 * our own version based on RUC and ROC
5010 netdev->stats.rx_errors = adapter->stats.rxerrc +
5011 adapter->stats.crcerrs + adapter->stats.algnerrc +
5012 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5013 netdev->stats.rx_length_errors = adapter->stats.ruc +
5015 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5016 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5017 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5020 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5021 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5022 netdev->stats.tx_window_errors = adapter->stats.latecol;
5023 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5025 /* Tx Dropped needs to be maintained elsewhere */
5027 /* Management Stats */
5028 adapter->stats.mgptc += er32(MGTPTC);
5029 adapter->stats.mgprc += er32(MGTPRC);
5030 adapter->stats.mgpdc += er32(MGTPDC);
5032 /* Correctable ECC Errors */
5033 if (hw->mac.type >= e1000_pch_lpt) {
5034 u32 pbeccsts = er32(PBECCSTS);
5036 adapter->corr_errors +=
5037 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5038 adapter->uncorr_errors +=
5039 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5040 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5045 * e1000_phy_read_status - Update the PHY register status snapshot
5046 * @adapter: board private structure
5048 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5050 struct e1000_hw *hw = &adapter->hw;
5051 struct e1000_phy_regs *phy = &adapter->phy_regs;
5053 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5054 (er32(STATUS) & E1000_STATUS_LU) &&
5055 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5058 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5059 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5060 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5061 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5062 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5063 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5064 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5065 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5067 e_warn("Error reading PHY register\n");
5069 /* Do not read PHY registers if link is not up
5070 * Set values to typical power-on defaults
5072 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5073 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5074 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5076 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5077 ADVERTISE_ALL | ADVERTISE_CSMA);
5079 phy->expansion = EXPANSION_ENABLENPAGE;
5080 phy->ctrl1000 = ADVERTISE_1000FULL;
5082 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5086 static void e1000_print_link_info(struct e1000_adapter *adapter)
5088 struct e1000_hw *hw = &adapter->hw;
5089 u32 ctrl = er32(CTRL);
5091 /* Link status message must follow this format for user tools */
5092 netdev_info(adapter->netdev,
5093 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5094 adapter->link_speed,
5095 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5096 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5097 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5098 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5101 static bool e1000e_has_link(struct e1000_adapter *adapter)
5103 struct e1000_hw *hw = &adapter->hw;
5104 bool link_active = false;
5107 /* get_link_status is set on LSC (link status) interrupt or
5108 * Rx sequence error interrupt. get_link_status will stay
5109 * true until the check_for_link establishes link
5110 * for copper adapters ONLY
5112 switch (hw->phy.media_type) {
5113 case e1000_media_type_copper:
5114 if (hw->mac.get_link_status) {
5115 ret_val = hw->mac.ops.check_for_link(hw);
5116 link_active = !hw->mac.get_link_status;
5121 case e1000_media_type_fiber:
5122 ret_val = hw->mac.ops.check_for_link(hw);
5123 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5125 case e1000_media_type_internal_serdes:
5126 ret_val = hw->mac.ops.check_for_link(hw);
5127 link_active = hw->mac.serdes_has_link;
5130 case e1000_media_type_unknown:
5134 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5135 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5136 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5137 e_info("Gigabit has been disabled, downgrading speed\n");
5143 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5145 /* make sure the receive unit is started */
5146 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5147 (adapter->flags & FLAG_RESTART_NOW)) {
5148 struct e1000_hw *hw = &adapter->hw;
5149 u32 rctl = er32(RCTL);
5151 ew32(RCTL, rctl | E1000_RCTL_EN);
5152 adapter->flags &= ~FLAG_RESTART_NOW;
5156 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5158 struct e1000_hw *hw = &adapter->hw;
5160 /* With 82574 controllers, PHY needs to be checked periodically
5161 * for hung state and reset, if two calls return true
5163 if (e1000_check_phy_82574(hw))
5164 adapter->phy_hang_count++;
5166 adapter->phy_hang_count = 0;
5168 if (adapter->phy_hang_count > 1) {
5169 adapter->phy_hang_count = 0;
5170 e_dbg("PHY appears hung - resetting\n");
5171 schedule_work(&adapter->reset_task);
5176 * e1000_watchdog - Timer Call-back
5177 * @t: pointer to timer_list containing private info adapter
5179 static void e1000_watchdog(struct timer_list *t)
5181 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5183 /* Do the rest outside of interrupt context */
5184 schedule_work(&adapter->watchdog_task);
5186 /* TODO: make this use queue_delayed_work() */
5189 static void e1000_watchdog_task(struct work_struct *work)
5191 struct e1000_adapter *adapter = container_of(work,
5192 struct e1000_adapter,
5194 struct net_device *netdev = adapter->netdev;
5195 struct e1000_mac_info *mac = &adapter->hw.mac;
5196 struct e1000_phy_info *phy = &adapter->hw.phy;
5197 struct e1000_ring *tx_ring = adapter->tx_ring;
5198 u32 dmoff_exit_timeout = 100, tries = 0;
5199 struct e1000_hw *hw = &adapter->hw;
5200 u32 link, tctl, pcim_state;
5202 if (test_bit(__E1000_DOWN, &adapter->state))
5205 link = e1000e_has_link(adapter);
5206 if ((netif_carrier_ok(netdev)) && link) {
5207 /* Cancel scheduled suspend requests. */
5208 pm_runtime_resume(netdev->dev.parent);
5210 e1000e_enable_receives(adapter);
5214 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5215 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5216 e1000_update_mng_vlan(adapter);
5219 if (!netif_carrier_ok(netdev)) {
5222 /* Cancel scheduled suspend requests. */
5223 pm_runtime_resume(netdev->dev.parent);
5225 /* Checking if MAC is in DMoff state*/
5226 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5227 pcim_state = er32(STATUS);
5228 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5229 if (tries++ == dmoff_exit_timeout) {
5230 e_dbg("Error in exiting dmoff\n");
5233 usleep_range(10000, 20000);
5234 pcim_state = er32(STATUS);
5236 /* Checking if MAC exited DMoff state */
5237 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5238 e1000_phy_hw_reset(&adapter->hw);
5242 /* update snapshot of PHY registers on LSC */
5243 e1000_phy_read_status(adapter);
5244 mac->ops.get_link_up_info(&adapter->hw,
5245 &adapter->link_speed,
5246 &adapter->link_duplex);
5247 e1000_print_link_info(adapter);
5249 /* check if SmartSpeed worked */
5250 e1000e_check_downshift(hw);
5251 if (phy->speed_downgraded)
5253 "Link Speed was downgraded by SmartSpeed\n");
5255 /* On supported PHYs, check for duplex mismatch only
5256 * if link has autonegotiated at 10/100 half
5258 if ((hw->phy.type == e1000_phy_igp_3 ||
5259 hw->phy.type == e1000_phy_bm) &&
5261 (adapter->link_speed == SPEED_10 ||
5262 adapter->link_speed == SPEED_100) &&
5263 (adapter->link_duplex == HALF_DUPLEX)) {
5266 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5268 if (!(autoneg_exp & EXPANSION_NWAY))
5269 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5272 /* adjust timeout factor according to speed/duplex */
5273 adapter->tx_timeout_factor = 1;
5274 switch (adapter->link_speed) {
5277 adapter->tx_timeout_factor = 16;
5281 adapter->tx_timeout_factor = 10;
5285 /* workaround: re-program speed mode bit after
5288 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5292 tarc0 = er32(TARC(0));
5293 tarc0 &= ~SPEED_MODE_BIT;
5294 ew32(TARC(0), tarc0);
5297 /* disable TSO for pcie and 10/100 speeds, to avoid
5298 * some hardware issues
5300 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5301 switch (adapter->link_speed) {
5304 e_info("10/100 speed: disabling TSO\n");
5305 netdev->features &= ~NETIF_F_TSO;
5306 netdev->features &= ~NETIF_F_TSO6;
5309 netdev->features |= NETIF_F_TSO;
5310 netdev->features |= NETIF_F_TSO6;
5316 if (hw->mac.type == e1000_pch_spt) {
5317 netdev->features &= ~NETIF_F_TSO;
5318 netdev->features &= ~NETIF_F_TSO6;
5322 /* enable transmits in the hardware, need to do this
5323 * after setting TARC(0)
5326 tctl |= E1000_TCTL_EN;
5329 /* Perform any post-link-up configuration before
5330 * reporting link up.
5332 if (phy->ops.cfg_on_link_up)
5333 phy->ops.cfg_on_link_up(hw);
5335 netif_wake_queue(netdev);
5336 netif_carrier_on(netdev);
5338 if (!test_bit(__E1000_DOWN, &adapter->state))
5339 mod_timer(&adapter->phy_info_timer,
5340 round_jiffies(jiffies + 2 * HZ));
5343 if (netif_carrier_ok(netdev)) {
5344 adapter->link_speed = 0;
5345 adapter->link_duplex = 0;
5346 /* Link status message must follow this format */
5347 netdev_info(netdev, "NIC Link is Down\n");
5348 netif_carrier_off(netdev);
5349 netif_stop_queue(netdev);
5350 if (!test_bit(__E1000_DOWN, &adapter->state))
5351 mod_timer(&adapter->phy_info_timer,
5352 round_jiffies(jiffies + 2 * HZ));
5354 /* 8000ES2LAN requires a Rx packet buffer work-around
5355 * on link down event; reset the controller to flush
5356 * the Rx packet buffer.
5358 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5359 adapter->flags |= FLAG_RESTART_NOW;
5361 pm_schedule_suspend(netdev->dev.parent,
5367 spin_lock(&adapter->stats64_lock);
5368 e1000e_update_stats(adapter);
5370 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5371 adapter->tpt_old = adapter->stats.tpt;
5372 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5373 adapter->colc_old = adapter->stats.colc;
5375 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5376 adapter->gorc_old = adapter->stats.gorc;
5377 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5378 adapter->gotc_old = adapter->stats.gotc;
5379 spin_unlock(&adapter->stats64_lock);
5381 /* If the link is lost the controller stops DMA, but
5382 * if there is queued Tx work it cannot be done. So
5383 * reset the controller to flush the Tx packet buffers.
5385 if (!netif_carrier_ok(netdev) &&
5386 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5387 adapter->flags |= FLAG_RESTART_NOW;
5389 /* If reset is necessary, do it outside of interrupt context. */
5390 if (adapter->flags & FLAG_RESTART_NOW) {
5391 schedule_work(&adapter->reset_task);
5392 /* return immediately since reset is imminent */
5396 e1000e_update_adaptive(&adapter->hw);
5398 /* Simple mode for Interrupt Throttle Rate (ITR) */
5399 if (adapter->itr_setting == 4) {
5400 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5401 * Total asymmetrical Tx or Rx gets ITR=8000;
5402 * everyone else is between 2000-8000.
5404 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5405 u32 dif = (adapter->gotc > adapter->gorc ?
5406 adapter->gotc - adapter->gorc :
5407 adapter->gorc - adapter->gotc) / 10000;
5408 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5410 e1000e_write_itr(adapter, itr);
5413 /* Cause software interrupt to ensure Rx ring is cleaned */
5414 if (adapter->msix_entries)
5415 ew32(ICS, adapter->rx_ring->ims_val);
5417 ew32(ICS, E1000_ICS_RXDMT0);
5419 /* flush pending descriptors to memory before detecting Tx hang */
5420 e1000e_flush_descriptors(adapter);
5422 /* Force detection of hung controller every watchdog period */
5423 adapter->detect_tx_hung = true;
5425 /* With 82571 controllers, LAA may be overwritten due to controller
5426 * reset from the other port. Set the appropriate LAA in RAR[0]
5428 if (e1000e_get_laa_state_82571(hw))
5429 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5431 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5432 e1000e_check_82574_phy_workaround(adapter);
5434 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5435 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5436 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5437 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5439 adapter->rx_hwtstamp_cleared++;
5441 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5445 /* Reset the timer */
5446 if (!test_bit(__E1000_DOWN, &adapter->state))
5447 mod_timer(&adapter->watchdog_timer,
5448 round_jiffies(jiffies + 2 * HZ));
5451 #define E1000_TX_FLAGS_CSUM 0x00000001
5452 #define E1000_TX_FLAGS_VLAN 0x00000002
5453 #define E1000_TX_FLAGS_TSO 0x00000004
5454 #define E1000_TX_FLAGS_IPV4 0x00000008
5455 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5456 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5457 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5458 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5460 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5463 struct e1000_context_desc *context_desc;
5464 struct e1000_buffer *buffer_info;
5468 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5471 if (!skb_is_gso(skb))
5474 err = skb_cow_head(skb, 0);
5478 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5479 mss = skb_shinfo(skb)->gso_size;
5480 if (protocol == htons(ETH_P_IP)) {
5481 struct iphdr *iph = ip_hdr(skb);
5484 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5486 cmd_length = E1000_TXD_CMD_IP;
5487 ipcse = skb_transport_offset(skb) - 1;
5488 } else if (skb_is_gso_v6(skb)) {
5489 tcp_v6_gso_csum_prep(skb);
5492 ipcss = skb_network_offset(skb);
5493 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5494 tucss = skb_transport_offset(skb);
5495 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5497 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5498 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5500 i = tx_ring->next_to_use;
5501 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5502 buffer_info = &tx_ring->buffer_info[i];
5504 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5505 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5506 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5507 context_desc->upper_setup.tcp_fields.tucss = tucss;
5508 context_desc->upper_setup.tcp_fields.tucso = tucso;
5509 context_desc->upper_setup.tcp_fields.tucse = 0;
5510 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5511 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5512 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5514 buffer_info->time_stamp = jiffies;
5515 buffer_info->next_to_watch = i;
5518 if (i == tx_ring->count)
5520 tx_ring->next_to_use = i;
5525 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5528 struct e1000_adapter *adapter = tx_ring->adapter;
5529 struct e1000_context_desc *context_desc;
5530 struct e1000_buffer *buffer_info;
5533 u32 cmd_len = E1000_TXD_CMD_DEXT;
5535 if (skb->ip_summed != CHECKSUM_PARTIAL)
5539 case cpu_to_be16(ETH_P_IP):
5540 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5541 cmd_len |= E1000_TXD_CMD_TCP;
5543 case cpu_to_be16(ETH_P_IPV6):
5544 /* XXX not handling all IPV6 headers */
5545 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5546 cmd_len |= E1000_TXD_CMD_TCP;
5549 if (unlikely(net_ratelimit()))
5550 e_warn("checksum_partial proto=%x!\n",
5551 be16_to_cpu(protocol));
5555 css = skb_checksum_start_offset(skb);
5557 i = tx_ring->next_to_use;
5558 buffer_info = &tx_ring->buffer_info[i];
5559 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5561 context_desc->lower_setup.ip_config = 0;
5562 context_desc->upper_setup.tcp_fields.tucss = css;
5563 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5564 context_desc->upper_setup.tcp_fields.tucse = 0;
5565 context_desc->tcp_seg_setup.data = 0;
5566 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5568 buffer_info->time_stamp = jiffies;
5569 buffer_info->next_to_watch = i;
5572 if (i == tx_ring->count)
5574 tx_ring->next_to_use = i;
5579 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5580 unsigned int first, unsigned int max_per_txd,
5581 unsigned int nr_frags)
5583 struct e1000_adapter *adapter = tx_ring->adapter;
5584 struct pci_dev *pdev = adapter->pdev;
5585 struct e1000_buffer *buffer_info;
5586 unsigned int len = skb_headlen(skb);
5587 unsigned int offset = 0, size, count = 0, i;
5588 unsigned int f, bytecount, segs;
5590 i = tx_ring->next_to_use;
5593 buffer_info = &tx_ring->buffer_info[i];
5594 size = min(len, max_per_txd);
5596 buffer_info->length = size;
5597 buffer_info->time_stamp = jiffies;
5598 buffer_info->next_to_watch = i;
5599 buffer_info->dma = dma_map_single(&pdev->dev,
5601 size, DMA_TO_DEVICE);
5602 buffer_info->mapped_as_page = false;
5603 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5612 if (i == tx_ring->count)
5617 for (f = 0; f < nr_frags; f++) {
5618 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5620 len = skb_frag_size(frag);
5625 if (i == tx_ring->count)
5628 buffer_info = &tx_ring->buffer_info[i];
5629 size = min(len, max_per_txd);
5631 buffer_info->length = size;
5632 buffer_info->time_stamp = jiffies;
5633 buffer_info->next_to_watch = i;
5634 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5637 buffer_info->mapped_as_page = true;
5638 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5647 segs = skb_shinfo(skb)->gso_segs ? : 1;
5648 /* multiply data chunks by size of headers */
5649 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5651 tx_ring->buffer_info[i].skb = skb;
5652 tx_ring->buffer_info[i].segs = segs;
5653 tx_ring->buffer_info[i].bytecount = bytecount;
5654 tx_ring->buffer_info[first].next_to_watch = i;
5659 dev_err(&pdev->dev, "Tx DMA map failed\n");
5660 buffer_info->dma = 0;
5666 i += tx_ring->count;
5668 buffer_info = &tx_ring->buffer_info[i];
5669 e1000_put_txbuf(tx_ring, buffer_info, true);
5675 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5677 struct e1000_adapter *adapter = tx_ring->adapter;
5678 struct e1000_tx_desc *tx_desc = NULL;
5679 struct e1000_buffer *buffer_info;
5680 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5683 if (tx_flags & E1000_TX_FLAGS_TSO) {
5684 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5686 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5688 if (tx_flags & E1000_TX_FLAGS_IPV4)
5689 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5692 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5693 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5694 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5697 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5698 txd_lower |= E1000_TXD_CMD_VLE;
5699 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5702 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5703 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5705 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5706 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5707 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5710 i = tx_ring->next_to_use;
5713 buffer_info = &tx_ring->buffer_info[i];
5714 tx_desc = E1000_TX_DESC(*tx_ring, i);
5715 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5716 tx_desc->lower.data = cpu_to_le32(txd_lower |
5717 buffer_info->length);
5718 tx_desc->upper.data = cpu_to_le32(txd_upper);
5721 if (i == tx_ring->count)
5723 } while (--count > 0);
5725 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5727 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5728 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5729 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5731 /* Force memory writes to complete before letting h/w
5732 * know there are new descriptors to fetch. (Only
5733 * applicable for weak-ordered memory model archs,
5738 tx_ring->next_to_use = i;
5741 #define MINIMUM_DHCP_PACKET_SIZE 282
5742 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5743 struct sk_buff *skb)
5745 struct e1000_hw *hw = &adapter->hw;
5748 if (skb_vlan_tag_present(skb) &&
5749 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5750 (adapter->hw.mng_cookie.status &
5751 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5754 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5757 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5761 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5764 if (ip->protocol != IPPROTO_UDP)
5767 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5768 if (ntohs(udp->dest) != 67)
5771 offset = (u8 *)udp + 8 - skb->data;
5772 length = skb->len - offset;
5773 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5779 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5781 struct e1000_adapter *adapter = tx_ring->adapter;
5783 netif_stop_queue(adapter->netdev);
5784 /* Herbert's original patch had:
5785 * smp_mb__after_netif_stop_queue();
5786 * but since that doesn't exist yet, just open code it.
5790 /* We need to check again in a case another CPU has just
5791 * made room available.
5793 if (e1000_desc_unused(tx_ring) < size)
5797 netif_start_queue(adapter->netdev);
5798 ++adapter->restart_queue;
5802 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5804 BUG_ON(size > tx_ring->count);
5806 if (e1000_desc_unused(tx_ring) >= size)
5808 return __e1000_maybe_stop_tx(tx_ring, size);
5811 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5812 struct net_device *netdev)
5814 struct e1000_adapter *adapter = netdev_priv(netdev);
5815 struct e1000_ring *tx_ring = adapter->tx_ring;
5817 unsigned int tx_flags = 0;
5818 unsigned int len = skb_headlen(skb);
5819 unsigned int nr_frags;
5824 __be16 protocol = vlan_get_protocol(skb);
5826 if (test_bit(__E1000_DOWN, &adapter->state)) {
5827 dev_kfree_skb_any(skb);
5828 return NETDEV_TX_OK;
5831 if (skb->len <= 0) {
5832 dev_kfree_skb_any(skb);
5833 return NETDEV_TX_OK;
5836 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5837 * pad skb in order to meet this minimum size requirement
5839 if (skb_put_padto(skb, 17))
5840 return NETDEV_TX_OK;
5842 mss = skb_shinfo(skb)->gso_size;
5846 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5847 * points to just header, pull a few bytes of payload from
5848 * frags into skb->data
5850 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5851 /* we do this workaround for ES2LAN, but it is un-necessary,
5852 * avoiding it could save a lot of cycles
5854 if (skb->data_len && (hdr_len == len)) {
5855 unsigned int pull_size;
5857 pull_size = min_t(unsigned int, 4, skb->data_len);
5858 if (!__pskb_pull_tail(skb, pull_size)) {
5859 e_err("__pskb_pull_tail failed.\n");
5860 dev_kfree_skb_any(skb);
5861 return NETDEV_TX_OK;
5863 len = skb_headlen(skb);
5867 /* reserve a descriptor for the offload context */
5868 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5872 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5874 nr_frags = skb_shinfo(skb)->nr_frags;
5875 for (f = 0; f < nr_frags; f++)
5876 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5877 adapter->tx_fifo_limit);
5879 if (adapter->hw.mac.tx_pkt_filtering)
5880 e1000_transfer_dhcp_info(adapter, skb);
5882 /* need: count + 2 desc gap to keep tail from touching
5883 * head, otherwise try next time
5885 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5886 return NETDEV_TX_BUSY;
5888 if (skb_vlan_tag_present(skb)) {
5889 tx_flags |= E1000_TX_FLAGS_VLAN;
5890 tx_flags |= (skb_vlan_tag_get(skb) <<
5891 E1000_TX_FLAGS_VLAN_SHIFT);
5894 first = tx_ring->next_to_use;
5896 tso = e1000_tso(tx_ring, skb, protocol);
5898 dev_kfree_skb_any(skb);
5899 return NETDEV_TX_OK;
5903 tx_flags |= E1000_TX_FLAGS_TSO;
5904 else if (e1000_tx_csum(tx_ring, skb, protocol))
5905 tx_flags |= E1000_TX_FLAGS_CSUM;
5907 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5908 * 82571 hardware supports TSO capabilities for IPv6 as well...
5909 * no longer assume, we must.
5911 if (protocol == htons(ETH_P_IP))
5912 tx_flags |= E1000_TX_FLAGS_IPV4;
5914 if (unlikely(skb->no_fcs))
5915 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5917 /* if count is 0 then mapping error has occurred */
5918 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5921 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5922 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5923 if (!adapter->tx_hwtstamp_skb) {
5924 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5925 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5926 adapter->tx_hwtstamp_skb = skb_get(skb);
5927 adapter->tx_hwtstamp_start = jiffies;
5928 schedule_work(&adapter->tx_hwtstamp_work);
5930 adapter->tx_hwtstamp_skipped++;
5934 skb_tx_timestamp(skb);
5936 netdev_sent_queue(netdev, skb->len);
5937 e1000_tx_queue(tx_ring, tx_flags, count);
5938 /* Make sure there is space in the ring for the next send. */
5939 e1000_maybe_stop_tx(tx_ring,
5941 DIV_ROUND_UP(PAGE_SIZE,
5942 adapter->tx_fifo_limit) + 2));
5944 if (!netdev_xmit_more() ||
5945 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5946 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5947 e1000e_update_tdt_wa(tx_ring,
5948 tx_ring->next_to_use);
5950 writel(tx_ring->next_to_use, tx_ring->tail);
5953 dev_kfree_skb_any(skb);
5954 tx_ring->buffer_info[first].time_stamp = 0;
5955 tx_ring->next_to_use = first;
5958 return NETDEV_TX_OK;
5962 * e1000_tx_timeout - Respond to a Tx Hang
5963 * @netdev: network interface device structure
5964 * @txqueue: index of the hung queue (unused)
5966 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5968 struct e1000_adapter *adapter = netdev_priv(netdev);
5970 /* Do the reset outside of interrupt context */
5971 adapter->tx_timeout_count++;
5972 schedule_work(&adapter->reset_task);
5975 static void e1000_reset_task(struct work_struct *work)
5977 struct e1000_adapter *adapter;
5978 adapter = container_of(work, struct e1000_adapter, reset_task);
5981 /* don't run the task if already down */
5982 if (test_bit(__E1000_DOWN, &adapter->state)) {
5987 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5988 e1000e_dump(adapter);
5989 e_err("Reset adapter unexpectedly\n");
5991 e1000e_reinit_locked(adapter);
5996 * e1000e_get_stats64 - Get System Network Statistics
5997 * @netdev: network interface device structure
5998 * @stats: rtnl_link_stats64 pointer
6000 * Returns the address of the device statistics structure.
6002 void e1000e_get_stats64(struct net_device *netdev,
6003 struct rtnl_link_stats64 *stats)
6005 struct e1000_adapter *adapter = netdev_priv(netdev);
6007 spin_lock(&adapter->stats64_lock);
6008 e1000e_update_stats(adapter);
6009 /* Fill out the OS statistics structure */
6010 stats->rx_bytes = adapter->stats.gorc;
6011 stats->rx_packets = adapter->stats.gprc;
6012 stats->tx_bytes = adapter->stats.gotc;
6013 stats->tx_packets = adapter->stats.gptc;
6014 stats->multicast = adapter->stats.mprc;
6015 stats->collisions = adapter->stats.colc;
6019 /* RLEC on some newer hardware can be incorrect so build
6020 * our own version based on RUC and ROC
6022 stats->rx_errors = adapter->stats.rxerrc +
6023 adapter->stats.crcerrs + adapter->stats.algnerrc +
6024 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6025 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6026 stats->rx_crc_errors = adapter->stats.crcerrs;
6027 stats->rx_frame_errors = adapter->stats.algnerrc;
6028 stats->rx_missed_errors = adapter->stats.mpc;
6031 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6032 stats->tx_aborted_errors = adapter->stats.ecol;
6033 stats->tx_window_errors = adapter->stats.latecol;
6034 stats->tx_carrier_errors = adapter->stats.tncrs;
6036 /* Tx Dropped needs to be maintained elsewhere */
6038 spin_unlock(&adapter->stats64_lock);
6042 * e1000_change_mtu - Change the Maximum Transfer Unit
6043 * @netdev: network interface device structure
6044 * @new_mtu: new value for maximum frame size
6046 * Returns 0 on success, negative on failure
6048 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6050 struct e1000_adapter *adapter = netdev_priv(netdev);
6051 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6053 /* Jumbo frame support */
6054 if ((new_mtu > ETH_DATA_LEN) &&
6055 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6056 e_err("Jumbo Frames not supported.\n");
6060 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6061 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6062 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6063 (new_mtu > ETH_DATA_LEN)) {
6064 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6068 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6069 usleep_range(1000, 1100);
6070 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6071 adapter->max_frame_size = max_frame;
6072 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6073 netdev->mtu, new_mtu);
6074 netdev->mtu = new_mtu;
6076 pm_runtime_get_sync(netdev->dev.parent);
6078 if (netif_running(netdev))
6079 e1000e_down(adapter, true);
6081 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6082 * means we reserve 2 more, this pushes us to allocate from the next
6084 * i.e. RXBUFFER_2048 --> size-4096 slab
6085 * However with the new *_jumbo_rx* routines, jumbo receives will use
6089 if (max_frame <= 2048)
6090 adapter->rx_buffer_len = 2048;
6092 adapter->rx_buffer_len = 4096;
6094 /* adjust allocation if LPE protects us, and we aren't using SBP */
6095 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6096 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6098 if (netif_running(netdev))
6101 e1000e_reset(adapter);
6103 pm_runtime_put_sync(netdev->dev.parent);
6105 clear_bit(__E1000_RESETTING, &adapter->state);
6110 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6113 struct e1000_adapter *adapter = netdev_priv(netdev);
6114 struct mii_ioctl_data *data = if_mii(ifr);
6116 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6121 data->phy_id = adapter->hw.phy.addr;
6124 e1000_phy_read_status(adapter);
6126 switch (data->reg_num & 0x1F) {
6128 data->val_out = adapter->phy_regs.bmcr;
6131 data->val_out = adapter->phy_regs.bmsr;
6134 data->val_out = (adapter->hw.phy.id >> 16);
6137 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6140 data->val_out = adapter->phy_regs.advertise;
6143 data->val_out = adapter->phy_regs.lpa;
6146 data->val_out = adapter->phy_regs.expansion;
6149 data->val_out = adapter->phy_regs.ctrl1000;
6152 data->val_out = adapter->phy_regs.stat1000;
6155 data->val_out = adapter->phy_regs.estatus;
6169 * e1000e_hwtstamp_set - control hardware time stamping
6170 * @netdev: network interface device structure
6171 * @ifr: interface request
6173 * Outgoing time stamping can be enabled and disabled. Play nice and
6174 * disable it when requested, although it shouldn't cause any overhead
6175 * when no packet needs it. At most one packet in the queue may be
6176 * marked for time stamping, otherwise it would be impossible to tell
6177 * for sure to which packet the hardware time stamp belongs.
6179 * Incoming time stamping has to be configured via the hardware filters.
6180 * Not all combinations are supported, in particular event type has to be
6181 * specified. Matching the kind of event packet is not supported, with the
6182 * exception of "all V2 events regardless of level 2 or 4".
6184 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6186 struct e1000_adapter *adapter = netdev_priv(netdev);
6187 struct hwtstamp_config config;
6190 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6193 ret_val = e1000e_config_hwtstamp(adapter, &config);
6197 switch (config.rx_filter) {
6198 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6199 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6200 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6201 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6202 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6203 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6204 /* With V2 type filters which specify a Sync or Delay Request,
6205 * Path Delay Request/Response messages are also time stamped
6206 * by hardware so notify the caller the requested packets plus
6207 * some others are time stamped.
6209 config.rx_filter = HWTSTAMP_FILTER_SOME;
6215 return copy_to_user(ifr->ifr_data, &config,
6216 sizeof(config)) ? -EFAULT : 0;
6219 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6221 struct e1000_adapter *adapter = netdev_priv(netdev);
6223 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6224 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6227 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6233 return e1000_mii_ioctl(netdev, ifr, cmd);
6235 return e1000e_hwtstamp_set(netdev, ifr);
6237 return e1000e_hwtstamp_get(netdev, ifr);
6243 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6245 struct e1000_hw *hw = &adapter->hw;
6246 u32 i, mac_reg, wuc;
6247 u16 phy_reg, wuc_enable;
6250 /* copy MAC RARs to PHY RARs */
6251 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6253 retval = hw->phy.ops.acquire(hw);
6255 e_err("Could not acquire PHY\n");
6259 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6260 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6264 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6265 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6266 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6267 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6268 (u16)(mac_reg & 0xFFFF));
6269 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6270 (u16)((mac_reg >> 16) & 0xFFFF));
6273 /* configure PHY Rx Control register */
6274 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6275 mac_reg = er32(RCTL);
6276 if (mac_reg & E1000_RCTL_UPE)
6277 phy_reg |= BM_RCTL_UPE;
6278 if (mac_reg & E1000_RCTL_MPE)
6279 phy_reg |= BM_RCTL_MPE;
6280 phy_reg &= ~(BM_RCTL_MO_MASK);
6281 if (mac_reg & E1000_RCTL_MO_3)
6282 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6283 << BM_RCTL_MO_SHIFT);
6284 if (mac_reg & E1000_RCTL_BAM)
6285 phy_reg |= BM_RCTL_BAM;
6286 if (mac_reg & E1000_RCTL_PMCF)
6287 phy_reg |= BM_RCTL_PMCF;
6288 mac_reg = er32(CTRL);
6289 if (mac_reg & E1000_CTRL_RFCE)
6290 phy_reg |= BM_RCTL_RFCE;
6291 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6293 wuc = E1000_WUC_PME_EN;
6294 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6295 wuc |= E1000_WUC_APME;
6297 /* enable PHY wakeup in MAC register */
6299 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6300 E1000_WUC_PME_STATUS | wuc));
6302 /* configure and enable PHY wakeup in PHY registers */
6303 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6304 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6306 /* activate PHY wakeup */
6307 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6308 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6310 e_err("Could not set PHY Host Wakeup bit\n");
6312 hw->phy.ops.release(hw);
6317 static void e1000e_flush_lpic(struct pci_dev *pdev)
6319 struct net_device *netdev = pci_get_drvdata(pdev);
6320 struct e1000_adapter *adapter = netdev_priv(netdev);
6321 struct e1000_hw *hw = &adapter->hw;
6324 pm_runtime_get_sync(netdev->dev.parent);
6326 ret_val = hw->phy.ops.acquire(hw);
6330 pr_info("EEE TX LPI TIMER: %08X\n",
6331 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6333 hw->phy.ops.release(hw);
6336 pm_runtime_put_sync(netdev->dev.parent);
6339 /* S0ix implementation */
6340 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6342 struct e1000_hw *hw = &adapter->hw;
6346 /* Disable the periodic inband message,
6347 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6349 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6350 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6351 phy_data |= BIT(10);
6352 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6354 /* Make sure we don't exit K1 every time a new packet arrives
6355 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6357 e1e_rphy(hw, I217_CGFREG, &phy_data);
6359 e1e_wphy(hw, I217_CGFREG, phy_data);
6361 /* Change the MAC/PHY interface to SMBus
6362 * Force the SMBus in PHY page769_23[0] = 1
6363 * Force the SMBus in MAC CTRL_EXT[11] = 1
6365 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6366 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6367 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6368 mac_data = er32(CTRL_EXT);
6369 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6370 ew32(CTRL_EXT, mac_data);
6372 /* DFT control: PHY bit: page769_20[0] = 1
6373 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6375 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6377 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6379 mac_data = er32(EXTCNF_CTRL);
6380 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6381 ew32(EXTCNF_CTRL, mac_data);
6383 /* Check MAC Tx/Rx packet buffer pointers.
6384 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6385 * pending traffic indication that would prevent power gating.
6387 mac_data = er32(TDFH);
6390 mac_data = er32(TDFT);
6393 mac_data = er32(TDFHS);
6396 mac_data = er32(TDFTS);
6399 mac_data = er32(TDFPC);
6402 mac_data = er32(RDFH);
6405 mac_data = er32(RDFT);
6408 mac_data = er32(RDFHS);
6411 mac_data = er32(RDFTS);
6414 mac_data = er32(RDFPC);
6418 /* Enable the Dynamic Power Gating in the MAC */
6419 mac_data = er32(FEXTNVM7);
6420 mac_data |= BIT(22);
6421 ew32(FEXTNVM7, mac_data);
6423 /* Disable the time synchronization clock */
6424 mac_data = er32(FEXTNVM7);
6425 mac_data |= BIT(31);
6426 mac_data &= ~BIT(0);
6427 ew32(FEXTNVM7, mac_data);
6429 /* Dynamic Power Gating Enable */
6430 mac_data = er32(CTRL_EXT);
6432 ew32(CTRL_EXT, mac_data);
6434 /* Disable disconnected cable conditioning for Power Gating */
6435 mac_data = er32(DPGFR);
6437 ew32(DPGFR, mac_data);
6439 /* Don't wake from dynamic Power Gating with clock request */
6440 mac_data = er32(FEXTNVM12);
6441 mac_data |= BIT(12);
6442 ew32(FEXTNVM12, mac_data);
6444 /* Ungate PGCB clock */
6445 mac_data = er32(FEXTNVM9);
6446 mac_data &= ~BIT(28);
6447 ew32(FEXTNVM9, mac_data);
6449 /* Enable K1 off to enable mPHY Power Gating */
6450 mac_data = er32(FEXTNVM6);
6451 mac_data |= BIT(31);
6452 ew32(FEXTNVM6, mac_data);
6454 /* Enable mPHY power gating for any link and speed */
6455 mac_data = er32(FEXTNVM8);
6457 ew32(FEXTNVM8, mac_data);
6459 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6460 mac_data = er32(CTRL_EXT);
6461 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6462 ew32(CTRL_EXT, mac_data);
6464 /* No MAC DPG gating SLP_S0 in modern standby
6465 * Switch the logic of the lanphypc to use PMC counter
6467 mac_data = er32(FEXTNVM5);
6469 ew32(FEXTNVM5, mac_data);
6472 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6474 struct e1000_hw *hw = &adapter->hw;
6478 /* Disable the Dynamic Power Gating in the MAC */
6479 mac_data = er32(FEXTNVM7);
6480 mac_data &= 0xFFBFFFFF;
6481 ew32(FEXTNVM7, mac_data);
6483 /* Enable the time synchronization clock */
6484 mac_data = er32(FEXTNVM7);
6486 ew32(FEXTNVM7, mac_data);
6488 /* Disable mPHY power gating for any link and speed */
6489 mac_data = er32(FEXTNVM8);
6490 mac_data &= ~BIT(9);
6491 ew32(FEXTNVM8, mac_data);
6493 /* Disable K1 off */
6494 mac_data = er32(FEXTNVM6);
6495 mac_data &= ~BIT(31);
6496 ew32(FEXTNVM6, mac_data);
6498 /* Disable Ungate PGCB clock */
6499 mac_data = er32(FEXTNVM9);
6500 mac_data |= BIT(28);
6501 ew32(FEXTNVM9, mac_data);
6503 /* Cancel not waking from dynamic
6504 * Power Gating with clock request
6506 mac_data = er32(FEXTNVM12);
6507 mac_data &= ~BIT(12);
6508 ew32(FEXTNVM12, mac_data);
6510 /* Cancel disable disconnected cable conditioning
6513 mac_data = er32(DPGFR);
6514 mac_data &= ~BIT(2);
6515 ew32(DPGFR, mac_data);
6517 /* Disable Dynamic Power Gating */
6518 mac_data = er32(CTRL_EXT);
6519 mac_data &= 0xFFFFFFF7;
6520 ew32(CTRL_EXT, mac_data);
6522 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6523 mac_data = er32(CTRL_EXT);
6524 mac_data &= 0xFFF7FFFF;
6525 ew32(CTRL_EXT, mac_data);
6527 /* Revert the lanphypc logic to use the internal Gbe counter
6528 * and not the PMC counter
6530 mac_data = er32(FEXTNVM5);
6531 mac_data &= 0xFFFFFF7F;
6532 ew32(FEXTNVM5, mac_data);
6534 /* Enable the periodic inband message,
6535 * Request PCIe clock in K1 page770_17[10:9] =01b
6537 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6539 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6540 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6542 /* Return back configuration
6543 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6545 e1e_rphy(hw, I217_CGFREG, &phy_data);
6547 e1e_wphy(hw, I217_CGFREG, phy_data);
6549 /* Change the MAC/PHY interface to Kumeran
6550 * Unforce the SMBus in PHY page769_23[0] = 0
6551 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6553 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6554 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6555 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6556 mac_data = er32(CTRL_EXT);
6557 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6558 ew32(CTRL_EXT, mac_data);
6561 static int e1000e_pm_freeze(struct device *dev)
6563 struct net_device *netdev = dev_get_drvdata(dev);
6564 struct e1000_adapter *adapter = netdev_priv(netdev);
6569 present = netif_device_present(netdev);
6570 netif_device_detach(netdev);
6572 if (present && netif_running(netdev)) {
6573 int count = E1000_CHECK_RESET_COUNT;
6575 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6576 usleep_range(10000, 11000);
6578 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6580 /* Quiesce the device without resetting the hardware */
6581 e1000e_down(adapter, false);
6582 e1000_free_irq(adapter);
6586 e1000e_reset_interrupt_capability(adapter);
6588 /* Allow time for pending master requests to run */
6589 e1000e_disable_pcie_master(&adapter->hw);
6594 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6596 struct net_device *netdev = pci_get_drvdata(pdev);
6597 struct e1000_adapter *adapter = netdev_priv(netdev);
6598 struct e1000_hw *hw = &adapter->hw;
6599 u32 ctrl, ctrl_ext, rctl, status, wufc;
6602 /* Runtime suspend should only enable wakeup for link changes */
6604 wufc = E1000_WUFC_LNKC;
6605 else if (device_may_wakeup(&pdev->dev))
6606 wufc = adapter->wol;
6610 status = er32(STATUS);
6611 if (status & E1000_STATUS_LU)
6612 wufc &= ~E1000_WUFC_LNKC;
6615 e1000_setup_rctl(adapter);
6616 e1000e_set_rx_mode(netdev);
6618 /* turn on all-multi mode if wake on multicast is enabled */
6619 if (wufc & E1000_WUFC_MC) {
6621 rctl |= E1000_RCTL_MPE;
6626 ctrl |= E1000_CTRL_ADVD3WUC;
6627 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6628 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6631 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6632 adapter->hw.phy.media_type ==
6633 e1000_media_type_internal_serdes) {
6634 /* keep the laser running in D3 */
6635 ctrl_ext = er32(CTRL_EXT);
6636 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6637 ew32(CTRL_EXT, ctrl_ext);
6641 e1000e_power_up_phy(adapter);
6643 if (adapter->flags & FLAG_IS_ICH)
6644 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6646 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6647 /* enable wakeup by the PHY */
6648 retval = e1000_init_phy_wakeup(adapter, wufc);
6652 /* enable wakeup by the MAC */
6654 ew32(WUC, E1000_WUC_PME_EN);
6660 e1000_power_down_phy(adapter);
6663 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6664 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6665 } else if (hw->mac.type >= e1000_pch_lpt) {
6666 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6667 /* ULP does not support wake from unicast, multicast
6670 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6676 /* Ensure that the appropriate bits are set in LPI_CTRL
6679 if ((hw->phy.type >= e1000_phy_i217) &&
6680 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6683 retval = hw->phy.ops.acquire(hw);
6685 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6688 if (adapter->eee_advert &
6689 hw->dev_spec.ich8lan.eee_lp_ability &
6690 I82579_EEE_100_SUPPORTED)
6691 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6692 if (adapter->eee_advert &
6693 hw->dev_spec.ich8lan.eee_lp_ability &
6694 I82579_EEE_1000_SUPPORTED)
6695 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6697 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6701 hw->phy.ops.release(hw);
6704 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6705 * would have already happened in close and is redundant.
6707 e1000e_release_hw_control(adapter);
6709 pci_clear_master(pdev);
6711 /* The pci-e switch on some quad port adapters will report a
6712 * correctable error when the MAC transitions from D0 to D3. To
6713 * prevent this we need to mask off the correctable errors on the
6714 * downstream port of the pci-e switch.
6716 * We don't have the associated upstream bridge while assigning
6717 * the PCI device into guest. For example, the KVM on power is
6720 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6721 struct pci_dev *us_dev = pdev->bus->self;
6727 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6728 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6729 (devctl & ~PCI_EXP_DEVCTL_CERE));
6731 pci_save_state(pdev);
6732 pci_prepare_to_sleep(pdev);
6734 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6741 * __e1000e_disable_aspm - Disable ASPM states
6742 * @pdev: pointer to PCI device struct
6743 * @state: bit-mask of ASPM states to disable
6744 * @locked: indication if this context holds pci_bus_sem locked.
6746 * Some devices *must* have certain ASPM states disabled per hardware errata.
6748 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6750 struct pci_dev *parent = pdev->bus->self;
6751 u16 aspm_dis_mask = 0;
6752 u16 pdev_aspmc, parent_aspmc;
6755 case PCIE_LINK_STATE_L0S:
6756 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6757 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6758 fallthrough; /* can't have L1 without L0s */
6759 case PCIE_LINK_STATE_L1:
6760 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6766 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6767 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6770 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6772 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6775 /* Nothing to do if the ASPM states to be disabled already are */
6776 if (!(pdev_aspmc & aspm_dis_mask) &&
6777 (!parent || !(parent_aspmc & aspm_dis_mask)))
6780 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6781 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6783 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6786 #ifdef CONFIG_PCIEASPM
6788 pci_disable_link_state_locked(pdev, state);
6790 pci_disable_link_state(pdev, state);
6792 /* Double-check ASPM control. If not disabled by the above, the
6793 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6794 * not enabled); override by writing PCI config space directly.
6796 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6797 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6799 if (!(aspm_dis_mask & pdev_aspmc))
6803 /* Both device and parent should have the same ASPM setting.
6804 * Disable ASPM in downstream component first and then upstream.
6806 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6809 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6814 * e1000e_disable_aspm - Disable ASPM states.
6815 * @pdev: pointer to PCI device struct
6816 * @state: bit-mask of ASPM states to disable
6818 * This function acquires the pci_bus_sem!
6819 * Some devices *must* have certain ASPM states disabled per hardware errata.
6821 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6823 __e1000e_disable_aspm(pdev, state, 0);
6827 * e1000e_disable_aspm_locked - Disable ASPM states.
6828 * @pdev: pointer to PCI device struct
6829 * @state: bit-mask of ASPM states to disable
6831 * This function must be called with pci_bus_sem acquired!
6832 * Some devices *must* have certain ASPM states disabled per hardware errata.
6834 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6836 __e1000e_disable_aspm(pdev, state, 1);
6839 static int e1000e_pm_thaw(struct device *dev)
6841 struct net_device *netdev = dev_get_drvdata(dev);
6842 struct e1000_adapter *adapter = netdev_priv(netdev);
6845 e1000e_set_interrupt_capability(adapter);
6848 if (netif_running(netdev)) {
6849 rc = e1000_request_irq(adapter);
6856 netif_device_attach(netdev);
6863 static int __e1000_resume(struct pci_dev *pdev)
6865 struct net_device *netdev = pci_get_drvdata(pdev);
6866 struct e1000_adapter *adapter = netdev_priv(netdev);
6867 struct e1000_hw *hw = &adapter->hw;
6868 u16 aspm_disable_flag = 0;
6870 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6871 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6872 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6873 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6874 if (aspm_disable_flag)
6875 e1000e_disable_aspm(pdev, aspm_disable_flag);
6877 pci_set_master(pdev);
6879 if (hw->mac.type >= e1000_pch2lan)
6880 e1000_resume_workarounds_pchlan(&adapter->hw);
6882 e1000e_power_up_phy(adapter);
6884 /* report the system wakeup cause from S3/S4 */
6885 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6888 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6890 e_info("PHY Wakeup cause - %s\n",
6891 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6892 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6893 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6894 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6895 phy_data & E1000_WUS_LNKC ?
6896 "Link Status Change" : "other");
6898 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6900 u32 wus = er32(WUS);
6903 e_info("MAC Wakeup cause - %s\n",
6904 wus & E1000_WUS_EX ? "Unicast Packet" :
6905 wus & E1000_WUS_MC ? "Multicast Packet" :
6906 wus & E1000_WUS_BC ? "Broadcast Packet" :
6907 wus & E1000_WUS_MAG ? "Magic Packet" :
6908 wus & E1000_WUS_LNKC ? "Link Status Change" :
6914 e1000e_reset(adapter);
6916 e1000_init_manageability_pt(adapter);
6918 /* If the controller has AMT, do not set DRV_LOAD until the interface
6919 * is up. For all other cases, let the f/w know that the h/w is now
6920 * under the control of the driver.
6922 if (!(adapter->flags & FLAG_HAS_AMT))
6923 e1000e_get_hw_control(adapter);
6928 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6930 return pm_runtime_suspended(dev) &&
6931 pm_suspend_via_firmware();
6934 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6936 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6937 struct e1000_adapter *adapter = netdev_priv(netdev);
6938 struct pci_dev *pdev = to_pci_dev(dev);
6941 e1000e_flush_lpic(pdev);
6943 e1000e_pm_freeze(dev);
6945 rc = __e1000_shutdown(pdev, false);
6947 e1000e_pm_thaw(dev);
6949 /* Introduce S0ix implementation */
6950 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6951 e1000e_s0ix_entry_flow(adapter);
6957 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6959 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6960 struct e1000_adapter *adapter = netdev_priv(netdev);
6961 struct pci_dev *pdev = to_pci_dev(dev);
6964 /* Introduce S0ix implementation */
6965 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6966 e1000e_s0ix_exit_flow(adapter);
6968 rc = __e1000_resume(pdev);
6972 return e1000e_pm_thaw(dev);
6975 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6977 struct net_device *netdev = dev_get_drvdata(dev);
6978 struct e1000_adapter *adapter = netdev_priv(netdev);
6981 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6983 if (!e1000e_has_link(adapter)) {
6984 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6985 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6991 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6993 struct pci_dev *pdev = to_pci_dev(dev);
6994 struct net_device *netdev = pci_get_drvdata(pdev);
6995 struct e1000_adapter *adapter = netdev_priv(netdev);
6998 rc = __e1000_resume(pdev);
7002 if (netdev->flags & IFF_UP)
7008 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7010 struct pci_dev *pdev = to_pci_dev(dev);
7011 struct net_device *netdev = pci_get_drvdata(pdev);
7012 struct e1000_adapter *adapter = netdev_priv(netdev);
7014 if (netdev->flags & IFF_UP) {
7015 int count = E1000_CHECK_RESET_COUNT;
7017 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7018 usleep_range(10000, 11000);
7020 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7022 /* Down the device without resetting the hardware */
7023 e1000e_down(adapter, false);
7026 if (__e1000_shutdown(pdev, true)) {
7027 e1000e_pm_runtime_resume(dev);
7034 static void e1000_shutdown(struct pci_dev *pdev)
7036 e1000e_flush_lpic(pdev);
7038 e1000e_pm_freeze(&pdev->dev);
7040 __e1000_shutdown(pdev, false);
7043 #ifdef CONFIG_NET_POLL_CONTROLLER
7045 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7047 struct net_device *netdev = data;
7048 struct e1000_adapter *adapter = netdev_priv(netdev);
7050 if (adapter->msix_entries) {
7051 int vector, msix_irq;
7054 msix_irq = adapter->msix_entries[vector].vector;
7055 if (disable_hardirq(msix_irq))
7056 e1000_intr_msix_rx(msix_irq, netdev);
7057 enable_irq(msix_irq);
7060 msix_irq = adapter->msix_entries[vector].vector;
7061 if (disable_hardirq(msix_irq))
7062 e1000_intr_msix_tx(msix_irq, netdev);
7063 enable_irq(msix_irq);
7066 msix_irq = adapter->msix_entries[vector].vector;
7067 if (disable_hardirq(msix_irq))
7068 e1000_msix_other(msix_irq, netdev);
7069 enable_irq(msix_irq);
7077 * @netdev: network interface device structure
7079 * Polling 'interrupt' - used by things like netconsole to send skbs
7080 * without having to re-enable interrupts. It's not called while
7081 * the interrupt routine is executing.
7083 static void e1000_netpoll(struct net_device *netdev)
7085 struct e1000_adapter *adapter = netdev_priv(netdev);
7087 switch (adapter->int_mode) {
7088 case E1000E_INT_MODE_MSIX:
7089 e1000_intr_msix(adapter->pdev->irq, netdev);
7091 case E1000E_INT_MODE_MSI:
7092 if (disable_hardirq(adapter->pdev->irq))
7093 e1000_intr_msi(adapter->pdev->irq, netdev);
7094 enable_irq(adapter->pdev->irq);
7096 default: /* E1000E_INT_MODE_LEGACY */
7097 if (disable_hardirq(adapter->pdev->irq))
7098 e1000_intr(adapter->pdev->irq, netdev);
7099 enable_irq(adapter->pdev->irq);
7106 * e1000_io_error_detected - called when PCI error is detected
7107 * @pdev: Pointer to PCI device
7108 * @state: The current pci connection state
7110 * This function is called after a PCI bus error affecting
7111 * this device has been detected.
7113 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7114 pci_channel_state_t state)
7116 e1000e_pm_freeze(&pdev->dev);
7118 if (state == pci_channel_io_perm_failure)
7119 return PCI_ERS_RESULT_DISCONNECT;
7121 pci_disable_device(pdev);
7123 /* Request a slot reset. */
7124 return PCI_ERS_RESULT_NEED_RESET;
7128 * e1000_io_slot_reset - called after the pci bus has been reset.
7129 * @pdev: Pointer to PCI device
7131 * Restart the card from scratch, as if from a cold-boot. Implementation
7132 * resembles the first-half of the e1000e_pm_resume routine.
7134 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7136 struct net_device *netdev = pci_get_drvdata(pdev);
7137 struct e1000_adapter *adapter = netdev_priv(netdev);
7138 struct e1000_hw *hw = &adapter->hw;
7139 u16 aspm_disable_flag = 0;
7141 pci_ers_result_t result;
7143 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7144 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7145 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7146 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7147 if (aspm_disable_flag)
7148 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7150 err = pci_enable_device_mem(pdev);
7153 "Cannot re-enable PCI device after reset.\n");
7154 result = PCI_ERS_RESULT_DISCONNECT;
7156 pdev->state_saved = true;
7157 pci_restore_state(pdev);
7158 pci_set_master(pdev);
7160 pci_enable_wake(pdev, PCI_D3hot, 0);
7161 pci_enable_wake(pdev, PCI_D3cold, 0);
7163 e1000e_reset(adapter);
7165 result = PCI_ERS_RESULT_RECOVERED;
7172 * e1000_io_resume - called when traffic can start flowing again.
7173 * @pdev: Pointer to PCI device
7175 * This callback is called when the error recovery driver tells us that
7176 * its OK to resume normal operation. Implementation resembles the
7177 * second-half of the e1000e_pm_resume routine.
7179 static void e1000_io_resume(struct pci_dev *pdev)
7181 struct net_device *netdev = pci_get_drvdata(pdev);
7182 struct e1000_adapter *adapter = netdev_priv(netdev);
7184 e1000_init_manageability_pt(adapter);
7186 e1000e_pm_thaw(&pdev->dev);
7188 /* If the controller has AMT, do not set DRV_LOAD until the interface
7189 * is up. For all other cases, let the f/w know that the h/w is now
7190 * under the control of the driver.
7192 if (!(adapter->flags & FLAG_HAS_AMT))
7193 e1000e_get_hw_control(adapter);
7196 static void e1000_print_device_info(struct e1000_adapter *adapter)
7198 struct e1000_hw *hw = &adapter->hw;
7199 struct net_device *netdev = adapter->netdev;
7201 u8 pba_str[E1000_PBANUM_LENGTH];
7203 /* print bus type/speed/width info */
7204 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7206 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7210 e_info("Intel(R) PRO/%s Network Connection\n",
7211 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7212 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7213 E1000_PBANUM_LENGTH);
7215 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7216 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7217 hw->mac.type, hw->phy.type, pba_str);
7220 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7222 struct e1000_hw *hw = &adapter->hw;
7226 if (hw->mac.type != e1000_82573)
7229 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7231 if (!ret_val && (!(buf & BIT(0)))) {
7232 /* Deep Smart Power Down (DSPD) */
7233 dev_warn(&adapter->pdev->dev,
7234 "Warning: detected DSPD enabled in EEPROM\n");
7238 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7239 netdev_features_t features)
7241 struct e1000_adapter *adapter = netdev_priv(netdev);
7242 struct e1000_hw *hw = &adapter->hw;
7244 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7245 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7246 features &= ~NETIF_F_RXFCS;
7248 /* Since there is no support for separate Rx/Tx vlan accel
7249 * enable/disable make sure Tx flag is always in same state as Rx.
7251 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7252 features |= NETIF_F_HW_VLAN_CTAG_TX;
7254 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7259 static int e1000_set_features(struct net_device *netdev,
7260 netdev_features_t features)
7262 struct e1000_adapter *adapter = netdev_priv(netdev);
7263 netdev_features_t changed = features ^ netdev->features;
7265 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7266 adapter->flags |= FLAG_TSO_FORCE;
7268 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7269 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7273 if (changed & NETIF_F_RXFCS) {
7274 if (features & NETIF_F_RXFCS) {
7275 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7277 /* We need to take it back to defaults, which might mean
7278 * stripping is still disabled at the adapter level.
7280 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7281 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7283 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7287 netdev->features = features;
7289 if (netif_running(netdev))
7290 e1000e_reinit_locked(adapter);
7292 e1000e_reset(adapter);
7297 static const struct net_device_ops e1000e_netdev_ops = {
7298 .ndo_open = e1000e_open,
7299 .ndo_stop = e1000e_close,
7300 .ndo_start_xmit = e1000_xmit_frame,
7301 .ndo_get_stats64 = e1000e_get_stats64,
7302 .ndo_set_rx_mode = e1000e_set_rx_mode,
7303 .ndo_set_mac_address = e1000_set_mac,
7304 .ndo_change_mtu = e1000_change_mtu,
7305 .ndo_do_ioctl = e1000_ioctl,
7306 .ndo_tx_timeout = e1000_tx_timeout,
7307 .ndo_validate_addr = eth_validate_addr,
7309 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7310 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7311 #ifdef CONFIG_NET_POLL_CONTROLLER
7312 .ndo_poll_controller = e1000_netpoll,
7314 .ndo_set_features = e1000_set_features,
7315 .ndo_fix_features = e1000_fix_features,
7316 .ndo_features_check = passthru_features_check,
7320 * e1000_probe - Device Initialization Routine
7321 * @pdev: PCI device information struct
7322 * @ent: entry in e1000_pci_tbl
7324 * Returns 0 on success, negative on failure
7326 * e1000_probe initializes an adapter identified by a pci_dev structure.
7327 * The OS initialization, configuring of the adapter private structure,
7328 * and a hardware reset occur.
7330 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7332 struct net_device *netdev;
7333 struct e1000_adapter *adapter;
7334 struct e1000_hw *hw;
7335 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7336 resource_size_t mmio_start, mmio_len;
7337 resource_size_t flash_start, flash_len;
7338 static int cards_found;
7339 u16 aspm_disable_flag = 0;
7340 int bars, i, err, pci_using_dac;
7341 u16 eeprom_data = 0;
7342 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7345 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7346 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7347 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7348 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7349 if (aspm_disable_flag)
7350 e1000e_disable_aspm(pdev, aspm_disable_flag);
7352 err = pci_enable_device_mem(pdev);
7357 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7361 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7364 "No usable DMA configuration, aborting\n");
7369 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7370 err = pci_request_selected_regions_exclusive(pdev, bars,
7371 e1000e_driver_name);
7375 /* AER (Advanced Error Reporting) hooks */
7376 pci_enable_pcie_error_reporting(pdev);
7378 pci_set_master(pdev);
7379 /* PCI config space info */
7380 err = pci_save_state(pdev);
7382 goto err_alloc_etherdev;
7385 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7387 goto err_alloc_etherdev;
7389 SET_NETDEV_DEV(netdev, &pdev->dev);
7391 netdev->irq = pdev->irq;
7393 pci_set_drvdata(pdev, netdev);
7394 adapter = netdev_priv(netdev);
7396 adapter->netdev = netdev;
7397 adapter->pdev = pdev;
7399 adapter->pba = ei->pba;
7400 adapter->flags = ei->flags;
7401 adapter->flags2 = ei->flags2;
7402 adapter->hw.adapter = adapter;
7403 adapter->hw.mac.type = ei->mac;
7404 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7405 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7407 mmio_start = pci_resource_start(pdev, 0);
7408 mmio_len = pci_resource_len(pdev, 0);
7411 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7412 if (!adapter->hw.hw_addr)
7415 if ((adapter->flags & FLAG_HAS_FLASH) &&
7416 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7417 (hw->mac.type < e1000_pch_spt)) {
7418 flash_start = pci_resource_start(pdev, 1);
7419 flash_len = pci_resource_len(pdev, 1);
7420 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7421 if (!adapter->hw.flash_address)
7425 /* Set default EEE advertisement */
7426 if (adapter->flags2 & FLAG2_HAS_EEE)
7427 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7429 /* construct the net_device struct */
7430 netdev->netdev_ops = &e1000e_netdev_ops;
7431 e1000e_set_ethtool_ops(netdev);
7432 netdev->watchdog_timeo = 5 * HZ;
7433 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7434 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7436 netdev->mem_start = mmio_start;
7437 netdev->mem_end = mmio_start + mmio_len;
7439 adapter->bd_number = cards_found++;
7441 e1000e_check_options(adapter);
7443 /* setup adapter struct */
7444 err = e1000_sw_init(adapter);
7448 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7449 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7450 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7452 err = ei->get_variants(adapter);
7456 if ((adapter->flags & FLAG_IS_ICH) &&
7457 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7458 (hw->mac.type < e1000_pch_spt))
7459 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7461 hw->mac.ops.get_bus_info(&adapter->hw);
7463 adapter->hw.phy.autoneg_wait_to_complete = 0;
7465 /* Copper options */
7466 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7467 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7468 adapter->hw.phy.disable_polarity_correction = 0;
7469 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7472 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7473 dev_info(&pdev->dev,
7474 "PHY reset is blocked due to SOL/IDER session.\n");
7476 /* Set initial default active device features */
7477 netdev->features = (NETIF_F_SG |
7478 NETIF_F_HW_VLAN_CTAG_RX |
7479 NETIF_F_HW_VLAN_CTAG_TX |
7486 /* Set user-changeable features (subset of all device features) */
7487 netdev->hw_features = netdev->features;
7488 netdev->hw_features |= NETIF_F_RXFCS;
7489 netdev->priv_flags |= IFF_SUPP_NOFCS;
7490 netdev->hw_features |= NETIF_F_RXALL;
7492 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7493 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7495 netdev->vlan_features |= (NETIF_F_SG |
7500 netdev->priv_flags |= IFF_UNICAST_FLT;
7502 if (pci_using_dac) {
7503 netdev->features |= NETIF_F_HIGHDMA;
7504 netdev->vlan_features |= NETIF_F_HIGHDMA;
7507 /* MTU range: 68 - max_hw_frame_size */
7508 netdev->min_mtu = ETH_MIN_MTU;
7509 netdev->max_mtu = adapter->max_hw_frame_size -
7510 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7512 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7513 adapter->flags |= FLAG_MNG_PT_ENABLED;
7515 /* before reading the NVM, reset the controller to
7516 * put the device in a known good starting state
7518 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7520 /* systems with ASPM and others may see the checksum fail on the first
7521 * attempt. Let's give it a few tries
7524 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7527 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7533 e1000_eeprom_checks(adapter);
7535 /* copy the MAC address */
7536 if (e1000e_read_mac_addr(&adapter->hw))
7538 "NVM Read Error while reading MAC address\n");
7540 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7542 if (!is_valid_ether_addr(netdev->dev_addr)) {
7543 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7549 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7550 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7552 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7553 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7554 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7555 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7556 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7558 /* Initialize link parameters. User can change them with ethtool */
7559 adapter->hw.mac.autoneg = 1;
7560 adapter->fc_autoneg = true;
7561 adapter->hw.fc.requested_mode = e1000_fc_default;
7562 adapter->hw.fc.current_mode = e1000_fc_default;
7563 adapter->hw.phy.autoneg_advertised = 0x2f;
7565 /* Initial Wake on LAN setting - If APM wake is enabled in
7566 * the EEPROM, enable the ACPI Magic Packet filter
7568 if (adapter->flags & FLAG_APME_IN_WUC) {
7569 /* APME bit in EEPROM is mapped to WUC.APME */
7570 eeprom_data = er32(WUC);
7571 eeprom_apme_mask = E1000_WUC_APME;
7572 if ((hw->mac.type > e1000_ich10lan) &&
7573 (eeprom_data & E1000_WUC_PHY_WAKE))
7574 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7575 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7576 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7577 (adapter->hw.bus.func == 1))
7578 ret_val = e1000_read_nvm(&adapter->hw,
7579 NVM_INIT_CONTROL3_PORT_B,
7582 ret_val = e1000_read_nvm(&adapter->hw,
7583 NVM_INIT_CONTROL3_PORT_A,
7587 /* fetch WoL from EEPROM */
7589 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7590 else if (eeprom_data & eeprom_apme_mask)
7591 adapter->eeprom_wol |= E1000_WUFC_MAG;
7593 /* now that we have the eeprom settings, apply the special cases
7594 * where the eeprom may be wrong or the board simply won't support
7595 * wake on lan on a particular port
7597 if (!(adapter->flags & FLAG_HAS_WOL))
7598 adapter->eeprom_wol = 0;
7600 /* initialize the wol settings based on the eeprom settings */
7601 adapter->wol = adapter->eeprom_wol;
7603 /* make sure adapter isn't asleep if manageability is enabled */
7604 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7605 (hw->mac.ops.check_mng_mode(hw)))
7606 device_wakeup_enable(&pdev->dev);
7608 /* save off EEPROM version number */
7609 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7612 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7613 adapter->eeprom_vers = 0;
7616 /* init PTP hardware clock */
7617 e1000e_ptp_init(adapter);
7619 /* reset the hardware with the new settings */
7620 e1000e_reset(adapter);
7622 /* If the controller has AMT, do not set DRV_LOAD until the interface
7623 * is up. For all other cases, let the f/w know that the h/w is now
7624 * under the control of the driver.
7626 if (!(adapter->flags & FLAG_HAS_AMT))
7627 e1000e_get_hw_control(adapter);
7629 if (hw->mac.type >= e1000_pch_cnp)
7630 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7632 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7633 err = register_netdev(netdev);
7637 /* carrier off reporting is important to ethtool even BEFORE open */
7638 netif_carrier_off(netdev);
7640 e1000_print_device_info(adapter);
7642 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7644 if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7645 pm_runtime_put_noidle(&pdev->dev);
7650 if (!(adapter->flags & FLAG_HAS_AMT))
7651 e1000e_release_hw_control(adapter);
7653 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7654 e1000_phy_hw_reset(&adapter->hw);
7656 kfree(adapter->tx_ring);
7657 kfree(adapter->rx_ring);
7659 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7660 iounmap(adapter->hw.flash_address);
7661 e1000e_reset_interrupt_capability(adapter);
7663 iounmap(adapter->hw.hw_addr);
7665 free_netdev(netdev);
7667 pci_release_mem_regions(pdev);
7670 pci_disable_device(pdev);
7675 * e1000_remove - Device Removal Routine
7676 * @pdev: PCI device information struct
7678 * e1000_remove is called by the PCI subsystem to alert the driver
7679 * that it should release a PCI device. The could be caused by a
7680 * Hot-Plug event, or because the driver is going to be removed from
7683 static void e1000_remove(struct pci_dev *pdev)
7685 struct net_device *netdev = pci_get_drvdata(pdev);
7686 struct e1000_adapter *adapter = netdev_priv(netdev);
7688 e1000e_ptp_remove(adapter);
7690 /* The timers may be rescheduled, so explicitly disable them
7691 * from being rescheduled.
7693 set_bit(__E1000_DOWN, &adapter->state);
7694 del_timer_sync(&adapter->watchdog_timer);
7695 del_timer_sync(&adapter->phy_info_timer);
7697 cancel_work_sync(&adapter->reset_task);
7698 cancel_work_sync(&adapter->watchdog_task);
7699 cancel_work_sync(&adapter->downshift_task);
7700 cancel_work_sync(&adapter->update_phy_task);
7701 cancel_work_sync(&adapter->print_hang_task);
7703 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7704 cancel_work_sync(&adapter->tx_hwtstamp_work);
7705 if (adapter->tx_hwtstamp_skb) {
7706 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7707 adapter->tx_hwtstamp_skb = NULL;
7711 unregister_netdev(netdev);
7713 if (pci_dev_run_wake(pdev))
7714 pm_runtime_get_noresume(&pdev->dev);
7716 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7717 * would have already happened in close and is redundant.
7719 e1000e_release_hw_control(adapter);
7721 e1000e_reset_interrupt_capability(adapter);
7722 kfree(adapter->tx_ring);
7723 kfree(adapter->rx_ring);
7725 iounmap(adapter->hw.hw_addr);
7726 if ((adapter->hw.flash_address) &&
7727 (adapter->hw.mac.type < e1000_pch_spt))
7728 iounmap(adapter->hw.flash_address);
7729 pci_release_mem_regions(pdev);
7731 free_netdev(netdev);
7734 pci_disable_pcie_error_reporting(pdev);
7736 pci_disable_device(pdev);
7739 /* PCI Error Recovery (ERS) */
7740 static const struct pci_error_handlers e1000_err_handler = {
7741 .error_detected = e1000_io_error_detected,
7742 .slot_reset = e1000_io_slot_reset,
7743 .resume = e1000_io_resume,
7746 static const struct pci_device_id e1000_pci_tbl[] = {
7747 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7748 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7749 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7750 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7752 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7753 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7754 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7755 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7756 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7758 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7759 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7760 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7761 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7763 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7764 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7765 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7767 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7768 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7769 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7771 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7772 board_80003es2lan },
7773 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7774 board_80003es2lan },
7775 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7776 board_80003es2lan },
7777 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7778 board_80003es2lan },
7780 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7781 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7782 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7783 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7784 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7785 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7786 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7787 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7789 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7790 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7791 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7792 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7793 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7794 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7795 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7796 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7799 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7800 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7801 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7804 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7805 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7807 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7808 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7809 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7810 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7812 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7813 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7815 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7817 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7818 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7819 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7820 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7822 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7823 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7824 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7826 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7827 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7836 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7847 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7849 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7850 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7852 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7856 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_cnp },
7857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_cnp },
7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_cnp },
7859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_cnp },
7861 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7863 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7865 static const struct dev_pm_ops e1000_pm_ops = {
7866 #ifdef CONFIG_PM_SLEEP
7867 .prepare = e1000e_pm_prepare,
7868 .suspend = e1000e_pm_suspend,
7869 .resume = e1000e_pm_resume,
7870 .freeze = e1000e_pm_freeze,
7871 .thaw = e1000e_pm_thaw,
7872 .poweroff = e1000e_pm_suspend,
7873 .restore = e1000e_pm_resume,
7875 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7876 e1000e_pm_runtime_idle)
7879 /* PCI Device API Driver */
7880 static struct pci_driver e1000_driver = {
7881 .name = e1000e_driver_name,
7882 .id_table = e1000_pci_tbl,
7883 .probe = e1000_probe,
7884 .remove = e1000_remove,
7886 .pm = &e1000_pm_ops,
7888 .shutdown = e1000_shutdown,
7889 .err_handler = &e1000_err_handler
7893 * e1000_init_module - Driver Registration Routine
7895 * e1000_init_module is the first routine called when the driver is
7896 * loaded. All it does is register with the PCI subsystem.
7898 static int __init e1000_init_module(void)
7900 pr_info("Intel(R) PRO/1000 Network Driver\n");
7901 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7903 return pci_register_driver(&e1000_driver);
7905 module_init(e1000_init_module);
7908 * e1000_exit_module - Driver Exit Cleanup Routine
7910 * e1000_exit_module is called just before the driver is removed
7913 static void __exit e1000_exit_module(void)
7915 pci_unregister_driver(&e1000_driver);
7917 module_exit(e1000_exit_module);
7919 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7920 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7921 MODULE_LICENSE("GPL v2");