1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
70 static const struct e1000_info *e1000_info_tbl[] = {
71 [board_82571] = &e1000_82571_info,
72 [board_82572] = &e1000_82572_info,
73 [board_82573] = &e1000_82573_info,
74 [board_82574] = &e1000_82574_info,
75 [board_82583] = &e1000_82583_info,
76 [board_80003es2lan] = &e1000_es2_info,
77 [board_ich8lan] = &e1000_ich8_info,
78 [board_ich9lan] = &e1000_ich9_info,
79 [board_ich10lan] = &e1000_ich10_info,
80 [board_pchlan] = &e1000_pch_info,
81 [board_pch2lan] = &e1000_pch2_info,
82 [board_pch_lpt] = &e1000_pch_lpt_info,
85 struct e1000_reg_info {
90 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
91 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
96 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
97 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
104 /* General Registers */
105 {E1000_CTRL, "CTRL"},
106 {E1000_STATUS, "STATUS"},
107 {E1000_CTRL_EXT, "CTRL_EXT"},
109 /* Interrupt Registers */
113 {E1000_RCTL, "RCTL"},
114 {E1000_RDLEN(0), "RDLEN"},
115 {E1000_RDH(0), "RDH"},
116 {E1000_RDT(0), "RDT"},
117 {E1000_RDTR, "RDTR"},
118 {E1000_RXDCTL(0), "RXDCTL"},
120 {E1000_RDBAL(0), "RDBAL"},
121 {E1000_RDBAH(0), "RDBAH"},
122 {E1000_RDFH, "RDFH"},
123 {E1000_RDFT, "RDFT"},
124 {E1000_RDFHS, "RDFHS"},
125 {E1000_RDFTS, "RDFTS"},
126 {E1000_RDFPC, "RDFPC"},
129 {E1000_TCTL, "TCTL"},
130 {E1000_TDBAL(0), "TDBAL"},
131 {E1000_TDBAH(0), "TDBAH"},
132 {E1000_TDLEN(0), "TDLEN"},
133 {E1000_TDH(0), "TDH"},
134 {E1000_TDT(0), "TDT"},
135 {E1000_TIDV, "TIDV"},
136 {E1000_TXDCTL(0), "TXDCTL"},
137 {E1000_TADV, "TADV"},
138 {E1000_TARC(0), "TARC"},
139 {E1000_TDFH, "TDFH"},
140 {E1000_TDFT, "TDFT"},
141 {E1000_TDFHS, "TDFHS"},
142 {E1000_TDFTS, "TDFTS"},
143 {E1000_TDFPC, "TDFPC"},
145 /* List Terminator */
150 * e1000_regdump - register printout routine
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
158 switch (reginfo->ofs) {
159 case E1000_RXDCTL(0):
160 for (n = 0; n < 2; n++)
161 regs[n] = __er32(hw, E1000_RXDCTL(n));
163 case E1000_TXDCTL(0):
164 for (n = 0; n < 2; n++)
165 regs[n] = __er32(hw, E1000_TXDCTL(n));
168 for (n = 0; n < 2; n++)
169 regs[n] = __er32(hw, E1000_TARC(n));
172 pr_info("%-15s %08x\n",
173 reginfo->name, __er32(hw, reginfo->ofs));
177 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
184 static void e1000e_dump(struct e1000_adapter *adapter)
186 struct net_device *netdev = adapter->netdev;
187 struct e1000_hw *hw = &adapter->hw;
188 struct e1000_reg_info *reginfo;
189 struct e1000_ring *tx_ring = adapter->tx_ring;
190 struct e1000_tx_desc *tx_desc;
195 struct e1000_buffer *buffer_info;
196 struct e1000_ring *rx_ring = adapter->rx_ring;
197 union e1000_rx_desc_packet_split *rx_desc_ps;
198 union e1000_rx_desc_extended *rx_desc;
208 if (!netif_msg_hw(adapter))
211 /* Print netdevice Info */
213 dev_info(&adapter->pdev->dev, "Net device Info\n");
214 pr_info("Device Name state trans_start last_rx\n");
215 pr_info("%-15s %016lX %016lX %016lX\n",
216 netdev->name, netdev->state, netdev->trans_start,
220 /* Print Registers */
221 dev_info(&adapter->pdev->dev, "Register Dump\n");
222 pr_info(" Register Name Value\n");
223 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
224 reginfo->name; reginfo++) {
225 e1000_regdump(hw, reginfo);
228 /* Print Tx Ring Summary */
229 if (!netdev || !netif_running(netdev))
232 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
234 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
236 0, tx_ring->next_to_use, tx_ring->next_to_clean,
237 (unsigned long long)buffer_info->dma,
239 buffer_info->next_to_watch,
240 (unsigned long long)buffer_info->time_stamp);
243 if (!netif_msg_tx_done(adapter))
244 goto rx_ring_summary;
246 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
248 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
250 * Legacy Transmit Descriptor
251 * +--------------------------------------------------------------+
252 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
253 * +--------------------------------------------------------------+
254 * 8 | Special | CSS | Status | CMD | CSO | Length |
255 * +--------------------------------------------------------------+
256 * 63 48 47 36 35 32 31 24 23 16 15 0
258 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
259 * 63 48 47 40 39 32 31 16 15 8 7 0
260 * +----------------------------------------------------------------+
261 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
262 * +----------------------------------------------------------------+
263 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
264 * +----------------------------------------------------------------+
265 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
267 * Extended Data Descriptor (DTYP=0x1)
268 * +----------------------------------------------------------------+
269 * 0 | Buffer Address [63:0] |
270 * +----------------------------------------------------------------+
271 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
272 * +----------------------------------------------------------------+
273 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
275 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
276 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
277 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
278 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279 const char *next_desc;
280 tx_desc = E1000_TX_DESC(*tx_ring, i);
281 buffer_info = &tx_ring->buffer_info[i];
282 u0 = (struct my_u0 *)tx_desc;
283 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284 next_desc = " NTC/U";
285 else if (i == tx_ring->next_to_use)
287 else if (i == tx_ring->next_to_clean)
291 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
292 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
293 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
295 (unsigned long long)le64_to_cpu(u0->a),
296 (unsigned long long)le64_to_cpu(u0->b),
297 (unsigned long long)buffer_info->dma,
298 buffer_info->length, buffer_info->next_to_watch,
299 (unsigned long long)buffer_info->time_stamp,
300 buffer_info->skb, next_desc);
302 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 16, 1, phys_to_virt(buffer_info->dma),
305 buffer_info->length, true);
308 /* Print Rx Ring Summary */
310 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 pr_info("Queue [NTU] [NTC]\n");
312 pr_info(" %5d %5X %5X\n",
313 0, rx_ring->next_to_use, rx_ring->next_to_clean);
316 if (!netif_msg_rx_status(adapter))
319 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 switch (adapter->rx_ps_pages) {
324 /* [Extended] Packet Split Receive Descriptor Format
326 * +-----------------------------------------------------+
327 * 0 | Buffer Address 0 [63:0] |
328 * +-----------------------------------------------------+
329 * 8 | Buffer Address 1 [63:0] |
330 * +-----------------------------------------------------+
331 * 16 | Buffer Address 2 [63:0] |
332 * +-----------------------------------------------------+
333 * 24 | Buffer Address 3 [63:0] |
334 * +-----------------------------------------------------+
336 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
337 /* [Extended] Receive Descriptor (Write-Back) Format
339 * 63 48 47 32 31 13 12 8 7 4 3 0
340 * +------------------------------------------------------+
341 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
342 * | Checksum | Ident | | Queue | | Type |
343 * +------------------------------------------------------+
344 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
345 * +------------------------------------------------------+
346 * 63 48 47 32 31 20 19 0
348 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349 for (i = 0; i < rx_ring->count; i++) {
350 const char *next_desc;
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
357 if (i == rx_ring->next_to_use)
359 else if (i == rx_ring->next_to_clean)
364 if (staterr & E1000_RXD_STAT_DD) {
365 /* Descriptor Done */
366 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
368 (unsigned long long)le64_to_cpu(u1->a),
369 (unsigned long long)le64_to_cpu(u1->b),
370 (unsigned long long)le64_to_cpu(u1->c),
371 (unsigned long long)le64_to_cpu(u1->d),
372 buffer_info->skb, next_desc);
374 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
376 (unsigned long long)le64_to_cpu(u1->a),
377 (unsigned long long)le64_to_cpu(u1->b),
378 (unsigned long long)le64_to_cpu(u1->c),
379 (unsigned long long)le64_to_cpu(u1->d),
380 (unsigned long long)buffer_info->dma,
381 buffer_info->skb, next_desc);
383 if (netif_msg_pktdata(adapter))
384 print_hex_dump(KERN_INFO, "",
385 DUMP_PREFIX_ADDRESS, 16, 1,
386 phys_to_virt(buffer_info->dma),
387 adapter->rx_ps_bsize0, true);
393 /* Extended Receive Descriptor (Read) Format
395 * +-----------------------------------------------------+
396 * 0 | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
399 * +-----------------------------------------------------+
401 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
402 /* Extended Receive Descriptor (Write-Back) Format
404 * 63 48 47 32 31 24 23 4 3 0
405 * +------------------------------------------------------+
407 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
408 * | Packet | IP | | | Type |
409 * | Checksum | Ident | | | |
410 * +------------------------------------------------------+
411 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
412 * +------------------------------------------------------+
413 * 63 48 47 32 31 20 19 0
415 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
417 for (i = 0; i < rx_ring->count; i++) {
418 const char *next_desc;
420 buffer_info = &rx_ring->buffer_info[i];
421 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
422 u1 = (struct my_u1 *)rx_desc;
423 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
425 if (i == rx_ring->next_to_use)
427 else if (i == rx_ring->next_to_clean)
432 if (staterr & E1000_RXD_STAT_DD) {
433 /* Descriptor Done */
434 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
436 (unsigned long long)le64_to_cpu(u1->a),
437 (unsigned long long)le64_to_cpu(u1->b),
438 buffer_info->skb, next_desc);
440 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
442 (unsigned long long)le64_to_cpu(u1->a),
443 (unsigned long long)le64_to_cpu(u1->b),
444 (unsigned long long)buffer_info->dma,
445 buffer_info->skb, next_desc);
447 if (netif_msg_pktdata(adapter))
448 print_hex_dump(KERN_INFO, "",
449 DUMP_PREFIX_ADDRESS, 16,
453 adapter->rx_buffer_len,
461 * e1000_desc_unused - calculate if we have unused descriptors
463 static int e1000_desc_unused(struct e1000_ring *ring)
465 if (ring->next_to_clean > ring->next_to_use)
466 return ring->next_to_clean - ring->next_to_use - 1;
468 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
472 * e1000_receive_skb - helper function to handle Rx indications
473 * @adapter: board private structure
474 * @status: descriptor status field as written by hardware
475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
476 * @skb: pointer to sk_buff to be indicated to stack
478 static void e1000_receive_skb(struct e1000_adapter *adapter,
479 struct net_device *netdev, struct sk_buff *skb,
480 u8 status, __le16 vlan)
482 u16 tag = le16_to_cpu(vlan);
483 skb->protocol = eth_type_trans(skb, netdev);
485 if (status & E1000_RXD_STAT_VP)
486 __vlan_hwaccel_put_tag(skb, tag);
488 napi_gro_receive(&adapter->napi, skb);
492 * e1000_rx_checksum - Receive Checksum Offload
493 * @adapter: board private structure
494 * @status_err: receive descriptor status and error fields
495 * @csum: receive descriptor csum field
496 * @sk_buff: socket buffer with received data
498 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
501 u16 status = (u16)status_err;
502 u8 errors = (u8)(status_err >> 24);
504 skb_checksum_none_assert(skb);
506 /* Rx checksum disabled */
507 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
510 /* Ignore Checksum bit is set */
511 if (status & E1000_RXD_STAT_IXSM)
514 /* TCP/UDP checksum error bit or IP checksum error bit is set */
515 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
516 /* let the stack verify checksum errors */
517 adapter->hw_csum_err++;
521 /* TCP/UDP Checksum has not been calculated */
522 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
525 /* It must be a TCP or UDP packet with a valid checksum */
526 skb->ip_summed = CHECKSUM_UNNECESSARY;
527 adapter->hw_csum_good++;
530 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
532 struct e1000_adapter *adapter = rx_ring->adapter;
533 struct e1000_hw *hw = &adapter->hw;
534 s32 ret_val = __ew32_prepare(hw);
536 writel(i, rx_ring->tail);
538 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
539 u32 rctl = er32(RCTL);
540 ew32(RCTL, rctl & ~E1000_RCTL_EN);
541 e_err("ME firmware caused invalid RDT - resetting\n");
542 schedule_work(&adapter->reset_task);
546 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
548 struct e1000_adapter *adapter = tx_ring->adapter;
549 struct e1000_hw *hw = &adapter->hw;
550 s32 ret_val = __ew32_prepare(hw);
552 writel(i, tx_ring->tail);
554 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
555 u32 tctl = er32(TCTL);
556 ew32(TCTL, tctl & ~E1000_TCTL_EN);
557 e_err("ME firmware caused invalid TDT - resetting\n");
558 schedule_work(&adapter->reset_task);
563 * e1000_alloc_rx_buffers - Replace used receive buffers
564 * @rx_ring: Rx descriptor ring
566 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
567 int cleaned_count, gfp_t gfp)
569 struct e1000_adapter *adapter = rx_ring->adapter;
570 struct net_device *netdev = adapter->netdev;
571 struct pci_dev *pdev = adapter->pdev;
572 union e1000_rx_desc_extended *rx_desc;
573 struct e1000_buffer *buffer_info;
576 unsigned int bufsz = adapter->rx_buffer_len;
578 i = rx_ring->next_to_use;
579 buffer_info = &rx_ring->buffer_info[i];
581 while (cleaned_count--) {
582 skb = buffer_info->skb;
588 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
590 /* Better luck next round */
591 adapter->alloc_rx_buff_failed++;
595 buffer_info->skb = skb;
597 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
598 adapter->rx_buffer_len,
600 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
601 dev_err(&pdev->dev, "Rx DMA map failed\n");
602 adapter->rx_dma_failed++;
606 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
607 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
609 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
611 * Force memory writes to complete before letting h/w
612 * know there are new descriptors to fetch. (Only
613 * applicable for weak-ordered memory model archs,
617 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
618 e1000e_update_rdt_wa(rx_ring, i);
620 writel(i, rx_ring->tail);
623 if (i == rx_ring->count)
625 buffer_info = &rx_ring->buffer_info[i];
628 rx_ring->next_to_use = i;
632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
633 * @rx_ring: Rx descriptor ring
635 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
636 int cleaned_count, gfp_t gfp)
638 struct e1000_adapter *adapter = rx_ring->adapter;
639 struct net_device *netdev = adapter->netdev;
640 struct pci_dev *pdev = adapter->pdev;
641 union e1000_rx_desc_packet_split *rx_desc;
642 struct e1000_buffer *buffer_info;
643 struct e1000_ps_page *ps_page;
647 i = rx_ring->next_to_use;
648 buffer_info = &rx_ring->buffer_info[i];
650 while (cleaned_count--) {
651 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
653 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
654 ps_page = &buffer_info->ps_pages[j];
655 if (j >= adapter->rx_ps_pages) {
656 /* all unused desc entries get hw null ptr */
657 rx_desc->read.buffer_addr[j + 1] =
661 if (!ps_page->page) {
662 ps_page->page = alloc_page(gfp);
663 if (!ps_page->page) {
664 adapter->alloc_rx_buff_failed++;
667 ps_page->dma = dma_map_page(&pdev->dev,
671 if (dma_mapping_error(&pdev->dev,
673 dev_err(&adapter->pdev->dev,
674 "Rx DMA page map failed\n");
675 adapter->rx_dma_failed++;
680 * Refresh the desc even if buffer_addrs
681 * didn't change because each write-back
684 rx_desc->read.buffer_addr[j + 1] =
685 cpu_to_le64(ps_page->dma);
688 skb = __netdev_alloc_skb_ip_align(netdev,
689 adapter->rx_ps_bsize0,
693 adapter->alloc_rx_buff_failed++;
697 buffer_info->skb = skb;
698 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
699 adapter->rx_ps_bsize0,
701 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
702 dev_err(&pdev->dev, "Rx DMA map failed\n");
703 adapter->rx_dma_failed++;
705 dev_kfree_skb_any(skb);
706 buffer_info->skb = NULL;
710 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
712 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
714 * Force memory writes to complete before letting h/w
715 * know there are new descriptors to fetch. (Only
716 * applicable for weak-ordered memory model archs,
720 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
721 e1000e_update_rdt_wa(rx_ring, i << 1);
723 writel(i << 1, rx_ring->tail);
727 if (i == rx_ring->count)
729 buffer_info = &rx_ring->buffer_info[i];
733 rx_ring->next_to_use = i;
737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
738 * @rx_ring: Rx descriptor ring
739 * @cleaned_count: number of buffers to allocate this pass
742 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
743 int cleaned_count, gfp_t gfp)
745 struct e1000_adapter *adapter = rx_ring->adapter;
746 struct net_device *netdev = adapter->netdev;
747 struct pci_dev *pdev = adapter->pdev;
748 union e1000_rx_desc_extended *rx_desc;
749 struct e1000_buffer *buffer_info;
752 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
754 i = rx_ring->next_to_use;
755 buffer_info = &rx_ring->buffer_info[i];
757 while (cleaned_count--) {
758 skb = buffer_info->skb;
764 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
765 if (unlikely(!skb)) {
766 /* Better luck next round */
767 adapter->alloc_rx_buff_failed++;
771 buffer_info->skb = skb;
773 /* allocate a new page if necessary */
774 if (!buffer_info->page) {
775 buffer_info->page = alloc_page(gfp);
776 if (unlikely(!buffer_info->page)) {
777 adapter->alloc_rx_buff_failed++;
782 if (!buffer_info->dma)
783 buffer_info->dma = dma_map_page(&pdev->dev,
784 buffer_info->page, 0,
788 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
789 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
791 if (unlikely(++i == rx_ring->count))
793 buffer_info = &rx_ring->buffer_info[i];
796 if (likely(rx_ring->next_to_use != i)) {
797 rx_ring->next_to_use = i;
798 if (unlikely(i-- == 0))
799 i = (rx_ring->count - 1);
801 /* Force memory writes to complete before letting h/w
802 * know there are new descriptors to fetch. (Only
803 * applicable for weak-ordered memory model archs,
806 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
807 e1000e_update_rdt_wa(rx_ring, i);
809 writel(i, rx_ring->tail);
813 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
816 if (netdev->features & NETIF_F_RXHASH)
817 skb->rxhash = le32_to_cpu(rss);
821 * e1000_clean_rx_irq - Send received data up the network stack
822 * @rx_ring: Rx descriptor ring
824 * the return value indicates whether actual cleaning was done, there
825 * is no guarantee that everything was cleaned
827 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
830 struct e1000_adapter *adapter = rx_ring->adapter;
831 struct net_device *netdev = adapter->netdev;
832 struct pci_dev *pdev = adapter->pdev;
833 struct e1000_hw *hw = &adapter->hw;
834 union e1000_rx_desc_extended *rx_desc, *next_rxd;
835 struct e1000_buffer *buffer_info, *next_buffer;
838 int cleaned_count = 0;
839 bool cleaned = false;
840 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
842 i = rx_ring->next_to_clean;
843 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
844 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
845 buffer_info = &rx_ring->buffer_info[i];
847 while (staterr & E1000_RXD_STAT_DD) {
850 if (*work_done >= work_to_do)
853 rmb(); /* read descriptor and rx_buffer_info after status DD */
855 skb = buffer_info->skb;
856 buffer_info->skb = NULL;
858 prefetch(skb->data - NET_IP_ALIGN);
861 if (i == rx_ring->count)
863 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
866 next_buffer = &rx_ring->buffer_info[i];
870 dma_unmap_single(&pdev->dev,
872 adapter->rx_buffer_len,
874 buffer_info->dma = 0;
876 length = le16_to_cpu(rx_desc->wb.upper.length);
879 * !EOP means multiple descriptors were used to store a single
880 * packet, if that's the case we need to toss it. In fact, we
881 * need to toss every packet with the EOP bit clear and the
882 * next frame that _does_ have the EOP bit set, as it is by
883 * definition only a frame fragment
885 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
886 adapter->flags2 |= FLAG2_IS_DISCARDING;
888 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
889 /* All receives must fit into a single buffer */
890 e_dbg("Receive packet consumed multiple buffers\n");
892 buffer_info->skb = skb;
893 if (staterr & E1000_RXD_STAT_EOP)
894 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
898 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
899 !(netdev->features & NETIF_F_RXALL))) {
901 buffer_info->skb = skb;
905 /* adjust length to remove Ethernet CRC */
906 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
907 /* If configured to store CRC, don't subtract FCS,
908 * but keep the FCS bytes out of the total_rx_bytes
911 if (netdev->features & NETIF_F_RXFCS)
917 total_rx_bytes += length;
921 * code added for copybreak, this should improve
922 * performance for small packets with large amounts
923 * of reassembly being done in the stack
925 if (length < copybreak) {
926 struct sk_buff *new_skb =
927 netdev_alloc_skb_ip_align(netdev, length);
929 skb_copy_to_linear_data_offset(new_skb,
935 /* save the skb in buffer_info as good */
936 buffer_info->skb = skb;
939 /* else just continue with the old one */
941 /* end copybreak code */
942 skb_put(skb, length);
944 /* Receive Checksum Offload */
945 e1000_rx_checksum(adapter, staterr, skb);
947 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
949 e1000_receive_skb(adapter, netdev, skb, staterr,
950 rx_desc->wb.upper.vlan);
953 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
955 /* return some buffers to hardware, one at a time is too slow */
956 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
957 adapter->alloc_rx_buf(rx_ring, cleaned_count,
962 /* use prefetched values */
964 buffer_info = next_buffer;
966 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
968 rx_ring->next_to_clean = i;
970 cleaned_count = e1000_desc_unused(rx_ring);
972 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
974 adapter->total_rx_bytes += total_rx_bytes;
975 adapter->total_rx_packets += total_rx_packets;
979 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
980 struct e1000_buffer *buffer_info)
982 struct e1000_adapter *adapter = tx_ring->adapter;
984 if (buffer_info->dma) {
985 if (buffer_info->mapped_as_page)
986 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
987 buffer_info->length, DMA_TO_DEVICE);
989 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
990 buffer_info->length, DMA_TO_DEVICE);
991 buffer_info->dma = 0;
993 if (buffer_info->skb) {
994 dev_kfree_skb_any(buffer_info->skb);
995 buffer_info->skb = NULL;
997 buffer_info->time_stamp = 0;
1000 static void e1000_print_hw_hang(struct work_struct *work)
1002 struct e1000_adapter *adapter = container_of(work,
1003 struct e1000_adapter,
1005 struct net_device *netdev = adapter->netdev;
1006 struct e1000_ring *tx_ring = adapter->tx_ring;
1007 unsigned int i = tx_ring->next_to_clean;
1008 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010 struct e1000_hw *hw = &adapter->hw;
1011 u16 phy_status, phy_1000t_status, phy_ext_status;
1014 if (test_bit(__E1000_DOWN, &adapter->state))
1017 if (!adapter->tx_hang_recheck &&
1018 (adapter->flags2 & FLAG2_DMA_BURST)) {
1020 * May be block on write-back, flush and detect again
1021 * flush pending descriptor writebacks to memory
1023 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024 /* execute the writes immediately */
1027 * Due to rare timing issues, write to TIDV again to ensure
1028 * the write is successful
1030 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031 /* execute the writes immediately */
1033 adapter->tx_hang_recheck = true;
1036 /* Real hang detected */
1037 adapter->tx_hang_recheck = false;
1038 netif_stop_queue(netdev);
1040 e1e_rphy(hw, PHY_STATUS, &phy_status);
1041 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1044 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1046 /* detected Hardware unit hang */
1047 e_err("Detected Hardware Unit Hang:\n"
1050 " next_to_use <%x>\n"
1051 " next_to_clean <%x>\n"
1052 "buffer_info[next_to_clean]:\n"
1053 " time_stamp <%lx>\n"
1054 " next_to_watch <%x>\n"
1056 " next_to_watch.status <%x>\n"
1059 "PHY 1000BASE-T Status <%x>\n"
1060 "PHY Extended Status <%x>\n"
1061 "PCI Status <%x>\n",
1062 readl(tx_ring->head),
1063 readl(tx_ring->tail),
1064 tx_ring->next_to_use,
1065 tx_ring->next_to_clean,
1066 tx_ring->buffer_info[eop].time_stamp,
1069 eop_desc->upper.fields.status,
1076 /* Suggest workaround for known h/w issue */
1077 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1088 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1090 struct e1000_adapter *adapter = tx_ring->adapter;
1091 struct net_device *netdev = adapter->netdev;
1092 struct e1000_hw *hw = &adapter->hw;
1093 struct e1000_tx_desc *tx_desc, *eop_desc;
1094 struct e1000_buffer *buffer_info;
1095 unsigned int i, eop;
1096 unsigned int count = 0;
1097 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098 unsigned int bytes_compl = 0, pkts_compl = 0;
1100 i = tx_ring->next_to_clean;
1101 eop = tx_ring->buffer_info[i].next_to_watch;
1102 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1104 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105 (count < tx_ring->count)) {
1106 bool cleaned = false;
1107 rmb(); /* read buffer_info after eop_desc */
1108 for (; !cleaned; count++) {
1109 tx_desc = E1000_TX_DESC(*tx_ring, i);
1110 buffer_info = &tx_ring->buffer_info[i];
1111 cleaned = (i == eop);
1114 total_tx_packets += buffer_info->segs;
1115 total_tx_bytes += buffer_info->bytecount;
1116 if (buffer_info->skb) {
1117 bytes_compl += buffer_info->skb->len;
1122 e1000_put_txbuf(tx_ring, buffer_info);
1123 tx_desc->upper.data = 0;
1126 if (i == tx_ring->count)
1130 if (i == tx_ring->next_to_use)
1132 eop = tx_ring->buffer_info[i].next_to_watch;
1133 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1136 tx_ring->next_to_clean = i;
1138 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1140 #define TX_WAKE_THRESHOLD 32
1141 if (count && netif_carrier_ok(netdev) &&
1142 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143 /* Make sure that anybody stopping the queue after this
1144 * sees the new next_to_clean.
1148 if (netif_queue_stopped(netdev) &&
1149 !(test_bit(__E1000_DOWN, &adapter->state))) {
1150 netif_wake_queue(netdev);
1151 ++adapter->restart_queue;
1155 if (adapter->detect_tx_hung) {
1157 * Detect a transmit hang in hardware, this serializes the
1158 * check with the clearing of time_stamp and movement of i
1160 adapter->detect_tx_hung = false;
1161 if (tx_ring->buffer_info[i].time_stamp &&
1162 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163 + (adapter->tx_timeout_factor * HZ)) &&
1164 !(er32(STATUS) & E1000_STATUS_TXOFF))
1165 schedule_work(&adapter->print_hang_task);
1167 adapter->tx_hang_recheck = false;
1169 adapter->total_tx_bytes += total_tx_bytes;
1170 adapter->total_tx_packets += total_tx_packets;
1171 return count < tx_ring->count;
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1181 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1184 struct e1000_adapter *adapter = rx_ring->adapter;
1185 struct e1000_hw *hw = &adapter->hw;
1186 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187 struct net_device *netdev = adapter->netdev;
1188 struct pci_dev *pdev = adapter->pdev;
1189 struct e1000_buffer *buffer_info, *next_buffer;
1190 struct e1000_ps_page *ps_page;
1191 struct sk_buff *skb;
1193 u32 length, staterr;
1194 int cleaned_count = 0;
1195 bool cleaned = false;
1196 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1198 i = rx_ring->next_to_clean;
1199 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201 buffer_info = &rx_ring->buffer_info[i];
1203 while (staterr & E1000_RXD_STAT_DD) {
1204 if (*work_done >= work_to_do)
1207 skb = buffer_info->skb;
1208 rmb(); /* read descriptor and rx_buffer_info after status DD */
1210 /* in the packet split case this is header only */
1211 prefetch(skb->data - NET_IP_ALIGN);
1214 if (i == rx_ring->count)
1216 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1219 next_buffer = &rx_ring->buffer_info[i];
1223 dma_unmap_single(&pdev->dev, buffer_info->dma,
1224 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225 buffer_info->dma = 0;
1227 /* see !EOP comment in other Rx routine */
1228 if (!(staterr & E1000_RXD_STAT_EOP))
1229 adapter->flags2 |= FLAG2_IS_DISCARDING;
1231 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233 dev_kfree_skb_irq(skb);
1234 if (staterr & E1000_RXD_STAT_EOP)
1235 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1239 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240 !(netdev->features & NETIF_F_RXALL))) {
1241 dev_kfree_skb_irq(skb);
1245 length = le16_to_cpu(rx_desc->wb.middle.length0);
1248 e_dbg("Last part of the packet spanning multiple descriptors\n");
1249 dev_kfree_skb_irq(skb);
1254 skb_put(skb, length);
1258 * this looks ugly, but it seems compiler issues make
1259 * it more efficient than reusing j
1261 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1264 * page alloc/put takes too long and effects small
1265 * packet throughput, so unsplit small packets and
1266 * save the alloc/put only valid in softirq (napi)
1267 * context to call kmap_*
1269 if (l1 && (l1 <= copybreak) &&
1270 ((length + l1) <= adapter->rx_ps_bsize0)) {
1273 ps_page = &buffer_info->ps_pages[0];
1276 * there is no documentation about how to call
1277 * kmap_atomic, so we can't hold the mapping
1280 dma_sync_single_for_cpu(&pdev->dev,
1284 vaddr = kmap_atomic(ps_page->page);
1285 memcpy(skb_tail_pointer(skb), vaddr, l1);
1286 kunmap_atomic(vaddr);
1287 dma_sync_single_for_device(&pdev->dev,
1292 /* remove the CRC */
1293 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294 if (!(netdev->features & NETIF_F_RXFCS))
1303 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1308 ps_page = &buffer_info->ps_pages[j];
1309 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1312 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313 ps_page->page = NULL;
1315 skb->data_len += length;
1316 skb->truesize += PAGE_SIZE;
1319 /* strip the ethernet crc, problem is we're using pages now so
1320 * this whole operation can get a little cpu intensive
1322 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323 if (!(netdev->features & NETIF_F_RXFCS))
1324 pskb_trim(skb, skb->len - 4);
1328 total_rx_bytes += skb->len;
1331 e1000_rx_checksum(adapter, staterr, skb);
1333 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1335 if (rx_desc->wb.upper.header_status &
1336 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337 adapter->rx_hdr_split++;
1339 e1000_receive_skb(adapter, netdev, skb,
1340 staterr, rx_desc->wb.middle.vlan);
1343 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344 buffer_info->skb = NULL;
1346 /* return some buffers to hardware, one at a time is too slow */
1347 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1353 /* use prefetched values */
1355 buffer_info = next_buffer;
1357 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1359 rx_ring->next_to_clean = i;
1361 cleaned_count = e1000_desc_unused(rx_ring);
1363 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1365 adapter->total_rx_bytes += total_rx_bytes;
1366 adapter->total_rx_packets += total_rx_packets;
1371 * e1000_consume_page - helper function
1373 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1378 skb->data_len += length;
1379 skb->truesize += PAGE_SIZE;
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1389 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1392 struct e1000_adapter *adapter = rx_ring->adapter;
1393 struct net_device *netdev = adapter->netdev;
1394 struct pci_dev *pdev = adapter->pdev;
1395 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396 struct e1000_buffer *buffer_info, *next_buffer;
1397 u32 length, staterr;
1399 int cleaned_count = 0;
1400 bool cleaned = false;
1401 unsigned int total_rx_bytes=0, total_rx_packets=0;
1403 i = rx_ring->next_to_clean;
1404 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406 buffer_info = &rx_ring->buffer_info[i];
1408 while (staterr & E1000_RXD_STAT_DD) {
1409 struct sk_buff *skb;
1411 if (*work_done >= work_to_do)
1414 rmb(); /* read descriptor and rx_buffer_info after status DD */
1416 skb = buffer_info->skb;
1417 buffer_info->skb = NULL;
1420 if (i == rx_ring->count)
1422 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1425 next_buffer = &rx_ring->buffer_info[i];
1429 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1431 buffer_info->dma = 0;
1433 length = le16_to_cpu(rx_desc->wb.upper.length);
1435 /* errors is only valid for DD + EOP descriptors */
1436 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438 !(netdev->features & NETIF_F_RXALL)))) {
1439 /* recycle both page and skb */
1440 buffer_info->skb = skb;
1441 /* an error means any chain goes out the window too */
1442 if (rx_ring->rx_skb_top)
1443 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444 rx_ring->rx_skb_top = NULL;
1448 #define rxtop (rx_ring->rx_skb_top)
1449 if (!(staterr & E1000_RXD_STAT_EOP)) {
1450 /* this descriptor is only the beginning (or middle) */
1452 /* this is the beginning of a chain */
1454 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1457 /* this is the middle of a chain */
1458 skb_fill_page_desc(rxtop,
1459 skb_shinfo(rxtop)->nr_frags,
1460 buffer_info->page, 0, length);
1461 /* re-use the skb, only consumed the page */
1462 buffer_info->skb = skb;
1464 e1000_consume_page(buffer_info, rxtop, length);
1468 /* end of the chain */
1469 skb_fill_page_desc(rxtop,
1470 skb_shinfo(rxtop)->nr_frags,
1471 buffer_info->page, 0, length);
1472 /* re-use the current skb, we only consumed the
1474 buffer_info->skb = skb;
1477 e1000_consume_page(buffer_info, skb, length);
1479 /* no chain, got EOP, this buf is the packet
1480 * copybreak to save the put_page/alloc_page */
1481 if (length <= copybreak &&
1482 skb_tailroom(skb) >= length) {
1484 vaddr = kmap_atomic(buffer_info->page);
1485 memcpy(skb_tail_pointer(skb), vaddr,
1487 kunmap_atomic(vaddr);
1488 /* re-use the page, so don't erase
1489 * buffer_info->page */
1490 skb_put(skb, length);
1492 skb_fill_page_desc(skb, 0,
1493 buffer_info->page, 0,
1495 e1000_consume_page(buffer_info, skb,
1501 /* Receive Checksum Offload */
1502 e1000_rx_checksum(adapter, staterr, skb);
1504 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1506 /* probably a little skewed due to removing CRC */
1507 total_rx_bytes += skb->len;
1510 /* eth type trans needs skb->data to point to something */
1511 if (!pskb_may_pull(skb, ETH_HLEN)) {
1512 e_err("pskb_may_pull failed.\n");
1513 dev_kfree_skb_irq(skb);
1517 e1000_receive_skb(adapter, netdev, skb, staterr,
1518 rx_desc->wb.upper.vlan);
1521 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1523 /* return some buffers to hardware, one at a time is too slow */
1524 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1530 /* use prefetched values */
1532 buffer_info = next_buffer;
1534 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1536 rx_ring->next_to_clean = i;
1538 cleaned_count = e1000_desc_unused(rx_ring);
1540 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1542 adapter->total_rx_bytes += total_rx_bytes;
1543 adapter->total_rx_packets += total_rx_packets;
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1551 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1553 struct e1000_adapter *adapter = rx_ring->adapter;
1554 struct e1000_buffer *buffer_info;
1555 struct e1000_ps_page *ps_page;
1556 struct pci_dev *pdev = adapter->pdev;
1559 /* Free all the Rx ring sk_buffs */
1560 for (i = 0; i < rx_ring->count; i++) {
1561 buffer_info = &rx_ring->buffer_info[i];
1562 if (buffer_info->dma) {
1563 if (adapter->clean_rx == e1000_clean_rx_irq)
1564 dma_unmap_single(&pdev->dev, buffer_info->dma,
1565 adapter->rx_buffer_len,
1567 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568 dma_unmap_page(&pdev->dev, buffer_info->dma,
1571 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572 dma_unmap_single(&pdev->dev, buffer_info->dma,
1573 adapter->rx_ps_bsize0,
1575 buffer_info->dma = 0;
1578 if (buffer_info->page) {
1579 put_page(buffer_info->page);
1580 buffer_info->page = NULL;
1583 if (buffer_info->skb) {
1584 dev_kfree_skb(buffer_info->skb);
1585 buffer_info->skb = NULL;
1588 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589 ps_page = &buffer_info->ps_pages[j];
1592 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1595 put_page(ps_page->page);
1596 ps_page->page = NULL;
1600 /* there also may be some cached data from a chained receive */
1601 if (rx_ring->rx_skb_top) {
1602 dev_kfree_skb(rx_ring->rx_skb_top);
1603 rx_ring->rx_skb_top = NULL;
1606 /* Zero out the descriptor ring */
1607 memset(rx_ring->desc, 0, rx_ring->size);
1609 rx_ring->next_to_clean = 0;
1610 rx_ring->next_to_use = 0;
1611 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1613 writel(0, rx_ring->head);
1614 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615 e1000e_update_rdt_wa(rx_ring, 0);
1617 writel(0, rx_ring->tail);
1620 static void e1000e_downshift_workaround(struct work_struct *work)
1622 struct e1000_adapter *adapter = container_of(work,
1623 struct e1000_adapter, downshift_task);
1625 if (test_bit(__E1000_DOWN, &adapter->state))
1628 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1636 static irqreturn_t e1000_intr_msi(int irq, void *data)
1638 struct net_device *netdev = data;
1639 struct e1000_adapter *adapter = netdev_priv(netdev);
1640 struct e1000_hw *hw = &adapter->hw;
1641 u32 icr = er32(ICR);
1644 * read ICR disables interrupts using IAM
1647 if (icr & E1000_ICR_LSC) {
1648 hw->mac.get_link_status = true;
1650 * ICH8 workaround-- Call gig speed drop workaround on cable
1651 * disconnect (LSC) before accessing any PHY registers
1653 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654 (!(er32(STATUS) & E1000_STATUS_LU)))
1655 schedule_work(&adapter->downshift_task);
1658 * 80003ES2LAN workaround-- For packet buffer work-around on
1659 * link down event; disable receives here in the ISR and reset
1660 * adapter in watchdog
1662 if (netif_carrier_ok(netdev) &&
1663 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664 /* disable receives */
1665 u32 rctl = er32(RCTL);
1666 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667 adapter->flags |= FLAG_RX_RESTART_NOW;
1669 /* guard against interrupt when we're going down */
1670 if (!test_bit(__E1000_DOWN, &adapter->state))
1671 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1674 if (napi_schedule_prep(&adapter->napi)) {
1675 adapter->total_tx_bytes = 0;
1676 adapter->total_tx_packets = 0;
1677 adapter->total_rx_bytes = 0;
1678 adapter->total_rx_packets = 0;
1679 __napi_schedule(&adapter->napi);
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1690 static irqreturn_t e1000_intr(int irq, void *data)
1692 struct net_device *netdev = data;
1693 struct e1000_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 rctl, icr = er32(ICR);
1697 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698 return IRQ_NONE; /* Not our interrupt */
1701 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702 * not set, then the adapter didn't send an interrupt
1704 if (!(icr & E1000_ICR_INT_ASSERTED))
1708 * Interrupt Auto-Mask...upon reading ICR,
1709 * interrupts are masked. No need for the
1713 if (icr & E1000_ICR_LSC) {
1714 hw->mac.get_link_status = true;
1716 * ICH8 workaround-- Call gig speed drop workaround on cable
1717 * disconnect (LSC) before accessing any PHY registers
1719 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720 (!(er32(STATUS) & E1000_STATUS_LU)))
1721 schedule_work(&adapter->downshift_task);
1724 * 80003ES2LAN workaround--
1725 * For packet buffer work-around on link down event;
1726 * disable receives here in the ISR and
1727 * reset adapter in watchdog
1729 if (netif_carrier_ok(netdev) &&
1730 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731 /* disable receives */
1733 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734 adapter->flags |= FLAG_RX_RESTART_NOW;
1736 /* guard against interrupt when we're going down */
1737 if (!test_bit(__E1000_DOWN, &adapter->state))
1738 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1741 if (napi_schedule_prep(&adapter->napi)) {
1742 adapter->total_tx_bytes = 0;
1743 adapter->total_tx_packets = 0;
1744 adapter->total_rx_bytes = 0;
1745 adapter->total_rx_packets = 0;
1746 __napi_schedule(&adapter->napi);
1752 static irqreturn_t e1000_msix_other(int irq, void *data)
1754 struct net_device *netdev = data;
1755 struct e1000_adapter *adapter = netdev_priv(netdev);
1756 struct e1000_hw *hw = &adapter->hw;
1757 u32 icr = er32(ICR);
1759 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760 if (!test_bit(__E1000_DOWN, &adapter->state))
1761 ew32(IMS, E1000_IMS_OTHER);
1765 if (icr & adapter->eiac_mask)
1766 ew32(ICS, (icr & adapter->eiac_mask));
1768 if (icr & E1000_ICR_OTHER) {
1769 if (!(icr & E1000_ICR_LSC))
1770 goto no_link_interrupt;
1771 hw->mac.get_link_status = true;
1772 /* guard against interrupt when we're going down */
1773 if (!test_bit(__E1000_DOWN, &adapter->state))
1774 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1778 if (!test_bit(__E1000_DOWN, &adapter->state))
1779 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1785 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1787 struct net_device *netdev = data;
1788 struct e1000_adapter *adapter = netdev_priv(netdev);
1789 struct e1000_hw *hw = &adapter->hw;
1790 struct e1000_ring *tx_ring = adapter->tx_ring;
1793 adapter->total_tx_bytes = 0;
1794 adapter->total_tx_packets = 0;
1796 if (!e1000_clean_tx_irq(tx_ring))
1797 /* Ring was not completely cleaned, so fire another interrupt */
1798 ew32(ICS, tx_ring->ims_val);
1803 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1805 struct net_device *netdev = data;
1806 struct e1000_adapter *adapter = netdev_priv(netdev);
1807 struct e1000_ring *rx_ring = adapter->rx_ring;
1809 /* Write the ITR value calculated at the end of the
1810 * previous interrupt.
1812 if (rx_ring->set_itr) {
1813 writel(1000000000 / (rx_ring->itr_val * 256),
1814 rx_ring->itr_register);
1815 rx_ring->set_itr = 0;
1818 if (napi_schedule_prep(&adapter->napi)) {
1819 adapter->total_rx_bytes = 0;
1820 adapter->total_rx_packets = 0;
1821 __napi_schedule(&adapter->napi);
1827 * e1000_configure_msix - Configure MSI-X hardware
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1832 static void e1000_configure_msix(struct e1000_adapter *adapter)
1834 struct e1000_hw *hw = &adapter->hw;
1835 struct e1000_ring *rx_ring = adapter->rx_ring;
1836 struct e1000_ring *tx_ring = adapter->tx_ring;
1838 u32 ctrl_ext, ivar = 0;
1840 adapter->eiac_mask = 0;
1842 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843 if (hw->mac.type == e1000_82574) {
1844 u32 rfctl = er32(RFCTL);
1845 rfctl |= E1000_RFCTL_ACK_DIS;
1849 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1850 /* Configure Rx vector */
1851 rx_ring->ims_val = E1000_IMS_RXQ0;
1852 adapter->eiac_mask |= rx_ring->ims_val;
1853 if (rx_ring->itr_val)
1854 writel(1000000000 / (rx_ring->itr_val * 256),
1855 rx_ring->itr_register);
1857 writel(1, rx_ring->itr_register);
1858 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1860 /* Configure Tx vector */
1861 tx_ring->ims_val = E1000_IMS_TXQ0;
1863 if (tx_ring->itr_val)
1864 writel(1000000000 / (tx_ring->itr_val * 256),
1865 tx_ring->itr_register);
1867 writel(1, tx_ring->itr_register);
1868 adapter->eiac_mask |= tx_ring->ims_val;
1869 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1871 /* set vector for Other Causes, e.g. link changes */
1873 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874 if (rx_ring->itr_val)
1875 writel(1000000000 / (rx_ring->itr_val * 256),
1876 hw->hw_addr + E1000_EITR_82574(vector));
1878 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1880 /* Cause Tx interrupts on every write back */
1885 /* enable MSI-X PBA support */
1886 ctrl_ext = er32(CTRL_EXT);
1887 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1889 /* Auto-Mask Other interrupts upon ICR read */
1890 #define E1000_EIAC_MASK_82574 0x01F00000
1891 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893 ew32(CTRL_EXT, ctrl_ext);
1897 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1899 if (adapter->msix_entries) {
1900 pci_disable_msix(adapter->pdev);
1901 kfree(adapter->msix_entries);
1902 adapter->msix_entries = NULL;
1903 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1904 pci_disable_msi(adapter->pdev);
1905 adapter->flags &= ~FLAG_MSI_ENABLED;
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1915 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1920 switch (adapter->int_mode) {
1921 case E1000E_INT_MODE_MSIX:
1922 if (adapter->flags & FLAG_HAS_MSIX) {
1923 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924 adapter->msix_entries = kcalloc(adapter->num_vectors,
1925 sizeof(struct msix_entry),
1927 if (adapter->msix_entries) {
1928 for (i = 0; i < adapter->num_vectors; i++)
1929 adapter->msix_entries[i].entry = i;
1931 err = pci_enable_msix(adapter->pdev,
1932 adapter->msix_entries,
1933 adapter->num_vectors);
1937 /* MSI-X failed, so fall through and try MSI */
1938 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
1939 e1000e_reset_interrupt_capability(adapter);
1941 adapter->int_mode = E1000E_INT_MODE_MSI;
1943 case E1000E_INT_MODE_MSI:
1944 if (!pci_enable_msi(adapter->pdev)) {
1945 adapter->flags |= FLAG_MSI_ENABLED;
1947 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
1951 case E1000E_INT_MODE_LEGACY:
1952 /* Don't do anything; this is the system default */
1956 /* store the number of vectors being used */
1957 adapter->num_vectors = 1;
1961 * e1000_request_msix - Initialize MSI-X interrupts
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1966 static int e1000_request_msix(struct e1000_adapter *adapter)
1968 struct net_device *netdev = adapter->netdev;
1969 int err = 0, vector = 0;
1971 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972 snprintf(adapter->rx_ring->name,
1973 sizeof(adapter->rx_ring->name) - 1,
1974 "%s-rx-0", netdev->name);
1976 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977 err = request_irq(adapter->msix_entries[vector].vector,
1978 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1982 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983 E1000_EITR_82574(vector);
1984 adapter->rx_ring->itr_val = adapter->itr;
1987 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 snprintf(adapter->tx_ring->name,
1989 sizeof(adapter->tx_ring->name) - 1,
1990 "%s-tx-0", netdev->name);
1992 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993 err = request_irq(adapter->msix_entries[vector].vector,
1994 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1998 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999 E1000_EITR_82574(vector);
2000 adapter->tx_ring->itr_val = adapter->itr;
2003 err = request_irq(adapter->msix_entries[vector].vector,
2004 e1000_msix_other, 0, netdev->name, netdev);
2008 e1000_configure_msix(adapter);
2014 * e1000_request_irq - initialize interrupts
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2019 static int e1000_request_irq(struct e1000_adapter *adapter)
2021 struct net_device *netdev = adapter->netdev;
2024 if (adapter->msix_entries) {
2025 err = e1000_request_msix(adapter);
2028 /* fall back to MSI */
2029 e1000e_reset_interrupt_capability(adapter);
2030 adapter->int_mode = E1000E_INT_MODE_MSI;
2031 e1000e_set_interrupt_capability(adapter);
2033 if (adapter->flags & FLAG_MSI_ENABLED) {
2034 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035 netdev->name, netdev);
2039 /* fall back to legacy interrupt */
2040 e1000e_reset_interrupt_capability(adapter);
2041 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2044 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045 netdev->name, netdev);
2047 e_err("Unable to allocate interrupt, Error: %d\n", err);
2052 static void e1000_free_irq(struct e1000_adapter *adapter)
2054 struct net_device *netdev = adapter->netdev;
2056 if (adapter->msix_entries) {
2059 free_irq(adapter->msix_entries[vector].vector, netdev);
2062 free_irq(adapter->msix_entries[vector].vector, netdev);
2065 /* Other Causes interrupt vector */
2066 free_irq(adapter->msix_entries[vector].vector, netdev);
2070 free_irq(adapter->pdev->irq, netdev);
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
2076 static void e1000_irq_disable(struct e1000_adapter *adapter)
2078 struct e1000_hw *hw = &adapter->hw;
2081 if (adapter->msix_entries)
2082 ew32(EIAC_82574, 0);
2085 if (adapter->msix_entries) {
2087 for (i = 0; i < adapter->num_vectors; i++)
2088 synchronize_irq(adapter->msix_entries[i].vector);
2090 synchronize_irq(adapter->pdev->irq);
2095 * e1000_irq_enable - Enable default interrupt generation settings
2097 static void e1000_irq_enable(struct e1000_adapter *adapter)
2099 struct e1000_hw *hw = &adapter->hw;
2101 if (adapter->msix_entries) {
2102 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2105 ew32(IMS, IMS_ENABLE_MASK);
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2119 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2121 struct e1000_hw *hw = &adapter->hw;
2125 /* Let firmware know the driver has taken over */
2126 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2128 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130 ctrl_ext = er32(CTRL_EXT);
2131 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2145 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2147 struct e1000_hw *hw = &adapter->hw;
2151 /* Let firmware taken over control of h/w */
2152 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2154 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156 ctrl_ext = er32(CTRL_EXT);
2157 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2162 * @e1000_alloc_ring - allocate memory for a ring structure
2164 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165 struct e1000_ring *ring)
2167 struct pci_dev *pdev = adapter->pdev;
2169 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2181 * Return 0 on success, negative on failure
2183 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2185 struct e1000_adapter *adapter = tx_ring->adapter;
2186 int err = -ENOMEM, size;
2188 size = sizeof(struct e1000_buffer) * tx_ring->count;
2189 tx_ring->buffer_info = vzalloc(size);
2190 if (!tx_ring->buffer_info)
2193 /* round up to nearest 4K */
2194 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195 tx_ring->size = ALIGN(tx_ring->size, 4096);
2197 err = e1000_alloc_ring_dma(adapter, tx_ring);
2201 tx_ring->next_to_use = 0;
2202 tx_ring->next_to_clean = 0;
2206 vfree(tx_ring->buffer_info);
2207 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2215 * Returns 0 on success, negative on failure
2217 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2219 struct e1000_adapter *adapter = rx_ring->adapter;
2220 struct e1000_buffer *buffer_info;
2221 int i, size, desc_len, err = -ENOMEM;
2223 size = sizeof(struct e1000_buffer) * rx_ring->count;
2224 rx_ring->buffer_info = vzalloc(size);
2225 if (!rx_ring->buffer_info)
2228 for (i = 0; i < rx_ring->count; i++) {
2229 buffer_info = &rx_ring->buffer_info[i];
2230 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231 sizeof(struct e1000_ps_page),
2233 if (!buffer_info->ps_pages)
2237 desc_len = sizeof(union e1000_rx_desc_packet_split);
2239 /* Round up to nearest 4K */
2240 rx_ring->size = rx_ring->count * desc_len;
2241 rx_ring->size = ALIGN(rx_ring->size, 4096);
2243 err = e1000_alloc_ring_dma(adapter, rx_ring);
2247 rx_ring->next_to_clean = 0;
2248 rx_ring->next_to_use = 0;
2249 rx_ring->rx_skb_top = NULL;
2254 for (i = 0; i < rx_ring->count; i++) {
2255 buffer_info = &rx_ring->buffer_info[i];
2256 kfree(buffer_info->ps_pages);
2259 vfree(rx_ring->buffer_info);
2260 e_err("Unable to allocate memory for the receive descriptor ring\n");
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2268 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2270 struct e1000_adapter *adapter = tx_ring->adapter;
2271 struct e1000_buffer *buffer_info;
2275 for (i = 0; i < tx_ring->count; i++) {
2276 buffer_info = &tx_ring->buffer_info[i];
2277 e1000_put_txbuf(tx_ring, buffer_info);
2280 netdev_reset_queue(adapter->netdev);
2281 size = sizeof(struct e1000_buffer) * tx_ring->count;
2282 memset(tx_ring->buffer_info, 0, size);
2284 memset(tx_ring->desc, 0, tx_ring->size);
2286 tx_ring->next_to_use = 0;
2287 tx_ring->next_to_clean = 0;
2289 writel(0, tx_ring->head);
2290 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291 e1000e_update_tdt_wa(tx_ring, 0);
2293 writel(0, tx_ring->tail);
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2300 * Free all transmit software resources
2302 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2304 struct e1000_adapter *adapter = tx_ring->adapter;
2305 struct pci_dev *pdev = adapter->pdev;
2307 e1000_clean_tx_ring(tx_ring);
2309 vfree(tx_ring->buffer_info);
2310 tx_ring->buffer_info = NULL;
2312 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2314 tx_ring->desc = NULL;
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2321 * Free all receive software resources
2323 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2325 struct e1000_adapter *adapter = rx_ring->adapter;
2326 struct pci_dev *pdev = adapter->pdev;
2329 e1000_clean_rx_ring(rx_ring);
2331 for (i = 0; i < rx_ring->count; i++)
2332 kfree(rx_ring->buffer_info[i].ps_pages);
2334 vfree(rx_ring->buffer_info);
2335 rx_ring->buffer_info = NULL;
2337 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2339 rx_ring->desc = NULL;
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2349 * Stores a new ITR value based on packets and byte
2350 * counts during the last interrupt. The advantage of per interrupt
2351 * computation is faster updates and more accurate ITR for the current
2352 * traffic pattern. Constants in this function were computed
2353 * based on theoretical maximum wire speed and thresholds were set based
2354 * on testing data as well as attempting to minimize response time
2355 * while increasing bulk throughput. This functionality is controlled
2356 * by the InterruptThrottleRate module parameter.
2358 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359 u16 itr_setting, int packets,
2362 unsigned int retval = itr_setting;
2367 switch (itr_setting) {
2368 case lowest_latency:
2369 /* handle TSO and jumbo frames */
2370 if (bytes/packets > 8000)
2371 retval = bulk_latency;
2372 else if ((packets < 5) && (bytes > 512))
2373 retval = low_latency;
2375 case low_latency: /* 50 usec aka 20000 ints/s */
2376 if (bytes > 10000) {
2377 /* this if handles the TSO accounting */
2378 if (bytes/packets > 8000)
2379 retval = bulk_latency;
2380 else if ((packets < 10) || ((bytes/packets) > 1200))
2381 retval = bulk_latency;
2382 else if ((packets > 35))
2383 retval = lowest_latency;
2384 } else if (bytes/packets > 2000) {
2385 retval = bulk_latency;
2386 } else if (packets <= 2 && bytes < 512) {
2387 retval = lowest_latency;
2390 case bulk_latency: /* 250 usec aka 4000 ints/s */
2391 if (bytes > 25000) {
2393 retval = low_latency;
2394 } else if (bytes < 6000) {
2395 retval = low_latency;
2403 static void e1000_set_itr(struct e1000_adapter *adapter)
2405 struct e1000_hw *hw = &adapter->hw;
2407 u32 new_itr = adapter->itr;
2409 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410 if (adapter->link_speed != SPEED_1000) {
2416 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2421 adapter->tx_itr = e1000_update_itr(adapter,
2423 adapter->total_tx_packets,
2424 adapter->total_tx_bytes);
2425 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2426 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427 adapter->tx_itr = low_latency;
2429 adapter->rx_itr = e1000_update_itr(adapter,
2431 adapter->total_rx_packets,
2432 adapter->total_rx_bytes);
2433 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2434 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435 adapter->rx_itr = low_latency;
2437 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2439 switch (current_itr) {
2440 /* counts and packets in update_itr are dependent on these numbers */
2441 case lowest_latency:
2445 new_itr = 20000; /* aka hwitr = ~200 */
2455 if (new_itr != adapter->itr) {
2457 * this attempts to bias the interrupt rate towards Bulk
2458 * by adding intermediate steps when interrupt rate is
2461 new_itr = new_itr > adapter->itr ?
2462 min(adapter->itr + (new_itr >> 2), new_itr) :
2464 adapter->itr = new_itr;
2465 adapter->rx_ring->itr_val = new_itr;
2466 if (adapter->msix_entries)
2467 adapter->rx_ring->set_itr = 1;
2470 ew32(ITR, 1000000000 / (new_itr * 256));
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2480 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2482 int size = sizeof(struct e1000_ring);
2484 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485 if (!adapter->tx_ring)
2487 adapter->tx_ring->count = adapter->tx_ring_count;
2488 adapter->tx_ring->adapter = adapter;
2490 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491 if (!adapter->rx_ring)
2493 adapter->rx_ring->count = adapter->rx_ring_count;
2494 adapter->rx_ring->adapter = adapter;
2498 e_err("Unable to allocate memory for queues\n");
2499 kfree(adapter->rx_ring);
2500 kfree(adapter->tx_ring);
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2509 static int e1000e_poll(struct napi_struct *napi, int weight)
2511 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2513 struct e1000_hw *hw = &adapter->hw;
2514 struct net_device *poll_dev = adapter->netdev;
2515 int tx_cleaned = 1, work_done = 0;
2517 adapter = netdev_priv(poll_dev);
2519 if (!adapter->msix_entries ||
2520 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2523 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2528 /* If weight not fully consumed, exit the polling mode */
2529 if (work_done < weight) {
2530 if (adapter->itr_setting & 3)
2531 e1000_set_itr(adapter);
2532 napi_complete(napi);
2533 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534 if (adapter->msix_entries)
2535 ew32(IMS, adapter->rx_ring->ims_val);
2537 e1000_irq_enable(adapter);
2544 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2546 struct e1000_adapter *adapter = netdev_priv(netdev);
2547 struct e1000_hw *hw = &adapter->hw;
2550 /* don't update vlan cookie if already programmed */
2551 if ((adapter->hw.mng_cookie.status &
2552 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553 (vid == adapter->mng_vlan_id))
2556 /* add VID to filter table */
2557 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558 index = (vid >> 5) & 0x7F;
2559 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560 vfta |= (1 << (vid & 0x1F));
2561 hw->mac.ops.write_vfta(hw, index, vfta);
2564 set_bit(vid, adapter->active_vlans);
2569 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2571 struct e1000_adapter *adapter = netdev_priv(netdev);
2572 struct e1000_hw *hw = &adapter->hw;
2575 if ((adapter->hw.mng_cookie.status &
2576 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577 (vid == adapter->mng_vlan_id)) {
2578 /* release control to f/w */
2579 e1000e_release_hw_control(adapter);
2583 /* remove VID from filter table */
2584 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585 index = (vid >> 5) & 0x7F;
2586 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587 vfta &= ~(1 << (vid & 0x1F));
2588 hw->mac.ops.write_vfta(hw, index, vfta);
2591 clear_bit(vid, adapter->active_vlans);
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2600 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2602 struct net_device *netdev = adapter->netdev;
2603 struct e1000_hw *hw = &adapter->hw;
2606 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607 /* disable VLAN receive filtering */
2609 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2612 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2614 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2623 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2625 struct e1000_hw *hw = &adapter->hw;
2628 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629 /* enable VLAN receive filtering */
2631 rctl |= E1000_RCTL_VFE;
2632 rctl &= ~E1000_RCTL_CFIEN;
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2641 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2643 struct e1000_hw *hw = &adapter->hw;
2646 /* disable VLAN tag insert/strip */
2648 ctrl &= ~E1000_CTRL_VME;
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2656 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2658 struct e1000_hw *hw = &adapter->hw;
2661 /* enable VLAN tag insert/strip */
2663 ctrl |= E1000_CTRL_VME;
2667 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2669 struct net_device *netdev = adapter->netdev;
2670 u16 vid = adapter->hw.mng_cookie.vlan_id;
2671 u16 old_vid = adapter->mng_vlan_id;
2673 if (adapter->hw.mng_cookie.status &
2674 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675 e1000_vlan_rx_add_vid(netdev, vid);
2676 adapter->mng_vlan_id = vid;
2679 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680 e1000_vlan_rx_kill_vid(netdev, old_vid);
2683 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2687 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2689 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2693 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2695 struct e1000_hw *hw = &adapter->hw;
2696 u32 manc, manc2h, mdef, i, j;
2698 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2704 * enable receiving management packets to the host. this will probably
2705 * generate destination unreachable messages from the host OS, but
2706 * the packets will be handled on SMBUS
2708 manc |= E1000_MANC_EN_MNG2HOST;
2709 manc2h = er32(MANC2H);
2711 switch (hw->mac.type) {
2713 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2718 * Check if IPMI pass-through decision filter already exists;
2721 for (i = 0, j = 0; i < 8; i++) {
2722 mdef = er32(MDEF(i));
2724 /* Ignore filters with anything other than IPMI ports */
2725 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2728 /* Enable this decision filter in MANC2H */
2735 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2738 /* Create new decision filter in an empty filter */
2739 for (i = 0, j = 0; i < 8; i++)
2740 if (er32(MDEF(i)) == 0) {
2741 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742 E1000_MDEF_PORT_664));
2749 e_warn("Unable to create IPMI pass-through filter\n");
2753 ew32(MANC2H, manc2h);
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2761 * Configure the Tx unit of the MAC after a reset.
2763 static void e1000_configure_tx(struct e1000_adapter *adapter)
2765 struct e1000_hw *hw = &adapter->hw;
2766 struct e1000_ring *tx_ring = adapter->tx_ring;
2770 /* Setup the HW Tx Head and Tail descriptor pointers */
2771 tdba = tx_ring->dma;
2772 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774 ew32(TDBAH(0), (tdba >> 32));
2775 ew32(TDLEN(0), tdlen);
2778 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2781 /* Set the Tx Interrupt Delay register */
2782 ew32(TIDV, adapter->tx_int_delay);
2783 /* Tx irq moderation */
2784 ew32(TADV, adapter->tx_abs_int_delay);
2786 if (adapter->flags2 & FLAG2_DMA_BURST) {
2787 u32 txdctl = er32(TXDCTL(0));
2788 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789 E1000_TXDCTL_WTHRESH);
2791 * set up some performance related parameters to encourage the
2792 * hardware to use the bus more efficiently in bursts, depends
2793 * on the tx_int_delay to be enabled,
2794 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795 * hthresh = 1 ==> prefetch when one or more available
2796 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797 * BEWARE: this seems to work but should be considered first if
2798 * there are Tx hangs or other Tx related bugs
2800 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801 ew32(TXDCTL(0), txdctl);
2803 /* erratum work around: set txdctl the same for both queues */
2804 ew32(TXDCTL(1), er32(TXDCTL(0)));
2806 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807 tarc = er32(TARC(0));
2809 * set the speed mode bit, we'll clear it if we're not at
2810 * gigabit link later
2812 #define SPEED_MODE_BIT (1 << 21)
2813 tarc |= SPEED_MODE_BIT;
2814 ew32(TARC(0), tarc);
2817 /* errata: program both queues to unweighted RR */
2818 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819 tarc = er32(TARC(0));
2821 ew32(TARC(0), tarc);
2822 tarc = er32(TARC(1));
2824 ew32(TARC(1), tarc);
2827 /* Setup Transmit Descriptor Settings for eop descriptor */
2828 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2830 /* only set IDE if we are delaying interrupts using the timers */
2831 if (adapter->tx_int_delay)
2832 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2834 /* enable Report Status bit */
2835 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2837 hw->mac.ops.config_collision_dist(hw);
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2844 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2848 struct e1000_hw *hw = &adapter->hw;
2852 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2853 if (hw->mac.type >= e1000_pch2lan) {
2856 if (adapter->netdev->mtu > ETH_DATA_LEN)
2857 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2859 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2862 e_dbg("failed to enable jumbo frame workaround mode\n");
2865 /* Program MC offset vector base */
2867 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2872 /* Do not Store bad packets */
2873 rctl &= ~E1000_RCTL_SBP;
2875 /* Enable Long Packet receive */
2876 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877 rctl &= ~E1000_RCTL_LPE;
2879 rctl |= E1000_RCTL_LPE;
2881 /* Some systems expect that the CRC is included in SMBUS traffic. The
2882 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883 * host memory when this is enabled
2885 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886 rctl |= E1000_RCTL_SECRC;
2888 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2892 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2894 phy_data |= (1 << 2);
2895 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2897 e1e_rphy(hw, 22, &phy_data);
2899 phy_data |= (1 << 14);
2900 e1e_wphy(hw, 0x10, 0x2823);
2901 e1e_wphy(hw, 0x11, 0x0003);
2902 e1e_wphy(hw, 22, phy_data);
2905 /* Setup buffer sizes */
2906 rctl &= ~E1000_RCTL_SZ_4096;
2907 rctl |= E1000_RCTL_BSEX;
2908 switch (adapter->rx_buffer_len) {
2911 rctl |= E1000_RCTL_SZ_2048;
2912 rctl &= ~E1000_RCTL_BSEX;
2915 rctl |= E1000_RCTL_SZ_4096;
2918 rctl |= E1000_RCTL_SZ_8192;
2921 rctl |= E1000_RCTL_SZ_16384;
2925 /* Enable Extended Status in all Receive Descriptors */
2926 rfctl = er32(RFCTL);
2927 rfctl |= E1000_RFCTL_EXTEN;
2931 * 82571 and greater support packet-split where the protocol
2932 * header is placed in skb->data and the packet data is
2933 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934 * In the case of a non-split, skb->data is linearly filled,
2935 * followed by the page buffers. Therefore, skb->data is
2936 * sized to hold the largest protocol header.
2938 * allocations using alloc_page take too long for regular MTU
2939 * so only enable packet split for jumbo frames
2941 * Using pages when the page size is greater than 16k wastes
2942 * a lot of memory, since we allocate 3 pages at all times
2945 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947 adapter->rx_ps_pages = pages;
2949 adapter->rx_ps_pages = 0;
2951 if (adapter->rx_ps_pages) {
2954 /* Enable Packet split descriptors */
2955 rctl |= E1000_RCTL_DTYP_PS;
2957 psrctl |= adapter->rx_ps_bsize0 >>
2958 E1000_PSRCTL_BSIZE0_SHIFT;
2960 switch (adapter->rx_ps_pages) {
2962 psrctl |= PAGE_SIZE <<
2963 E1000_PSRCTL_BSIZE3_SHIFT;
2965 psrctl |= PAGE_SIZE <<
2966 E1000_PSRCTL_BSIZE2_SHIFT;
2968 psrctl |= PAGE_SIZE >>
2969 E1000_PSRCTL_BSIZE1_SHIFT;
2973 ew32(PSRCTL, psrctl);
2976 /* This is useful for sniffing bad packets. */
2977 if (adapter->netdev->features & NETIF_F_RXALL) {
2978 /* UPE and MPE will be handled by normal PROMISC logic
2979 * in e1000e_set_rx_mode */
2980 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2984 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985 E1000_RCTL_DPF | /* Allow filtered pause */
2986 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2987 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988 * and that breaks VLANs.
2993 /* just started the receive unit, no need to restart */
2994 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3001 * Configure the Rx unit of the MAC after a reset.
3003 static void e1000_configure_rx(struct e1000_adapter *adapter)
3005 struct e1000_hw *hw = &adapter->hw;
3006 struct e1000_ring *rx_ring = adapter->rx_ring;
3008 u32 rdlen, rctl, rxcsum, ctrl_ext;
3010 if (adapter->rx_ps_pages) {
3011 /* this is a 32 byte descriptor */
3012 rdlen = rx_ring->count *
3013 sizeof(union e1000_rx_desc_packet_split);
3014 adapter->clean_rx = e1000_clean_rx_irq_ps;
3015 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3021 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022 adapter->clean_rx = e1000_clean_rx_irq;
3023 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3026 /* disable receives while setting up the descriptors */
3028 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3031 usleep_range(10000, 20000);
3033 if (adapter->flags2 & FLAG2_DMA_BURST) {
3035 * set the writeback threshold (only takes effect if the RDTR
3036 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037 * enable prefetching of 0x20 Rx descriptors
3043 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3047 * override the delay timers for enabling bursting, only if
3048 * the value was not set by the user via module options
3050 if (adapter->rx_int_delay == DEFAULT_RDTR)
3051 adapter->rx_int_delay = BURST_RDTR;
3052 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053 adapter->rx_abs_int_delay = BURST_RADV;
3056 /* set the Receive Delay Timer Register */
3057 ew32(RDTR, adapter->rx_int_delay);
3059 /* irq moderation */
3060 ew32(RADV, adapter->rx_abs_int_delay);
3061 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062 ew32(ITR, 1000000000 / (adapter->itr * 256));
3064 ctrl_ext = er32(CTRL_EXT);
3065 /* Auto-Mask interrupts upon ICR access */
3066 ctrl_ext |= E1000_CTRL_EXT_IAME;
3067 ew32(IAM, 0xffffffff);
3068 ew32(CTRL_EXT, ctrl_ext);
3072 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073 * the Base and Length of the Rx Descriptor Ring
3075 rdba = rx_ring->dma;
3076 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077 ew32(RDBAH(0), (rdba >> 32));
3078 ew32(RDLEN(0), rdlen);
3081 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3084 /* Enable Receive Checksum Offload for TCP and UDP */
3085 rxcsum = er32(RXCSUM);
3086 if (adapter->netdev->features & NETIF_F_RXCSUM)
3087 rxcsum |= E1000_RXCSUM_TUOFL;
3089 rxcsum &= ~E1000_RXCSUM_TUOFL;
3090 ew32(RXCSUM, rxcsum);
3092 if (adapter->hw.mac.type == e1000_pch2lan) {
3094 * With jumbo frames, excessive C-state transition
3095 * latencies result in dropped transactions.
3097 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3098 u32 rxdctl = er32(RXDCTL(0));
3099 ew32(RXDCTL(0), rxdctl | 0x3);
3100 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3102 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103 PM_QOS_DEFAULT_VALUE);
3107 /* Enable Receives */
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 * 0 on no addresses written
3118 * X on writing X addresses to MTA
3120 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3122 struct e1000_adapter *adapter = netdev_priv(netdev);
3123 struct e1000_hw *hw = &adapter->hw;
3124 struct netdev_hw_addr *ha;
3128 if (netdev_mc_empty(netdev)) {
3129 /* nothing to program, so clear mc list */
3130 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3134 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3138 /* update_mc_addr_list expects a packed array of only addresses. */
3140 netdev_for_each_mc_addr(ha, netdev)
3141 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3143 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3146 return netdev_mc_count(netdev);
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 * 0 on no addresses written
3156 * X on writing X addresses to the RAR table
3158 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3160 struct e1000_adapter *adapter = netdev_priv(netdev);
3161 struct e1000_hw *hw = &adapter->hw;
3162 unsigned int rar_entries = hw->mac.rar_entry_count;
3165 /* save a rar entry for our hardware address */
3168 /* save a rar entry for the LAA workaround */
3169 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3172 /* return ENOMEM indicating insufficient memory for addresses */
3173 if (netdev_uc_count(netdev) > rar_entries)
3176 if (!netdev_uc_empty(netdev) && rar_entries) {
3177 struct netdev_hw_addr *ha;
3180 * write the addresses in reverse order to avoid write
3183 netdev_for_each_uc_addr(ha, netdev) {
3186 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3191 /* zero out the remaining RAR entries not used above */
3192 for (; rar_entries > 0; rar_entries--) {
3193 ew32(RAH(rar_entries), 0);
3194 ew32(RAL(rar_entries), 0);
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated. This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3210 static void e1000e_set_rx_mode(struct net_device *netdev)
3212 struct e1000_adapter *adapter = netdev_priv(netdev);
3213 struct e1000_hw *hw = &adapter->hw;
3216 /* Check for Promiscuous and All Multicast modes */
3219 /* clear the affected bits */
3220 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3222 if (netdev->flags & IFF_PROMISC) {
3223 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224 /* Do not hardware filter VLANs in promisc mode */
3225 e1000e_vlan_filter_disable(adapter);
3229 if (netdev->flags & IFF_ALLMULTI) {
3230 rctl |= E1000_RCTL_MPE;
3233 * Write addresses to the MTA, if the attempt fails
3234 * then we should just turn on promiscuous mode so
3235 * that we can at least receive multicast traffic
3237 count = e1000e_write_mc_addr_list(netdev);
3239 rctl |= E1000_RCTL_MPE;
3241 e1000e_vlan_filter_enable(adapter);
3243 * Write addresses to available RAR registers, if there is not
3244 * sufficient space to store all the addresses then enable
3245 * unicast promiscuous mode
3247 count = e1000e_write_uc_addr_list(netdev);
3249 rctl |= E1000_RCTL_UPE;
3254 if (netdev->features & NETIF_F_HW_VLAN_RX)
3255 e1000e_vlan_strip_enable(adapter);
3257 e1000e_vlan_strip_disable(adapter);
3260 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3262 struct e1000_hw *hw = &adapter->hw;
3265 static const u32 rsskey[10] = {
3266 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3270 /* Fill out hash function seed */
3271 for (i = 0; i < 10; i++)
3272 ew32(RSSRK(i), rsskey[i]);
3274 /* Direct all traffic to queue 0 */
3275 for (i = 0; i < 32; i++)
3279 * Disable raw packet checksumming so that RSS hash is placed in
3280 * descriptor on writeback.
3282 rxcsum = er32(RXCSUM);
3283 rxcsum |= E1000_RXCSUM_PCSD;
3285 ew32(RXCSUM, rxcsum);
3287 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289 E1000_MRQC_RSS_FIELD_IPV6 |
3290 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3300 static void e1000_configure(struct e1000_adapter *adapter)
3302 struct e1000_ring *rx_ring = adapter->rx_ring;
3304 e1000e_set_rx_mode(adapter->netdev);
3306 e1000_restore_vlan(adapter);
3307 e1000_init_manageability_pt(adapter);
3309 e1000_configure_tx(adapter);
3311 if (adapter->netdev->features & NETIF_F_RXHASH)
3312 e1000e_setup_rss_hash(adapter);
3313 e1000_setup_rctl(adapter);
3314 e1000_configure_rx(adapter);
3315 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3326 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3328 if (adapter->hw.phy.ops.power_up)
3329 adapter->hw.phy.ops.power_up(&adapter->hw);
3331 adapter->hw.mac.ops.setup_link(&adapter->hw);
3335 * e1000_power_down_phy - Power down the PHY
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3340 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3342 /* WoL is enabled */
3346 if (adapter->hw.phy.ops.power_down)
3347 adapter->hw.phy.ops.power_down(&adapter->hw);
3351 * e1000e_reset - bring the hardware into a known good state
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3358 void e1000e_reset(struct e1000_adapter *adapter)
3360 struct e1000_mac_info *mac = &adapter->hw.mac;
3361 struct e1000_fc_info *fc = &adapter->hw.fc;
3362 struct e1000_hw *hw = &adapter->hw;
3363 u32 tx_space, min_tx_space, min_rx_space;
3364 u32 pba = adapter->pba;
3367 /* reset Packet Buffer Allocation to default */
3370 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3372 * To maintain wire speed transmits, the Tx FIFO should be
3373 * large enough to accommodate two full transmit packets,
3374 * rounded up to the next 1KB and expressed in KB. Likewise,
3375 * the Rx FIFO should be large enough to accommodate at least
3376 * one full receive packet and is similarly rounded up and
3380 /* upper 16 bits has Tx packet buffer allocation size in KB */
3381 tx_space = pba >> 16;
3382 /* lower 16 bits has Rx packet buffer allocation size in KB */
3385 * the Tx fifo also stores 16 bytes of information about the Tx
3386 * but don't include ethernet FCS because hardware appends it
3388 min_tx_space = (adapter->max_frame_size +
3389 sizeof(struct e1000_tx_desc) -
3391 min_tx_space = ALIGN(min_tx_space, 1024);
3392 min_tx_space >>= 10;
3393 /* software strips receive CRC, so leave room for it */
3394 min_rx_space = adapter->max_frame_size;
3395 min_rx_space = ALIGN(min_rx_space, 1024);
3396 min_rx_space >>= 10;
3399 * If current Tx allocation is less than the min Tx FIFO size,
3400 * and the min Tx FIFO size is less than the current Rx FIFO
3401 * allocation, take space away from current Rx allocation
3403 if ((tx_space < min_tx_space) &&
3404 ((min_tx_space - tx_space) < pba)) {
3405 pba -= min_tx_space - tx_space;
3408 * if short on Rx space, Rx wins and must trump Tx
3409 * adjustment or use Early Receive if available
3411 if (pba < min_rx_space)
3419 * flow control settings
3421 * The high water mark must be low enough to fit one full frame
3422 * (or the size used for early receive) above it in the Rx FIFO.
3423 * Set it to the lower of:
3424 * - 90% of the Rx FIFO size, and
3425 * - the full Rx FIFO size minus one full frame
3427 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428 fc->pause_time = 0xFFFF;
3430 fc->pause_time = E1000_FC_PAUSE_TIME;
3431 fc->send_xon = true;
3432 fc->current_mode = fc->requested_mode;
3434 switch (hw->mac.type) {
3436 case e1000_ich10lan:
3437 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3440 fc->high_water = 0x2800;
3441 fc->low_water = fc->high_water - 8;
3446 hwm = min(((pba << 10) * 9 / 10),
3447 ((pba << 10) - adapter->max_frame_size));
3449 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450 fc->low_water = fc->high_water - 8;
3454 * Workaround PCH LOM adapter hangs with certain network
3455 * loads. If hangs persist, try disabling Tx flow control.
3457 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458 fc->high_water = 0x3500;
3459 fc->low_water = 0x1500;
3461 fc->high_water = 0x5000;
3462 fc->low_water = 0x3000;
3464 fc->refresh_time = 0x1000;
3468 fc->high_water = 0x05C20;
3469 fc->low_water = 0x05048;
3470 fc->pause_time = 0x0650;
3471 fc->refresh_time = 0x0400;
3472 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3480 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3481 * fit in receive buffer.
3483 if (adapter->itr_setting & 0x3) {
3484 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3485 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3486 dev_info(&adapter->pdev->dev,
3487 "Interrupt Throttle Rate turned off\n");
3488 adapter->flags2 |= FLAG2_DISABLE_AIM;
3491 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3492 dev_info(&adapter->pdev->dev,
3493 "Interrupt Throttle Rate turned on\n");
3494 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3495 adapter->itr = 20000;
3496 ew32(ITR, 1000000000 / (adapter->itr * 256));
3500 /* Allow time for pending master requests to run */
3501 mac->ops.reset_hw(hw);
3504 * For parts with AMT enabled, let the firmware know
3505 * that the network interface is in control
3507 if (adapter->flags & FLAG_HAS_AMT)
3508 e1000e_get_hw_control(adapter);
3512 if (mac->ops.init_hw(hw))
3513 e_err("Hardware Error\n");
3515 e1000_update_mng_vlan(adapter);
3517 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3518 ew32(VET, ETH_P_8021Q);
3520 e1000e_reset_adaptive(hw);
3522 if (!netif_running(adapter->netdev) &&
3523 !test_bit(__E1000_TESTING, &adapter->state)) {
3524 e1000_power_down_phy(adapter);
3528 e1000_get_phy_info(hw);
3530 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3531 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3534 * speed up time to link by disabling smart power down, ignore
3535 * the return value of this function because there is nothing
3536 * different we would do if it failed
3538 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3539 phy_data &= ~IGP02E1000_PM_SPD;
3540 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3544 int e1000e_up(struct e1000_adapter *adapter)
3546 struct e1000_hw *hw = &adapter->hw;
3548 /* hardware has been reset, we need to reload some things */
3549 e1000_configure(adapter);
3551 clear_bit(__E1000_DOWN, &adapter->state);
3553 if (adapter->msix_entries)
3554 e1000_configure_msix(adapter);
3555 e1000_irq_enable(adapter);
3557 netif_start_queue(adapter->netdev);
3559 /* fire a link change interrupt to start the watchdog */
3560 if (adapter->msix_entries)
3561 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3563 ew32(ICS, E1000_ICS_LSC);
3568 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3570 struct e1000_hw *hw = &adapter->hw;
3572 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3575 /* flush pending descriptor writebacks to memory */
3576 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3577 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3579 /* execute the writes immediately */
3583 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3584 * write is successful
3586 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3587 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3589 /* execute the writes immediately */
3593 static void e1000e_update_stats(struct e1000_adapter *adapter);
3595 void e1000e_down(struct e1000_adapter *adapter)
3597 struct net_device *netdev = adapter->netdev;
3598 struct e1000_hw *hw = &adapter->hw;
3602 * signal that we're down so the interrupt handler does not
3603 * reschedule our watchdog timer
3605 set_bit(__E1000_DOWN, &adapter->state);
3607 /* disable receives in the hardware */
3609 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3610 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3611 /* flush and sleep below */
3613 netif_stop_queue(netdev);
3615 /* disable transmits in the hardware */
3617 tctl &= ~E1000_TCTL_EN;
3620 /* flush both disables and wait for them to finish */
3622 usleep_range(10000, 20000);
3624 e1000_irq_disable(adapter);
3626 del_timer_sync(&adapter->watchdog_timer);
3627 del_timer_sync(&adapter->phy_info_timer);
3629 netif_carrier_off(netdev);
3631 spin_lock(&adapter->stats64_lock);
3632 e1000e_update_stats(adapter);
3633 spin_unlock(&adapter->stats64_lock);
3635 e1000e_flush_descriptors(adapter);
3636 e1000_clean_tx_ring(adapter->tx_ring);
3637 e1000_clean_rx_ring(adapter->rx_ring);
3639 adapter->link_speed = 0;
3640 adapter->link_duplex = 0;
3642 if (!pci_channel_offline(adapter->pdev))
3643 e1000e_reset(adapter);
3646 * TODO: for power management, we could drop the link and
3647 * pci_disable_device here.
3651 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3654 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3655 usleep_range(1000, 2000);
3656 e1000e_down(adapter);
3658 clear_bit(__E1000_RESETTING, &adapter->state);
3662 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3663 * @adapter: board private structure to initialize
3665 * e1000_sw_init initializes the Adapter private data structure.
3666 * Fields are initialized based on PCI device information and
3667 * OS network device settings (MTU size).
3669 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3671 struct net_device *netdev = adapter->netdev;
3673 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3674 adapter->rx_ps_bsize0 = 128;
3675 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3676 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3677 adapter->tx_ring_count = E1000_DEFAULT_TXD;
3678 adapter->rx_ring_count = E1000_DEFAULT_RXD;
3680 spin_lock_init(&adapter->stats64_lock);
3682 e1000e_set_interrupt_capability(adapter);
3684 if (e1000_alloc_queues(adapter))
3687 /* Explicitly disable IRQ since the NIC can be in any state. */
3688 e1000_irq_disable(adapter);
3690 set_bit(__E1000_DOWN, &adapter->state);
3695 * e1000_intr_msi_test - Interrupt Handler
3696 * @irq: interrupt number
3697 * @data: pointer to a network interface device structure
3699 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3701 struct net_device *netdev = data;
3702 struct e1000_adapter *adapter = netdev_priv(netdev);
3703 struct e1000_hw *hw = &adapter->hw;
3704 u32 icr = er32(ICR);
3706 e_dbg("icr is %08X\n", icr);
3707 if (icr & E1000_ICR_RXSEQ) {
3708 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3716 * e1000_test_msi_interrupt - Returns 0 for successful test
3717 * @adapter: board private struct
3719 * code flow taken from tg3.c
3721 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3723 struct net_device *netdev = adapter->netdev;
3724 struct e1000_hw *hw = &adapter->hw;
3727 /* poll_enable hasn't been called yet, so don't need disable */
3728 /* clear any pending events */
3731 /* free the real vector and request a test handler */
3732 e1000_free_irq(adapter);
3733 e1000e_reset_interrupt_capability(adapter);
3735 /* Assume that the test fails, if it succeeds then the test
3736 * MSI irq handler will unset this flag */
3737 adapter->flags |= FLAG_MSI_TEST_FAILED;
3739 err = pci_enable_msi(adapter->pdev);
3741 goto msi_test_failed;
3743 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3744 netdev->name, netdev);
3746 pci_disable_msi(adapter->pdev);
3747 goto msi_test_failed;
3752 e1000_irq_enable(adapter);
3754 /* fire an unusual interrupt on the test handler */
3755 ew32(ICS, E1000_ICS_RXSEQ);
3759 e1000_irq_disable(adapter);
3763 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3764 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3765 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3767 e_dbg("MSI interrupt test succeeded!\n");
3770 free_irq(adapter->pdev->irq, netdev);
3771 pci_disable_msi(adapter->pdev);
3774 e1000e_set_interrupt_capability(adapter);
3775 return e1000_request_irq(adapter);
3779 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3780 * @adapter: board private struct
3782 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3784 static int e1000_test_msi(struct e1000_adapter *adapter)
3789 if (!(adapter->flags & FLAG_MSI_ENABLED))
3792 /* disable SERR in case the MSI write causes a master abort */
3793 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3794 if (pci_cmd & PCI_COMMAND_SERR)
3795 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3796 pci_cmd & ~PCI_COMMAND_SERR);
3798 err = e1000_test_msi_interrupt(adapter);
3800 /* re-enable SERR */
3801 if (pci_cmd & PCI_COMMAND_SERR) {
3802 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803 pci_cmd |= PCI_COMMAND_SERR;
3804 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3811 * e1000_open - Called when a network interface is made active
3812 * @netdev: network interface device structure
3814 * Returns 0 on success, negative value on failure
3816 * The open entry point is called when a network interface is made
3817 * active by the system (IFF_UP). At this point all resources needed
3818 * for transmit and receive operations are allocated, the interrupt
3819 * handler is registered with the OS, the watchdog timer is started,
3820 * and the stack is notified that the interface is ready.
3822 static int e1000_open(struct net_device *netdev)
3824 struct e1000_adapter *adapter = netdev_priv(netdev);
3825 struct e1000_hw *hw = &adapter->hw;
3826 struct pci_dev *pdev = adapter->pdev;
3829 /* disallow open during test */
3830 if (test_bit(__E1000_TESTING, &adapter->state))
3833 pm_runtime_get_sync(&pdev->dev);
3835 netif_carrier_off(netdev);
3837 /* allocate transmit descriptors */
3838 err = e1000e_setup_tx_resources(adapter->tx_ring);
3842 /* allocate receive descriptors */
3843 err = e1000e_setup_rx_resources(adapter->rx_ring);
3848 * If AMT is enabled, let the firmware know that the network
3849 * interface is now open and reset the part to a known state.
3851 if (adapter->flags & FLAG_HAS_AMT) {
3852 e1000e_get_hw_control(adapter);
3853 e1000e_reset(adapter);
3856 e1000e_power_up_phy(adapter);
3858 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3859 if ((adapter->hw.mng_cookie.status &
3860 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3861 e1000_update_mng_vlan(adapter);
3863 /* DMA latency requirement to workaround jumbo issue */
3864 if (adapter->hw.mac.type == e1000_pch2lan)
3865 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3866 PM_QOS_CPU_DMA_LATENCY,
3867 PM_QOS_DEFAULT_VALUE);
3870 * before we allocate an interrupt, we must be ready to handle it.
3871 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3872 * as soon as we call pci_request_irq, so we have to setup our
3873 * clean_rx handler before we do so.
3875 e1000_configure(adapter);
3877 err = e1000_request_irq(adapter);
3882 * Work around PCIe errata with MSI interrupts causing some chipsets to
3883 * ignore e1000e MSI messages, which means we need to test our MSI
3886 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3887 err = e1000_test_msi(adapter);
3889 e_err("Interrupt allocation failed\n");
3894 /* From here on the code is the same as e1000e_up() */
3895 clear_bit(__E1000_DOWN, &adapter->state);
3897 napi_enable(&adapter->napi);
3899 e1000_irq_enable(adapter);
3901 adapter->tx_hang_recheck = false;
3902 netif_start_queue(netdev);
3904 adapter->idle_check = true;
3905 pm_runtime_put(&pdev->dev);
3907 /* fire a link status change interrupt to start the watchdog */
3908 if (adapter->msix_entries)
3909 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3911 ew32(ICS, E1000_ICS_LSC);
3916 e1000e_release_hw_control(adapter);
3917 e1000_power_down_phy(adapter);
3918 e1000e_free_rx_resources(adapter->rx_ring);
3920 e1000e_free_tx_resources(adapter->tx_ring);
3922 e1000e_reset(adapter);
3923 pm_runtime_put_sync(&pdev->dev);
3929 * e1000_close - Disables a network interface
3930 * @netdev: network interface device structure
3932 * Returns 0, this is not allowed to fail
3934 * The close entry point is called when an interface is de-activated
3935 * by the OS. The hardware is still under the drivers control, but
3936 * needs to be disabled. A global MAC reset is issued to stop the
3937 * hardware, and all transmit and receive resources are freed.
3939 static int e1000_close(struct net_device *netdev)
3941 struct e1000_adapter *adapter = netdev_priv(netdev);
3942 struct pci_dev *pdev = adapter->pdev;
3943 int count = E1000_CHECK_RESET_COUNT;
3945 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3946 usleep_range(10000, 20000);
3948 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3950 pm_runtime_get_sync(&pdev->dev);
3952 napi_disable(&adapter->napi);
3954 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3955 e1000e_down(adapter);
3956 e1000_free_irq(adapter);
3958 e1000_power_down_phy(adapter);
3960 e1000e_free_tx_resources(adapter->tx_ring);
3961 e1000e_free_rx_resources(adapter->rx_ring);
3964 * kill manageability vlan ID if supported, but not if a vlan with
3965 * the same ID is registered on the host OS (let 8021q kill it)
3967 if (adapter->hw.mng_cookie.status &
3968 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3969 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3972 * If AMT is enabled, let the firmware know that the network
3973 * interface is now closed
3975 if ((adapter->flags & FLAG_HAS_AMT) &&
3976 !test_bit(__E1000_TESTING, &adapter->state))
3977 e1000e_release_hw_control(adapter);
3979 if (adapter->hw.mac.type == e1000_pch2lan)
3980 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3982 pm_runtime_put_sync(&pdev->dev);
3987 * e1000_set_mac - Change the Ethernet Address of the NIC
3988 * @netdev: network interface device structure
3989 * @p: pointer to an address structure
3991 * Returns 0 on success, negative on failure
3993 static int e1000_set_mac(struct net_device *netdev, void *p)
3995 struct e1000_adapter *adapter = netdev_priv(netdev);
3996 struct e1000_hw *hw = &adapter->hw;
3997 struct sockaddr *addr = p;
3999 if (!is_valid_ether_addr(addr->sa_data))
4000 return -EADDRNOTAVAIL;
4002 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4003 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4005 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4007 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4008 /* activate the work around */
4009 e1000e_set_laa_state_82571(&adapter->hw, 1);
4012 * Hold a copy of the LAA in RAR[14] This is done so that
4013 * between the time RAR[0] gets clobbered and the time it
4014 * gets fixed (in e1000_watchdog), the actual LAA is in one
4015 * of the RARs and no incoming packets directed to this port
4016 * are dropped. Eventually the LAA will be in RAR[0] and
4019 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4020 adapter->hw.mac.rar_entry_count - 1);
4027 * e1000e_update_phy_task - work thread to update phy
4028 * @work: pointer to our work struct
4030 * this worker thread exists because we must acquire a
4031 * semaphore to read the phy, which we could msleep while
4032 * waiting for it, and we can't msleep in a timer.
4034 static void e1000e_update_phy_task(struct work_struct *work)
4036 struct e1000_adapter *adapter = container_of(work,
4037 struct e1000_adapter, update_phy_task);
4039 if (test_bit(__E1000_DOWN, &adapter->state))
4042 e1000_get_phy_info(&adapter->hw);
4046 * Need to wait a few seconds after link up to get diagnostic information from
4049 static void e1000_update_phy_info(unsigned long data)
4051 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4053 if (test_bit(__E1000_DOWN, &adapter->state))
4056 schedule_work(&adapter->update_phy_task);
4060 * e1000e_update_phy_stats - Update the PHY statistics counters
4061 * @adapter: board private structure
4063 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4065 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4067 struct e1000_hw *hw = &adapter->hw;
4071 ret_val = hw->phy.ops.acquire(hw);
4076 * A page set is expensive so check if already on desired page.
4077 * If not, set to the page with the PHY status registers.
4080 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4084 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4085 ret_val = hw->phy.ops.set_page(hw,
4086 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4091 /* Single Collision Count */
4092 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4093 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4095 adapter->stats.scc += phy_data;
4097 /* Excessive Collision Count */
4098 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4099 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4101 adapter->stats.ecol += phy_data;
4103 /* Multiple Collision Count */
4104 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4105 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4107 adapter->stats.mcc += phy_data;
4109 /* Late Collision Count */
4110 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4111 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4113 adapter->stats.latecol += phy_data;
4115 /* Collision Count - also used for adaptive IFS */
4116 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4117 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4119 hw->mac.collision_delta = phy_data;
4122 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4123 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4125 adapter->stats.dc += phy_data;
4127 /* Transmit with no CRS */
4128 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4129 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4131 adapter->stats.tncrs += phy_data;
4134 hw->phy.ops.release(hw);
4138 * e1000e_update_stats - Update the board statistics counters
4139 * @adapter: board private structure
4141 static void e1000e_update_stats(struct e1000_adapter *adapter)
4143 struct net_device *netdev = adapter->netdev;
4144 struct e1000_hw *hw = &adapter->hw;
4145 struct pci_dev *pdev = adapter->pdev;
4148 * Prevent stats update while adapter is being reset, or if the pci
4149 * connection is down.
4151 if (adapter->link_speed == 0)
4153 if (pci_channel_offline(pdev))
4156 adapter->stats.crcerrs += er32(CRCERRS);
4157 adapter->stats.gprc += er32(GPRC);
4158 adapter->stats.gorc += er32(GORCL);
4159 er32(GORCH); /* Clear gorc */
4160 adapter->stats.bprc += er32(BPRC);
4161 adapter->stats.mprc += er32(MPRC);
4162 adapter->stats.roc += er32(ROC);
4164 adapter->stats.mpc += er32(MPC);
4166 /* Half-duplex statistics */
4167 if (adapter->link_duplex == HALF_DUPLEX) {
4168 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4169 e1000e_update_phy_stats(adapter);
4171 adapter->stats.scc += er32(SCC);
4172 adapter->stats.ecol += er32(ECOL);
4173 adapter->stats.mcc += er32(MCC);
4174 adapter->stats.latecol += er32(LATECOL);
4175 adapter->stats.dc += er32(DC);
4177 hw->mac.collision_delta = er32(COLC);
4179 if ((hw->mac.type != e1000_82574) &&
4180 (hw->mac.type != e1000_82583))
4181 adapter->stats.tncrs += er32(TNCRS);
4183 adapter->stats.colc += hw->mac.collision_delta;
4186 adapter->stats.xonrxc += er32(XONRXC);
4187 adapter->stats.xontxc += er32(XONTXC);
4188 adapter->stats.xoffrxc += er32(XOFFRXC);
4189 adapter->stats.xofftxc += er32(XOFFTXC);
4190 adapter->stats.gptc += er32(GPTC);
4191 adapter->stats.gotc += er32(GOTCL);
4192 er32(GOTCH); /* Clear gotc */
4193 adapter->stats.rnbc += er32(RNBC);
4194 adapter->stats.ruc += er32(RUC);
4196 adapter->stats.mptc += er32(MPTC);
4197 adapter->stats.bptc += er32(BPTC);
4199 /* used for adaptive IFS */
4201 hw->mac.tx_packet_delta = er32(TPT);
4202 adapter->stats.tpt += hw->mac.tx_packet_delta;
4204 adapter->stats.algnerrc += er32(ALGNERRC);
4205 adapter->stats.rxerrc += er32(RXERRC);
4206 adapter->stats.cexterr += er32(CEXTERR);
4207 adapter->stats.tsctc += er32(TSCTC);
4208 adapter->stats.tsctfc += er32(TSCTFC);
4210 /* Fill out the OS statistics structure */
4211 netdev->stats.multicast = adapter->stats.mprc;
4212 netdev->stats.collisions = adapter->stats.colc;
4217 * RLEC on some newer hardware can be incorrect so build
4218 * our own version based on RUC and ROC
4220 netdev->stats.rx_errors = adapter->stats.rxerrc +
4221 adapter->stats.crcerrs + adapter->stats.algnerrc +
4222 adapter->stats.ruc + adapter->stats.roc +
4223 adapter->stats.cexterr;
4224 netdev->stats.rx_length_errors = adapter->stats.ruc +
4226 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4227 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4228 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4231 netdev->stats.tx_errors = adapter->stats.ecol +
4232 adapter->stats.latecol;
4233 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4234 netdev->stats.tx_window_errors = adapter->stats.latecol;
4235 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4237 /* Tx Dropped needs to be maintained elsewhere */
4239 /* Management Stats */
4240 adapter->stats.mgptc += er32(MGTPTC);
4241 adapter->stats.mgprc += er32(MGTPRC);
4242 adapter->stats.mgpdc += er32(MGTPDC);
4246 * e1000_phy_read_status - Update the PHY register status snapshot
4247 * @adapter: board private structure
4249 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4251 struct e1000_hw *hw = &adapter->hw;
4252 struct e1000_phy_regs *phy = &adapter->phy_regs;
4254 if ((er32(STATUS) & E1000_STATUS_LU) &&
4255 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4258 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4259 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4260 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4261 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4262 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4263 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4264 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4265 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4267 e_warn("Error reading PHY register\n");
4270 * Do not read PHY registers if link is not up
4271 * Set values to typical power-on defaults
4273 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4274 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4275 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4277 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4278 ADVERTISE_ALL | ADVERTISE_CSMA);
4280 phy->expansion = EXPANSION_ENABLENPAGE;
4281 phy->ctrl1000 = ADVERTISE_1000FULL;
4283 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4287 static void e1000_print_link_info(struct e1000_adapter *adapter)
4289 struct e1000_hw *hw = &adapter->hw;
4290 u32 ctrl = er32(CTRL);
4292 /* Link status message must follow this format for user tools */
4293 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4294 adapter->netdev->name,
4295 adapter->link_speed,
4296 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4297 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4298 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4299 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4302 static bool e1000e_has_link(struct e1000_adapter *adapter)
4304 struct e1000_hw *hw = &adapter->hw;
4305 bool link_active = false;
4309 * get_link_status is set on LSC (link status) interrupt or
4310 * Rx sequence error interrupt. get_link_status will stay
4311 * false until the check_for_link establishes link
4312 * for copper adapters ONLY
4314 switch (hw->phy.media_type) {
4315 case e1000_media_type_copper:
4316 if (hw->mac.get_link_status) {
4317 ret_val = hw->mac.ops.check_for_link(hw);
4318 link_active = !hw->mac.get_link_status;
4323 case e1000_media_type_fiber:
4324 ret_val = hw->mac.ops.check_for_link(hw);
4325 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4327 case e1000_media_type_internal_serdes:
4328 ret_val = hw->mac.ops.check_for_link(hw);
4329 link_active = adapter->hw.mac.serdes_has_link;
4332 case e1000_media_type_unknown:
4336 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4337 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4338 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4339 e_info("Gigabit has been disabled, downgrading speed\n");
4345 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4347 /* make sure the receive unit is started */
4348 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4349 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4350 struct e1000_hw *hw = &adapter->hw;
4351 u32 rctl = er32(RCTL);
4352 ew32(RCTL, rctl | E1000_RCTL_EN);
4353 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4357 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4359 struct e1000_hw *hw = &adapter->hw;
4362 * With 82574 controllers, PHY needs to be checked periodically
4363 * for hung state and reset, if two calls return true
4365 if (e1000_check_phy_82574(hw))
4366 adapter->phy_hang_count++;
4368 adapter->phy_hang_count = 0;
4370 if (adapter->phy_hang_count > 1) {
4371 adapter->phy_hang_count = 0;
4372 schedule_work(&adapter->reset_task);
4377 * e1000_watchdog - Timer Call-back
4378 * @data: pointer to adapter cast into an unsigned long
4380 static void e1000_watchdog(unsigned long data)
4382 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4384 /* Do the rest outside of interrupt context */
4385 schedule_work(&adapter->watchdog_task);
4387 /* TODO: make this use queue_delayed_work() */
4390 static void e1000_watchdog_task(struct work_struct *work)
4392 struct e1000_adapter *adapter = container_of(work,
4393 struct e1000_adapter, watchdog_task);
4394 struct net_device *netdev = adapter->netdev;
4395 struct e1000_mac_info *mac = &adapter->hw.mac;
4396 struct e1000_phy_info *phy = &adapter->hw.phy;
4397 struct e1000_ring *tx_ring = adapter->tx_ring;
4398 struct e1000_hw *hw = &adapter->hw;
4401 if (test_bit(__E1000_DOWN, &adapter->state))
4404 link = e1000e_has_link(adapter);
4405 if ((netif_carrier_ok(netdev)) && link) {
4406 /* Cancel scheduled suspend requests. */
4407 pm_runtime_resume(netdev->dev.parent);
4409 e1000e_enable_receives(adapter);
4413 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4414 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4415 e1000_update_mng_vlan(adapter);
4418 if (!netif_carrier_ok(netdev)) {
4421 /* Cancel scheduled suspend requests. */
4422 pm_runtime_resume(netdev->dev.parent);
4424 /* update snapshot of PHY registers on LSC */
4425 e1000_phy_read_status(adapter);
4426 mac->ops.get_link_up_info(&adapter->hw,
4427 &adapter->link_speed,
4428 &adapter->link_duplex);
4429 e1000_print_link_info(adapter);
4431 * On supported PHYs, check for duplex mismatch only
4432 * if link has autonegotiated at 10/100 half
4434 if ((hw->phy.type == e1000_phy_igp_3 ||
4435 hw->phy.type == e1000_phy_bm) &&
4436 (hw->mac.autoneg == true) &&
4437 (adapter->link_speed == SPEED_10 ||
4438 adapter->link_speed == SPEED_100) &&
4439 (adapter->link_duplex == HALF_DUPLEX)) {
4442 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4444 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4445 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4448 /* adjust timeout factor according to speed/duplex */
4449 adapter->tx_timeout_factor = 1;
4450 switch (adapter->link_speed) {
4453 adapter->tx_timeout_factor = 16;
4457 adapter->tx_timeout_factor = 10;
4462 * workaround: re-program speed mode bit after
4465 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4468 tarc0 = er32(TARC(0));
4469 tarc0 &= ~SPEED_MODE_BIT;
4470 ew32(TARC(0), tarc0);
4474 * disable TSO for pcie and 10/100 speeds, to avoid
4475 * some hardware issues
4477 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4478 switch (adapter->link_speed) {
4481 e_info("10/100 speed: disabling TSO\n");
4482 netdev->features &= ~NETIF_F_TSO;
4483 netdev->features &= ~NETIF_F_TSO6;
4486 netdev->features |= NETIF_F_TSO;
4487 netdev->features |= NETIF_F_TSO6;
4496 * enable transmits in the hardware, need to do this
4497 * after setting TARC(0)
4500 tctl |= E1000_TCTL_EN;
4504 * Perform any post-link-up configuration before
4505 * reporting link up.
4507 if (phy->ops.cfg_on_link_up)
4508 phy->ops.cfg_on_link_up(hw);
4510 netif_carrier_on(netdev);
4512 if (!test_bit(__E1000_DOWN, &adapter->state))
4513 mod_timer(&adapter->phy_info_timer,
4514 round_jiffies(jiffies + 2 * HZ));
4517 if (netif_carrier_ok(netdev)) {
4518 adapter->link_speed = 0;
4519 adapter->link_duplex = 0;
4520 /* Link status message must follow this format */
4521 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4522 adapter->netdev->name);
4523 netif_carrier_off(netdev);
4524 if (!test_bit(__E1000_DOWN, &adapter->state))
4525 mod_timer(&adapter->phy_info_timer,
4526 round_jiffies(jiffies + 2 * HZ));
4528 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4529 schedule_work(&adapter->reset_task);
4531 pm_schedule_suspend(netdev->dev.parent,
4537 spin_lock(&adapter->stats64_lock);
4538 e1000e_update_stats(adapter);
4540 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4541 adapter->tpt_old = adapter->stats.tpt;
4542 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4543 adapter->colc_old = adapter->stats.colc;
4545 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4546 adapter->gorc_old = adapter->stats.gorc;
4547 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4548 adapter->gotc_old = adapter->stats.gotc;
4549 spin_unlock(&adapter->stats64_lock);
4551 e1000e_update_adaptive(&adapter->hw);
4553 if (!netif_carrier_ok(netdev) &&
4554 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4556 * We've lost link, so the controller stops DMA,
4557 * but we've got queued Tx work that's never going
4558 * to get done, so reset controller to flush Tx.
4559 * (Do the reset outside of interrupt context).
4561 schedule_work(&adapter->reset_task);
4562 /* return immediately since reset is imminent */
4566 /* Simple mode for Interrupt Throttle Rate (ITR) */
4567 if (adapter->itr_setting == 4) {
4569 * Symmetric Tx/Rx gets a reduced ITR=2000;
4570 * Total asymmetrical Tx or Rx gets ITR=8000;
4571 * everyone else is between 2000-8000.
4573 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4574 u32 dif = (adapter->gotc > adapter->gorc ?
4575 adapter->gotc - adapter->gorc :
4576 adapter->gorc - adapter->gotc) / 10000;
4577 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4579 ew32(ITR, 1000000000 / (itr * 256));
4582 /* Cause software interrupt to ensure Rx ring is cleaned */
4583 if (adapter->msix_entries)
4584 ew32(ICS, adapter->rx_ring->ims_val);
4586 ew32(ICS, E1000_ICS_RXDMT0);
4588 /* flush pending descriptors to memory before detecting Tx hang */
4589 e1000e_flush_descriptors(adapter);
4591 /* Force detection of hung controller every watchdog period */
4592 adapter->detect_tx_hung = true;
4595 * With 82571 controllers, LAA may be overwritten due to controller
4596 * reset from the other port. Set the appropriate LAA in RAR[0]
4598 if (e1000e_get_laa_state_82571(hw))
4599 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4601 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4602 e1000e_check_82574_phy_workaround(adapter);
4604 /* Reset the timer */
4605 if (!test_bit(__E1000_DOWN, &adapter->state))
4606 mod_timer(&adapter->watchdog_timer,
4607 round_jiffies(jiffies + 2 * HZ));
4610 #define E1000_TX_FLAGS_CSUM 0x00000001
4611 #define E1000_TX_FLAGS_VLAN 0x00000002
4612 #define E1000_TX_FLAGS_TSO 0x00000004
4613 #define E1000_TX_FLAGS_IPV4 0x00000008
4614 #define E1000_TX_FLAGS_NO_FCS 0x00000010
4615 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4616 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4618 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4620 struct e1000_context_desc *context_desc;
4621 struct e1000_buffer *buffer_info;
4624 u16 ipcse = 0, tucse, mss;
4625 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4627 if (!skb_is_gso(skb))
4630 if (skb_header_cloned(skb)) {
4631 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4637 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4638 mss = skb_shinfo(skb)->gso_size;
4639 if (skb->protocol == htons(ETH_P_IP)) {
4640 struct iphdr *iph = ip_hdr(skb);
4643 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4645 cmd_length = E1000_TXD_CMD_IP;
4646 ipcse = skb_transport_offset(skb) - 1;
4647 } else if (skb_is_gso_v6(skb)) {
4648 ipv6_hdr(skb)->payload_len = 0;
4649 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4650 &ipv6_hdr(skb)->daddr,
4654 ipcss = skb_network_offset(skb);
4655 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4656 tucss = skb_transport_offset(skb);
4657 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4660 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4661 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4663 i = tx_ring->next_to_use;
4664 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4665 buffer_info = &tx_ring->buffer_info[i];
4667 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4668 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4669 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4670 context_desc->upper_setup.tcp_fields.tucss = tucss;
4671 context_desc->upper_setup.tcp_fields.tucso = tucso;
4672 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4673 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4674 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4675 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4677 buffer_info->time_stamp = jiffies;
4678 buffer_info->next_to_watch = i;
4681 if (i == tx_ring->count)
4683 tx_ring->next_to_use = i;
4688 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4690 struct e1000_adapter *adapter = tx_ring->adapter;
4691 struct e1000_context_desc *context_desc;
4692 struct e1000_buffer *buffer_info;
4695 u32 cmd_len = E1000_TXD_CMD_DEXT;
4698 if (skb->ip_summed != CHECKSUM_PARTIAL)
4701 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4702 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4704 protocol = skb->protocol;
4707 case cpu_to_be16(ETH_P_IP):
4708 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4709 cmd_len |= E1000_TXD_CMD_TCP;
4711 case cpu_to_be16(ETH_P_IPV6):
4712 /* XXX not handling all IPV6 headers */
4713 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4714 cmd_len |= E1000_TXD_CMD_TCP;
4717 if (unlikely(net_ratelimit()))
4718 e_warn("checksum_partial proto=%x!\n",
4719 be16_to_cpu(protocol));
4723 css = skb_checksum_start_offset(skb);
4725 i = tx_ring->next_to_use;
4726 buffer_info = &tx_ring->buffer_info[i];
4727 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4729 context_desc->lower_setup.ip_config = 0;
4730 context_desc->upper_setup.tcp_fields.tucss = css;
4731 context_desc->upper_setup.tcp_fields.tucso =
4732 css + skb->csum_offset;
4733 context_desc->upper_setup.tcp_fields.tucse = 0;
4734 context_desc->tcp_seg_setup.data = 0;
4735 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4737 buffer_info->time_stamp = jiffies;
4738 buffer_info->next_to_watch = i;
4741 if (i == tx_ring->count)
4743 tx_ring->next_to_use = i;
4748 #define E1000_MAX_PER_TXD 8192
4749 #define E1000_MAX_TXD_PWR 12
4751 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4752 unsigned int first, unsigned int max_per_txd,
4753 unsigned int nr_frags, unsigned int mss)
4755 struct e1000_adapter *adapter = tx_ring->adapter;
4756 struct pci_dev *pdev = adapter->pdev;
4757 struct e1000_buffer *buffer_info;
4758 unsigned int len = skb_headlen(skb);
4759 unsigned int offset = 0, size, count = 0, i;
4760 unsigned int f, bytecount, segs;
4762 i = tx_ring->next_to_use;
4765 buffer_info = &tx_ring->buffer_info[i];
4766 size = min(len, max_per_txd);
4768 buffer_info->length = size;
4769 buffer_info->time_stamp = jiffies;
4770 buffer_info->next_to_watch = i;
4771 buffer_info->dma = dma_map_single(&pdev->dev,
4773 size, DMA_TO_DEVICE);
4774 buffer_info->mapped_as_page = false;
4775 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4784 if (i == tx_ring->count)
4789 for (f = 0; f < nr_frags; f++) {
4790 const struct skb_frag_struct *frag;
4792 frag = &skb_shinfo(skb)->frags[f];
4793 len = skb_frag_size(frag);
4798 if (i == tx_ring->count)
4801 buffer_info = &tx_ring->buffer_info[i];
4802 size = min(len, max_per_txd);
4804 buffer_info->length = size;
4805 buffer_info->time_stamp = jiffies;
4806 buffer_info->next_to_watch = i;
4807 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4808 offset, size, DMA_TO_DEVICE);
4809 buffer_info->mapped_as_page = true;
4810 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4819 segs = skb_shinfo(skb)->gso_segs ? : 1;
4820 /* multiply data chunks by size of headers */
4821 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4823 tx_ring->buffer_info[i].skb = skb;
4824 tx_ring->buffer_info[i].segs = segs;
4825 tx_ring->buffer_info[i].bytecount = bytecount;
4826 tx_ring->buffer_info[first].next_to_watch = i;
4831 dev_err(&pdev->dev, "Tx DMA map failed\n");
4832 buffer_info->dma = 0;
4838 i += tx_ring->count;
4840 buffer_info = &tx_ring->buffer_info[i];
4841 e1000_put_txbuf(tx_ring, buffer_info);
4847 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4849 struct e1000_adapter *adapter = tx_ring->adapter;
4850 struct e1000_tx_desc *tx_desc = NULL;
4851 struct e1000_buffer *buffer_info;
4852 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4855 if (tx_flags & E1000_TX_FLAGS_TSO) {
4856 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4858 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4860 if (tx_flags & E1000_TX_FLAGS_IPV4)
4861 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4864 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4865 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4866 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4869 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4870 txd_lower |= E1000_TXD_CMD_VLE;
4871 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4874 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4875 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4877 i = tx_ring->next_to_use;
4880 buffer_info = &tx_ring->buffer_info[i];
4881 tx_desc = E1000_TX_DESC(*tx_ring, i);
4882 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4883 tx_desc->lower.data =
4884 cpu_to_le32(txd_lower | buffer_info->length);
4885 tx_desc->upper.data = cpu_to_le32(txd_upper);
4888 if (i == tx_ring->count)
4890 } while (--count > 0);
4892 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4894 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4895 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4896 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4899 * Force memory writes to complete before letting h/w
4900 * know there are new descriptors to fetch. (Only
4901 * applicable for weak-ordered memory model archs,
4906 tx_ring->next_to_use = i;
4908 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4909 e1000e_update_tdt_wa(tx_ring, i);
4911 writel(i, tx_ring->tail);
4914 * we need this if more than one processor can write to our tail
4915 * at a time, it synchronizes IO on IA64/Altix systems
4920 #define MINIMUM_DHCP_PACKET_SIZE 282
4921 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4922 struct sk_buff *skb)
4924 struct e1000_hw *hw = &adapter->hw;
4927 if (vlan_tx_tag_present(skb)) {
4928 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4929 (adapter->hw.mng_cookie.status &
4930 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4934 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4937 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4941 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4944 if (ip->protocol != IPPROTO_UDP)
4947 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4948 if (ntohs(udp->dest) != 67)
4951 offset = (u8 *)udp + 8 - skb->data;
4952 length = skb->len - offset;
4953 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4959 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4961 struct e1000_adapter *adapter = tx_ring->adapter;
4963 netif_stop_queue(adapter->netdev);
4965 * Herbert's original patch had:
4966 * smp_mb__after_netif_stop_queue();
4967 * but since that doesn't exist yet, just open code it.
4972 * We need to check again in a case another CPU has just
4973 * made room available.
4975 if (e1000_desc_unused(tx_ring) < size)
4979 netif_start_queue(adapter->netdev);
4980 ++adapter->restart_queue;
4984 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4986 if (e1000_desc_unused(tx_ring) >= size)
4988 return __e1000_maybe_stop_tx(tx_ring, size);
4991 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
4992 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4993 struct net_device *netdev)
4995 struct e1000_adapter *adapter = netdev_priv(netdev);
4996 struct e1000_ring *tx_ring = adapter->tx_ring;
4998 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4999 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5000 unsigned int tx_flags = 0;
5001 unsigned int len = skb_headlen(skb);
5002 unsigned int nr_frags;
5008 if (test_bit(__E1000_DOWN, &adapter->state)) {
5009 dev_kfree_skb_any(skb);
5010 return NETDEV_TX_OK;
5013 if (skb->len <= 0) {
5014 dev_kfree_skb_any(skb);
5015 return NETDEV_TX_OK;
5018 mss = skb_shinfo(skb)->gso_size;
5020 * The controller does a simple calculation to
5021 * make sure there is enough room in the FIFO before
5022 * initiating the DMA for each buffer. The calc is:
5023 * 4 = ceil(buffer len/mss). To make sure we don't
5024 * overrun the FIFO, adjust the max buffer len if mss
5029 max_per_txd = min(mss << 2, max_per_txd);
5030 max_txd_pwr = fls(max_per_txd) - 1;
5033 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5034 * points to just header, pull a few bytes of payload from
5035 * frags into skb->data
5037 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5039 * we do this workaround for ES2LAN, but it is un-necessary,
5040 * avoiding it could save a lot of cycles
5042 if (skb->data_len && (hdr_len == len)) {
5043 unsigned int pull_size;
5045 pull_size = min_t(unsigned int, 4, skb->data_len);
5046 if (!__pskb_pull_tail(skb, pull_size)) {
5047 e_err("__pskb_pull_tail failed.\n");
5048 dev_kfree_skb_any(skb);
5049 return NETDEV_TX_OK;
5051 len = skb_headlen(skb);
5055 /* reserve a descriptor for the offload context */
5056 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5060 count += TXD_USE_COUNT(len, max_txd_pwr);
5062 nr_frags = skb_shinfo(skb)->nr_frags;
5063 for (f = 0; f < nr_frags; f++)
5064 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5067 if (adapter->hw.mac.tx_pkt_filtering)
5068 e1000_transfer_dhcp_info(adapter, skb);
5071 * need: count + 2 desc gap to keep tail from touching
5072 * head, otherwise try next time
5074 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5075 return NETDEV_TX_BUSY;
5077 if (vlan_tx_tag_present(skb)) {
5078 tx_flags |= E1000_TX_FLAGS_VLAN;
5079 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5082 first = tx_ring->next_to_use;
5084 tso = e1000_tso(tx_ring, skb);
5086 dev_kfree_skb_any(skb);
5087 return NETDEV_TX_OK;
5091 tx_flags |= E1000_TX_FLAGS_TSO;
5092 else if (e1000_tx_csum(tx_ring, skb))
5093 tx_flags |= E1000_TX_FLAGS_CSUM;
5096 * Old method was to assume IPv4 packet by default if TSO was enabled.
5097 * 82571 hardware supports TSO capabilities for IPv6 as well...
5098 * no longer assume, we must.
5100 if (skb->protocol == htons(ETH_P_IP))
5101 tx_flags |= E1000_TX_FLAGS_IPV4;
5103 if (unlikely(skb->no_fcs))
5104 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5106 /* if count is 0 then mapping error has occurred */
5107 count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5109 skb_tx_timestamp(skb);
5111 netdev_sent_queue(netdev, skb->len);
5112 e1000_tx_queue(tx_ring, tx_flags, count);
5113 /* Make sure there is space in the ring for the next send. */
5114 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5117 dev_kfree_skb_any(skb);
5118 tx_ring->buffer_info[first].time_stamp = 0;
5119 tx_ring->next_to_use = first;
5122 return NETDEV_TX_OK;
5126 * e1000_tx_timeout - Respond to a Tx Hang
5127 * @netdev: network interface device structure
5129 static void e1000_tx_timeout(struct net_device *netdev)
5131 struct e1000_adapter *adapter = netdev_priv(netdev);
5133 /* Do the reset outside of interrupt context */
5134 adapter->tx_timeout_count++;
5135 schedule_work(&adapter->reset_task);
5138 static void e1000_reset_task(struct work_struct *work)
5140 struct e1000_adapter *adapter;
5141 adapter = container_of(work, struct e1000_adapter, reset_task);
5143 /* don't run the task if already down */
5144 if (test_bit(__E1000_DOWN, &adapter->state))
5147 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5148 (adapter->flags & FLAG_RX_RESTART_NOW))) {
5149 e1000e_dump(adapter);
5150 e_err("Reset adapter\n");
5152 e1000e_reinit_locked(adapter);
5156 * e1000_get_stats64 - Get System Network Statistics
5157 * @netdev: network interface device structure
5158 * @stats: rtnl_link_stats64 pointer
5160 * Returns the address of the device statistics structure.
5162 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5163 struct rtnl_link_stats64 *stats)
5165 struct e1000_adapter *adapter = netdev_priv(netdev);
5167 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5168 spin_lock(&adapter->stats64_lock);
5169 e1000e_update_stats(adapter);
5170 /* Fill out the OS statistics structure */
5171 stats->rx_bytes = adapter->stats.gorc;
5172 stats->rx_packets = adapter->stats.gprc;
5173 stats->tx_bytes = adapter->stats.gotc;
5174 stats->tx_packets = adapter->stats.gptc;
5175 stats->multicast = adapter->stats.mprc;
5176 stats->collisions = adapter->stats.colc;
5181 * RLEC on some newer hardware can be incorrect so build
5182 * our own version based on RUC and ROC
5184 stats->rx_errors = adapter->stats.rxerrc +
5185 adapter->stats.crcerrs + adapter->stats.algnerrc +
5186 adapter->stats.ruc + adapter->stats.roc +
5187 adapter->stats.cexterr;
5188 stats->rx_length_errors = adapter->stats.ruc +
5190 stats->rx_crc_errors = adapter->stats.crcerrs;
5191 stats->rx_frame_errors = adapter->stats.algnerrc;
5192 stats->rx_missed_errors = adapter->stats.mpc;
5195 stats->tx_errors = adapter->stats.ecol +
5196 adapter->stats.latecol;
5197 stats->tx_aborted_errors = adapter->stats.ecol;
5198 stats->tx_window_errors = adapter->stats.latecol;
5199 stats->tx_carrier_errors = adapter->stats.tncrs;
5201 /* Tx Dropped needs to be maintained elsewhere */
5203 spin_unlock(&adapter->stats64_lock);
5208 * e1000_change_mtu - Change the Maximum Transfer Unit
5209 * @netdev: network interface device structure
5210 * @new_mtu: new value for maximum frame size
5212 * Returns 0 on success, negative on failure
5214 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5216 struct e1000_adapter *adapter = netdev_priv(netdev);
5217 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5219 /* Jumbo frame support */
5220 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5221 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5222 e_err("Jumbo Frames not supported.\n");
5226 /* Supported frame sizes */
5227 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5228 (max_frame > adapter->max_hw_frame_size)) {
5229 e_err("Unsupported MTU setting\n");
5233 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5234 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5235 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5236 (new_mtu > ETH_DATA_LEN)) {
5237 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5241 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5242 usleep_range(1000, 2000);
5243 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5244 adapter->max_frame_size = max_frame;
5245 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5246 netdev->mtu = new_mtu;
5247 if (netif_running(netdev))
5248 e1000e_down(adapter);
5251 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5252 * means we reserve 2 more, this pushes us to allocate from the next
5254 * i.e. RXBUFFER_2048 --> size-4096 slab
5255 * However with the new *_jumbo_rx* routines, jumbo receives will use
5259 if (max_frame <= 2048)
5260 adapter->rx_buffer_len = 2048;
5262 adapter->rx_buffer_len = 4096;
5264 /* adjust allocation if LPE protects us, and we aren't using SBP */
5265 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5266 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5267 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5270 if (netif_running(netdev))
5273 e1000e_reset(adapter);
5275 clear_bit(__E1000_RESETTING, &adapter->state);
5280 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5283 struct e1000_adapter *adapter = netdev_priv(netdev);
5284 struct mii_ioctl_data *data = if_mii(ifr);
5286 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5291 data->phy_id = adapter->hw.phy.addr;
5294 e1000_phy_read_status(adapter);
5296 switch (data->reg_num & 0x1F) {
5298 data->val_out = adapter->phy_regs.bmcr;
5301 data->val_out = adapter->phy_regs.bmsr;
5304 data->val_out = (adapter->hw.phy.id >> 16);
5307 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5310 data->val_out = adapter->phy_regs.advertise;
5313 data->val_out = adapter->phy_regs.lpa;
5316 data->val_out = adapter->phy_regs.expansion;
5319 data->val_out = adapter->phy_regs.ctrl1000;
5322 data->val_out = adapter->phy_regs.stat1000;
5325 data->val_out = adapter->phy_regs.estatus;
5338 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5344 return e1000_mii_ioctl(netdev, ifr, cmd);
5350 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5352 struct e1000_hw *hw = &adapter->hw;
5354 u16 phy_reg, wuc_enable;
5357 /* copy MAC RARs to PHY RARs */
5358 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5360 retval = hw->phy.ops.acquire(hw);
5362 e_err("Could not acquire PHY\n");
5366 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5367 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5371 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5372 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5373 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5374 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5375 (u16)(mac_reg & 0xFFFF));
5376 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5377 (u16)((mac_reg >> 16) & 0xFFFF));
5380 /* configure PHY Rx Control register */
5381 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5382 mac_reg = er32(RCTL);
5383 if (mac_reg & E1000_RCTL_UPE)
5384 phy_reg |= BM_RCTL_UPE;
5385 if (mac_reg & E1000_RCTL_MPE)
5386 phy_reg |= BM_RCTL_MPE;
5387 phy_reg &= ~(BM_RCTL_MO_MASK);
5388 if (mac_reg & E1000_RCTL_MO_3)
5389 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5390 << BM_RCTL_MO_SHIFT);
5391 if (mac_reg & E1000_RCTL_BAM)
5392 phy_reg |= BM_RCTL_BAM;
5393 if (mac_reg & E1000_RCTL_PMCF)
5394 phy_reg |= BM_RCTL_PMCF;
5395 mac_reg = er32(CTRL);
5396 if (mac_reg & E1000_CTRL_RFCE)
5397 phy_reg |= BM_RCTL_RFCE;
5398 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5400 /* enable PHY wakeup in MAC register */
5402 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5404 /* configure and enable PHY wakeup in PHY registers */
5405 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5406 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5408 /* activate PHY wakeup */
5409 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5410 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5412 e_err("Could not set PHY Host Wakeup bit\n");
5414 hw->phy.ops.release(hw);
5419 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5422 struct net_device *netdev = pci_get_drvdata(pdev);
5423 struct e1000_adapter *adapter = netdev_priv(netdev);
5424 struct e1000_hw *hw = &adapter->hw;
5425 u32 ctrl, ctrl_ext, rctl, status;
5426 /* Runtime suspend should only enable wakeup for link changes */
5427 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5430 netif_device_detach(netdev);
5432 if (netif_running(netdev)) {
5433 int count = E1000_CHECK_RESET_COUNT;
5435 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5436 usleep_range(10000, 20000);
5438 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5439 e1000e_down(adapter);
5440 e1000_free_irq(adapter);
5442 e1000e_reset_interrupt_capability(adapter);
5444 retval = pci_save_state(pdev);
5448 status = er32(STATUS);
5449 if (status & E1000_STATUS_LU)
5450 wufc &= ~E1000_WUFC_LNKC;
5453 e1000_setup_rctl(adapter);
5454 e1000e_set_rx_mode(netdev);
5456 /* turn on all-multi mode if wake on multicast is enabled */
5457 if (wufc & E1000_WUFC_MC) {
5459 rctl |= E1000_RCTL_MPE;
5464 /* advertise wake from D3Cold */
5465 #define E1000_CTRL_ADVD3WUC 0x00100000
5466 /* phy power management enable */
5467 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5468 ctrl |= E1000_CTRL_ADVD3WUC;
5469 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5470 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5473 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5474 adapter->hw.phy.media_type ==
5475 e1000_media_type_internal_serdes) {
5476 /* keep the laser running in D3 */
5477 ctrl_ext = er32(CTRL_EXT);
5478 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5479 ew32(CTRL_EXT, ctrl_ext);
5482 if (adapter->flags & FLAG_IS_ICH)
5483 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5485 /* Allow time for pending master requests to run */
5486 e1000e_disable_pcie_master(&adapter->hw);
5488 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5489 /* enable wakeup by the PHY */
5490 retval = e1000_init_phy_wakeup(adapter, wufc);
5494 /* enable wakeup by the MAC */
5496 ew32(WUC, E1000_WUC_PME_EN);
5503 *enable_wake = !!wufc;
5505 /* make sure adapter isn't asleep if manageability is enabled */
5506 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5507 (hw->mac.ops.check_mng_mode(hw)))
5508 *enable_wake = true;
5510 if (adapter->hw.phy.type == e1000_phy_igp_3)
5511 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5514 * Release control of h/w to f/w. If f/w is AMT enabled, this
5515 * would have already happened in close and is redundant.
5517 e1000e_release_hw_control(adapter);
5519 pci_disable_device(pdev);
5524 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5526 if (sleep && wake) {
5527 pci_prepare_to_sleep(pdev);
5531 pci_wake_from_d3(pdev, wake);
5532 pci_set_power_state(pdev, PCI_D3hot);
5535 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5538 struct net_device *netdev = pci_get_drvdata(pdev);
5539 struct e1000_adapter *adapter = netdev_priv(netdev);
5542 * The pci-e switch on some quad port adapters will report a
5543 * correctable error when the MAC transitions from D0 to D3. To
5544 * prevent this we need to mask off the correctable errors on the
5545 * downstream port of the pci-e switch.
5547 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5548 struct pci_dev *us_dev = pdev->bus->self;
5549 int pos = pci_pcie_cap(us_dev);
5552 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5553 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5554 (devctl & ~PCI_EXP_DEVCTL_CERE));
5556 e1000_power_off(pdev, sleep, wake);
5558 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5560 e1000_power_off(pdev, sleep, wake);
5564 #ifdef CONFIG_PCIEASPM
5565 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5567 pci_disable_link_state_locked(pdev, state);
5570 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5576 * Both device and parent should have the same ASPM setting.
5577 * Disable ASPM in downstream component first and then upstream.
5579 pos = pci_pcie_cap(pdev);
5580 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16);
5582 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5584 if (!pdev->bus->self)
5587 pos = pci_pcie_cap(pdev->bus->self);
5588 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16);
5590 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5593 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5595 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5596 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5597 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5599 __e1000e_disable_aspm(pdev, state);
5603 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5605 return !!adapter->tx_ring->buffer_info;
5608 static int __e1000_resume(struct pci_dev *pdev)
5610 struct net_device *netdev = pci_get_drvdata(pdev);
5611 struct e1000_adapter *adapter = netdev_priv(netdev);
5612 struct e1000_hw *hw = &adapter->hw;
5613 u16 aspm_disable_flag = 0;
5616 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5617 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5618 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5619 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5620 if (aspm_disable_flag)
5621 e1000e_disable_aspm(pdev, aspm_disable_flag);
5623 pci_set_power_state(pdev, PCI_D0);
5624 pci_restore_state(pdev);
5625 pci_save_state(pdev);
5627 e1000e_set_interrupt_capability(adapter);
5628 if (netif_running(netdev)) {
5629 err = e1000_request_irq(adapter);
5634 if (hw->mac.type >= e1000_pch2lan)
5635 e1000_resume_workarounds_pchlan(&adapter->hw);
5637 e1000e_power_up_phy(adapter);
5639 /* report the system wakeup cause from S3/S4 */
5640 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5643 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5645 e_info("PHY Wakeup cause - %s\n",
5646 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5647 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5648 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5649 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5650 phy_data & E1000_WUS_LNKC ?
5651 "Link Status Change" : "other");
5653 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5655 u32 wus = er32(WUS);
5657 e_info("MAC Wakeup cause - %s\n",
5658 wus & E1000_WUS_EX ? "Unicast Packet" :
5659 wus & E1000_WUS_MC ? "Multicast Packet" :
5660 wus & E1000_WUS_BC ? "Broadcast Packet" :
5661 wus & E1000_WUS_MAG ? "Magic Packet" :
5662 wus & E1000_WUS_LNKC ? "Link Status Change" :
5668 e1000e_reset(adapter);
5670 e1000_init_manageability_pt(adapter);
5672 if (netif_running(netdev))
5675 netif_device_attach(netdev);
5678 * If the controller has AMT, do not set DRV_LOAD until the interface
5679 * is up. For all other cases, let the f/w know that the h/w is now
5680 * under the control of the driver.
5682 if (!(adapter->flags & FLAG_HAS_AMT))
5683 e1000e_get_hw_control(adapter);
5688 #ifdef CONFIG_PM_SLEEP
5689 static int e1000_suspend(struct device *dev)
5691 struct pci_dev *pdev = to_pci_dev(dev);
5695 retval = __e1000_shutdown(pdev, &wake, false);
5697 e1000_complete_shutdown(pdev, true, wake);
5702 static int e1000_resume(struct device *dev)
5704 struct pci_dev *pdev = to_pci_dev(dev);
5705 struct net_device *netdev = pci_get_drvdata(pdev);
5706 struct e1000_adapter *adapter = netdev_priv(netdev);
5708 if (e1000e_pm_ready(adapter))
5709 adapter->idle_check = true;
5711 return __e1000_resume(pdev);
5713 #endif /* CONFIG_PM_SLEEP */
5715 #ifdef CONFIG_PM_RUNTIME
5716 static int e1000_runtime_suspend(struct device *dev)
5718 struct pci_dev *pdev = to_pci_dev(dev);
5719 struct net_device *netdev = pci_get_drvdata(pdev);
5720 struct e1000_adapter *adapter = netdev_priv(netdev);
5722 if (e1000e_pm_ready(adapter)) {
5725 __e1000_shutdown(pdev, &wake, true);
5731 static int e1000_idle(struct device *dev)
5733 struct pci_dev *pdev = to_pci_dev(dev);
5734 struct net_device *netdev = pci_get_drvdata(pdev);
5735 struct e1000_adapter *adapter = netdev_priv(netdev);
5737 if (!e1000e_pm_ready(adapter))
5740 if (adapter->idle_check) {
5741 adapter->idle_check = false;
5742 if (!e1000e_has_link(adapter))
5743 pm_schedule_suspend(dev, MSEC_PER_SEC);
5749 static int e1000_runtime_resume(struct device *dev)
5751 struct pci_dev *pdev = to_pci_dev(dev);
5752 struct net_device *netdev = pci_get_drvdata(pdev);
5753 struct e1000_adapter *adapter = netdev_priv(netdev);
5755 if (!e1000e_pm_ready(adapter))
5758 adapter->idle_check = !dev->power.runtime_auto;
5759 return __e1000_resume(pdev);
5761 #endif /* CONFIG_PM_RUNTIME */
5762 #endif /* CONFIG_PM */
5764 static void e1000_shutdown(struct pci_dev *pdev)
5768 __e1000_shutdown(pdev, &wake, false);
5770 if (system_state == SYSTEM_POWER_OFF)
5771 e1000_complete_shutdown(pdev, false, wake);
5774 #ifdef CONFIG_NET_POLL_CONTROLLER
5776 static irqreturn_t e1000_intr_msix(int irq, void *data)
5778 struct net_device *netdev = data;
5779 struct e1000_adapter *adapter = netdev_priv(netdev);
5781 if (adapter->msix_entries) {
5782 int vector, msix_irq;
5785 msix_irq = adapter->msix_entries[vector].vector;
5786 disable_irq(msix_irq);
5787 e1000_intr_msix_rx(msix_irq, netdev);
5788 enable_irq(msix_irq);
5791 msix_irq = adapter->msix_entries[vector].vector;
5792 disable_irq(msix_irq);
5793 e1000_intr_msix_tx(msix_irq, netdev);
5794 enable_irq(msix_irq);
5797 msix_irq = adapter->msix_entries[vector].vector;
5798 disable_irq(msix_irq);
5799 e1000_msix_other(msix_irq, netdev);
5800 enable_irq(msix_irq);
5807 * Polling 'interrupt' - used by things like netconsole to send skbs
5808 * without having to re-enable interrupts. It's not called while
5809 * the interrupt routine is executing.
5811 static void e1000_netpoll(struct net_device *netdev)
5813 struct e1000_adapter *adapter = netdev_priv(netdev);
5815 switch (adapter->int_mode) {
5816 case E1000E_INT_MODE_MSIX:
5817 e1000_intr_msix(adapter->pdev->irq, netdev);
5819 case E1000E_INT_MODE_MSI:
5820 disable_irq(adapter->pdev->irq);
5821 e1000_intr_msi(adapter->pdev->irq, netdev);
5822 enable_irq(adapter->pdev->irq);
5824 default: /* E1000E_INT_MODE_LEGACY */
5825 disable_irq(adapter->pdev->irq);
5826 e1000_intr(adapter->pdev->irq, netdev);
5827 enable_irq(adapter->pdev->irq);
5834 * e1000_io_error_detected - called when PCI error is detected
5835 * @pdev: Pointer to PCI device
5836 * @state: The current pci connection state
5838 * This function is called after a PCI bus error affecting
5839 * this device has been detected.
5841 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5842 pci_channel_state_t state)
5844 struct net_device *netdev = pci_get_drvdata(pdev);
5845 struct e1000_adapter *adapter = netdev_priv(netdev);
5847 netif_device_detach(netdev);
5849 if (state == pci_channel_io_perm_failure)
5850 return PCI_ERS_RESULT_DISCONNECT;
5852 if (netif_running(netdev))
5853 e1000e_down(adapter);
5854 pci_disable_device(pdev);
5856 /* Request a slot slot reset. */
5857 return PCI_ERS_RESULT_NEED_RESET;
5861 * e1000_io_slot_reset - called after the pci bus has been reset.
5862 * @pdev: Pointer to PCI device
5864 * Restart the card from scratch, as if from a cold-boot. Implementation
5865 * resembles the first-half of the e1000_resume routine.
5867 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5869 struct net_device *netdev = pci_get_drvdata(pdev);
5870 struct e1000_adapter *adapter = netdev_priv(netdev);
5871 struct e1000_hw *hw = &adapter->hw;
5872 u16 aspm_disable_flag = 0;
5874 pci_ers_result_t result;
5876 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5877 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5878 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5879 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5880 if (aspm_disable_flag)
5881 e1000e_disable_aspm(pdev, aspm_disable_flag);
5883 err = pci_enable_device_mem(pdev);
5886 "Cannot re-enable PCI device after reset.\n");
5887 result = PCI_ERS_RESULT_DISCONNECT;
5889 pci_set_master(pdev);
5890 pdev->state_saved = true;
5891 pci_restore_state(pdev);
5893 pci_enable_wake(pdev, PCI_D3hot, 0);
5894 pci_enable_wake(pdev, PCI_D3cold, 0);
5896 e1000e_reset(adapter);
5898 result = PCI_ERS_RESULT_RECOVERED;
5901 pci_cleanup_aer_uncorrect_error_status(pdev);
5907 * e1000_io_resume - called when traffic can start flowing again.
5908 * @pdev: Pointer to PCI device
5910 * This callback is called when the error recovery driver tells us that
5911 * its OK to resume normal operation. Implementation resembles the
5912 * second-half of the e1000_resume routine.
5914 static void e1000_io_resume(struct pci_dev *pdev)
5916 struct net_device *netdev = pci_get_drvdata(pdev);
5917 struct e1000_adapter *adapter = netdev_priv(netdev);
5919 e1000_init_manageability_pt(adapter);
5921 if (netif_running(netdev)) {
5922 if (e1000e_up(adapter)) {
5924 "can't bring device back up after reset\n");
5929 netif_device_attach(netdev);
5932 * If the controller has AMT, do not set DRV_LOAD until the interface
5933 * is up. For all other cases, let the f/w know that the h/w is now
5934 * under the control of the driver.
5936 if (!(adapter->flags & FLAG_HAS_AMT))
5937 e1000e_get_hw_control(adapter);
5941 static void e1000_print_device_info(struct e1000_adapter *adapter)
5943 struct e1000_hw *hw = &adapter->hw;
5944 struct net_device *netdev = adapter->netdev;
5946 u8 pba_str[E1000_PBANUM_LENGTH];
5948 /* print bus type/speed/width info */
5949 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5951 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5955 e_info("Intel(R) PRO/%s Network Connection\n",
5956 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5957 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5958 E1000_PBANUM_LENGTH);
5960 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5961 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5962 hw->mac.type, hw->phy.type, pba_str);
5965 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5967 struct e1000_hw *hw = &adapter->hw;
5971 if (hw->mac.type != e1000_82573)
5974 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5976 if (!ret_val && (!(buf & (1 << 0)))) {
5977 /* Deep Smart Power Down (DSPD) */
5978 dev_warn(&adapter->pdev->dev,
5979 "Warning: detected DSPD enabled in EEPROM\n");
5983 static int e1000_set_features(struct net_device *netdev,
5984 netdev_features_t features)
5986 struct e1000_adapter *adapter = netdev_priv(netdev);
5987 netdev_features_t changed = features ^ netdev->features;
5989 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5990 adapter->flags |= FLAG_TSO_FORCE;
5992 if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5993 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5997 if (changed & NETIF_F_RXFCS) {
5998 if (features & NETIF_F_RXFCS) {
5999 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6001 /* We need to take it back to defaults, which might mean
6002 * stripping is still disabled at the adapter level.
6004 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6005 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6007 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6011 netdev->features = features;
6013 if (netif_running(netdev))
6014 e1000e_reinit_locked(adapter);
6016 e1000e_reset(adapter);
6021 static const struct net_device_ops e1000e_netdev_ops = {
6022 .ndo_open = e1000_open,
6023 .ndo_stop = e1000_close,
6024 .ndo_start_xmit = e1000_xmit_frame,
6025 .ndo_get_stats64 = e1000e_get_stats64,
6026 .ndo_set_rx_mode = e1000e_set_rx_mode,
6027 .ndo_set_mac_address = e1000_set_mac,
6028 .ndo_change_mtu = e1000_change_mtu,
6029 .ndo_do_ioctl = e1000_ioctl,
6030 .ndo_tx_timeout = e1000_tx_timeout,
6031 .ndo_validate_addr = eth_validate_addr,
6033 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6034 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6035 #ifdef CONFIG_NET_POLL_CONTROLLER
6036 .ndo_poll_controller = e1000_netpoll,
6038 .ndo_set_features = e1000_set_features,
6042 * e1000_probe - Device Initialization Routine
6043 * @pdev: PCI device information struct
6044 * @ent: entry in e1000_pci_tbl
6046 * Returns 0 on success, negative on failure
6048 * e1000_probe initializes an adapter identified by a pci_dev structure.
6049 * The OS initialization, configuring of the adapter private structure,
6050 * and a hardware reset occur.
6052 static int __devinit e1000_probe(struct pci_dev *pdev,
6053 const struct pci_device_id *ent)
6055 struct net_device *netdev;
6056 struct e1000_adapter *adapter;
6057 struct e1000_hw *hw;
6058 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6059 resource_size_t mmio_start, mmio_len;
6060 resource_size_t flash_start, flash_len;
6061 static int cards_found;
6062 u16 aspm_disable_flag = 0;
6063 int i, err, pci_using_dac;
6064 u16 eeprom_data = 0;
6065 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6067 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6068 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6069 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6070 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6071 if (aspm_disable_flag)
6072 e1000e_disable_aspm(pdev, aspm_disable_flag);
6074 err = pci_enable_device_mem(pdev);
6079 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6081 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6085 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6087 err = dma_set_coherent_mask(&pdev->dev,
6090 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6096 err = pci_request_selected_regions_exclusive(pdev,
6097 pci_select_bars(pdev, IORESOURCE_MEM),
6098 e1000e_driver_name);
6102 /* AER (Advanced Error Reporting) hooks */
6103 pci_enable_pcie_error_reporting(pdev);
6105 pci_set_master(pdev);
6106 /* PCI config space info */
6107 err = pci_save_state(pdev);
6109 goto err_alloc_etherdev;
6112 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6114 goto err_alloc_etherdev;
6116 SET_NETDEV_DEV(netdev, &pdev->dev);
6118 netdev->irq = pdev->irq;
6120 pci_set_drvdata(pdev, netdev);
6121 adapter = netdev_priv(netdev);
6123 adapter->netdev = netdev;
6124 adapter->pdev = pdev;
6126 adapter->pba = ei->pba;
6127 adapter->flags = ei->flags;
6128 adapter->flags2 = ei->flags2;
6129 adapter->hw.adapter = adapter;
6130 adapter->hw.mac.type = ei->mac;
6131 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6132 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6134 mmio_start = pci_resource_start(pdev, 0);
6135 mmio_len = pci_resource_len(pdev, 0);
6138 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6139 if (!adapter->hw.hw_addr)
6142 if ((adapter->flags & FLAG_HAS_FLASH) &&
6143 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6144 flash_start = pci_resource_start(pdev, 1);
6145 flash_len = pci_resource_len(pdev, 1);
6146 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6147 if (!adapter->hw.flash_address)
6151 /* construct the net_device struct */
6152 netdev->netdev_ops = &e1000e_netdev_ops;
6153 e1000e_set_ethtool_ops(netdev);
6154 netdev->watchdog_timeo = 5 * HZ;
6155 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6156 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6158 netdev->mem_start = mmio_start;
6159 netdev->mem_end = mmio_start + mmio_len;
6161 adapter->bd_number = cards_found++;
6163 e1000e_check_options(adapter);
6165 /* setup adapter struct */
6166 err = e1000_sw_init(adapter);
6170 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6171 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6172 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6174 err = ei->get_variants(adapter);
6178 if ((adapter->flags & FLAG_IS_ICH) &&
6179 (adapter->flags & FLAG_READ_ONLY_NVM))
6180 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6182 hw->mac.ops.get_bus_info(&adapter->hw);
6184 adapter->hw.phy.autoneg_wait_to_complete = 0;
6186 /* Copper options */
6187 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6188 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6189 adapter->hw.phy.disable_polarity_correction = 0;
6190 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6193 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6194 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6196 /* Set initial default active device features */
6197 netdev->features = (NETIF_F_SG |
6198 NETIF_F_HW_VLAN_RX |
6199 NETIF_F_HW_VLAN_TX |
6206 /* Set user-changeable features (subset of all device features) */
6207 netdev->hw_features = netdev->features;
6208 netdev->hw_features |= NETIF_F_RXFCS;
6209 netdev->priv_flags |= IFF_SUPP_NOFCS;
6210 netdev->hw_features |= NETIF_F_RXALL;
6212 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6213 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6215 netdev->vlan_features |= (NETIF_F_SG |
6220 netdev->priv_flags |= IFF_UNICAST_FLT;
6222 if (pci_using_dac) {
6223 netdev->features |= NETIF_F_HIGHDMA;
6224 netdev->vlan_features |= NETIF_F_HIGHDMA;
6227 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6228 adapter->flags |= FLAG_MNG_PT_ENABLED;
6231 * before reading the NVM, reset the controller to
6232 * put the device in a known good starting state
6234 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6237 * systems with ASPM and others may see the checksum fail on the first
6238 * attempt. Let's give it a few tries
6241 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6244 e_err("The NVM Checksum Is Not Valid\n");
6250 e1000_eeprom_checks(adapter);
6252 /* copy the MAC address */
6253 if (e1000e_read_mac_addr(&adapter->hw))
6254 e_err("NVM Read Error while reading MAC address\n");
6256 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6257 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6259 if (!is_valid_ether_addr(netdev->perm_addr)) {
6260 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6265 init_timer(&adapter->watchdog_timer);
6266 adapter->watchdog_timer.function = e1000_watchdog;
6267 adapter->watchdog_timer.data = (unsigned long) adapter;
6269 init_timer(&adapter->phy_info_timer);
6270 adapter->phy_info_timer.function = e1000_update_phy_info;
6271 adapter->phy_info_timer.data = (unsigned long) adapter;
6273 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6274 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6275 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6276 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6277 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6279 /* Initialize link parameters. User can change them with ethtool */
6280 adapter->hw.mac.autoneg = 1;
6281 adapter->fc_autoneg = true;
6282 adapter->hw.fc.requested_mode = e1000_fc_default;
6283 adapter->hw.fc.current_mode = e1000_fc_default;
6284 adapter->hw.phy.autoneg_advertised = 0x2f;
6286 /* ring size defaults */
6287 adapter->rx_ring->count = 256;
6288 adapter->tx_ring->count = 256;
6291 * Initial Wake on LAN setting - If APM wake is enabled in
6292 * the EEPROM, enable the ACPI Magic Packet filter
6294 if (adapter->flags & FLAG_APME_IN_WUC) {
6295 /* APME bit in EEPROM is mapped to WUC.APME */
6296 eeprom_data = er32(WUC);
6297 eeprom_apme_mask = E1000_WUC_APME;
6298 if ((hw->mac.type > e1000_ich10lan) &&
6299 (eeprom_data & E1000_WUC_PHY_WAKE))
6300 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6301 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6302 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6303 (adapter->hw.bus.func == 1))
6304 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6307 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6311 /* fetch WoL from EEPROM */
6312 if (eeprom_data & eeprom_apme_mask)
6313 adapter->eeprom_wol |= E1000_WUFC_MAG;
6316 * now that we have the eeprom settings, apply the special cases
6317 * where the eeprom may be wrong or the board simply won't support
6318 * wake on lan on a particular port
6320 if (!(adapter->flags & FLAG_HAS_WOL))
6321 adapter->eeprom_wol = 0;
6323 /* initialize the wol settings based on the eeprom settings */
6324 adapter->wol = adapter->eeprom_wol;
6325 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6327 /* save off EEPROM version number */
6328 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6330 /* reset the hardware with the new settings */
6331 e1000e_reset(adapter);
6334 * If the controller has AMT, do not set DRV_LOAD until the interface
6335 * is up. For all other cases, let the f/w know that the h/w is now
6336 * under the control of the driver.
6338 if (!(adapter->flags & FLAG_HAS_AMT))
6339 e1000e_get_hw_control(adapter);
6341 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6342 err = register_netdev(netdev);
6346 /* carrier off reporting is important to ethtool even BEFORE open */
6347 netif_carrier_off(netdev);
6349 e1000_print_device_info(adapter);
6351 if (pci_dev_run_wake(pdev))
6352 pm_runtime_put_noidle(&pdev->dev);
6357 if (!(adapter->flags & FLAG_HAS_AMT))
6358 e1000e_release_hw_control(adapter);
6360 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6361 e1000_phy_hw_reset(&adapter->hw);
6363 kfree(adapter->tx_ring);
6364 kfree(adapter->rx_ring);
6366 if (adapter->hw.flash_address)
6367 iounmap(adapter->hw.flash_address);
6368 e1000e_reset_interrupt_capability(adapter);
6370 iounmap(adapter->hw.hw_addr);
6372 free_netdev(netdev);
6374 pci_release_selected_regions(pdev,
6375 pci_select_bars(pdev, IORESOURCE_MEM));
6378 pci_disable_device(pdev);
6383 * e1000_remove - Device Removal Routine
6384 * @pdev: PCI device information struct
6386 * e1000_remove is called by the PCI subsystem to alert the driver
6387 * that it should release a PCI device. The could be caused by a
6388 * Hot-Plug event, or because the driver is going to be removed from
6391 static void __devexit e1000_remove(struct pci_dev *pdev)
6393 struct net_device *netdev = pci_get_drvdata(pdev);
6394 struct e1000_adapter *adapter = netdev_priv(netdev);
6395 bool down = test_bit(__E1000_DOWN, &adapter->state);
6398 * The timers may be rescheduled, so explicitly disable them
6399 * from being rescheduled.
6402 set_bit(__E1000_DOWN, &adapter->state);
6403 del_timer_sync(&adapter->watchdog_timer);
6404 del_timer_sync(&adapter->phy_info_timer);
6406 cancel_work_sync(&adapter->reset_task);
6407 cancel_work_sync(&adapter->watchdog_task);
6408 cancel_work_sync(&adapter->downshift_task);
6409 cancel_work_sync(&adapter->update_phy_task);
6410 cancel_work_sync(&adapter->print_hang_task);
6412 if (!(netdev->flags & IFF_UP))
6413 e1000_power_down_phy(adapter);
6415 /* Don't lie to e1000_close() down the road. */
6417 clear_bit(__E1000_DOWN, &adapter->state);
6418 unregister_netdev(netdev);
6420 if (pci_dev_run_wake(pdev))
6421 pm_runtime_get_noresume(&pdev->dev);
6424 * Release control of h/w to f/w. If f/w is AMT enabled, this
6425 * would have already happened in close and is redundant.
6427 e1000e_release_hw_control(adapter);
6429 e1000e_reset_interrupt_capability(adapter);
6430 kfree(adapter->tx_ring);
6431 kfree(adapter->rx_ring);
6433 iounmap(adapter->hw.hw_addr);
6434 if (adapter->hw.flash_address)
6435 iounmap(adapter->hw.flash_address);
6436 pci_release_selected_regions(pdev,
6437 pci_select_bars(pdev, IORESOURCE_MEM));
6439 free_netdev(netdev);
6442 pci_disable_pcie_error_reporting(pdev);
6444 pci_disable_device(pdev);
6447 /* PCI Error Recovery (ERS) */
6448 static struct pci_error_handlers e1000_err_handler = {
6449 .error_detected = e1000_io_error_detected,
6450 .slot_reset = e1000_io_slot_reset,
6451 .resume = e1000_io_resume,
6454 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6455 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6456 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6457 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6458 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6459 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6460 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6461 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6462 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6466 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6467 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6468 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6470 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6471 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6472 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6475 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6479 board_80003es2lan },
6480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6481 board_80003es2lan },
6482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6483 board_80003es2lan },
6484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6485 board_80003es2lan },
6487 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6493 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6494 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6496 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6498 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6500 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6503 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6525 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6527 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6530 static const struct dev_pm_ops e1000_pm_ops = {
6531 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6532 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6533 e1000_runtime_resume, e1000_idle)
6537 /* PCI Device API Driver */
6538 static struct pci_driver e1000_driver = {
6539 .name = e1000e_driver_name,
6540 .id_table = e1000_pci_tbl,
6541 .probe = e1000_probe,
6542 .remove = __devexit_p(e1000_remove),
6545 .pm = &e1000_pm_ops,
6548 .shutdown = e1000_shutdown,
6549 .err_handler = &e1000_err_handler
6553 * e1000_init_module - Driver Registration Routine
6555 * e1000_init_module is the first routine called when the driver is
6556 * loaded. All it does is register with the PCI subsystem.
6558 static int __init e1000_init_module(void)
6561 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6562 e1000e_driver_version);
6563 pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6564 ret = pci_register_driver(&e1000_driver);
6568 module_init(e1000_init_module);
6571 * e1000_exit_module - Driver Exit Cleanup Routine
6573 * e1000_exit_module is called just before the driver is removed
6576 static void __exit e1000_exit_module(void)
6578 pci_unregister_driver(&e1000_driver);
6580 module_exit(e1000_exit_module);
6583 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6584 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6585 MODULE_LICENSE("GPL");
6586 MODULE_VERSION(DRV_VERSION);