net: add skb_[inner_]tcp_all_headers helpers
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
29
30 #include "e1000.h"
31
32 char e1000e_driver_name[] = "e1000e";
33
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35 static int debug = -1;
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39 static const struct e1000_info *e1000_info_tbl[] = {
40         [board_82571]           = &e1000_82571_info,
41         [board_82572]           = &e1000_82572_info,
42         [board_82573]           = &e1000_82573_info,
43         [board_82574]           = &e1000_82574_info,
44         [board_82583]           = &e1000_82583_info,
45         [board_80003es2lan]     = &e1000_es2_info,
46         [board_ich8lan]         = &e1000_ich8_info,
47         [board_ich9lan]         = &e1000_ich9_info,
48         [board_ich10lan]        = &e1000_ich10_info,
49         [board_pchlan]          = &e1000_pch_info,
50         [board_pch2lan]         = &e1000_pch2_info,
51         [board_pch_lpt]         = &e1000_pch_lpt_info,
52         [board_pch_spt]         = &e1000_pch_spt_info,
53         [board_pch_cnp]         = &e1000_pch_cnp_info,
54         [board_pch_tgp]         = &e1000_pch_tgp_info,
55         [board_pch_adp]         = &e1000_pch_adp_info,
56 };
57
58 struct e1000_reg_info {
59         u32 ofs;
60         char *name;
61 };
62
63 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
64         /* General Registers */
65         {E1000_CTRL, "CTRL"},
66         {E1000_STATUS, "STATUS"},
67         {E1000_CTRL_EXT, "CTRL_EXT"},
68
69         /* Interrupt Registers */
70         {E1000_ICR, "ICR"},
71
72         /* Rx Registers */
73         {E1000_RCTL, "RCTL"},
74         {E1000_RDLEN(0), "RDLEN"},
75         {E1000_RDH(0), "RDH"},
76         {E1000_RDT(0), "RDT"},
77         {E1000_RDTR, "RDTR"},
78         {E1000_RXDCTL(0), "RXDCTL"},
79         {E1000_ERT, "ERT"},
80         {E1000_RDBAL(0), "RDBAL"},
81         {E1000_RDBAH(0), "RDBAH"},
82         {E1000_RDFH, "RDFH"},
83         {E1000_RDFT, "RDFT"},
84         {E1000_RDFHS, "RDFHS"},
85         {E1000_RDFTS, "RDFTS"},
86         {E1000_RDFPC, "RDFPC"},
87
88         /* Tx Registers */
89         {E1000_TCTL, "TCTL"},
90         {E1000_TDBAL(0), "TDBAL"},
91         {E1000_TDBAH(0), "TDBAH"},
92         {E1000_TDLEN(0), "TDLEN"},
93         {E1000_TDH(0), "TDH"},
94         {E1000_TDT(0), "TDT"},
95         {E1000_TIDV, "TIDV"},
96         {E1000_TXDCTL(0), "TXDCTL"},
97         {E1000_TADV, "TADV"},
98         {E1000_TARC(0), "TARC"},
99         {E1000_TDFH, "TDFH"},
100         {E1000_TDFT, "TDFT"},
101         {E1000_TDFHS, "TDFHS"},
102         {E1000_TDFTS, "TDFTS"},
103         {E1000_TDFPC, "TDFPC"},
104
105         /* List Terminator */
106         {0, NULL}
107 };
108
109 /**
110  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
111  * @hw: pointer to the HW structure
112  *
113  * When updating the MAC CSR registers, the Manageability Engine (ME) could
114  * be accessing the registers at the same time.  Normally, this is handled in
115  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
116  * accesses later than it should which could result in the register to have
117  * an incorrect value.  Workaround this by checking the FWSM register which
118  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
119  * and try again a number of times.
120  **/
121 static void __ew32_prepare(struct e1000_hw *hw)
122 {
123         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
124
125         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
126                 udelay(50);
127 }
128
129 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
130 {
131         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
132                 __ew32_prepare(hw);
133
134         writel(val, hw->hw_addr + reg);
135 }
136
137 /**
138  * e1000_regdump - register printout routine
139  * @hw: pointer to the HW structure
140  * @reginfo: pointer to the register info table
141  **/
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 pr_info("%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
169 }
170
171 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
172                                  struct e1000_buffer *bi)
173 {
174         int i;
175         struct e1000_ps_page *ps_page;
176
177         for (i = 0; i < adapter->rx_ps_pages; i++) {
178                 ps_page = &bi->ps_pages[i];
179
180                 if (ps_page->page) {
181                         pr_info("packet dump for ps_page %d:\n", i);
182                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
183                                        16, 1, page_address(ps_page->page),
184                                        PAGE_SIZE, true);
185                 }
186         }
187 }
188
189 /**
190  * e1000e_dump - Print registers, Tx-ring and Rx-ring
191  * @adapter: board private structure
192  **/
193 static void e1000e_dump(struct e1000_adapter *adapter)
194 {
195         struct net_device *netdev = adapter->netdev;
196         struct e1000_hw *hw = &adapter->hw;
197         struct e1000_reg_info *reginfo;
198         struct e1000_ring *tx_ring = adapter->tx_ring;
199         struct e1000_tx_desc *tx_desc;
200         struct my_u0 {
201                 __le64 a;
202                 __le64 b;
203         } *u0;
204         struct e1000_buffer *buffer_info;
205         struct e1000_ring *rx_ring = adapter->rx_ring;
206         union e1000_rx_desc_packet_split *rx_desc_ps;
207         union e1000_rx_desc_extended *rx_desc;
208         struct my_u1 {
209                 __le64 a;
210                 __le64 b;
211                 __le64 c;
212                 __le64 d;
213         } *u1;
214         u32 staterr;
215         int i = 0;
216
217         if (!netif_msg_hw(adapter))
218                 return;
219
220         /* Print netdevice Info */
221         if (netdev) {
222                 dev_info(&adapter->pdev->dev, "Net device Info\n");
223                 pr_info("Device Name     state            trans_start\n");
224                 pr_info("%-15s %016lX %016lX\n", netdev->name,
225                         netdev->state, dev_trans_start(netdev));
226         }
227
228         /* Print Registers */
229         dev_info(&adapter->pdev->dev, "Register Dump\n");
230         pr_info(" Register Name   Value\n");
231         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
232              reginfo->name; reginfo++) {
233                 e1000_regdump(hw, reginfo);
234         }
235
236         /* Print Tx Ring Summary */
237         if (!netdev || !netif_running(netdev))
238                 return;
239
240         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
241         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
242         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
243         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
244                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
245                 (unsigned long long)buffer_info->dma,
246                 buffer_info->length,
247                 buffer_info->next_to_watch,
248                 (unsigned long long)buffer_info->time_stamp);
249
250         /* Print Tx Ring */
251         if (!netif_msg_tx_done(adapter))
252                 goto rx_ring_summary;
253
254         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
255
256         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
257          *
258          * Legacy Transmit Descriptor
259          *   +--------------------------------------------------------------+
260          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
261          *   +--------------------------------------------------------------+
262          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
263          *   +--------------------------------------------------------------+
264          *   63       48 47        36 35    32 31     24 23    16 15        0
265          *
266          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
267          *   63      48 47    40 39       32 31             16 15    8 7      0
268          *   +----------------------------------------------------------------+
269          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
270          *   +----------------------------------------------------------------+
271          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
272          *   +----------------------------------------------------------------+
273          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
274          *
275          * Extended Data Descriptor (DTYP=0x1)
276          *   +----------------------------------------------------------------+
277          * 0 |                     Buffer Address [63:0]                      |
278          *   +----------------------------------------------------------------+
279          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
280          *   +----------------------------------------------------------------+
281          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
282          */
283         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
284         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
285         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
286         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
287                 const char *next_desc;
288                 tx_desc = E1000_TX_DESC(*tx_ring, i);
289                 buffer_info = &tx_ring->buffer_info[i];
290                 u0 = (struct my_u0 *)tx_desc;
291                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
292                         next_desc = " NTC/U";
293                 else if (i == tx_ring->next_to_use)
294                         next_desc = " NTU";
295                 else if (i == tx_ring->next_to_clean)
296                         next_desc = " NTC";
297                 else
298                         next_desc = "";
299                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
300                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
301                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
302                         i,
303                         (unsigned long long)le64_to_cpu(u0->a),
304                         (unsigned long long)le64_to_cpu(u0->b),
305                         (unsigned long long)buffer_info->dma,
306                         buffer_info->length, buffer_info->next_to_watch,
307                         (unsigned long long)buffer_info->time_stamp,
308                         buffer_info->skb, next_desc);
309
310                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
311                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
312                                        16, 1, buffer_info->skb->data,
313                                        buffer_info->skb->len, true);
314         }
315
316         /* Print Rx Ring Summary */
317 rx_ring_summary:
318         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
319         pr_info("Queue [NTU] [NTC]\n");
320         pr_info(" %5d %5X %5X\n",
321                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
322
323         /* Print Rx Ring */
324         if (!netif_msg_rx_status(adapter))
325                 return;
326
327         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
328         switch (adapter->rx_ps_pages) {
329         case 1:
330         case 2:
331         case 3:
332                 /* [Extended] Packet Split Receive Descriptor Format
333                  *
334                  *    +-----------------------------------------------------+
335                  *  0 |                Buffer Address 0 [63:0]              |
336                  *    +-----------------------------------------------------+
337                  *  8 |                Buffer Address 1 [63:0]              |
338                  *    +-----------------------------------------------------+
339                  * 16 |                Buffer Address 2 [63:0]              |
340                  *    +-----------------------------------------------------+
341                  * 24 |                Buffer Address 3 [63:0]              |
342                  *    +-----------------------------------------------------+
343                  */
344                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
345                 /* [Extended] Receive Descriptor (Write-Back) Format
346                  *
347                  *   63       48 47    32 31     13 12    8 7    4 3        0
348                  *   +------------------------------------------------------+
349                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
350                  *   | Checksum | Ident  |         | Queue |      |  Type   |
351                  *   +------------------------------------------------------+
352                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
353                  *   +------------------------------------------------------+
354                  *   63       48 47    32 31            20 19               0
355                  */
356                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
357                 for (i = 0; i < rx_ring->count; i++) {
358                         const char *next_desc;
359                         buffer_info = &rx_ring->buffer_info[i];
360                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
361                         u1 = (struct my_u1 *)rx_desc_ps;
362                         staterr =
363                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
364
365                         if (i == rx_ring->next_to_use)
366                                 next_desc = " NTU";
367                         else if (i == rx_ring->next_to_clean)
368                                 next_desc = " NTC";
369                         else
370                                 next_desc = "";
371
372                         if (staterr & E1000_RXD_STAT_DD) {
373                                 /* Descriptor Done */
374                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
375                                         "RWB", i,
376                                         (unsigned long long)le64_to_cpu(u1->a),
377                                         (unsigned long long)le64_to_cpu(u1->b),
378                                         (unsigned long long)le64_to_cpu(u1->c),
379                                         (unsigned long long)le64_to_cpu(u1->d),
380                                         buffer_info->skb, next_desc);
381                         } else {
382                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
383                                         "R  ", i,
384                                         (unsigned long long)le64_to_cpu(u1->a),
385                                         (unsigned long long)le64_to_cpu(u1->b),
386                                         (unsigned long long)le64_to_cpu(u1->c),
387                                         (unsigned long long)le64_to_cpu(u1->d),
388                                         (unsigned long long)buffer_info->dma,
389                                         buffer_info->skb, next_desc);
390
391                                 if (netif_msg_pktdata(adapter))
392                                         e1000e_dump_ps_pages(adapter,
393                                                              buffer_info);
394                         }
395                 }
396                 break;
397         default:
398         case 0:
399                 /* Extended Receive Descriptor (Read) Format
400                  *
401                  *   +-----------------------------------------------------+
402                  * 0 |                Buffer Address [63:0]                |
403                  *   +-----------------------------------------------------+
404                  * 8 |                      Reserved                       |
405                  *   +-----------------------------------------------------+
406                  */
407                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
408                 /* Extended Receive Descriptor (Write-Back) Format
409                  *
410                  *   63       48 47    32 31    24 23            4 3        0
411                  *   +------------------------------------------------------+
412                  *   |     RSS Hash      |        |               |         |
413                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
414                  *   | Packet   | IP     |        |               |  Type   |
415                  *   | Checksum | Ident  |        |               |         |
416                  *   +------------------------------------------------------+
417                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
418                  *   +------------------------------------------------------+
419                  *   63       48 47    32 31            20 19               0
420                  */
421                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
422
423                 for (i = 0; i < rx_ring->count; i++) {
424                         const char *next_desc;
425
426                         buffer_info = &rx_ring->buffer_info[i];
427                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
428                         u1 = (struct my_u1 *)rx_desc;
429                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
430
431                         if (i == rx_ring->next_to_use)
432                                 next_desc = " NTU";
433                         else if (i == rx_ring->next_to_clean)
434                                 next_desc = " NTC";
435                         else
436                                 next_desc = "";
437
438                         if (staterr & E1000_RXD_STAT_DD) {
439                                 /* Descriptor Done */
440                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
441                                         "RWB", i,
442                                         (unsigned long long)le64_to_cpu(u1->a),
443                                         (unsigned long long)le64_to_cpu(u1->b),
444                                         buffer_info->skb, next_desc);
445                         } else {
446                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
447                                         "R  ", i,
448                                         (unsigned long long)le64_to_cpu(u1->a),
449                                         (unsigned long long)le64_to_cpu(u1->b),
450                                         (unsigned long long)buffer_info->dma,
451                                         buffer_info->skb, next_desc);
452
453                                 if (netif_msg_pktdata(adapter) &&
454                                     buffer_info->skb)
455                                         print_hex_dump(KERN_INFO, "",
456                                                        DUMP_PREFIX_ADDRESS, 16,
457                                                        1,
458                                                        buffer_info->skb->data,
459                                                        adapter->rx_buffer_len,
460                                                        true);
461                         }
462                 }
463         }
464 }
465
466 /**
467  * e1000_desc_unused - calculate if we have unused descriptors
468  * @ring: pointer to ring struct to perform calculation on
469  **/
470 static int e1000_desc_unused(struct e1000_ring *ring)
471 {
472         if (ring->next_to_clean > ring->next_to_use)
473                 return ring->next_to_clean - ring->next_to_use - 1;
474
475         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 }
477
478 /**
479  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480  * @adapter: board private structure
481  * @hwtstamps: time stamp structure to update
482  * @systim: unsigned 64bit system time value.
483  *
484  * Convert the system time value stored in the RX/TXSTMP registers into a
485  * hwtstamp which can be used by the upper level time stamping functions.
486  *
487  * The 'systim_lock' spinlock is used to protect the consistency of the
488  * system time value. This is needed because reading the 64 bit time
489  * value involves reading two 32 bit registers. The first read latches the
490  * value.
491  **/
492 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493                                       struct skb_shared_hwtstamps *hwtstamps,
494                                       u64 systim)
495 {
496         u64 ns;
497         unsigned long flags;
498
499         spin_lock_irqsave(&adapter->systim_lock, flags);
500         ns = timecounter_cyc2time(&adapter->tc, systim);
501         spin_unlock_irqrestore(&adapter->systim_lock, flags);
502
503         memset(hwtstamps, 0, sizeof(*hwtstamps));
504         hwtstamps->hwtstamp = ns_to_ktime(ns);
505 }
506
507 /**
508  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509  * @adapter: board private structure
510  * @status: descriptor extended error and status field
511  * @skb: particular skb to include time stamp
512  *
513  * If the time stamp is valid, convert it into the timecounter ns value
514  * and store that result into the shhwtstamps structure which is passed
515  * up the network stack.
516  **/
517 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518                                struct sk_buff *skb)
519 {
520         struct e1000_hw *hw = &adapter->hw;
521         u64 rxstmp;
522
523         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524             !(status & E1000_RXDEXT_STATERR_TST) ||
525             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526                 return;
527
528         /* The Rx time stamp registers contain the time stamp.  No other
529          * received packet will be time stamped until the Rx time stamp
530          * registers are read.  Because only one packet can be time stamped
531          * at a time, the register values must belong to this packet and
532          * therefore none of the other additional attributes need to be
533          * compared.
534          */
535         rxstmp = (u64)er32(RXSTMPL);
536         rxstmp |= (u64)er32(RXSTMPH) << 32;
537         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538
539         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 }
541
542 /**
543  * e1000_receive_skb - helper function to handle Rx indications
544  * @adapter: board private structure
545  * @netdev: pointer to netdev struct
546  * @staterr: descriptor extended error and status field as written by hardware
547  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
548  * @skb: pointer to sk_buff to be indicated to stack
549  **/
550 static void e1000_receive_skb(struct e1000_adapter *adapter,
551                               struct net_device *netdev, struct sk_buff *skb,
552                               u32 staterr, __le16 vlan)
553 {
554         u16 tag = le16_to_cpu(vlan);
555
556         e1000e_rx_hwtstamp(adapter, staterr, skb);
557
558         skb->protocol = eth_type_trans(skb, netdev);
559
560         if (staterr & E1000_RXD_STAT_VP)
561                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
562
563         napi_gro_receive(&adapter->napi, skb);
564 }
565
566 /**
567  * e1000_rx_checksum - Receive Checksum Offload
568  * @adapter: board private structure
569  * @status_err: receive descriptor status and error fields
570  * @skb: socket buffer with received data
571  **/
572 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
573                               struct sk_buff *skb)
574 {
575         u16 status = (u16)status_err;
576         u8 errors = (u8)(status_err >> 24);
577
578         skb_checksum_none_assert(skb);
579
580         /* Rx checksum disabled */
581         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582                 return;
583
584         /* Ignore Checksum bit is set */
585         if (status & E1000_RXD_STAT_IXSM)
586                 return;
587
588         /* TCP/UDP checksum error bit or IP checksum error bit is set */
589         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
590                 /* let the stack verify checksum errors */
591                 adapter->hw_csum_err++;
592                 return;
593         }
594
595         /* TCP/UDP Checksum has not been calculated */
596         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597                 return;
598
599         /* It must be a TCP or UDP packet with a valid checksum */
600         skb->ip_summed = CHECKSUM_UNNECESSARY;
601         adapter->hw_csum_good++;
602 }
603
604 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
605 {
606         struct e1000_adapter *adapter = rx_ring->adapter;
607         struct e1000_hw *hw = &adapter->hw;
608
609         __ew32_prepare(hw);
610         writel(i, rx_ring->tail);
611
612         if (unlikely(i != readl(rx_ring->tail))) {
613                 u32 rctl = er32(RCTL);
614
615                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
616                 e_err("ME firmware caused invalid RDT - resetting\n");
617                 schedule_work(&adapter->reset_task);
618         }
619 }
620
621 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
622 {
623         struct e1000_adapter *adapter = tx_ring->adapter;
624         struct e1000_hw *hw = &adapter->hw;
625
626         __ew32_prepare(hw);
627         writel(i, tx_ring->tail);
628
629         if (unlikely(i != readl(tx_ring->tail))) {
630                 u32 tctl = er32(TCTL);
631
632                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
633                 e_err("ME firmware caused invalid TDT - resetting\n");
634                 schedule_work(&adapter->reset_task);
635         }
636 }
637
638 /**
639  * e1000_alloc_rx_buffers - Replace used receive buffers
640  * @rx_ring: Rx descriptor ring
641  * @cleaned_count: number to reallocate
642  * @gfp: flags for allocation
643  **/
644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645                                    int cleaned_count, gfp_t gfp)
646 {
647         struct e1000_adapter *adapter = rx_ring->adapter;
648         struct net_device *netdev = adapter->netdev;
649         struct pci_dev *pdev = adapter->pdev;
650         union e1000_rx_desc_extended *rx_desc;
651         struct e1000_buffer *buffer_info;
652         struct sk_buff *skb;
653         unsigned int i;
654         unsigned int bufsz = adapter->rx_buffer_len;
655
656         i = rx_ring->next_to_use;
657         buffer_info = &rx_ring->buffer_info[i];
658
659         while (cleaned_count--) {
660                 skb = buffer_info->skb;
661                 if (skb) {
662                         skb_trim(skb, 0);
663                         goto map_skb;
664                 }
665
666                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667                 if (!skb) {
668                         /* Better luck next round */
669                         adapter->alloc_rx_buff_failed++;
670                         break;
671                 }
672
673                 buffer_info->skb = skb;
674 map_skb:
675                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676                                                   adapter->rx_buffer_len,
677                                                   DMA_FROM_DEVICE);
678                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679                         dev_err(&pdev->dev, "Rx DMA map failed\n");
680                         adapter->rx_dma_failed++;
681                         break;
682                 }
683
684                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
686
687                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688                         /* Force memory writes to complete before letting h/w
689                          * know there are new descriptors to fetch.  (Only
690                          * applicable for weak-ordered memory model archs,
691                          * such as IA-64).
692                          */
693                         wmb();
694                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695                                 e1000e_update_rdt_wa(rx_ring, i);
696                         else
697                                 writel(i, rx_ring->tail);
698                 }
699                 i++;
700                 if (i == rx_ring->count)
701                         i = 0;
702                 buffer_info = &rx_ring->buffer_info[i];
703         }
704
705         rx_ring->next_to_use = i;
706 }
707
708 /**
709  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710  * @rx_ring: Rx descriptor ring
711  * @cleaned_count: number to reallocate
712  * @gfp: flags for allocation
713  **/
714 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
715                                       int cleaned_count, gfp_t gfp)
716 {
717         struct e1000_adapter *adapter = rx_ring->adapter;
718         struct net_device *netdev = adapter->netdev;
719         struct pci_dev *pdev = adapter->pdev;
720         union e1000_rx_desc_packet_split *rx_desc;
721         struct e1000_buffer *buffer_info;
722         struct e1000_ps_page *ps_page;
723         struct sk_buff *skb;
724         unsigned int i, j;
725
726         i = rx_ring->next_to_use;
727         buffer_info = &rx_ring->buffer_info[i];
728
729         while (cleaned_count--) {
730                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731
732                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
733                         ps_page = &buffer_info->ps_pages[j];
734                         if (j >= adapter->rx_ps_pages) {
735                                 /* all unused desc entries get hw null ptr */
736                                 rx_desc->read.buffer_addr[j + 1] =
737                                     ~cpu_to_le64(0);
738                                 continue;
739                         }
740                         if (!ps_page->page) {
741                                 ps_page->page = alloc_page(gfp);
742                                 if (!ps_page->page) {
743                                         adapter->alloc_rx_buff_failed++;
744                                         goto no_buffers;
745                                 }
746                                 ps_page->dma = dma_map_page(&pdev->dev,
747                                                             ps_page->page,
748                                                             0, PAGE_SIZE,
749                                                             DMA_FROM_DEVICE);
750                                 if (dma_mapping_error(&pdev->dev,
751                                                       ps_page->dma)) {
752                                         dev_err(&adapter->pdev->dev,
753                                                 "Rx DMA page map failed\n");
754                                         adapter->rx_dma_failed++;
755                                         goto no_buffers;
756                                 }
757                         }
758                         /* Refresh the desc even if buffer_addrs
759                          * didn't change because each write-back
760                          * erases this info.
761                          */
762                         rx_desc->read.buffer_addr[j + 1] =
763                             cpu_to_le64(ps_page->dma);
764                 }
765
766                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
767                                                   gfp);
768
769                 if (!skb) {
770                         adapter->alloc_rx_buff_failed++;
771                         break;
772                 }
773
774                 buffer_info->skb = skb;
775                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
776                                                   adapter->rx_ps_bsize0,
777                                                   DMA_FROM_DEVICE);
778                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
779                         dev_err(&pdev->dev, "Rx DMA map failed\n");
780                         adapter->rx_dma_failed++;
781                         /* cleanup skb */
782                         dev_kfree_skb_any(skb);
783                         buffer_info->skb = NULL;
784                         break;
785                 }
786
787                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
788
789                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
790                         /* Force memory writes to complete before letting h/w
791                          * know there are new descriptors to fetch.  (Only
792                          * applicable for weak-ordered memory model archs,
793                          * such as IA-64).
794                          */
795                         wmb();
796                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
797                                 e1000e_update_rdt_wa(rx_ring, i << 1);
798                         else
799                                 writel(i << 1, rx_ring->tail);
800                 }
801
802                 i++;
803                 if (i == rx_ring->count)
804                         i = 0;
805                 buffer_info = &rx_ring->buffer_info[i];
806         }
807
808 no_buffers:
809         rx_ring->next_to_use = i;
810 }
811
812 /**
813  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
814  * @rx_ring: Rx descriptor ring
815  * @cleaned_count: number of buffers to allocate this pass
816  * @gfp: flags for allocation
817  **/
818
819 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
820                                          int cleaned_count, gfp_t gfp)
821 {
822         struct e1000_adapter *adapter = rx_ring->adapter;
823         struct net_device *netdev = adapter->netdev;
824         struct pci_dev *pdev = adapter->pdev;
825         union e1000_rx_desc_extended *rx_desc;
826         struct e1000_buffer *buffer_info;
827         struct sk_buff *skb;
828         unsigned int i;
829         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
830
831         i = rx_ring->next_to_use;
832         buffer_info = &rx_ring->buffer_info[i];
833
834         while (cleaned_count--) {
835                 skb = buffer_info->skb;
836                 if (skb) {
837                         skb_trim(skb, 0);
838                         goto check_page;
839                 }
840
841                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
842                 if (unlikely(!skb)) {
843                         /* Better luck next round */
844                         adapter->alloc_rx_buff_failed++;
845                         break;
846                 }
847
848                 buffer_info->skb = skb;
849 check_page:
850                 /* allocate a new page if necessary */
851                 if (!buffer_info->page) {
852                         buffer_info->page = alloc_page(gfp);
853                         if (unlikely(!buffer_info->page)) {
854                                 adapter->alloc_rx_buff_failed++;
855                                 break;
856                         }
857                 }
858
859                 if (!buffer_info->dma) {
860                         buffer_info->dma = dma_map_page(&pdev->dev,
861                                                         buffer_info->page, 0,
862                                                         PAGE_SIZE,
863                                                         DMA_FROM_DEVICE);
864                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
865                                 adapter->alloc_rx_buff_failed++;
866                                 break;
867                         }
868                 }
869
870                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
871                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
872
873                 if (unlikely(++i == rx_ring->count))
874                         i = 0;
875                 buffer_info = &rx_ring->buffer_info[i];
876         }
877
878         if (likely(rx_ring->next_to_use != i)) {
879                 rx_ring->next_to_use = i;
880                 if (unlikely(i-- == 0))
881                         i = (rx_ring->count - 1);
882
883                 /* Force memory writes to complete before letting h/w
884                  * know there are new descriptors to fetch.  (Only
885                  * applicable for weak-ordered memory model archs,
886                  * such as IA-64).
887                  */
888                 wmb();
889                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
890                         e1000e_update_rdt_wa(rx_ring, i);
891                 else
892                         writel(i, rx_ring->tail);
893         }
894 }
895
896 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
897                                  struct sk_buff *skb)
898 {
899         if (netdev->features & NETIF_F_RXHASH)
900                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
901 }
902
903 /**
904  * e1000_clean_rx_irq - Send received data up the network stack
905  * @rx_ring: Rx descriptor ring
906  * @work_done: output parameter for indicating completed work
907  * @work_to_do: how many packets we can clean
908  *
909  * the return value indicates whether actual cleaning was done, there
910  * is no guarantee that everything was cleaned
911  **/
912 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
913                                int work_to_do)
914 {
915         struct e1000_adapter *adapter = rx_ring->adapter;
916         struct net_device *netdev = adapter->netdev;
917         struct pci_dev *pdev = adapter->pdev;
918         struct e1000_hw *hw = &adapter->hw;
919         union e1000_rx_desc_extended *rx_desc, *next_rxd;
920         struct e1000_buffer *buffer_info, *next_buffer;
921         u32 length, staterr;
922         unsigned int i;
923         int cleaned_count = 0;
924         bool cleaned = false;
925         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
926
927         i = rx_ring->next_to_clean;
928         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
929         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
930         buffer_info = &rx_ring->buffer_info[i];
931
932         while (staterr & E1000_RXD_STAT_DD) {
933                 struct sk_buff *skb;
934
935                 if (*work_done >= work_to_do)
936                         break;
937                 (*work_done)++;
938                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
939
940                 skb = buffer_info->skb;
941                 buffer_info->skb = NULL;
942
943                 prefetch(skb->data - NET_IP_ALIGN);
944
945                 i++;
946                 if (i == rx_ring->count)
947                         i = 0;
948                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
949                 prefetch(next_rxd);
950
951                 next_buffer = &rx_ring->buffer_info[i];
952
953                 cleaned = true;
954                 cleaned_count++;
955                 dma_unmap_single(&pdev->dev, buffer_info->dma,
956                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
957                 buffer_info->dma = 0;
958
959                 length = le16_to_cpu(rx_desc->wb.upper.length);
960
961                 /* !EOP means multiple descriptors were used to store a single
962                  * packet, if that's the case we need to toss it.  In fact, we
963                  * need to toss every packet with the EOP bit clear and the
964                  * next frame that _does_ have the EOP bit set, as it is by
965                  * definition only a frame fragment
966                  */
967                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
968                         adapter->flags2 |= FLAG2_IS_DISCARDING;
969
970                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
971                         /* All receives must fit into a single buffer */
972                         e_dbg("Receive packet consumed multiple buffers\n");
973                         /* recycle */
974                         buffer_info->skb = skb;
975                         if (staterr & E1000_RXD_STAT_EOP)
976                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
977                         goto next_desc;
978                 }
979
980                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
981                              !(netdev->features & NETIF_F_RXALL))) {
982                         /* recycle */
983                         buffer_info->skb = skb;
984                         goto next_desc;
985                 }
986
987                 /* adjust length to remove Ethernet CRC */
988                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
989                         /* If configured to store CRC, don't subtract FCS,
990                          * but keep the FCS bytes out of the total_rx_bytes
991                          * counter
992                          */
993                         if (netdev->features & NETIF_F_RXFCS)
994                                 total_rx_bytes -= 4;
995                         else
996                                 length -= 4;
997                 }
998
999                 total_rx_bytes += length;
1000                 total_rx_packets++;
1001
1002                 /* code added for copybreak, this should improve
1003                  * performance for small packets with large amounts
1004                  * of reassembly being done in the stack
1005                  */
1006                 if (length < copybreak) {
1007                         struct sk_buff *new_skb =
1008                                 napi_alloc_skb(&adapter->napi, length);
1009                         if (new_skb) {
1010                                 skb_copy_to_linear_data_offset(new_skb,
1011                                                                -NET_IP_ALIGN,
1012                                                                (skb->data -
1013                                                                 NET_IP_ALIGN),
1014                                                                (length +
1015                                                                 NET_IP_ALIGN));
1016                                 /* save the skb in buffer_info as good */
1017                                 buffer_info->skb = skb;
1018                                 skb = new_skb;
1019                         }
1020                         /* else just continue with the old one */
1021                 }
1022                 /* end copybreak code */
1023                 skb_put(skb, length);
1024
1025                 /* Receive Checksum Offload */
1026                 e1000_rx_checksum(adapter, staterr, skb);
1027
1028                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1029
1030                 e1000_receive_skb(adapter, netdev, skb, staterr,
1031                                   rx_desc->wb.upper.vlan);
1032
1033 next_desc:
1034                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1035
1036                 /* return some buffers to hardware, one at a time is too slow */
1037                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1038                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1039                                               GFP_ATOMIC);
1040                         cleaned_count = 0;
1041                 }
1042
1043                 /* use prefetched values */
1044                 rx_desc = next_rxd;
1045                 buffer_info = next_buffer;
1046
1047                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1048         }
1049         rx_ring->next_to_clean = i;
1050
1051         cleaned_count = e1000_desc_unused(rx_ring);
1052         if (cleaned_count)
1053                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1054
1055         adapter->total_rx_bytes += total_rx_bytes;
1056         adapter->total_rx_packets += total_rx_packets;
1057         return cleaned;
1058 }
1059
1060 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1061                             struct e1000_buffer *buffer_info,
1062                             bool drop)
1063 {
1064         struct e1000_adapter *adapter = tx_ring->adapter;
1065
1066         if (buffer_info->dma) {
1067                 if (buffer_info->mapped_as_page)
1068                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1069                                        buffer_info->length, DMA_TO_DEVICE);
1070                 else
1071                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1072                                          buffer_info->length, DMA_TO_DEVICE);
1073                 buffer_info->dma = 0;
1074         }
1075         if (buffer_info->skb) {
1076                 if (drop)
1077                         dev_kfree_skb_any(buffer_info->skb);
1078                 else
1079                         dev_consume_skb_any(buffer_info->skb);
1080                 buffer_info->skb = NULL;
1081         }
1082         buffer_info->time_stamp = 0;
1083 }
1084
1085 static void e1000_print_hw_hang(struct work_struct *work)
1086 {
1087         struct e1000_adapter *adapter = container_of(work,
1088                                                      struct e1000_adapter,
1089                                                      print_hang_task);
1090         struct net_device *netdev = adapter->netdev;
1091         struct e1000_ring *tx_ring = adapter->tx_ring;
1092         unsigned int i = tx_ring->next_to_clean;
1093         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1094         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1095         struct e1000_hw *hw = &adapter->hw;
1096         u16 phy_status, phy_1000t_status, phy_ext_status;
1097         u16 pci_status;
1098
1099         if (test_bit(__E1000_DOWN, &adapter->state))
1100                 return;
1101
1102         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1103                 /* May be block on write-back, flush and detect again
1104                  * flush pending descriptor writebacks to memory
1105                  */
1106                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1107                 /* execute the writes immediately */
1108                 e1e_flush();
1109                 /* Due to rare timing issues, write to TIDV again to ensure
1110                  * the write is successful
1111                  */
1112                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1113                 /* execute the writes immediately */
1114                 e1e_flush();
1115                 adapter->tx_hang_recheck = true;
1116                 return;
1117         }
1118         adapter->tx_hang_recheck = false;
1119
1120         if (er32(TDH(0)) == er32(TDT(0))) {
1121                 e_dbg("false hang detected, ignoring\n");
1122                 return;
1123         }
1124
1125         /* Real hang detected */
1126         netif_stop_queue(netdev);
1127
1128         e1e_rphy(hw, MII_BMSR, &phy_status);
1129         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1130         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1131
1132         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1133
1134         /* detected Hardware unit hang */
1135         e_err("Detected Hardware Unit Hang:\n"
1136               "  TDH                  <%x>\n"
1137               "  TDT                  <%x>\n"
1138               "  next_to_use          <%x>\n"
1139               "  next_to_clean        <%x>\n"
1140               "buffer_info[next_to_clean]:\n"
1141               "  time_stamp           <%lx>\n"
1142               "  next_to_watch        <%x>\n"
1143               "  jiffies              <%lx>\n"
1144               "  next_to_watch.status <%x>\n"
1145               "MAC Status             <%x>\n"
1146               "PHY Status             <%x>\n"
1147               "PHY 1000BASE-T Status  <%x>\n"
1148               "PHY Extended Status    <%x>\n"
1149               "PCI Status             <%x>\n",
1150               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1151               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1152               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1153               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1154
1155         e1000e_dump(adapter);
1156
1157         /* Suggest workaround for known h/w issue */
1158         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1159                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1160 }
1161
1162 /**
1163  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1164  * @work: pointer to work struct
1165  *
1166  * This work function polls the TSYNCTXCTL valid bit to determine when a
1167  * timestamp has been taken for the current stored skb.  The timestamp must
1168  * be for this skb because only one such packet is allowed in the queue.
1169  */
1170 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1171 {
1172         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1173                                                      tx_hwtstamp_work);
1174         struct e1000_hw *hw = &adapter->hw;
1175
1176         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1177                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1178                 struct skb_shared_hwtstamps shhwtstamps;
1179                 u64 txstmp;
1180
1181                 txstmp = er32(TXSTMPL);
1182                 txstmp |= (u64)er32(TXSTMPH) << 32;
1183
1184                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1185
1186                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1187                  * prior to notifying the stack of a Tx timestamp.
1188                  */
1189                 adapter->tx_hwtstamp_skb = NULL;
1190                 wmb(); /* force write prior to skb_tstamp_tx */
1191
1192                 skb_tstamp_tx(skb, &shhwtstamps);
1193                 dev_consume_skb_any(skb);
1194         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1195                               + adapter->tx_timeout_factor * HZ)) {
1196                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1197                 adapter->tx_hwtstamp_skb = NULL;
1198                 adapter->tx_hwtstamp_timeouts++;
1199                 e_warn("clearing Tx timestamp hang\n");
1200         } else {
1201                 /* reschedule to check later */
1202                 schedule_work(&adapter->tx_hwtstamp_work);
1203         }
1204 }
1205
1206 /**
1207  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1208  * @tx_ring: Tx descriptor ring
1209  *
1210  * the return value indicates whether actual cleaning was done, there
1211  * is no guarantee that everything was cleaned
1212  **/
1213 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1214 {
1215         struct e1000_adapter *adapter = tx_ring->adapter;
1216         struct net_device *netdev = adapter->netdev;
1217         struct e1000_hw *hw = &adapter->hw;
1218         struct e1000_tx_desc *tx_desc, *eop_desc;
1219         struct e1000_buffer *buffer_info;
1220         unsigned int i, eop;
1221         unsigned int count = 0;
1222         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1223         unsigned int bytes_compl = 0, pkts_compl = 0;
1224
1225         i = tx_ring->next_to_clean;
1226         eop = tx_ring->buffer_info[i].next_to_watch;
1227         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228
1229         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1230                (count < tx_ring->count)) {
1231                 bool cleaned = false;
1232
1233                 dma_rmb();              /* read buffer_info after eop_desc */
1234                 for (; !cleaned; count++) {
1235                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1236                         buffer_info = &tx_ring->buffer_info[i];
1237                         cleaned = (i == eop);
1238
1239                         if (cleaned) {
1240                                 total_tx_packets += buffer_info->segs;
1241                                 total_tx_bytes += buffer_info->bytecount;
1242                                 if (buffer_info->skb) {
1243                                         bytes_compl += buffer_info->skb->len;
1244                                         pkts_compl++;
1245                                 }
1246                         }
1247
1248                         e1000_put_txbuf(tx_ring, buffer_info, false);
1249                         tx_desc->upper.data = 0;
1250
1251                         i++;
1252                         if (i == tx_ring->count)
1253                                 i = 0;
1254                 }
1255
1256                 if (i == tx_ring->next_to_use)
1257                         break;
1258                 eop = tx_ring->buffer_info[i].next_to_watch;
1259                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1260         }
1261
1262         tx_ring->next_to_clean = i;
1263
1264         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1265
1266 #define TX_WAKE_THRESHOLD 32
1267         if (count && netif_carrier_ok(netdev) &&
1268             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1269                 /* Make sure that anybody stopping the queue after this
1270                  * sees the new next_to_clean.
1271                  */
1272                 smp_mb();
1273
1274                 if (netif_queue_stopped(netdev) &&
1275                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1276                         netif_wake_queue(netdev);
1277                         ++adapter->restart_queue;
1278                 }
1279         }
1280
1281         if (adapter->detect_tx_hung) {
1282                 /* Detect a transmit hang in hardware, this serializes the
1283                  * check with the clearing of time_stamp and movement of i
1284                  */
1285                 adapter->detect_tx_hung = false;
1286                 if (tx_ring->buffer_info[i].time_stamp &&
1287                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1288                                + (adapter->tx_timeout_factor * HZ)) &&
1289                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1290                         schedule_work(&adapter->print_hang_task);
1291                 else
1292                         adapter->tx_hang_recheck = false;
1293         }
1294         adapter->total_tx_bytes += total_tx_bytes;
1295         adapter->total_tx_packets += total_tx_packets;
1296         return count < tx_ring->count;
1297 }
1298
1299 /**
1300  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1301  * @rx_ring: Rx descriptor ring
1302  * @work_done: output parameter for indicating completed work
1303  * @work_to_do: how many packets we can clean
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309                                   int work_to_do)
1310 {
1311         struct e1000_adapter *adapter = rx_ring->adapter;
1312         struct e1000_hw *hw = &adapter->hw;
1313         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314         struct net_device *netdev = adapter->netdev;
1315         struct pci_dev *pdev = adapter->pdev;
1316         struct e1000_buffer *buffer_info, *next_buffer;
1317         struct e1000_ps_page *ps_page;
1318         struct sk_buff *skb;
1319         unsigned int i, j;
1320         u32 length, staterr;
1321         int cleaned_count = 0;
1322         bool cleaned = false;
1323         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325         i = rx_ring->next_to_clean;
1326         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328         buffer_info = &rx_ring->buffer_info[i];
1329
1330         while (staterr & E1000_RXD_STAT_DD) {
1331                 if (*work_done >= work_to_do)
1332                         break;
1333                 (*work_done)++;
1334                 skb = buffer_info->skb;
1335                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1336
1337                 /* in the packet split case this is header only */
1338                 prefetch(skb->data - NET_IP_ALIGN);
1339
1340                 i++;
1341                 if (i == rx_ring->count)
1342                         i = 0;
1343                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344                 prefetch(next_rxd);
1345
1346                 next_buffer = &rx_ring->buffer_info[i];
1347
1348                 cleaned = true;
1349                 cleaned_count++;
1350                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352                 buffer_info->dma = 0;
1353
1354                 /* see !EOP comment in other Rx routine */
1355                 if (!(staterr & E1000_RXD_STAT_EOP))
1356                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360                         dev_kfree_skb_irq(skb);
1361                         if (staterr & E1000_RXD_STAT_EOP)
1362                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363                         goto next_desc;
1364                 }
1365
1366                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367                              !(netdev->features & NETIF_F_RXALL))) {
1368                         dev_kfree_skb_irq(skb);
1369                         goto next_desc;
1370                 }
1371
1372                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374                 if (!length) {
1375                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1376                         dev_kfree_skb_irq(skb);
1377                         goto next_desc;
1378                 }
1379
1380                 /* Good Receive */
1381                 skb_put(skb, length);
1382
1383                 {
1384                         /* this looks ugly, but it seems compiler issues make
1385                          * it more efficient than reusing j
1386                          */
1387                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389                         /* page alloc/put takes too long and effects small
1390                          * packet throughput, so unsplit small packets and
1391                          * save the alloc/put only valid in softirq (napi)
1392                          * context to call kmap_*
1393                          */
1394                         if (l1 && (l1 <= copybreak) &&
1395                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1396                                 u8 *vaddr;
1397
1398                                 ps_page = &buffer_info->ps_pages[0];
1399
1400                                 /* there is no documentation about how to call
1401                                  * kmap_atomic, so we can't hold the mapping
1402                                  * very long
1403                                  */
1404                                 dma_sync_single_for_cpu(&pdev->dev,
1405                                                         ps_page->dma,
1406                                                         PAGE_SIZE,
1407                                                         DMA_FROM_DEVICE);
1408                                 vaddr = kmap_atomic(ps_page->page);
1409                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410                                 kunmap_atomic(vaddr);
1411                                 dma_sync_single_for_device(&pdev->dev,
1412                                                            ps_page->dma,
1413                                                            PAGE_SIZE,
1414                                                            DMA_FROM_DEVICE);
1415
1416                                 /* remove the CRC */
1417                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418                                         if (!(netdev->features & NETIF_F_RXFCS))
1419                                                 l1 -= 4;
1420                                 }
1421
1422                                 skb_put(skb, l1);
1423                                 goto copydone;
1424                         }       /* if */
1425                 }
1426
1427                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429                         if (!length)
1430                                 break;
1431
1432                         ps_page = &buffer_info->ps_pages[j];
1433                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434                                        DMA_FROM_DEVICE);
1435                         ps_page->dma = 0;
1436                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437                         ps_page->page = NULL;
1438                         skb->len += length;
1439                         skb->data_len += length;
1440                         skb->truesize += PAGE_SIZE;
1441                 }
1442
1443                 /* strip the ethernet crc, problem is we're using pages now so
1444                  * this whole operation can get a little cpu intensive
1445                  */
1446                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447                         if (!(netdev->features & NETIF_F_RXFCS))
1448                                 pskb_trim(skb, skb->len - 4);
1449                 }
1450
1451 copydone:
1452                 total_rx_bytes += skb->len;
1453                 total_rx_packets++;
1454
1455                 e1000_rx_checksum(adapter, staterr, skb);
1456
1457                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459                 if (rx_desc->wb.upper.header_status &
1460                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461                         adapter->rx_hdr_split++;
1462
1463                 e1000_receive_skb(adapter, netdev, skb, staterr,
1464                                   rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468                 buffer_info->skb = NULL;
1469
1470                 /* return some buffers to hardware, one at a time is too slow */
1471                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473                                               GFP_ATOMIC);
1474                         cleaned_count = 0;
1475                 }
1476
1477                 /* use prefetched values */
1478                 rx_desc = next_rxd;
1479                 buffer_info = next_buffer;
1480
1481                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482         }
1483         rx_ring->next_to_clean = i;
1484
1485         cleaned_count = e1000_desc_unused(rx_ring);
1486         if (cleaned_count)
1487                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489         adapter->total_rx_bytes += total_rx_bytes;
1490         adapter->total_rx_packets += total_rx_packets;
1491         return cleaned;
1492 }
1493
1494 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1495                                u16 length)
1496 {
1497         bi->page = NULL;
1498         skb->len += length;
1499         skb->data_len += length;
1500         skb->truesize += PAGE_SIZE;
1501 }
1502
1503 /**
1504  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1505  * @rx_ring: Rx descriptor ring
1506  * @work_done: output parameter for indicating completed work
1507  * @work_to_do: how many packets we can clean
1508  *
1509  * the return value indicates whether actual cleaning was done, there
1510  * is no guarantee that everything was cleaned
1511  **/
1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513                                      int work_to_do)
1514 {
1515         struct e1000_adapter *adapter = rx_ring->adapter;
1516         struct net_device *netdev = adapter->netdev;
1517         struct pci_dev *pdev = adapter->pdev;
1518         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1519         struct e1000_buffer *buffer_info, *next_buffer;
1520         u32 length, staterr;
1521         unsigned int i;
1522         int cleaned_count = 0;
1523         bool cleaned = false;
1524         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1525         struct skb_shared_info *shinfo;
1526
1527         i = rx_ring->next_to_clean;
1528         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1530         buffer_info = &rx_ring->buffer_info[i];
1531
1532         while (staterr & E1000_RXD_STAT_DD) {
1533                 struct sk_buff *skb;
1534
1535                 if (*work_done >= work_to_do)
1536                         break;
1537                 (*work_done)++;
1538                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1539
1540                 skb = buffer_info->skb;
1541                 buffer_info->skb = NULL;
1542
1543                 ++i;
1544                 if (i == rx_ring->count)
1545                         i = 0;
1546                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547                 prefetch(next_rxd);
1548
1549                 next_buffer = &rx_ring->buffer_info[i];
1550
1551                 cleaned = true;
1552                 cleaned_count++;
1553                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554                                DMA_FROM_DEVICE);
1555                 buffer_info->dma = 0;
1556
1557                 length = le16_to_cpu(rx_desc->wb.upper.length);
1558
1559                 /* errors is only valid for DD + EOP descriptors */
1560                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1561                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562                               !(netdev->features & NETIF_F_RXALL)))) {
1563                         /* recycle both page and skb */
1564                         buffer_info->skb = skb;
1565                         /* an error means any chain goes out the window too */
1566                         if (rx_ring->rx_skb_top)
1567                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568                         rx_ring->rx_skb_top = NULL;
1569                         goto next_desc;
1570                 }
1571 #define rxtop (rx_ring->rx_skb_top)
1572                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1573                         /* this descriptor is only the beginning (or middle) */
1574                         if (!rxtop) {
1575                                 /* this is the beginning of a chain */
1576                                 rxtop = skb;
1577                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578                                                    0, length);
1579                         } else {
1580                                 /* this is the middle of a chain */
1581                                 shinfo = skb_shinfo(rxtop);
1582                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583                                                    buffer_info->page, 0,
1584                                                    length);
1585                                 /* re-use the skb, only consumed the page */
1586                                 buffer_info->skb = skb;
1587                         }
1588                         e1000_consume_page(buffer_info, rxtop, length);
1589                         goto next_desc;
1590                 } else {
1591                         if (rxtop) {
1592                                 /* end of the chain */
1593                                 shinfo = skb_shinfo(rxtop);
1594                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595                                                    buffer_info->page, 0,
1596                                                    length);
1597                                 /* re-use the current skb, we only consumed the
1598                                  * page
1599                                  */
1600                                 buffer_info->skb = skb;
1601                                 skb = rxtop;
1602                                 rxtop = NULL;
1603                                 e1000_consume_page(buffer_info, skb, length);
1604                         } else {
1605                                 /* no chain, got EOP, this buf is the packet
1606                                  * copybreak to save the put_page/alloc_page
1607                                  */
1608                                 if (length <= copybreak &&
1609                                     skb_tailroom(skb) >= length) {
1610                                         u8 *vaddr;
1611                                         vaddr = kmap_atomic(buffer_info->page);
1612                                         memcpy(skb_tail_pointer(skb), vaddr,
1613                                                length);
1614                                         kunmap_atomic(vaddr);
1615                                         /* re-use the page, so don't erase
1616                                          * buffer_info->page
1617                                          */
1618                                         skb_put(skb, length);
1619                                 } else {
1620                                         skb_fill_page_desc(skb, 0,
1621                                                            buffer_info->page, 0,
1622                                                            length);
1623                                         e1000_consume_page(buffer_info, skb,
1624                                                            length);
1625                                 }
1626                         }
1627                 }
1628
1629                 /* Receive Checksum Offload */
1630                 e1000_rx_checksum(adapter, staterr, skb);
1631
1632                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633
1634                 /* probably a little skewed due to removing CRC */
1635                 total_rx_bytes += skb->len;
1636                 total_rx_packets++;
1637
1638                 /* eth type trans needs skb->data to point to something */
1639                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1640                         e_err("pskb_may_pull failed.\n");
1641                         dev_kfree_skb_irq(skb);
1642                         goto next_desc;
1643                 }
1644
1645                 e1000_receive_skb(adapter, netdev, skb, staterr,
1646                                   rx_desc->wb.upper.vlan);
1647
1648 next_desc:
1649                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1650
1651                 /* return some buffers to hardware, one at a time is too slow */
1652                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1653                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1654                                               GFP_ATOMIC);
1655                         cleaned_count = 0;
1656                 }
1657
1658                 /* use prefetched values */
1659                 rx_desc = next_rxd;
1660                 buffer_info = next_buffer;
1661
1662                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1663         }
1664         rx_ring->next_to_clean = i;
1665
1666         cleaned_count = e1000_desc_unused(rx_ring);
1667         if (cleaned_count)
1668                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1669
1670         adapter->total_rx_bytes += total_rx_bytes;
1671         adapter->total_rx_packets += total_rx_packets;
1672         return cleaned;
1673 }
1674
1675 /**
1676  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1677  * @rx_ring: Rx descriptor ring
1678  **/
1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1680 {
1681         struct e1000_adapter *adapter = rx_ring->adapter;
1682         struct e1000_buffer *buffer_info;
1683         struct e1000_ps_page *ps_page;
1684         struct pci_dev *pdev = adapter->pdev;
1685         unsigned int i, j;
1686
1687         /* Free all the Rx ring sk_buffs */
1688         for (i = 0; i < rx_ring->count; i++) {
1689                 buffer_info = &rx_ring->buffer_info[i];
1690                 if (buffer_info->dma) {
1691                         if (adapter->clean_rx == e1000_clean_rx_irq)
1692                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1693                                                  adapter->rx_buffer_len,
1694                                                  DMA_FROM_DEVICE);
1695                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1696                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1697                                                PAGE_SIZE, DMA_FROM_DEVICE);
1698                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1699                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1700                                                  adapter->rx_ps_bsize0,
1701                                                  DMA_FROM_DEVICE);
1702                         buffer_info->dma = 0;
1703                 }
1704
1705                 if (buffer_info->page) {
1706                         put_page(buffer_info->page);
1707                         buffer_info->page = NULL;
1708                 }
1709
1710                 if (buffer_info->skb) {
1711                         dev_kfree_skb(buffer_info->skb);
1712                         buffer_info->skb = NULL;
1713                 }
1714
1715                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1716                         ps_page = &buffer_info->ps_pages[j];
1717                         if (!ps_page->page)
1718                                 break;
1719                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720                                        DMA_FROM_DEVICE);
1721                         ps_page->dma = 0;
1722                         put_page(ps_page->page);
1723                         ps_page->page = NULL;
1724                 }
1725         }
1726
1727         /* there also may be some cached data from a chained receive */
1728         if (rx_ring->rx_skb_top) {
1729                 dev_kfree_skb(rx_ring->rx_skb_top);
1730                 rx_ring->rx_skb_top = NULL;
1731         }
1732
1733         /* Zero out the descriptor ring */
1734         memset(rx_ring->desc, 0, rx_ring->size);
1735
1736         rx_ring->next_to_clean = 0;
1737         rx_ring->next_to_use = 0;
1738         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739 }
1740
1741 static void e1000e_downshift_workaround(struct work_struct *work)
1742 {
1743         struct e1000_adapter *adapter = container_of(work,
1744                                                      struct e1000_adapter,
1745                                                      downshift_task);
1746
1747         if (test_bit(__E1000_DOWN, &adapter->state))
1748                 return;
1749
1750         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1751 }
1752
1753 /**
1754  * e1000_intr_msi - Interrupt Handler
1755  * @irq: interrupt number
1756  * @data: pointer to a network interface device structure
1757  **/
1758 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1759 {
1760         struct net_device *netdev = data;
1761         struct e1000_adapter *adapter = netdev_priv(netdev);
1762         struct e1000_hw *hw = &adapter->hw;
1763         u32 icr = er32(ICR);
1764
1765         /* read ICR disables interrupts using IAM */
1766         if (icr & E1000_ICR_LSC) {
1767                 hw->mac.get_link_status = true;
1768                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1769                  * disconnect (LSC) before accessing any PHY registers
1770                  */
1771                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1772                     (!(er32(STATUS) & E1000_STATUS_LU)))
1773                         schedule_work(&adapter->downshift_task);
1774
1775                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1776                  * link down event; disable receives here in the ISR and reset
1777                  * adapter in watchdog
1778                  */
1779                 if (netif_carrier_ok(netdev) &&
1780                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1781                         /* disable receives */
1782                         u32 rctl = er32(RCTL);
1783
1784                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1785                         adapter->flags |= FLAG_RESTART_NOW;
1786                 }
1787                 /* guard against interrupt when we're going down */
1788                 if (!test_bit(__E1000_DOWN, &adapter->state))
1789                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1790         }
1791
1792         /* Reset on uncorrectable ECC error */
1793         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1794                 u32 pbeccsts = er32(PBECCSTS);
1795
1796                 adapter->corr_errors +=
1797                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1798                 adapter->uncorr_errors +=
1799                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1800                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1801
1802                 /* Do the reset outside of interrupt context */
1803                 schedule_work(&adapter->reset_task);
1804
1805                 /* return immediately since reset is imminent */
1806                 return IRQ_HANDLED;
1807         }
1808
1809         if (napi_schedule_prep(&adapter->napi)) {
1810                 adapter->total_tx_bytes = 0;
1811                 adapter->total_tx_packets = 0;
1812                 adapter->total_rx_bytes = 0;
1813                 adapter->total_rx_packets = 0;
1814                 __napi_schedule(&adapter->napi);
1815         }
1816
1817         return IRQ_HANDLED;
1818 }
1819
1820 /**
1821  * e1000_intr - Interrupt Handler
1822  * @irq: interrupt number
1823  * @data: pointer to a network interface device structure
1824  **/
1825 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1826 {
1827         struct net_device *netdev = data;
1828         struct e1000_adapter *adapter = netdev_priv(netdev);
1829         struct e1000_hw *hw = &adapter->hw;
1830         u32 rctl, icr = er32(ICR);
1831
1832         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1833                 return IRQ_NONE;        /* Not our interrupt */
1834
1835         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1836          * not set, then the adapter didn't send an interrupt
1837          */
1838         if (!(icr & E1000_ICR_INT_ASSERTED))
1839                 return IRQ_NONE;
1840
1841         /* Interrupt Auto-Mask...upon reading ICR,
1842          * interrupts are masked.  No need for the
1843          * IMC write
1844          */
1845
1846         if (icr & E1000_ICR_LSC) {
1847                 hw->mac.get_link_status = true;
1848                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1849                  * disconnect (LSC) before accessing any PHY registers
1850                  */
1851                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1852                     (!(er32(STATUS) & E1000_STATUS_LU)))
1853                         schedule_work(&adapter->downshift_task);
1854
1855                 /* 80003ES2LAN workaround--
1856                  * For packet buffer work-around on link down event;
1857                  * disable receives here in the ISR and
1858                  * reset adapter in watchdog
1859                  */
1860                 if (netif_carrier_ok(netdev) &&
1861                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1862                         /* disable receives */
1863                         rctl = er32(RCTL);
1864                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1865                         adapter->flags |= FLAG_RESTART_NOW;
1866                 }
1867                 /* guard against interrupt when we're going down */
1868                 if (!test_bit(__E1000_DOWN, &adapter->state))
1869                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1870         }
1871
1872         /* Reset on uncorrectable ECC error */
1873         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1874                 u32 pbeccsts = er32(PBECCSTS);
1875
1876                 adapter->corr_errors +=
1877                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1878                 adapter->uncorr_errors +=
1879                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1880                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1881
1882                 /* Do the reset outside of interrupt context */
1883                 schedule_work(&adapter->reset_task);
1884
1885                 /* return immediately since reset is imminent */
1886                 return IRQ_HANDLED;
1887         }
1888
1889         if (napi_schedule_prep(&adapter->napi)) {
1890                 adapter->total_tx_bytes = 0;
1891                 adapter->total_tx_packets = 0;
1892                 adapter->total_rx_bytes = 0;
1893                 adapter->total_rx_packets = 0;
1894                 __napi_schedule(&adapter->napi);
1895         }
1896
1897         return IRQ_HANDLED;
1898 }
1899
1900 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1901 {
1902         struct net_device *netdev = data;
1903         struct e1000_adapter *adapter = netdev_priv(netdev);
1904         struct e1000_hw *hw = &adapter->hw;
1905         u32 icr = er32(ICR);
1906
1907         if (icr & adapter->eiac_mask)
1908                 ew32(ICS, (icr & adapter->eiac_mask));
1909
1910         if (icr & E1000_ICR_LSC) {
1911                 hw->mac.get_link_status = true;
1912                 /* guard against interrupt when we're going down */
1913                 if (!test_bit(__E1000_DOWN, &adapter->state))
1914                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1915         }
1916
1917         if (!test_bit(__E1000_DOWN, &adapter->state))
1918                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1919
1920         return IRQ_HANDLED;
1921 }
1922
1923 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1924 {
1925         struct net_device *netdev = data;
1926         struct e1000_adapter *adapter = netdev_priv(netdev);
1927         struct e1000_hw *hw = &adapter->hw;
1928         struct e1000_ring *tx_ring = adapter->tx_ring;
1929
1930         adapter->total_tx_bytes = 0;
1931         adapter->total_tx_packets = 0;
1932
1933         if (!e1000_clean_tx_irq(tx_ring))
1934                 /* Ring was not completely cleaned, so fire another interrupt */
1935                 ew32(ICS, tx_ring->ims_val);
1936
1937         if (!test_bit(__E1000_DOWN, &adapter->state))
1938                 ew32(IMS, adapter->tx_ring->ims_val);
1939
1940         return IRQ_HANDLED;
1941 }
1942
1943 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1944 {
1945         struct net_device *netdev = data;
1946         struct e1000_adapter *adapter = netdev_priv(netdev);
1947         struct e1000_ring *rx_ring = adapter->rx_ring;
1948
1949         /* Write the ITR value calculated at the end of the
1950          * previous interrupt.
1951          */
1952         if (rx_ring->set_itr) {
1953                 u32 itr = rx_ring->itr_val ?
1954                           1000000000 / (rx_ring->itr_val * 256) : 0;
1955
1956                 writel(itr, rx_ring->itr_register);
1957                 rx_ring->set_itr = 0;
1958         }
1959
1960         if (napi_schedule_prep(&adapter->napi)) {
1961                 adapter->total_rx_bytes = 0;
1962                 adapter->total_rx_packets = 0;
1963                 __napi_schedule(&adapter->napi);
1964         }
1965         return IRQ_HANDLED;
1966 }
1967
1968 /**
1969  * e1000_configure_msix - Configure MSI-X hardware
1970  * @adapter: board private structure
1971  *
1972  * e1000_configure_msix sets up the hardware to properly
1973  * generate MSI-X interrupts.
1974  **/
1975 static void e1000_configure_msix(struct e1000_adapter *adapter)
1976 {
1977         struct e1000_hw *hw = &adapter->hw;
1978         struct e1000_ring *rx_ring = adapter->rx_ring;
1979         struct e1000_ring *tx_ring = adapter->tx_ring;
1980         int vector = 0;
1981         u32 ctrl_ext, ivar = 0;
1982
1983         adapter->eiac_mask = 0;
1984
1985         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1986         if (hw->mac.type == e1000_82574) {
1987                 u32 rfctl = er32(RFCTL);
1988
1989                 rfctl |= E1000_RFCTL_ACK_DIS;
1990                 ew32(RFCTL, rfctl);
1991         }
1992
1993         /* Configure Rx vector */
1994         rx_ring->ims_val = E1000_IMS_RXQ0;
1995         adapter->eiac_mask |= rx_ring->ims_val;
1996         if (rx_ring->itr_val)
1997                 writel(1000000000 / (rx_ring->itr_val * 256),
1998                        rx_ring->itr_register);
1999         else
2000                 writel(1, rx_ring->itr_register);
2001         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2002
2003         /* Configure Tx vector */
2004         tx_ring->ims_val = E1000_IMS_TXQ0;
2005         vector++;
2006         if (tx_ring->itr_val)
2007                 writel(1000000000 / (tx_ring->itr_val * 256),
2008                        tx_ring->itr_register);
2009         else
2010                 writel(1, tx_ring->itr_register);
2011         adapter->eiac_mask |= tx_ring->ims_val;
2012         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2013
2014         /* set vector for Other Causes, e.g. link changes */
2015         vector++;
2016         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2017         if (rx_ring->itr_val)
2018                 writel(1000000000 / (rx_ring->itr_val * 256),
2019                        hw->hw_addr + E1000_EITR_82574(vector));
2020         else
2021                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2022
2023         /* Cause Tx interrupts on every write back */
2024         ivar |= BIT(31);
2025
2026         ew32(IVAR, ivar);
2027
2028         /* enable MSI-X PBA support */
2029         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2030         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2031         ew32(CTRL_EXT, ctrl_ext);
2032         e1e_flush();
2033 }
2034
2035 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2036 {
2037         if (adapter->msix_entries) {
2038                 pci_disable_msix(adapter->pdev);
2039                 kfree(adapter->msix_entries);
2040                 adapter->msix_entries = NULL;
2041         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2042                 pci_disable_msi(adapter->pdev);
2043                 adapter->flags &= ~FLAG_MSI_ENABLED;
2044         }
2045 }
2046
2047 /**
2048  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2049  * @adapter: board private structure
2050  *
2051  * Attempt to configure interrupts using the best available
2052  * capabilities of the hardware and kernel.
2053  **/
2054 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2055 {
2056         int err;
2057         int i;
2058
2059         switch (adapter->int_mode) {
2060         case E1000E_INT_MODE_MSIX:
2061                 if (adapter->flags & FLAG_HAS_MSIX) {
2062                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2063                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2064                                                         sizeof(struct
2065                                                                msix_entry),
2066                                                         GFP_KERNEL);
2067                         if (adapter->msix_entries) {
2068                                 struct e1000_adapter *a = adapter;
2069
2070                                 for (i = 0; i < adapter->num_vectors; i++)
2071                                         adapter->msix_entries[i].entry = i;
2072
2073                                 err = pci_enable_msix_range(a->pdev,
2074                                                             a->msix_entries,
2075                                                             a->num_vectors,
2076                                                             a->num_vectors);
2077                                 if (err > 0)
2078                                         return;
2079                         }
2080                         /* MSI-X failed, so fall through and try MSI */
2081                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2082                         e1000e_reset_interrupt_capability(adapter);
2083                 }
2084                 adapter->int_mode = E1000E_INT_MODE_MSI;
2085                 fallthrough;
2086         case E1000E_INT_MODE_MSI:
2087                 if (!pci_enable_msi(adapter->pdev)) {
2088                         adapter->flags |= FLAG_MSI_ENABLED;
2089                 } else {
2090                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2091                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2092                 }
2093                 fallthrough;
2094         case E1000E_INT_MODE_LEGACY:
2095                 /* Don't do anything; this is the system default */
2096                 break;
2097         }
2098
2099         /* store the number of vectors being used */
2100         adapter->num_vectors = 1;
2101 }
2102
2103 /**
2104  * e1000_request_msix - Initialize MSI-X interrupts
2105  * @adapter: board private structure
2106  *
2107  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108  * kernel.
2109  **/
2110 static int e1000_request_msix(struct e1000_adapter *adapter)
2111 {
2112         struct net_device *netdev = adapter->netdev;
2113         int err = 0, vector = 0;
2114
2115         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2116                 snprintf(adapter->rx_ring->name,
2117                          sizeof(adapter->rx_ring->name) - 1,
2118                          "%.14s-rx-0", netdev->name);
2119         else
2120                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2121         err = request_irq(adapter->msix_entries[vector].vector,
2122                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2123                           netdev);
2124         if (err)
2125                 return err;
2126         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2127             E1000_EITR_82574(vector);
2128         adapter->rx_ring->itr_val = adapter->itr;
2129         vector++;
2130
2131         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2132                 snprintf(adapter->tx_ring->name,
2133                          sizeof(adapter->tx_ring->name) - 1,
2134                          "%.14s-tx-0", netdev->name);
2135         else
2136                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2137         err = request_irq(adapter->msix_entries[vector].vector,
2138                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2139                           netdev);
2140         if (err)
2141                 return err;
2142         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2143             E1000_EITR_82574(vector);
2144         adapter->tx_ring->itr_val = adapter->itr;
2145         vector++;
2146
2147         err = request_irq(adapter->msix_entries[vector].vector,
2148                           e1000_msix_other, 0, netdev->name, netdev);
2149         if (err)
2150                 return err;
2151
2152         e1000_configure_msix(adapter);
2153
2154         return 0;
2155 }
2156
2157 /**
2158  * e1000_request_irq - initialize interrupts
2159  * @adapter: board private structure
2160  *
2161  * Attempts to configure interrupts using the best available
2162  * capabilities of the hardware and kernel.
2163  **/
2164 static int e1000_request_irq(struct e1000_adapter *adapter)
2165 {
2166         struct net_device *netdev = adapter->netdev;
2167         int err;
2168
2169         if (adapter->msix_entries) {
2170                 err = e1000_request_msix(adapter);
2171                 if (!err)
2172                         return err;
2173                 /* fall back to MSI */
2174                 e1000e_reset_interrupt_capability(adapter);
2175                 adapter->int_mode = E1000E_INT_MODE_MSI;
2176                 e1000e_set_interrupt_capability(adapter);
2177         }
2178         if (adapter->flags & FLAG_MSI_ENABLED) {
2179                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2180                                   netdev->name, netdev);
2181                 if (!err)
2182                         return err;
2183
2184                 /* fall back to legacy interrupt */
2185                 e1000e_reset_interrupt_capability(adapter);
2186                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2187         }
2188
2189         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2190                           netdev->name, netdev);
2191         if (err)
2192                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2193
2194         return err;
2195 }
2196
2197 static void e1000_free_irq(struct e1000_adapter *adapter)
2198 {
2199         struct net_device *netdev = adapter->netdev;
2200
2201         if (adapter->msix_entries) {
2202                 int vector = 0;
2203
2204                 free_irq(adapter->msix_entries[vector].vector, netdev);
2205                 vector++;
2206
2207                 free_irq(adapter->msix_entries[vector].vector, netdev);
2208                 vector++;
2209
2210                 /* Other Causes interrupt vector */
2211                 free_irq(adapter->msix_entries[vector].vector, netdev);
2212                 return;
2213         }
2214
2215         free_irq(adapter->pdev->irq, netdev);
2216 }
2217
2218 /**
2219  * e1000_irq_disable - Mask off interrupt generation on the NIC
2220  * @adapter: board private structure
2221  **/
2222 static void e1000_irq_disable(struct e1000_adapter *adapter)
2223 {
2224         struct e1000_hw *hw = &adapter->hw;
2225
2226         ew32(IMC, ~0);
2227         if (adapter->msix_entries)
2228                 ew32(EIAC_82574, 0);
2229         e1e_flush();
2230
2231         if (adapter->msix_entries) {
2232                 int i;
2233
2234                 for (i = 0; i < adapter->num_vectors; i++)
2235                         synchronize_irq(adapter->msix_entries[i].vector);
2236         } else {
2237                 synchronize_irq(adapter->pdev->irq);
2238         }
2239 }
2240
2241 /**
2242  * e1000_irq_enable - Enable default interrupt generation settings
2243  * @adapter: board private structure
2244  **/
2245 static void e1000_irq_enable(struct e1000_adapter *adapter)
2246 {
2247         struct e1000_hw *hw = &adapter->hw;
2248
2249         if (adapter->msix_entries) {
2250                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2251                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2252                      IMS_OTHER_MASK);
2253         } else if (hw->mac.type >= e1000_pch_lpt) {
2254                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2255         } else {
2256                 ew32(IMS, IMS_ENABLE_MASK);
2257         }
2258         e1e_flush();
2259 }
2260
2261 /**
2262  * e1000e_get_hw_control - get control of the h/w from f/w
2263  * @adapter: address of board private structure
2264  *
2265  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2266  * For ASF and Pass Through versions of f/w this means that
2267  * the driver is loaded. For AMT version (only with 82573)
2268  * of the f/w this means that the network i/f is open.
2269  **/
2270 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2271 {
2272         struct e1000_hw *hw = &adapter->hw;
2273         u32 ctrl_ext;
2274         u32 swsm;
2275
2276         /* Let firmware know the driver has taken over */
2277         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278                 swsm = er32(SWSM);
2279                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2280         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281                 ctrl_ext = er32(CTRL_EXT);
2282                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2283         }
2284 }
2285
2286 /**
2287  * e1000e_release_hw_control - release control of the h/w to f/w
2288  * @adapter: address of board private structure
2289  *
2290  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2291  * For ASF and Pass Through versions of f/w this means that the
2292  * driver is no longer loaded. For AMT version (only with 82573) i
2293  * of the f/w this means that the network i/f is closed.
2294  *
2295  **/
2296 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2297 {
2298         struct e1000_hw *hw = &adapter->hw;
2299         u32 ctrl_ext;
2300         u32 swsm;
2301
2302         /* Let firmware taken over control of h/w */
2303         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2304                 swsm = er32(SWSM);
2305                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2306         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2307                 ctrl_ext = er32(CTRL_EXT);
2308                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2309         }
2310 }
2311
2312 /**
2313  * e1000_alloc_ring_dma - allocate memory for a ring structure
2314  * @adapter: board private structure
2315  * @ring: ring struct for which to allocate dma
2316  **/
2317 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2318                                 struct e1000_ring *ring)
2319 {
2320         struct pci_dev *pdev = adapter->pdev;
2321
2322         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323                                         GFP_KERNEL);
2324         if (!ring->desc)
2325                 return -ENOMEM;
2326
2327         return 0;
2328 }
2329
2330 /**
2331  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2332  * @tx_ring: Tx descriptor ring
2333  *
2334  * Return 0 on success, negative on failure
2335  **/
2336 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2337 {
2338         struct e1000_adapter *adapter = tx_ring->adapter;
2339         int err = -ENOMEM, size;
2340
2341         size = sizeof(struct e1000_buffer) * tx_ring->count;
2342         tx_ring->buffer_info = vzalloc(size);
2343         if (!tx_ring->buffer_info)
2344                 goto err;
2345
2346         /* round up to nearest 4K */
2347         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2348         tx_ring->size = ALIGN(tx_ring->size, 4096);
2349
2350         err = e1000_alloc_ring_dma(adapter, tx_ring);
2351         if (err)
2352                 goto err;
2353
2354         tx_ring->next_to_use = 0;
2355         tx_ring->next_to_clean = 0;
2356
2357         return 0;
2358 err:
2359         vfree(tx_ring->buffer_info);
2360         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2361         return err;
2362 }
2363
2364 /**
2365  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2366  * @rx_ring: Rx descriptor ring
2367  *
2368  * Returns 0 on success, negative on failure
2369  **/
2370 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2371 {
2372         struct e1000_adapter *adapter = rx_ring->adapter;
2373         struct e1000_buffer *buffer_info;
2374         int i, size, desc_len, err = -ENOMEM;
2375
2376         size = sizeof(struct e1000_buffer) * rx_ring->count;
2377         rx_ring->buffer_info = vzalloc(size);
2378         if (!rx_ring->buffer_info)
2379                 goto err;
2380
2381         for (i = 0; i < rx_ring->count; i++) {
2382                 buffer_info = &rx_ring->buffer_info[i];
2383                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2384                                                 sizeof(struct e1000_ps_page),
2385                                                 GFP_KERNEL);
2386                 if (!buffer_info->ps_pages)
2387                         goto err_pages;
2388         }
2389
2390         desc_len = sizeof(union e1000_rx_desc_packet_split);
2391
2392         /* Round up to nearest 4K */
2393         rx_ring->size = rx_ring->count * desc_len;
2394         rx_ring->size = ALIGN(rx_ring->size, 4096);
2395
2396         err = e1000_alloc_ring_dma(adapter, rx_ring);
2397         if (err)
2398                 goto err_pages;
2399
2400         rx_ring->next_to_clean = 0;
2401         rx_ring->next_to_use = 0;
2402         rx_ring->rx_skb_top = NULL;
2403
2404         return 0;
2405
2406 err_pages:
2407         for (i = 0; i < rx_ring->count; i++) {
2408                 buffer_info = &rx_ring->buffer_info[i];
2409                 kfree(buffer_info->ps_pages);
2410         }
2411 err:
2412         vfree(rx_ring->buffer_info);
2413         e_err("Unable to allocate memory for the receive descriptor ring\n");
2414         return err;
2415 }
2416
2417 /**
2418  * e1000_clean_tx_ring - Free Tx Buffers
2419  * @tx_ring: Tx descriptor ring
2420  **/
2421 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2422 {
2423         struct e1000_adapter *adapter = tx_ring->adapter;
2424         struct e1000_buffer *buffer_info;
2425         unsigned long size;
2426         unsigned int i;
2427
2428         for (i = 0; i < tx_ring->count; i++) {
2429                 buffer_info = &tx_ring->buffer_info[i];
2430                 e1000_put_txbuf(tx_ring, buffer_info, false);
2431         }
2432
2433         netdev_reset_queue(adapter->netdev);
2434         size = sizeof(struct e1000_buffer) * tx_ring->count;
2435         memset(tx_ring->buffer_info, 0, size);
2436
2437         memset(tx_ring->desc, 0, tx_ring->size);
2438
2439         tx_ring->next_to_use = 0;
2440         tx_ring->next_to_clean = 0;
2441 }
2442
2443 /**
2444  * e1000e_free_tx_resources - Free Tx Resources per Queue
2445  * @tx_ring: Tx descriptor ring
2446  *
2447  * Free all transmit software resources
2448  **/
2449 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2450 {
2451         struct e1000_adapter *adapter = tx_ring->adapter;
2452         struct pci_dev *pdev = adapter->pdev;
2453
2454         e1000_clean_tx_ring(tx_ring);
2455
2456         vfree(tx_ring->buffer_info);
2457         tx_ring->buffer_info = NULL;
2458
2459         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2460                           tx_ring->dma);
2461         tx_ring->desc = NULL;
2462 }
2463
2464 /**
2465  * e1000e_free_rx_resources - Free Rx Resources
2466  * @rx_ring: Rx descriptor ring
2467  *
2468  * Free all receive software resources
2469  **/
2470 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2471 {
2472         struct e1000_adapter *adapter = rx_ring->adapter;
2473         struct pci_dev *pdev = adapter->pdev;
2474         int i;
2475
2476         e1000_clean_rx_ring(rx_ring);
2477
2478         for (i = 0; i < rx_ring->count; i++)
2479                 kfree(rx_ring->buffer_info[i].ps_pages);
2480
2481         vfree(rx_ring->buffer_info);
2482         rx_ring->buffer_info = NULL;
2483
2484         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2485                           rx_ring->dma);
2486         rx_ring->desc = NULL;
2487 }
2488
2489 /**
2490  * e1000_update_itr - update the dynamic ITR value based on statistics
2491  * @itr_setting: current adapter->itr
2492  * @packets: the number of packets during this measurement interval
2493  * @bytes: the number of bytes during this measurement interval
2494  *
2495  *      Stores a new ITR value based on packets and byte
2496  *      counts during the last interrupt.  The advantage of per interrupt
2497  *      computation is faster updates and more accurate ITR for the current
2498  *      traffic pattern.  Constants in this function were computed
2499  *      based on theoretical maximum wire speed and thresholds were set based
2500  *      on testing data as well as attempting to minimize response time
2501  *      while increasing bulk throughput.  This functionality is controlled
2502  *      by the InterruptThrottleRate module parameter.
2503  **/
2504 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2505 {
2506         unsigned int retval = itr_setting;
2507
2508         if (packets == 0)
2509                 return itr_setting;
2510
2511         switch (itr_setting) {
2512         case lowest_latency:
2513                 /* handle TSO and jumbo frames */
2514                 if (bytes / packets > 8000)
2515                         retval = bulk_latency;
2516                 else if ((packets < 5) && (bytes > 512))
2517                         retval = low_latency;
2518                 break;
2519         case low_latency:       /* 50 usec aka 20000 ints/s */
2520                 if (bytes > 10000) {
2521                         /* this if handles the TSO accounting */
2522                         if (bytes / packets > 8000)
2523                                 retval = bulk_latency;
2524                         else if ((packets < 10) || ((bytes / packets) > 1200))
2525                                 retval = bulk_latency;
2526                         else if ((packets > 35))
2527                                 retval = lowest_latency;
2528                 } else if (bytes / packets > 2000) {
2529                         retval = bulk_latency;
2530                 } else if (packets <= 2 && bytes < 512) {
2531                         retval = lowest_latency;
2532                 }
2533                 break;
2534         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2535                 if (bytes > 25000) {
2536                         if (packets > 35)
2537                                 retval = low_latency;
2538                 } else if (bytes < 6000) {
2539                         retval = low_latency;
2540                 }
2541                 break;
2542         }
2543
2544         return retval;
2545 }
2546
2547 static void e1000_set_itr(struct e1000_adapter *adapter)
2548 {
2549         u16 current_itr;
2550         u32 new_itr = adapter->itr;
2551
2552         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2553         if (adapter->link_speed != SPEED_1000) {
2554                 new_itr = 4000;
2555                 goto set_itr_now;
2556         }
2557
2558         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2559                 new_itr = 0;
2560                 goto set_itr_now;
2561         }
2562
2563         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2564                                            adapter->total_tx_packets,
2565                                            adapter->total_tx_bytes);
2566         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2567         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2568                 adapter->tx_itr = low_latency;
2569
2570         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2571                                            adapter->total_rx_packets,
2572                                            adapter->total_rx_bytes);
2573         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2575                 adapter->rx_itr = low_latency;
2576
2577         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578
2579         /* counts and packets in update_itr are dependent on these numbers */
2580         switch (current_itr) {
2581         case lowest_latency:
2582                 new_itr = 70000;
2583                 break;
2584         case low_latency:
2585                 new_itr = 20000;        /* aka hwitr = ~200 */
2586                 break;
2587         case bulk_latency:
2588                 new_itr = 4000;
2589                 break;
2590         default:
2591                 break;
2592         }
2593
2594 set_itr_now:
2595         if (new_itr != adapter->itr) {
2596                 /* this attempts to bias the interrupt rate towards Bulk
2597                  * by adding intermediate steps when interrupt rate is
2598                  * increasing
2599                  */
2600                 new_itr = new_itr > adapter->itr ?
2601                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2602                 adapter->itr = new_itr;
2603                 adapter->rx_ring->itr_val = new_itr;
2604                 if (adapter->msix_entries)
2605                         adapter->rx_ring->set_itr = 1;
2606                 else
2607                         e1000e_write_itr(adapter, new_itr);
2608         }
2609 }
2610
2611 /**
2612  * e1000e_write_itr - write the ITR value to the appropriate registers
2613  * @adapter: address of board private structure
2614  * @itr: new ITR value to program
2615  *
2616  * e1000e_write_itr determines if the adapter is in MSI-X mode
2617  * and, if so, writes the EITR registers with the ITR value.
2618  * Otherwise, it writes the ITR value into the ITR register.
2619  **/
2620 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621 {
2622         struct e1000_hw *hw = &adapter->hw;
2623         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624
2625         if (adapter->msix_entries) {
2626                 int vector;
2627
2628                 for (vector = 0; vector < adapter->num_vectors; vector++)
2629                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2630         } else {
2631                 ew32(ITR, new_itr);
2632         }
2633 }
2634
2635 /**
2636  * e1000_alloc_queues - Allocate memory for all rings
2637  * @adapter: board private structure to initialize
2638  **/
2639 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640 {
2641         int size = sizeof(struct e1000_ring);
2642
2643         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2644         if (!adapter->tx_ring)
2645                 goto err;
2646         adapter->tx_ring->count = adapter->tx_ring_count;
2647         adapter->tx_ring->adapter = adapter;
2648
2649         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2650         if (!adapter->rx_ring)
2651                 goto err;
2652         adapter->rx_ring->count = adapter->rx_ring_count;
2653         adapter->rx_ring->adapter = adapter;
2654
2655         return 0;
2656 err:
2657         e_err("Unable to allocate memory for queues\n");
2658         kfree(adapter->rx_ring);
2659         kfree(adapter->tx_ring);
2660         return -ENOMEM;
2661 }
2662
2663 /**
2664  * e1000e_poll - NAPI Rx polling callback
2665  * @napi: struct associated with this polling callback
2666  * @budget: number of packets driver is allowed to process this poll
2667  **/
2668 static int e1000e_poll(struct napi_struct *napi, int budget)
2669 {
2670         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671                                                      napi);
2672         struct e1000_hw *hw = &adapter->hw;
2673         struct net_device *poll_dev = adapter->netdev;
2674         int tx_cleaned = 1, work_done = 0;
2675
2676         adapter = netdev_priv(poll_dev);
2677
2678         if (!adapter->msix_entries ||
2679             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2680                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681
2682         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683
2684         if (!tx_cleaned || work_done == budget)
2685                 return budget;
2686
2687         /* Exit the polling mode, but don't re-enable interrupts if stack might
2688          * poll us due to busy-polling
2689          */
2690         if (likely(napi_complete_done(napi, work_done))) {
2691                 if (adapter->itr_setting & 3)
2692                         e1000_set_itr(adapter);
2693                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2694                         if (adapter->msix_entries)
2695                                 ew32(IMS, adapter->rx_ring->ims_val);
2696                         else
2697                                 e1000_irq_enable(adapter);
2698                 }
2699         }
2700
2701         return work_done;
2702 }
2703
2704 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2705                                  __always_unused __be16 proto, u16 vid)
2706 {
2707         struct e1000_adapter *adapter = netdev_priv(netdev);
2708         struct e1000_hw *hw = &adapter->hw;
2709         u32 vfta, index;
2710
2711         /* don't update vlan cookie if already programmed */
2712         if ((adapter->hw.mng_cookie.status &
2713              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2714             (vid == adapter->mng_vlan_id))
2715                 return 0;
2716
2717         /* add VID to filter table */
2718         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2719                 index = (vid >> 5) & 0x7F;
2720                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2721                 vfta |= BIT((vid & 0x1F));
2722                 hw->mac.ops.write_vfta(hw, index, vfta);
2723         }
2724
2725         set_bit(vid, adapter->active_vlans);
2726
2727         return 0;
2728 }
2729
2730 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2731                                   __always_unused __be16 proto, u16 vid)
2732 {
2733         struct e1000_adapter *adapter = netdev_priv(netdev);
2734         struct e1000_hw *hw = &adapter->hw;
2735         u32 vfta, index;
2736
2737         if ((adapter->hw.mng_cookie.status &
2738              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739             (vid == adapter->mng_vlan_id)) {
2740                 /* release control to f/w */
2741                 e1000e_release_hw_control(adapter);
2742                 return 0;
2743         }
2744
2745         /* remove VID from filter table */
2746         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747                 index = (vid >> 5) & 0x7F;
2748                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2749                 vfta &= ~BIT((vid & 0x1F));
2750                 hw->mac.ops.write_vfta(hw, index, vfta);
2751         }
2752
2753         clear_bit(vid, adapter->active_vlans);
2754
2755         return 0;
2756 }
2757
2758 /**
2759  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2760  * @adapter: board private structure to initialize
2761  **/
2762 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763 {
2764         struct net_device *netdev = adapter->netdev;
2765         struct e1000_hw *hw = &adapter->hw;
2766         u32 rctl;
2767
2768         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769                 /* disable VLAN receive filtering */
2770                 rctl = er32(RCTL);
2771                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2772                 ew32(RCTL, rctl);
2773
2774                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2775                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2776                                                adapter->mng_vlan_id);
2777                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2778                 }
2779         }
2780 }
2781
2782 /**
2783  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2784  * @adapter: board private structure to initialize
2785  **/
2786 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787 {
2788         struct e1000_hw *hw = &adapter->hw;
2789         u32 rctl;
2790
2791         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2792                 /* enable VLAN receive filtering */
2793                 rctl = er32(RCTL);
2794                 rctl |= E1000_RCTL_VFE;
2795                 rctl &= ~E1000_RCTL_CFIEN;
2796                 ew32(RCTL, rctl);
2797         }
2798 }
2799
2800 /**
2801  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2802  * @adapter: board private structure to initialize
2803  **/
2804 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805 {
2806         struct e1000_hw *hw = &adapter->hw;
2807         u32 ctrl;
2808
2809         /* disable VLAN tag insert/strip */
2810         ctrl = er32(CTRL);
2811         ctrl &= ~E1000_CTRL_VME;
2812         ew32(CTRL, ctrl);
2813 }
2814
2815 /**
2816  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2817  * @adapter: board private structure to initialize
2818  **/
2819 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820 {
2821         struct e1000_hw *hw = &adapter->hw;
2822         u32 ctrl;
2823
2824         /* enable VLAN tag insert/strip */
2825         ctrl = er32(CTRL);
2826         ctrl |= E1000_CTRL_VME;
2827         ew32(CTRL, ctrl);
2828 }
2829
2830 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831 {
2832         struct net_device *netdev = adapter->netdev;
2833         u16 vid = adapter->hw.mng_cookie.vlan_id;
2834         u16 old_vid = adapter->mng_vlan_id;
2835
2836         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2837                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2838                 adapter->mng_vlan_id = vid;
2839         }
2840
2841         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2842                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843 }
2844
2845 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2846 {
2847         u16 vid;
2848
2849         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850
2851         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2852             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853 }
2854
2855 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856 {
2857         struct e1000_hw *hw = &adapter->hw;
2858         u32 manc, manc2h, mdef, i, j;
2859
2860         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2861                 return;
2862
2863         manc = er32(MANC);
2864
2865         /* enable receiving management packets to the host. this will probably
2866          * generate destination unreachable messages from the host OS, but
2867          * the packets will be handled on SMBUS
2868          */
2869         manc |= E1000_MANC_EN_MNG2HOST;
2870         manc2h = er32(MANC2H);
2871
2872         switch (hw->mac.type) {
2873         default:
2874                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2875                 break;
2876         case e1000_82574:
2877         case e1000_82583:
2878                 /* Check if IPMI pass-through decision filter already exists;
2879                  * if so, enable it.
2880                  */
2881                 for (i = 0, j = 0; i < 8; i++) {
2882                         mdef = er32(MDEF(i));
2883
2884                         /* Ignore filters with anything other than IPMI ports */
2885                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886                                 continue;
2887
2888                         /* Enable this decision filter in MANC2H */
2889                         if (mdef)
2890                                 manc2h |= BIT(i);
2891
2892                         j |= mdef;
2893                 }
2894
2895                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896                         break;
2897
2898                 /* Create new decision filter in an empty filter */
2899                 for (i = 0, j = 0; i < 8; i++)
2900                         if (er32(MDEF(i)) == 0) {
2901                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2902                                                E1000_MDEF_PORT_664));
2903                                 manc2h |= BIT(1);
2904                                 j++;
2905                                 break;
2906                         }
2907
2908                 if (!j)
2909                         e_warn("Unable to create IPMI pass-through filter\n");
2910                 break;
2911         }
2912
2913         ew32(MANC2H, manc2h);
2914         ew32(MANC, manc);
2915 }
2916
2917 /**
2918  * e1000_configure_tx - Configure Transmit Unit after Reset
2919  * @adapter: board private structure
2920  *
2921  * Configure the Tx unit of the MAC after a reset.
2922  **/
2923 static void e1000_configure_tx(struct e1000_adapter *adapter)
2924 {
2925         struct e1000_hw *hw = &adapter->hw;
2926         struct e1000_ring *tx_ring = adapter->tx_ring;
2927         u64 tdba;
2928         u32 tdlen, tctl, tarc;
2929
2930         /* Setup the HW Tx Head and Tail descriptor pointers */
2931         tdba = tx_ring->dma;
2932         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2933         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2934         ew32(TDBAH(0), (tdba >> 32));
2935         ew32(TDLEN(0), tdlen);
2936         ew32(TDH(0), 0);
2937         ew32(TDT(0), 0);
2938         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2939         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940
2941         writel(0, tx_ring->head);
2942         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2943                 e1000e_update_tdt_wa(tx_ring, 0);
2944         else
2945                 writel(0, tx_ring->tail);
2946
2947         /* Set the Tx Interrupt Delay register */
2948         ew32(TIDV, adapter->tx_int_delay);
2949         /* Tx irq moderation */
2950         ew32(TADV, adapter->tx_abs_int_delay);
2951
2952         if (adapter->flags2 & FLAG2_DMA_BURST) {
2953                 u32 txdctl = er32(TXDCTL(0));
2954
2955                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2956                             E1000_TXDCTL_WTHRESH);
2957                 /* set up some performance related parameters to encourage the
2958                  * hardware to use the bus more efficiently in bursts, depends
2959                  * on the tx_int_delay to be enabled,
2960                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2961                  * hthresh = 1 ==> prefetch when one or more available
2962                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2963                  * BEWARE: this seems to work but should be considered first if
2964                  * there are Tx hangs or other Tx related bugs
2965                  */
2966                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2967                 ew32(TXDCTL(0), txdctl);
2968         }
2969         /* erratum work around: set txdctl the same for both queues */
2970         ew32(TXDCTL(1), er32(TXDCTL(0)));
2971
2972         /* Program the Transmit Control Register */
2973         tctl = er32(TCTL);
2974         tctl &= ~E1000_TCTL_CT;
2975         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2976                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977
2978         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2979                 tarc = er32(TARC(0));
2980                 /* set the speed mode bit, we'll clear it if we're not at
2981                  * gigabit link later
2982                  */
2983 #define SPEED_MODE_BIT BIT(21)
2984                 tarc |= SPEED_MODE_BIT;
2985                 ew32(TARC(0), tarc);
2986         }
2987
2988         /* errata: program both queues to unweighted RR */
2989         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2990                 tarc = er32(TARC(0));
2991                 tarc |= 1;
2992                 ew32(TARC(0), tarc);
2993                 tarc = er32(TARC(1));
2994                 tarc |= 1;
2995                 ew32(TARC(1), tarc);
2996         }
2997
2998         /* Setup Transmit Descriptor Settings for eop descriptor */
2999         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000
3001         /* only set IDE if we are delaying interrupts using the timers */
3002         if (adapter->tx_int_delay)
3003                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004
3005         /* enable Report Status bit */
3006         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3007
3008         ew32(TCTL, tctl);
3009
3010         hw->mac.ops.config_collision_dist(hw);
3011
3012         /* SPT and KBL Si errata workaround to avoid data corruption */
3013         if (hw->mac.type == e1000_pch_spt) {
3014                 u32 reg_val;
3015
3016                 reg_val = er32(IOSFPC);
3017                 reg_val |= E1000_RCTL_RDMTS_HEX;
3018                 ew32(IOSFPC, reg_val);
3019
3020                 reg_val = er32(TARC(0));
3021                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3022                  * Dropping the number of outstanding requests from
3023                  * 3 to 2 in order to avoid a buffer overrun.
3024                  */
3025                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3026                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3027                 ew32(TARC(0), reg_val);
3028         }
3029 }
3030
3031 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033
3034 /**
3035  * e1000_setup_rctl - configure the receive control registers
3036  * @adapter: Board private structure
3037  **/
3038 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039 {
3040         struct e1000_hw *hw = &adapter->hw;
3041         u32 rctl, rfctl;
3042         u32 pages = 0;
3043
3044         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3045          * If jumbo frames not set, program related MAC/PHY registers
3046          * to h/w defaults
3047          */
3048         if (hw->mac.type >= e1000_pch2lan) {
3049                 s32 ret_val;
3050
3051                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3052                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053                 else
3054                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055
3056                 if (ret_val)
3057                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058         }
3059
3060         /* Program MC offset vector base */
3061         rctl = er32(RCTL);
3062         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066
3067         /* Do not Store bad packets */
3068         rctl &= ~E1000_RCTL_SBP;
3069
3070         /* Enable Long Packet receive */
3071         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072                 rctl &= ~E1000_RCTL_LPE;
3073         else
3074                 rctl |= E1000_RCTL_LPE;
3075
3076         /* Some systems expect that the CRC is included in SMBUS traffic. The
3077          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078          * host memory when this is enabled
3079          */
3080         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081                 rctl |= E1000_RCTL_SECRC;
3082
3083         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085                 u16 phy_data;
3086
3087                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088                 phy_data &= 0xfff8;
3089                 phy_data |= BIT(2);
3090                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091
3092                 e1e_rphy(hw, 22, &phy_data);
3093                 phy_data &= 0x0fff;
3094                 phy_data |= BIT(14);
3095                 e1e_wphy(hw, 0x10, 0x2823);
3096                 e1e_wphy(hw, 0x11, 0x0003);
3097                 e1e_wphy(hw, 22, phy_data);
3098         }
3099
3100         /* Setup buffer sizes */
3101         rctl &= ~E1000_RCTL_SZ_4096;
3102         rctl |= E1000_RCTL_BSEX;
3103         switch (adapter->rx_buffer_len) {
3104         case 2048:
3105         default:
3106                 rctl |= E1000_RCTL_SZ_2048;
3107                 rctl &= ~E1000_RCTL_BSEX;
3108                 break;
3109         case 4096:
3110                 rctl |= E1000_RCTL_SZ_4096;
3111                 break;
3112         case 8192:
3113                 rctl |= E1000_RCTL_SZ_8192;
3114                 break;
3115         case 16384:
3116                 rctl |= E1000_RCTL_SZ_16384;
3117                 break;
3118         }
3119
3120         /* Enable Extended Status in all Receive Descriptors */
3121         rfctl = er32(RFCTL);
3122         rfctl |= E1000_RFCTL_EXTEN;
3123         ew32(RFCTL, rfctl);
3124
3125         /* 82571 and greater support packet-split where the protocol
3126          * header is placed in skb->data and the packet data is
3127          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128          * In the case of a non-split, skb->data is linearly filled,
3129          * followed by the page buffers.  Therefore, skb->data is
3130          * sized to hold the largest protocol header.
3131          *
3132          * allocations using alloc_page take too long for regular MTU
3133          * so only enable packet split for jumbo frames
3134          *
3135          * Using pages when the page size is greater than 16k wastes
3136          * a lot of memory, since we allocate 3 pages at all times
3137          * per packet.
3138          */
3139         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141                 adapter->rx_ps_pages = pages;
3142         else
3143                 adapter->rx_ps_pages = 0;
3144
3145         if (adapter->rx_ps_pages) {
3146                 u32 psrctl = 0;
3147
3148                 /* Enable Packet split descriptors */
3149                 rctl |= E1000_RCTL_DTYP_PS;
3150
3151                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152
3153                 switch (adapter->rx_ps_pages) {
3154                 case 3:
3155                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156                         fallthrough;
3157                 case 2:
3158                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159                         fallthrough;
3160                 case 1:
3161                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3162                         break;
3163                 }
3164
3165                 ew32(PSRCTL, psrctl);
3166         }
3167
3168         /* This is useful for sniffing bad packets. */
3169         if (adapter->netdev->features & NETIF_F_RXALL) {
3170                 /* UPE and MPE will be handled by normal PROMISC logic
3171                  * in e1000e_set_rx_mode
3172                  */
3173                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3174                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3175                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3176
3177                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3178                           E1000_RCTL_DPF |      /* Allow filtered pause */
3179                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3180                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181                  * and that breaks VLANs.
3182                  */
3183         }
3184
3185         ew32(RCTL, rctl);
3186         /* just started the receive unit, no need to restart */
3187         adapter->flags &= ~FLAG_RESTART_NOW;
3188 }
3189
3190 /**
3191  * e1000_configure_rx - Configure Receive Unit after Reset
3192  * @adapter: board private structure
3193  *
3194  * Configure the Rx unit of the MAC after a reset.
3195  **/
3196 static void e1000_configure_rx(struct e1000_adapter *adapter)
3197 {
3198         struct e1000_hw *hw = &adapter->hw;
3199         struct e1000_ring *rx_ring = adapter->rx_ring;
3200         u64 rdba;
3201         u32 rdlen, rctl, rxcsum, ctrl_ext;
3202
3203         if (adapter->rx_ps_pages) {
3204                 /* this is a 32 byte descriptor */
3205                 rdlen = rx_ring->count *
3206                     sizeof(union e1000_rx_desc_packet_split);
3207                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3208                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213         } else {
3214                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215                 adapter->clean_rx = e1000_clean_rx_irq;
3216                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217         }
3218
3219         /* disable receives while setting up the descriptors */
3220         rctl = er32(RCTL);
3221         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223         e1e_flush();
3224         usleep_range(10000, 11000);
3225
3226         if (adapter->flags2 & FLAG2_DMA_BURST) {
3227                 /* set the writeback threshold (only takes effect if the RDTR
3228                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3229                  * enable prefetching of 0x20 Rx descriptors
3230                  * granularity = 01
3231                  * wthresh = 04,
3232                  * hthresh = 04,
3233                  * pthresh = 0x20
3234                  */
3235                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237         }
3238
3239         /* set the Receive Delay Timer Register */
3240         ew32(RDTR, adapter->rx_int_delay);
3241
3242         /* irq moderation */
3243         ew32(RADV, adapter->rx_abs_int_delay);
3244         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3245                 e1000e_write_itr(adapter, adapter->itr);
3246
3247         ctrl_ext = er32(CTRL_EXT);
3248         /* Auto-Mask interrupts upon ICR access */
3249         ctrl_ext |= E1000_CTRL_EXT_IAME;
3250         ew32(IAM, 0xffffffff);
3251         ew32(CTRL_EXT, ctrl_ext);
3252         e1e_flush();
3253
3254         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3255          * the Base and Length of the Rx Descriptor Ring
3256          */
3257         rdba = rx_ring->dma;
3258         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3259         ew32(RDBAH(0), (rdba >> 32));
3260         ew32(RDLEN(0), rdlen);
3261         ew32(RDH(0), 0);
3262         ew32(RDT(0), 0);
3263         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3264         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265
3266         writel(0, rx_ring->head);
3267         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3268                 e1000e_update_rdt_wa(rx_ring, 0);
3269         else
3270                 writel(0, rx_ring->tail);
3271
3272         /* Enable Receive Checksum Offload for TCP and UDP */
3273         rxcsum = er32(RXCSUM);
3274         if (adapter->netdev->features & NETIF_F_RXCSUM)
3275                 rxcsum |= E1000_RXCSUM_TUOFL;
3276         else
3277                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3278         ew32(RXCSUM, rxcsum);
3279
3280         /* With jumbo frames, excessive C-state transition latencies result
3281          * in dropped transactions.
3282          */
3283         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284                 u32 lat =
3285                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3286                      adapter->max_frame_size) * 8 / 1000;
3287
3288                 if (adapter->flags & FLAG_IS_ICH) {
3289                         u32 rxdctl = er32(RXDCTL(0));
3290
3291                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3292                 }
3293
3294                 dev_info(&adapter->pdev->dev,
3295                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3296                 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297         } else {
3298                 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3299                                                PM_QOS_DEFAULT_VALUE);
3300         }
3301
3302         /* Enable Receives */
3303         ew32(RCTL, rctl);
3304 }
3305
3306 /**
3307  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3308  * @netdev: network interface device structure
3309  *
3310  * Writes multicast address list to the MTA hash table.
3311  * Returns: -ENOMEM on failure
3312  *                0 on no addresses written
3313  *                X on writing X addresses to MTA
3314  */
3315 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316 {
3317         struct e1000_adapter *adapter = netdev_priv(netdev);
3318         struct e1000_hw *hw = &adapter->hw;
3319         struct netdev_hw_addr *ha;
3320         u8 *mta_list;
3321         int i;
3322
3323         if (netdev_mc_empty(netdev)) {
3324                 /* nothing to program, so clear mc list */
3325                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3326                 return 0;
3327         }
3328
3329         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3330         if (!mta_list)
3331                 return -ENOMEM;
3332
3333         /* update_mc_addr_list expects a packed array of only addresses. */
3334         i = 0;
3335         netdev_for_each_mc_addr(ha, netdev)
3336             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337
3338         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3339         kfree(mta_list);
3340
3341         return netdev_mc_count(netdev);
3342 }
3343
3344 /**
3345  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3346  * @netdev: network interface device structure
3347  *
3348  * Writes unicast address list to the RAR table.
3349  * Returns: -ENOMEM on failure/insufficient address space
3350  *                0 on no addresses written
3351  *                X on writing X addresses to the RAR table
3352  **/
3353 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354 {
3355         struct e1000_adapter *adapter = netdev_priv(netdev);
3356         struct e1000_hw *hw = &adapter->hw;
3357         unsigned int rar_entries;
3358         int count = 0;
3359
3360         rar_entries = hw->mac.ops.rar_get_count(hw);
3361
3362         /* save a rar entry for our hardware address */
3363         rar_entries--;
3364
3365         /* save a rar entry for the LAA workaround */
3366         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3367                 rar_entries--;
3368
3369         /* return ENOMEM indicating insufficient memory for addresses */
3370         if (netdev_uc_count(netdev) > rar_entries)
3371                 return -ENOMEM;
3372
3373         if (!netdev_uc_empty(netdev) && rar_entries) {
3374                 struct netdev_hw_addr *ha;
3375
3376                 /* write the addresses in reverse order to avoid write
3377                  * combining
3378                  */
3379                 netdev_for_each_uc_addr(ha, netdev) {
3380                         int ret_val;
3381
3382                         if (!rar_entries)
3383                                 break;
3384                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3385                         if (ret_val < 0)
3386                                 return -ENOMEM;
3387                         count++;
3388                 }
3389         }
3390
3391         /* zero out the remaining RAR entries not used above */
3392         for (; rar_entries > 0; rar_entries--) {
3393                 ew32(RAH(rar_entries), 0);
3394                 ew32(RAL(rar_entries), 0);
3395         }
3396         e1e_flush();
3397
3398         return count;
3399 }
3400
3401 /**
3402  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3403  * @netdev: network interface device structure
3404  *
3405  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3406  * address list or the network interface flags are updated.  This routine is
3407  * responsible for configuring the hardware for proper unicast, multicast,
3408  * promiscuous mode, and all-multi behavior.
3409  **/
3410 static void e1000e_set_rx_mode(struct net_device *netdev)
3411 {
3412         struct e1000_adapter *adapter = netdev_priv(netdev);
3413         struct e1000_hw *hw = &adapter->hw;
3414         u32 rctl;
3415
3416         if (pm_runtime_suspended(netdev->dev.parent))
3417                 return;
3418
3419         /* Check for Promiscuous and All Multicast modes */
3420         rctl = er32(RCTL);
3421
3422         /* clear the affected bits */
3423         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424
3425         if (netdev->flags & IFF_PROMISC) {
3426                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3427                 /* Do not hardware filter VLANs in promisc mode */
3428                 e1000e_vlan_filter_disable(adapter);
3429         } else {
3430                 int count;
3431
3432                 if (netdev->flags & IFF_ALLMULTI) {
3433                         rctl |= E1000_RCTL_MPE;
3434                 } else {
3435                         /* Write addresses to the MTA, if the attempt fails
3436                          * then we should just turn on promiscuous mode so
3437                          * that we can at least receive multicast traffic
3438                          */
3439                         count = e1000e_write_mc_addr_list(netdev);
3440                         if (count < 0)
3441                                 rctl |= E1000_RCTL_MPE;
3442                 }
3443                 e1000e_vlan_filter_enable(adapter);
3444                 /* Write addresses to available RAR registers, if there is not
3445                  * sufficient space to store all the addresses then enable
3446                  * unicast promiscuous mode
3447                  */
3448                 count = e1000e_write_uc_addr_list(netdev);
3449                 if (count < 0)
3450                         rctl |= E1000_RCTL_UPE;
3451         }
3452
3453         ew32(RCTL, rctl);
3454
3455         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3456                 e1000e_vlan_strip_enable(adapter);
3457         else
3458                 e1000e_vlan_strip_disable(adapter);
3459 }
3460
3461 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462 {
3463         struct e1000_hw *hw = &adapter->hw;
3464         u32 mrqc, rxcsum;
3465         u32 rss_key[10];
3466         int i;
3467
3468         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3469         for (i = 0; i < 10; i++)
3470                 ew32(RSSRK(i), rss_key[i]);
3471
3472         /* Direct all traffic to queue 0 */
3473         for (i = 0; i < 32; i++)
3474                 ew32(RETA(i), 0);
3475
3476         /* Disable raw packet checksumming so that RSS hash is placed in
3477          * descriptor on writeback.
3478          */
3479         rxcsum = er32(RXCSUM);
3480         rxcsum |= E1000_RXCSUM_PCSD;
3481
3482         ew32(RXCSUM, rxcsum);
3483
3484         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3485                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3486                 E1000_MRQC_RSS_FIELD_IPV6 |
3487                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3488                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3489
3490         ew32(MRQC, mrqc);
3491 }
3492
3493 /**
3494  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3495  * @adapter: board private structure
3496  * @timinca: pointer to returned time increment attributes
3497  *
3498  * Get attributes for incrementing the System Time Register SYSTIML/H at
3499  * the default base frequency, and set the cyclecounter shift value.
3500  **/
3501 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502 {
3503         struct e1000_hw *hw = &adapter->hw;
3504         u32 incvalue, incperiod, shift;
3505
3506         /* Make sure clock is enabled on I217/I218/I219  before checking
3507          * the frequency
3508          */
3509         if ((hw->mac.type >= e1000_pch_lpt) &&
3510             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3511             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3512                 u32 fextnvm7 = er32(FEXTNVM7);
3513
3514                 if (!(fextnvm7 & BIT(0))) {
3515                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3516                         e1e_flush();
3517                 }
3518         }
3519
3520         switch (hw->mac.type) {
3521         case e1000_pch2lan:
3522                 /* Stable 96MHz frequency */
3523                 incperiod = INCPERIOD_96MHZ;
3524                 incvalue = INCVALUE_96MHZ;
3525                 shift = INCVALUE_SHIFT_96MHZ;
3526                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527                 break;
3528         case e1000_pch_lpt:
3529                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3530                         /* Stable 96MHz frequency */
3531                         incperiod = INCPERIOD_96MHZ;
3532                         incvalue = INCVALUE_96MHZ;
3533                         shift = INCVALUE_SHIFT_96MHZ;
3534                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535                 } else {
3536                         /* Stable 25MHz frequency */
3537                         incperiod = INCPERIOD_25MHZ;
3538                         incvalue = INCVALUE_25MHZ;
3539                         shift = INCVALUE_SHIFT_25MHZ;
3540                         adapter->cc.shift = shift;
3541                 }
3542                 break;
3543         case e1000_pch_spt:
3544                 /* Stable 24MHz frequency */
3545                 incperiod = INCPERIOD_24MHZ;
3546                 incvalue = INCVALUE_24MHZ;
3547                 shift = INCVALUE_SHIFT_24MHZ;
3548                 adapter->cc.shift = shift;
3549                 break;
3550         case e1000_pch_cnp:
3551         case e1000_pch_tgp:
3552         case e1000_pch_adp:
3553         case e1000_pch_mtp:
3554         case e1000_pch_lnp:
3555                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3556                         /* Stable 24MHz frequency */
3557                         incperiod = INCPERIOD_24MHZ;
3558                         incvalue = INCVALUE_24MHZ;
3559                         shift = INCVALUE_SHIFT_24MHZ;
3560                         adapter->cc.shift = shift;
3561                 } else {
3562                         /* Stable 38400KHz frequency */
3563                         incperiod = INCPERIOD_38400KHZ;
3564                         incvalue = INCVALUE_38400KHZ;
3565                         shift = INCVALUE_SHIFT_38400KHZ;
3566                         adapter->cc.shift = shift;
3567                 }
3568                 break;
3569         case e1000_82574:
3570         case e1000_82583:
3571                 /* Stable 25MHz frequency */
3572                 incperiod = INCPERIOD_25MHZ;
3573                 incvalue = INCVALUE_25MHZ;
3574                 shift = INCVALUE_SHIFT_25MHZ;
3575                 adapter->cc.shift = shift;
3576                 break;
3577         default:
3578                 return -EINVAL;
3579         }
3580
3581         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3582                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3583
3584         return 0;
3585 }
3586
3587 /**
3588  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3589  * @adapter: board private structure
3590  * @config: timestamp configuration
3591  *
3592  * Outgoing time stamping can be enabled and disabled. Play nice and
3593  * disable it when requested, although it shouldn't cause any overhead
3594  * when no packet needs it. At most one packet in the queue may be
3595  * marked for time stamping, otherwise it would be impossible to tell
3596  * for sure to which packet the hardware time stamp belongs.
3597  *
3598  * Incoming time stamping has to be configured via the hardware filters.
3599  * Not all combinations are supported, in particular event type has to be
3600  * specified. Matching the kind of event packet is not supported, with the
3601  * exception of "all V2 events regardless of level 2 or 4".
3602  **/
3603 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3604                                   struct hwtstamp_config *config)
3605 {
3606         struct e1000_hw *hw = &adapter->hw;
3607         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3608         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3609         u32 rxmtrl = 0;
3610         u16 rxudp = 0;
3611         bool is_l4 = false;
3612         bool is_l2 = false;
3613         u32 regval;
3614
3615         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3616                 return -EINVAL;
3617
3618         switch (config->tx_type) {
3619         case HWTSTAMP_TX_OFF:
3620                 tsync_tx_ctl = 0;
3621                 break;
3622         case HWTSTAMP_TX_ON:
3623                 break;
3624         default:
3625                 return -ERANGE;
3626         }
3627
3628         switch (config->rx_filter) {
3629         case HWTSTAMP_FILTER_NONE:
3630                 tsync_rx_ctl = 0;
3631                 break;
3632         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3633                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3634                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3635                 is_l4 = true;
3636                 break;
3637         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3638                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3639                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3640                 is_l4 = true;
3641                 break;
3642         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3643                 /* Also time stamps V2 L2 Path Delay Request/Response */
3644                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3645                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3646                 is_l2 = true;
3647                 break;
3648         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3649                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3650                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3651                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652                 is_l2 = true;
3653                 break;
3654         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3655                 /* Hardware cannot filter just V2 L4 Sync messages */
3656                 fallthrough;
3657         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3658                 /* Also time stamps V2 Path Delay Request/Response. */
3659                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3660                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3661                 is_l2 = true;
3662                 is_l4 = true;
3663                 break;
3664         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3665                 /* Hardware cannot filter just V2 L4 Delay Request messages */
3666                 fallthrough;
3667         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3668                 /* Also time stamps V2 Path Delay Request/Response. */
3669                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3670                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3671                 is_l2 = true;
3672                 is_l4 = true;
3673                 break;
3674         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3675         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3676                 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3677                 fallthrough;
3678         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3679                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3680                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3681                 is_l2 = true;
3682                 is_l4 = true;
3683                 break;
3684         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3685                 /* For V1, the hardware can only filter Sync messages or
3686                  * Delay Request messages but not both so fall-through to
3687                  * time stamp all packets.
3688                  */
3689                 fallthrough;
3690         case HWTSTAMP_FILTER_NTP_ALL:
3691         case HWTSTAMP_FILTER_ALL:
3692                 is_l2 = true;
3693                 is_l4 = true;
3694                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3695                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3696                 break;
3697         default:
3698                 return -ERANGE;
3699         }
3700
3701         adapter->hwtstamp_config = *config;
3702
3703         /* enable/disable Tx h/w time stamping */
3704         regval = er32(TSYNCTXCTL);
3705         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3706         regval |= tsync_tx_ctl;
3707         ew32(TSYNCTXCTL, regval);
3708         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3709             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3710                 e_err("Timesync Tx Control register not set as expected\n");
3711                 return -EAGAIN;
3712         }
3713
3714         /* enable/disable Rx h/w time stamping */
3715         regval = er32(TSYNCRXCTL);
3716         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3717         regval |= tsync_rx_ctl;
3718         ew32(TSYNCRXCTL, regval);
3719         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3720                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3721             (regval & (E1000_TSYNCRXCTL_ENABLED |
3722                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3723                 e_err("Timesync Rx Control register not set as expected\n");
3724                 return -EAGAIN;
3725         }
3726
3727         /* L2: define ethertype filter for time stamped packets */
3728         if (is_l2)
3729                 rxmtrl |= ETH_P_1588;
3730
3731         /* define which PTP packets get time stamped */
3732         ew32(RXMTRL, rxmtrl);
3733
3734         /* Filter by destination port */
3735         if (is_l4) {
3736                 rxudp = PTP_EV_PORT;
3737                 cpu_to_be16s(&rxudp);
3738         }
3739         ew32(RXUDP, rxudp);
3740
3741         e1e_flush();
3742
3743         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3744         er32(RXSTMPH);
3745         er32(TXSTMPH);
3746
3747         return 0;
3748 }
3749
3750 /**
3751  * e1000_configure - configure the hardware for Rx and Tx
3752  * @adapter: private board structure
3753  **/
3754 static void e1000_configure(struct e1000_adapter *adapter)
3755 {
3756         struct e1000_ring *rx_ring = adapter->rx_ring;
3757
3758         e1000e_set_rx_mode(adapter->netdev);
3759
3760         e1000_restore_vlan(adapter);
3761         e1000_init_manageability_pt(adapter);
3762
3763         e1000_configure_tx(adapter);
3764
3765         if (adapter->netdev->features & NETIF_F_RXHASH)
3766                 e1000e_setup_rss_hash(adapter);
3767         e1000_setup_rctl(adapter);
3768         e1000_configure_rx(adapter);
3769         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3770 }
3771
3772 /**
3773  * e1000e_power_up_phy - restore link in case the phy was powered down
3774  * @adapter: address of board private structure
3775  *
3776  * The phy may be powered down to save power and turn off link when the
3777  * driver is unloaded and wake on lan is not enabled (among others)
3778  * *** this routine MUST be followed by a call to e1000e_reset ***
3779  **/
3780 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3781 {
3782         if (adapter->hw.phy.ops.power_up)
3783                 adapter->hw.phy.ops.power_up(&adapter->hw);
3784
3785         adapter->hw.mac.ops.setup_link(&adapter->hw);
3786 }
3787
3788 /**
3789  * e1000_power_down_phy - Power down the PHY
3790  * @adapter: board private structure
3791  *
3792  * Power down the PHY so no link is implied when interface is down.
3793  * The PHY cannot be powered down if management or WoL is active.
3794  */
3795 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3796 {
3797         if (adapter->hw.phy.ops.power_down)
3798                 adapter->hw.phy.ops.power_down(&adapter->hw);
3799 }
3800
3801 /**
3802  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3803  * @adapter: board private structure
3804  *
3805  * We want to clear all pending descriptors from the TX ring.
3806  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3807  * the data of the next descriptor. We don't care about the data we are about
3808  * to reset the HW.
3809  */
3810 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3811 {
3812         struct e1000_hw *hw = &adapter->hw;
3813         struct e1000_ring *tx_ring = adapter->tx_ring;
3814         struct e1000_tx_desc *tx_desc = NULL;
3815         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3816         u16 size = 512;
3817
3818         tctl = er32(TCTL);
3819         ew32(TCTL, tctl | E1000_TCTL_EN);
3820         tdt = er32(TDT(0));
3821         BUG_ON(tdt != tx_ring->next_to_use);
3822         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3823         tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3824
3825         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3826         tx_desc->upper.data = 0;
3827         /* flush descriptors to memory before notifying the HW */
3828         wmb();
3829         tx_ring->next_to_use++;
3830         if (tx_ring->next_to_use == tx_ring->count)
3831                 tx_ring->next_to_use = 0;
3832         ew32(TDT(0), tx_ring->next_to_use);
3833         usleep_range(200, 250);
3834 }
3835
3836 /**
3837  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3838  * @adapter: board private structure
3839  *
3840  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3841  */
3842 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3843 {
3844         u32 rctl, rxdctl;
3845         struct e1000_hw *hw = &adapter->hw;
3846
3847         rctl = er32(RCTL);
3848         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3849         e1e_flush();
3850         usleep_range(100, 150);
3851
3852         rxdctl = er32(RXDCTL(0));
3853         /* zero the lower 14 bits (prefetch and host thresholds) */
3854         rxdctl &= 0xffffc000;
3855
3856         /* update thresholds: prefetch threshold to 31, host threshold to 1
3857          * and make sure the granularity is "descriptors" and not "cache lines"
3858          */
3859         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3860
3861         ew32(RXDCTL(0), rxdctl);
3862         /* momentarily enable the RX ring for the changes to take effect */
3863         ew32(RCTL, rctl | E1000_RCTL_EN);
3864         e1e_flush();
3865         usleep_range(100, 150);
3866         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3867 }
3868
3869 /**
3870  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3871  * @adapter: board private structure
3872  *
3873  * In i219, the descriptor rings must be emptied before resetting the HW
3874  * or before changing the device state to D3 during runtime (runtime PM).
3875  *
3876  * Failure to do this will cause the HW to enter a unit hang state which can
3877  * only be released by PCI reset on the device
3878  *
3879  */
3880
3881 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3882 {
3883         u16 hang_state;
3884         u32 fext_nvm11, tdlen;
3885         struct e1000_hw *hw = &adapter->hw;
3886
3887         /* First, disable MULR fix in FEXTNVM11 */
3888         fext_nvm11 = er32(FEXTNVM11);
3889         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3890         ew32(FEXTNVM11, fext_nvm11);
3891         /* do nothing if we're not in faulty state, or if the queue is empty */
3892         tdlen = er32(TDLEN(0));
3893         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894                              &hang_state);
3895         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3896                 return;
3897         e1000_flush_tx_ring(adapter);
3898         /* recheck, maybe the fault is caused by the rx ring */
3899         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3900                              &hang_state);
3901         if (hang_state & FLUSH_DESC_REQUIRED)
3902                 e1000_flush_rx_ring(adapter);
3903 }
3904
3905 /**
3906  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3907  * @adapter: board private structure
3908  *
3909  * When the MAC is reset, all hardware bits for timesync will be reset to the
3910  * default values. This function will restore the settings last in place.
3911  * Since the clock SYSTIME registers are reset, we will simply restore the
3912  * cyclecounter to the kernel real clock time.
3913  **/
3914 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3915 {
3916         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3917         struct e1000_hw *hw = &adapter->hw;
3918         unsigned long flags;
3919         u32 timinca;
3920         s32 ret_val;
3921
3922         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3923                 return;
3924
3925         if (info->adjfreq) {
3926                 /* restore the previous ptp frequency delta */
3927                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3928         } else {
3929                 /* set the default base frequency if no adjustment possible */
3930                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3931                 if (!ret_val)
3932                         ew32(TIMINCA, timinca);
3933         }
3934
3935         if (ret_val) {
3936                 dev_warn(&adapter->pdev->dev,
3937                          "Failed to restore TIMINCA clock rate delta: %d\n",
3938                          ret_val);
3939                 return;
3940         }
3941
3942         /* reset the systim ns time counter */
3943         spin_lock_irqsave(&adapter->systim_lock, flags);
3944         timecounter_init(&adapter->tc, &adapter->cc,
3945                          ktime_to_ns(ktime_get_real()));
3946         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3947
3948         /* restore the previous hwtstamp configuration settings */
3949         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3950 }
3951
3952 /**
3953  * e1000e_reset - bring the hardware into a known good state
3954  * @adapter: board private structure
3955  *
3956  * This function boots the hardware and enables some settings that
3957  * require a configuration cycle of the hardware - those cannot be
3958  * set/changed during runtime. After reset the device needs to be
3959  * properly configured for Rx, Tx etc.
3960  */
3961 void e1000e_reset(struct e1000_adapter *adapter)
3962 {
3963         struct e1000_mac_info *mac = &adapter->hw.mac;
3964         struct e1000_fc_info *fc = &adapter->hw.fc;
3965         struct e1000_hw *hw = &adapter->hw;
3966         u32 tx_space, min_tx_space, min_rx_space;
3967         u32 pba = adapter->pba;
3968         u16 hwm;
3969
3970         /* reset Packet Buffer Allocation to default */
3971         ew32(PBA, pba);
3972
3973         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3974                 /* To maintain wire speed transmits, the Tx FIFO should be
3975                  * large enough to accommodate two full transmit packets,
3976                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3977                  * the Rx FIFO should be large enough to accommodate at least
3978                  * one full receive packet and is similarly rounded up and
3979                  * expressed in KB.
3980                  */
3981                 pba = er32(PBA);
3982                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3983                 tx_space = pba >> 16;
3984                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3985                 pba &= 0xffff;
3986                 /* the Tx fifo also stores 16 bytes of information about the Tx
3987                  * but don't include ethernet FCS because hardware appends it
3988                  */
3989                 min_tx_space = (adapter->max_frame_size +
3990                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3991                 min_tx_space = ALIGN(min_tx_space, 1024);
3992                 min_tx_space >>= 10;
3993                 /* software strips receive CRC, so leave room for it */
3994                 min_rx_space = adapter->max_frame_size;
3995                 min_rx_space = ALIGN(min_rx_space, 1024);
3996                 min_rx_space >>= 10;
3997
3998                 /* If current Tx allocation is less than the min Tx FIFO size,
3999                  * and the min Tx FIFO size is less than the current Rx FIFO
4000                  * allocation, take space away from current Rx allocation
4001                  */
4002                 if ((tx_space < min_tx_space) &&
4003                     ((min_tx_space - tx_space) < pba)) {
4004                         pba -= min_tx_space - tx_space;
4005
4006                         /* if short on Rx space, Rx wins and must trump Tx
4007                          * adjustment
4008                          */
4009                         if (pba < min_rx_space)
4010                                 pba = min_rx_space;
4011                 }
4012
4013                 ew32(PBA, pba);
4014         }
4015
4016         /* flow control settings
4017          *
4018          * The high water mark must be low enough to fit one full frame
4019          * (or the size used for early receive) above it in the Rx FIFO.
4020          * Set it to the lower of:
4021          * - 90% of the Rx FIFO size, and
4022          * - the full Rx FIFO size minus one full frame
4023          */
4024         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4025                 fc->pause_time = 0xFFFF;
4026         else
4027                 fc->pause_time = E1000_FC_PAUSE_TIME;
4028         fc->send_xon = true;
4029         fc->current_mode = fc->requested_mode;
4030
4031         switch (hw->mac.type) {
4032         case e1000_ich9lan:
4033         case e1000_ich10lan:
4034                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035                         pba = 14;
4036                         ew32(PBA, pba);
4037                         fc->high_water = 0x2800;
4038                         fc->low_water = fc->high_water - 8;
4039                         break;
4040                 }
4041                 fallthrough;
4042         default:
4043                 hwm = min(((pba << 10) * 9 / 10),
4044                           ((pba << 10) - adapter->max_frame_size));
4045
4046                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4047                 fc->low_water = fc->high_water - 8;
4048                 break;
4049         case e1000_pchlan:
4050                 /* Workaround PCH LOM adapter hangs with certain network
4051                  * loads.  If hangs persist, try disabling Tx flow control.
4052                  */
4053                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4054                         fc->high_water = 0x3500;
4055                         fc->low_water = 0x1500;
4056                 } else {
4057                         fc->high_water = 0x5000;
4058                         fc->low_water = 0x3000;
4059                 }
4060                 fc->refresh_time = 0x1000;
4061                 break;
4062         case e1000_pch2lan:
4063         case e1000_pch_lpt:
4064         case e1000_pch_spt:
4065         case e1000_pch_cnp:
4066         case e1000_pch_tgp:
4067         case e1000_pch_adp:
4068         case e1000_pch_mtp:
4069         case e1000_pch_lnp:
4070                 fc->refresh_time = 0xFFFF;
4071                 fc->pause_time = 0xFFFF;
4072
4073                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074                         fc->high_water = 0x05C20;
4075                         fc->low_water = 0x05048;
4076                         break;
4077                 }
4078
4079                 pba = 14;
4080                 ew32(PBA, pba);
4081                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4082                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4083                 break;
4084         }
4085
4086         /* Alignment of Tx data is on an arbitrary byte boundary with the
4087          * maximum size per Tx descriptor limited only to the transmit
4088          * allocation of the packet buffer minus 96 bytes with an upper
4089          * limit of 24KB due to receive synchronization limitations.
4090          */
4091         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4092                                        24 << 10);
4093
4094         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095          * fit in receive buffer.
4096          */
4097         if (adapter->itr_setting & 0x3) {
4098                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4099                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4100                                 dev_info(&adapter->pdev->dev,
4101                                          "Interrupt Throttle Rate off\n");
4102                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4103                                 e1000e_write_itr(adapter, 0);
4104                         }
4105                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4106                         dev_info(&adapter->pdev->dev,
4107                                  "Interrupt Throttle Rate on\n");
4108                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4109                         adapter->itr = 20000;
4110                         e1000e_write_itr(adapter, adapter->itr);
4111                 }
4112         }
4113
4114         if (hw->mac.type >= e1000_pch_spt)
4115                 e1000_flush_desc_rings(adapter);
4116         /* Allow time for pending master requests to run */
4117         mac->ops.reset_hw(hw);
4118
4119         /* For parts with AMT enabled, let the firmware know
4120          * that the network interface is in control
4121          */
4122         if (adapter->flags & FLAG_HAS_AMT)
4123                 e1000e_get_hw_control(adapter);
4124
4125         ew32(WUC, 0);
4126
4127         if (mac->ops.init_hw(hw))
4128                 e_err("Hardware Error\n");
4129
4130         e1000_update_mng_vlan(adapter);
4131
4132         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133         ew32(VET, ETH_P_8021Q);
4134
4135         e1000e_reset_adaptive(hw);
4136
4137         /* restore systim and hwtstamp settings */
4138         e1000e_systim_reset(adapter);
4139
4140         /* Set EEE advertisement as appropriate */
4141         if (adapter->flags2 & FLAG2_HAS_EEE) {
4142                 s32 ret_val;
4143                 u16 adv_addr;
4144
4145                 switch (hw->phy.type) {
4146                 case e1000_phy_82579:
4147                         adv_addr = I82579_EEE_ADVERTISEMENT;
4148                         break;
4149                 case e1000_phy_i217:
4150                         adv_addr = I217_EEE_ADVERTISEMENT;
4151                         break;
4152                 default:
4153                         dev_err(&adapter->pdev->dev,
4154                                 "Invalid PHY type setting EEE advertisement\n");
4155                         return;
4156                 }
4157
4158                 ret_val = hw->phy.ops.acquire(hw);
4159                 if (ret_val) {
4160                         dev_err(&adapter->pdev->dev,
4161                                 "EEE advertisement - unable to acquire PHY\n");
4162                         return;
4163                 }
4164
4165                 e1000_write_emi_reg_locked(hw, adv_addr,
4166                                            hw->dev_spec.ich8lan.eee_disable ?
4167                                            0 : adapter->eee_advert);
4168
4169                 hw->phy.ops.release(hw);
4170         }
4171
4172         if (!netif_running(adapter->netdev) &&
4173             !test_bit(__E1000_TESTING, &adapter->state))
4174                 e1000_power_down_phy(adapter);
4175
4176         e1000_get_phy_info(hw);
4177
4178         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4179             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4180                 u16 phy_data = 0;
4181                 /* speed up time to link by disabling smart power down, ignore
4182                  * the return value of this function because there is nothing
4183                  * different we would do if it failed
4184                  */
4185                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4186                 phy_data &= ~IGP02E1000_PM_SPD;
4187                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4188         }
4189         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4190                 u32 reg;
4191
4192                 /* Fextnvm7 @ 0xe4[2] = 1 */
4193                 reg = er32(FEXTNVM7);
4194                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4195                 ew32(FEXTNVM7, reg);
4196                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197                 reg = er32(FEXTNVM9);
4198                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4199                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4200                 ew32(FEXTNVM9, reg);
4201         }
4202
4203 }
4204
4205 /**
4206  * e1000e_trigger_lsc - trigger an LSC interrupt
4207  * @adapter: 
4208  *
4209  * Fire a link status change interrupt to start the watchdog.
4210  **/
4211 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4212 {
4213         struct e1000_hw *hw = &adapter->hw;
4214
4215         if (adapter->msix_entries)
4216                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4217         else
4218                 ew32(ICS, E1000_ICS_LSC);
4219 }
4220
4221 void e1000e_up(struct e1000_adapter *adapter)
4222 {
4223         /* hardware has been reset, we need to reload some things */
4224         e1000_configure(adapter);
4225
4226         clear_bit(__E1000_DOWN, &adapter->state);
4227
4228         if (adapter->msix_entries)
4229                 e1000_configure_msix(adapter);
4230         e1000_irq_enable(adapter);
4231
4232         /* Tx queue started by watchdog timer when link is up */
4233
4234         e1000e_trigger_lsc(adapter);
4235 }
4236
4237 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4238 {
4239         struct e1000_hw *hw = &adapter->hw;
4240
4241         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4242                 return;
4243
4244         /* flush pending descriptor writebacks to memory */
4245         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247
4248         /* execute the writes immediately */
4249         e1e_flush();
4250
4251         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252          * write is successful
4253          */
4254         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256
4257         /* execute the writes immediately */
4258         e1e_flush();
4259 }
4260
4261 static void e1000e_update_stats(struct e1000_adapter *adapter);
4262
4263 /**
4264  * e1000e_down - quiesce the device and optionally reset the hardware
4265  * @adapter: board private structure
4266  * @reset: boolean flag to reset the hardware or not
4267  */
4268 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4269 {
4270         struct net_device *netdev = adapter->netdev;
4271         struct e1000_hw *hw = &adapter->hw;
4272         u32 tctl, rctl;
4273
4274         /* signal that we're down so the interrupt handler does not
4275          * reschedule our watchdog timer
4276          */
4277         set_bit(__E1000_DOWN, &adapter->state);
4278
4279         netif_carrier_off(netdev);
4280
4281         /* disable receives in the hardware */
4282         rctl = er32(RCTL);
4283         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4284                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4285         /* flush and sleep below */
4286
4287         netif_stop_queue(netdev);
4288
4289         /* disable transmits in the hardware */
4290         tctl = er32(TCTL);
4291         tctl &= ~E1000_TCTL_EN;
4292         ew32(TCTL, tctl);
4293
4294         /* flush both disables and wait for them to finish */
4295         e1e_flush();
4296         usleep_range(10000, 11000);
4297
4298         e1000_irq_disable(adapter);
4299
4300         napi_synchronize(&adapter->napi);
4301
4302         del_timer_sync(&adapter->watchdog_timer);
4303         del_timer_sync(&adapter->phy_info_timer);
4304
4305         spin_lock(&adapter->stats64_lock);
4306         e1000e_update_stats(adapter);
4307         spin_unlock(&adapter->stats64_lock);
4308
4309         e1000e_flush_descriptors(adapter);
4310
4311         adapter->link_speed = 0;
4312         adapter->link_duplex = 0;
4313
4314         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4315         if ((hw->mac.type >= e1000_pch2lan) &&
4316             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4317             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4318                 e_dbg("failed to disable jumbo frame workaround mode\n");
4319
4320         if (!pci_channel_offline(adapter->pdev)) {
4321                 if (reset)
4322                         e1000e_reset(adapter);
4323                 else if (hw->mac.type >= e1000_pch_spt)
4324                         e1000_flush_desc_rings(adapter);
4325         }
4326         e1000_clean_tx_ring(adapter->tx_ring);
4327         e1000_clean_rx_ring(adapter->rx_ring);
4328 }
4329
4330 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4331 {
4332         might_sleep();
4333         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4334                 usleep_range(1000, 1100);
4335         e1000e_down(adapter, true);
4336         e1000e_up(adapter);
4337         clear_bit(__E1000_RESETTING, &adapter->state);
4338 }
4339
4340 /**
4341  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342  * @hw: pointer to the HW structure
4343  * @systim: PHC time value read, sanitized and returned
4344  * @sts: structure to hold system time before and after reading SYSTIML,
4345  * may be NULL
4346  *
4347  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4348  * check to see that the time is incrementing at a reasonable
4349  * rate and is a multiple of incvalue.
4350  **/
4351 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4352                                   struct ptp_system_timestamp *sts)
4353 {
4354         u64 time_delta, rem, temp;
4355         u64 systim_next;
4356         u32 incvalue;
4357         int i;
4358
4359         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4360         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4361                 /* latch SYSTIMH on read of SYSTIML */
4362                 ptp_read_system_prets(sts);
4363                 systim_next = (u64)er32(SYSTIML);
4364                 ptp_read_system_postts(sts);
4365                 systim_next |= (u64)er32(SYSTIMH) << 32;
4366
4367                 time_delta = systim_next - systim;
4368                 temp = time_delta;
4369                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4370                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4371
4372                 systim = systim_next;
4373
4374                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4375                         break;
4376         }
4377
4378         return systim;
4379 }
4380
4381 /**
4382  * e1000e_read_systim - read SYSTIM register
4383  * @adapter: board private structure
4384  * @sts: structure which will contain system time before and after reading
4385  * SYSTIML, may be NULL
4386  **/
4387 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4388                        struct ptp_system_timestamp *sts)
4389 {
4390         struct e1000_hw *hw = &adapter->hw;
4391         u32 systimel, systimel_2, systimeh;
4392         u64 systim;
4393         /* SYSTIMH latching upon SYSTIML read does not work well.
4394          * This means that if SYSTIML overflows after we read it but before
4395          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396          * will experience a huge non linear increment in the systime value
4397          * to fix that we test for overflow and if true, we re-read systime.
4398          */
4399         ptp_read_system_prets(sts);
4400         systimel = er32(SYSTIML);
4401         ptp_read_system_postts(sts);
4402         systimeh = er32(SYSTIMH);
4403         /* Is systimel is so large that overflow is possible? */
4404         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4405                 ptp_read_system_prets(sts);
4406                 systimel_2 = er32(SYSTIML);
4407                 ptp_read_system_postts(sts);
4408                 if (systimel > systimel_2) {
4409                         /* There was an overflow, read again SYSTIMH, and use
4410                          * systimel_2
4411                          */
4412                         systimeh = er32(SYSTIMH);
4413                         systimel = systimel_2;
4414                 }
4415         }
4416         systim = (u64)systimel;
4417         systim |= (u64)systimeh << 32;
4418
4419         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4420                 systim = e1000e_sanitize_systim(hw, systim, sts);
4421
4422         return systim;
4423 }
4424
4425 /**
4426  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4427  * @cc: cyclecounter structure
4428  **/
4429 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4430 {
4431         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4432                                                      cc);
4433
4434         return e1000e_read_systim(adapter, NULL);
4435 }
4436
4437 /**
4438  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4439  * @adapter: board private structure to initialize
4440  *
4441  * e1000_sw_init initializes the Adapter private data structure.
4442  * Fields are initialized based on PCI device information and
4443  * OS network device settings (MTU size).
4444  **/
4445 static int e1000_sw_init(struct e1000_adapter *adapter)
4446 {
4447         struct net_device *netdev = adapter->netdev;
4448
4449         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4450         adapter->rx_ps_bsize0 = 128;
4451         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4452         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4453         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4454         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4455
4456         spin_lock_init(&adapter->stats64_lock);
4457
4458         e1000e_set_interrupt_capability(adapter);
4459
4460         if (e1000_alloc_queues(adapter))
4461                 return -ENOMEM;
4462
4463         /* Setup hardware time stamping cyclecounter */
4464         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4465                 adapter->cc.read = e1000e_cyclecounter_read;
4466                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4467                 adapter->cc.mult = 1;
4468                 /* cc.shift set in e1000e_get_base_tininca() */
4469
4470                 spin_lock_init(&adapter->systim_lock);
4471                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4472         }
4473
4474         /* Explicitly disable IRQ since the NIC can be in any state. */
4475         e1000_irq_disable(adapter);
4476
4477         set_bit(__E1000_DOWN, &adapter->state);
4478         return 0;
4479 }
4480
4481 /**
4482  * e1000_intr_msi_test - Interrupt Handler
4483  * @irq: interrupt number
4484  * @data: pointer to a network interface device structure
4485  **/
4486 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4487 {
4488         struct net_device *netdev = data;
4489         struct e1000_adapter *adapter = netdev_priv(netdev);
4490         struct e1000_hw *hw = &adapter->hw;
4491         u32 icr = er32(ICR);
4492
4493         e_dbg("icr is %08X\n", icr);
4494         if (icr & E1000_ICR_RXSEQ) {
4495                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4496                 /* Force memory writes to complete before acknowledging the
4497                  * interrupt is handled.
4498                  */
4499                 wmb();
4500         }
4501
4502         return IRQ_HANDLED;
4503 }
4504
4505 /**
4506  * e1000_test_msi_interrupt - Returns 0 for successful test
4507  * @adapter: board private struct
4508  *
4509  * code flow taken from tg3.c
4510  **/
4511 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4512 {
4513         struct net_device *netdev = adapter->netdev;
4514         struct e1000_hw *hw = &adapter->hw;
4515         int err;
4516
4517         /* poll_enable hasn't been called yet, so don't need disable */
4518         /* clear any pending events */
4519         er32(ICR);
4520
4521         /* free the real vector and request a test handler */
4522         e1000_free_irq(adapter);
4523         e1000e_reset_interrupt_capability(adapter);
4524
4525         /* Assume that the test fails, if it succeeds then the test
4526          * MSI irq handler will unset this flag
4527          */
4528         adapter->flags |= FLAG_MSI_TEST_FAILED;
4529
4530         err = pci_enable_msi(adapter->pdev);
4531         if (err)
4532                 goto msi_test_failed;
4533
4534         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4535                           netdev->name, netdev);
4536         if (err) {
4537                 pci_disable_msi(adapter->pdev);
4538                 goto msi_test_failed;
4539         }
4540
4541         /* Force memory writes to complete before enabling and firing an
4542          * interrupt.
4543          */
4544         wmb();
4545
4546         e1000_irq_enable(adapter);
4547
4548         /* fire an unusual interrupt on the test handler */
4549         ew32(ICS, E1000_ICS_RXSEQ);
4550         e1e_flush();
4551         msleep(100);
4552
4553         e1000_irq_disable(adapter);
4554
4555         rmb();                  /* read flags after interrupt has been fired */
4556
4557         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4558                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4559                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4560         } else {
4561                 e_dbg("MSI interrupt test succeeded!\n");
4562         }
4563
4564         free_irq(adapter->pdev->irq, netdev);
4565         pci_disable_msi(adapter->pdev);
4566
4567 msi_test_failed:
4568         e1000e_set_interrupt_capability(adapter);
4569         return e1000_request_irq(adapter);
4570 }
4571
4572 /**
4573  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4574  * @adapter: board private struct
4575  *
4576  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4577  **/
4578 static int e1000_test_msi(struct e1000_adapter *adapter)
4579 {
4580         int err;
4581         u16 pci_cmd;
4582
4583         if (!(adapter->flags & FLAG_MSI_ENABLED))
4584                 return 0;
4585
4586         /* disable SERR in case the MSI write causes a master abort */
4587         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4588         if (pci_cmd & PCI_COMMAND_SERR)
4589                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4590                                       pci_cmd & ~PCI_COMMAND_SERR);
4591
4592         err = e1000_test_msi_interrupt(adapter);
4593
4594         /* re-enable SERR */
4595         if (pci_cmd & PCI_COMMAND_SERR) {
4596                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4597                 pci_cmd |= PCI_COMMAND_SERR;
4598                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4599         }
4600
4601         return err;
4602 }
4603
4604 /**
4605  * e1000e_open - Called when a network interface is made active
4606  * @netdev: network interface device structure
4607  *
4608  * Returns 0 on success, negative value on failure
4609  *
4610  * The open entry point is called when a network interface is made
4611  * active by the system (IFF_UP).  At this point all resources needed
4612  * for transmit and receive operations are allocated, the interrupt
4613  * handler is registered with the OS, the watchdog timer is started,
4614  * and the stack is notified that the interface is ready.
4615  **/
4616 int e1000e_open(struct net_device *netdev)
4617 {
4618         struct e1000_adapter *adapter = netdev_priv(netdev);
4619         struct e1000_hw *hw = &adapter->hw;
4620         struct pci_dev *pdev = adapter->pdev;
4621         int err;
4622
4623         /* disallow open during test */
4624         if (test_bit(__E1000_TESTING, &adapter->state))
4625                 return -EBUSY;
4626
4627         pm_runtime_get_sync(&pdev->dev);
4628
4629         netif_carrier_off(netdev);
4630         netif_stop_queue(netdev);
4631
4632         /* allocate transmit descriptors */
4633         err = e1000e_setup_tx_resources(adapter->tx_ring);
4634         if (err)
4635                 goto err_setup_tx;
4636
4637         /* allocate receive descriptors */
4638         err = e1000e_setup_rx_resources(adapter->rx_ring);
4639         if (err)
4640                 goto err_setup_rx;
4641
4642         /* If AMT is enabled, let the firmware know that the network
4643          * interface is now open and reset the part to a known state.
4644          */
4645         if (adapter->flags & FLAG_HAS_AMT) {
4646                 e1000e_get_hw_control(adapter);
4647                 e1000e_reset(adapter);
4648         }
4649
4650         e1000e_power_up_phy(adapter);
4651
4652         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4653         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4654                 e1000_update_mng_vlan(adapter);
4655
4656         /* DMA latency requirement to workaround jumbo issue */
4657         cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4658
4659         /* before we allocate an interrupt, we must be ready to handle it.
4660          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4661          * as soon as we call pci_request_irq, so we have to setup our
4662          * clean_rx handler before we do so.
4663          */
4664         e1000_configure(adapter);
4665
4666         err = e1000_request_irq(adapter);
4667         if (err)
4668                 goto err_req_irq;
4669
4670         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4671          * ignore e1000e MSI messages, which means we need to test our MSI
4672          * interrupt now
4673          */
4674         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4675                 err = e1000_test_msi(adapter);
4676                 if (err) {
4677                         e_err("Interrupt allocation failed\n");
4678                         goto err_req_irq;
4679                 }
4680         }
4681
4682         /* From here on the code is the same as e1000e_up() */
4683         clear_bit(__E1000_DOWN, &adapter->state);
4684
4685         napi_enable(&adapter->napi);
4686
4687         e1000_irq_enable(adapter);
4688
4689         adapter->tx_hang_recheck = false;
4690
4691         hw->mac.get_link_status = true;
4692         pm_runtime_put(&pdev->dev);
4693
4694         e1000e_trigger_lsc(adapter);
4695
4696         return 0;
4697
4698 err_req_irq:
4699         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4700         e1000e_release_hw_control(adapter);
4701         e1000_power_down_phy(adapter);
4702         e1000e_free_rx_resources(adapter->rx_ring);
4703 err_setup_rx:
4704         e1000e_free_tx_resources(adapter->tx_ring);
4705 err_setup_tx:
4706         e1000e_reset(adapter);
4707         pm_runtime_put_sync(&pdev->dev);
4708
4709         return err;
4710 }
4711
4712 /**
4713  * e1000e_close - Disables a network interface
4714  * @netdev: network interface device structure
4715  *
4716  * Returns 0, this is not allowed to fail
4717  *
4718  * The close entry point is called when an interface is de-activated
4719  * by the OS.  The hardware is still under the drivers control, but
4720  * needs to be disabled.  A global MAC reset is issued to stop the
4721  * hardware, and all transmit and receive resources are freed.
4722  **/
4723 int e1000e_close(struct net_device *netdev)
4724 {
4725         struct e1000_adapter *adapter = netdev_priv(netdev);
4726         struct pci_dev *pdev = adapter->pdev;
4727         int count = E1000_CHECK_RESET_COUNT;
4728
4729         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4730                 usleep_range(10000, 11000);
4731
4732         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4733
4734         pm_runtime_get_sync(&pdev->dev);
4735
4736         if (netif_device_present(netdev)) {
4737                 e1000e_down(adapter, true);
4738                 e1000_free_irq(adapter);
4739
4740                 /* Link status message must follow this format */
4741                 netdev_info(netdev, "NIC Link is Down\n");
4742         }
4743
4744         napi_disable(&adapter->napi);
4745
4746         e1000e_free_tx_resources(adapter->tx_ring);
4747         e1000e_free_rx_resources(adapter->rx_ring);
4748
4749         /* kill manageability vlan ID if supported, but not if a vlan with
4750          * the same ID is registered on the host OS (let 8021q kill it)
4751          */
4752         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4753                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4754                                        adapter->mng_vlan_id);
4755
4756         /* If AMT is enabled, let the firmware know that the network
4757          * interface is now closed
4758          */
4759         if ((adapter->flags & FLAG_HAS_AMT) &&
4760             !test_bit(__E1000_TESTING, &adapter->state))
4761                 e1000e_release_hw_control(adapter);
4762
4763         cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4764
4765         pm_runtime_put_sync(&pdev->dev);
4766
4767         return 0;
4768 }
4769
4770 /**
4771  * e1000_set_mac - Change the Ethernet Address of the NIC
4772  * @netdev: network interface device structure
4773  * @p: pointer to an address structure
4774  *
4775  * Returns 0 on success, negative on failure
4776  **/
4777 static int e1000_set_mac(struct net_device *netdev, void *p)
4778 {
4779         struct e1000_adapter *adapter = netdev_priv(netdev);
4780         struct e1000_hw *hw = &adapter->hw;
4781         struct sockaddr *addr = p;
4782
4783         if (!is_valid_ether_addr(addr->sa_data))
4784                 return -EADDRNOTAVAIL;
4785
4786         eth_hw_addr_set(netdev, addr->sa_data);
4787         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4788
4789         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4790
4791         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4792                 /* activate the work around */
4793                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4794
4795                 /* Hold a copy of the LAA in RAR[14] This is done so that
4796                  * between the time RAR[0] gets clobbered  and the time it
4797                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4798                  * of the RARs and no incoming packets directed to this port
4799                  * are dropped. Eventually the LAA will be in RAR[0] and
4800                  * RAR[14]
4801                  */
4802                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4803                                     adapter->hw.mac.rar_entry_count - 1);
4804         }
4805
4806         return 0;
4807 }
4808
4809 /**
4810  * e1000e_update_phy_task - work thread to update phy
4811  * @work: pointer to our work struct
4812  *
4813  * this worker thread exists because we must acquire a
4814  * semaphore to read the phy, which we could msleep while
4815  * waiting for it, and we can't msleep in a timer.
4816  **/
4817 static void e1000e_update_phy_task(struct work_struct *work)
4818 {
4819         struct e1000_adapter *adapter = container_of(work,
4820                                                      struct e1000_adapter,
4821                                                      update_phy_task);
4822         struct e1000_hw *hw = &adapter->hw;
4823
4824         if (test_bit(__E1000_DOWN, &adapter->state))
4825                 return;
4826
4827         e1000_get_phy_info(hw);
4828
4829         /* Enable EEE on 82579 after link up */
4830         if (hw->phy.type >= e1000_phy_82579)
4831                 e1000_set_eee_pchlan(hw);
4832 }
4833
4834 /**
4835  * e1000_update_phy_info - timre call-back to update PHY info
4836  * @t: pointer to timer_list containing private info adapter
4837  *
4838  * Need to wait a few seconds after link up to get diagnostic information from
4839  * the phy
4840  **/
4841 static void e1000_update_phy_info(struct timer_list *t)
4842 {
4843         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4844
4845         if (test_bit(__E1000_DOWN, &adapter->state))
4846                 return;
4847
4848         schedule_work(&adapter->update_phy_task);
4849 }
4850
4851 /**
4852  * e1000e_update_phy_stats - Update the PHY statistics counters
4853  * @adapter: board private structure
4854  *
4855  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4856  **/
4857 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4858 {
4859         struct e1000_hw *hw = &adapter->hw;
4860         s32 ret_val;
4861         u16 phy_data;
4862
4863         ret_val = hw->phy.ops.acquire(hw);
4864         if (ret_val)
4865                 return;
4866
4867         /* A page set is expensive so check if already on desired page.
4868          * If not, set to the page with the PHY status registers.
4869          */
4870         hw->phy.addr = 1;
4871         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4872                                            &phy_data);
4873         if (ret_val)
4874                 goto release;
4875         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4876                 ret_val = hw->phy.ops.set_page(hw,
4877                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4878                 if (ret_val)
4879                         goto release;
4880         }
4881
4882         /* Single Collision Count */
4883         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4884         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4885         if (!ret_val)
4886                 adapter->stats.scc += phy_data;
4887
4888         /* Excessive Collision Count */
4889         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4890         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4891         if (!ret_val)
4892                 adapter->stats.ecol += phy_data;
4893
4894         /* Multiple Collision Count */
4895         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4896         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4897         if (!ret_val)
4898                 adapter->stats.mcc += phy_data;
4899
4900         /* Late Collision Count */
4901         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4902         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4903         if (!ret_val)
4904                 adapter->stats.latecol += phy_data;
4905
4906         /* Collision Count - also used for adaptive IFS */
4907         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4908         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4909         if (!ret_val)
4910                 hw->mac.collision_delta = phy_data;
4911
4912         /* Defer Count */
4913         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4914         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4915         if (!ret_val)
4916                 adapter->stats.dc += phy_data;
4917
4918         /* Transmit with no CRS */
4919         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4920         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4921         if (!ret_val)
4922                 adapter->stats.tncrs += phy_data;
4923
4924 release:
4925         hw->phy.ops.release(hw);
4926 }
4927
4928 /**
4929  * e1000e_update_stats - Update the board statistics counters
4930  * @adapter: board private structure
4931  **/
4932 static void e1000e_update_stats(struct e1000_adapter *adapter)
4933 {
4934         struct net_device *netdev = adapter->netdev;
4935         struct e1000_hw *hw = &adapter->hw;
4936         struct pci_dev *pdev = adapter->pdev;
4937
4938         /* Prevent stats update while adapter is being reset, or if the pci
4939          * connection is down.
4940          */
4941         if (adapter->link_speed == 0)
4942                 return;
4943         if (pci_channel_offline(pdev))
4944                 return;
4945
4946         adapter->stats.crcerrs += er32(CRCERRS);
4947         adapter->stats.gprc += er32(GPRC);
4948         adapter->stats.gorc += er32(GORCL);
4949         er32(GORCH);            /* Clear gorc */
4950         adapter->stats.bprc += er32(BPRC);
4951         adapter->stats.mprc += er32(MPRC);
4952         adapter->stats.roc += er32(ROC);
4953
4954         adapter->stats.mpc += er32(MPC);
4955
4956         /* Half-duplex statistics */
4957         if (adapter->link_duplex == HALF_DUPLEX) {
4958                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4959                         e1000e_update_phy_stats(adapter);
4960                 } else {
4961                         adapter->stats.scc += er32(SCC);
4962                         adapter->stats.ecol += er32(ECOL);
4963                         adapter->stats.mcc += er32(MCC);
4964                         adapter->stats.latecol += er32(LATECOL);
4965                         adapter->stats.dc += er32(DC);
4966
4967                         hw->mac.collision_delta = er32(COLC);
4968
4969                         if ((hw->mac.type != e1000_82574) &&
4970                             (hw->mac.type != e1000_82583))
4971                                 adapter->stats.tncrs += er32(TNCRS);
4972                 }
4973                 adapter->stats.colc += hw->mac.collision_delta;
4974         }
4975
4976         adapter->stats.xonrxc += er32(XONRXC);
4977         adapter->stats.xontxc += er32(XONTXC);
4978         adapter->stats.xoffrxc += er32(XOFFRXC);
4979         adapter->stats.xofftxc += er32(XOFFTXC);
4980         adapter->stats.gptc += er32(GPTC);
4981         adapter->stats.gotc += er32(GOTCL);
4982         er32(GOTCH);            /* Clear gotc */
4983         adapter->stats.rnbc += er32(RNBC);
4984         adapter->stats.ruc += er32(RUC);
4985
4986         adapter->stats.mptc += er32(MPTC);
4987         adapter->stats.bptc += er32(BPTC);
4988
4989         /* used for adaptive IFS */
4990
4991         hw->mac.tx_packet_delta = er32(TPT);
4992         adapter->stats.tpt += hw->mac.tx_packet_delta;
4993
4994         adapter->stats.algnerrc += er32(ALGNERRC);
4995         adapter->stats.rxerrc += er32(RXERRC);
4996         adapter->stats.cexterr += er32(CEXTERR);
4997         adapter->stats.tsctc += er32(TSCTC);
4998         adapter->stats.tsctfc += er32(TSCTFC);
4999
5000         /* Fill out the OS statistics structure */
5001         netdev->stats.multicast = adapter->stats.mprc;
5002         netdev->stats.collisions = adapter->stats.colc;
5003
5004         /* Rx Errors */
5005
5006         /* RLEC on some newer hardware can be incorrect so build
5007          * our own version based on RUC and ROC
5008          */
5009         netdev->stats.rx_errors = adapter->stats.rxerrc +
5010             adapter->stats.crcerrs + adapter->stats.algnerrc +
5011             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5012         netdev->stats.rx_length_errors = adapter->stats.ruc +
5013             adapter->stats.roc;
5014         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5015         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5016         netdev->stats.rx_missed_errors = adapter->stats.mpc;
5017
5018         /* Tx Errors */
5019         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5020         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5021         netdev->stats.tx_window_errors = adapter->stats.latecol;
5022         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5023
5024         /* Tx Dropped needs to be maintained elsewhere */
5025
5026         /* Management Stats */
5027         adapter->stats.mgptc += er32(MGTPTC);
5028         adapter->stats.mgprc += er32(MGTPRC);
5029         adapter->stats.mgpdc += er32(MGTPDC);
5030
5031         /* Correctable ECC Errors */
5032         if (hw->mac.type >= e1000_pch_lpt) {
5033                 u32 pbeccsts = er32(PBECCSTS);
5034
5035                 adapter->corr_errors +=
5036                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5037                 adapter->uncorr_errors +=
5038                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5039                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5040         }
5041 }
5042
5043 /**
5044  * e1000_phy_read_status - Update the PHY register status snapshot
5045  * @adapter: board private structure
5046  **/
5047 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5048 {
5049         struct e1000_hw *hw = &adapter->hw;
5050         struct e1000_phy_regs *phy = &adapter->phy_regs;
5051
5052         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5053             (er32(STATUS) & E1000_STATUS_LU) &&
5054             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5055                 int ret_val;
5056
5057                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5058                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5059                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5060                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5061                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5062                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5063                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5064                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5065                 if (ret_val)
5066                         e_warn("Error reading PHY register\n");
5067         } else {
5068                 /* Do not read PHY registers if link is not up
5069                  * Set values to typical power-on defaults
5070                  */
5071                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5072                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5073                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5074                              BMSR_ERCAP);
5075                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5076                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5077                 phy->lpa = 0;
5078                 phy->expansion = EXPANSION_ENABLENPAGE;
5079                 phy->ctrl1000 = ADVERTISE_1000FULL;
5080                 phy->stat1000 = 0;
5081                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5082         }
5083 }
5084
5085 static void e1000_print_link_info(struct e1000_adapter *adapter)
5086 {
5087         struct e1000_hw *hw = &adapter->hw;
5088         u32 ctrl = er32(CTRL);
5089
5090         /* Link status message must follow this format for user tools */
5091         netdev_info(adapter->netdev,
5092                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5093                     adapter->link_speed,
5094                     adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5095                     (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5096                     (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5097                     (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5098 }
5099
5100 static bool e1000e_has_link(struct e1000_adapter *adapter)
5101 {
5102         struct e1000_hw *hw = &adapter->hw;
5103         bool link_active = false;
5104         s32 ret_val = 0;
5105
5106         /* get_link_status is set on LSC (link status) interrupt or
5107          * Rx sequence error interrupt.  get_link_status will stay
5108          * true until the check_for_link establishes link
5109          * for copper adapters ONLY
5110          */
5111         switch (hw->phy.media_type) {
5112         case e1000_media_type_copper:
5113                 if (hw->mac.get_link_status) {
5114                         ret_val = hw->mac.ops.check_for_link(hw);
5115                         link_active = !hw->mac.get_link_status;
5116                 } else {
5117                         link_active = true;
5118                 }
5119                 break;
5120         case e1000_media_type_fiber:
5121                 ret_val = hw->mac.ops.check_for_link(hw);
5122                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5123                 break;
5124         case e1000_media_type_internal_serdes:
5125                 ret_val = hw->mac.ops.check_for_link(hw);
5126                 link_active = hw->mac.serdes_has_link;
5127                 break;
5128         default:
5129         case e1000_media_type_unknown:
5130                 break;
5131         }
5132
5133         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5134             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5135                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5136                 e_info("Gigabit has been disabled, downgrading speed\n");
5137         }
5138
5139         return link_active;
5140 }
5141
5142 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5143 {
5144         /* make sure the receive unit is started */
5145         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146             (adapter->flags & FLAG_RESTART_NOW)) {
5147                 struct e1000_hw *hw = &adapter->hw;
5148                 u32 rctl = er32(RCTL);
5149
5150                 ew32(RCTL, rctl | E1000_RCTL_EN);
5151                 adapter->flags &= ~FLAG_RESTART_NOW;
5152         }
5153 }
5154
5155 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5156 {
5157         struct e1000_hw *hw = &adapter->hw;
5158
5159         /* With 82574 controllers, PHY needs to be checked periodically
5160          * for hung state and reset, if two calls return true
5161          */
5162         if (e1000_check_phy_82574(hw))
5163                 adapter->phy_hang_count++;
5164         else
5165                 adapter->phy_hang_count = 0;
5166
5167         if (adapter->phy_hang_count > 1) {
5168                 adapter->phy_hang_count = 0;
5169                 e_dbg("PHY appears hung - resetting\n");
5170                 schedule_work(&adapter->reset_task);
5171         }
5172 }
5173
5174 /**
5175  * e1000_watchdog - Timer Call-back
5176  * @t: pointer to timer_list containing private info adapter
5177  **/
5178 static void e1000_watchdog(struct timer_list *t)
5179 {
5180         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5181
5182         /* Do the rest outside of interrupt context */
5183         schedule_work(&adapter->watchdog_task);
5184
5185         /* TODO: make this use queue_delayed_work() */
5186 }
5187
5188 static void e1000_watchdog_task(struct work_struct *work)
5189 {
5190         struct e1000_adapter *adapter = container_of(work,
5191                                                      struct e1000_adapter,
5192                                                      watchdog_task);
5193         struct net_device *netdev = adapter->netdev;
5194         struct e1000_mac_info *mac = &adapter->hw.mac;
5195         struct e1000_phy_info *phy = &adapter->hw.phy;
5196         struct e1000_ring *tx_ring = adapter->tx_ring;
5197         u32 dmoff_exit_timeout = 100, tries = 0;
5198         struct e1000_hw *hw = &adapter->hw;
5199         u32 link, tctl, pcim_state;
5200
5201         if (test_bit(__E1000_DOWN, &adapter->state))
5202                 return;
5203
5204         link = e1000e_has_link(adapter);
5205         if ((netif_carrier_ok(netdev)) && link) {
5206                 /* Cancel scheduled suspend requests. */
5207                 pm_runtime_resume(netdev->dev.parent);
5208
5209                 e1000e_enable_receives(adapter);
5210                 goto link_up;
5211         }
5212
5213         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5214             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5215                 e1000_update_mng_vlan(adapter);
5216
5217         if (link) {
5218                 if (!netif_carrier_ok(netdev)) {
5219                         bool txb2b = true;
5220
5221                         /* Cancel scheduled suspend requests. */
5222                         pm_runtime_resume(netdev->dev.parent);
5223
5224                         /* Checking if MAC is in DMoff state*/
5225                         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5226                                 pcim_state = er32(STATUS);
5227                                 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5228                                         if (tries++ == dmoff_exit_timeout) {
5229                                                 e_dbg("Error in exiting dmoff\n");
5230                                                 break;
5231                                         }
5232                                         usleep_range(10000, 20000);
5233                                         pcim_state = er32(STATUS);
5234
5235                                         /* Checking if MAC exited DMoff state */
5236                                         if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5237                                                 e1000_phy_hw_reset(&adapter->hw);
5238                                 }
5239                         }
5240
5241                         /* update snapshot of PHY registers on LSC */
5242                         e1000_phy_read_status(adapter);
5243                         mac->ops.get_link_up_info(&adapter->hw,
5244                                                   &adapter->link_speed,
5245                                                   &adapter->link_duplex);
5246                         e1000_print_link_info(adapter);
5247
5248                         /* check if SmartSpeed worked */
5249                         e1000e_check_downshift(hw);
5250                         if (phy->speed_downgraded)
5251                                 netdev_warn(netdev,
5252                                             "Link Speed was downgraded by SmartSpeed\n");
5253
5254                         /* On supported PHYs, check for duplex mismatch only
5255                          * if link has autonegotiated at 10/100 half
5256                          */
5257                         if ((hw->phy.type == e1000_phy_igp_3 ||
5258                              hw->phy.type == e1000_phy_bm) &&
5259                             hw->mac.autoneg &&
5260                             (adapter->link_speed == SPEED_10 ||
5261                              adapter->link_speed == SPEED_100) &&
5262                             (adapter->link_duplex == HALF_DUPLEX)) {
5263                                 u16 autoneg_exp;
5264
5265                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5266
5267                                 if (!(autoneg_exp & EXPANSION_NWAY))
5268                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5269                         }
5270
5271                         /* adjust timeout factor according to speed/duplex */
5272                         adapter->tx_timeout_factor = 1;
5273                         switch (adapter->link_speed) {
5274                         case SPEED_10:
5275                                 txb2b = false;
5276                                 adapter->tx_timeout_factor = 16;
5277                                 break;
5278                         case SPEED_100:
5279                                 txb2b = false;
5280                                 adapter->tx_timeout_factor = 10;
5281                                 break;
5282                         }
5283
5284                         /* workaround: re-program speed mode bit after
5285                          * link-up event
5286                          */
5287                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5288                             !txb2b) {
5289                                 u32 tarc0;
5290
5291                                 tarc0 = er32(TARC(0));
5292                                 tarc0 &= ~SPEED_MODE_BIT;
5293                                 ew32(TARC(0), tarc0);
5294                         }
5295
5296                         /* disable TSO for pcie and 10/100 speeds, to avoid
5297                          * some hardware issues
5298                          */
5299                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5300                                 switch (adapter->link_speed) {
5301                                 case SPEED_10:
5302                                 case SPEED_100:
5303                                         e_info("10/100 speed: disabling TSO\n");
5304                                         netdev->features &= ~NETIF_F_TSO;
5305                                         netdev->features &= ~NETIF_F_TSO6;
5306                                         break;
5307                                 case SPEED_1000:
5308                                         netdev->features |= NETIF_F_TSO;
5309                                         netdev->features |= NETIF_F_TSO6;
5310                                         break;
5311                                 default:
5312                                         /* oops */
5313                                         break;
5314                                 }
5315                                 if (hw->mac.type == e1000_pch_spt) {
5316                                         netdev->features &= ~NETIF_F_TSO;
5317                                         netdev->features &= ~NETIF_F_TSO6;
5318                                 }
5319                         }
5320
5321                         /* enable transmits in the hardware, need to do this
5322                          * after setting TARC(0)
5323                          */
5324                         tctl = er32(TCTL);
5325                         tctl |= E1000_TCTL_EN;
5326                         ew32(TCTL, tctl);
5327
5328                         /* Perform any post-link-up configuration before
5329                          * reporting link up.
5330                          */
5331                         if (phy->ops.cfg_on_link_up)
5332                                 phy->ops.cfg_on_link_up(hw);
5333
5334                         netif_wake_queue(netdev);
5335                         netif_carrier_on(netdev);
5336
5337                         if (!test_bit(__E1000_DOWN, &adapter->state))
5338                                 mod_timer(&adapter->phy_info_timer,
5339                                           round_jiffies(jiffies + 2 * HZ));
5340                 }
5341         } else {
5342                 if (netif_carrier_ok(netdev)) {
5343                         adapter->link_speed = 0;
5344                         adapter->link_duplex = 0;
5345                         /* Link status message must follow this format */
5346                         netdev_info(netdev, "NIC Link is Down\n");
5347                         netif_carrier_off(netdev);
5348                         netif_stop_queue(netdev);
5349                         if (!test_bit(__E1000_DOWN, &adapter->state))
5350                                 mod_timer(&adapter->phy_info_timer,
5351                                           round_jiffies(jiffies + 2 * HZ));
5352
5353                         /* 8000ES2LAN requires a Rx packet buffer work-around
5354                          * on link down event; reset the controller to flush
5355                          * the Rx packet buffer.
5356                          */
5357                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5358                                 adapter->flags |= FLAG_RESTART_NOW;
5359                         else
5360                                 pm_schedule_suspend(netdev->dev.parent,
5361                                                     LINK_TIMEOUT);
5362                 }
5363         }
5364
5365 link_up:
5366         spin_lock(&adapter->stats64_lock);
5367         e1000e_update_stats(adapter);
5368
5369         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5370         adapter->tpt_old = adapter->stats.tpt;
5371         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5372         adapter->colc_old = adapter->stats.colc;
5373
5374         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5375         adapter->gorc_old = adapter->stats.gorc;
5376         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5377         adapter->gotc_old = adapter->stats.gotc;
5378         spin_unlock(&adapter->stats64_lock);
5379
5380         /* If the link is lost the controller stops DMA, but
5381          * if there is queued Tx work it cannot be done.  So
5382          * reset the controller to flush the Tx packet buffers.
5383          */
5384         if (!netif_carrier_ok(netdev) &&
5385             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5386                 adapter->flags |= FLAG_RESTART_NOW;
5387
5388         /* If reset is necessary, do it outside of interrupt context. */
5389         if (adapter->flags & FLAG_RESTART_NOW) {
5390                 schedule_work(&adapter->reset_task);
5391                 /* return immediately since reset is imminent */
5392                 return;
5393         }
5394
5395         e1000e_update_adaptive(&adapter->hw);
5396
5397         /* Simple mode for Interrupt Throttle Rate (ITR) */
5398         if (adapter->itr_setting == 4) {
5399                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5400                  * Total asymmetrical Tx or Rx gets ITR=8000;
5401                  * everyone else is between 2000-8000.
5402                  */
5403                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5404                 u32 dif = (adapter->gotc > adapter->gorc ?
5405                            adapter->gotc - adapter->gorc :
5406                            adapter->gorc - adapter->gotc) / 10000;
5407                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5408
5409                 e1000e_write_itr(adapter, itr);
5410         }
5411
5412         /* Cause software interrupt to ensure Rx ring is cleaned */
5413         if (adapter->msix_entries)
5414                 ew32(ICS, adapter->rx_ring->ims_val);
5415         else
5416                 ew32(ICS, E1000_ICS_RXDMT0);
5417
5418         /* flush pending descriptors to memory before detecting Tx hang */
5419         e1000e_flush_descriptors(adapter);
5420
5421         /* Force detection of hung controller every watchdog period */
5422         adapter->detect_tx_hung = true;
5423
5424         /* With 82571 controllers, LAA may be overwritten due to controller
5425          * reset from the other port. Set the appropriate LAA in RAR[0]
5426          */
5427         if (e1000e_get_laa_state_82571(hw))
5428                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5429
5430         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5431                 e1000e_check_82574_phy_workaround(adapter);
5432
5433         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5434         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5435                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5436                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5437                         er32(RXSTMPH);
5438                         adapter->rx_hwtstamp_cleared++;
5439                 } else {
5440                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5441                 }
5442         }
5443
5444         /* Reset the timer */
5445         if (!test_bit(__E1000_DOWN, &adapter->state))
5446                 mod_timer(&adapter->watchdog_timer,
5447                           round_jiffies(jiffies + 2 * HZ));
5448 }
5449
5450 #define E1000_TX_FLAGS_CSUM             0x00000001
5451 #define E1000_TX_FLAGS_VLAN             0x00000002
5452 #define E1000_TX_FLAGS_TSO              0x00000004
5453 #define E1000_TX_FLAGS_IPV4             0x00000008
5454 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5455 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5456 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5457 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5458
5459 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5460                      __be16 protocol)
5461 {
5462         struct e1000_context_desc *context_desc;
5463         struct e1000_buffer *buffer_info;
5464         unsigned int i;
5465         u32 cmd_length = 0;
5466         u16 ipcse = 0, mss;
5467         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5468         int err;
5469
5470         if (!skb_is_gso(skb))
5471                 return 0;
5472
5473         err = skb_cow_head(skb, 0);
5474         if (err < 0)
5475                 return err;
5476
5477         hdr_len = skb_tcp_all_headers(skb);
5478         mss = skb_shinfo(skb)->gso_size;
5479         if (protocol == htons(ETH_P_IP)) {
5480                 struct iphdr *iph = ip_hdr(skb);
5481                 iph->tot_len = 0;
5482                 iph->check = 0;
5483                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5484                                                          0, IPPROTO_TCP, 0);
5485                 cmd_length = E1000_TXD_CMD_IP;
5486                 ipcse = skb_transport_offset(skb) - 1;
5487         } else if (skb_is_gso_v6(skb)) {
5488                 tcp_v6_gso_csum_prep(skb);
5489                 ipcse = 0;
5490         }
5491         ipcss = skb_network_offset(skb);
5492         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5493         tucss = skb_transport_offset(skb);
5494         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5495
5496         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5497                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5498
5499         i = tx_ring->next_to_use;
5500         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5501         buffer_info = &tx_ring->buffer_info[i];
5502
5503         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5504         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5505         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5506         context_desc->upper_setup.tcp_fields.tucss = tucss;
5507         context_desc->upper_setup.tcp_fields.tucso = tucso;
5508         context_desc->upper_setup.tcp_fields.tucse = 0;
5509         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5510         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5511         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5512
5513         buffer_info->time_stamp = jiffies;
5514         buffer_info->next_to_watch = i;
5515
5516         i++;
5517         if (i == tx_ring->count)
5518                 i = 0;
5519         tx_ring->next_to_use = i;
5520
5521         return 1;
5522 }
5523
5524 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5525                           __be16 protocol)
5526 {
5527         struct e1000_adapter *adapter = tx_ring->adapter;
5528         struct e1000_context_desc *context_desc;
5529         struct e1000_buffer *buffer_info;
5530         unsigned int i;
5531         u8 css;
5532         u32 cmd_len = E1000_TXD_CMD_DEXT;
5533
5534         if (skb->ip_summed != CHECKSUM_PARTIAL)
5535                 return false;
5536
5537         switch (protocol) {
5538         case cpu_to_be16(ETH_P_IP):
5539                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5540                         cmd_len |= E1000_TXD_CMD_TCP;
5541                 break;
5542         case cpu_to_be16(ETH_P_IPV6):
5543                 /* XXX not handling all IPV6 headers */
5544                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5545                         cmd_len |= E1000_TXD_CMD_TCP;
5546                 break;
5547         default:
5548                 if (unlikely(net_ratelimit()))
5549                         e_warn("checksum_partial proto=%x!\n",
5550                                be16_to_cpu(protocol));
5551                 break;
5552         }
5553
5554         css = skb_checksum_start_offset(skb);
5555
5556         i = tx_ring->next_to_use;
5557         buffer_info = &tx_ring->buffer_info[i];
5558         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5559
5560         context_desc->lower_setup.ip_config = 0;
5561         context_desc->upper_setup.tcp_fields.tucss = css;
5562         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5563         context_desc->upper_setup.tcp_fields.tucse = 0;
5564         context_desc->tcp_seg_setup.data = 0;
5565         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5566
5567         buffer_info->time_stamp = jiffies;
5568         buffer_info->next_to_watch = i;
5569
5570         i++;
5571         if (i == tx_ring->count)
5572                 i = 0;
5573         tx_ring->next_to_use = i;
5574
5575         return true;
5576 }
5577
5578 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5579                         unsigned int first, unsigned int max_per_txd,
5580                         unsigned int nr_frags)
5581 {
5582         struct e1000_adapter *adapter = tx_ring->adapter;
5583         struct pci_dev *pdev = adapter->pdev;
5584         struct e1000_buffer *buffer_info;
5585         unsigned int len = skb_headlen(skb);
5586         unsigned int offset = 0, size, count = 0, i;
5587         unsigned int f, bytecount, segs;
5588
5589         i = tx_ring->next_to_use;
5590
5591         while (len) {
5592                 buffer_info = &tx_ring->buffer_info[i];
5593                 size = min(len, max_per_txd);
5594
5595                 buffer_info->length = size;
5596                 buffer_info->time_stamp = jiffies;
5597                 buffer_info->next_to_watch = i;
5598                 buffer_info->dma = dma_map_single(&pdev->dev,
5599                                                   skb->data + offset,
5600                                                   size, DMA_TO_DEVICE);
5601                 buffer_info->mapped_as_page = false;
5602                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5603                         goto dma_error;
5604
5605                 len -= size;
5606                 offset += size;
5607                 count++;
5608
5609                 if (len) {
5610                         i++;
5611                         if (i == tx_ring->count)
5612                                 i = 0;
5613                 }
5614         }
5615
5616         for (f = 0; f < nr_frags; f++) {
5617                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5618
5619                 len = skb_frag_size(frag);
5620                 offset = 0;
5621
5622                 while (len) {
5623                         i++;
5624                         if (i == tx_ring->count)
5625                                 i = 0;
5626
5627                         buffer_info = &tx_ring->buffer_info[i];
5628                         size = min(len, max_per_txd);
5629
5630                         buffer_info->length = size;
5631                         buffer_info->time_stamp = jiffies;
5632                         buffer_info->next_to_watch = i;
5633                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5634                                                             offset, size,
5635                                                             DMA_TO_DEVICE);
5636                         buffer_info->mapped_as_page = true;
5637                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5638                                 goto dma_error;
5639
5640                         len -= size;
5641                         offset += size;
5642                         count++;
5643                 }
5644         }
5645
5646         segs = skb_shinfo(skb)->gso_segs ? : 1;
5647         /* multiply data chunks by size of headers */
5648         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5649
5650         tx_ring->buffer_info[i].skb = skb;
5651         tx_ring->buffer_info[i].segs = segs;
5652         tx_ring->buffer_info[i].bytecount = bytecount;
5653         tx_ring->buffer_info[first].next_to_watch = i;
5654
5655         return count;
5656
5657 dma_error:
5658         dev_err(&pdev->dev, "Tx DMA map failed\n");
5659         buffer_info->dma = 0;
5660         if (count)
5661                 count--;
5662
5663         while (count--) {
5664                 if (i == 0)
5665                         i += tx_ring->count;
5666                 i--;
5667                 buffer_info = &tx_ring->buffer_info[i];
5668                 e1000_put_txbuf(tx_ring, buffer_info, true);
5669         }
5670
5671         return 0;
5672 }
5673
5674 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5675 {
5676         struct e1000_adapter *adapter = tx_ring->adapter;
5677         struct e1000_tx_desc *tx_desc = NULL;
5678         struct e1000_buffer *buffer_info;
5679         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5680         unsigned int i;
5681
5682         if (tx_flags & E1000_TX_FLAGS_TSO) {
5683                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5684                     E1000_TXD_CMD_TSE;
5685                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5686
5687                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5688                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5689         }
5690
5691         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5692                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5693                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5694         }
5695
5696         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5697                 txd_lower |= E1000_TXD_CMD_VLE;
5698                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5699         }
5700
5701         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5702                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5703
5704         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5705                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5706                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5707         }
5708
5709         i = tx_ring->next_to_use;
5710
5711         do {
5712                 buffer_info = &tx_ring->buffer_info[i];
5713                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5714                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5715                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5716                                                   buffer_info->length);
5717                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5718
5719                 i++;
5720                 if (i == tx_ring->count)
5721                         i = 0;
5722         } while (--count > 0);
5723
5724         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5725
5726         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5727         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5728                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5729
5730         /* Force memory writes to complete before letting h/w
5731          * know there are new descriptors to fetch.  (Only
5732          * applicable for weak-ordered memory model archs,
5733          * such as IA-64).
5734          */
5735         wmb();
5736
5737         tx_ring->next_to_use = i;
5738 }
5739
5740 #define MINIMUM_DHCP_PACKET_SIZE 282
5741 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5742                                     struct sk_buff *skb)
5743 {
5744         struct e1000_hw *hw = &adapter->hw;
5745         u16 length, offset;
5746
5747         if (skb_vlan_tag_present(skb) &&
5748             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5749               (adapter->hw.mng_cookie.status &
5750                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5751                 return 0;
5752
5753         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5754                 return 0;
5755
5756         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5757                 return 0;
5758
5759         {
5760                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5761                 struct udphdr *udp;
5762
5763                 if (ip->protocol != IPPROTO_UDP)
5764                         return 0;
5765
5766                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5767                 if (ntohs(udp->dest) != 67)
5768                         return 0;
5769
5770                 offset = (u8 *)udp + 8 - skb->data;
5771                 length = skb->len - offset;
5772                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5773         }
5774
5775         return 0;
5776 }
5777
5778 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5779 {
5780         struct e1000_adapter *adapter = tx_ring->adapter;
5781
5782         netif_stop_queue(adapter->netdev);
5783         /* Herbert's original patch had:
5784          *  smp_mb__after_netif_stop_queue();
5785          * but since that doesn't exist yet, just open code it.
5786          */
5787         smp_mb();
5788
5789         /* We need to check again in a case another CPU has just
5790          * made room available.
5791          */
5792         if (e1000_desc_unused(tx_ring) < size)
5793                 return -EBUSY;
5794
5795         /* A reprieve! */
5796         netif_start_queue(adapter->netdev);
5797         ++adapter->restart_queue;
5798         return 0;
5799 }
5800
5801 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5802 {
5803         BUG_ON(size > tx_ring->count);
5804
5805         if (e1000_desc_unused(tx_ring) >= size)
5806                 return 0;
5807         return __e1000_maybe_stop_tx(tx_ring, size);
5808 }
5809
5810 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5811                                     struct net_device *netdev)
5812 {
5813         struct e1000_adapter *adapter = netdev_priv(netdev);
5814         struct e1000_ring *tx_ring = adapter->tx_ring;
5815         unsigned int first;
5816         unsigned int tx_flags = 0;
5817         unsigned int len = skb_headlen(skb);
5818         unsigned int nr_frags;
5819         unsigned int mss;
5820         int count = 0;
5821         int tso;
5822         unsigned int f;
5823         __be16 protocol = vlan_get_protocol(skb);
5824
5825         if (test_bit(__E1000_DOWN, &adapter->state)) {
5826                 dev_kfree_skb_any(skb);
5827                 return NETDEV_TX_OK;
5828         }
5829
5830         if (skb->len <= 0) {
5831                 dev_kfree_skb_any(skb);
5832                 return NETDEV_TX_OK;
5833         }
5834
5835         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5836          * pad skb in order to meet this minimum size requirement
5837          */
5838         if (skb_put_padto(skb, 17))
5839                 return NETDEV_TX_OK;
5840
5841         mss = skb_shinfo(skb)->gso_size;
5842         if (mss) {
5843                 u8 hdr_len;
5844
5845                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5846                  * points to just header, pull a few bytes of payload from
5847                  * frags into skb->data
5848                  */
5849                 hdr_len = skb_tcp_all_headers(skb);
5850                 /* we do this workaround for ES2LAN, but it is un-necessary,
5851                  * avoiding it could save a lot of cycles
5852                  */
5853                 if (skb->data_len && (hdr_len == len)) {
5854                         unsigned int pull_size;
5855
5856                         pull_size = min_t(unsigned int, 4, skb->data_len);
5857                         if (!__pskb_pull_tail(skb, pull_size)) {
5858                                 e_err("__pskb_pull_tail failed.\n");
5859                                 dev_kfree_skb_any(skb);
5860                                 return NETDEV_TX_OK;
5861                         }
5862                         len = skb_headlen(skb);
5863                 }
5864         }
5865
5866         /* reserve a descriptor for the offload context */
5867         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5868                 count++;
5869         count++;
5870
5871         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5872
5873         nr_frags = skb_shinfo(skb)->nr_frags;
5874         for (f = 0; f < nr_frags; f++)
5875                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5876                                       adapter->tx_fifo_limit);
5877
5878         if (adapter->hw.mac.tx_pkt_filtering)
5879                 e1000_transfer_dhcp_info(adapter, skb);
5880
5881         /* need: count + 2 desc gap to keep tail from touching
5882          * head, otherwise try next time
5883          */
5884         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5885                 return NETDEV_TX_BUSY;
5886
5887         if (skb_vlan_tag_present(skb)) {
5888                 tx_flags |= E1000_TX_FLAGS_VLAN;
5889                 tx_flags |= (skb_vlan_tag_get(skb) <<
5890                              E1000_TX_FLAGS_VLAN_SHIFT);
5891         }
5892
5893         first = tx_ring->next_to_use;
5894
5895         tso = e1000_tso(tx_ring, skb, protocol);
5896         if (tso < 0) {
5897                 dev_kfree_skb_any(skb);
5898                 return NETDEV_TX_OK;
5899         }
5900
5901         if (tso)
5902                 tx_flags |= E1000_TX_FLAGS_TSO;
5903         else if (e1000_tx_csum(tx_ring, skb, protocol))
5904                 tx_flags |= E1000_TX_FLAGS_CSUM;
5905
5906         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5907          * 82571 hardware supports TSO capabilities for IPv6 as well...
5908          * no longer assume, we must.
5909          */
5910         if (protocol == htons(ETH_P_IP))
5911                 tx_flags |= E1000_TX_FLAGS_IPV4;
5912
5913         if (unlikely(skb->no_fcs))
5914                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5915
5916         /* if count is 0 then mapping error has occurred */
5917         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5918                              nr_frags);
5919         if (count) {
5920                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5921                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5922                         if (!adapter->tx_hwtstamp_skb) {
5923                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5924                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5925                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5926                                 adapter->tx_hwtstamp_start = jiffies;
5927                                 schedule_work(&adapter->tx_hwtstamp_work);
5928                         } else {
5929                                 adapter->tx_hwtstamp_skipped++;
5930                         }
5931                 }
5932
5933                 skb_tx_timestamp(skb);
5934
5935                 netdev_sent_queue(netdev, skb->len);
5936                 e1000_tx_queue(tx_ring, tx_flags, count);
5937                 /* Make sure there is space in the ring for the next send. */
5938                 e1000_maybe_stop_tx(tx_ring,
5939                                     (MAX_SKB_FRAGS *
5940                                      DIV_ROUND_UP(PAGE_SIZE,
5941                                                   adapter->tx_fifo_limit) + 2));
5942
5943                 if (!netdev_xmit_more() ||
5944                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5945                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5946                                 e1000e_update_tdt_wa(tx_ring,
5947                                                      tx_ring->next_to_use);
5948                         else
5949                                 writel(tx_ring->next_to_use, tx_ring->tail);
5950                 }
5951         } else {
5952                 dev_kfree_skb_any(skb);
5953                 tx_ring->buffer_info[first].time_stamp = 0;
5954                 tx_ring->next_to_use = first;
5955         }
5956
5957         return NETDEV_TX_OK;
5958 }
5959
5960 /**
5961  * e1000_tx_timeout - Respond to a Tx Hang
5962  * @netdev: network interface device structure
5963  * @txqueue: index of the hung queue (unused)
5964  **/
5965 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5966 {
5967         struct e1000_adapter *adapter = netdev_priv(netdev);
5968
5969         /* Do the reset outside of interrupt context */
5970         adapter->tx_timeout_count++;
5971         schedule_work(&adapter->reset_task);
5972 }
5973
5974 static void e1000_reset_task(struct work_struct *work)
5975 {
5976         struct e1000_adapter *adapter;
5977         adapter = container_of(work, struct e1000_adapter, reset_task);
5978
5979         rtnl_lock();
5980         /* don't run the task if already down */
5981         if (test_bit(__E1000_DOWN, &adapter->state)) {
5982                 rtnl_unlock();
5983                 return;
5984         }
5985
5986         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5987                 e1000e_dump(adapter);
5988                 e_err("Reset adapter unexpectedly\n");
5989         }
5990         e1000e_reinit_locked(adapter);
5991         rtnl_unlock();
5992 }
5993
5994 /**
5995  * e1000e_get_stats64 - Get System Network Statistics
5996  * @netdev: network interface device structure
5997  * @stats: rtnl_link_stats64 pointer
5998  *
5999  * Returns the address of the device statistics structure.
6000  **/
6001 void e1000e_get_stats64(struct net_device *netdev,
6002                         struct rtnl_link_stats64 *stats)
6003 {
6004         struct e1000_adapter *adapter = netdev_priv(netdev);
6005
6006         spin_lock(&adapter->stats64_lock);
6007         e1000e_update_stats(adapter);
6008         /* Fill out the OS statistics structure */
6009         stats->rx_bytes = adapter->stats.gorc;
6010         stats->rx_packets = adapter->stats.gprc;
6011         stats->tx_bytes = adapter->stats.gotc;
6012         stats->tx_packets = adapter->stats.gptc;
6013         stats->multicast = adapter->stats.mprc;
6014         stats->collisions = adapter->stats.colc;
6015
6016         /* Rx Errors */
6017
6018         /* RLEC on some newer hardware can be incorrect so build
6019          * our own version based on RUC and ROC
6020          */
6021         stats->rx_errors = adapter->stats.rxerrc +
6022             adapter->stats.crcerrs + adapter->stats.algnerrc +
6023             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6024         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6025         stats->rx_crc_errors = adapter->stats.crcerrs;
6026         stats->rx_frame_errors = adapter->stats.algnerrc;
6027         stats->rx_missed_errors = adapter->stats.mpc;
6028
6029         /* Tx Errors */
6030         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6031         stats->tx_aborted_errors = adapter->stats.ecol;
6032         stats->tx_window_errors = adapter->stats.latecol;
6033         stats->tx_carrier_errors = adapter->stats.tncrs;
6034
6035         /* Tx Dropped needs to be maintained elsewhere */
6036
6037         spin_unlock(&adapter->stats64_lock);
6038 }
6039
6040 /**
6041  * e1000_change_mtu - Change the Maximum Transfer Unit
6042  * @netdev: network interface device structure
6043  * @new_mtu: new value for maximum frame size
6044  *
6045  * Returns 0 on success, negative on failure
6046  **/
6047 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6048 {
6049         struct e1000_adapter *adapter = netdev_priv(netdev);
6050         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6051
6052         /* Jumbo frame support */
6053         if ((new_mtu > ETH_DATA_LEN) &&
6054             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6055                 e_err("Jumbo Frames not supported.\n");
6056                 return -EINVAL;
6057         }
6058
6059         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6060         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6061             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6062             (new_mtu > ETH_DATA_LEN)) {
6063                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6064                 return -EINVAL;
6065         }
6066
6067         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6068                 usleep_range(1000, 1100);
6069         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6070         adapter->max_frame_size = max_frame;
6071         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6072                    netdev->mtu, new_mtu);
6073         netdev->mtu = new_mtu;
6074
6075         pm_runtime_get_sync(netdev->dev.parent);
6076
6077         if (netif_running(netdev))
6078                 e1000e_down(adapter, true);
6079
6080         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6081          * means we reserve 2 more, this pushes us to allocate from the next
6082          * larger slab size.
6083          * i.e. RXBUFFER_2048 --> size-4096 slab
6084          * However with the new *_jumbo_rx* routines, jumbo receives will use
6085          * fragmented skbs
6086          */
6087
6088         if (max_frame <= 2048)
6089                 adapter->rx_buffer_len = 2048;
6090         else
6091                 adapter->rx_buffer_len = 4096;
6092
6093         /* adjust allocation if LPE protects us, and we aren't using SBP */
6094         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6095                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6096
6097         if (netif_running(netdev))
6098                 e1000e_up(adapter);
6099         else
6100                 e1000e_reset(adapter);
6101
6102         pm_runtime_put_sync(netdev->dev.parent);
6103
6104         clear_bit(__E1000_RESETTING, &adapter->state);
6105
6106         return 0;
6107 }
6108
6109 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6110                            int cmd)
6111 {
6112         struct e1000_adapter *adapter = netdev_priv(netdev);
6113         struct mii_ioctl_data *data = if_mii(ifr);
6114
6115         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6116                 return -EOPNOTSUPP;
6117
6118         switch (cmd) {
6119         case SIOCGMIIPHY:
6120                 data->phy_id = adapter->hw.phy.addr;
6121                 break;
6122         case SIOCGMIIREG:
6123                 e1000_phy_read_status(adapter);
6124
6125                 switch (data->reg_num & 0x1F) {
6126                 case MII_BMCR:
6127                         data->val_out = adapter->phy_regs.bmcr;
6128                         break;
6129                 case MII_BMSR:
6130                         data->val_out = adapter->phy_regs.bmsr;
6131                         break;
6132                 case MII_PHYSID1:
6133                         data->val_out = (adapter->hw.phy.id >> 16);
6134                         break;
6135                 case MII_PHYSID2:
6136                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6137                         break;
6138                 case MII_ADVERTISE:
6139                         data->val_out = adapter->phy_regs.advertise;
6140                         break;
6141                 case MII_LPA:
6142                         data->val_out = adapter->phy_regs.lpa;
6143                         break;
6144                 case MII_EXPANSION:
6145                         data->val_out = adapter->phy_regs.expansion;
6146                         break;
6147                 case MII_CTRL1000:
6148                         data->val_out = adapter->phy_regs.ctrl1000;
6149                         break;
6150                 case MII_STAT1000:
6151                         data->val_out = adapter->phy_regs.stat1000;
6152                         break;
6153                 case MII_ESTATUS:
6154                         data->val_out = adapter->phy_regs.estatus;
6155                         break;
6156                 default:
6157                         return -EIO;
6158                 }
6159                 break;
6160         case SIOCSMIIREG:
6161         default:
6162                 return -EOPNOTSUPP;
6163         }
6164         return 0;
6165 }
6166
6167 /**
6168  * e1000e_hwtstamp_set - control hardware time stamping
6169  * @netdev: network interface device structure
6170  * @ifr: interface request
6171  *
6172  * Outgoing time stamping can be enabled and disabled. Play nice and
6173  * disable it when requested, although it shouldn't cause any overhead
6174  * when no packet needs it. At most one packet in the queue may be
6175  * marked for time stamping, otherwise it would be impossible to tell
6176  * for sure to which packet the hardware time stamp belongs.
6177  *
6178  * Incoming time stamping has to be configured via the hardware filters.
6179  * Not all combinations are supported, in particular event type has to be
6180  * specified. Matching the kind of event packet is not supported, with the
6181  * exception of "all V2 events regardless of level 2 or 4".
6182  **/
6183 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6184 {
6185         struct e1000_adapter *adapter = netdev_priv(netdev);
6186         struct hwtstamp_config config;
6187         int ret_val;
6188
6189         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6190                 return -EFAULT;
6191
6192         ret_val = e1000e_config_hwtstamp(adapter, &config);
6193         if (ret_val)
6194                 return ret_val;
6195
6196         switch (config.rx_filter) {
6197         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6198         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6199         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6200         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6201         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6202         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6203                 /* With V2 type filters which specify a Sync or Delay Request,
6204                  * Path Delay Request/Response messages are also time stamped
6205                  * by hardware so notify the caller the requested packets plus
6206                  * some others are time stamped.
6207                  */
6208                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6209                 break;
6210         default:
6211                 break;
6212         }
6213
6214         return copy_to_user(ifr->ifr_data, &config,
6215                             sizeof(config)) ? -EFAULT : 0;
6216 }
6217
6218 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6219 {
6220         struct e1000_adapter *adapter = netdev_priv(netdev);
6221
6222         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6223                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6224 }
6225
6226 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6227 {
6228         switch (cmd) {
6229         case SIOCGMIIPHY:
6230         case SIOCGMIIREG:
6231         case SIOCSMIIREG:
6232                 return e1000_mii_ioctl(netdev, ifr, cmd);
6233         case SIOCSHWTSTAMP:
6234                 return e1000e_hwtstamp_set(netdev, ifr);
6235         case SIOCGHWTSTAMP:
6236                 return e1000e_hwtstamp_get(netdev, ifr);
6237         default:
6238                 return -EOPNOTSUPP;
6239         }
6240 }
6241
6242 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6243 {
6244         struct e1000_hw *hw = &adapter->hw;
6245         u32 i, mac_reg, wuc;
6246         u16 phy_reg, wuc_enable;
6247         int retval;
6248
6249         /* copy MAC RARs to PHY RARs */
6250         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6251
6252         retval = hw->phy.ops.acquire(hw);
6253         if (retval) {
6254                 e_err("Could not acquire PHY\n");
6255                 return retval;
6256         }
6257
6258         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6259         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6260         if (retval)
6261                 goto release;
6262
6263         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6264         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6265                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6266                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6267                                            (u16)(mac_reg & 0xFFFF));
6268                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6269                                            (u16)((mac_reg >> 16) & 0xFFFF));
6270         }
6271
6272         /* configure PHY Rx Control register */
6273         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6274         mac_reg = er32(RCTL);
6275         if (mac_reg & E1000_RCTL_UPE)
6276                 phy_reg |= BM_RCTL_UPE;
6277         if (mac_reg & E1000_RCTL_MPE)
6278                 phy_reg |= BM_RCTL_MPE;
6279         phy_reg &= ~(BM_RCTL_MO_MASK);
6280         if (mac_reg & E1000_RCTL_MO_3)
6281                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6282                             << BM_RCTL_MO_SHIFT);
6283         if (mac_reg & E1000_RCTL_BAM)
6284                 phy_reg |= BM_RCTL_BAM;
6285         if (mac_reg & E1000_RCTL_PMCF)
6286                 phy_reg |= BM_RCTL_PMCF;
6287         mac_reg = er32(CTRL);
6288         if (mac_reg & E1000_CTRL_RFCE)
6289                 phy_reg |= BM_RCTL_RFCE;
6290         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6291
6292         wuc = E1000_WUC_PME_EN;
6293         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6294                 wuc |= E1000_WUC_APME;
6295
6296         /* enable PHY wakeup in MAC register */
6297         ew32(WUFC, wufc);
6298         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6299                    E1000_WUC_PME_STATUS | wuc));
6300
6301         /* configure and enable PHY wakeup in PHY registers */
6302         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6303         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6304
6305         /* activate PHY wakeup */
6306         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6307         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6308         if (retval)
6309                 e_err("Could not set PHY Host Wakeup bit\n");
6310 release:
6311         hw->phy.ops.release(hw);
6312
6313         return retval;
6314 }
6315
6316 static void e1000e_flush_lpic(struct pci_dev *pdev)
6317 {
6318         struct net_device *netdev = pci_get_drvdata(pdev);
6319         struct e1000_adapter *adapter = netdev_priv(netdev);
6320         struct e1000_hw *hw = &adapter->hw;
6321         u32 ret_val;
6322
6323         pm_runtime_get_sync(netdev->dev.parent);
6324
6325         ret_val = hw->phy.ops.acquire(hw);
6326         if (ret_val)
6327                 goto fl_out;
6328
6329         pr_info("EEE TX LPI TIMER: %08X\n",
6330                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6331
6332         hw->phy.ops.release(hw);
6333
6334 fl_out:
6335         pm_runtime_put_sync(netdev->dev.parent);
6336 }
6337
6338 /* S0ix implementation */
6339 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6340 {
6341         struct e1000_hw *hw = &adapter->hw;
6342         u32 mac_data;
6343         u16 phy_data;
6344
6345         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6346             hw->mac.type >= e1000_pch_adp) {
6347                 /* Request ME configure the device for S0ix */
6348                 mac_data = er32(H2ME);
6349                 mac_data |= E1000_H2ME_START_DPG;
6350                 mac_data &= ~E1000_H2ME_EXIT_DPG;
6351                 ew32(H2ME, mac_data);
6352         } else {
6353                 /* Request driver configure the device to S0ix */
6354                 /* Disable the periodic inband message,
6355                  * don't request PCIe clock in K1 page770_17[10:9] = 10b
6356                  */
6357                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6358                 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6359                 phy_data |= BIT(10);
6360                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6361
6362                 /* Make sure we don't exit K1 every time a new packet arrives
6363                  * 772_29[5] = 1 CS_Mode_Stay_In_K1
6364                  */
6365                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6366                 phy_data |= BIT(5);
6367                 e1e_wphy(hw, I217_CGFREG, phy_data);
6368
6369                 /* Change the MAC/PHY interface to SMBus
6370                  * Force the SMBus in PHY page769_23[0] = 1
6371                  * Force the SMBus in MAC CTRL_EXT[11] = 1
6372                  */
6373                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6374                 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6375                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6376                 mac_data = er32(CTRL_EXT);
6377                 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6378                 ew32(CTRL_EXT, mac_data);
6379
6380                 /* DFT control: PHY bit: page769_20[0] = 1
6381                  * page769_20[7] - PHY PLL stop
6382                  * page769_20[8] - PHY go to the electrical idle
6383                  * page769_20[9] - PHY serdes disable
6384                  * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6385                  */
6386                 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6387                 phy_data |= BIT(0);
6388                 phy_data |= BIT(7);
6389                 phy_data |= BIT(8);
6390                 phy_data |= BIT(9);
6391                 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6392
6393                 mac_data = er32(EXTCNF_CTRL);
6394                 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6395                 ew32(EXTCNF_CTRL, mac_data);
6396
6397                 /* Enable the Dynamic Power Gating in the MAC */
6398                 mac_data = er32(FEXTNVM7);
6399                 mac_data |= BIT(22);
6400                 ew32(FEXTNVM7, mac_data);
6401
6402                 /* Disable disconnected cable conditioning for Power Gating */
6403                 mac_data = er32(DPGFR);
6404                 mac_data |= BIT(2);
6405                 ew32(DPGFR, mac_data);
6406
6407                 /* Don't wake from dynamic Power Gating with clock request */
6408                 mac_data = er32(FEXTNVM12);
6409                 mac_data |= BIT(12);
6410                 ew32(FEXTNVM12, mac_data);
6411
6412                 /* Ungate PGCB clock */
6413                 mac_data = er32(FEXTNVM9);
6414                 mac_data &= ~BIT(28);
6415                 ew32(FEXTNVM9, mac_data);
6416
6417                 /* Enable K1 off to enable mPHY Power Gating */
6418                 mac_data = er32(FEXTNVM6);
6419                 mac_data |= BIT(31);
6420                 ew32(FEXTNVM6, mac_data);
6421
6422                 /* Enable mPHY power gating for any link and speed */
6423                 mac_data = er32(FEXTNVM8);
6424                 mac_data |= BIT(9);
6425                 ew32(FEXTNVM8, mac_data);
6426
6427                 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6428                 mac_data = er32(CTRL_EXT);
6429                 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6430                 ew32(CTRL_EXT, mac_data);
6431
6432                 /* No MAC DPG gating SLP_S0 in modern standby
6433                  * Switch the logic of the lanphypc to use PMC counter
6434                  */
6435                 mac_data = er32(FEXTNVM5);
6436                 mac_data |= BIT(7);
6437                 ew32(FEXTNVM5, mac_data);
6438         }
6439
6440         /* Disable the time synchronization clock */
6441         mac_data = er32(FEXTNVM7);
6442         mac_data |= BIT(31);
6443         mac_data &= ~BIT(0);
6444         ew32(FEXTNVM7, mac_data);
6445
6446         /* Dynamic Power Gating Enable */
6447         mac_data = er32(CTRL_EXT);
6448         mac_data |= BIT(3);
6449         ew32(CTRL_EXT, mac_data);
6450
6451         /* Check MAC Tx/Rx packet buffer pointers.
6452          * Reset MAC Tx/Rx packet buffer pointers to suppress any
6453          * pending traffic indication that would prevent power gating.
6454          */
6455         mac_data = er32(TDFH);
6456         if (mac_data)
6457                 ew32(TDFH, 0);
6458         mac_data = er32(TDFT);
6459         if (mac_data)
6460                 ew32(TDFT, 0);
6461         mac_data = er32(TDFHS);
6462         if (mac_data)
6463                 ew32(TDFHS, 0);
6464         mac_data = er32(TDFTS);
6465         if (mac_data)
6466                 ew32(TDFTS, 0);
6467         mac_data = er32(TDFPC);
6468         if (mac_data)
6469                 ew32(TDFPC, 0);
6470         mac_data = er32(RDFH);
6471         if (mac_data)
6472                 ew32(RDFH, 0);
6473         mac_data = er32(RDFT);
6474         if (mac_data)
6475                 ew32(RDFT, 0);
6476         mac_data = er32(RDFHS);
6477         if (mac_data)
6478                 ew32(RDFHS, 0);
6479         mac_data = er32(RDFTS);
6480         if (mac_data)
6481                 ew32(RDFTS, 0);
6482         mac_data = er32(RDFPC);
6483         if (mac_data)
6484                 ew32(RDFPC, 0);
6485 }
6486
6487 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6488 {
6489         struct e1000_hw *hw = &adapter->hw;
6490         bool firmware_bug = false;
6491         u32 mac_data;
6492         u16 phy_data;
6493         u32 i = 0;
6494
6495         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6496             hw->mac.type >= e1000_pch_adp) {
6497                 /* Request ME unconfigure the device from S0ix */
6498                 mac_data = er32(H2ME);
6499                 mac_data &= ~E1000_H2ME_START_DPG;
6500                 mac_data |= E1000_H2ME_EXIT_DPG;
6501                 ew32(H2ME, mac_data);
6502
6503                 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6504                  * If this takes more than 1 second, show a warning indicating a
6505                  * firmware bug
6506                  */
6507                 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6508                         if (i > 100 && !firmware_bug)
6509                                 firmware_bug = true;
6510
6511                         if (i++ == 250) {
6512                                 e_dbg("Timeout (firmware bug): %d msec\n",
6513                                       i * 10);
6514                                 break;
6515                         }
6516
6517                         usleep_range(10000, 11000);
6518                 }
6519                 if (firmware_bug)
6520                         e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6521                                i * 10);
6522                 else
6523                         e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6524         } else {
6525                 /* Request driver unconfigure the device from S0ix */
6526
6527                 /* Disable the Dynamic Power Gating in the MAC */
6528                 mac_data = er32(FEXTNVM7);
6529                 mac_data &= 0xFFBFFFFF;
6530                 ew32(FEXTNVM7, mac_data);
6531
6532                 /* Disable mPHY power gating for any link and speed */
6533                 mac_data = er32(FEXTNVM8);
6534                 mac_data &= ~BIT(9);
6535                 ew32(FEXTNVM8, mac_data);
6536
6537                 /* Disable K1 off */
6538                 mac_data = er32(FEXTNVM6);
6539                 mac_data &= ~BIT(31);
6540                 ew32(FEXTNVM6, mac_data);
6541
6542                 /* Disable Ungate PGCB clock */
6543                 mac_data = er32(FEXTNVM9);
6544                 mac_data |= BIT(28);
6545                 ew32(FEXTNVM9, mac_data);
6546
6547                 /* Cancel not waking from dynamic
6548                  * Power Gating with clock request
6549                  */
6550                 mac_data = er32(FEXTNVM12);
6551                 mac_data &= ~BIT(12);
6552                 ew32(FEXTNVM12, mac_data);
6553
6554                 /* Cancel disable disconnected cable conditioning
6555                  * for Power Gating
6556                  */
6557                 mac_data = er32(DPGFR);
6558                 mac_data &= ~BIT(2);
6559                 ew32(DPGFR, mac_data);
6560
6561                 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6562                 mac_data = er32(CTRL_EXT);
6563                 mac_data &= 0xFFF7FFFF;
6564                 ew32(CTRL_EXT, mac_data);
6565
6566                 /* Revert the lanphypc logic to use the internal Gbe counter
6567                  * and not the PMC counter
6568                  */
6569                 mac_data = er32(FEXTNVM5);
6570                 mac_data &= 0xFFFFFF7F;
6571                 ew32(FEXTNVM5, mac_data);
6572
6573                 /* Enable the periodic inband message,
6574                  * Request PCIe clock in K1 page770_17[10:9] =01b
6575                  */
6576                 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6577                 phy_data &= 0xFBFF;
6578                 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6579                 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6580
6581                 /* Return back configuration
6582                  * 772_29[5] = 0 CS_Mode_Stay_In_K1
6583                  */
6584                 e1e_rphy(hw, I217_CGFREG, &phy_data);
6585                 phy_data &= 0xFFDF;
6586                 e1e_wphy(hw, I217_CGFREG, phy_data);
6587
6588                 /* Change the MAC/PHY interface to Kumeran
6589                  * Unforce the SMBus in PHY page769_23[0] = 0
6590                  * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6591                  */
6592                 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6593                 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6594                 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6595                 mac_data = er32(CTRL_EXT);
6596                 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6597                 ew32(CTRL_EXT, mac_data);
6598         }
6599
6600         /* Disable Dynamic Power Gating */
6601         mac_data = er32(CTRL_EXT);
6602         mac_data &= 0xFFFFFFF7;
6603         ew32(CTRL_EXT, mac_data);
6604
6605         /* Enable the time synchronization clock */
6606         mac_data = er32(FEXTNVM7);
6607         mac_data &= ~BIT(31);
6608         mac_data |= BIT(0);
6609         ew32(FEXTNVM7, mac_data);
6610 }
6611
6612 static int e1000e_pm_freeze(struct device *dev)
6613 {
6614         struct net_device *netdev = dev_get_drvdata(dev);
6615         struct e1000_adapter *adapter = netdev_priv(netdev);
6616         bool present;
6617
6618         rtnl_lock();
6619
6620         present = netif_device_present(netdev);
6621         netif_device_detach(netdev);
6622
6623         if (present && netif_running(netdev)) {
6624                 int count = E1000_CHECK_RESET_COUNT;
6625
6626                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6627                         usleep_range(10000, 11000);
6628
6629                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6630
6631                 /* Quiesce the device without resetting the hardware */
6632                 e1000e_down(adapter, false);
6633                 e1000_free_irq(adapter);
6634         }
6635         rtnl_unlock();
6636
6637         e1000e_reset_interrupt_capability(adapter);
6638
6639         /* Allow time for pending master requests to run */
6640         e1000e_disable_pcie_master(&adapter->hw);
6641
6642         return 0;
6643 }
6644
6645 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6646 {
6647         struct net_device *netdev = pci_get_drvdata(pdev);
6648         struct e1000_adapter *adapter = netdev_priv(netdev);
6649         struct e1000_hw *hw = &adapter->hw;
6650         u32 ctrl, ctrl_ext, rctl, status, wufc;
6651         int retval = 0;
6652
6653         /* Runtime suspend should only enable wakeup for link changes */
6654         if (runtime)
6655                 wufc = E1000_WUFC_LNKC;
6656         else if (device_may_wakeup(&pdev->dev))
6657                 wufc = adapter->wol;
6658         else
6659                 wufc = 0;
6660
6661         status = er32(STATUS);
6662         if (status & E1000_STATUS_LU)
6663                 wufc &= ~E1000_WUFC_LNKC;
6664
6665         if (wufc) {
6666                 e1000_setup_rctl(adapter);
6667                 e1000e_set_rx_mode(netdev);
6668
6669                 /* turn on all-multi mode if wake on multicast is enabled */
6670                 if (wufc & E1000_WUFC_MC) {
6671                         rctl = er32(RCTL);
6672                         rctl |= E1000_RCTL_MPE;
6673                         ew32(RCTL, rctl);
6674                 }
6675
6676                 ctrl = er32(CTRL);
6677                 ctrl |= E1000_CTRL_ADVD3WUC;
6678                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6679                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6680                 ew32(CTRL, ctrl);
6681
6682                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6683                     adapter->hw.phy.media_type ==
6684                     e1000_media_type_internal_serdes) {
6685                         /* keep the laser running in D3 */
6686                         ctrl_ext = er32(CTRL_EXT);
6687                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6688                         ew32(CTRL_EXT, ctrl_ext);
6689                 }
6690
6691                 if (!runtime)
6692                         e1000e_power_up_phy(adapter);
6693
6694                 if (adapter->flags & FLAG_IS_ICH)
6695                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6696
6697                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6698                         /* enable wakeup by the PHY */
6699                         retval = e1000_init_phy_wakeup(adapter, wufc);
6700                         if (retval)
6701                                 return retval;
6702                 } else {
6703                         /* enable wakeup by the MAC */
6704                         ew32(WUFC, wufc);
6705                         ew32(WUC, E1000_WUC_PME_EN);
6706                 }
6707         } else {
6708                 ew32(WUC, 0);
6709                 ew32(WUFC, 0);
6710
6711                 e1000_power_down_phy(adapter);
6712         }
6713
6714         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6715                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6716         } else if (hw->mac.type >= e1000_pch_lpt) {
6717                 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6718                         /* ULP does not support wake from unicast, multicast
6719                          * or broadcast.
6720                          */
6721                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6722
6723                 if (retval)
6724                         return retval;
6725         }
6726
6727         /* Ensure that the appropriate bits are set in LPI_CTRL
6728          * for EEE in Sx
6729          */
6730         if ((hw->phy.type >= e1000_phy_i217) &&
6731             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6732                 u16 lpi_ctrl = 0;
6733
6734                 retval = hw->phy.ops.acquire(hw);
6735                 if (!retval) {
6736                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6737                                                  &lpi_ctrl);
6738                         if (!retval) {
6739                                 if (adapter->eee_advert &
6740                                     hw->dev_spec.ich8lan.eee_lp_ability &
6741                                     I82579_EEE_100_SUPPORTED)
6742                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6743                                 if (adapter->eee_advert &
6744                                     hw->dev_spec.ich8lan.eee_lp_ability &
6745                                     I82579_EEE_1000_SUPPORTED)
6746                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6747
6748                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6749                                                          lpi_ctrl);
6750                         }
6751                 }
6752                 hw->phy.ops.release(hw);
6753         }
6754
6755         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6756          * would have already happened in close and is redundant.
6757          */
6758         e1000e_release_hw_control(adapter);
6759
6760         pci_clear_master(pdev);
6761
6762         /* The pci-e switch on some quad port adapters will report a
6763          * correctable error when the MAC transitions from D0 to D3.  To
6764          * prevent this we need to mask off the correctable errors on the
6765          * downstream port of the pci-e switch.
6766          *
6767          * We don't have the associated upstream bridge while assigning
6768          * the PCI device into guest. For example, the KVM on power is
6769          * one of the cases.
6770          */
6771         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6772                 struct pci_dev *us_dev = pdev->bus->self;
6773                 u16 devctl;
6774
6775                 if (!us_dev)
6776                         return 0;
6777
6778                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6779                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6780                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6781
6782                 pci_save_state(pdev);
6783                 pci_prepare_to_sleep(pdev);
6784
6785                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6786         }
6787
6788         return 0;
6789 }
6790
6791 /**
6792  * __e1000e_disable_aspm - Disable ASPM states
6793  * @pdev: pointer to PCI device struct
6794  * @state: bit-mask of ASPM states to disable
6795  * @locked: indication if this context holds pci_bus_sem locked.
6796  *
6797  * Some devices *must* have certain ASPM states disabled per hardware errata.
6798  **/
6799 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6800 {
6801         struct pci_dev *parent = pdev->bus->self;
6802         u16 aspm_dis_mask = 0;
6803         u16 pdev_aspmc, parent_aspmc;
6804
6805         switch (state) {
6806         case PCIE_LINK_STATE_L0S:
6807         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6808                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6809                 fallthrough; /* can't have L1 without L0s */
6810         case PCIE_LINK_STATE_L1:
6811                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6812                 break;
6813         default:
6814                 return;
6815         }
6816
6817         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6818         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6819
6820         if (parent) {
6821                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6822                                           &parent_aspmc);
6823                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6824         }
6825
6826         /* Nothing to do if the ASPM states to be disabled already are */
6827         if (!(pdev_aspmc & aspm_dis_mask) &&
6828             (!parent || !(parent_aspmc & aspm_dis_mask)))
6829                 return;
6830
6831         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6832                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6833                  "L0s" : "",
6834                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6835                  "L1" : "");
6836
6837 #ifdef CONFIG_PCIEASPM
6838         if (locked)
6839                 pci_disable_link_state_locked(pdev, state);
6840         else
6841                 pci_disable_link_state(pdev, state);
6842
6843         /* Double-check ASPM control.  If not disabled by the above, the
6844          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6845          * not enabled); override by writing PCI config space directly.
6846          */
6847         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6848         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6849
6850         if (!(aspm_dis_mask & pdev_aspmc))
6851                 return;
6852 #endif
6853
6854         /* Both device and parent should have the same ASPM setting.
6855          * Disable ASPM in downstream component first and then upstream.
6856          */
6857         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6858
6859         if (parent)
6860                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6861                                            aspm_dis_mask);
6862 }
6863
6864 /**
6865  * e1000e_disable_aspm - Disable ASPM states.
6866  * @pdev: pointer to PCI device struct
6867  * @state: bit-mask of ASPM states to disable
6868  *
6869  * This function acquires the pci_bus_sem!
6870  * Some devices *must* have certain ASPM states disabled per hardware errata.
6871  **/
6872 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6873 {
6874         __e1000e_disable_aspm(pdev, state, 0);
6875 }
6876
6877 /**
6878  * e1000e_disable_aspm_locked - Disable ASPM states.
6879  * @pdev: pointer to PCI device struct
6880  * @state: bit-mask of ASPM states to disable
6881  *
6882  * This function must be called with pci_bus_sem acquired!
6883  * Some devices *must* have certain ASPM states disabled per hardware errata.
6884  **/
6885 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6886 {
6887         __e1000e_disable_aspm(pdev, state, 1);
6888 }
6889
6890 static int e1000e_pm_thaw(struct device *dev)
6891 {
6892         struct net_device *netdev = dev_get_drvdata(dev);
6893         struct e1000_adapter *adapter = netdev_priv(netdev);
6894         int rc = 0;
6895
6896         e1000e_set_interrupt_capability(adapter);
6897
6898         rtnl_lock();
6899         if (netif_running(netdev)) {
6900                 rc = e1000_request_irq(adapter);
6901                 if (rc)
6902                         goto err_irq;
6903
6904                 e1000e_up(adapter);
6905         }
6906
6907         netif_device_attach(netdev);
6908 err_irq:
6909         rtnl_unlock();
6910
6911         return rc;
6912 }
6913
6914 static int __e1000_resume(struct pci_dev *pdev)
6915 {
6916         struct net_device *netdev = pci_get_drvdata(pdev);
6917         struct e1000_adapter *adapter = netdev_priv(netdev);
6918         struct e1000_hw *hw = &adapter->hw;
6919         u16 aspm_disable_flag = 0;
6920
6921         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6922                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6923         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6924                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6925         if (aspm_disable_flag)
6926                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6927
6928         pci_set_master(pdev);
6929
6930         if (hw->mac.type >= e1000_pch2lan)
6931                 e1000_resume_workarounds_pchlan(&adapter->hw);
6932
6933         e1000e_power_up_phy(adapter);
6934
6935         /* report the system wakeup cause from S3/S4 */
6936         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6937                 u16 phy_data;
6938
6939                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6940                 if (phy_data) {
6941                         e_info("PHY Wakeup cause - %s\n",
6942                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6943                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6944                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6945                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6946                                phy_data & E1000_WUS_LNKC ?
6947                                "Link Status Change" : "other");
6948                 }
6949                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6950         } else {
6951                 u32 wus = er32(WUS);
6952
6953                 if (wus) {
6954                         e_info("MAC Wakeup cause - %s\n",
6955                                wus & E1000_WUS_EX ? "Unicast Packet" :
6956                                wus & E1000_WUS_MC ? "Multicast Packet" :
6957                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6958                                wus & E1000_WUS_MAG ? "Magic Packet" :
6959                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6960                                "other");
6961                 }
6962                 ew32(WUS, ~0);
6963         }
6964
6965         e1000e_reset(adapter);
6966
6967         e1000_init_manageability_pt(adapter);
6968
6969         /* If the controller has AMT, do not set DRV_LOAD until the interface
6970          * is up.  For all other cases, let the f/w know that the h/w is now
6971          * under the control of the driver.
6972          */
6973         if (!(adapter->flags & FLAG_HAS_AMT))
6974                 e1000e_get_hw_control(adapter);
6975
6976         return 0;
6977 }
6978
6979 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6980 {
6981         return pm_runtime_suspended(dev) &&
6982                 pm_suspend_via_firmware();
6983 }
6984
6985 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6986 {
6987         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6988         struct e1000_adapter *adapter = netdev_priv(netdev);
6989         struct pci_dev *pdev = to_pci_dev(dev);
6990         struct e1000_hw *hw = &adapter->hw;
6991         u16 phy_data;
6992         int rc;
6993
6994         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6995             hw->mac.type >= e1000_pch_adp) {
6996                 /* Mask OEM Bits / Gig Disable / Restart AN (772_26[12] = 1) */
6997                 e1e_rphy(hw, I217_MEMPWR, &phy_data);
6998                 phy_data |= I217_MEMPWR_MOEM;
6999                 e1e_wphy(hw, I217_MEMPWR, phy_data);
7000
7001                 /* Disable LCD reset */
7002                 hw->phy.reset_disable = true;
7003         }
7004
7005         e1000e_flush_lpic(pdev);
7006
7007         e1000e_pm_freeze(dev);
7008
7009         rc = __e1000_shutdown(pdev, false);
7010         if (rc) {
7011                 e1000e_pm_thaw(dev);
7012         } else {
7013                 /* Introduce S0ix implementation */
7014                 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7015                         e1000e_s0ix_entry_flow(adapter);
7016         }
7017
7018         return rc;
7019 }
7020
7021 static __maybe_unused int e1000e_pm_resume(struct device *dev)
7022 {
7023         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7024         struct e1000_adapter *adapter = netdev_priv(netdev);
7025         struct pci_dev *pdev = to_pci_dev(dev);
7026         struct e1000_hw *hw = &adapter->hw;
7027         u16 phy_data;
7028         int rc;
7029
7030         /* Introduce S0ix implementation */
7031         if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7032                 e1000e_s0ix_exit_flow(adapter);
7033
7034         rc = __e1000_resume(pdev);
7035         if (rc)
7036                 return rc;
7037
7038         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
7039             hw->mac.type >= e1000_pch_adp) {
7040                 /* Unmask OEM Bits / Gig Disable / Restart AN 772_26[12] = 0 */
7041                 e1e_rphy(hw, I217_MEMPWR, &phy_data);
7042                 phy_data &= ~I217_MEMPWR_MOEM;
7043                 e1e_wphy(hw, I217_MEMPWR, phy_data);
7044
7045                 /* Enable LCD reset */
7046                 hw->phy.reset_disable = false;
7047         }
7048
7049         return e1000e_pm_thaw(dev);
7050 }
7051
7052 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7053 {
7054         struct net_device *netdev = dev_get_drvdata(dev);
7055         struct e1000_adapter *adapter = netdev_priv(netdev);
7056         u16 eee_lp;
7057
7058         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7059
7060         if (!e1000e_has_link(adapter)) {
7061                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7062                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7063         }
7064
7065         return -EBUSY;
7066 }
7067
7068 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7069 {
7070         struct pci_dev *pdev = to_pci_dev(dev);
7071         struct net_device *netdev = pci_get_drvdata(pdev);
7072         struct e1000_adapter *adapter = netdev_priv(netdev);
7073         int rc;
7074
7075         rc = __e1000_resume(pdev);
7076         if (rc)
7077                 return rc;
7078
7079         if (netdev->flags & IFF_UP)
7080                 e1000e_up(adapter);
7081
7082         return rc;
7083 }
7084
7085 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7086 {
7087         struct pci_dev *pdev = to_pci_dev(dev);
7088         struct net_device *netdev = pci_get_drvdata(pdev);
7089         struct e1000_adapter *adapter = netdev_priv(netdev);
7090
7091         if (netdev->flags & IFF_UP) {
7092                 int count = E1000_CHECK_RESET_COUNT;
7093
7094                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7095                         usleep_range(10000, 11000);
7096
7097                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7098
7099                 /* Down the device without resetting the hardware */
7100                 e1000e_down(adapter, false);
7101         }
7102
7103         if (__e1000_shutdown(pdev, true)) {
7104                 e1000e_pm_runtime_resume(dev);
7105                 return -EBUSY;
7106         }
7107
7108         return 0;
7109 }
7110
7111 static void e1000_shutdown(struct pci_dev *pdev)
7112 {
7113         e1000e_flush_lpic(pdev);
7114
7115         e1000e_pm_freeze(&pdev->dev);
7116
7117         __e1000_shutdown(pdev, false);
7118 }
7119
7120 #ifdef CONFIG_NET_POLL_CONTROLLER
7121
7122 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7123 {
7124         struct net_device *netdev = data;
7125         struct e1000_adapter *adapter = netdev_priv(netdev);
7126
7127         if (adapter->msix_entries) {
7128                 int vector, msix_irq;
7129
7130                 vector = 0;
7131                 msix_irq = adapter->msix_entries[vector].vector;
7132                 if (disable_hardirq(msix_irq))
7133                         e1000_intr_msix_rx(msix_irq, netdev);
7134                 enable_irq(msix_irq);
7135
7136                 vector++;
7137                 msix_irq = adapter->msix_entries[vector].vector;
7138                 if (disable_hardirq(msix_irq))
7139                         e1000_intr_msix_tx(msix_irq, netdev);
7140                 enable_irq(msix_irq);
7141
7142                 vector++;
7143                 msix_irq = adapter->msix_entries[vector].vector;
7144                 if (disable_hardirq(msix_irq))
7145                         e1000_msix_other(msix_irq, netdev);
7146                 enable_irq(msix_irq);
7147         }
7148
7149         return IRQ_HANDLED;
7150 }
7151
7152 /**
7153  * e1000_netpoll
7154  * @netdev: network interface device structure
7155  *
7156  * Polling 'interrupt' - used by things like netconsole to send skbs
7157  * without having to re-enable interrupts. It's not called while
7158  * the interrupt routine is executing.
7159  */
7160 static void e1000_netpoll(struct net_device *netdev)
7161 {
7162         struct e1000_adapter *adapter = netdev_priv(netdev);
7163
7164         switch (adapter->int_mode) {
7165         case E1000E_INT_MODE_MSIX:
7166                 e1000_intr_msix(adapter->pdev->irq, netdev);
7167                 break;
7168         case E1000E_INT_MODE_MSI:
7169                 if (disable_hardirq(adapter->pdev->irq))
7170                         e1000_intr_msi(adapter->pdev->irq, netdev);
7171                 enable_irq(adapter->pdev->irq);
7172                 break;
7173         default:                /* E1000E_INT_MODE_LEGACY */
7174                 if (disable_hardirq(adapter->pdev->irq))
7175                         e1000_intr(adapter->pdev->irq, netdev);
7176                 enable_irq(adapter->pdev->irq);
7177                 break;
7178         }
7179 }
7180 #endif
7181
7182 /**
7183  * e1000_io_error_detected - called when PCI error is detected
7184  * @pdev: Pointer to PCI device
7185  * @state: The current pci connection state
7186  *
7187  * This function is called after a PCI bus error affecting
7188  * this device has been detected.
7189  */
7190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7191                                                 pci_channel_state_t state)
7192 {
7193         e1000e_pm_freeze(&pdev->dev);
7194
7195         if (state == pci_channel_io_perm_failure)
7196                 return PCI_ERS_RESULT_DISCONNECT;
7197
7198         pci_disable_device(pdev);
7199
7200         /* Request a slot reset. */
7201         return PCI_ERS_RESULT_NEED_RESET;
7202 }
7203
7204 /**
7205  * e1000_io_slot_reset - called after the pci bus has been reset.
7206  * @pdev: Pointer to PCI device
7207  *
7208  * Restart the card from scratch, as if from a cold-boot. Implementation
7209  * resembles the first-half of the e1000e_pm_resume routine.
7210  */
7211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7212 {
7213         struct net_device *netdev = pci_get_drvdata(pdev);
7214         struct e1000_adapter *adapter = netdev_priv(netdev);
7215         struct e1000_hw *hw = &adapter->hw;
7216         u16 aspm_disable_flag = 0;
7217         int err;
7218         pci_ers_result_t result;
7219
7220         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7221                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7222         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7223                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7224         if (aspm_disable_flag)
7225                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7226
7227         err = pci_enable_device_mem(pdev);
7228         if (err) {
7229                 dev_err(&pdev->dev,
7230                         "Cannot re-enable PCI device after reset.\n");
7231                 result = PCI_ERS_RESULT_DISCONNECT;
7232         } else {
7233                 pdev->state_saved = true;
7234                 pci_restore_state(pdev);
7235                 pci_set_master(pdev);
7236
7237                 pci_enable_wake(pdev, PCI_D3hot, 0);
7238                 pci_enable_wake(pdev, PCI_D3cold, 0);
7239
7240                 e1000e_reset(adapter);
7241                 ew32(WUS, ~0);
7242                 result = PCI_ERS_RESULT_RECOVERED;
7243         }
7244
7245         return result;
7246 }
7247
7248 /**
7249  * e1000_io_resume - called when traffic can start flowing again.
7250  * @pdev: Pointer to PCI device
7251  *
7252  * This callback is called when the error recovery driver tells us that
7253  * its OK to resume normal operation. Implementation resembles the
7254  * second-half of the e1000e_pm_resume routine.
7255  */
7256 static void e1000_io_resume(struct pci_dev *pdev)
7257 {
7258         struct net_device *netdev = pci_get_drvdata(pdev);
7259         struct e1000_adapter *adapter = netdev_priv(netdev);
7260
7261         e1000_init_manageability_pt(adapter);
7262
7263         e1000e_pm_thaw(&pdev->dev);
7264
7265         /* If the controller has AMT, do not set DRV_LOAD until the interface
7266          * is up.  For all other cases, let the f/w know that the h/w is now
7267          * under the control of the driver.
7268          */
7269         if (!(adapter->flags & FLAG_HAS_AMT))
7270                 e1000e_get_hw_control(adapter);
7271 }
7272
7273 static void e1000_print_device_info(struct e1000_adapter *adapter)
7274 {
7275         struct e1000_hw *hw = &adapter->hw;
7276         struct net_device *netdev = adapter->netdev;
7277         u32 ret_val;
7278         u8 pba_str[E1000_PBANUM_LENGTH];
7279
7280         /* print bus type/speed/width info */
7281         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7282                /* bus width */
7283                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7284                 "Width x1"),
7285                /* MAC address */
7286                netdev->dev_addr);
7287         e_info("Intel(R) PRO/%s Network Connection\n",
7288                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7289         ret_val = e1000_read_pba_string_generic(hw, pba_str,
7290                                                 E1000_PBANUM_LENGTH);
7291         if (ret_val)
7292                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7293         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7294                hw->mac.type, hw->phy.type, pba_str);
7295 }
7296
7297 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7298 {
7299         struct e1000_hw *hw = &adapter->hw;
7300         int ret_val;
7301         u16 buf = 0;
7302
7303         if (hw->mac.type != e1000_82573)
7304                 return;
7305
7306         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7307         le16_to_cpus(&buf);
7308         if (!ret_val && (!(buf & BIT(0)))) {
7309                 /* Deep Smart Power Down (DSPD) */
7310                 dev_warn(&adapter->pdev->dev,
7311                          "Warning: detected DSPD enabled in EEPROM\n");
7312         }
7313 }
7314
7315 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7316                                             netdev_features_t features)
7317 {
7318         struct e1000_adapter *adapter = netdev_priv(netdev);
7319         struct e1000_hw *hw = &adapter->hw;
7320
7321         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7322         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7323                 features &= ~NETIF_F_RXFCS;
7324
7325         /* Since there is no support for separate Rx/Tx vlan accel
7326          * enable/disable make sure Tx flag is always in same state as Rx.
7327          */
7328         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7329                 features |= NETIF_F_HW_VLAN_CTAG_TX;
7330         else
7331                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7332
7333         return features;
7334 }
7335
7336 static int e1000_set_features(struct net_device *netdev,
7337                               netdev_features_t features)
7338 {
7339         struct e1000_adapter *adapter = netdev_priv(netdev);
7340         netdev_features_t changed = features ^ netdev->features;
7341
7342         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7343                 adapter->flags |= FLAG_TSO_FORCE;
7344
7345         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7346                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7347                          NETIF_F_RXALL)))
7348                 return 0;
7349
7350         if (changed & NETIF_F_RXFCS) {
7351                 if (features & NETIF_F_RXFCS) {
7352                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7353                 } else {
7354                         /* We need to take it back to defaults, which might mean
7355                          * stripping is still disabled at the adapter level.
7356                          */
7357                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7358                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7359                         else
7360                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7361                 }
7362         }
7363
7364         netdev->features = features;
7365
7366         if (netif_running(netdev))
7367                 e1000e_reinit_locked(adapter);
7368         else
7369                 e1000e_reset(adapter);
7370
7371         return 1;
7372 }
7373
7374 static const struct net_device_ops e1000e_netdev_ops = {
7375         .ndo_open               = e1000e_open,
7376         .ndo_stop               = e1000e_close,
7377         .ndo_start_xmit         = e1000_xmit_frame,
7378         .ndo_get_stats64        = e1000e_get_stats64,
7379         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7380         .ndo_set_mac_address    = e1000_set_mac,
7381         .ndo_change_mtu         = e1000_change_mtu,
7382         .ndo_eth_ioctl          = e1000_ioctl,
7383         .ndo_tx_timeout         = e1000_tx_timeout,
7384         .ndo_validate_addr      = eth_validate_addr,
7385
7386         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7387         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7388 #ifdef CONFIG_NET_POLL_CONTROLLER
7389         .ndo_poll_controller    = e1000_netpoll,
7390 #endif
7391         .ndo_set_features = e1000_set_features,
7392         .ndo_fix_features = e1000_fix_features,
7393         .ndo_features_check     = passthru_features_check,
7394 };
7395
7396 /**
7397  * e1000_probe - Device Initialization Routine
7398  * @pdev: PCI device information struct
7399  * @ent: entry in e1000_pci_tbl
7400  *
7401  * Returns 0 on success, negative on failure
7402  *
7403  * e1000_probe initializes an adapter identified by a pci_dev structure.
7404  * The OS initialization, configuring of the adapter private structure,
7405  * and a hardware reset occur.
7406  **/
7407 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7408 {
7409         struct net_device *netdev;
7410         struct e1000_adapter *adapter;
7411         struct e1000_hw *hw;
7412         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7413         resource_size_t mmio_start, mmio_len;
7414         resource_size_t flash_start, flash_len;
7415         static int cards_found;
7416         u16 aspm_disable_flag = 0;
7417         u16 eeprom_data = 0;
7418         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7419         int bars, i, err;
7420         s32 ret_val = 0;
7421
7422         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7423                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7424         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7425                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7426         if (aspm_disable_flag)
7427                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7428
7429         err = pci_enable_device_mem(pdev);
7430         if (err)
7431                 return err;
7432
7433         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7434         if (err) {
7435                 dev_err(&pdev->dev,
7436                         "No usable DMA configuration, aborting\n");
7437                 goto err_dma;
7438         }
7439
7440         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7441         err = pci_request_selected_regions_exclusive(pdev, bars,
7442                                                      e1000e_driver_name);
7443         if (err)
7444                 goto err_pci_reg;
7445
7446         /* AER (Advanced Error Reporting) hooks */
7447         pci_enable_pcie_error_reporting(pdev);
7448
7449         pci_set_master(pdev);
7450         /* PCI config space info */
7451         err = pci_save_state(pdev);
7452         if (err)
7453                 goto err_alloc_etherdev;
7454
7455         err = -ENOMEM;
7456         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7457         if (!netdev)
7458                 goto err_alloc_etherdev;
7459
7460         SET_NETDEV_DEV(netdev, &pdev->dev);
7461
7462         netdev->irq = pdev->irq;
7463
7464         pci_set_drvdata(pdev, netdev);
7465         adapter = netdev_priv(netdev);
7466         hw = &adapter->hw;
7467         adapter->netdev = netdev;
7468         adapter->pdev = pdev;
7469         adapter->ei = ei;
7470         adapter->pba = ei->pba;
7471         adapter->flags = ei->flags;
7472         adapter->flags2 = ei->flags2;
7473         adapter->hw.adapter = adapter;
7474         adapter->hw.mac.type = ei->mac;
7475         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7476         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7477
7478         mmio_start = pci_resource_start(pdev, 0);
7479         mmio_len = pci_resource_len(pdev, 0);
7480
7481         err = -EIO;
7482         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7483         if (!adapter->hw.hw_addr)
7484                 goto err_ioremap;
7485
7486         if ((adapter->flags & FLAG_HAS_FLASH) &&
7487             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7488             (hw->mac.type < e1000_pch_spt)) {
7489                 flash_start = pci_resource_start(pdev, 1);
7490                 flash_len = pci_resource_len(pdev, 1);
7491                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7492                 if (!adapter->hw.flash_address)
7493                         goto err_flashmap;
7494         }
7495
7496         /* Set default EEE advertisement */
7497         if (adapter->flags2 & FLAG2_HAS_EEE)
7498                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7499
7500         /* construct the net_device struct */
7501         netdev->netdev_ops = &e1000e_netdev_ops;
7502         e1000e_set_ethtool_ops(netdev);
7503         netdev->watchdog_timeo = 5 * HZ;
7504         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7505         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7506
7507         netdev->mem_start = mmio_start;
7508         netdev->mem_end = mmio_start + mmio_len;
7509
7510         adapter->bd_number = cards_found++;
7511
7512         e1000e_check_options(adapter);
7513
7514         /* setup adapter struct */
7515         err = e1000_sw_init(adapter);
7516         if (err)
7517                 goto err_sw_init;
7518
7519         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7520         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7521         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7522
7523         err = ei->get_variants(adapter);
7524         if (err)
7525                 goto err_hw_init;
7526
7527         if ((adapter->flags & FLAG_IS_ICH) &&
7528             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7529             (hw->mac.type < e1000_pch_spt))
7530                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7531
7532         hw->mac.ops.get_bus_info(&adapter->hw);
7533
7534         adapter->hw.phy.autoneg_wait_to_complete = 0;
7535
7536         /* Copper options */
7537         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7538                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7539                 adapter->hw.phy.disable_polarity_correction = 0;
7540                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7541         }
7542
7543         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7544                 dev_info(&pdev->dev,
7545                          "PHY reset is blocked due to SOL/IDER session.\n");
7546
7547         /* Set initial default active device features */
7548         netdev->features = (NETIF_F_SG |
7549                             NETIF_F_HW_VLAN_CTAG_RX |
7550                             NETIF_F_HW_VLAN_CTAG_TX |
7551                             NETIF_F_TSO |
7552                             NETIF_F_TSO6 |
7553                             NETIF_F_RXHASH |
7554                             NETIF_F_RXCSUM |
7555                             NETIF_F_HW_CSUM);
7556
7557         /* Set user-changeable features (subset of all device features) */
7558         netdev->hw_features = netdev->features;
7559         netdev->hw_features |= NETIF_F_RXFCS;
7560         netdev->priv_flags |= IFF_SUPP_NOFCS;
7561         netdev->hw_features |= NETIF_F_RXALL;
7562
7563         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7564                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7565
7566         netdev->vlan_features |= (NETIF_F_SG |
7567                                   NETIF_F_TSO |
7568                                   NETIF_F_TSO6 |
7569                                   NETIF_F_HW_CSUM);
7570
7571         netdev->priv_flags |= IFF_UNICAST_FLT;
7572
7573         netdev->features |= NETIF_F_HIGHDMA;
7574         netdev->vlan_features |= NETIF_F_HIGHDMA;
7575
7576         /* MTU range: 68 - max_hw_frame_size */
7577         netdev->min_mtu = ETH_MIN_MTU;
7578         netdev->max_mtu = adapter->max_hw_frame_size -
7579                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7580
7581         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7582                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7583
7584         /* before reading the NVM, reset the controller to
7585          * put the device in a known good starting state
7586          */
7587         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7588
7589         /* systems with ASPM and others may see the checksum fail on the first
7590          * attempt. Let's give it a few tries
7591          */
7592         for (i = 0;; i++) {
7593                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7594                         break;
7595                 if (i == 2) {
7596                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7597                         err = -EIO;
7598                         goto err_eeprom;
7599                 }
7600         }
7601
7602         e1000_eeprom_checks(adapter);
7603
7604         /* copy the MAC address */
7605         if (e1000e_read_mac_addr(&adapter->hw))
7606                 dev_err(&pdev->dev,
7607                         "NVM Read Error while reading MAC address\n");
7608
7609         eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7610
7611         if (!is_valid_ether_addr(netdev->dev_addr)) {
7612                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7613                         netdev->dev_addr);
7614                 err = -EIO;
7615                 goto err_eeprom;
7616         }
7617
7618         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7619         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7620
7621         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7622         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7623         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7624         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7625         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7626
7627         /* Initialize link parameters. User can change them with ethtool */
7628         adapter->hw.mac.autoneg = 1;
7629         adapter->fc_autoneg = true;
7630         adapter->hw.fc.requested_mode = e1000_fc_default;
7631         adapter->hw.fc.current_mode = e1000_fc_default;
7632         adapter->hw.phy.autoneg_advertised = 0x2f;
7633
7634         /* Initial Wake on LAN setting - If APM wake is enabled in
7635          * the EEPROM, enable the ACPI Magic Packet filter
7636          */
7637         if (adapter->flags & FLAG_APME_IN_WUC) {
7638                 /* APME bit in EEPROM is mapped to WUC.APME */
7639                 eeprom_data = er32(WUC);
7640                 eeprom_apme_mask = E1000_WUC_APME;
7641                 if ((hw->mac.type > e1000_ich10lan) &&
7642                     (eeprom_data & E1000_WUC_PHY_WAKE))
7643                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7644         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7645                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7646                     (adapter->hw.bus.func == 1))
7647                         ret_val = e1000_read_nvm(&adapter->hw,
7648                                               NVM_INIT_CONTROL3_PORT_B,
7649                                               1, &eeprom_data);
7650                 else
7651                         ret_val = e1000_read_nvm(&adapter->hw,
7652                                               NVM_INIT_CONTROL3_PORT_A,
7653                                               1, &eeprom_data);
7654         }
7655
7656         /* fetch WoL from EEPROM */
7657         if (ret_val)
7658                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7659         else if (eeprom_data & eeprom_apme_mask)
7660                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7661
7662         /* now that we have the eeprom settings, apply the special cases
7663          * where the eeprom may be wrong or the board simply won't support
7664          * wake on lan on a particular port
7665          */
7666         if (!(adapter->flags & FLAG_HAS_WOL))
7667                 adapter->eeprom_wol = 0;
7668
7669         /* initialize the wol settings based on the eeprom settings */
7670         adapter->wol = adapter->eeprom_wol;
7671
7672         /* make sure adapter isn't asleep if manageability is enabled */
7673         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7674             (hw->mac.ops.check_mng_mode(hw)))
7675                 device_wakeup_enable(&pdev->dev);
7676
7677         /* save off EEPROM version number */
7678         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7679
7680         if (ret_val) {
7681                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7682                 adapter->eeprom_vers = 0;
7683         }
7684
7685         /* init PTP hardware clock */
7686         e1000e_ptp_init(adapter);
7687
7688         /* reset the hardware with the new settings */
7689         e1000e_reset(adapter);
7690
7691         /* If the controller has AMT, do not set DRV_LOAD until the interface
7692          * is up.  For all other cases, let the f/w know that the h/w is now
7693          * under the control of the driver.
7694          */
7695         if (!(adapter->flags & FLAG_HAS_AMT))
7696                 e1000e_get_hw_control(adapter);
7697
7698         if (hw->mac.type >= e1000_pch_cnp)
7699                 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7700
7701         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7702         err = register_netdev(netdev);
7703         if (err)
7704                 goto err_register;
7705
7706         /* carrier off reporting is important to ethtool even BEFORE open */
7707         netif_carrier_off(netdev);
7708
7709         e1000_print_device_info(adapter);
7710
7711         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7712
7713         if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7714                 pm_runtime_put_noidle(&pdev->dev);
7715
7716         return 0;
7717
7718 err_register:
7719         if (!(adapter->flags & FLAG_HAS_AMT))
7720                 e1000e_release_hw_control(adapter);
7721 err_eeprom:
7722         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7723                 e1000_phy_hw_reset(&adapter->hw);
7724 err_hw_init:
7725         kfree(adapter->tx_ring);
7726         kfree(adapter->rx_ring);
7727 err_sw_init:
7728         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7729                 iounmap(adapter->hw.flash_address);
7730         e1000e_reset_interrupt_capability(adapter);
7731 err_flashmap:
7732         iounmap(adapter->hw.hw_addr);
7733 err_ioremap:
7734         free_netdev(netdev);
7735 err_alloc_etherdev:
7736         pci_disable_pcie_error_reporting(pdev);
7737         pci_release_mem_regions(pdev);
7738 err_pci_reg:
7739 err_dma:
7740         pci_disable_device(pdev);
7741         return err;
7742 }
7743
7744 /**
7745  * e1000_remove - Device Removal Routine
7746  * @pdev: PCI device information struct
7747  *
7748  * e1000_remove is called by the PCI subsystem to alert the driver
7749  * that it should release a PCI device.  This could be caused by a
7750  * Hot-Plug event, or because the driver is going to be removed from
7751  * memory.
7752  **/
7753 static void e1000_remove(struct pci_dev *pdev)
7754 {
7755         struct net_device *netdev = pci_get_drvdata(pdev);
7756         struct e1000_adapter *adapter = netdev_priv(netdev);
7757
7758         e1000e_ptp_remove(adapter);
7759
7760         /* The timers may be rescheduled, so explicitly disable them
7761          * from being rescheduled.
7762          */
7763         set_bit(__E1000_DOWN, &adapter->state);
7764         del_timer_sync(&adapter->watchdog_timer);
7765         del_timer_sync(&adapter->phy_info_timer);
7766
7767         cancel_work_sync(&adapter->reset_task);
7768         cancel_work_sync(&adapter->watchdog_task);
7769         cancel_work_sync(&adapter->downshift_task);
7770         cancel_work_sync(&adapter->update_phy_task);
7771         cancel_work_sync(&adapter->print_hang_task);
7772
7773         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7774                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7775                 if (adapter->tx_hwtstamp_skb) {
7776                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7777                         adapter->tx_hwtstamp_skb = NULL;
7778                 }
7779         }
7780
7781         unregister_netdev(netdev);
7782
7783         if (pci_dev_run_wake(pdev))
7784                 pm_runtime_get_noresume(&pdev->dev);
7785
7786         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7787          * would have already happened in close and is redundant.
7788          */
7789         e1000e_release_hw_control(adapter);
7790
7791         e1000e_reset_interrupt_capability(adapter);
7792         kfree(adapter->tx_ring);
7793         kfree(adapter->rx_ring);
7794
7795         iounmap(adapter->hw.hw_addr);
7796         if ((adapter->hw.flash_address) &&
7797             (adapter->hw.mac.type < e1000_pch_spt))
7798                 iounmap(adapter->hw.flash_address);
7799         pci_release_mem_regions(pdev);
7800
7801         free_netdev(netdev);
7802
7803         /* AER disable */
7804         pci_disable_pcie_error_reporting(pdev);
7805
7806         pci_disable_device(pdev);
7807 }
7808
7809 /* PCI Error Recovery (ERS) */
7810 static const struct pci_error_handlers e1000_err_handler = {
7811         .error_detected = e1000_io_error_detected,
7812         .slot_reset = e1000_io_slot_reset,
7813         .resume = e1000_io_resume,
7814 };
7815
7816 static const struct pci_device_id e1000_pci_tbl[] = {
7817         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7818         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7819         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7820         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7821           board_82571 },
7822         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7823         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7824         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7825         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7826         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7827
7828         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7829         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7830         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7831         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7832
7833         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7834         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7835         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7836
7837         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7838         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7839         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7840
7841         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7842           board_80003es2lan },
7843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7844           board_80003es2lan },
7845         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7846           board_80003es2lan },
7847         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7848           board_80003es2lan },
7849
7850         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7851         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7852         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7853         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7854         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7855         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7856         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7857         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7858
7859         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7860         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7861         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7862         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7863         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7864         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7865         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7866         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7867         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7868
7869         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7870         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7871         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7872
7873         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7874         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7875         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7876
7877         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7878         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7879         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7880         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7881
7882         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7883         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7884
7885         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7886         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7887         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7888         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7889         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7890         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7891         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7892         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7893         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7894         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7895         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7896         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7897         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7898         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7899         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7900         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7904         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7905         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7908         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7909         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7910         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7912         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7913         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7914         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7915         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7916         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7917         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7919         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7920         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7921         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7922         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7923         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7924         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7925         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7926         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7927         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7928         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7929         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7930         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_adp },
7931         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_adp },
7932         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_adp },
7933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_adp },
7934         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_adp },
7935         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_adp },
7936         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_adp },
7937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_adp },
7938
7939         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7940 };
7941 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7942
7943 static const struct dev_pm_ops e1000_pm_ops = {
7944 #ifdef CONFIG_PM_SLEEP
7945         .prepare        = e1000e_pm_prepare,
7946         .suspend        = e1000e_pm_suspend,
7947         .resume         = e1000e_pm_resume,
7948         .freeze         = e1000e_pm_freeze,
7949         .thaw           = e1000e_pm_thaw,
7950         .poweroff       = e1000e_pm_suspend,
7951         .restore        = e1000e_pm_resume,
7952 #endif
7953         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7954                            e1000e_pm_runtime_idle)
7955 };
7956
7957 /* PCI Device API Driver */
7958 static struct pci_driver e1000_driver = {
7959         .name     = e1000e_driver_name,
7960         .id_table = e1000_pci_tbl,
7961         .probe    = e1000_probe,
7962         .remove   = e1000_remove,
7963         .driver   = {
7964                 .pm = &e1000_pm_ops,
7965         },
7966         .shutdown = e1000_shutdown,
7967         .err_handler = &e1000_err_handler
7968 };
7969
7970 /**
7971  * e1000_init_module - Driver Registration Routine
7972  *
7973  * e1000_init_module is the first routine called when the driver is
7974  * loaded. All it does is register with the PCI subsystem.
7975  **/
7976 static int __init e1000_init_module(void)
7977 {
7978         pr_info("Intel(R) PRO/1000 Network Driver\n");
7979         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7980
7981         return pci_register_driver(&e1000_driver);
7982 }
7983 module_init(e1000_init_module);
7984
7985 /**
7986  * e1000_exit_module - Driver Exit Cleanup Routine
7987  *
7988  * e1000_exit_module is called just before the driver is removed
7989  * from memory.
7990  **/
7991 static void __exit e1000_exit_module(void)
7992 {
7993         pci_unregister_driver(&e1000_driver);
7994 }
7995 module_exit(e1000_exit_module);
7996
7997 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7998 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7999 MODULE_LICENSE("GPL v2");
8000
8001 /* netdev.c */