NFSv4: Warn once about servers that incorrectly apply open mode to setattr
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57
58 #include "e1000.h"
59
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63         struct ich8_hsfsts {
64                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
65                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
66                 u16 dael       :1; /* bit 2 Direct Access error Log */
67                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
68                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
69                 u16 reserved1  :2; /* bit 13:6 Reserved */
70                 u16 reserved2  :6; /* bit 13:6 Reserved */
71                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
72                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
73         } hsf_status;
74         u16 regval;
75 };
76
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80         struct ich8_hsflctl {
81                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
82                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
83                 u16 reserved   :5;   /* 7:3 Reserved  */
84                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
85                 u16 flockdn    :6;   /* 15:10 Reserved */
86         } hsf_ctrl;
87         u16 regval;
88 };
89
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92         struct ich8_flracc {
93                 u32 grra      :8; /* 0:7 GbE region Read Access */
94                 u32 grwa      :8; /* 8:15 GbE region Write Access */
95                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
96                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
97         } hsf_flregacc;
98         u16 regval;
99 };
100
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103         struct ich8_pr {
104                 u32 base:13;     /* 0:12 Protected Range Base */
105                 u32 reserved1:2; /* 13:14 Reserved */
106                 u32 rpe:1;       /* 15 Read Protection Enable */
107                 u32 limit:13;    /* 16:28 Protected Range Limit */
108                 u32 reserved2:2; /* 29:30 Reserved */
109                 u32 wpe:1;       /* 31 Write Protection Enable */
110         } range;
111         u32 regval;
112 };
113
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118                                                 u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120                                          u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122                                          u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124                                          u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145
146 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readw(hw->flash_address + reg);
149 }
150
151 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
152 {
153         return readl(hw->flash_address + reg);
154 }
155
156 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
157 {
158         writew(val, hw->flash_address + reg);
159 }
160
161 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
162 {
163         writel(val, hw->flash_address + reg);
164 }
165
166 #define er16flash(reg)          __er16flash(hw, (reg))
167 #define er32flash(reg)          __er32flash(hw, (reg))
168 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
169 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
170
171 /**
172  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
173  *  @hw: pointer to the HW structure
174  *
175  *  Test access to the PHY registers by reading the PHY ID registers.  If
176  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
177  *  otherwise assume the read PHY ID is correct if it is valid.
178  *
179  *  Assumes the sw/fw/hw semaphore is already acquired.
180  **/
181 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
182 {
183         u16 phy_reg = 0;
184         u32 phy_id = 0;
185         s32 ret_val;
186         u16 retry_count;
187
188         for (retry_count = 0; retry_count < 2; retry_count++) {
189                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
190                 if (ret_val || (phy_reg == 0xFFFF))
191                         continue;
192                 phy_id = (u32)(phy_reg << 16);
193
194                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
195                 if (ret_val || (phy_reg == 0xFFFF)) {
196                         phy_id = 0;
197                         continue;
198                 }
199                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
200                 break;
201         }
202
203         if (hw->phy.id) {
204                 if (hw->phy.id == phy_id)
205                         return true;
206         } else if (phy_id) {
207                 hw->phy.id = phy_id;
208                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
209                 return true;
210         }
211
212         /* In case the PHY needs to be in mdio slow mode,
213          * set slow mode and try to get the PHY id again.
214          */
215         hw->phy.ops.release(hw);
216         ret_val = e1000_set_mdio_slow_mode_hv(hw);
217         if (!ret_val)
218                 ret_val = e1000e_get_phy_id(hw);
219         hw->phy.ops.acquire(hw);
220
221         return !ret_val;
222 }
223
224 /**
225  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
226  *  @hw: pointer to the HW structure
227  *
228  *  Workarounds/flow necessary for PHY initialization during driver load
229  *  and resume paths.
230  **/
231 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
232 {
233         u32 mac_reg, fwsm = er32(FWSM);
234         s32 ret_val;
235         u16 phy_reg;
236
237         /* Gate automatic PHY configuration by hardware on managed and
238          * non-managed 82579 and newer adapters.
239          */
240         e1000_gate_hw_phy_config_ich8lan(hw, true);
241
242         ret_val = hw->phy.ops.acquire(hw);
243         if (ret_val) {
244                 e_dbg("Failed to initialize PHY flow\n");
245                 goto out;
246         }
247
248         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
249          * inaccessible and resetting the PHY is not blocked, toggle the
250          * LANPHYPC Value bit to force the interconnect to PCIe mode.
251          */
252         switch (hw->mac.type) {
253         case e1000_pch_lpt:
254                 if (e1000_phy_is_accessible_pchlan(hw))
255                         break;
256
257                 /* Before toggling LANPHYPC, see if PHY is accessible by
258                  * forcing MAC to SMBus mode first.
259                  */
260                 mac_reg = er32(CTRL_EXT);
261                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
262                 ew32(CTRL_EXT, mac_reg);
263
264                 /* fall-through */
265         case e1000_pch2lan:
266                 if (e1000_phy_is_accessible_pchlan(hw)) {
267                         if (hw->mac.type == e1000_pch_lpt) {
268                                 /* Unforce SMBus mode in PHY */
269                                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
270                                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
271                                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
272
273                                 /* Unforce SMBus mode in MAC */
274                                 mac_reg = er32(CTRL_EXT);
275                                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
276                                 ew32(CTRL_EXT, mac_reg);
277                         }
278                         break;
279                 }
280
281                 /* fall-through */
282         case e1000_pchlan:
283                 if ((hw->mac.type == e1000_pchlan) &&
284                     (fwsm & E1000_ICH_FWSM_FW_VALID))
285                         break;
286
287                 if (hw->phy.ops.check_reset_block(hw)) {
288                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
289                         break;
290                 }
291
292                 e_dbg("Toggling LANPHYPC\n");
293
294                 /* Set Phy Config Counter to 50msec */
295                 mac_reg = er32(FEXTNVM3);
296                 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
297                 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
298                 ew32(FEXTNVM3, mac_reg);
299
300                 if (hw->mac.type == e1000_pch_lpt) {
301                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
302                          * So ensure that the MAC is also out of SMBus mode
303                          */
304                         mac_reg = er32(CTRL_EXT);
305                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
306                         ew32(CTRL_EXT, mac_reg);
307                 }
308
309                 /* Toggle LANPHYPC Value bit */
310                 mac_reg = er32(CTRL);
311                 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
312                 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
313                 ew32(CTRL, mac_reg);
314                 e1e_flush();
315                 udelay(10);
316                 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
317                 ew32(CTRL, mac_reg);
318                 e1e_flush();
319                 if (hw->mac.type < e1000_pch_lpt) {
320                         msleep(50);
321                 } else {
322                         u16 count = 20;
323                         do {
324                                 usleep_range(5000, 10000);
325                         } while (!(er32(CTRL_EXT) &
326                                    E1000_CTRL_EXT_LPCD) && count--);
327                 }
328                 break;
329         default:
330                 break;
331         }
332
333         hw->phy.ops.release(hw);
334
335         /* Reset the PHY before any access to it.  Doing so, ensures
336          * that the PHY is in a known good state before we read/write
337          * PHY registers.  The generic reset is sufficient here,
338          * because we haven't determined the PHY type yet.
339          */
340         ret_val = e1000e_phy_hw_reset_generic(hw);
341
342 out:
343         /* Ungate automatic PHY configuration on non-managed 82579 */
344         if ((hw->mac.type == e1000_pch2lan) &&
345             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
346                 usleep_range(10000, 20000);
347                 e1000_gate_hw_phy_config_ich8lan(hw, false);
348         }
349
350         return ret_val;
351 }
352
353 /**
354  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
355  *  @hw: pointer to the HW structure
356  *
357  *  Initialize family-specific PHY parameters and function pointers.
358  **/
359 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
360 {
361         struct e1000_phy_info *phy = &hw->phy;
362         s32 ret_val;
363
364         phy->addr                     = 1;
365         phy->reset_delay_us           = 100;
366
367         phy->ops.set_page             = e1000_set_page_igp;
368         phy->ops.read_reg             = e1000_read_phy_reg_hv;
369         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
370         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
371         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
372         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
373         phy->ops.write_reg            = e1000_write_phy_reg_hv;
374         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
375         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
376         phy->ops.power_up             = e1000_power_up_phy_copper;
377         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
378         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
379
380         phy->id = e1000_phy_unknown;
381
382         ret_val = e1000_init_phy_workarounds_pchlan(hw);
383         if (ret_val)
384                 return ret_val;
385
386         if (phy->id == e1000_phy_unknown)
387                 switch (hw->mac.type) {
388                 default:
389                         ret_val = e1000e_get_phy_id(hw);
390                         if (ret_val)
391                                 return ret_val;
392                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
393                                 break;
394                         /* fall-through */
395                 case e1000_pch2lan:
396                 case e1000_pch_lpt:
397                         /* In case the PHY needs to be in mdio slow mode,
398                          * set slow mode and try to get the PHY id again.
399                          */
400                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
401                         if (ret_val)
402                                 return ret_val;
403                         ret_val = e1000e_get_phy_id(hw);
404                         if (ret_val)
405                                 return ret_val;
406                         break;
407                 }
408         phy->type = e1000e_get_phy_type_from_id(phy->id);
409
410         switch (phy->type) {
411         case e1000_phy_82577:
412         case e1000_phy_82579:
413         case e1000_phy_i217:
414                 phy->ops.check_polarity = e1000_check_polarity_82577;
415                 phy->ops.force_speed_duplex =
416                     e1000_phy_force_speed_duplex_82577;
417                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
418                 phy->ops.get_info = e1000_get_phy_info_82577;
419                 phy->ops.commit = e1000e_phy_sw_reset;
420                 break;
421         case e1000_phy_82578:
422                 phy->ops.check_polarity = e1000_check_polarity_m88;
423                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
424                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
425                 phy->ops.get_info = e1000e_get_phy_info_m88;
426                 break;
427         default:
428                 ret_val = -E1000_ERR_PHY;
429                 break;
430         }
431
432         return ret_val;
433 }
434
435 /**
436  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
437  *  @hw: pointer to the HW structure
438  *
439  *  Initialize family-specific PHY parameters and function pointers.
440  **/
441 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
442 {
443         struct e1000_phy_info *phy = &hw->phy;
444         s32 ret_val;
445         u16 i = 0;
446
447         phy->addr                       = 1;
448         phy->reset_delay_us             = 100;
449
450         phy->ops.power_up               = e1000_power_up_phy_copper;
451         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
452
453         /* We may need to do this twice - once for IGP and if that fails,
454          * we'll set BM func pointers and try again
455          */
456         ret_val = e1000e_determine_phy_address(hw);
457         if (ret_val) {
458                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
459                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
460                 ret_val = e1000e_determine_phy_address(hw);
461                 if (ret_val) {
462                         e_dbg("Cannot determine PHY addr. Erroring out\n");
463                         return ret_val;
464                 }
465         }
466
467         phy->id = 0;
468         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
469                (i++ < 100)) {
470                 usleep_range(1000, 2000);
471                 ret_val = e1000e_get_phy_id(hw);
472                 if (ret_val)
473                         return ret_val;
474         }
475
476         /* Verify phy id */
477         switch (phy->id) {
478         case IGP03E1000_E_PHY_ID:
479                 phy->type = e1000_phy_igp_3;
480                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
481                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
482                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
483                 phy->ops.get_info = e1000e_get_phy_info_igp;
484                 phy->ops.check_polarity = e1000_check_polarity_igp;
485                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
486                 break;
487         case IFE_E_PHY_ID:
488         case IFE_PLUS_E_PHY_ID:
489         case IFE_C_E_PHY_ID:
490                 phy->type = e1000_phy_ife;
491                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
492                 phy->ops.get_info = e1000_get_phy_info_ife;
493                 phy->ops.check_polarity = e1000_check_polarity_ife;
494                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
495                 break;
496         case BME1000_E_PHY_ID:
497                 phy->type = e1000_phy_bm;
498                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
499                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
500                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
501                 phy->ops.commit = e1000e_phy_sw_reset;
502                 phy->ops.get_info = e1000e_get_phy_info_m88;
503                 phy->ops.check_polarity = e1000_check_polarity_m88;
504                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
505                 break;
506         default:
507                 return -E1000_ERR_PHY;
508                 break;
509         }
510
511         return 0;
512 }
513
514 /**
515  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
516  *  @hw: pointer to the HW structure
517  *
518  *  Initialize family-specific NVM parameters and function
519  *  pointers.
520  **/
521 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
522 {
523         struct e1000_nvm_info *nvm = &hw->nvm;
524         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
525         u32 gfpreg, sector_base_addr, sector_end_addr;
526         u16 i;
527
528         /* Can't read flash registers if the register set isn't mapped. */
529         if (!hw->flash_address) {
530                 e_dbg("ERROR: Flash registers not mapped\n");
531                 return -E1000_ERR_CONFIG;
532         }
533
534         nvm->type = e1000_nvm_flash_sw;
535
536         gfpreg = er32flash(ICH_FLASH_GFPREG);
537
538         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
539          * Add 1 to sector_end_addr since this sector is included in
540          * the overall size.
541          */
542         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
543         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
544
545         /* flash_base_addr is byte-aligned */
546         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
547
548         /* find total size of the NVM, then cut in half since the total
549          * size represents two separate NVM banks.
550          */
551         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
552                                 << FLASH_SECTOR_ADDR_SHIFT;
553         nvm->flash_bank_size /= 2;
554         /* Adjust to word count */
555         nvm->flash_bank_size /= sizeof(u16);
556
557         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
558
559         /* Clear shadow ram */
560         for (i = 0; i < nvm->word_size; i++) {
561                 dev_spec->shadow_ram[i].modified = false;
562                 dev_spec->shadow_ram[i].value    = 0xFFFF;
563         }
564
565         return 0;
566 }
567
568 /**
569  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
570  *  @hw: pointer to the HW structure
571  *
572  *  Initialize family-specific MAC parameters and function
573  *  pointers.
574  **/
575 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
576 {
577         struct e1000_mac_info *mac = &hw->mac;
578
579         /* Set media type function pointer */
580         hw->phy.media_type = e1000_media_type_copper;
581
582         /* Set mta register count */
583         mac->mta_reg_count = 32;
584         /* Set rar entry count */
585         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
586         if (mac->type == e1000_ich8lan)
587                 mac->rar_entry_count--;
588         /* FWSM register */
589         mac->has_fwsm = true;
590         /* ARC subsystem not supported */
591         mac->arc_subsystem_valid = false;
592         /* Adaptive IFS supported */
593         mac->adaptive_ifs = true;
594
595         /* LED and other operations */
596         switch (mac->type) {
597         case e1000_ich8lan:
598         case e1000_ich9lan:
599         case e1000_ich10lan:
600                 /* check management mode */
601                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
602                 /* ID LED init */
603                 mac->ops.id_led_init = e1000e_id_led_init_generic;
604                 /* blink LED */
605                 mac->ops.blink_led = e1000e_blink_led_generic;
606                 /* setup LED */
607                 mac->ops.setup_led = e1000e_setup_led_generic;
608                 /* cleanup LED */
609                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
610                 /* turn on/off LED */
611                 mac->ops.led_on = e1000_led_on_ich8lan;
612                 mac->ops.led_off = e1000_led_off_ich8lan;
613                 break;
614         case e1000_pch2lan:
615                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
616                 mac->ops.rar_set = e1000_rar_set_pch2lan;
617                 /* fall-through */
618         case e1000_pch_lpt:
619         case e1000_pchlan:
620                 /* check management mode */
621                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
622                 /* ID LED init */
623                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
624                 /* setup LED */
625                 mac->ops.setup_led = e1000_setup_led_pchlan;
626                 /* cleanup LED */
627                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
628                 /* turn on/off LED */
629                 mac->ops.led_on = e1000_led_on_pchlan;
630                 mac->ops.led_off = e1000_led_off_pchlan;
631                 break;
632         default:
633                 break;
634         }
635
636         if (mac->type == e1000_pch_lpt) {
637                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
638                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
639         }
640
641         /* Enable PCS Lock-loss workaround for ICH8 */
642         if (mac->type == e1000_ich8lan)
643                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
644
645         return 0;
646 }
647
648 /**
649  *  __e1000_access_emi_reg_locked - Read/write EMI register
650  *  @hw: pointer to the HW structure
651  *  @addr: EMI address to program
652  *  @data: pointer to value to read/write from/to the EMI address
653  *  @read: boolean flag to indicate read or write
654  *
655  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
656  **/
657 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
658                                          u16 *data, bool read)
659 {
660         s32 ret_val;
661
662         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
663         if (ret_val)
664                 return ret_val;
665
666         if (read)
667                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
668         else
669                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
670
671         return ret_val;
672 }
673
674 /**
675  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
676  *  @hw: pointer to the HW structure
677  *  @addr: EMI address to program
678  *  @data: value to be read from the EMI address
679  *
680  *  Assumes the SW/FW/HW Semaphore is already acquired.
681  **/
682 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
683 {
684         return __e1000_access_emi_reg_locked(hw, addr, data, true);
685 }
686
687 /**
688  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
689  *  @hw: pointer to the HW structure
690  *  @addr: EMI address to program
691  *  @data: value to be written to the EMI address
692  *
693  *  Assumes the SW/FW/HW Semaphore is already acquired.
694  **/
695 static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
696 {
697         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
698 }
699
700 /**
701  *  e1000_set_eee_pchlan - Enable/disable EEE support
702  *  @hw: pointer to the HW structure
703  *
704  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
705  *  the link and the EEE capabilities of the link partner.  The LPI Control
706  *  register bits will remain set only if/when link is up.
707  **/
708 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
709 {
710         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
711         s32 ret_val;
712         u16 lpi_ctrl;
713
714         if ((hw->phy.type != e1000_phy_82579) &&
715             (hw->phy.type != e1000_phy_i217))
716                 return 0;
717
718         ret_val = hw->phy.ops.acquire(hw);
719         if (ret_val)
720                 return ret_val;
721
722         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
723         if (ret_val)
724                 goto release;
725
726         /* Clear bits that enable EEE in various speeds */
727         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
728
729         /* Enable EEE if not disabled by user */
730         if (!dev_spec->eee_disable) {
731                 u16 lpa, pcs_status, data;
732
733                 /* Save off link partner's EEE ability */
734                 switch (hw->phy.type) {
735                 case e1000_phy_82579:
736                         lpa = I82579_EEE_LP_ABILITY;
737                         pcs_status = I82579_EEE_PCS_STATUS;
738                         break;
739                 case e1000_phy_i217:
740                         lpa = I217_EEE_LP_ABILITY;
741                         pcs_status = I217_EEE_PCS_STATUS;
742                         break;
743                 default:
744                         ret_val = -E1000_ERR_PHY;
745                         goto release;
746                 }
747                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
748                                                     &dev_spec->eee_lp_ability);
749                 if (ret_val)
750                         goto release;
751
752                 /* Enable EEE only for speeds in which the link partner is
753                  * EEE capable.
754                  */
755                 if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
756                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
757
758                 if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
759                         e1e_rphy_locked(hw, MII_LPA, &data);
760                         if (data & LPA_100FULL)
761                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
762                         else
763                                 /* EEE is not supported in 100Half, so ignore
764                                  * partner's EEE in 100 ability if full-duplex
765                                  * is not advertised.
766                                  */
767                                 dev_spec->eee_lp_ability &=
768                                     ~I82579_EEE_100_SUPPORTED;
769                 }
770
771                 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
772                 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
773                 if (ret_val)
774                         goto release;
775         }
776
777         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
778 release:
779         hw->phy.ops.release(hw);
780
781         return ret_val;
782 }
783
784 /**
785  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
786  *  @hw: pointer to the HW structure
787  *
788  *  Checks to see of the link status of the hardware has changed.  If a
789  *  change in link status has been detected, then we read the PHY registers
790  *  to get the current speed/duplex if link exists.
791  **/
792 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
793 {
794         struct e1000_mac_info *mac = &hw->mac;
795         s32 ret_val;
796         bool link;
797         u16 phy_reg;
798
799         /* We only want to go out to the PHY registers to see if Auto-Neg
800          * has completed and/or if our link status has changed.  The
801          * get_link_status flag is set upon receiving a Link Status
802          * Change or Rx Sequence Error interrupt.
803          */
804         if (!mac->get_link_status)
805                 return 0;
806
807         /* First we want to see if the MII Status Register reports
808          * link.  If so, then we want to get the current speed/duplex
809          * of the PHY.
810          */
811         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
812         if (ret_val)
813                 return ret_val;
814
815         if (hw->mac.type == e1000_pchlan) {
816                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
817                 if (ret_val)
818                         return ret_val;
819         }
820
821         /* Clear link partner's EEE ability */
822         hw->dev_spec.ich8lan.eee_lp_ability = 0;
823
824         if (!link)
825                 return 0; /* No link detected */
826
827         mac->get_link_status = false;
828
829         switch (hw->mac.type) {
830         case e1000_pch2lan:
831                 ret_val = e1000_k1_workaround_lv(hw);
832                 if (ret_val)
833                         return ret_val;
834                 /* fall-thru */
835         case e1000_pchlan:
836                 if (hw->phy.type == e1000_phy_82578) {
837                         ret_val = e1000_link_stall_workaround_hv(hw);
838                         if (ret_val)
839                                 return ret_val;
840                 }
841
842                 /* Workaround for PCHx parts in half-duplex:
843                  * Set the number of preambles removed from the packet
844                  * when it is passed from the PHY to the MAC to prevent
845                  * the MAC from misinterpreting the packet type.
846                  */
847                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
848                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
849
850                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
851                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
852
853                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
854                 break;
855         default:
856                 break;
857         }
858
859         /* Check if there was DownShift, must be checked
860          * immediately after link-up
861          */
862         e1000e_check_downshift(hw);
863
864         /* Enable/Disable EEE after link up */
865         ret_val = e1000_set_eee_pchlan(hw);
866         if (ret_val)
867                 return ret_val;
868
869         /* If we are forcing speed/duplex, then we simply return since
870          * we have already determined whether we have link or not.
871          */
872         if (!mac->autoneg)
873                 return -E1000_ERR_CONFIG;
874
875         /* Auto-Neg is enabled.  Auto Speed Detection takes care
876          * of MAC speed/duplex configuration.  So we only need to
877          * configure Collision Distance in the MAC.
878          */
879         mac->ops.config_collision_dist(hw);
880
881         /* Configure Flow Control now that Auto-Neg has completed.
882          * First, we need to restore the desired flow control
883          * settings because we may have had to re-autoneg with a
884          * different link partner.
885          */
886         ret_val = e1000e_config_fc_after_link_up(hw);
887         if (ret_val)
888                 e_dbg("Error configuring flow control\n");
889
890         return ret_val;
891 }
892
893 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
894 {
895         struct e1000_hw *hw = &adapter->hw;
896         s32 rc;
897
898         rc = e1000_init_mac_params_ich8lan(hw);
899         if (rc)
900                 return rc;
901
902         rc = e1000_init_nvm_params_ich8lan(hw);
903         if (rc)
904                 return rc;
905
906         switch (hw->mac.type) {
907         case e1000_ich8lan:
908         case e1000_ich9lan:
909         case e1000_ich10lan:
910                 rc = e1000_init_phy_params_ich8lan(hw);
911                 break;
912         case e1000_pchlan:
913         case e1000_pch2lan:
914         case e1000_pch_lpt:
915                 rc = e1000_init_phy_params_pchlan(hw);
916                 break;
917         default:
918                 break;
919         }
920         if (rc)
921                 return rc;
922
923         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
924          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
925          */
926         if ((adapter->hw.phy.type == e1000_phy_ife) ||
927             ((adapter->hw.mac.type >= e1000_pch2lan) &&
928              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
929                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
930                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
931
932                 hw->mac.ops.blink_led = NULL;
933         }
934
935         if ((adapter->hw.mac.type == e1000_ich8lan) &&
936             (adapter->hw.phy.type != e1000_phy_ife))
937                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
938
939         /* Enable workaround for 82579 w/ ME enabled */
940         if ((adapter->hw.mac.type == e1000_pch2lan) &&
941             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
942                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
943
944         /* Disable EEE by default until IEEE802.3az spec is finalized */
945         if (adapter->flags2 & FLAG2_HAS_EEE)
946                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
947
948         return 0;
949 }
950
951 static DEFINE_MUTEX(nvm_mutex);
952
953 /**
954  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
955  *  @hw: pointer to the HW structure
956  *
957  *  Acquires the mutex for performing NVM operations.
958  **/
959 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
960 {
961         mutex_lock(&nvm_mutex);
962
963         return 0;
964 }
965
966 /**
967  *  e1000_release_nvm_ich8lan - Release NVM mutex
968  *  @hw: pointer to the HW structure
969  *
970  *  Releases the mutex used while performing NVM operations.
971  **/
972 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
973 {
974         mutex_unlock(&nvm_mutex);
975 }
976
977 /**
978  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
979  *  @hw: pointer to the HW structure
980  *
981  *  Acquires the software control flag for performing PHY and select
982  *  MAC CSR accesses.
983  **/
984 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
985 {
986         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
987         s32 ret_val = 0;
988
989         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
990                              &hw->adapter->state)) {
991                 e_dbg("contention for Phy access\n");
992                 return -E1000_ERR_PHY;
993         }
994
995         while (timeout) {
996                 extcnf_ctrl = er32(EXTCNF_CTRL);
997                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
998                         break;
999
1000                 mdelay(1);
1001                 timeout--;
1002         }
1003
1004         if (!timeout) {
1005                 e_dbg("SW has already locked the resource.\n");
1006                 ret_val = -E1000_ERR_CONFIG;
1007                 goto out;
1008         }
1009
1010         timeout = SW_FLAG_TIMEOUT;
1011
1012         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1013         ew32(EXTCNF_CTRL, extcnf_ctrl);
1014
1015         while (timeout) {
1016                 extcnf_ctrl = er32(EXTCNF_CTRL);
1017                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1018                         break;
1019
1020                 mdelay(1);
1021                 timeout--;
1022         }
1023
1024         if (!timeout) {
1025                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1026                       er32(FWSM), extcnf_ctrl);
1027                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1028                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1029                 ret_val = -E1000_ERR_CONFIG;
1030                 goto out;
1031         }
1032
1033 out:
1034         if (ret_val)
1035                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1036
1037         return ret_val;
1038 }
1039
1040 /**
1041  *  e1000_release_swflag_ich8lan - Release software control flag
1042  *  @hw: pointer to the HW structure
1043  *
1044  *  Releases the software control flag for performing PHY and select
1045  *  MAC CSR accesses.
1046  **/
1047 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1048 {
1049         u32 extcnf_ctrl;
1050
1051         extcnf_ctrl = er32(EXTCNF_CTRL);
1052
1053         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1054                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1055                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1056         } else {
1057                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1058         }
1059
1060         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1061 }
1062
1063 /**
1064  *  e1000_check_mng_mode_ich8lan - Checks management mode
1065  *  @hw: pointer to the HW structure
1066  *
1067  *  This checks if the adapter has any manageability enabled.
1068  *  This is a function pointer entry point only called by read/write
1069  *  routines for the PHY and NVM parts.
1070  **/
1071 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1072 {
1073         u32 fwsm;
1074
1075         fwsm = er32(FWSM);
1076         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1077                ((fwsm & E1000_FWSM_MODE_MASK) ==
1078                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1079 }
1080
1081 /**
1082  *  e1000_check_mng_mode_pchlan - Checks management mode
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  This checks if the adapter has iAMT enabled.
1086  *  This is a function pointer entry point only called by read/write
1087  *  routines for the PHY and NVM parts.
1088  **/
1089 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1090 {
1091         u32 fwsm;
1092
1093         fwsm = er32(FWSM);
1094         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1095                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1096 }
1097
1098 /**
1099  *  e1000_rar_set_pch2lan - Set receive address register
1100  *  @hw: pointer to the HW structure
1101  *  @addr: pointer to the receive address
1102  *  @index: receive address array register
1103  *
1104  *  Sets the receive address array register at index to the address passed
1105  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1106  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1107  *  Use SHRA[0-3] in place of those reserved for ME.
1108  **/
1109 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1110 {
1111         u32 rar_low, rar_high;
1112
1113         /* HW expects these in little endian so we reverse the byte order
1114          * from network order (big endian) to little endian
1115          */
1116         rar_low = ((u32)addr[0] |
1117                    ((u32)addr[1] << 8) |
1118                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1119
1120         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1121
1122         /* If MAC address zero, no need to set the AV bit */
1123         if (rar_low || rar_high)
1124                 rar_high |= E1000_RAH_AV;
1125
1126         if (index == 0) {
1127                 ew32(RAL(index), rar_low);
1128                 e1e_flush();
1129                 ew32(RAH(index), rar_high);
1130                 e1e_flush();
1131                 return;
1132         }
1133
1134         if (index < hw->mac.rar_entry_count) {
1135                 s32 ret_val;
1136
1137                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1138                 if (ret_val)
1139                         goto out;
1140
1141                 ew32(SHRAL(index - 1), rar_low);
1142                 e1e_flush();
1143                 ew32(SHRAH(index - 1), rar_high);
1144                 e1e_flush();
1145
1146                 e1000_release_swflag_ich8lan(hw);
1147
1148                 /* verify the register updates */
1149                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1150                     (er32(SHRAH(index - 1)) == rar_high))
1151                         return;
1152
1153                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1154                       (index - 1), er32(FWSM));
1155         }
1156
1157 out:
1158         e_dbg("Failed to write receive address at index %d\n", index);
1159 }
1160
1161 /**
1162  *  e1000_rar_set_pch_lpt - Set receive address registers
1163  *  @hw: pointer to the HW structure
1164  *  @addr: pointer to the receive address
1165  *  @index: receive address array register
1166  *
1167  *  Sets the receive address register array at index to the address passed
1168  *  in by addr. For LPT, RAR[0] is the base address register that is to
1169  *  contain the MAC address. SHRA[0-10] are the shared receive address
1170  *  registers that are shared between the Host and manageability engine (ME).
1171  **/
1172 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1173 {
1174         u32 rar_low, rar_high;
1175         u32 wlock_mac;
1176
1177         /* HW expects these in little endian so we reverse the byte order
1178          * from network order (big endian) to little endian
1179          */
1180         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1181                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1182
1183         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1184
1185         /* If MAC address zero, no need to set the AV bit */
1186         if (rar_low || rar_high)
1187                 rar_high |= E1000_RAH_AV;
1188
1189         if (index == 0) {
1190                 ew32(RAL(index), rar_low);
1191                 e1e_flush();
1192                 ew32(RAH(index), rar_high);
1193                 e1e_flush();
1194                 return;
1195         }
1196
1197         /* The manageability engine (ME) can lock certain SHRAR registers that
1198          * it is using - those registers are unavailable for use.
1199          */
1200         if (index < hw->mac.rar_entry_count) {
1201                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1202                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1203
1204                 /* Check if all SHRAR registers are locked */
1205                 if (wlock_mac == 1)
1206                         goto out;
1207
1208                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1209                         s32 ret_val;
1210
1211                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1212
1213                         if (ret_val)
1214                                 goto out;
1215
1216                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1217                         e1e_flush();
1218                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1219                         e1e_flush();
1220
1221                         e1000_release_swflag_ich8lan(hw);
1222
1223                         /* verify the register updates */
1224                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1225                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1226                                 return;
1227                 }
1228         }
1229
1230 out:
1231         e_dbg("Failed to write receive address at index %d\n", index);
1232 }
1233
1234 /**
1235  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1236  *  @hw: pointer to the HW structure
1237  *
1238  *  Checks if firmware is blocking the reset of the PHY.
1239  *  This is a function pointer entry point only called by
1240  *  reset routines.
1241  **/
1242 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1243 {
1244         u32 fwsm;
1245
1246         fwsm = er32(FWSM);
1247
1248         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1249 }
1250
1251 /**
1252  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1253  *  @hw: pointer to the HW structure
1254  *
1255  *  Assumes semaphore already acquired.
1256  *
1257  **/
1258 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1259 {
1260         u16 phy_data;
1261         u32 strap = er32(STRAP);
1262         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1263             E1000_STRAP_SMT_FREQ_SHIFT;
1264         s32 ret_val;
1265
1266         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1267
1268         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1269         if (ret_val)
1270                 return ret_val;
1271
1272         phy_data &= ~HV_SMB_ADDR_MASK;
1273         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1274         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1275
1276         if (hw->phy.type == e1000_phy_i217) {
1277                 /* Restore SMBus frequency */
1278                 if (freq--) {
1279                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1280                         phy_data |= (freq & (1 << 0)) <<
1281                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1282                         phy_data |= (freq & (1 << 1)) <<
1283                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1284                 } else {
1285                         e_dbg("Unsupported SMB frequency in PHY\n");
1286                 }
1287         }
1288
1289         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1290 }
1291
1292 /**
1293  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1294  *  @hw:   pointer to the HW structure
1295  *
1296  *  SW should configure the LCD from the NVM extended configuration region
1297  *  as a workaround for certain parts.
1298  **/
1299 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1300 {
1301         struct e1000_phy_info *phy = &hw->phy;
1302         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1303         s32 ret_val = 0;
1304         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1305
1306         /* Initialize the PHY from the NVM on ICH platforms.  This
1307          * is needed due to an issue where the NVM configuration is
1308          * not properly autoloaded after power transitions.
1309          * Therefore, after each PHY reset, we will load the
1310          * configuration data out of the NVM manually.
1311          */
1312         switch (hw->mac.type) {
1313         case e1000_ich8lan:
1314                 if (phy->type != e1000_phy_igp_3)
1315                         return ret_val;
1316
1317                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1318                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1319                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1320                         break;
1321                 }
1322                 /* Fall-thru */
1323         case e1000_pchlan:
1324         case e1000_pch2lan:
1325         case e1000_pch_lpt:
1326                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1327                 break;
1328         default:
1329                 return ret_val;
1330         }
1331
1332         ret_val = hw->phy.ops.acquire(hw);
1333         if (ret_val)
1334                 return ret_val;
1335
1336         data = er32(FEXTNVM);
1337         if (!(data & sw_cfg_mask))
1338                 goto release;
1339
1340         /* Make sure HW does not configure LCD from PHY
1341          * extended configuration before SW configuration
1342          */
1343         data = er32(EXTCNF_CTRL);
1344         if ((hw->mac.type < e1000_pch2lan) &&
1345             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1346                 goto release;
1347
1348         cnf_size = er32(EXTCNF_SIZE);
1349         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1350         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1351         if (!cnf_size)
1352                 goto release;
1353
1354         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1355         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1356
1357         if (((hw->mac.type == e1000_pchlan) &&
1358              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1359             (hw->mac.type > e1000_pchlan)) {
1360                 /* HW configures the SMBus address and LEDs when the
1361                  * OEM and LCD Write Enable bits are set in the NVM.
1362                  * When both NVM bits are cleared, SW will configure
1363                  * them instead.
1364                  */
1365                 ret_val = e1000_write_smbus_addr(hw);
1366                 if (ret_val)
1367                         goto release;
1368
1369                 data = er32(LEDCTL);
1370                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1371                                                         (u16)data);
1372                 if (ret_val)
1373                         goto release;
1374         }
1375
1376         /* Configure LCD from extended configuration region. */
1377
1378         /* cnf_base_addr is in DWORD */
1379         word_addr = (u16)(cnf_base_addr << 1);
1380
1381         for (i = 0; i < cnf_size; i++) {
1382                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1383                                          &reg_data);
1384                 if (ret_val)
1385                         goto release;
1386
1387                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1388                                          1, &reg_addr);
1389                 if (ret_val)
1390                         goto release;
1391
1392                 /* Save off the PHY page for future writes. */
1393                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1394                         phy_page = reg_data;
1395                         continue;
1396                 }
1397
1398                 reg_addr &= PHY_REG_MASK;
1399                 reg_addr |= phy_page;
1400
1401                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1402                 if (ret_val)
1403                         goto release;
1404         }
1405
1406 release:
1407         hw->phy.ops.release(hw);
1408         return ret_val;
1409 }
1410
1411 /**
1412  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1413  *  @hw:   pointer to the HW structure
1414  *  @link: link up bool flag
1415  *
1416  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1417  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1418  *  If link is down, the function will restore the default K1 setting located
1419  *  in the NVM.
1420  **/
1421 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1422 {
1423         s32 ret_val = 0;
1424         u16 status_reg = 0;
1425         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1426
1427         if (hw->mac.type != e1000_pchlan)
1428                 return 0;
1429
1430         /* Wrap the whole flow with the sw flag */
1431         ret_val = hw->phy.ops.acquire(hw);
1432         if (ret_val)
1433                 return ret_val;
1434
1435         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1436         if (link) {
1437                 if (hw->phy.type == e1000_phy_82578) {
1438                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1439                                                   &status_reg);
1440                         if (ret_val)
1441                                 goto release;
1442
1443                         status_reg &= BM_CS_STATUS_LINK_UP |
1444                                       BM_CS_STATUS_RESOLVED |
1445                                       BM_CS_STATUS_SPEED_MASK;
1446
1447                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1448                                            BM_CS_STATUS_RESOLVED |
1449                                            BM_CS_STATUS_SPEED_1000))
1450                                 k1_enable = false;
1451                 }
1452
1453                 if (hw->phy.type == e1000_phy_82577) {
1454                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1455                         if (ret_val)
1456                                 goto release;
1457
1458                         status_reg &= HV_M_STATUS_LINK_UP |
1459                                       HV_M_STATUS_AUTONEG_COMPLETE |
1460                                       HV_M_STATUS_SPEED_MASK;
1461
1462                         if (status_reg == (HV_M_STATUS_LINK_UP |
1463                                            HV_M_STATUS_AUTONEG_COMPLETE |
1464                                            HV_M_STATUS_SPEED_1000))
1465                                 k1_enable = false;
1466                 }
1467
1468                 /* Link stall fix for link up */
1469                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1470                 if (ret_val)
1471                         goto release;
1472
1473         } else {
1474                 /* Link stall fix for link down */
1475                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1476                 if (ret_val)
1477                         goto release;
1478         }
1479
1480         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1481
1482 release:
1483         hw->phy.ops.release(hw);
1484
1485         return ret_val;
1486 }
1487
1488 /**
1489  *  e1000_configure_k1_ich8lan - Configure K1 power state
1490  *  @hw: pointer to the HW structure
1491  *  @enable: K1 state to configure
1492  *
1493  *  Configure the K1 power state based on the provided parameter.
1494  *  Assumes semaphore already acquired.
1495  *
1496  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1497  **/
1498 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1499 {
1500         s32 ret_val;
1501         u32 ctrl_reg = 0;
1502         u32 ctrl_ext = 0;
1503         u32 reg = 0;
1504         u16 kmrn_reg = 0;
1505
1506         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1507                                               &kmrn_reg);
1508         if (ret_val)
1509                 return ret_val;
1510
1511         if (k1_enable)
1512                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1513         else
1514                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1515
1516         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1517                                                kmrn_reg);
1518         if (ret_val)
1519                 return ret_val;
1520
1521         udelay(20);
1522         ctrl_ext = er32(CTRL_EXT);
1523         ctrl_reg = er32(CTRL);
1524
1525         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1526         reg |= E1000_CTRL_FRCSPD;
1527         ew32(CTRL, reg);
1528
1529         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1530         e1e_flush();
1531         udelay(20);
1532         ew32(CTRL, ctrl_reg);
1533         ew32(CTRL_EXT, ctrl_ext);
1534         e1e_flush();
1535         udelay(20);
1536
1537         return 0;
1538 }
1539
1540 /**
1541  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1542  *  @hw:       pointer to the HW structure
1543  *  @d0_state: boolean if entering d0 or d3 device state
1544  *
1545  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1546  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1547  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1548  **/
1549 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1550 {
1551         s32 ret_val = 0;
1552         u32 mac_reg;
1553         u16 oem_reg;
1554
1555         if (hw->mac.type < e1000_pchlan)
1556                 return ret_val;
1557
1558         ret_val = hw->phy.ops.acquire(hw);
1559         if (ret_val)
1560                 return ret_val;
1561
1562         if (hw->mac.type == e1000_pchlan) {
1563                 mac_reg = er32(EXTCNF_CTRL);
1564                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1565                         goto release;
1566         }
1567
1568         mac_reg = er32(FEXTNVM);
1569         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1570                 goto release;
1571
1572         mac_reg = er32(PHY_CTRL);
1573
1574         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1575         if (ret_val)
1576                 goto release;
1577
1578         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1579
1580         if (d0_state) {
1581                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1582                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1583
1584                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1585                         oem_reg |= HV_OEM_BITS_LPLU;
1586         } else {
1587                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1588                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1589                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1590
1591                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1592                                E1000_PHY_CTRL_NOND0A_LPLU))
1593                         oem_reg |= HV_OEM_BITS_LPLU;
1594         }
1595
1596         /* Set Restart auto-neg to activate the bits */
1597         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1598             !hw->phy.ops.check_reset_block(hw))
1599                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1600
1601         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1602
1603 release:
1604         hw->phy.ops.release(hw);
1605
1606         return ret_val;
1607 }
1608
1609
1610 /**
1611  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1612  *  @hw:   pointer to the HW structure
1613  **/
1614 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1615 {
1616         s32 ret_val;
1617         u16 data;
1618
1619         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1620         if (ret_val)
1621                 return ret_val;
1622
1623         data |= HV_KMRN_MDIO_SLOW;
1624
1625         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1626
1627         return ret_val;
1628 }
1629
1630 /**
1631  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1632  *  done after every PHY reset.
1633  **/
1634 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1635 {
1636         s32 ret_val = 0;
1637         u16 phy_data;
1638
1639         if (hw->mac.type != e1000_pchlan)
1640                 return 0;
1641
1642         /* Set MDIO slow mode before any other MDIO access */
1643         if (hw->phy.type == e1000_phy_82577) {
1644                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1645                 if (ret_val)
1646                         return ret_val;
1647         }
1648
1649         if (((hw->phy.type == e1000_phy_82577) &&
1650              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1651             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1652                 /* Disable generation of early preamble */
1653                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1654                 if (ret_val)
1655                         return ret_val;
1656
1657                 /* Preamble tuning for SSC */
1658                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1659                 if (ret_val)
1660                         return ret_val;
1661         }
1662
1663         if (hw->phy.type == e1000_phy_82578) {
1664                 /* Return registers to default by doing a soft reset then
1665                  * writing 0x3140 to the control register.
1666                  */
1667                 if (hw->phy.revision < 2) {
1668                         e1000e_phy_sw_reset(hw);
1669                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1670                 }
1671         }
1672
1673         /* Select page 0 */
1674         ret_val = hw->phy.ops.acquire(hw);
1675         if (ret_val)
1676                 return ret_val;
1677
1678         hw->phy.addr = 1;
1679         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1680         hw->phy.ops.release(hw);
1681         if (ret_val)
1682                 return ret_val;
1683
1684         /* Configure the K1 Si workaround during phy reset assuming there is
1685          * link so that it disables K1 if link is in 1Gbps.
1686          */
1687         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1688         if (ret_val)
1689                 return ret_val;
1690
1691         /* Workaround for link disconnects on a busy hub in half duplex */
1692         ret_val = hw->phy.ops.acquire(hw);
1693         if (ret_val)
1694                 return ret_val;
1695         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1696         if (ret_val)
1697                 goto release;
1698         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1699         if (ret_val)
1700                 goto release;
1701
1702         /* set MSE higher to enable link to stay up when noise is high */
1703         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1704 release:
1705         hw->phy.ops.release(hw);
1706
1707         return ret_val;
1708 }
1709
1710 /**
1711  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1712  *  @hw:   pointer to the HW structure
1713  **/
1714 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1715 {
1716         u32 mac_reg;
1717         u16 i, phy_reg = 0;
1718         s32 ret_val;
1719
1720         ret_val = hw->phy.ops.acquire(hw);
1721         if (ret_val)
1722                 return;
1723         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1724         if (ret_val)
1725                 goto release;
1726
1727         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1728         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1729                 mac_reg = er32(RAL(i));
1730                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1731                                            (u16)(mac_reg & 0xFFFF));
1732                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1733                                            (u16)((mac_reg >> 16) & 0xFFFF));
1734
1735                 mac_reg = er32(RAH(i));
1736                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1737                                            (u16)(mac_reg & 0xFFFF));
1738                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1739                                            (u16)((mac_reg & E1000_RAH_AV)
1740                                                  >> 16));
1741         }
1742
1743         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1744
1745 release:
1746         hw->phy.ops.release(hw);
1747 }
1748
1749 /**
1750  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1751  *  with 82579 PHY
1752  *  @hw: pointer to the HW structure
1753  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1754  **/
1755 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1756 {
1757         s32 ret_val = 0;
1758         u16 phy_reg, data;
1759         u32 mac_reg;
1760         u16 i;
1761
1762         if (hw->mac.type < e1000_pch2lan)
1763                 return 0;
1764
1765         /* disable Rx path while enabling/disabling workaround */
1766         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1767         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1768         if (ret_val)
1769                 return ret_val;
1770
1771         if (enable) {
1772                 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1773                  * SHRAL/H) and initial CRC values to the MAC
1774                  */
1775                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1776                         u8 mac_addr[ETH_ALEN] = {0};
1777                         u32 addr_high, addr_low;
1778
1779                         addr_high = er32(RAH(i));
1780                         if (!(addr_high & E1000_RAH_AV))
1781                                 continue;
1782                         addr_low = er32(RAL(i));
1783                         mac_addr[0] = (addr_low & 0xFF);
1784                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1785                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1786                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1787                         mac_addr[4] = (addr_high & 0xFF);
1788                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1789
1790                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1791                 }
1792
1793                 /* Write Rx addresses to the PHY */
1794                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1795
1796                 /* Enable jumbo frame workaround in the MAC */
1797                 mac_reg = er32(FFLT_DBG);
1798                 mac_reg &= ~(1 << 14);
1799                 mac_reg |= (7 << 15);
1800                 ew32(FFLT_DBG, mac_reg);
1801
1802                 mac_reg = er32(RCTL);
1803                 mac_reg |= E1000_RCTL_SECRC;
1804                 ew32(RCTL, mac_reg);
1805
1806                 ret_val = e1000e_read_kmrn_reg(hw,
1807                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1808                                                 &data);
1809                 if (ret_val)
1810                         return ret_val;
1811                 ret_val = e1000e_write_kmrn_reg(hw,
1812                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1813                                                 data | (1 << 0));
1814                 if (ret_val)
1815                         return ret_val;
1816                 ret_val = e1000e_read_kmrn_reg(hw,
1817                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1818                                                 &data);
1819                 if (ret_val)
1820                         return ret_val;
1821                 data &= ~(0xF << 8);
1822                 data |= (0xB << 8);
1823                 ret_val = e1000e_write_kmrn_reg(hw,
1824                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1825                                                 data);
1826                 if (ret_val)
1827                         return ret_val;
1828
1829                 /* Enable jumbo frame workaround in the PHY */
1830                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1831                 data &= ~(0x7F << 5);
1832                 data |= (0x37 << 5);
1833                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1834                 if (ret_val)
1835                         return ret_val;
1836                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1837                 data &= ~(1 << 13);
1838                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1839                 if (ret_val)
1840                         return ret_val;
1841                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1842                 data &= ~(0x3FF << 2);
1843                 data |= (0x1A << 2);
1844                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1845                 if (ret_val)
1846                         return ret_val;
1847                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1848                 if (ret_val)
1849                         return ret_val;
1850                 e1e_rphy(hw, HV_PM_CTRL, &data);
1851                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1852                 if (ret_val)
1853                         return ret_val;
1854         } else {
1855                 /* Write MAC register values back to h/w defaults */
1856                 mac_reg = er32(FFLT_DBG);
1857                 mac_reg &= ~(0xF << 14);
1858                 ew32(FFLT_DBG, mac_reg);
1859
1860                 mac_reg = er32(RCTL);
1861                 mac_reg &= ~E1000_RCTL_SECRC;
1862                 ew32(RCTL, mac_reg);
1863
1864                 ret_val = e1000e_read_kmrn_reg(hw,
1865                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1866                                                 &data);
1867                 if (ret_val)
1868                         return ret_val;
1869                 ret_val = e1000e_write_kmrn_reg(hw,
1870                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1871                                                 data & ~(1 << 0));
1872                 if (ret_val)
1873                         return ret_val;
1874                 ret_val = e1000e_read_kmrn_reg(hw,
1875                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1876                                                 &data);
1877                 if (ret_val)
1878                         return ret_val;
1879                 data &= ~(0xF << 8);
1880                 data |= (0xB << 8);
1881                 ret_val = e1000e_write_kmrn_reg(hw,
1882                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1883                                                 data);
1884                 if (ret_val)
1885                         return ret_val;
1886
1887                 /* Write PHY register values back to h/w defaults */
1888                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1889                 data &= ~(0x7F << 5);
1890                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1891                 if (ret_val)
1892                         return ret_val;
1893                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1894                 data |= (1 << 13);
1895                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1896                 if (ret_val)
1897                         return ret_val;
1898                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1899                 data &= ~(0x3FF << 2);
1900                 data |= (0x8 << 2);
1901                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1902                 if (ret_val)
1903                         return ret_val;
1904                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1905                 if (ret_val)
1906                         return ret_val;
1907                 e1e_rphy(hw, HV_PM_CTRL, &data);
1908                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1909                 if (ret_val)
1910                         return ret_val;
1911         }
1912
1913         /* re-enable Rx path after enabling/disabling workaround */
1914         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1915 }
1916
1917 /**
1918  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1919  *  done after every PHY reset.
1920  **/
1921 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1922 {
1923         s32 ret_val = 0;
1924
1925         if (hw->mac.type != e1000_pch2lan)
1926                 return 0;
1927
1928         /* Set MDIO slow mode before any other MDIO access */
1929         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1930         if (ret_val)
1931                 return ret_val;
1932
1933         ret_val = hw->phy.ops.acquire(hw);
1934         if (ret_val)
1935                 return ret_val;
1936         /* set MSE higher to enable link to stay up when noise is high */
1937         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
1938         if (ret_val)
1939                 goto release;
1940         /* drop link after 5 times MSE threshold was reached */
1941         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
1942 release:
1943         hw->phy.ops.release(hw);
1944
1945         return ret_val;
1946 }
1947
1948 /**
1949  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1950  *  @hw:   pointer to the HW structure
1951  *
1952  *  Workaround to set the K1 beacon duration for 82579 parts
1953  **/
1954 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1955 {
1956         s32 ret_val = 0;
1957         u16 status_reg = 0;
1958         u32 mac_reg;
1959         u16 phy_reg;
1960
1961         if (hw->mac.type != e1000_pch2lan)
1962                 return 0;
1963
1964         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1965         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1966         if (ret_val)
1967                 return ret_val;
1968
1969         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1970             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1971                 mac_reg = er32(FEXTNVM4);
1972                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1973
1974                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1975                 if (ret_val)
1976                         return ret_val;
1977
1978                 if (status_reg & HV_M_STATUS_SPEED_1000) {
1979                         u16 pm_phy_reg;
1980
1981                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1982                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1983                         /* LV 1G Packet drop issue wa  */
1984                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
1985                         if (ret_val)
1986                                 return ret_val;
1987                         pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
1988                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
1989                         if (ret_val)
1990                                 return ret_val;
1991                 } else {
1992                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1993                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1994                 }
1995                 ew32(FEXTNVM4, mac_reg);
1996                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1997         }
1998
1999         return ret_val;
2000 }
2001
2002 /**
2003  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2004  *  @hw:   pointer to the HW structure
2005  *  @gate: boolean set to true to gate, false to ungate
2006  *
2007  *  Gate/ungate the automatic PHY configuration via hardware; perform
2008  *  the configuration via software instead.
2009  **/
2010 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2011 {
2012         u32 extcnf_ctrl;
2013
2014         if (hw->mac.type < e1000_pch2lan)
2015                 return;
2016
2017         extcnf_ctrl = er32(EXTCNF_CTRL);
2018
2019         if (gate)
2020                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2021         else
2022                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2023
2024         ew32(EXTCNF_CTRL, extcnf_ctrl);
2025 }
2026
2027 /**
2028  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2029  *  @hw: pointer to the HW structure
2030  *
2031  *  Check the appropriate indication the MAC has finished configuring the
2032  *  PHY after a software reset.
2033  **/
2034 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2035 {
2036         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2037
2038         /* Wait for basic configuration completes before proceeding */
2039         do {
2040                 data = er32(STATUS);
2041                 data &= E1000_STATUS_LAN_INIT_DONE;
2042                 udelay(100);
2043         } while ((!data) && --loop);
2044
2045         /* If basic configuration is incomplete before the above loop
2046          * count reaches 0, loading the configuration from NVM will
2047          * leave the PHY in a bad state possibly resulting in no link.
2048          */
2049         if (loop == 0)
2050                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2051
2052         /* Clear the Init Done bit for the next init event */
2053         data = er32(STATUS);
2054         data &= ~E1000_STATUS_LAN_INIT_DONE;
2055         ew32(STATUS, data);
2056 }
2057
2058 /**
2059  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2060  *  @hw: pointer to the HW structure
2061  **/
2062 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2063 {
2064         s32 ret_val = 0;
2065         u16 reg;
2066
2067         if (hw->phy.ops.check_reset_block(hw))
2068                 return 0;
2069
2070         /* Allow time for h/w to get to quiescent state after reset */
2071         usleep_range(10000, 20000);
2072
2073         /* Perform any necessary post-reset workarounds */
2074         switch (hw->mac.type) {
2075         case e1000_pchlan:
2076                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2077                 if (ret_val)
2078                         return ret_val;
2079                 break;
2080         case e1000_pch2lan:
2081                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2082                 if (ret_val)
2083                         return ret_val;
2084                 break;
2085         default:
2086                 break;
2087         }
2088
2089         /* Clear the host wakeup bit after lcd reset */
2090         if (hw->mac.type >= e1000_pchlan) {
2091                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2092                 reg &= ~BM_WUC_HOST_WU_BIT;
2093                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2094         }
2095
2096         /* Configure the LCD with the extended configuration region in NVM */
2097         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2098         if (ret_val)
2099                 return ret_val;
2100
2101         /* Configure the LCD with the OEM bits in NVM */
2102         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2103
2104         if (hw->mac.type == e1000_pch2lan) {
2105                 /* Ungate automatic PHY configuration on non-managed 82579 */
2106                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2107                         usleep_range(10000, 20000);
2108                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2109                 }
2110
2111                 /* Set EEE LPI Update Timer to 200usec */
2112                 ret_val = hw->phy.ops.acquire(hw);
2113                 if (ret_val)
2114                         return ret_val;
2115                 ret_val = e1000_write_emi_reg_locked(hw,
2116                                                      I82579_LPI_UPDATE_TIMER,
2117                                                      0x1387);
2118                 hw->phy.ops.release(hw);
2119         }
2120
2121         return ret_val;
2122 }
2123
2124 /**
2125  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2126  *  @hw: pointer to the HW structure
2127  *
2128  *  Resets the PHY
2129  *  This is a function pointer entry point called by drivers
2130  *  or other shared routines.
2131  **/
2132 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2133 {
2134         s32 ret_val = 0;
2135
2136         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2137         if ((hw->mac.type == e1000_pch2lan) &&
2138             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2139                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2140
2141         ret_val = e1000e_phy_hw_reset_generic(hw);
2142         if (ret_val)
2143                 return ret_val;
2144
2145         return e1000_post_phy_reset_ich8lan(hw);
2146 }
2147
2148 /**
2149  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2150  *  @hw: pointer to the HW structure
2151  *  @active: true to enable LPLU, false to disable
2152  *
2153  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2154  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2155  *  the phy speed. This function will manually set the LPLU bit and restart
2156  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2157  *  since it configures the same bit.
2158  **/
2159 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2160 {
2161         s32 ret_val;
2162         u16 oem_reg;
2163
2164         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2165         if (ret_val)
2166                 return ret_val;
2167
2168         if (active)
2169                 oem_reg |= HV_OEM_BITS_LPLU;
2170         else
2171                 oem_reg &= ~HV_OEM_BITS_LPLU;
2172
2173         if (!hw->phy.ops.check_reset_block(hw))
2174                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2175
2176         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2177 }
2178
2179 /**
2180  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2181  *  @hw: pointer to the HW structure
2182  *  @active: true to enable LPLU, false to disable
2183  *
2184  *  Sets the LPLU D0 state according to the active flag.  When
2185  *  activating LPLU this function also disables smart speed
2186  *  and vice versa.  LPLU will not be activated unless the
2187  *  device autonegotiation advertisement meets standards of
2188  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2189  *  This is a function pointer entry point only called by
2190  *  PHY setup routines.
2191  **/
2192 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2193 {
2194         struct e1000_phy_info *phy = &hw->phy;
2195         u32 phy_ctrl;
2196         s32 ret_val = 0;
2197         u16 data;
2198
2199         if (phy->type == e1000_phy_ife)
2200                 return 0;
2201
2202         phy_ctrl = er32(PHY_CTRL);
2203
2204         if (active) {
2205                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2206                 ew32(PHY_CTRL, phy_ctrl);
2207
2208                 if (phy->type != e1000_phy_igp_3)
2209                         return 0;
2210
2211                 /* Call gig speed drop workaround on LPLU before accessing
2212                  * any PHY registers
2213                  */
2214                 if (hw->mac.type == e1000_ich8lan)
2215                         e1000e_gig_downshift_workaround_ich8lan(hw);
2216
2217                 /* When LPLU is enabled, we should disable SmartSpeed */
2218                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2219                 if (ret_val)
2220                         return ret_val;
2221                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2222                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2223                 if (ret_val)
2224                         return ret_val;
2225         } else {
2226                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2227                 ew32(PHY_CTRL, phy_ctrl);
2228
2229                 if (phy->type != e1000_phy_igp_3)
2230                         return 0;
2231
2232                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2233                  * during Dx states where the power conservation is most
2234                  * important.  During driver activity we should enable
2235                  * SmartSpeed, so performance is maintained.
2236                  */
2237                 if (phy->smart_speed == e1000_smart_speed_on) {
2238                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2239                                            &data);
2240                         if (ret_val)
2241                                 return ret_val;
2242
2243                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2244                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2245                                            data);
2246                         if (ret_val)
2247                                 return ret_val;
2248                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2249                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2250                                            &data);
2251                         if (ret_val)
2252                                 return ret_val;
2253
2254                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2255                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2256                                            data);
2257                         if (ret_val)
2258                                 return ret_val;
2259                 }
2260         }
2261
2262         return 0;
2263 }
2264
2265 /**
2266  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2267  *  @hw: pointer to the HW structure
2268  *  @active: true to enable LPLU, false to disable
2269  *
2270  *  Sets the LPLU D3 state according to the active flag.  When
2271  *  activating LPLU this function also disables smart speed
2272  *  and vice versa.  LPLU will not be activated unless the
2273  *  device autonegotiation advertisement meets standards of
2274  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2275  *  This is a function pointer entry point only called by
2276  *  PHY setup routines.
2277  **/
2278 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2279 {
2280         struct e1000_phy_info *phy = &hw->phy;
2281         u32 phy_ctrl;
2282         s32 ret_val = 0;
2283         u16 data;
2284
2285         phy_ctrl = er32(PHY_CTRL);
2286
2287         if (!active) {
2288                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2289                 ew32(PHY_CTRL, phy_ctrl);
2290
2291                 if (phy->type != e1000_phy_igp_3)
2292                         return 0;
2293
2294                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2295                  * during Dx states where the power conservation is most
2296                  * important.  During driver activity we should enable
2297                  * SmartSpeed, so performance is maintained.
2298                  */
2299                 if (phy->smart_speed == e1000_smart_speed_on) {
2300                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2301                                            &data);
2302                         if (ret_val)
2303                                 return ret_val;
2304
2305                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2306                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2307                                            data);
2308                         if (ret_val)
2309                                 return ret_val;
2310                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2311                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2312                                            &data);
2313                         if (ret_val)
2314                                 return ret_val;
2315
2316                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2317                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2318                                            data);
2319                         if (ret_val)
2320                                 return ret_val;
2321                 }
2322         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2323                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2324                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2325                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2326                 ew32(PHY_CTRL, phy_ctrl);
2327
2328                 if (phy->type != e1000_phy_igp_3)
2329                         return 0;
2330
2331                 /* Call gig speed drop workaround on LPLU before accessing
2332                  * any PHY registers
2333                  */
2334                 if (hw->mac.type == e1000_ich8lan)
2335                         e1000e_gig_downshift_workaround_ich8lan(hw);
2336
2337                 /* When LPLU is enabled, we should disable SmartSpeed */
2338                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2339                 if (ret_val)
2340                         return ret_val;
2341
2342                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2343                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2344         }
2345
2346         return ret_val;
2347 }
2348
2349 /**
2350  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2351  *  @hw: pointer to the HW structure
2352  *  @bank:  pointer to the variable that returns the active bank
2353  *
2354  *  Reads signature byte from the NVM using the flash access registers.
2355  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2356  **/
2357 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2358 {
2359         u32 eecd;
2360         struct e1000_nvm_info *nvm = &hw->nvm;
2361         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2362         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2363         u8 sig_byte = 0;
2364         s32 ret_val;
2365
2366         switch (hw->mac.type) {
2367         case e1000_ich8lan:
2368         case e1000_ich9lan:
2369                 eecd = er32(EECD);
2370                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2371                     E1000_EECD_SEC1VAL_VALID_MASK) {
2372                         if (eecd & E1000_EECD_SEC1VAL)
2373                                 *bank = 1;
2374                         else
2375                                 *bank = 0;
2376
2377                         return 0;
2378                 }
2379                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2380                 /* fall-thru */
2381         default:
2382                 /* set bank to 0 in case flash read fails */
2383                 *bank = 0;
2384
2385                 /* Check bank 0 */
2386                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2387                                                         &sig_byte);
2388                 if (ret_val)
2389                         return ret_val;
2390                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2391                     E1000_ICH_NVM_SIG_VALUE) {
2392                         *bank = 0;
2393                         return 0;
2394                 }
2395
2396                 /* Check bank 1 */
2397                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2398                                                         bank1_offset,
2399                                                         &sig_byte);
2400                 if (ret_val)
2401                         return ret_val;
2402                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2403                     E1000_ICH_NVM_SIG_VALUE) {
2404                         *bank = 1;
2405                         return 0;
2406                 }
2407
2408                 e_dbg("ERROR: No valid NVM bank present\n");
2409                 return -E1000_ERR_NVM;
2410         }
2411 }
2412
2413 /**
2414  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2415  *  @hw: pointer to the HW structure
2416  *  @offset: The offset (in bytes) of the word(s) to read.
2417  *  @words: Size of data to read in words
2418  *  @data: Pointer to the word(s) to read at offset.
2419  *
2420  *  Reads a word(s) from the NVM using the flash access registers.
2421  **/
2422 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2423                                   u16 *data)
2424 {
2425         struct e1000_nvm_info *nvm = &hw->nvm;
2426         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2427         u32 act_offset;
2428         s32 ret_val = 0;
2429         u32 bank = 0;
2430         u16 i, word;
2431
2432         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2433             (words == 0)) {
2434                 e_dbg("nvm parameter(s) out of bounds\n");
2435                 ret_val = -E1000_ERR_NVM;
2436                 goto out;
2437         }
2438
2439         nvm->ops.acquire(hw);
2440
2441         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2442         if (ret_val) {
2443                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2444                 bank = 0;
2445         }
2446
2447         act_offset = (bank) ? nvm->flash_bank_size : 0;
2448         act_offset += offset;
2449
2450         ret_val = 0;
2451         for (i = 0; i < words; i++) {
2452                 if (dev_spec->shadow_ram[offset+i].modified) {
2453                         data[i] = dev_spec->shadow_ram[offset+i].value;
2454                 } else {
2455                         ret_val = e1000_read_flash_word_ich8lan(hw,
2456                                                                 act_offset + i,
2457                                                                 &word);
2458                         if (ret_val)
2459                                 break;
2460                         data[i] = word;
2461                 }
2462         }
2463
2464         nvm->ops.release(hw);
2465
2466 out:
2467         if (ret_val)
2468                 e_dbg("NVM read error: %d\n", ret_val);
2469
2470         return ret_val;
2471 }
2472
2473 /**
2474  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2475  *  @hw: pointer to the HW structure
2476  *
2477  *  This function does initial flash setup so that a new read/write/erase cycle
2478  *  can be started.
2479  **/
2480 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2481 {
2482         union ich8_hws_flash_status hsfsts;
2483         s32 ret_val = -E1000_ERR_NVM;
2484
2485         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2486
2487         /* Check if the flash descriptor is valid */
2488         if (!hsfsts.hsf_status.fldesvalid) {
2489                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2490                 return -E1000_ERR_NVM;
2491         }
2492
2493         /* Clear FCERR and DAEL in hw status by writing 1 */
2494         hsfsts.hsf_status.flcerr = 1;
2495         hsfsts.hsf_status.dael = 1;
2496
2497         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2498
2499         /* Either we should have a hardware SPI cycle in progress
2500          * bit to check against, in order to start a new cycle or
2501          * FDONE bit should be changed in the hardware so that it
2502          * is 1 after hardware reset, which can then be used as an
2503          * indication whether a cycle is in progress or has been
2504          * completed.
2505          */
2506
2507         if (!hsfsts.hsf_status.flcinprog) {
2508                 /* There is no cycle running at present,
2509                  * so we can start a cycle.
2510                  * Begin by setting Flash Cycle Done.
2511                  */
2512                 hsfsts.hsf_status.flcdone = 1;
2513                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2514                 ret_val = 0;
2515         } else {
2516                 s32 i;
2517
2518                 /* Otherwise poll for sometime so the current
2519                  * cycle has a chance to end before giving up.
2520                  */
2521                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2522                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2523                         if (!hsfsts.hsf_status.flcinprog) {
2524                                 ret_val = 0;
2525                                 break;
2526                         }
2527                         udelay(1);
2528                 }
2529                 if (!ret_val) {
2530                         /* Successful in waiting for previous cycle to timeout,
2531                          * now set the Flash Cycle Done.
2532                          */
2533                         hsfsts.hsf_status.flcdone = 1;
2534                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2535                 } else {
2536                         e_dbg("Flash controller busy, cannot get access\n");
2537                 }
2538         }
2539
2540         return ret_val;
2541 }
2542
2543 /**
2544  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2545  *  @hw: pointer to the HW structure
2546  *  @timeout: maximum time to wait for completion
2547  *
2548  *  This function starts a flash cycle and waits for its completion.
2549  **/
2550 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2551 {
2552         union ich8_hws_flash_ctrl hsflctl;
2553         union ich8_hws_flash_status hsfsts;
2554         u32 i = 0;
2555
2556         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2557         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2558         hsflctl.hsf_ctrl.flcgo = 1;
2559         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2560
2561         /* wait till FDONE bit is set to 1 */
2562         do {
2563                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2564                 if (hsfsts.hsf_status.flcdone)
2565                         break;
2566                 udelay(1);
2567         } while (i++ < timeout);
2568
2569         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2570                 return 0;
2571
2572         return -E1000_ERR_NVM;
2573 }
2574
2575 /**
2576  *  e1000_read_flash_word_ich8lan - Read word from flash
2577  *  @hw: pointer to the HW structure
2578  *  @offset: offset to data location
2579  *  @data: pointer to the location for storing the data
2580  *
2581  *  Reads the flash word at offset into data.  Offset is converted
2582  *  to bytes before read.
2583  **/
2584 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2585                                          u16 *data)
2586 {
2587         /* Must convert offset into bytes. */
2588         offset <<= 1;
2589
2590         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2591 }
2592
2593 /**
2594  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2595  *  @hw: pointer to the HW structure
2596  *  @offset: The offset of the byte to read.
2597  *  @data: Pointer to a byte to store the value read.
2598  *
2599  *  Reads a single byte from the NVM using the flash access registers.
2600  **/
2601 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2602                                          u8 *data)
2603 {
2604         s32 ret_val;
2605         u16 word = 0;
2606
2607         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2608         if (ret_val)
2609                 return ret_val;
2610
2611         *data = (u8)word;
2612
2613         return 0;
2614 }
2615
2616 /**
2617  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2618  *  @hw: pointer to the HW structure
2619  *  @offset: The offset (in bytes) of the byte or word to read.
2620  *  @size: Size of data to read, 1=byte 2=word
2621  *  @data: Pointer to the word to store the value read.
2622  *
2623  *  Reads a byte or word from the NVM using the flash access registers.
2624  **/
2625 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2626                                          u8 size, u16 *data)
2627 {
2628         union ich8_hws_flash_status hsfsts;
2629         union ich8_hws_flash_ctrl hsflctl;
2630         u32 flash_linear_addr;
2631         u32 flash_data = 0;
2632         s32 ret_val = -E1000_ERR_NVM;
2633         u8 count = 0;
2634
2635         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2636                 return -E1000_ERR_NVM;
2637
2638         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2639                             hw->nvm.flash_base_addr;
2640
2641         do {
2642                 udelay(1);
2643                 /* Steps */
2644                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2645                 if (ret_val)
2646                         break;
2647
2648                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2649                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2650                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2651                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2652                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2653
2654                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2655
2656                 ret_val = e1000_flash_cycle_ich8lan(hw,
2657                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2658
2659                 /* Check if FCERR is set to 1, if set to 1, clear it
2660                  * and try the whole sequence a few more times, else
2661                  * read in (shift in) the Flash Data0, the order is
2662                  * least significant byte first msb to lsb
2663                  */
2664                 if (!ret_val) {
2665                         flash_data = er32flash(ICH_FLASH_FDATA0);
2666                         if (size == 1)
2667                                 *data = (u8)(flash_data & 0x000000FF);
2668                         else if (size == 2)
2669                                 *data = (u16)(flash_data & 0x0000FFFF);
2670                         break;
2671                 } else {
2672                         /* If we've gotten here, then things are probably
2673                          * completely hosed, but if the error condition is
2674                          * detected, it won't hurt to give it another try...
2675                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2676                          */
2677                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2678                         if (hsfsts.hsf_status.flcerr) {
2679                                 /* Repeat for some time before giving up. */
2680                                 continue;
2681                         } else if (!hsfsts.hsf_status.flcdone) {
2682                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2683                                 break;
2684                         }
2685                 }
2686         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2687
2688         return ret_val;
2689 }
2690
2691 /**
2692  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2693  *  @hw: pointer to the HW structure
2694  *  @offset: The offset (in bytes) of the word(s) to write.
2695  *  @words: Size of data to write in words
2696  *  @data: Pointer to the word(s) to write at offset.
2697  *
2698  *  Writes a byte or word to the NVM using the flash access registers.
2699  **/
2700 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2701                                    u16 *data)
2702 {
2703         struct e1000_nvm_info *nvm = &hw->nvm;
2704         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2705         u16 i;
2706
2707         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2708             (words == 0)) {
2709                 e_dbg("nvm parameter(s) out of bounds\n");
2710                 return -E1000_ERR_NVM;
2711         }
2712
2713         nvm->ops.acquire(hw);
2714
2715         for (i = 0; i < words; i++) {
2716                 dev_spec->shadow_ram[offset+i].modified = true;
2717                 dev_spec->shadow_ram[offset+i].value = data[i];
2718         }
2719
2720         nvm->ops.release(hw);
2721
2722         return 0;
2723 }
2724
2725 /**
2726  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2727  *  @hw: pointer to the HW structure
2728  *
2729  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2730  *  which writes the checksum to the shadow ram.  The changes in the shadow
2731  *  ram are then committed to the EEPROM by processing each bank at a time
2732  *  checking for the modified bit and writing only the pending changes.
2733  *  After a successful commit, the shadow ram is cleared and is ready for
2734  *  future writes.
2735  **/
2736 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2737 {
2738         struct e1000_nvm_info *nvm = &hw->nvm;
2739         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2740         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2741         s32 ret_val;
2742         u16 data;
2743
2744         ret_val = e1000e_update_nvm_checksum_generic(hw);
2745         if (ret_val)
2746                 goto out;
2747
2748         if (nvm->type != e1000_nvm_flash_sw)
2749                 goto out;
2750
2751         nvm->ops.acquire(hw);
2752
2753         /* We're writing to the opposite bank so if we're on bank 1,
2754          * write to bank 0 etc.  We also need to erase the segment that
2755          * is going to be written
2756          */
2757         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2758         if (ret_val) {
2759                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2760                 bank = 0;
2761         }
2762
2763         if (bank == 0) {
2764                 new_bank_offset = nvm->flash_bank_size;
2765                 old_bank_offset = 0;
2766                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2767                 if (ret_val)
2768                         goto release;
2769         } else {
2770                 old_bank_offset = nvm->flash_bank_size;
2771                 new_bank_offset = 0;
2772                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2773                 if (ret_val)
2774                         goto release;
2775         }
2776
2777         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2778                 /* Determine whether to write the value stored
2779                  * in the other NVM bank or a modified value stored
2780                  * in the shadow RAM
2781                  */
2782                 if (dev_spec->shadow_ram[i].modified) {
2783                         data = dev_spec->shadow_ram[i].value;
2784                 } else {
2785                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2786                                                                 old_bank_offset,
2787                                                                 &data);
2788                         if (ret_val)
2789                                 break;
2790                 }
2791
2792                 /* If the word is 0x13, then make sure the signature bits
2793                  * (15:14) are 11b until the commit has completed.
2794                  * This will allow us to write 10b which indicates the
2795                  * signature is valid.  We want to do this after the write
2796                  * has completed so that we don't mark the segment valid
2797                  * while the write is still in progress
2798                  */
2799                 if (i == E1000_ICH_NVM_SIG_WORD)
2800                         data |= E1000_ICH_NVM_SIG_MASK;
2801
2802                 /* Convert offset to bytes. */
2803                 act_offset = (i + new_bank_offset) << 1;
2804
2805                 udelay(100);
2806                 /* Write the bytes to the new bank. */
2807                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2808                                                                act_offset,
2809                                                                (u8)data);
2810                 if (ret_val)
2811                         break;
2812
2813                 udelay(100);
2814                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2815                                                           act_offset + 1,
2816                                                           (u8)(data >> 8));
2817                 if (ret_val)
2818                         break;
2819         }
2820
2821         /* Don't bother writing the segment valid bits if sector
2822          * programming failed.
2823          */
2824         if (ret_val) {
2825                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2826                 e_dbg("Flash commit failed.\n");
2827                 goto release;
2828         }
2829
2830         /* Finally validate the new segment by setting bit 15:14
2831          * to 10b in word 0x13 , this can be done without an
2832          * erase as well since these bits are 11 to start with
2833          * and we need to change bit 14 to 0b
2834          */
2835         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2836         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2837         if (ret_val)
2838                 goto release;
2839
2840         data &= 0xBFFF;
2841         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2842                                                        act_offset * 2 + 1,
2843                                                        (u8)(data >> 8));
2844         if (ret_val)
2845                 goto release;
2846
2847         /* And invalidate the previously valid segment by setting
2848          * its signature word (0x13) high_byte to 0b. This can be
2849          * done without an erase because flash erase sets all bits
2850          * to 1's. We can write 1's to 0's without an erase
2851          */
2852         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2853         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2854         if (ret_val)
2855                 goto release;
2856
2857         /* Great!  Everything worked, we can now clear the cached entries. */
2858         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2859                 dev_spec->shadow_ram[i].modified = false;
2860                 dev_spec->shadow_ram[i].value = 0xFFFF;
2861         }
2862
2863 release:
2864         nvm->ops.release(hw);
2865
2866         /* Reload the EEPROM, or else modifications will not appear
2867          * until after the next adapter reset.
2868          */
2869         if (!ret_val) {
2870                 nvm->ops.reload(hw);
2871                 usleep_range(10000, 20000);
2872         }
2873
2874 out:
2875         if (ret_val)
2876                 e_dbg("NVM update error: %d\n", ret_val);
2877
2878         return ret_val;
2879 }
2880
2881 /**
2882  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2883  *  @hw: pointer to the HW structure
2884  *
2885  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2886  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2887  *  calculated, in which case we need to calculate the checksum and set bit 6.
2888  **/
2889 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2890 {
2891         s32 ret_val;
2892         u16 data;
2893         u16 word;
2894         u16 valid_csum_mask;
2895
2896         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
2897          * the checksum needs to be fixed.  This bit is an indication that
2898          * the NVM was prepared by OEM software and did not calculate
2899          * the checksum...a likely scenario.
2900          */
2901         switch (hw->mac.type) {
2902         case e1000_pch_lpt:
2903                 word = NVM_COMPAT;
2904                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
2905                 break;
2906         default:
2907                 word = NVM_FUTURE_INIT_WORD1;
2908                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
2909                 break;
2910         }
2911
2912         ret_val = e1000_read_nvm(hw, word, 1, &data);
2913         if (ret_val)
2914                 return ret_val;
2915
2916         if (!(data & valid_csum_mask)) {
2917                 data |= valid_csum_mask;
2918                 ret_val = e1000_write_nvm(hw, word, 1, &data);
2919                 if (ret_val)
2920                         return ret_val;
2921                 ret_val = e1000e_update_nvm_checksum(hw);
2922                 if (ret_val)
2923                         return ret_val;
2924         }
2925
2926         return e1000e_validate_nvm_checksum_generic(hw);
2927 }
2928
2929 /**
2930  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2931  *  @hw: pointer to the HW structure
2932  *
2933  *  To prevent malicious write/erase of the NVM, set it to be read-only
2934  *  so that the hardware ignores all write/erase cycles of the NVM via
2935  *  the flash control registers.  The shadow-ram copy of the NVM will
2936  *  still be updated, however any updates to this copy will not stick
2937  *  across driver reloads.
2938  **/
2939 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2940 {
2941         struct e1000_nvm_info *nvm = &hw->nvm;
2942         union ich8_flash_protected_range pr0;
2943         union ich8_hws_flash_status hsfsts;
2944         u32 gfpreg;
2945
2946         nvm->ops.acquire(hw);
2947
2948         gfpreg = er32flash(ICH_FLASH_GFPREG);
2949
2950         /* Write-protect GbE Sector of NVM */
2951         pr0.regval = er32flash(ICH_FLASH_PR0);
2952         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2953         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2954         pr0.range.wpe = true;
2955         ew32flash(ICH_FLASH_PR0, pr0.regval);
2956
2957         /* Lock down a subset of GbE Flash Control Registers, e.g.
2958          * PR0 to prevent the write-protection from being lifted.
2959          * Once FLOCKDN is set, the registers protected by it cannot
2960          * be written until FLOCKDN is cleared by a hardware reset.
2961          */
2962         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2963         hsfsts.hsf_status.flockdn = true;
2964         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2965
2966         nvm->ops.release(hw);
2967 }
2968
2969 /**
2970  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2971  *  @hw: pointer to the HW structure
2972  *  @offset: The offset (in bytes) of the byte/word to read.
2973  *  @size: Size of data to read, 1=byte 2=word
2974  *  @data: The byte(s) to write to the NVM.
2975  *
2976  *  Writes one/two bytes to the NVM using the flash access registers.
2977  **/
2978 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2979                                           u8 size, u16 data)
2980 {
2981         union ich8_hws_flash_status hsfsts;
2982         union ich8_hws_flash_ctrl hsflctl;
2983         u32 flash_linear_addr;
2984         u32 flash_data = 0;
2985         s32 ret_val;
2986         u8 count = 0;
2987
2988         if (size < 1 || size > 2 || data > size * 0xff ||
2989             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2990                 return -E1000_ERR_NVM;
2991
2992         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2993                             hw->nvm.flash_base_addr;
2994
2995         do {
2996                 udelay(1);
2997                 /* Steps */
2998                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2999                 if (ret_val)
3000                         break;
3001
3002                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3003                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3004                 hsflctl.hsf_ctrl.fldbcount = size -1;
3005                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3006                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3007
3008                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3009
3010                 if (size == 1)
3011                         flash_data = (u32)data & 0x00FF;
3012                 else
3013                         flash_data = (u32)data;
3014
3015                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3016
3017                 /* check if FCERR is set to 1 , if set to 1, clear it
3018                  * and try the whole sequence a few more times else done
3019                  */
3020                 ret_val = e1000_flash_cycle_ich8lan(hw,
3021                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3022                 if (!ret_val)
3023                         break;
3024
3025                 /* If we're here, then things are most likely
3026                  * completely hosed, but if the error condition
3027                  * is detected, it won't hurt to give it another
3028                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3029                  */
3030                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3031                 if (hsfsts.hsf_status.flcerr)
3032                         /* Repeat for some time before giving up. */
3033                         continue;
3034                 if (!hsfsts.hsf_status.flcdone) {
3035                         e_dbg("Timeout error - flash cycle did not complete.\n");
3036                         break;
3037                 }
3038         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3039
3040         return ret_val;
3041 }
3042
3043 /**
3044  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3045  *  @hw: pointer to the HW structure
3046  *  @offset: The index of the byte to read.
3047  *  @data: The byte to write to the NVM.
3048  *
3049  *  Writes a single byte to the NVM using the flash access registers.
3050  **/
3051 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3052                                           u8 data)
3053 {
3054         u16 word = (u16)data;
3055
3056         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3057 }
3058
3059 /**
3060  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3061  *  @hw: pointer to the HW structure
3062  *  @offset: The offset of the byte to write.
3063  *  @byte: The byte to write to the NVM.
3064  *
3065  *  Writes a single byte to the NVM using the flash access registers.
3066  *  Goes through a retry algorithm before giving up.
3067  **/
3068 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3069                                                 u32 offset, u8 byte)
3070 {
3071         s32 ret_val;
3072         u16 program_retries;
3073
3074         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3075         if (!ret_val)
3076                 return ret_val;
3077
3078         for (program_retries = 0; program_retries < 100; program_retries++) {
3079                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3080                 udelay(100);
3081                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3082                 if (!ret_val)
3083                         break;
3084         }
3085         if (program_retries == 100)
3086                 return -E1000_ERR_NVM;
3087
3088         return 0;
3089 }
3090
3091 /**
3092  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3093  *  @hw: pointer to the HW structure
3094  *  @bank: 0 for first bank, 1 for second bank, etc.
3095  *
3096  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3097  *  bank N is 4096 * N + flash_reg_addr.
3098  **/
3099 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3100 {
3101         struct e1000_nvm_info *nvm = &hw->nvm;
3102         union ich8_hws_flash_status hsfsts;
3103         union ich8_hws_flash_ctrl hsflctl;
3104         u32 flash_linear_addr;
3105         /* bank size is in 16bit words - adjust to bytes */
3106         u32 flash_bank_size = nvm->flash_bank_size * 2;
3107         s32 ret_val;
3108         s32 count = 0;
3109         s32 j, iteration, sector_size;
3110
3111         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3112
3113         /* Determine HW Sector size: Read BERASE bits of hw flash status
3114          * register
3115          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3116          *     consecutive sectors.  The start index for the nth Hw sector
3117          *     can be calculated as = bank * 4096 + n * 256
3118          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3119          *     The start index for the nth Hw sector can be calculated
3120          *     as = bank * 4096
3121          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3122          *     (ich9 only, otherwise error condition)
3123          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3124          */
3125         switch (hsfsts.hsf_status.berasesz) {
3126         case 0:
3127                 /* Hw sector size 256 */
3128                 sector_size = ICH_FLASH_SEG_SIZE_256;
3129                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3130                 break;
3131         case 1:
3132                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3133                 iteration = 1;
3134                 break;
3135         case 2:
3136                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3137                 iteration = 1;
3138                 break;
3139         case 3:
3140                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3141                 iteration = 1;
3142                 break;
3143         default:
3144                 return -E1000_ERR_NVM;
3145         }
3146
3147         /* Start with the base address, then add the sector offset. */
3148         flash_linear_addr = hw->nvm.flash_base_addr;
3149         flash_linear_addr += (bank) ? flash_bank_size : 0;
3150
3151         for (j = 0; j < iteration ; j++) {
3152                 do {
3153                         /* Steps */
3154                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3155                         if (ret_val)
3156                                 return ret_val;
3157
3158                         /* Write a value 11 (block Erase) in Flash
3159                          * Cycle field in hw flash control
3160                          */
3161                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3162                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3163                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3164
3165                         /* Write the last 24 bits of an index within the
3166                          * block into Flash Linear address field in Flash
3167                          * Address.
3168                          */
3169                         flash_linear_addr += (j * sector_size);
3170                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3171
3172                         ret_val = e1000_flash_cycle_ich8lan(hw,
3173                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3174                         if (!ret_val)
3175                                 break;
3176
3177                         /* Check if FCERR is set to 1.  If 1,
3178                          * clear it and try the whole sequence
3179                          * a few more times else Done
3180                          */
3181                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3182                         if (hsfsts.hsf_status.flcerr)
3183                                 /* repeat for some time before giving up */
3184                                 continue;
3185                         else if (!hsfsts.hsf_status.flcdone)
3186                                 return ret_val;
3187                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3188         }
3189
3190         return 0;
3191 }
3192
3193 /**
3194  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3195  *  @hw: pointer to the HW structure
3196  *  @data: Pointer to the LED settings
3197  *
3198  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3199  *  settings is all 0's or F's, set the LED default to a valid LED default
3200  *  setting.
3201  **/
3202 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3203 {
3204         s32 ret_val;
3205
3206         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3207         if (ret_val) {
3208                 e_dbg("NVM Read Error\n");
3209                 return ret_val;
3210         }
3211
3212         if (*data == ID_LED_RESERVED_0000 ||
3213             *data == ID_LED_RESERVED_FFFF)
3214                 *data = ID_LED_DEFAULT_ICH8LAN;
3215
3216         return 0;
3217 }
3218
3219 /**
3220  *  e1000_id_led_init_pchlan - store LED configurations
3221  *  @hw: pointer to the HW structure
3222  *
3223  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3224  *  the PHY LED configuration register.
3225  *
3226  *  PCH also does not have an "always on" or "always off" mode which
3227  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3228  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3229  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3230  *  link based on logic in e1000_led_[on|off]_pchlan().
3231  **/
3232 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3233 {
3234         struct e1000_mac_info *mac = &hw->mac;
3235         s32 ret_val;
3236         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3237         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3238         u16 data, i, temp, shift;
3239
3240         /* Get default ID LED modes */
3241         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3242         if (ret_val)
3243                 return ret_val;
3244
3245         mac->ledctl_default = er32(LEDCTL);
3246         mac->ledctl_mode1 = mac->ledctl_default;
3247         mac->ledctl_mode2 = mac->ledctl_default;
3248
3249         for (i = 0; i < 4; i++) {
3250                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3251                 shift = (i * 5);
3252                 switch (temp) {
3253                 case ID_LED_ON1_DEF2:
3254                 case ID_LED_ON1_ON2:
3255                 case ID_LED_ON1_OFF2:
3256                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3257                         mac->ledctl_mode1 |= (ledctl_on << shift);
3258                         break;
3259                 case ID_LED_OFF1_DEF2:
3260                 case ID_LED_OFF1_ON2:
3261                 case ID_LED_OFF1_OFF2:
3262                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3263                         mac->ledctl_mode1 |= (ledctl_off << shift);
3264                         break;
3265                 default:
3266                         /* Do nothing */
3267                         break;
3268                 }
3269                 switch (temp) {
3270                 case ID_LED_DEF1_ON2:
3271                 case ID_LED_ON1_ON2:
3272                 case ID_LED_OFF1_ON2:
3273                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3274                         mac->ledctl_mode2 |= (ledctl_on << shift);
3275                         break;
3276                 case ID_LED_DEF1_OFF2:
3277                 case ID_LED_ON1_OFF2:
3278                 case ID_LED_OFF1_OFF2:
3279                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3280                         mac->ledctl_mode2 |= (ledctl_off << shift);
3281                         break;
3282                 default:
3283                         /* Do nothing */
3284                         break;
3285                 }
3286         }
3287
3288         return 0;
3289 }
3290
3291 /**
3292  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3293  *  @hw: pointer to the HW structure
3294  *
3295  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3296  *  register, so the the bus width is hard coded.
3297  **/
3298 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3299 {
3300         struct e1000_bus_info *bus = &hw->bus;
3301         s32 ret_val;
3302
3303         ret_val = e1000e_get_bus_info_pcie(hw);
3304
3305         /* ICH devices are "PCI Express"-ish.  They have
3306          * a configuration space, but do not contain
3307          * PCI Express Capability registers, so bus width
3308          * must be hardcoded.
3309          */
3310         if (bus->width == e1000_bus_width_unknown)
3311                 bus->width = e1000_bus_width_pcie_x1;
3312
3313         return ret_val;
3314 }
3315
3316 /**
3317  *  e1000_reset_hw_ich8lan - Reset the hardware
3318  *  @hw: pointer to the HW structure
3319  *
3320  *  Does a full reset of the hardware which includes a reset of the PHY and
3321  *  MAC.
3322  **/
3323 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3324 {
3325         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3326         u16 kum_cfg;
3327         u32 ctrl, reg;
3328         s32 ret_val;
3329
3330         /* Prevent the PCI-E bus from sticking if there is no TLP connection
3331          * on the last TLP read/write transaction when MAC is reset.
3332          */
3333         ret_val = e1000e_disable_pcie_master(hw);
3334         if (ret_val)
3335                 e_dbg("PCI-E Master disable polling has failed.\n");
3336
3337         e_dbg("Masking off all interrupts\n");
3338         ew32(IMC, 0xffffffff);
3339
3340         /* Disable the Transmit and Receive units.  Then delay to allow
3341          * any pending transactions to complete before we hit the MAC
3342          * with the global reset.
3343          */
3344         ew32(RCTL, 0);
3345         ew32(TCTL, E1000_TCTL_PSP);
3346         e1e_flush();
3347
3348         usleep_range(10000, 20000);
3349
3350         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3351         if (hw->mac.type == e1000_ich8lan) {
3352                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3353                 ew32(PBA, E1000_PBA_8K);
3354                 /* Set Packet Buffer Size to 16k. */
3355                 ew32(PBS, E1000_PBS_16K);
3356         }
3357
3358         if (hw->mac.type == e1000_pchlan) {
3359                 /* Save the NVM K1 bit setting */
3360                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3361                 if (ret_val)
3362                         return ret_val;
3363
3364                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3365                         dev_spec->nvm_k1_enabled = true;
3366                 else
3367                         dev_spec->nvm_k1_enabled = false;
3368         }
3369
3370         ctrl = er32(CTRL);
3371
3372         if (!hw->phy.ops.check_reset_block(hw)) {
3373                 /* Full-chip reset requires MAC and PHY reset at the same
3374                  * time to make sure the interface between MAC and the
3375                  * external PHY is reset.
3376                  */
3377                 ctrl |= E1000_CTRL_PHY_RST;
3378
3379                 /* Gate automatic PHY configuration by hardware on
3380                  * non-managed 82579
3381                  */
3382                 if ((hw->mac.type == e1000_pch2lan) &&
3383                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3384                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3385         }
3386         ret_val = e1000_acquire_swflag_ich8lan(hw);
3387         e_dbg("Issuing a global reset to ich8lan\n");
3388         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3389         /* cannot issue a flush here because it hangs the hardware */
3390         msleep(20);
3391
3392         /* Set Phy Config Counter to 50msec */
3393         if (hw->mac.type == e1000_pch2lan) {
3394                 reg = er32(FEXTNVM3);
3395                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3396                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3397                 ew32(FEXTNVM3, reg);
3398         }
3399
3400         if (!ret_val)
3401                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3402
3403         if (ctrl & E1000_CTRL_PHY_RST) {
3404                 ret_val = hw->phy.ops.get_cfg_done(hw);
3405                 if (ret_val)
3406                         return ret_val;
3407
3408                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3409                 if (ret_val)
3410                         return ret_val;
3411         }
3412
3413         /* For PCH, this write will make sure that any noise
3414          * will be detected as a CRC error and be dropped rather than show up
3415          * as a bad packet to the DMA engine.
3416          */
3417         if (hw->mac.type == e1000_pchlan)
3418                 ew32(CRC_OFFSET, 0x65656565);
3419
3420         ew32(IMC, 0xffffffff);
3421         er32(ICR);
3422
3423         reg = er32(KABGTXD);
3424         reg |= E1000_KABGTXD_BGSQLBIAS;
3425         ew32(KABGTXD, reg);
3426
3427         return 0;
3428 }
3429
3430 /**
3431  *  e1000_init_hw_ich8lan - Initialize the hardware
3432  *  @hw: pointer to the HW structure
3433  *
3434  *  Prepares the hardware for transmit and receive by doing the following:
3435  *   - initialize hardware bits
3436  *   - initialize LED identification
3437  *   - setup receive address registers
3438  *   - setup flow control
3439  *   - setup transmit descriptors
3440  *   - clear statistics
3441  **/
3442 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3443 {
3444         struct e1000_mac_info *mac = &hw->mac;
3445         u32 ctrl_ext, txdctl, snoop;
3446         s32 ret_val;
3447         u16 i;
3448
3449         e1000_initialize_hw_bits_ich8lan(hw);
3450
3451         /* Initialize identification LED */
3452         ret_val = mac->ops.id_led_init(hw);
3453         if (ret_val)
3454                 e_dbg("Error initializing identification LED\n");
3455                 /* This is not fatal and we should not stop init due to this */
3456
3457         /* Setup the receive address. */
3458         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3459
3460         /* Zero out the Multicast HASH table */
3461         e_dbg("Zeroing the MTA\n");
3462         for (i = 0; i < mac->mta_reg_count; i++)
3463                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3464
3465         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3466          * the ME.  Disable wakeup by clearing the host wakeup bit.
3467          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3468          */
3469         if (hw->phy.type == e1000_phy_82578) {
3470                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3471                 i &= ~BM_WUC_HOST_WU_BIT;
3472                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3473                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3474                 if (ret_val)
3475                         return ret_val;
3476         }
3477
3478         /* Setup link and flow control */
3479         ret_val = mac->ops.setup_link(hw);
3480
3481         /* Set the transmit descriptor write-back policy for both queues */
3482         txdctl = er32(TXDCTL(0));
3483         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3484                  E1000_TXDCTL_FULL_TX_DESC_WB;
3485         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3486                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3487         ew32(TXDCTL(0), txdctl);
3488         txdctl = er32(TXDCTL(1));
3489         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3490                  E1000_TXDCTL_FULL_TX_DESC_WB;
3491         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3492                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3493         ew32(TXDCTL(1), txdctl);
3494
3495         /* ICH8 has opposite polarity of no_snoop bits.
3496          * By default, we should use snoop behavior.
3497          */
3498         if (mac->type == e1000_ich8lan)
3499                 snoop = PCIE_ICH8_SNOOP_ALL;
3500         else
3501                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3502         e1000e_set_pcie_no_snoop(hw, snoop);
3503
3504         ctrl_ext = er32(CTRL_EXT);
3505         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3506         ew32(CTRL_EXT, ctrl_ext);
3507
3508         /* Clear all of the statistics registers (clear on read).  It is
3509          * important that we do this after we have tried to establish link
3510          * because the symbol error count will increment wildly if there
3511          * is no link.
3512          */
3513         e1000_clear_hw_cntrs_ich8lan(hw);
3514
3515         return ret_val;
3516 }
3517 /**
3518  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3519  *  @hw: pointer to the HW structure
3520  *
3521  *  Sets/Clears required hardware bits necessary for correctly setting up the
3522  *  hardware for transmit and receive.
3523  **/
3524 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3525 {
3526         u32 reg;
3527
3528         /* Extended Device Control */
3529         reg = er32(CTRL_EXT);
3530         reg |= (1 << 22);
3531         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3532         if (hw->mac.type >= e1000_pchlan)
3533                 reg |= E1000_CTRL_EXT_PHYPDEN;
3534         ew32(CTRL_EXT, reg);
3535
3536         /* Transmit Descriptor Control 0 */
3537         reg = er32(TXDCTL(0));
3538         reg |= (1 << 22);
3539         ew32(TXDCTL(0), reg);
3540
3541         /* Transmit Descriptor Control 1 */
3542         reg = er32(TXDCTL(1));
3543         reg |= (1 << 22);
3544         ew32(TXDCTL(1), reg);
3545
3546         /* Transmit Arbitration Control 0 */
3547         reg = er32(TARC(0));
3548         if (hw->mac.type == e1000_ich8lan)
3549                 reg |= (1 << 28) | (1 << 29);
3550         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3551         ew32(TARC(0), reg);
3552
3553         /* Transmit Arbitration Control 1 */
3554         reg = er32(TARC(1));
3555         if (er32(TCTL) & E1000_TCTL_MULR)
3556                 reg &= ~(1 << 28);
3557         else
3558                 reg |= (1 << 28);
3559         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3560         ew32(TARC(1), reg);
3561
3562         /* Device Status */
3563         if (hw->mac.type == e1000_ich8lan) {
3564                 reg = er32(STATUS);
3565                 reg &= ~(1 << 31);
3566                 ew32(STATUS, reg);
3567         }
3568
3569         /* work-around descriptor data corruption issue during nfs v2 udp
3570          * traffic, just disable the nfs filtering capability
3571          */
3572         reg = er32(RFCTL);
3573         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3574
3575         /* Disable IPv6 extension header parsing because some malformed
3576          * IPv6 headers can hang the Rx.
3577          */
3578         if (hw->mac.type == e1000_ich8lan)
3579                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3580         ew32(RFCTL, reg);
3581
3582         /* Enable ECC on Lynxpoint */
3583         if (hw->mac.type == e1000_pch_lpt) {
3584                 reg = er32(PBECCSTS);
3585                 reg |= E1000_PBECCSTS_ECC_ENABLE;
3586                 ew32(PBECCSTS, reg);
3587
3588                 reg = er32(CTRL);
3589                 reg |= E1000_CTRL_MEHE;
3590                 ew32(CTRL, reg);
3591         }
3592 }
3593
3594 /**
3595  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3596  *  @hw: pointer to the HW structure
3597  *
3598  *  Determines which flow control settings to use, then configures flow
3599  *  control.  Calls the appropriate media-specific link configuration
3600  *  function.  Assuming the adapter has a valid link partner, a valid link
3601  *  should be established.  Assumes the hardware has previously been reset
3602  *  and the transmitter and receiver are not enabled.
3603  **/
3604 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3605 {
3606         s32 ret_val;
3607
3608         if (hw->phy.ops.check_reset_block(hw))
3609                 return 0;
3610
3611         /* ICH parts do not have a word in the NVM to determine
3612          * the default flow control setting, so we explicitly
3613          * set it to full.
3614          */
3615         if (hw->fc.requested_mode == e1000_fc_default) {
3616                 /* Workaround h/w hang when Tx flow control enabled */
3617                 if (hw->mac.type == e1000_pchlan)
3618                         hw->fc.requested_mode = e1000_fc_rx_pause;
3619                 else
3620                         hw->fc.requested_mode = e1000_fc_full;
3621         }
3622
3623         /* Save off the requested flow control mode for use later.  Depending
3624          * on the link partner's capabilities, we may or may not use this mode.
3625          */
3626         hw->fc.current_mode = hw->fc.requested_mode;
3627
3628         e_dbg("After fix-ups FlowControl is now = %x\n",
3629                 hw->fc.current_mode);
3630
3631         /* Continue to configure the copper link. */
3632         ret_val = hw->mac.ops.setup_physical_interface(hw);
3633         if (ret_val)
3634                 return ret_val;
3635
3636         ew32(FCTTV, hw->fc.pause_time);
3637         if ((hw->phy.type == e1000_phy_82578) ||
3638             (hw->phy.type == e1000_phy_82579) ||
3639             (hw->phy.type == e1000_phy_i217) ||
3640             (hw->phy.type == e1000_phy_82577)) {
3641                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3642
3643                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3644                                    hw->fc.pause_time);
3645                 if (ret_val)
3646                         return ret_val;
3647         }
3648
3649         return e1000e_set_fc_watermarks(hw);
3650 }
3651
3652 /**
3653  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3654  *  @hw: pointer to the HW structure
3655  *
3656  *  Configures the kumeran interface to the PHY to wait the appropriate time
3657  *  when polling the PHY, then call the generic setup_copper_link to finish
3658  *  configuring the copper link.
3659  **/
3660 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3661 {
3662         u32 ctrl;
3663         s32 ret_val;
3664         u16 reg_data;
3665
3666         ctrl = er32(CTRL);
3667         ctrl |= E1000_CTRL_SLU;
3668         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3669         ew32(CTRL, ctrl);
3670
3671         /* Set the mac to wait the maximum time between each iteration
3672          * and increase the max iterations when polling the phy;
3673          * this fixes erroneous timeouts at 10Mbps.
3674          */
3675         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3676         if (ret_val)
3677                 return ret_val;
3678         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3679                                        &reg_data);
3680         if (ret_val)
3681                 return ret_val;
3682         reg_data |= 0x3F;
3683         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3684                                         reg_data);
3685         if (ret_val)
3686                 return ret_val;
3687
3688         switch (hw->phy.type) {
3689         case e1000_phy_igp_3:
3690                 ret_val = e1000e_copper_link_setup_igp(hw);
3691                 if (ret_val)
3692                         return ret_val;
3693                 break;
3694         case e1000_phy_bm:
3695         case e1000_phy_82578:
3696                 ret_val = e1000e_copper_link_setup_m88(hw);
3697                 if (ret_val)
3698                         return ret_val;
3699                 break;
3700         case e1000_phy_82577:
3701         case e1000_phy_82579:
3702         case e1000_phy_i217:
3703                 ret_val = e1000_copper_link_setup_82577(hw);
3704                 if (ret_val)
3705                         return ret_val;
3706                 break;
3707         case e1000_phy_ife:
3708                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3709                 if (ret_val)
3710                         return ret_val;
3711
3712                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3713
3714                 switch (hw->phy.mdix) {
3715                 case 1:
3716                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3717                         break;
3718                 case 2:
3719                         reg_data |= IFE_PMC_FORCE_MDIX;
3720                         break;
3721                 case 0:
3722                 default:
3723                         reg_data |= IFE_PMC_AUTO_MDIX;
3724                         break;
3725                 }
3726                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3727                 if (ret_val)
3728                         return ret_val;
3729                 break;
3730         default:
3731                 break;
3732         }
3733
3734         return e1000e_setup_copper_link(hw);
3735 }
3736
3737 /**
3738  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3739  *  @hw: pointer to the HW structure
3740  *  @speed: pointer to store current link speed
3741  *  @duplex: pointer to store the current link duplex
3742  *
3743  *  Calls the generic get_speed_and_duplex to retrieve the current link
3744  *  information and then calls the Kumeran lock loss workaround for links at
3745  *  gigabit speeds.
3746  **/
3747 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3748                                           u16 *duplex)
3749 {
3750         s32 ret_val;
3751
3752         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3753         if (ret_val)
3754                 return ret_val;
3755
3756         if ((hw->mac.type == e1000_ich8lan) &&
3757             (hw->phy.type == e1000_phy_igp_3) &&
3758             (*speed == SPEED_1000)) {
3759                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3760         }
3761
3762         return ret_val;
3763 }
3764
3765 /**
3766  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3767  *  @hw: pointer to the HW structure
3768  *
3769  *  Work-around for 82566 Kumeran PCS lock loss:
3770  *  On link status change (i.e. PCI reset, speed change) and link is up and
3771  *  speed is gigabit-
3772  *    0) if workaround is optionally disabled do nothing
3773  *    1) wait 1ms for Kumeran link to come up
3774  *    2) check Kumeran Diagnostic register PCS lock loss bit
3775  *    3) if not set the link is locked (all is good), otherwise...
3776  *    4) reset the PHY
3777  *    5) repeat up to 10 times
3778  *  Note: this is only called for IGP3 copper when speed is 1gb.
3779  **/
3780 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3781 {
3782         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3783         u32 phy_ctrl;
3784         s32 ret_val;
3785         u16 i, data;
3786         bool link;
3787
3788         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3789                 return 0;
3790
3791         /* Make sure link is up before proceeding.  If not just return.
3792          * Attempting this while link is negotiating fouled up link
3793          * stability
3794          */
3795         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3796         if (!link)
3797                 return 0;
3798
3799         for (i = 0; i < 10; i++) {
3800                 /* read once to clear */
3801                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3802                 if (ret_val)
3803                         return ret_val;
3804                 /* and again to get new status */
3805                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3806                 if (ret_val)
3807                         return ret_val;
3808
3809                 /* check for PCS lock */
3810                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3811                         return 0;
3812
3813                 /* Issue PHY reset */
3814                 e1000_phy_hw_reset(hw);
3815                 mdelay(5);
3816         }
3817         /* Disable GigE link negotiation */
3818         phy_ctrl = er32(PHY_CTRL);
3819         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3820                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3821         ew32(PHY_CTRL, phy_ctrl);
3822
3823         /* Call gig speed drop workaround on Gig disable before accessing
3824          * any PHY registers
3825          */
3826         e1000e_gig_downshift_workaround_ich8lan(hw);
3827
3828         /* unable to acquire PCS lock */
3829         return -E1000_ERR_PHY;
3830 }
3831
3832 /**
3833  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3834  *  @hw: pointer to the HW structure
3835  *  @state: boolean value used to set the current Kumeran workaround state
3836  *
3837  *  If ICH8, set the current Kumeran workaround state (enabled - true
3838  *  /disabled - false).
3839  **/
3840 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3841                                                  bool state)
3842 {
3843         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3844
3845         if (hw->mac.type != e1000_ich8lan) {
3846                 e_dbg("Workaround applies to ICH8 only.\n");
3847                 return;
3848         }
3849
3850         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3851 }
3852
3853 /**
3854  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3855  *  @hw: pointer to the HW structure
3856  *
3857  *  Workaround for 82566 power-down on D3 entry:
3858  *    1) disable gigabit link
3859  *    2) write VR power-down enable
3860  *    3) read it back
3861  *  Continue if successful, else issue LCD reset and repeat
3862  **/
3863 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3864 {
3865         u32 reg;
3866         u16 data;
3867         u8  retry = 0;
3868
3869         if (hw->phy.type != e1000_phy_igp_3)
3870                 return;
3871
3872         /* Try the workaround twice (if needed) */
3873         do {
3874                 /* Disable link */
3875                 reg = er32(PHY_CTRL);
3876                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3877                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3878                 ew32(PHY_CTRL, reg);
3879
3880                 /* Call gig speed drop workaround on Gig disable before
3881                  * accessing any PHY registers
3882                  */
3883                 if (hw->mac.type == e1000_ich8lan)
3884                         e1000e_gig_downshift_workaround_ich8lan(hw);
3885
3886                 /* Write VR power-down enable */
3887                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3888                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3889                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3890
3891                 /* Read it back and test */
3892                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3893                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3894                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3895                         break;
3896
3897                 /* Issue PHY reset and repeat at most one more time */
3898                 reg = er32(CTRL);
3899                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3900                 retry++;
3901         } while (retry);
3902 }
3903
3904 /**
3905  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3906  *  @hw: pointer to the HW structure
3907  *
3908  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3909  *  LPLU, Gig disable, MDIC PHY reset):
3910  *    1) Set Kumeran Near-end loopback
3911  *    2) Clear Kumeran Near-end loopback
3912  *  Should only be called for ICH8[m] devices with any 1G Phy.
3913  **/
3914 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3915 {
3916         s32 ret_val;
3917         u16 reg_data;
3918
3919         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3920                 return;
3921
3922         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3923                                       &reg_data);
3924         if (ret_val)
3925                 return;
3926         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3927         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3928                                        reg_data);
3929         if (ret_val)
3930                 return;
3931         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3932         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
3933 }
3934
3935 /**
3936  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3937  *  @hw: pointer to the HW structure
3938  *
3939  *  During S0 to Sx transition, it is possible the link remains at gig
3940  *  instead of negotiating to a lower speed.  Before going to Sx, set
3941  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3942  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3943  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3944  *  needs to be written.
3945  *  Parts that support (and are linked to a partner which support) EEE in
3946  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
3947  *  than 10Mbps w/o EEE.
3948  **/
3949 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3950 {
3951         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3952         u32 phy_ctrl;
3953         s32 ret_val;
3954
3955         phy_ctrl = er32(PHY_CTRL);
3956         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3957         if (hw->phy.type == e1000_phy_i217) {
3958                 u16 phy_reg;
3959
3960                 ret_val = hw->phy.ops.acquire(hw);
3961                 if (ret_val)
3962                         goto out;
3963
3964                 if (!dev_spec->eee_disable) {
3965                         u16 eee_advert;
3966
3967                         ret_val =
3968                             e1000_read_emi_reg_locked(hw,
3969                                                       I217_EEE_ADVERTISEMENT,
3970                                                       &eee_advert);
3971                         if (ret_val)
3972                                 goto release;
3973
3974                         /* Disable LPLU if both link partners support 100BaseT
3975                          * EEE and 100Full is advertised on both ends of the
3976                          * link.
3977                          */
3978                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
3979                             (dev_spec->eee_lp_ability &
3980                              I82579_EEE_100_SUPPORTED) &&
3981                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
3982                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
3983                                               E1000_PHY_CTRL_NOND0A_LPLU);
3984                 }
3985
3986                 /* For i217 Intel Rapid Start Technology support,
3987                  * when the system is going into Sx and no manageability engine
3988                  * is present, the driver must configure proxy to reset only on
3989                  * power good.  LPI (Low Power Idle) state must also reset only
3990                  * on power good, as well as the MTA (Multicast table array).
3991                  * The SMBus release must also be disabled on LCD reset.
3992                  */
3993                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
3994                         /* Enable proxy to reset only on power good. */
3995                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
3996                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
3997                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
3998
3999                         /* Set bit enable LPI (EEE) to reset only on
4000                          * power good.
4001                          */
4002                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4003                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4004                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4005
4006                         /* Disable the SMB release on LCD reset. */
4007                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4008                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4009                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4010                 }
4011
4012                 /* Enable MTA to reset for Intel Rapid Start Technology
4013                  * Support
4014                  */
4015                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4016                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4017                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4018
4019 release:
4020                 hw->phy.ops.release(hw);
4021         }
4022 out:
4023         ew32(PHY_CTRL, phy_ctrl);
4024
4025         if (hw->mac.type == e1000_ich8lan)
4026                 e1000e_gig_downshift_workaround_ich8lan(hw);
4027
4028         if (hw->mac.type >= e1000_pchlan) {
4029                 e1000_oem_bits_config_ich8lan(hw, false);
4030
4031                 /* Reset PHY to activate OEM bits on 82577/8 */
4032                 if (hw->mac.type == e1000_pchlan)
4033                         e1000e_phy_hw_reset_generic(hw);
4034
4035                 ret_val = hw->phy.ops.acquire(hw);
4036                 if (ret_val)
4037                         return;
4038                 e1000_write_smbus_addr(hw);
4039                 hw->phy.ops.release(hw);
4040         }
4041 }
4042
4043 /**
4044  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4045  *  @hw: pointer to the HW structure
4046  *
4047  *  During Sx to S0 transitions on non-managed devices or managed devices
4048  *  on which PHY resets are not blocked, if the PHY registers cannot be
4049  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4050  *  the PHY.
4051  *  On i217, setup Intel Rapid Start Technology.
4052  **/
4053 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4054 {
4055         s32 ret_val;
4056
4057         if (hw->mac.type < e1000_pch2lan)
4058                 return;
4059
4060         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4061         if (ret_val) {
4062                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4063                 return;
4064         }
4065
4066         /* For i217 Intel Rapid Start Technology support when the system
4067          * is transitioning from Sx and no manageability engine is present
4068          * configure SMBus to restore on reset, disable proxy, and enable
4069          * the reset on MTA (Multicast table array).
4070          */
4071         if (hw->phy.type == e1000_phy_i217) {
4072                 u16 phy_reg;
4073
4074                 ret_val = hw->phy.ops.acquire(hw);
4075                 if (ret_val) {
4076                         e_dbg("Failed to setup iRST\n");
4077                         return;
4078                 }
4079
4080                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4081                         /* Restore clear on SMB if no manageability engine
4082                          * is present
4083                          */
4084                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4085                         if (ret_val)
4086                                 goto release;
4087                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4088                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4089
4090                         /* Disable Proxy */
4091                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4092                 }
4093                 /* Enable reset on MTA */
4094                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4095                 if (ret_val)
4096                         goto release;
4097                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4098                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4099 release:
4100                 if (ret_val)
4101                         e_dbg("Error %d in resume workarounds\n", ret_val);
4102                 hw->phy.ops.release(hw);
4103         }
4104 }
4105
4106 /**
4107  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4108  *  @hw: pointer to the HW structure
4109  *
4110  *  Return the LED back to the default configuration.
4111  **/
4112 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4113 {
4114         if (hw->phy.type == e1000_phy_ife)
4115                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4116
4117         ew32(LEDCTL, hw->mac.ledctl_default);
4118         return 0;
4119 }
4120
4121 /**
4122  *  e1000_led_on_ich8lan - Turn LEDs on
4123  *  @hw: pointer to the HW structure
4124  *
4125  *  Turn on the LEDs.
4126  **/
4127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4128 {
4129         if (hw->phy.type == e1000_phy_ife)
4130                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4131                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4132
4133         ew32(LEDCTL, hw->mac.ledctl_mode2);
4134         return 0;
4135 }
4136
4137 /**
4138  *  e1000_led_off_ich8lan - Turn LEDs off
4139  *  @hw: pointer to the HW structure
4140  *
4141  *  Turn off the LEDs.
4142  **/
4143 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4144 {
4145         if (hw->phy.type == e1000_phy_ife)
4146                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4147                                 (IFE_PSCL_PROBE_MODE |
4148                                  IFE_PSCL_PROBE_LEDS_OFF));
4149
4150         ew32(LEDCTL, hw->mac.ledctl_mode1);
4151         return 0;
4152 }
4153
4154 /**
4155  *  e1000_setup_led_pchlan - Configures SW controllable LED
4156  *  @hw: pointer to the HW structure
4157  *
4158  *  This prepares the SW controllable LED for use.
4159  **/
4160 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4161 {
4162         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4163 }
4164
4165 /**
4166  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4167  *  @hw: pointer to the HW structure
4168  *
4169  *  Return the LED back to the default configuration.
4170  **/
4171 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4172 {
4173         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4174 }
4175
4176 /**
4177  *  e1000_led_on_pchlan - Turn LEDs on
4178  *  @hw: pointer to the HW structure
4179  *
4180  *  Turn on the LEDs.
4181  **/
4182 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4183 {
4184         u16 data = (u16)hw->mac.ledctl_mode2;
4185         u32 i, led;
4186
4187         /* If no link, then turn LED on by setting the invert bit
4188          * for each LED that's mode is "link_up" in ledctl_mode2.
4189          */
4190         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4191                 for (i = 0; i < 3; i++) {
4192                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4193                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4194                             E1000_LEDCTL_MODE_LINK_UP)
4195                                 continue;
4196                         if (led & E1000_PHY_LED0_IVRT)
4197                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4198                         else
4199                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4200                 }
4201         }
4202
4203         return e1e_wphy(hw, HV_LED_CONFIG, data);
4204 }
4205
4206 /**
4207  *  e1000_led_off_pchlan - Turn LEDs off
4208  *  @hw: pointer to the HW structure
4209  *
4210  *  Turn off the LEDs.
4211  **/
4212 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4213 {
4214         u16 data = (u16)hw->mac.ledctl_mode1;
4215         u32 i, led;
4216
4217         /* If no link, then turn LED off by clearing the invert bit
4218          * for each LED that's mode is "link_up" in ledctl_mode1.
4219          */
4220         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4221                 for (i = 0; i < 3; i++) {
4222                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4223                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4224                             E1000_LEDCTL_MODE_LINK_UP)
4225                                 continue;
4226                         if (led & E1000_PHY_LED0_IVRT)
4227                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4228                         else
4229                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4230                 }
4231         }
4232
4233         return e1e_wphy(hw, HV_LED_CONFIG, data);
4234 }
4235
4236 /**
4237  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4238  *  @hw: pointer to the HW structure
4239  *
4240  *  Read appropriate register for the config done bit for completion status
4241  *  and configure the PHY through s/w for EEPROM-less parts.
4242  *
4243  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4244  *  config done bit, so only an error is logged and continues.  If we were
4245  *  to return with error, EEPROM-less silicon would not be able to be reset
4246  *  or change link.
4247  **/
4248 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4249 {
4250         s32 ret_val = 0;
4251         u32 bank = 0;
4252         u32 status;
4253
4254         e1000e_get_cfg_done_generic(hw);
4255
4256         /* Wait for indication from h/w that it has completed basic config */
4257         if (hw->mac.type >= e1000_ich10lan) {
4258                 e1000_lan_init_done_ich8lan(hw);
4259         } else {
4260                 ret_val = e1000e_get_auto_rd_done(hw);
4261                 if (ret_val) {
4262                         /* When auto config read does not complete, do not
4263                          * return with an error. This can happen in situations
4264                          * where there is no eeprom and prevents getting link.
4265                          */
4266                         e_dbg("Auto Read Done did not complete\n");
4267                         ret_val = 0;
4268                 }
4269         }
4270
4271         /* Clear PHY Reset Asserted bit */
4272         status = er32(STATUS);
4273         if (status & E1000_STATUS_PHYRA)
4274                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4275         else
4276                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4277
4278         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4279         if (hw->mac.type <= e1000_ich9lan) {
4280                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4281                     (hw->phy.type == e1000_phy_igp_3)) {
4282                         e1000e_phy_init_script_igp3(hw);
4283                 }
4284         } else {
4285                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4286                         /* Maybe we should do a basic PHY config */
4287                         e_dbg("EEPROM not present\n");
4288                         ret_val = -E1000_ERR_CONFIG;
4289                 }
4290         }
4291
4292         return ret_val;
4293 }
4294
4295 /**
4296  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4297  * @hw: pointer to the HW structure
4298  *
4299  * In the case of a PHY power down to save power, or to turn off link during a
4300  * driver unload, or wake on lan is not enabled, remove the link.
4301  **/
4302 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4303 {
4304         /* If the management interface is not enabled, then power down */
4305         if (!(hw->mac.ops.check_mng_mode(hw) ||
4306               hw->phy.ops.check_reset_block(hw)))
4307                 e1000_power_down_phy_copper(hw);
4308 }
4309
4310 /**
4311  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4312  *  @hw: pointer to the HW structure
4313  *
4314  *  Clears hardware counters specific to the silicon family and calls
4315  *  clear_hw_cntrs_generic to clear all general purpose counters.
4316  **/
4317 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4318 {
4319         u16 phy_data;
4320         s32 ret_val;
4321
4322         e1000e_clear_hw_cntrs_base(hw);
4323
4324         er32(ALGNERRC);
4325         er32(RXERRC);
4326         er32(TNCRS);
4327         er32(CEXTERR);
4328         er32(TSCTC);
4329         er32(TSCTFC);
4330
4331         er32(MGTPRC);
4332         er32(MGTPDC);
4333         er32(MGTPTC);
4334
4335         er32(IAC);
4336         er32(ICRXOC);
4337
4338         /* Clear PHY statistics registers */
4339         if ((hw->phy.type == e1000_phy_82578) ||
4340             (hw->phy.type == e1000_phy_82579) ||
4341             (hw->phy.type == e1000_phy_i217) ||
4342             (hw->phy.type == e1000_phy_82577)) {
4343                 ret_val = hw->phy.ops.acquire(hw);
4344                 if (ret_val)
4345                         return;
4346                 ret_val = hw->phy.ops.set_page(hw,
4347                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4348                 if (ret_val)
4349                         goto release;
4350                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4351                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4352                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4353                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4354                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4355                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4356                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4357                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4358                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4359                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4360                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4361                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4362                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4363                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4364 release:
4365                 hw->phy.ops.release(hw);
4366         }
4367 }
4368
4369 static const struct e1000_mac_operations ich8_mac_ops = {
4370         /* check_mng_mode dependent on mac type */
4371         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4372         /* cleanup_led dependent on mac type */
4373         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4374         .get_bus_info           = e1000_get_bus_info_ich8lan,
4375         .set_lan_id             = e1000_set_lan_id_single_port,
4376         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4377         /* led_on dependent on mac type */
4378         /* led_off dependent on mac type */
4379         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4380         .reset_hw               = e1000_reset_hw_ich8lan,
4381         .init_hw                = e1000_init_hw_ich8lan,
4382         .setup_link             = e1000_setup_link_ich8lan,
4383         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
4384         /* id_led_init dependent on mac type */
4385         .config_collision_dist  = e1000e_config_collision_dist_generic,
4386         .rar_set                = e1000e_rar_set_generic,
4387 };
4388
4389 static const struct e1000_phy_operations ich8_phy_ops = {
4390         .acquire                = e1000_acquire_swflag_ich8lan,
4391         .check_reset_block      = e1000_check_reset_block_ich8lan,
4392         .commit                 = NULL,
4393         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4394         .get_cable_length       = e1000e_get_cable_length_igp_2,
4395         .read_reg               = e1000e_read_phy_reg_igp,
4396         .release                = e1000_release_swflag_ich8lan,
4397         .reset                  = e1000_phy_hw_reset_ich8lan,
4398         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4399         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4400         .write_reg              = e1000e_write_phy_reg_igp,
4401 };
4402
4403 static const struct e1000_nvm_operations ich8_nvm_ops = {
4404         .acquire                = e1000_acquire_nvm_ich8lan,
4405         .read                   = e1000_read_nvm_ich8lan,
4406         .release                = e1000_release_nvm_ich8lan,
4407         .reload                 = e1000e_reload_nvm_generic,
4408         .update                 = e1000_update_nvm_checksum_ich8lan,
4409         .valid_led_default      = e1000_valid_led_default_ich8lan,
4410         .validate               = e1000_validate_nvm_checksum_ich8lan,
4411         .write                  = e1000_write_nvm_ich8lan,
4412 };
4413
4414 const struct e1000_info e1000_ich8_info = {
4415         .mac                    = e1000_ich8lan,
4416         .flags                  = FLAG_HAS_WOL
4417                                   | FLAG_IS_ICH
4418                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4419                                   | FLAG_HAS_AMT
4420                                   | FLAG_HAS_FLASH
4421                                   | FLAG_APME_IN_WUC,
4422         .pba                    = 8,
4423         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4424         .get_variants           = e1000_get_variants_ich8lan,
4425         .mac_ops                = &ich8_mac_ops,
4426         .phy_ops                = &ich8_phy_ops,
4427         .nvm_ops                = &ich8_nvm_ops,
4428 };
4429
4430 const struct e1000_info e1000_ich9_info = {
4431         .mac                    = e1000_ich9lan,
4432         .flags                  = FLAG_HAS_JUMBO_FRAMES
4433                                   | FLAG_IS_ICH
4434                                   | FLAG_HAS_WOL
4435                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4436                                   | FLAG_HAS_AMT
4437                                   | FLAG_HAS_FLASH
4438                                   | FLAG_APME_IN_WUC,
4439         .pba                    = 18,
4440         .max_hw_frame_size      = DEFAULT_JUMBO,
4441         .get_variants           = e1000_get_variants_ich8lan,
4442         .mac_ops                = &ich8_mac_ops,
4443         .phy_ops                = &ich8_phy_ops,
4444         .nvm_ops                = &ich8_nvm_ops,
4445 };
4446
4447 const struct e1000_info e1000_ich10_info = {
4448         .mac                    = e1000_ich10lan,
4449         .flags                  = FLAG_HAS_JUMBO_FRAMES
4450                                   | FLAG_IS_ICH
4451                                   | FLAG_HAS_WOL
4452                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4453                                   | FLAG_HAS_AMT
4454                                   | FLAG_HAS_FLASH
4455                                   | FLAG_APME_IN_WUC,
4456         .pba                    = 18,
4457         .max_hw_frame_size      = DEFAULT_JUMBO,
4458         .get_variants           = e1000_get_variants_ich8lan,
4459         .mac_ops                = &ich8_mac_ops,
4460         .phy_ops                = &ich8_phy_ops,
4461         .nvm_ops                = &ich8_nvm_ops,
4462 };
4463
4464 const struct e1000_info e1000_pch_info = {
4465         .mac                    = e1000_pchlan,
4466         .flags                  = FLAG_IS_ICH
4467                                   | FLAG_HAS_WOL
4468                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4469                                   | FLAG_HAS_AMT
4470                                   | FLAG_HAS_FLASH
4471                                   | FLAG_HAS_JUMBO_FRAMES
4472                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4473                                   | FLAG_APME_IN_WUC,
4474         .flags2                 = FLAG2_HAS_PHY_STATS,
4475         .pba                    = 26,
4476         .max_hw_frame_size      = 4096,
4477         .get_variants           = e1000_get_variants_ich8lan,
4478         .mac_ops                = &ich8_mac_ops,
4479         .phy_ops                = &ich8_phy_ops,
4480         .nvm_ops                = &ich8_nvm_ops,
4481 };
4482
4483 const struct e1000_info e1000_pch2_info = {
4484         .mac                    = e1000_pch2lan,
4485         .flags                  = FLAG_IS_ICH
4486                                   | FLAG_HAS_WOL
4487                                   | FLAG_HAS_HW_TIMESTAMP
4488                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4489                                   | FLAG_HAS_AMT
4490                                   | FLAG_HAS_FLASH
4491                                   | FLAG_HAS_JUMBO_FRAMES
4492                                   | FLAG_APME_IN_WUC,
4493         .flags2                 = FLAG2_HAS_PHY_STATS
4494                                   | FLAG2_HAS_EEE,
4495         .pba                    = 26,
4496         .max_hw_frame_size      = 9018,
4497         .get_variants           = e1000_get_variants_ich8lan,
4498         .mac_ops                = &ich8_mac_ops,
4499         .phy_ops                = &ich8_phy_ops,
4500         .nvm_ops                = &ich8_nvm_ops,
4501 };
4502
4503 const struct e1000_info e1000_pch_lpt_info = {
4504         .mac                    = e1000_pch_lpt,
4505         .flags                  = FLAG_IS_ICH
4506                                   | FLAG_HAS_WOL
4507                                   | FLAG_HAS_HW_TIMESTAMP
4508                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4509                                   | FLAG_HAS_AMT
4510                                   | FLAG_HAS_FLASH
4511                                   | FLAG_HAS_JUMBO_FRAMES
4512                                   | FLAG_APME_IN_WUC,
4513         .flags2                 = FLAG2_HAS_PHY_STATS
4514                                   | FLAG2_HAS_EEE,
4515         .pba                    = 26,
4516         .max_hw_frame_size      = 9018,
4517         .get_variants           = e1000_get_variants_ich8lan,
4518         .mac_ops                = &ich8_mac_ops,
4519         .phy_ops                = &ich8_phy_ops,
4520         .nvm_ops                = &ich8_nvm_ops,
4521 };