e1000e: comment correction in e1000e_set_kmrn_lock_loss_workaround_ich8lan
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES           7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118                            ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
125
126 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL              PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
143
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
148 #define I82579_MSE_THRESHOLD    0x084F  /* Mean Square Error Threshold */
149 #define I82579_MSE_LINK_DOWN    0x2411  /* MSE count before dropping link */
150
151 /* Strapping Option Register - RO */
152 #define E1000_STRAP                     0x0000C
153 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
155
156 /* OEM Bits Phy Register */
157 #define HV_OEM_BITS            PHY_REG(768, 25)
158 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
159 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
161
162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
164
165 /* KMRN Mode Control */
166 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
167 #define HV_KMRN_MDIO_SLOW      0x0400
168
169 /* KMRN FIFO Control and Status */
170 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
173
174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175 /* Offset 04h HSFSTS */
176 union ich8_hws_flash_status {
177         struct ich8_hsfsts {
178                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
179                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
180                 u16 dael       :1; /* bit 2 Direct Access error Log */
181                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
182                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
183                 u16 reserved1  :2; /* bit 13:6 Reserved */
184                 u16 reserved2  :6; /* bit 13:6 Reserved */
185                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
187         } hsf_status;
188         u16 regval;
189 };
190
191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192 /* Offset 06h FLCTL */
193 union ich8_hws_flash_ctrl {
194         struct ich8_hsflctl {
195                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
196                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
197                 u16 reserved   :5;   /* 7:3 Reserved  */
198                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
199                 u16 flockdn    :6;   /* 15:10 Reserved */
200         } hsf_ctrl;
201         u16 regval;
202 };
203
204 /* ICH Flash Region Access Permissions */
205 union ich8_hws_flash_regacc {
206         struct ich8_flracc {
207                 u32 grra      :8; /* 0:7 GbE region Read Access */
208                 u32 grwa      :8; /* 8:15 GbE region Write Access */
209                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
210                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
211         } hsf_flregacc;
212         u16 regval;
213 };
214
215 /* ICH Flash Protected Region */
216 union ich8_flash_protected_range {
217         struct ich8_pr {
218                 u32 base:13;     /* 0:12 Protected Range Base */
219                 u32 reserved1:2; /* 13:14 Reserved */
220                 u32 rpe:1;       /* 15 Read Protection Enable */
221                 u32 limit:13;    /* 16:28 Protected Range Limit */
222                 u32 reserved2:2; /* 29:30 Reserved */
223                 u32 wpe:1;       /* 31 Write Protection Enable */
224         } range;
225         u32 regval;
226 };
227
228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233                                                 u32 offset, u8 byte);
234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235                                          u8 *data);
236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237                                          u16 *data);
238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239                                          u8 size, u16 *data);
240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
260
261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
262 {
263         return readw(hw->flash_address + reg);
264 }
265
266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
267 {
268         return readl(hw->flash_address + reg);
269 }
270
271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
272 {
273         writew(val, hw->flash_address + reg);
274 }
275
276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
277 {
278         writel(val, hw->flash_address + reg);
279 }
280
281 #define er16flash(reg)          __er16flash(hw, (reg))
282 #define er32flash(reg)          __er32flash(hw, (reg))
283 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
284 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
285
286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
287 {
288         u32 ctrl;
289
290         ctrl = er32(CTRL);
291         ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292         ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293         ew32(CTRL, ctrl);
294         e1e_flush();
295         udelay(10);
296         ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297         ew32(CTRL, ctrl);
298 }
299
300 /**
301  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
302  *  @hw: pointer to the HW structure
303  *
304  *  Initialize family-specific PHY parameters and function pointers.
305  **/
306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
307 {
308         struct e1000_phy_info *phy = &hw->phy;
309         s32 ret_val = 0;
310
311         phy->addr                     = 1;
312         phy->reset_delay_us           = 100;
313
314         phy->ops.set_page             = e1000_set_page_igp;
315         phy->ops.read_reg             = e1000_read_phy_reg_hv;
316         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
317         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
318         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
319         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
320         phy->ops.write_reg            = e1000_write_phy_reg_hv;
321         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
322         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
323         phy->ops.power_up             = e1000_power_up_phy_copper;
324         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
325         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326
327         if (!hw->phy.ops.check_reset_block(hw)) {
328                 u32 fwsm = er32(FWSM);
329
330                 /*
331                  * The MAC-PHY interconnect may still be in SMBus mode after
332                  * Sx->S0.  If resetting the PHY is not blocked, toggle the
333                  * LANPHYPC Value bit to force the interconnect to PCIe mode.
334                  */
335                 e1000_toggle_lanphypc_value_ich8lan(hw);
336                 msleep(50);
337
338                 /*
339                  * Gate automatic PHY configuration by hardware on
340                  * non-managed 82579
341                  */
342                 if ((hw->mac.type == e1000_pch2lan) &&
343                     !(fwsm & E1000_ICH_FWSM_FW_VALID))
344                         e1000_gate_hw_phy_config_ich8lan(hw, true);
345
346                 /*
347                  * Reset the PHY before any access to it.  Doing so, ensures
348                  * that the PHY is in a known good state before we read/write
349                  * PHY registers.  The generic reset is sufficient here,
350                  * because we haven't determined the PHY type yet.
351                  */
352                 ret_val = e1000e_phy_hw_reset_generic(hw);
353                 if (ret_val)
354                         return ret_val;
355
356                 /* Ungate automatic PHY configuration on non-managed 82579 */
357                 if ((hw->mac.type == e1000_pch2lan) &&
358                     !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359                         usleep_range(10000, 20000);
360                         e1000_gate_hw_phy_config_ich8lan(hw, false);
361                 }
362         }
363
364         phy->id = e1000_phy_unknown;
365         switch (hw->mac.type) {
366         default:
367                 ret_val = e1000e_get_phy_id(hw);
368                 if (ret_val)
369                         return ret_val;
370                 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371                         break;
372                 /* fall-through */
373         case e1000_pch2lan:
374                 /*
375                  * In case the PHY needs to be in mdio slow mode,
376                  * set slow mode and try to get the PHY id again.
377                  */
378                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
379                 if (ret_val)
380                         return ret_val;
381                 ret_val = e1000e_get_phy_id(hw);
382                 if (ret_val)
383                         return ret_val;
384                 break;
385         }
386         phy->type = e1000e_get_phy_type_from_id(phy->id);
387
388         switch (phy->type) {
389         case e1000_phy_82577:
390         case e1000_phy_82579:
391                 phy->ops.check_polarity = e1000_check_polarity_82577;
392                 phy->ops.force_speed_duplex =
393                     e1000_phy_force_speed_duplex_82577;
394                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
395                 phy->ops.get_info = e1000_get_phy_info_82577;
396                 phy->ops.commit = e1000e_phy_sw_reset;
397                 break;
398         case e1000_phy_82578:
399                 phy->ops.check_polarity = e1000_check_polarity_m88;
400                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402                 phy->ops.get_info = e1000e_get_phy_info_m88;
403                 break;
404         default:
405                 ret_val = -E1000_ERR_PHY;
406                 break;
407         }
408
409         return ret_val;
410 }
411
412 /**
413  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
414  *  @hw: pointer to the HW structure
415  *
416  *  Initialize family-specific PHY parameters and function pointers.
417  **/
418 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419 {
420         struct e1000_phy_info *phy = &hw->phy;
421         s32 ret_val;
422         u16 i = 0;
423
424         phy->addr                       = 1;
425         phy->reset_delay_us             = 100;
426
427         phy->ops.power_up               = e1000_power_up_phy_copper;
428         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
429
430         /*
431          * We may need to do this twice - once for IGP and if that fails,
432          * we'll set BM func pointers and try again
433          */
434         ret_val = e1000e_determine_phy_address(hw);
435         if (ret_val) {
436                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
437                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
438                 ret_val = e1000e_determine_phy_address(hw);
439                 if (ret_val) {
440                         e_dbg("Cannot determine PHY addr. Erroring out\n");
441                         return ret_val;
442                 }
443         }
444
445         phy->id = 0;
446         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
447                (i++ < 100)) {
448                 usleep_range(1000, 2000);
449                 ret_val = e1000e_get_phy_id(hw);
450                 if (ret_val)
451                         return ret_val;
452         }
453
454         /* Verify phy id */
455         switch (phy->id) {
456         case IGP03E1000_E_PHY_ID:
457                 phy->type = e1000_phy_igp_3;
458                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
460                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
461                 phy->ops.get_info = e1000e_get_phy_info_igp;
462                 phy->ops.check_polarity = e1000_check_polarity_igp;
463                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
464                 break;
465         case IFE_E_PHY_ID:
466         case IFE_PLUS_E_PHY_ID:
467         case IFE_C_E_PHY_ID:
468                 phy->type = e1000_phy_ife;
469                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
470                 phy->ops.get_info = e1000_get_phy_info_ife;
471                 phy->ops.check_polarity = e1000_check_polarity_ife;
472                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
473                 break;
474         case BME1000_E_PHY_ID:
475                 phy->type = e1000_phy_bm;
476                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
478                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
479                 phy->ops.commit = e1000e_phy_sw_reset;
480                 phy->ops.get_info = e1000e_get_phy_info_m88;
481                 phy->ops.check_polarity = e1000_check_polarity_m88;
482                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
483                 break;
484         default:
485                 return -E1000_ERR_PHY;
486                 break;
487         }
488
489         return 0;
490 }
491
492 /**
493  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
494  *  @hw: pointer to the HW structure
495  *
496  *  Initialize family-specific NVM parameters and function
497  *  pointers.
498  **/
499 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500 {
501         struct e1000_nvm_info *nvm = &hw->nvm;
502         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
503         u32 gfpreg, sector_base_addr, sector_end_addr;
504         u16 i;
505
506         /* Can't read flash registers if the register set isn't mapped. */
507         if (!hw->flash_address) {
508                 e_dbg("ERROR: Flash registers not mapped\n");
509                 return -E1000_ERR_CONFIG;
510         }
511
512         nvm->type = e1000_nvm_flash_sw;
513
514         gfpreg = er32flash(ICH_FLASH_GFPREG);
515
516         /*
517          * sector_X_addr is a "sector"-aligned address (4096 bytes)
518          * Add 1 to sector_end_addr since this sector is included in
519          * the overall size.
520          */
521         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
522         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523
524         /* flash_base_addr is byte-aligned */
525         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
526
527         /*
528          * find total size of the NVM, then cut in half since the total
529          * size represents two separate NVM banks.
530          */
531         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
532                                 << FLASH_SECTOR_ADDR_SHIFT;
533         nvm->flash_bank_size /= 2;
534         /* Adjust to word count */
535         nvm->flash_bank_size /= sizeof(u16);
536
537         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538
539         /* Clear shadow ram */
540         for (i = 0; i < nvm->word_size; i++) {
541                 dev_spec->shadow_ram[i].modified = false;
542                 dev_spec->shadow_ram[i].value    = 0xFFFF;
543         }
544
545         return 0;
546 }
547
548 /**
549  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
550  *  @hw: pointer to the HW structure
551  *
552  *  Initialize family-specific MAC parameters and function
553  *  pointers.
554  **/
555 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
556 {
557         struct e1000_mac_info *mac = &hw->mac;
558
559         /* Set media type function pointer */
560         hw->phy.media_type = e1000_media_type_copper;
561
562         /* Set mta register count */
563         mac->mta_reg_count = 32;
564         /* Set rar entry count */
565         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566         if (mac->type == e1000_ich8lan)
567                 mac->rar_entry_count--;
568         /* FWSM register */
569         mac->has_fwsm = true;
570         /* ARC subsystem not supported */
571         mac->arc_subsystem_valid = false;
572         /* Adaptive IFS supported */
573         mac->adaptive_ifs = true;
574
575         /* LED operations */
576         switch (mac->type) {
577         case e1000_ich8lan:
578         case e1000_ich9lan:
579         case e1000_ich10lan:
580                 /* check management mode */
581                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582                 /* ID LED init */
583                 mac->ops.id_led_init = e1000e_id_led_init_generic;
584                 /* blink LED */
585                 mac->ops.blink_led = e1000e_blink_led_generic;
586                 /* setup LED */
587                 mac->ops.setup_led = e1000e_setup_led_generic;
588                 /* cleanup LED */
589                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590                 /* turn on/off LED */
591                 mac->ops.led_on = e1000_led_on_ich8lan;
592                 mac->ops.led_off = e1000_led_off_ich8lan;
593                 break;
594         case e1000_pchlan:
595         case e1000_pch2lan:
596                 /* check management mode */
597                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598                 /* ID LED init */
599                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600                 /* setup LED */
601                 mac->ops.setup_led = e1000_setup_led_pchlan;
602                 /* cleanup LED */
603                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604                 /* turn on/off LED */
605                 mac->ops.led_on = e1000_led_on_pchlan;
606                 mac->ops.led_off = e1000_led_off_pchlan;
607                 break;
608         default:
609                 break;
610         }
611
612         /* Enable PCS Lock-loss workaround for ICH8 */
613         if (mac->type == e1000_ich8lan)
614                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615
616         /* Gate automatic PHY configuration by hardware on managed 82579 */
617         if ((mac->type == e1000_pch2lan) &&
618             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619                 e1000_gate_hw_phy_config_ich8lan(hw, true);
620
621         return 0;
622 }
623
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633         s32 ret_val = 0;
634         u16 phy_reg;
635
636         if (hw->phy.type != e1000_phy_82579)
637                 return 0;
638
639         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640         if (ret_val)
641                 return ret_val;
642
643         if (hw->dev_spec.ich8lan.eee_disable)
644                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645         else
646                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648         return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 }
650
651 /**
652  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
653  *  @hw: pointer to the HW structure
654  *
655  *  Checks to see of the link status of the hardware has changed.  If a
656  *  change in link status has been detected, then we read the PHY registers
657  *  to get the current speed/duplex if link exists.
658  **/
659 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
660 {
661         struct e1000_mac_info *mac = &hw->mac;
662         s32 ret_val;
663         bool link;
664         u16 phy_reg;
665
666         /*
667          * We only want to go out to the PHY registers to see if Auto-Neg
668          * has completed and/or if our link status has changed.  The
669          * get_link_status flag is set upon receiving a Link Status
670          * Change or Rx Sequence Error interrupt.
671          */
672         if (!mac->get_link_status)
673                 return 0;
674
675         /*
676          * First we want to see if the MII Status Register reports
677          * link.  If so, then we want to get the current speed/duplex
678          * of the PHY.
679          */
680         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
681         if (ret_val)
682                 return ret_val;
683
684         if (hw->mac.type == e1000_pchlan) {
685                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
686                 if (ret_val)
687                         return ret_val;
688         }
689
690         if (!link)
691                 return 0; /* No link detected */
692
693         mac->get_link_status = false;
694
695         switch (hw->mac.type) {
696         case e1000_pch2lan:
697                 ret_val = e1000_k1_workaround_lv(hw);
698                 if (ret_val)
699                         return ret_val;
700                 /* fall-thru */
701         case e1000_pchlan:
702                 if (hw->phy.type == e1000_phy_82578) {
703                         ret_val = e1000_link_stall_workaround_hv(hw);
704                         if (ret_val)
705                                 return ret_val;
706                 }
707
708                 /*
709                  * Workaround for PCHx parts in half-duplex:
710                  * Set the number of preambles removed from the packet
711                  * when it is passed from the PHY to the MAC to prevent
712                  * the MAC from misinterpreting the packet type.
713                  */
714                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
715                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
716
717                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
718                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
719
720                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
721                 break;
722         default:
723                 break;
724         }
725
726         /*
727          * Check if there was DownShift, must be checked
728          * immediately after link-up
729          */
730         e1000e_check_downshift(hw);
731
732         /* Enable/Disable EEE after link up */
733         ret_val = e1000_set_eee_pchlan(hw);
734         if (ret_val)
735                 return ret_val;
736
737         /*
738          * If we are forcing speed/duplex, then we simply return since
739          * we have already determined whether we have link or not.
740          */
741         if (!mac->autoneg)
742                 return -E1000_ERR_CONFIG;
743
744         /*
745          * Auto-Neg is enabled.  Auto Speed Detection takes care
746          * of MAC speed/duplex configuration.  So we only need to
747          * configure Collision Distance in the MAC.
748          */
749         e1000e_config_collision_dist(hw);
750
751         /*
752          * Configure Flow Control now that Auto-Neg has completed.
753          * First, we need to restore the desired flow control
754          * settings because we may have had to re-autoneg with a
755          * different link partner.
756          */
757         ret_val = e1000e_config_fc_after_link_up(hw);
758         if (ret_val)
759                 e_dbg("Error configuring flow control\n");
760
761         return ret_val;
762 }
763
764 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
765 {
766         struct e1000_hw *hw = &adapter->hw;
767         s32 rc;
768
769         rc = e1000_init_mac_params_ich8lan(hw);
770         if (rc)
771                 return rc;
772
773         rc = e1000_init_nvm_params_ich8lan(hw);
774         if (rc)
775                 return rc;
776
777         switch (hw->mac.type) {
778         case e1000_ich8lan:
779         case e1000_ich9lan:
780         case e1000_ich10lan:
781                 rc = e1000_init_phy_params_ich8lan(hw);
782                 break;
783         case e1000_pchlan:
784         case e1000_pch2lan:
785                 rc = e1000_init_phy_params_pchlan(hw);
786                 break;
787         default:
788                 break;
789         }
790         if (rc)
791                 return rc;
792
793         /*
794          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
795          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
796          */
797         if ((adapter->hw.phy.type == e1000_phy_ife) ||
798             ((adapter->hw.mac.type >= e1000_pch2lan) &&
799              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
800                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
801                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
802
803                 hw->mac.ops.blink_led = NULL;
804         }
805
806         if ((adapter->hw.mac.type == e1000_ich8lan) &&
807             (adapter->hw.phy.type != e1000_phy_ife))
808                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
809
810         /* Enable workaround for 82579 w/ ME enabled */
811         if ((adapter->hw.mac.type == e1000_pch2lan) &&
812             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
813                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
814
815         /* Disable EEE by default until IEEE802.3az spec is finalized */
816         if (adapter->flags2 & FLAG2_HAS_EEE)
817                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
818
819         return 0;
820 }
821
822 static DEFINE_MUTEX(nvm_mutex);
823
824 /**
825  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
826  *  @hw: pointer to the HW structure
827  *
828  *  Acquires the mutex for performing NVM operations.
829  **/
830 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
831 {
832         mutex_lock(&nvm_mutex);
833
834         return 0;
835 }
836
837 /**
838  *  e1000_release_nvm_ich8lan - Release NVM mutex
839  *  @hw: pointer to the HW structure
840  *
841  *  Releases the mutex used while performing NVM operations.
842  **/
843 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
844 {
845         mutex_unlock(&nvm_mutex);
846 }
847
848 /**
849  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
850  *  @hw: pointer to the HW structure
851  *
852  *  Acquires the software control flag for performing PHY and select
853  *  MAC CSR accesses.
854  **/
855 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
856 {
857         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
858         s32 ret_val = 0;
859
860         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
861                              &hw->adapter->state)) {
862                 e_dbg("contention for Phy access\n");
863                 return -E1000_ERR_PHY;
864         }
865
866         while (timeout) {
867                 extcnf_ctrl = er32(EXTCNF_CTRL);
868                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
869                         break;
870
871                 mdelay(1);
872                 timeout--;
873         }
874
875         if (!timeout) {
876                 e_dbg("SW has already locked the resource.\n");
877                 ret_val = -E1000_ERR_CONFIG;
878                 goto out;
879         }
880
881         timeout = SW_FLAG_TIMEOUT;
882
883         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
884         ew32(EXTCNF_CTRL, extcnf_ctrl);
885
886         while (timeout) {
887                 extcnf_ctrl = er32(EXTCNF_CTRL);
888                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
889                         break;
890
891                 mdelay(1);
892                 timeout--;
893         }
894
895         if (!timeout) {
896                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
897                       er32(FWSM), extcnf_ctrl);
898                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899                 ew32(EXTCNF_CTRL, extcnf_ctrl);
900                 ret_val = -E1000_ERR_CONFIG;
901                 goto out;
902         }
903
904 out:
905         if (ret_val)
906                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
907
908         return ret_val;
909 }
910
911 /**
912  *  e1000_release_swflag_ich8lan - Release software control flag
913  *  @hw: pointer to the HW structure
914  *
915  *  Releases the software control flag for performing PHY and select
916  *  MAC CSR accesses.
917  **/
918 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
919 {
920         u32 extcnf_ctrl;
921
922         extcnf_ctrl = er32(EXTCNF_CTRL);
923
924         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
925                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
926                 ew32(EXTCNF_CTRL, extcnf_ctrl);
927         } else {
928                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
929         }
930
931         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
932 }
933
934 /**
935  *  e1000_check_mng_mode_ich8lan - Checks management mode
936  *  @hw: pointer to the HW structure
937  *
938  *  This checks if the adapter has any manageability enabled.
939  *  This is a function pointer entry point only called by read/write
940  *  routines for the PHY and NVM parts.
941  **/
942 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
943 {
944         u32 fwsm;
945
946         fwsm = er32(FWSM);
947         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
948                ((fwsm & E1000_FWSM_MODE_MASK) ==
949                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
950 }
951
952 /**
953  *  e1000_check_mng_mode_pchlan - Checks management mode
954  *  @hw: pointer to the HW structure
955  *
956  *  This checks if the adapter has iAMT enabled.
957  *  This is a function pointer entry point only called by read/write
958  *  routines for the PHY and NVM parts.
959  **/
960 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
961 {
962         u32 fwsm;
963
964         fwsm = er32(FWSM);
965         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
966                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
967 }
968
969 /**
970  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
971  *  @hw: pointer to the HW structure
972  *
973  *  Checks if firmware is blocking the reset of the PHY.
974  *  This is a function pointer entry point only called by
975  *  reset routines.
976  **/
977 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
978 {
979         u32 fwsm;
980
981         fwsm = er32(FWSM);
982
983         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
984 }
985
986 /**
987  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
988  *  @hw: pointer to the HW structure
989  *
990  *  Assumes semaphore already acquired.
991  *
992  **/
993 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
994 {
995         u16 phy_data;
996         u32 strap = er32(STRAP);
997         s32 ret_val = 0;
998
999         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1000
1001         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1002         if (ret_val)
1003                 return ret_val;
1004
1005         phy_data &= ~HV_SMB_ADDR_MASK;
1006         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1007         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1008
1009         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1010 }
1011
1012 /**
1013  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1014  *  @hw:   pointer to the HW structure
1015  *
1016  *  SW should configure the LCD from the NVM extended configuration region
1017  *  as a workaround for certain parts.
1018  **/
1019 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1020 {
1021         struct e1000_phy_info *phy = &hw->phy;
1022         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1023         s32 ret_val = 0;
1024         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1025
1026         /*
1027          * Initialize the PHY from the NVM on ICH platforms.  This
1028          * is needed due to an issue where the NVM configuration is
1029          * not properly autoloaded after power transitions.
1030          * Therefore, after each PHY reset, we will load the
1031          * configuration data out of the NVM manually.
1032          */
1033         switch (hw->mac.type) {
1034         case e1000_ich8lan:
1035                 if (phy->type != e1000_phy_igp_3)
1036                         return ret_val;
1037
1038                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1039                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1040                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1041                         break;
1042                 }
1043                 /* Fall-thru */
1044         case e1000_pchlan:
1045         case e1000_pch2lan:
1046                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1047                 break;
1048         default:
1049                 return ret_val;
1050         }
1051
1052         ret_val = hw->phy.ops.acquire(hw);
1053         if (ret_val)
1054                 return ret_val;
1055
1056         data = er32(FEXTNVM);
1057         if (!(data & sw_cfg_mask))
1058                 goto release;
1059
1060         /*
1061          * Make sure HW does not configure LCD from PHY
1062          * extended configuration before SW configuration
1063          */
1064         data = er32(EXTCNF_CTRL);
1065         if (!(hw->mac.type == e1000_pch2lan)) {
1066                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1067                         goto release;
1068         }
1069
1070         cnf_size = er32(EXTCNF_SIZE);
1071         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1072         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1073         if (!cnf_size)
1074                 goto release;
1075
1076         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1077         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1078
1079         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1080             (hw->mac.type == e1000_pchlan)) ||
1081              (hw->mac.type == e1000_pch2lan)) {
1082                 /*
1083                  * HW configures the SMBus address and LEDs when the
1084                  * OEM and LCD Write Enable bits are set in the NVM.
1085                  * When both NVM bits are cleared, SW will configure
1086                  * them instead.
1087                  */
1088                 ret_val = e1000_write_smbus_addr(hw);
1089                 if (ret_val)
1090                         goto release;
1091
1092                 data = er32(LEDCTL);
1093                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1094                                                         (u16)data);
1095                 if (ret_val)
1096                         goto release;
1097         }
1098
1099         /* Configure LCD from extended configuration region. */
1100
1101         /* cnf_base_addr is in DWORD */
1102         word_addr = (u16)(cnf_base_addr << 1);
1103
1104         for (i = 0; i < cnf_size; i++) {
1105                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1106                                          &reg_data);
1107                 if (ret_val)
1108                         goto release;
1109
1110                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1111                                          1, &reg_addr);
1112                 if (ret_val)
1113                         goto release;
1114
1115                 /* Save off the PHY page for future writes. */
1116                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1117                         phy_page = reg_data;
1118                         continue;
1119                 }
1120
1121                 reg_addr &= PHY_REG_MASK;
1122                 reg_addr |= phy_page;
1123
1124                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1125                                                     reg_data);
1126                 if (ret_val)
1127                         goto release;
1128         }
1129
1130 release:
1131         hw->phy.ops.release(hw);
1132         return ret_val;
1133 }
1134
1135 /**
1136  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1137  *  @hw:   pointer to the HW structure
1138  *  @link: link up bool flag
1139  *
1140  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1141  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1142  *  If link is down, the function will restore the default K1 setting located
1143  *  in the NVM.
1144  **/
1145 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1146 {
1147         s32 ret_val = 0;
1148         u16 status_reg = 0;
1149         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1150
1151         if (hw->mac.type != e1000_pchlan)
1152                 return 0;
1153
1154         /* Wrap the whole flow with the sw flag */
1155         ret_val = hw->phy.ops.acquire(hw);
1156         if (ret_val)
1157                 return ret_val;
1158
1159         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1160         if (link) {
1161                 if (hw->phy.type == e1000_phy_82578) {
1162                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1163                                                                   &status_reg);
1164                         if (ret_val)
1165                                 goto release;
1166
1167                         status_reg &= BM_CS_STATUS_LINK_UP |
1168                                       BM_CS_STATUS_RESOLVED |
1169                                       BM_CS_STATUS_SPEED_MASK;
1170
1171                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1172                                            BM_CS_STATUS_RESOLVED |
1173                                            BM_CS_STATUS_SPEED_1000))
1174                                 k1_enable = false;
1175                 }
1176
1177                 if (hw->phy.type == e1000_phy_82577) {
1178                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1179                                                                   &status_reg);
1180                         if (ret_val)
1181                                 goto release;
1182
1183                         status_reg &= HV_M_STATUS_LINK_UP |
1184                                       HV_M_STATUS_AUTONEG_COMPLETE |
1185                                       HV_M_STATUS_SPEED_MASK;
1186
1187                         if (status_reg == (HV_M_STATUS_LINK_UP |
1188                                            HV_M_STATUS_AUTONEG_COMPLETE |
1189                                            HV_M_STATUS_SPEED_1000))
1190                                 k1_enable = false;
1191                 }
1192
1193                 /* Link stall fix for link up */
1194                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1195                                                            0x0100);
1196                 if (ret_val)
1197                         goto release;
1198
1199         } else {
1200                 /* Link stall fix for link down */
1201                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1202                                                            0x4100);
1203                 if (ret_val)
1204                         goto release;
1205         }
1206
1207         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1208
1209 release:
1210         hw->phy.ops.release(hw);
1211
1212         return ret_val;
1213 }
1214
1215 /**
1216  *  e1000_configure_k1_ich8lan - Configure K1 power state
1217  *  @hw: pointer to the HW structure
1218  *  @enable: K1 state to configure
1219  *
1220  *  Configure the K1 power state based on the provided parameter.
1221  *  Assumes semaphore already acquired.
1222  *
1223  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1224  **/
1225 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1226 {
1227         s32 ret_val = 0;
1228         u32 ctrl_reg = 0;
1229         u32 ctrl_ext = 0;
1230         u32 reg = 0;
1231         u16 kmrn_reg = 0;
1232
1233         ret_val = e1000e_read_kmrn_reg_locked(hw,
1234                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1235                                              &kmrn_reg);
1236         if (ret_val)
1237                 return ret_val;
1238
1239         if (k1_enable)
1240                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1241         else
1242                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1243
1244         ret_val = e1000e_write_kmrn_reg_locked(hw,
1245                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1246                                               kmrn_reg);
1247         if (ret_val)
1248                 return ret_val;
1249
1250         udelay(20);
1251         ctrl_ext = er32(CTRL_EXT);
1252         ctrl_reg = er32(CTRL);
1253
1254         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1255         reg |= E1000_CTRL_FRCSPD;
1256         ew32(CTRL, reg);
1257
1258         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1259         e1e_flush();
1260         udelay(20);
1261         ew32(CTRL, ctrl_reg);
1262         ew32(CTRL_EXT, ctrl_ext);
1263         e1e_flush();
1264         udelay(20);
1265
1266         return 0;
1267 }
1268
1269 /**
1270  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1271  *  @hw:       pointer to the HW structure
1272  *  @d0_state: boolean if entering d0 or d3 device state
1273  *
1274  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1275  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1276  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1277  **/
1278 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1279 {
1280         s32 ret_val = 0;
1281         u32 mac_reg;
1282         u16 oem_reg;
1283
1284         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1285                 return ret_val;
1286
1287         ret_val = hw->phy.ops.acquire(hw);
1288         if (ret_val)
1289                 return ret_val;
1290
1291         if (!(hw->mac.type == e1000_pch2lan)) {
1292                 mac_reg = er32(EXTCNF_CTRL);
1293                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1294                         goto release;
1295         }
1296
1297         mac_reg = er32(FEXTNVM);
1298         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1299                 goto release;
1300
1301         mac_reg = er32(PHY_CTRL);
1302
1303         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1304         if (ret_val)
1305                 goto release;
1306
1307         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1308
1309         if (d0_state) {
1310                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1311                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1312
1313                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1314                         oem_reg |= HV_OEM_BITS_LPLU;
1315
1316                 /* Set Restart auto-neg to activate the bits */
1317                 if (!hw->phy.ops.check_reset_block(hw))
1318                         oem_reg |= HV_OEM_BITS_RESTART_AN;
1319         } else {
1320                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1321                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1322                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1323
1324                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1325                                E1000_PHY_CTRL_NOND0A_LPLU))
1326                         oem_reg |= HV_OEM_BITS_LPLU;
1327         }
1328
1329         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1330
1331 release:
1332         hw->phy.ops.release(hw);
1333
1334         return ret_val;
1335 }
1336
1337
1338 /**
1339  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1340  *  @hw:   pointer to the HW structure
1341  **/
1342 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1343 {
1344         s32 ret_val;
1345         u16 data;
1346
1347         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1348         if (ret_val)
1349                 return ret_val;
1350
1351         data |= HV_KMRN_MDIO_SLOW;
1352
1353         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1354
1355         return ret_val;
1356 }
1357
1358 /**
1359  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1360  *  done after every PHY reset.
1361  **/
1362 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1363 {
1364         s32 ret_val = 0;
1365         u16 phy_data;
1366
1367         if (hw->mac.type != e1000_pchlan)
1368                 return 0;
1369
1370         /* Set MDIO slow mode before any other MDIO access */
1371         if (hw->phy.type == e1000_phy_82577) {
1372                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1373                 if (ret_val)
1374                         return ret_val;
1375         }
1376
1377         if (((hw->phy.type == e1000_phy_82577) &&
1378              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1379             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1380                 /* Disable generation of early preamble */
1381                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1382                 if (ret_val)
1383                         return ret_val;
1384
1385                 /* Preamble tuning for SSC */
1386                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1387                 if (ret_val)
1388                         return ret_val;
1389         }
1390
1391         if (hw->phy.type == e1000_phy_82578) {
1392                 /*
1393                  * Return registers to default by doing a soft reset then
1394                  * writing 0x3140 to the control register.
1395                  */
1396                 if (hw->phy.revision < 2) {
1397                         e1000e_phy_sw_reset(hw);
1398                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1399                 }
1400         }
1401
1402         /* Select page 0 */
1403         ret_val = hw->phy.ops.acquire(hw);
1404         if (ret_val)
1405                 return ret_val;
1406
1407         hw->phy.addr = 1;
1408         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1409         hw->phy.ops.release(hw);
1410         if (ret_val)
1411                 return ret_val;
1412
1413         /*
1414          * Configure the K1 Si workaround during phy reset assuming there is
1415          * link so that it disables K1 if link is in 1Gbps.
1416          */
1417         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1418         if (ret_val)
1419                 return ret_val;
1420
1421         /* Workaround for link disconnects on a busy hub in half duplex */
1422         ret_val = hw->phy.ops.acquire(hw);
1423         if (ret_val)
1424                 return ret_val;
1425         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1426         if (ret_val)
1427                 goto release;
1428         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1429                                                phy_data & 0x00FF);
1430 release:
1431         hw->phy.ops.release(hw);
1432
1433         return ret_val;
1434 }
1435
1436 /**
1437  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1438  *  @hw:   pointer to the HW structure
1439  **/
1440 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1441 {
1442         u32 mac_reg;
1443         u16 i, phy_reg = 0;
1444         s32 ret_val;
1445
1446         ret_val = hw->phy.ops.acquire(hw);
1447         if (ret_val)
1448                 return;
1449         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1450         if (ret_val)
1451                 goto release;
1452
1453         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1454         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1455                 mac_reg = er32(RAL(i));
1456                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1457                                            (u16)(mac_reg & 0xFFFF));
1458                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1459                                            (u16)((mac_reg >> 16) & 0xFFFF));
1460
1461                 mac_reg = er32(RAH(i));
1462                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1463                                            (u16)(mac_reg & 0xFFFF));
1464                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1465                                            (u16)((mac_reg & E1000_RAH_AV)
1466                                                  >> 16));
1467         }
1468
1469         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1470
1471 release:
1472         hw->phy.ops.release(hw);
1473 }
1474
1475 /**
1476  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1477  *  with 82579 PHY
1478  *  @hw: pointer to the HW structure
1479  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1480  **/
1481 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1482 {
1483         s32 ret_val = 0;
1484         u16 phy_reg, data;
1485         u32 mac_reg;
1486         u16 i;
1487
1488         if (hw->mac.type != e1000_pch2lan)
1489                 return 0;
1490
1491         /* disable Rx path while enabling/disabling workaround */
1492         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1493         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1494         if (ret_val)
1495                 return ret_val;
1496
1497         if (enable) {
1498                 /*
1499                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1500                  * SHRAL/H) and initial CRC values to the MAC
1501                  */
1502                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1503                         u8 mac_addr[ETH_ALEN] = {0};
1504                         u32 addr_high, addr_low;
1505
1506                         addr_high = er32(RAH(i));
1507                         if (!(addr_high & E1000_RAH_AV))
1508                                 continue;
1509                         addr_low = er32(RAL(i));
1510                         mac_addr[0] = (addr_low & 0xFF);
1511                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1512                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1513                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1514                         mac_addr[4] = (addr_high & 0xFF);
1515                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1516
1517                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1518                 }
1519
1520                 /* Write Rx addresses to the PHY */
1521                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1522
1523                 /* Enable jumbo frame workaround in the MAC */
1524                 mac_reg = er32(FFLT_DBG);
1525                 mac_reg &= ~(1 << 14);
1526                 mac_reg |= (7 << 15);
1527                 ew32(FFLT_DBG, mac_reg);
1528
1529                 mac_reg = er32(RCTL);
1530                 mac_reg |= E1000_RCTL_SECRC;
1531                 ew32(RCTL, mac_reg);
1532
1533                 ret_val = e1000e_read_kmrn_reg(hw,
1534                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1535                                                 &data);
1536                 if (ret_val)
1537                         return ret_val;
1538                 ret_val = e1000e_write_kmrn_reg(hw,
1539                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1540                                                 data | (1 << 0));
1541                 if (ret_val)
1542                         return ret_val;
1543                 ret_val = e1000e_read_kmrn_reg(hw,
1544                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1545                                                 &data);
1546                 if (ret_val)
1547                         return ret_val;
1548                 data &= ~(0xF << 8);
1549                 data |= (0xB << 8);
1550                 ret_val = e1000e_write_kmrn_reg(hw,
1551                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1552                                                 data);
1553                 if (ret_val)
1554                         return ret_val;
1555
1556                 /* Enable jumbo frame workaround in the PHY */
1557                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1558                 data &= ~(0x7F << 5);
1559                 data |= (0x37 << 5);
1560                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1561                 if (ret_val)
1562                         return ret_val;
1563                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1564                 data &= ~(1 << 13);
1565                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1566                 if (ret_val)
1567                         return ret_val;
1568                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1569                 data &= ~(0x3FF << 2);
1570                 data |= (0x1A << 2);
1571                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1572                 if (ret_val)
1573                         return ret_val;
1574                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1575                 if (ret_val)
1576                         return ret_val;
1577                 e1e_rphy(hw, HV_PM_CTRL, &data);
1578                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1579                 if (ret_val)
1580                         return ret_val;
1581         } else {
1582                 /* Write MAC register values back to h/w defaults */
1583                 mac_reg = er32(FFLT_DBG);
1584                 mac_reg &= ~(0xF << 14);
1585                 ew32(FFLT_DBG, mac_reg);
1586
1587                 mac_reg = er32(RCTL);
1588                 mac_reg &= ~E1000_RCTL_SECRC;
1589                 ew32(RCTL, mac_reg);
1590
1591                 ret_val = e1000e_read_kmrn_reg(hw,
1592                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1593                                                 &data);
1594                 if (ret_val)
1595                         return ret_val;
1596                 ret_val = e1000e_write_kmrn_reg(hw,
1597                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1598                                                 data & ~(1 << 0));
1599                 if (ret_val)
1600                         return ret_val;
1601                 ret_val = e1000e_read_kmrn_reg(hw,
1602                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1603                                                 &data);
1604                 if (ret_val)
1605                         return ret_val;
1606                 data &= ~(0xF << 8);
1607                 data |= (0xB << 8);
1608                 ret_val = e1000e_write_kmrn_reg(hw,
1609                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1610                                                 data);
1611                 if (ret_val)
1612                         return ret_val;
1613
1614                 /* Write PHY register values back to h/w defaults */
1615                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1616                 data &= ~(0x7F << 5);
1617                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1618                 if (ret_val)
1619                         return ret_val;
1620                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1621                 data |= (1 << 13);
1622                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1623                 if (ret_val)
1624                         return ret_val;
1625                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1626                 data &= ~(0x3FF << 2);
1627                 data |= (0x8 << 2);
1628                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1629                 if (ret_val)
1630                         return ret_val;
1631                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1632                 if (ret_val)
1633                         return ret_val;
1634                 e1e_rphy(hw, HV_PM_CTRL, &data);
1635                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1636                 if (ret_val)
1637                         return ret_val;
1638         }
1639
1640         /* re-enable Rx path after enabling/disabling workaround */
1641         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1642 }
1643
1644 /**
1645  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1646  *  done after every PHY reset.
1647  **/
1648 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1649 {
1650         s32 ret_val = 0;
1651
1652         if (hw->mac.type != e1000_pch2lan)
1653                 return 0;
1654
1655         /* Set MDIO slow mode before any other MDIO access */
1656         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1657
1658         ret_val = hw->phy.ops.acquire(hw);
1659         if (ret_val)
1660                 return ret_val;
1661         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1662                                                I82579_MSE_THRESHOLD);
1663         if (ret_val)
1664                 goto release;
1665         /* set MSE higher to enable link to stay up when noise is high */
1666         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1667         if (ret_val)
1668                 goto release;
1669         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1670                                                I82579_MSE_LINK_DOWN);
1671         if (ret_val)
1672                 goto release;
1673         /* drop link after 5 times MSE threshold was reached */
1674         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1675 release:
1676         hw->phy.ops.release(hw);
1677
1678         return ret_val;
1679 }
1680
1681 /**
1682  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1683  *  @hw:   pointer to the HW structure
1684  *
1685  *  Workaround to set the K1 beacon duration for 82579 parts
1686  **/
1687 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1688 {
1689         s32 ret_val = 0;
1690         u16 status_reg = 0;
1691         u32 mac_reg;
1692         u16 phy_reg;
1693
1694         if (hw->mac.type != e1000_pch2lan)
1695                 return 0;
1696
1697         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1698         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1699         if (ret_val)
1700                 return ret_val;
1701
1702         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1703             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1704                 mac_reg = er32(FEXTNVM4);
1705                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1706
1707                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1708                 if (ret_val)
1709                         return ret_val;
1710
1711                 if (status_reg & HV_M_STATUS_SPEED_1000) {
1712                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1713                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1714                 } else {
1715                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1716                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1717                 }
1718                 ew32(FEXTNVM4, mac_reg);
1719                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1720         }
1721
1722         return ret_val;
1723 }
1724
1725 /**
1726  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1727  *  @hw:   pointer to the HW structure
1728  *  @gate: boolean set to true to gate, false to ungate
1729  *
1730  *  Gate/ungate the automatic PHY configuration via hardware; perform
1731  *  the configuration via software instead.
1732  **/
1733 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1734 {
1735         u32 extcnf_ctrl;
1736
1737         if (hw->mac.type != e1000_pch2lan)
1738                 return;
1739
1740         extcnf_ctrl = er32(EXTCNF_CTRL);
1741
1742         if (gate)
1743                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1744         else
1745                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1746
1747         ew32(EXTCNF_CTRL, extcnf_ctrl);
1748 }
1749
1750 /**
1751  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1752  *  @hw: pointer to the HW structure
1753  *
1754  *  Check the appropriate indication the MAC has finished configuring the
1755  *  PHY after a software reset.
1756  **/
1757 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1758 {
1759         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1760
1761         /* Wait for basic configuration completes before proceeding */
1762         do {
1763                 data = er32(STATUS);
1764                 data &= E1000_STATUS_LAN_INIT_DONE;
1765                 udelay(100);
1766         } while ((!data) && --loop);
1767
1768         /*
1769          * If basic configuration is incomplete before the above loop
1770          * count reaches 0, loading the configuration from NVM will
1771          * leave the PHY in a bad state possibly resulting in no link.
1772          */
1773         if (loop == 0)
1774                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1775
1776         /* Clear the Init Done bit for the next init event */
1777         data = er32(STATUS);
1778         data &= ~E1000_STATUS_LAN_INIT_DONE;
1779         ew32(STATUS, data);
1780 }
1781
1782 /**
1783  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1784  *  @hw: pointer to the HW structure
1785  **/
1786 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1787 {
1788         s32 ret_val = 0;
1789         u16 reg;
1790
1791         if (hw->phy.ops.check_reset_block(hw))
1792                 return 0;
1793
1794         /* Allow time for h/w to get to quiescent state after reset */
1795         usleep_range(10000, 20000);
1796
1797         /* Perform any necessary post-reset workarounds */
1798         switch (hw->mac.type) {
1799         case e1000_pchlan:
1800                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1801                 if (ret_val)
1802                         return ret_val;
1803                 break;
1804         case e1000_pch2lan:
1805                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1806                 if (ret_val)
1807                         return ret_val;
1808                 break;
1809         default:
1810                 break;
1811         }
1812
1813         /* Clear the host wakeup bit after lcd reset */
1814         if (hw->mac.type >= e1000_pchlan) {
1815                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1816                 reg &= ~BM_WUC_HOST_WU_BIT;
1817                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1818         }
1819
1820         /* Configure the LCD with the extended configuration region in NVM */
1821         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1822         if (ret_val)
1823                 return ret_val;
1824
1825         /* Configure the LCD with the OEM bits in NVM */
1826         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1827
1828         if (hw->mac.type == e1000_pch2lan) {
1829                 /* Ungate automatic PHY configuration on non-managed 82579 */
1830                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1831                         usleep_range(10000, 20000);
1832                         e1000_gate_hw_phy_config_ich8lan(hw, false);
1833                 }
1834
1835                 /* Set EEE LPI Update Timer to 200usec */
1836                 ret_val = hw->phy.ops.acquire(hw);
1837                 if (ret_val)
1838                         return ret_val;
1839                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1840                                                        I82579_LPI_UPDATE_TIMER);
1841                 if (!ret_val)
1842                         ret_val = hw->phy.ops.write_reg_locked(hw,
1843                                                                I82579_EMI_DATA,
1844                                                                0x1387);
1845                 hw->phy.ops.release(hw);
1846         }
1847
1848         return ret_val;
1849 }
1850
1851 /**
1852  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1853  *  @hw: pointer to the HW structure
1854  *
1855  *  Resets the PHY
1856  *  This is a function pointer entry point called by drivers
1857  *  or other shared routines.
1858  **/
1859 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1860 {
1861         s32 ret_val = 0;
1862
1863         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1864         if ((hw->mac.type == e1000_pch2lan) &&
1865             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1866                 e1000_gate_hw_phy_config_ich8lan(hw, true);
1867
1868         ret_val = e1000e_phy_hw_reset_generic(hw);
1869         if (ret_val)
1870                 return ret_val;
1871
1872         return e1000_post_phy_reset_ich8lan(hw);
1873 }
1874
1875 /**
1876  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1877  *  @hw: pointer to the HW structure
1878  *  @active: true to enable LPLU, false to disable
1879  *
1880  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1881  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1882  *  the phy speed. This function will manually set the LPLU bit and restart
1883  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1884  *  since it configures the same bit.
1885  **/
1886 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1887 {
1888         s32 ret_val = 0;
1889         u16 oem_reg;
1890
1891         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1892         if (ret_val)
1893                 return ret_val;
1894
1895         if (active)
1896                 oem_reg |= HV_OEM_BITS_LPLU;
1897         else
1898                 oem_reg &= ~HV_OEM_BITS_LPLU;
1899
1900         if (!hw->phy.ops.check_reset_block(hw))
1901                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1902
1903         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1904 }
1905
1906 /**
1907  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1908  *  @hw: pointer to the HW structure
1909  *  @active: true to enable LPLU, false to disable
1910  *
1911  *  Sets the LPLU D0 state according to the active flag.  When
1912  *  activating LPLU this function also disables smart speed
1913  *  and vice versa.  LPLU will not be activated unless the
1914  *  device autonegotiation advertisement meets standards of
1915  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1916  *  This is a function pointer entry point only called by
1917  *  PHY setup routines.
1918  **/
1919 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1920 {
1921         struct e1000_phy_info *phy = &hw->phy;
1922         u32 phy_ctrl;
1923         s32 ret_val = 0;
1924         u16 data;
1925
1926         if (phy->type == e1000_phy_ife)
1927                 return 0;
1928
1929         phy_ctrl = er32(PHY_CTRL);
1930
1931         if (active) {
1932                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1933                 ew32(PHY_CTRL, phy_ctrl);
1934
1935                 if (phy->type != e1000_phy_igp_3)
1936                         return 0;
1937
1938                 /*
1939                  * Call gig speed drop workaround on LPLU before accessing
1940                  * any PHY registers
1941                  */
1942                 if (hw->mac.type == e1000_ich8lan)
1943                         e1000e_gig_downshift_workaround_ich8lan(hw);
1944
1945                 /* When LPLU is enabled, we should disable SmartSpeed */
1946                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1947                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1948                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1949                 if (ret_val)
1950                         return ret_val;
1951         } else {
1952                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1953                 ew32(PHY_CTRL, phy_ctrl);
1954
1955                 if (phy->type != e1000_phy_igp_3)
1956                         return 0;
1957
1958                 /*
1959                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1960                  * during Dx states where the power conservation is most
1961                  * important.  During driver activity we should enable
1962                  * SmartSpeed, so performance is maintained.
1963                  */
1964                 if (phy->smart_speed == e1000_smart_speed_on) {
1965                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1966                                            &data);
1967                         if (ret_val)
1968                                 return ret_val;
1969
1970                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1971                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1972                                            data);
1973                         if (ret_val)
1974                                 return ret_val;
1975                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1976                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1977                                            &data);
1978                         if (ret_val)
1979                                 return ret_val;
1980
1981                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1982                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1983                                            data);
1984                         if (ret_val)
1985                                 return ret_val;
1986                 }
1987         }
1988
1989         return 0;
1990 }
1991
1992 /**
1993  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1994  *  @hw: pointer to the HW structure
1995  *  @active: true to enable LPLU, false to disable
1996  *
1997  *  Sets the LPLU D3 state according to the active flag.  When
1998  *  activating LPLU this function also disables smart speed
1999  *  and vice versa.  LPLU will not be activated unless the
2000  *  device autonegotiation advertisement meets standards of
2001  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2002  *  This is a function pointer entry point only called by
2003  *  PHY setup routines.
2004  **/
2005 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2006 {
2007         struct e1000_phy_info *phy = &hw->phy;
2008         u32 phy_ctrl;
2009         s32 ret_val = 0;
2010         u16 data;
2011
2012         phy_ctrl = er32(PHY_CTRL);
2013
2014         if (!active) {
2015                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2016                 ew32(PHY_CTRL, phy_ctrl);
2017
2018                 if (phy->type != e1000_phy_igp_3)
2019                         return 0;
2020
2021                 /*
2022                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2023                  * during Dx states where the power conservation is most
2024                  * important.  During driver activity we should enable
2025                  * SmartSpeed, so performance is maintained.
2026                  */
2027                 if (phy->smart_speed == e1000_smart_speed_on) {
2028                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2029                                            &data);
2030                         if (ret_val)
2031                                 return ret_val;
2032
2033                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2034                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2035                                            data);
2036                         if (ret_val)
2037                                 return ret_val;
2038                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2039                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2040                                            &data);
2041                         if (ret_val)
2042                                 return ret_val;
2043
2044                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2045                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2046                                            data);
2047                         if (ret_val)
2048                                 return ret_val;
2049                 }
2050         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2051                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2052                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2053                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2054                 ew32(PHY_CTRL, phy_ctrl);
2055
2056                 if (phy->type != e1000_phy_igp_3)
2057                         return 0;
2058
2059                 /*
2060                  * Call gig speed drop workaround on LPLU before accessing
2061                  * any PHY registers
2062                  */
2063                 if (hw->mac.type == e1000_ich8lan)
2064                         e1000e_gig_downshift_workaround_ich8lan(hw);
2065
2066                 /* When LPLU is enabled, we should disable SmartSpeed */
2067                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2068                 if (ret_val)
2069                         return ret_val;
2070
2071                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2072                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2073         }
2074
2075         return ret_val;
2076 }
2077
2078 /**
2079  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2080  *  @hw: pointer to the HW structure
2081  *  @bank:  pointer to the variable that returns the active bank
2082  *
2083  *  Reads signature byte from the NVM using the flash access registers.
2084  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2085  **/
2086 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2087 {
2088         u32 eecd;
2089         struct e1000_nvm_info *nvm = &hw->nvm;
2090         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2091         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2092         u8 sig_byte = 0;
2093         s32 ret_val;
2094
2095         switch (hw->mac.type) {
2096         case e1000_ich8lan:
2097         case e1000_ich9lan:
2098                 eecd = er32(EECD);
2099                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2100                     E1000_EECD_SEC1VAL_VALID_MASK) {
2101                         if (eecd & E1000_EECD_SEC1VAL)
2102                                 *bank = 1;
2103                         else
2104                                 *bank = 0;
2105
2106                         return 0;
2107                 }
2108                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2109                 /* fall-thru */
2110         default:
2111                 /* set bank to 0 in case flash read fails */
2112                 *bank = 0;
2113
2114                 /* Check bank 0 */
2115                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2116                                                         &sig_byte);
2117                 if (ret_val)
2118                         return ret_val;
2119                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2120                     E1000_ICH_NVM_SIG_VALUE) {
2121                         *bank = 0;
2122                         return 0;
2123                 }
2124
2125                 /* Check bank 1 */
2126                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2127                                                         bank1_offset,
2128                                                         &sig_byte);
2129                 if (ret_val)
2130                         return ret_val;
2131                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2132                     E1000_ICH_NVM_SIG_VALUE) {
2133                         *bank = 1;
2134                         return 0;
2135                 }
2136
2137                 e_dbg("ERROR: No valid NVM bank present\n");
2138                 return -E1000_ERR_NVM;
2139         }
2140 }
2141
2142 /**
2143  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2144  *  @hw: pointer to the HW structure
2145  *  @offset: The offset (in bytes) of the word(s) to read.
2146  *  @words: Size of data to read in words
2147  *  @data: Pointer to the word(s) to read at offset.
2148  *
2149  *  Reads a word(s) from the NVM using the flash access registers.
2150  **/
2151 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2152                                   u16 *data)
2153 {
2154         struct e1000_nvm_info *nvm = &hw->nvm;
2155         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2156         u32 act_offset;
2157         s32 ret_val = 0;
2158         u32 bank = 0;
2159         u16 i, word;
2160
2161         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2162             (words == 0)) {
2163                 e_dbg("nvm parameter(s) out of bounds\n");
2164                 ret_val = -E1000_ERR_NVM;
2165                 goto out;
2166         }
2167
2168         nvm->ops.acquire(hw);
2169
2170         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2171         if (ret_val) {
2172                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2173                 bank = 0;
2174         }
2175
2176         act_offset = (bank) ? nvm->flash_bank_size : 0;
2177         act_offset += offset;
2178
2179         ret_val = 0;
2180         for (i = 0; i < words; i++) {
2181                 if (dev_spec->shadow_ram[offset+i].modified) {
2182                         data[i] = dev_spec->shadow_ram[offset+i].value;
2183                 } else {
2184                         ret_val = e1000_read_flash_word_ich8lan(hw,
2185                                                                 act_offset + i,
2186                                                                 &word);
2187                         if (ret_val)
2188                                 break;
2189                         data[i] = word;
2190                 }
2191         }
2192
2193         nvm->ops.release(hw);
2194
2195 out:
2196         if (ret_val)
2197                 e_dbg("NVM read error: %d\n", ret_val);
2198
2199         return ret_val;
2200 }
2201
2202 /**
2203  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2204  *  @hw: pointer to the HW structure
2205  *
2206  *  This function does initial flash setup so that a new read/write/erase cycle
2207  *  can be started.
2208  **/
2209 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2210 {
2211         union ich8_hws_flash_status hsfsts;
2212         s32 ret_val = -E1000_ERR_NVM;
2213
2214         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2215
2216         /* Check if the flash descriptor is valid */
2217         if (hsfsts.hsf_status.fldesvalid == 0) {
2218                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2219                 return -E1000_ERR_NVM;
2220         }
2221
2222         /* Clear FCERR and DAEL in hw status by writing 1 */
2223         hsfsts.hsf_status.flcerr = 1;
2224         hsfsts.hsf_status.dael = 1;
2225
2226         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2227
2228         /*
2229          * Either we should have a hardware SPI cycle in progress
2230          * bit to check against, in order to start a new cycle or
2231          * FDONE bit should be changed in the hardware so that it
2232          * is 1 after hardware reset, which can then be used as an
2233          * indication whether a cycle is in progress or has been
2234          * completed.
2235          */
2236
2237         if (hsfsts.hsf_status.flcinprog == 0) {
2238                 /*
2239                  * There is no cycle running at present,
2240                  * so we can start a cycle.
2241                  * Begin by setting Flash Cycle Done.
2242                  */
2243                 hsfsts.hsf_status.flcdone = 1;
2244                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2245                 ret_val = 0;
2246         } else {
2247                 s32 i;
2248
2249                 /*
2250                  * Otherwise poll for sometime so the current
2251                  * cycle has a chance to end before giving up.
2252                  */
2253                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2254                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2255                         if (hsfsts.hsf_status.flcinprog == 0) {
2256                                 ret_val = 0;
2257                                 break;
2258                         }
2259                         udelay(1);
2260                 }
2261                 if (!ret_val) {
2262                         /*
2263                          * Successful in waiting for previous cycle to timeout,
2264                          * now set the Flash Cycle Done.
2265                          */
2266                         hsfsts.hsf_status.flcdone = 1;
2267                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2268                 } else {
2269                         e_dbg("Flash controller busy, cannot get access\n");
2270                 }
2271         }
2272
2273         return ret_val;
2274 }
2275
2276 /**
2277  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2278  *  @hw: pointer to the HW structure
2279  *  @timeout: maximum time to wait for completion
2280  *
2281  *  This function starts a flash cycle and waits for its completion.
2282  **/
2283 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2284 {
2285         union ich8_hws_flash_ctrl hsflctl;
2286         union ich8_hws_flash_status hsfsts;
2287         u32 i = 0;
2288
2289         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2290         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2291         hsflctl.hsf_ctrl.flcgo = 1;
2292         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2293
2294         /* wait till FDONE bit is set to 1 */
2295         do {
2296                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2297                 if (hsfsts.hsf_status.flcdone == 1)
2298                         break;
2299                 udelay(1);
2300         } while (i++ < timeout);
2301
2302         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2303                 return 0;
2304
2305         return -E1000_ERR_NVM;
2306 }
2307
2308 /**
2309  *  e1000_read_flash_word_ich8lan - Read word from flash
2310  *  @hw: pointer to the HW structure
2311  *  @offset: offset to data location
2312  *  @data: pointer to the location for storing the data
2313  *
2314  *  Reads the flash word at offset into data.  Offset is converted
2315  *  to bytes before read.
2316  **/
2317 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2318                                          u16 *data)
2319 {
2320         /* Must convert offset into bytes. */
2321         offset <<= 1;
2322
2323         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2324 }
2325
2326 /**
2327  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2328  *  @hw: pointer to the HW structure
2329  *  @offset: The offset of the byte to read.
2330  *  @data: Pointer to a byte to store the value read.
2331  *
2332  *  Reads a single byte from the NVM using the flash access registers.
2333  **/
2334 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2335                                          u8 *data)
2336 {
2337         s32 ret_val;
2338         u16 word = 0;
2339
2340         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2341         if (ret_val)
2342                 return ret_val;
2343
2344         *data = (u8)word;
2345
2346         return 0;
2347 }
2348
2349 /**
2350  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2351  *  @hw: pointer to the HW structure
2352  *  @offset: The offset (in bytes) of the byte or word to read.
2353  *  @size: Size of data to read, 1=byte 2=word
2354  *  @data: Pointer to the word to store the value read.
2355  *
2356  *  Reads a byte or word from the NVM using the flash access registers.
2357  **/
2358 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2359                                          u8 size, u16 *data)
2360 {
2361         union ich8_hws_flash_status hsfsts;
2362         union ich8_hws_flash_ctrl hsflctl;
2363         u32 flash_linear_addr;
2364         u32 flash_data = 0;
2365         s32 ret_val = -E1000_ERR_NVM;
2366         u8 count = 0;
2367
2368         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2369                 return -E1000_ERR_NVM;
2370
2371         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2372                             hw->nvm.flash_base_addr;
2373
2374         do {
2375                 udelay(1);
2376                 /* Steps */
2377                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2378                 if (ret_val)
2379                         break;
2380
2381                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2382                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2383                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2384                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2385                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2386
2387                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2388
2389                 ret_val = e1000_flash_cycle_ich8lan(hw,
2390                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2391
2392                 /*
2393                  * Check if FCERR is set to 1, if set to 1, clear it
2394                  * and try the whole sequence a few more times, else
2395                  * read in (shift in) the Flash Data0, the order is
2396                  * least significant byte first msb to lsb
2397                  */
2398                 if (!ret_val) {
2399                         flash_data = er32flash(ICH_FLASH_FDATA0);
2400                         if (size == 1)
2401                                 *data = (u8)(flash_data & 0x000000FF);
2402                         else if (size == 2)
2403                                 *data = (u16)(flash_data & 0x0000FFFF);
2404                         break;
2405                 } else {
2406                         /*
2407                          * If we've gotten here, then things are probably
2408                          * completely hosed, but if the error condition is
2409                          * detected, it won't hurt to give it another try...
2410                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2411                          */
2412                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2413                         if (hsfsts.hsf_status.flcerr == 1) {
2414                                 /* Repeat for some time before giving up. */
2415                                 continue;
2416                         } else if (hsfsts.hsf_status.flcdone == 0) {
2417                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2418                                 break;
2419                         }
2420                 }
2421         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2422
2423         return ret_val;
2424 }
2425
2426 /**
2427  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2428  *  @hw: pointer to the HW structure
2429  *  @offset: The offset (in bytes) of the word(s) to write.
2430  *  @words: Size of data to write in words
2431  *  @data: Pointer to the word(s) to write at offset.
2432  *
2433  *  Writes a byte or word to the NVM using the flash access registers.
2434  **/
2435 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2436                                    u16 *data)
2437 {
2438         struct e1000_nvm_info *nvm = &hw->nvm;
2439         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2440         u16 i;
2441
2442         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2443             (words == 0)) {
2444                 e_dbg("nvm parameter(s) out of bounds\n");
2445                 return -E1000_ERR_NVM;
2446         }
2447
2448         nvm->ops.acquire(hw);
2449
2450         for (i = 0; i < words; i++) {
2451                 dev_spec->shadow_ram[offset+i].modified = true;
2452                 dev_spec->shadow_ram[offset+i].value = data[i];
2453         }
2454
2455         nvm->ops.release(hw);
2456
2457         return 0;
2458 }
2459
2460 /**
2461  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2462  *  @hw: pointer to the HW structure
2463  *
2464  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2465  *  which writes the checksum to the shadow ram.  The changes in the shadow
2466  *  ram are then committed to the EEPROM by processing each bank at a time
2467  *  checking for the modified bit and writing only the pending changes.
2468  *  After a successful commit, the shadow ram is cleared and is ready for
2469  *  future writes.
2470  **/
2471 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2472 {
2473         struct e1000_nvm_info *nvm = &hw->nvm;
2474         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2475         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2476         s32 ret_val;
2477         u16 data;
2478
2479         ret_val = e1000e_update_nvm_checksum_generic(hw);
2480         if (ret_val)
2481                 goto out;
2482
2483         if (nvm->type != e1000_nvm_flash_sw)
2484                 goto out;
2485
2486         nvm->ops.acquire(hw);
2487
2488         /*
2489          * We're writing to the opposite bank so if we're on bank 1,
2490          * write to bank 0 etc.  We also need to erase the segment that
2491          * is going to be written
2492          */
2493         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2494         if (ret_val) {
2495                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2496                 bank = 0;
2497         }
2498
2499         if (bank == 0) {
2500                 new_bank_offset = nvm->flash_bank_size;
2501                 old_bank_offset = 0;
2502                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2503                 if (ret_val)
2504                         goto release;
2505         } else {
2506                 old_bank_offset = nvm->flash_bank_size;
2507                 new_bank_offset = 0;
2508                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2509                 if (ret_val)
2510                         goto release;
2511         }
2512
2513         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2514                 /*
2515                  * Determine whether to write the value stored
2516                  * in the other NVM bank or a modified value stored
2517                  * in the shadow RAM
2518                  */
2519                 if (dev_spec->shadow_ram[i].modified) {
2520                         data = dev_spec->shadow_ram[i].value;
2521                 } else {
2522                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2523                                                                 old_bank_offset,
2524                                                                 &data);
2525                         if (ret_val)
2526                                 break;
2527                 }
2528
2529                 /*
2530                  * If the word is 0x13, then make sure the signature bits
2531                  * (15:14) are 11b until the commit has completed.
2532                  * This will allow us to write 10b which indicates the
2533                  * signature is valid.  We want to do this after the write
2534                  * has completed so that we don't mark the segment valid
2535                  * while the write is still in progress
2536                  */
2537                 if (i == E1000_ICH_NVM_SIG_WORD)
2538                         data |= E1000_ICH_NVM_SIG_MASK;
2539
2540                 /* Convert offset to bytes. */
2541                 act_offset = (i + new_bank_offset) << 1;
2542
2543                 udelay(100);
2544                 /* Write the bytes to the new bank. */
2545                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2546                                                                act_offset,
2547                                                                (u8)data);
2548                 if (ret_val)
2549                         break;
2550
2551                 udelay(100);
2552                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2553                                                           act_offset + 1,
2554                                                           (u8)(data >> 8));
2555                 if (ret_val)
2556                         break;
2557         }
2558
2559         /*
2560          * Don't bother writing the segment valid bits if sector
2561          * programming failed.
2562          */
2563         if (ret_val) {
2564                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2565                 e_dbg("Flash commit failed.\n");
2566                 goto release;
2567         }
2568
2569         /*
2570          * Finally validate the new segment by setting bit 15:14
2571          * to 10b in word 0x13 , this can be done without an
2572          * erase as well since these bits are 11 to start with
2573          * and we need to change bit 14 to 0b
2574          */
2575         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2576         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2577         if (ret_val)
2578                 goto release;
2579
2580         data &= 0xBFFF;
2581         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2582                                                        act_offset * 2 + 1,
2583                                                        (u8)(data >> 8));
2584         if (ret_val)
2585                 goto release;
2586
2587         /*
2588          * And invalidate the previously valid segment by setting
2589          * its signature word (0x13) high_byte to 0b. This can be
2590          * done without an erase because flash erase sets all bits
2591          * to 1's. We can write 1's to 0's without an erase
2592          */
2593         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2594         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2595         if (ret_val)
2596                 goto release;
2597
2598         /* Great!  Everything worked, we can now clear the cached entries. */
2599         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2600                 dev_spec->shadow_ram[i].modified = false;
2601                 dev_spec->shadow_ram[i].value = 0xFFFF;
2602         }
2603
2604 release:
2605         nvm->ops.release(hw);
2606
2607         /*
2608          * Reload the EEPROM, or else modifications will not appear
2609          * until after the next adapter reset.
2610          */
2611         if (!ret_val) {
2612                 e1000e_reload_nvm(hw);
2613                 usleep_range(10000, 20000);
2614         }
2615
2616 out:
2617         if (ret_val)
2618                 e_dbg("NVM update error: %d\n", ret_val);
2619
2620         return ret_val;
2621 }
2622
2623 /**
2624  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2625  *  @hw: pointer to the HW structure
2626  *
2627  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2628  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2629  *  calculated, in which case we need to calculate the checksum and set bit 6.
2630  **/
2631 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2632 {
2633         s32 ret_val;
2634         u16 data;
2635
2636         /*
2637          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2638          * needs to be fixed.  This bit is an indication that the NVM
2639          * was prepared by OEM software and did not calculate the
2640          * checksum...a likely scenario.
2641          */
2642         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2643         if (ret_val)
2644                 return ret_val;
2645
2646         if ((data & 0x40) == 0) {
2647                 data |= 0x40;
2648                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2649                 if (ret_val)
2650                         return ret_val;
2651                 ret_val = e1000e_update_nvm_checksum(hw);
2652                 if (ret_val)
2653                         return ret_val;
2654         }
2655
2656         return e1000e_validate_nvm_checksum_generic(hw);
2657 }
2658
2659 /**
2660  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2661  *  @hw: pointer to the HW structure
2662  *
2663  *  To prevent malicious write/erase of the NVM, set it to be read-only
2664  *  so that the hardware ignores all write/erase cycles of the NVM via
2665  *  the flash control registers.  The shadow-ram copy of the NVM will
2666  *  still be updated, however any updates to this copy will not stick
2667  *  across driver reloads.
2668  **/
2669 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2670 {
2671         struct e1000_nvm_info *nvm = &hw->nvm;
2672         union ich8_flash_protected_range pr0;
2673         union ich8_hws_flash_status hsfsts;
2674         u32 gfpreg;
2675
2676         nvm->ops.acquire(hw);
2677
2678         gfpreg = er32flash(ICH_FLASH_GFPREG);
2679
2680         /* Write-protect GbE Sector of NVM */
2681         pr0.regval = er32flash(ICH_FLASH_PR0);
2682         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2683         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2684         pr0.range.wpe = true;
2685         ew32flash(ICH_FLASH_PR0, pr0.regval);
2686
2687         /*
2688          * Lock down a subset of GbE Flash Control Registers, e.g.
2689          * PR0 to prevent the write-protection from being lifted.
2690          * Once FLOCKDN is set, the registers protected by it cannot
2691          * be written until FLOCKDN is cleared by a hardware reset.
2692          */
2693         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2694         hsfsts.hsf_status.flockdn = true;
2695         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2696
2697         nvm->ops.release(hw);
2698 }
2699
2700 /**
2701  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2702  *  @hw: pointer to the HW structure
2703  *  @offset: The offset (in bytes) of the byte/word to read.
2704  *  @size: Size of data to read, 1=byte 2=word
2705  *  @data: The byte(s) to write to the NVM.
2706  *
2707  *  Writes one/two bytes to the NVM using the flash access registers.
2708  **/
2709 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2710                                           u8 size, u16 data)
2711 {
2712         union ich8_hws_flash_status hsfsts;
2713         union ich8_hws_flash_ctrl hsflctl;
2714         u32 flash_linear_addr;
2715         u32 flash_data = 0;
2716         s32 ret_val;
2717         u8 count = 0;
2718
2719         if (size < 1 || size > 2 || data > size * 0xff ||
2720             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2721                 return -E1000_ERR_NVM;
2722
2723         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2724                             hw->nvm.flash_base_addr;
2725
2726         do {
2727                 udelay(1);
2728                 /* Steps */
2729                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2730                 if (ret_val)
2731                         break;
2732
2733                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2734                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2735                 hsflctl.hsf_ctrl.fldbcount = size -1;
2736                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2737                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2738
2739                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2740
2741                 if (size == 1)
2742                         flash_data = (u32)data & 0x00FF;
2743                 else
2744                         flash_data = (u32)data;
2745
2746                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2747
2748                 /*
2749                  * check if FCERR is set to 1 , if set to 1, clear it
2750                  * and try the whole sequence a few more times else done
2751                  */
2752                 ret_val = e1000_flash_cycle_ich8lan(hw,
2753                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2754                 if (!ret_val)
2755                         break;
2756
2757                 /*
2758                  * If we're here, then things are most likely
2759                  * completely hosed, but if the error condition
2760                  * is detected, it won't hurt to give it another
2761                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2762                  */
2763                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2764                 if (hsfsts.hsf_status.flcerr == 1)
2765                         /* Repeat for some time before giving up. */
2766                         continue;
2767                 if (hsfsts.hsf_status.flcdone == 0) {
2768                         e_dbg("Timeout error - flash cycle did not complete.\n");
2769                         break;
2770                 }
2771         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2772
2773         return ret_val;
2774 }
2775
2776 /**
2777  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2778  *  @hw: pointer to the HW structure
2779  *  @offset: The index of the byte to read.
2780  *  @data: The byte to write to the NVM.
2781  *
2782  *  Writes a single byte to the NVM using the flash access registers.
2783  **/
2784 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2785                                           u8 data)
2786 {
2787         u16 word = (u16)data;
2788
2789         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2790 }
2791
2792 /**
2793  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2794  *  @hw: pointer to the HW structure
2795  *  @offset: The offset of the byte to write.
2796  *  @byte: The byte to write to the NVM.
2797  *
2798  *  Writes a single byte to the NVM using the flash access registers.
2799  *  Goes through a retry algorithm before giving up.
2800  **/
2801 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2802                                                 u32 offset, u8 byte)
2803 {
2804         s32 ret_val;
2805         u16 program_retries;
2806
2807         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2808         if (!ret_val)
2809                 return ret_val;
2810
2811         for (program_retries = 0; program_retries < 100; program_retries++) {
2812                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2813                 udelay(100);
2814                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2815                 if (!ret_val)
2816                         break;
2817         }
2818         if (program_retries == 100)
2819                 return -E1000_ERR_NVM;
2820
2821         return 0;
2822 }
2823
2824 /**
2825  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2826  *  @hw: pointer to the HW structure
2827  *  @bank: 0 for first bank, 1 for second bank, etc.
2828  *
2829  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2830  *  bank N is 4096 * N + flash_reg_addr.
2831  **/
2832 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2833 {
2834         struct e1000_nvm_info *nvm = &hw->nvm;
2835         union ich8_hws_flash_status hsfsts;
2836         union ich8_hws_flash_ctrl hsflctl;
2837         u32 flash_linear_addr;
2838         /* bank size is in 16bit words - adjust to bytes */
2839         u32 flash_bank_size = nvm->flash_bank_size * 2;
2840         s32 ret_val;
2841         s32 count = 0;
2842         s32 j, iteration, sector_size;
2843
2844         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2845
2846         /*
2847          * Determine HW Sector size: Read BERASE bits of hw flash status
2848          * register
2849          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2850          *     consecutive sectors.  The start index for the nth Hw sector
2851          *     can be calculated as = bank * 4096 + n * 256
2852          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2853          *     The start index for the nth Hw sector can be calculated
2854          *     as = bank * 4096
2855          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2856          *     (ich9 only, otherwise error condition)
2857          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2858          */
2859         switch (hsfsts.hsf_status.berasesz) {
2860         case 0:
2861                 /* Hw sector size 256 */
2862                 sector_size = ICH_FLASH_SEG_SIZE_256;
2863                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2864                 break;
2865         case 1:
2866                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2867                 iteration = 1;
2868                 break;
2869         case 2:
2870                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2871                 iteration = 1;
2872                 break;
2873         case 3:
2874                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2875                 iteration = 1;
2876                 break;
2877         default:
2878                 return -E1000_ERR_NVM;
2879         }
2880
2881         /* Start with the base address, then add the sector offset. */
2882         flash_linear_addr = hw->nvm.flash_base_addr;
2883         flash_linear_addr += (bank) ? flash_bank_size : 0;
2884
2885         for (j = 0; j < iteration ; j++) {
2886                 do {
2887                         /* Steps */
2888                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2889                         if (ret_val)
2890                                 return ret_val;
2891
2892                         /*
2893                          * Write a value 11 (block Erase) in Flash
2894                          * Cycle field in hw flash control
2895                          */
2896                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2897                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2898                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2899
2900                         /*
2901                          * Write the last 24 bits of an index within the
2902                          * block into Flash Linear address field in Flash
2903                          * Address.
2904                          */
2905                         flash_linear_addr += (j * sector_size);
2906                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2907
2908                         ret_val = e1000_flash_cycle_ich8lan(hw,
2909                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2910                         if (!ret_val)
2911                                 break;
2912
2913                         /*
2914                          * Check if FCERR is set to 1.  If 1,
2915                          * clear it and try the whole sequence
2916                          * a few more times else Done
2917                          */
2918                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2919                         if (hsfsts.hsf_status.flcerr == 1)
2920                                 /* repeat for some time before giving up */
2921                                 continue;
2922                         else if (hsfsts.hsf_status.flcdone == 0)
2923                                 return ret_val;
2924                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2925         }
2926
2927         return 0;
2928 }
2929
2930 /**
2931  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2932  *  @hw: pointer to the HW structure
2933  *  @data: Pointer to the LED settings
2934  *
2935  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2936  *  settings is all 0's or F's, set the LED default to a valid LED default
2937  *  setting.
2938  **/
2939 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2940 {
2941         s32 ret_val;
2942
2943         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2944         if (ret_val) {
2945                 e_dbg("NVM Read Error\n");
2946                 return ret_val;
2947         }
2948
2949         if (*data == ID_LED_RESERVED_0000 ||
2950             *data == ID_LED_RESERVED_FFFF)
2951                 *data = ID_LED_DEFAULT_ICH8LAN;
2952
2953         return 0;
2954 }
2955
2956 /**
2957  *  e1000_id_led_init_pchlan - store LED configurations
2958  *  @hw: pointer to the HW structure
2959  *
2960  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2961  *  the PHY LED configuration register.
2962  *
2963  *  PCH also does not have an "always on" or "always off" mode which
2964  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2965  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
2966  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2967  *  link based on logic in e1000_led_[on|off]_pchlan().
2968  **/
2969 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2970 {
2971         struct e1000_mac_info *mac = &hw->mac;
2972         s32 ret_val;
2973         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2974         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2975         u16 data, i, temp, shift;
2976
2977         /* Get default ID LED modes */
2978         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2979         if (ret_val)
2980                 return ret_val;
2981
2982         mac->ledctl_default = er32(LEDCTL);
2983         mac->ledctl_mode1 = mac->ledctl_default;
2984         mac->ledctl_mode2 = mac->ledctl_default;
2985
2986         for (i = 0; i < 4; i++) {
2987                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2988                 shift = (i * 5);
2989                 switch (temp) {
2990                 case ID_LED_ON1_DEF2:
2991                 case ID_LED_ON1_ON2:
2992                 case ID_LED_ON1_OFF2:
2993                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2994                         mac->ledctl_mode1 |= (ledctl_on << shift);
2995                         break;
2996                 case ID_LED_OFF1_DEF2:
2997                 case ID_LED_OFF1_ON2:
2998                 case ID_LED_OFF1_OFF2:
2999                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3000                         mac->ledctl_mode1 |= (ledctl_off << shift);
3001                         break;
3002                 default:
3003                         /* Do nothing */
3004                         break;
3005                 }
3006                 switch (temp) {
3007                 case ID_LED_DEF1_ON2:
3008                 case ID_LED_ON1_ON2:
3009                 case ID_LED_OFF1_ON2:
3010                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3011                         mac->ledctl_mode2 |= (ledctl_on << shift);
3012                         break;
3013                 case ID_LED_DEF1_OFF2:
3014                 case ID_LED_ON1_OFF2:
3015                 case ID_LED_OFF1_OFF2:
3016                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3017                         mac->ledctl_mode2 |= (ledctl_off << shift);
3018                         break;
3019                 default:
3020                         /* Do nothing */
3021                         break;
3022                 }
3023         }
3024
3025         return 0;
3026 }
3027
3028 /**
3029  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3030  *  @hw: pointer to the HW structure
3031  *
3032  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3033  *  register, so the the bus width is hard coded.
3034  **/
3035 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3036 {
3037         struct e1000_bus_info *bus = &hw->bus;
3038         s32 ret_val;
3039
3040         ret_val = e1000e_get_bus_info_pcie(hw);
3041
3042         /*
3043          * ICH devices are "PCI Express"-ish.  They have
3044          * a configuration space, but do not contain
3045          * PCI Express Capability registers, so bus width
3046          * must be hardcoded.
3047          */
3048         if (bus->width == e1000_bus_width_unknown)
3049                 bus->width = e1000_bus_width_pcie_x1;
3050
3051         return ret_val;
3052 }
3053
3054 /**
3055  *  e1000_reset_hw_ich8lan - Reset the hardware
3056  *  @hw: pointer to the HW structure
3057  *
3058  *  Does a full reset of the hardware which includes a reset of the PHY and
3059  *  MAC.
3060  **/
3061 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3062 {
3063         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3064         u16 reg;
3065         u32 ctrl, kab;
3066         s32 ret_val;
3067
3068         /*
3069          * Prevent the PCI-E bus from sticking if there is no TLP connection
3070          * on the last TLP read/write transaction when MAC is reset.
3071          */
3072         ret_val = e1000e_disable_pcie_master(hw);
3073         if (ret_val)
3074                 e_dbg("PCI-E Master disable polling has failed.\n");
3075
3076         e_dbg("Masking off all interrupts\n");
3077         ew32(IMC, 0xffffffff);
3078
3079         /*
3080          * Disable the Transmit and Receive units.  Then delay to allow
3081          * any pending transactions to complete before we hit the MAC
3082          * with the global reset.
3083          */
3084         ew32(RCTL, 0);
3085         ew32(TCTL, E1000_TCTL_PSP);
3086         e1e_flush();
3087
3088         usleep_range(10000, 20000);
3089
3090         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3091         if (hw->mac.type == e1000_ich8lan) {
3092                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3093                 ew32(PBA, E1000_PBA_8K);
3094                 /* Set Packet Buffer Size to 16k. */
3095                 ew32(PBS, E1000_PBS_16K);
3096         }
3097
3098         if (hw->mac.type == e1000_pchlan) {
3099                 /* Save the NVM K1 bit setting*/
3100                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3101                 if (ret_val)
3102                         return ret_val;
3103
3104                 if (reg & E1000_NVM_K1_ENABLE)
3105                         dev_spec->nvm_k1_enabled = true;
3106                 else
3107                         dev_spec->nvm_k1_enabled = false;
3108         }
3109
3110         ctrl = er32(CTRL);
3111
3112         if (!hw->phy.ops.check_reset_block(hw)) {
3113                 /*
3114                  * Full-chip reset requires MAC and PHY reset at the same
3115                  * time to make sure the interface between MAC and the
3116                  * external PHY is reset.
3117                  */
3118                 ctrl |= E1000_CTRL_PHY_RST;
3119
3120                 /*
3121                  * Gate automatic PHY configuration by hardware on
3122                  * non-managed 82579
3123                  */
3124                 if ((hw->mac.type == e1000_pch2lan) &&
3125                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3126                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3127         }
3128         ret_val = e1000_acquire_swflag_ich8lan(hw);
3129         e_dbg("Issuing a global reset to ich8lan\n");
3130         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3131         /* cannot issue a flush here because it hangs the hardware */
3132         msleep(20);
3133
3134         if (!ret_val)
3135                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3136
3137         if (ctrl & E1000_CTRL_PHY_RST) {
3138                 ret_val = hw->phy.ops.get_cfg_done(hw);
3139                 if (ret_val)
3140                         return ret_val;
3141
3142                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3143                 if (ret_val)
3144                         return ret_val;
3145         }
3146
3147         /*
3148          * For PCH, this write will make sure that any noise
3149          * will be detected as a CRC error and be dropped rather than show up
3150          * as a bad packet to the DMA engine.
3151          */
3152         if (hw->mac.type == e1000_pchlan)
3153                 ew32(CRC_OFFSET, 0x65656565);
3154
3155         ew32(IMC, 0xffffffff);
3156         er32(ICR);
3157
3158         kab = er32(KABGTXD);
3159         kab |= E1000_KABGTXD_BGSQLBIAS;
3160         ew32(KABGTXD, kab);
3161
3162         return 0;
3163 }
3164
3165 /**
3166  *  e1000_init_hw_ich8lan - Initialize the hardware
3167  *  @hw: pointer to the HW structure
3168  *
3169  *  Prepares the hardware for transmit and receive by doing the following:
3170  *   - initialize hardware bits
3171  *   - initialize LED identification
3172  *   - setup receive address registers
3173  *   - setup flow control
3174  *   - setup transmit descriptors
3175  *   - clear statistics
3176  **/
3177 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3178 {
3179         struct e1000_mac_info *mac = &hw->mac;
3180         u32 ctrl_ext, txdctl, snoop;
3181         s32 ret_val;
3182         u16 i;
3183
3184         e1000_initialize_hw_bits_ich8lan(hw);
3185
3186         /* Initialize identification LED */
3187         ret_val = mac->ops.id_led_init(hw);
3188         if (ret_val)
3189                 e_dbg("Error initializing identification LED\n");
3190                 /* This is not fatal and we should not stop init due to this */
3191
3192         /* Setup the receive address. */
3193         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3194
3195         /* Zero out the Multicast HASH table */
3196         e_dbg("Zeroing the MTA\n");
3197         for (i = 0; i < mac->mta_reg_count; i++)
3198                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3199
3200         /*
3201          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3202          * the ME.  Disable wakeup by clearing the host wakeup bit.
3203          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3204          */
3205         if (hw->phy.type == e1000_phy_82578) {
3206                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3207                 i &= ~BM_WUC_HOST_WU_BIT;
3208                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3209                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3210                 if (ret_val)
3211                         return ret_val;
3212         }
3213
3214         /* Setup link and flow control */
3215         ret_val = mac->ops.setup_link(hw);
3216
3217         /* Set the transmit descriptor write-back policy for both queues */
3218         txdctl = er32(TXDCTL(0));
3219         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3220                  E1000_TXDCTL_FULL_TX_DESC_WB;
3221         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3222                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3223         ew32(TXDCTL(0), txdctl);
3224         txdctl = er32(TXDCTL(1));
3225         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3226                  E1000_TXDCTL_FULL_TX_DESC_WB;
3227         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3228                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3229         ew32(TXDCTL(1), txdctl);
3230
3231         /*
3232          * ICH8 has opposite polarity of no_snoop bits.
3233          * By default, we should use snoop behavior.
3234          */
3235         if (mac->type == e1000_ich8lan)
3236                 snoop = PCIE_ICH8_SNOOP_ALL;
3237         else
3238                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3239         e1000e_set_pcie_no_snoop(hw, snoop);
3240
3241         ctrl_ext = er32(CTRL_EXT);
3242         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3243         ew32(CTRL_EXT, ctrl_ext);
3244
3245         /*
3246          * Clear all of the statistics registers (clear on read).  It is
3247          * important that we do this after we have tried to establish link
3248          * because the symbol error count will increment wildly if there
3249          * is no link.
3250          */
3251         e1000_clear_hw_cntrs_ich8lan(hw);
3252
3253         return ret_val;
3254 }
3255 /**
3256  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3257  *  @hw: pointer to the HW structure
3258  *
3259  *  Sets/Clears required hardware bits necessary for correctly setting up the
3260  *  hardware for transmit and receive.
3261  **/
3262 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3263 {
3264         u32 reg;
3265
3266         /* Extended Device Control */
3267         reg = er32(CTRL_EXT);
3268         reg |= (1 << 22);
3269         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3270         if (hw->mac.type >= e1000_pchlan)
3271                 reg |= E1000_CTRL_EXT_PHYPDEN;
3272         ew32(CTRL_EXT, reg);
3273
3274         /* Transmit Descriptor Control 0 */
3275         reg = er32(TXDCTL(0));
3276         reg |= (1 << 22);
3277         ew32(TXDCTL(0), reg);
3278
3279         /* Transmit Descriptor Control 1 */
3280         reg = er32(TXDCTL(1));
3281         reg |= (1 << 22);
3282         ew32(TXDCTL(1), reg);
3283
3284         /* Transmit Arbitration Control 0 */
3285         reg = er32(TARC(0));
3286         if (hw->mac.type == e1000_ich8lan)
3287                 reg |= (1 << 28) | (1 << 29);
3288         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3289         ew32(TARC(0), reg);
3290
3291         /* Transmit Arbitration Control 1 */
3292         reg = er32(TARC(1));
3293         if (er32(TCTL) & E1000_TCTL_MULR)
3294                 reg &= ~(1 << 28);
3295         else
3296                 reg |= (1 << 28);
3297         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3298         ew32(TARC(1), reg);
3299
3300         /* Device Status */
3301         if (hw->mac.type == e1000_ich8lan) {
3302                 reg = er32(STATUS);
3303                 reg &= ~(1 << 31);
3304                 ew32(STATUS, reg);
3305         }
3306
3307         /*
3308          * work-around descriptor data corruption issue during nfs v2 udp
3309          * traffic, just disable the nfs filtering capability
3310          */
3311         reg = er32(RFCTL);
3312         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3313         ew32(RFCTL, reg);
3314 }
3315
3316 /**
3317  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3318  *  @hw: pointer to the HW structure
3319  *
3320  *  Determines which flow control settings to use, then configures flow
3321  *  control.  Calls the appropriate media-specific link configuration
3322  *  function.  Assuming the adapter has a valid link partner, a valid link
3323  *  should be established.  Assumes the hardware has previously been reset
3324  *  and the transmitter and receiver are not enabled.
3325  **/
3326 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3327 {
3328         s32 ret_val;
3329
3330         if (hw->phy.ops.check_reset_block(hw))
3331                 return 0;
3332
3333         /*
3334          * ICH parts do not have a word in the NVM to determine
3335          * the default flow control setting, so we explicitly
3336          * set it to full.
3337          */
3338         if (hw->fc.requested_mode == e1000_fc_default) {
3339                 /* Workaround h/w hang when Tx flow control enabled */
3340                 if (hw->mac.type == e1000_pchlan)
3341                         hw->fc.requested_mode = e1000_fc_rx_pause;
3342                 else
3343                         hw->fc.requested_mode = e1000_fc_full;
3344         }
3345
3346         /*
3347          * Save off the requested flow control mode for use later.  Depending
3348          * on the link partner's capabilities, we may or may not use this mode.
3349          */
3350         hw->fc.current_mode = hw->fc.requested_mode;
3351
3352         e_dbg("After fix-ups FlowControl is now = %x\n",
3353                 hw->fc.current_mode);
3354
3355         /* Continue to configure the copper link. */
3356         ret_val = hw->mac.ops.setup_physical_interface(hw);
3357         if (ret_val)
3358                 return ret_val;
3359
3360         ew32(FCTTV, hw->fc.pause_time);
3361         if ((hw->phy.type == e1000_phy_82578) ||
3362             (hw->phy.type == e1000_phy_82579) ||
3363             (hw->phy.type == e1000_phy_82577)) {
3364                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3365
3366                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3367                                    hw->fc.pause_time);
3368                 if (ret_val)
3369                         return ret_val;
3370         }
3371
3372         return e1000e_set_fc_watermarks(hw);
3373 }
3374
3375 /**
3376  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3377  *  @hw: pointer to the HW structure
3378  *
3379  *  Configures the kumeran interface to the PHY to wait the appropriate time
3380  *  when polling the PHY, then call the generic setup_copper_link to finish
3381  *  configuring the copper link.
3382  **/
3383 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3384 {
3385         u32 ctrl;
3386         s32 ret_val;
3387         u16 reg_data;
3388
3389         ctrl = er32(CTRL);
3390         ctrl |= E1000_CTRL_SLU;
3391         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3392         ew32(CTRL, ctrl);
3393
3394         /*
3395          * Set the mac to wait the maximum time between each iteration
3396          * and increase the max iterations when polling the phy;
3397          * this fixes erroneous timeouts at 10Mbps.
3398          */
3399         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3400         if (ret_val)
3401                 return ret_val;
3402         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3403                                        &reg_data);
3404         if (ret_val)
3405                 return ret_val;
3406         reg_data |= 0x3F;
3407         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3408                                         reg_data);
3409         if (ret_val)
3410                 return ret_val;
3411
3412         switch (hw->phy.type) {
3413         case e1000_phy_igp_3:
3414                 ret_val = e1000e_copper_link_setup_igp(hw);
3415                 if (ret_val)
3416                         return ret_val;
3417                 break;
3418         case e1000_phy_bm:
3419         case e1000_phy_82578:
3420                 ret_val = e1000e_copper_link_setup_m88(hw);
3421                 if (ret_val)
3422                         return ret_val;
3423                 break;
3424         case e1000_phy_82577:
3425         case e1000_phy_82579:
3426                 ret_val = e1000_copper_link_setup_82577(hw);
3427                 if (ret_val)
3428                         return ret_val;
3429                 break;
3430         case e1000_phy_ife:
3431                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3432                 if (ret_val)
3433                         return ret_val;
3434
3435                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3436
3437                 switch (hw->phy.mdix) {
3438                 case 1:
3439                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3440                         break;
3441                 case 2:
3442                         reg_data |= IFE_PMC_FORCE_MDIX;
3443                         break;
3444                 case 0:
3445                 default:
3446                         reg_data |= IFE_PMC_AUTO_MDIX;
3447                         break;
3448                 }
3449                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3450                 if (ret_val)
3451                         return ret_val;
3452                 break;
3453         default:
3454                 break;
3455         }
3456
3457         return e1000e_setup_copper_link(hw);
3458 }
3459
3460 /**
3461  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3462  *  @hw: pointer to the HW structure
3463  *  @speed: pointer to store current link speed
3464  *  @duplex: pointer to store the current link duplex
3465  *
3466  *  Calls the generic get_speed_and_duplex to retrieve the current link
3467  *  information and then calls the Kumeran lock loss workaround for links at
3468  *  gigabit speeds.
3469  **/
3470 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3471                                           u16 *duplex)
3472 {
3473         s32 ret_val;
3474
3475         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3476         if (ret_val)
3477                 return ret_val;
3478
3479         if ((hw->mac.type == e1000_ich8lan) &&
3480             (hw->phy.type == e1000_phy_igp_3) &&
3481             (*speed == SPEED_1000)) {
3482                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3483         }
3484
3485         return ret_val;
3486 }
3487
3488 /**
3489  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3490  *  @hw: pointer to the HW structure
3491  *
3492  *  Work-around for 82566 Kumeran PCS lock loss:
3493  *  On link status change (i.e. PCI reset, speed change) and link is up and
3494  *  speed is gigabit-
3495  *    0) if workaround is optionally disabled do nothing
3496  *    1) wait 1ms for Kumeran link to come up
3497  *    2) check Kumeran Diagnostic register PCS lock loss bit
3498  *    3) if not set the link is locked (all is good), otherwise...
3499  *    4) reset the PHY
3500  *    5) repeat up to 10 times
3501  *  Note: this is only called for IGP3 copper when speed is 1gb.
3502  **/
3503 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3504 {
3505         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3506         u32 phy_ctrl;
3507         s32 ret_val;
3508         u16 i, data;
3509         bool link;
3510
3511         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3512                 return 0;
3513
3514         /*
3515          * Make sure link is up before proceeding.  If not just return.
3516          * Attempting this while link is negotiating fouled up link
3517          * stability
3518          */
3519         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3520         if (!link)
3521                 return 0;
3522
3523         for (i = 0; i < 10; i++) {
3524                 /* read once to clear */
3525                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3526                 if (ret_val)
3527                         return ret_val;
3528                 /* and again to get new status */
3529                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3530                 if (ret_val)
3531                         return ret_val;
3532
3533                 /* check for PCS lock */
3534                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3535                         return 0;
3536
3537                 /* Issue PHY reset */
3538                 e1000_phy_hw_reset(hw);
3539                 mdelay(5);
3540         }
3541         /* Disable GigE link negotiation */
3542         phy_ctrl = er32(PHY_CTRL);
3543         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3544                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3545         ew32(PHY_CTRL, phy_ctrl);
3546
3547         /*
3548          * Call gig speed drop workaround on Gig disable before accessing
3549          * any PHY registers
3550          */
3551         e1000e_gig_downshift_workaround_ich8lan(hw);
3552
3553         /* unable to acquire PCS lock */
3554         return -E1000_ERR_PHY;
3555 }
3556
3557 /**
3558  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3559  *  @hw: pointer to the HW structure
3560  *  @state: boolean value used to set the current Kumeran workaround state
3561  *
3562  *  If ICH8, set the current Kumeran workaround state (enabled - true
3563  *  /disabled - false).
3564  **/
3565 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3566                                                  bool state)
3567 {
3568         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3569
3570         if (hw->mac.type != e1000_ich8lan) {
3571                 e_dbg("Workaround applies to ICH8 only.\n");
3572                 return;
3573         }
3574
3575         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3576 }
3577
3578 /**
3579  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3580  *  @hw: pointer to the HW structure
3581  *
3582  *  Workaround for 82566 power-down on D3 entry:
3583  *    1) disable gigabit link
3584  *    2) write VR power-down enable
3585  *    3) read it back
3586  *  Continue if successful, else issue LCD reset and repeat
3587  **/
3588 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3589 {
3590         u32 reg;
3591         u16 data;
3592         u8  retry = 0;
3593
3594         if (hw->phy.type != e1000_phy_igp_3)
3595                 return;
3596
3597         /* Try the workaround twice (if needed) */
3598         do {
3599                 /* Disable link */
3600                 reg = er32(PHY_CTRL);
3601                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3602                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3603                 ew32(PHY_CTRL, reg);
3604
3605                 /*
3606                  * Call gig speed drop workaround on Gig disable before
3607                  * accessing any PHY registers
3608                  */
3609                 if (hw->mac.type == e1000_ich8lan)
3610                         e1000e_gig_downshift_workaround_ich8lan(hw);
3611
3612                 /* Write VR power-down enable */
3613                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3614                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3615                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3616
3617                 /* Read it back and test */
3618                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3619                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3620                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3621                         break;
3622
3623                 /* Issue PHY reset and repeat at most one more time */
3624                 reg = er32(CTRL);
3625                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3626                 retry++;
3627         } while (retry);
3628 }
3629
3630 /**
3631  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3632  *  @hw: pointer to the HW structure
3633  *
3634  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3635  *  LPLU, Gig disable, MDIC PHY reset):
3636  *    1) Set Kumeran Near-end loopback
3637  *    2) Clear Kumeran Near-end loopback
3638  *  Should only be called for ICH8[m] devices with any 1G Phy.
3639  **/
3640 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3641 {
3642         s32 ret_val;
3643         u16 reg_data;
3644
3645         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3646                 return;
3647
3648         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3649                                       &reg_data);
3650         if (ret_val)
3651                 return;
3652         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3653         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3654                                        reg_data);
3655         if (ret_val)
3656                 return;
3657         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3658         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3659                                        reg_data);
3660 }
3661
3662 /**
3663  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3664  *  @hw: pointer to the HW structure
3665  *
3666  *  During S0 to Sx transition, it is possible the link remains at gig
3667  *  instead of negotiating to a lower speed.  Before going to Sx, set
3668  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3669  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3670  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3671  *  needs to be written.
3672  **/
3673 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3674 {
3675         u32 phy_ctrl;
3676         s32 ret_val;
3677
3678         phy_ctrl = er32(PHY_CTRL);
3679         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3680         ew32(PHY_CTRL, phy_ctrl);
3681
3682         if (hw->mac.type == e1000_ich8lan)
3683                 e1000e_gig_downshift_workaround_ich8lan(hw);
3684
3685         if (hw->mac.type >= e1000_pchlan) {
3686                 e1000_oem_bits_config_ich8lan(hw, false);
3687                 e1000_phy_hw_reset_ich8lan(hw);
3688                 ret_val = hw->phy.ops.acquire(hw);
3689                 if (ret_val)
3690                         return;
3691                 e1000_write_smbus_addr(hw);
3692                 hw->phy.ops.release(hw);
3693         }
3694 }
3695
3696 /**
3697  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3698  *  @hw: pointer to the HW structure
3699  *
3700  *  During Sx to S0 transitions on non-managed devices or managed devices
3701  *  on which PHY resets are not blocked, if the PHY registers cannot be
3702  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3703  *  the PHY.
3704  **/
3705 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3706 {
3707         u16 phy_id1, phy_id2;
3708         s32 ret_val;
3709
3710         if ((hw->mac.type != e1000_pch2lan) ||
3711             hw->phy.ops.check_reset_block(hw))
3712                 return;
3713
3714         ret_val = hw->phy.ops.acquire(hw);
3715         if (ret_val) {
3716                 e_dbg("Failed to acquire PHY semaphore in resume\n");
3717                 return;
3718         }
3719
3720         /* Test access to the PHY registers by reading the ID regs */
3721         ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3722         if (ret_val)
3723                 goto release;
3724         ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3725         if (ret_val)
3726                 goto release;
3727
3728         if (hw->phy.id == ((u32)(phy_id1 << 16) |
3729                            (u32)(phy_id2 & PHY_REVISION_MASK)))
3730                 goto release;
3731
3732         e1000_toggle_lanphypc_value_ich8lan(hw);
3733
3734         hw->phy.ops.release(hw);
3735         msleep(50);
3736         e1000_phy_hw_reset(hw);
3737         msleep(50);
3738         return;
3739
3740 release:
3741         hw->phy.ops.release(hw);
3742 }
3743
3744 /**
3745  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3746  *  @hw: pointer to the HW structure
3747  *
3748  *  Return the LED back to the default configuration.
3749  **/
3750 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3751 {
3752         if (hw->phy.type == e1000_phy_ife)
3753                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3754
3755         ew32(LEDCTL, hw->mac.ledctl_default);
3756         return 0;
3757 }
3758
3759 /**
3760  *  e1000_led_on_ich8lan - Turn LEDs on
3761  *  @hw: pointer to the HW structure
3762  *
3763  *  Turn on the LEDs.
3764  **/
3765 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3766 {
3767         if (hw->phy.type == e1000_phy_ife)
3768                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3769                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3770
3771         ew32(LEDCTL, hw->mac.ledctl_mode2);
3772         return 0;
3773 }
3774
3775 /**
3776  *  e1000_led_off_ich8lan - Turn LEDs off
3777  *  @hw: pointer to the HW structure
3778  *
3779  *  Turn off the LEDs.
3780  **/
3781 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3782 {
3783         if (hw->phy.type == e1000_phy_ife)
3784                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3785                                 (IFE_PSCL_PROBE_MODE |
3786                                  IFE_PSCL_PROBE_LEDS_OFF));
3787
3788         ew32(LEDCTL, hw->mac.ledctl_mode1);
3789         return 0;
3790 }
3791
3792 /**
3793  *  e1000_setup_led_pchlan - Configures SW controllable LED
3794  *  @hw: pointer to the HW structure
3795  *
3796  *  This prepares the SW controllable LED for use.
3797  **/
3798 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3799 {
3800         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3801 }
3802
3803 /**
3804  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3805  *  @hw: pointer to the HW structure
3806  *
3807  *  Return the LED back to the default configuration.
3808  **/
3809 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3810 {
3811         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3812 }
3813
3814 /**
3815  *  e1000_led_on_pchlan - Turn LEDs on
3816  *  @hw: pointer to the HW structure
3817  *
3818  *  Turn on the LEDs.
3819  **/
3820 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3821 {
3822         u16 data = (u16)hw->mac.ledctl_mode2;
3823         u32 i, led;
3824
3825         /*
3826          * If no link, then turn LED on by setting the invert bit
3827          * for each LED that's mode is "link_up" in ledctl_mode2.
3828          */
3829         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3830                 for (i = 0; i < 3; i++) {
3831                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3832                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3833                             E1000_LEDCTL_MODE_LINK_UP)
3834                                 continue;
3835                         if (led & E1000_PHY_LED0_IVRT)
3836                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3837                         else
3838                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3839                 }
3840         }
3841
3842         return e1e_wphy(hw, HV_LED_CONFIG, data);
3843 }
3844
3845 /**
3846  *  e1000_led_off_pchlan - Turn LEDs off
3847  *  @hw: pointer to the HW structure
3848  *
3849  *  Turn off the LEDs.
3850  **/
3851 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3852 {
3853         u16 data = (u16)hw->mac.ledctl_mode1;
3854         u32 i, led;
3855
3856         /*
3857          * If no link, then turn LED off by clearing the invert bit
3858          * for each LED that's mode is "link_up" in ledctl_mode1.
3859          */
3860         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3861                 for (i = 0; i < 3; i++) {
3862                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3863                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3864                             E1000_LEDCTL_MODE_LINK_UP)
3865                                 continue;
3866                         if (led & E1000_PHY_LED0_IVRT)
3867                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3868                         else
3869                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3870                 }
3871         }
3872
3873         return e1e_wphy(hw, HV_LED_CONFIG, data);
3874 }
3875
3876 /**
3877  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3878  *  @hw: pointer to the HW structure
3879  *
3880  *  Read appropriate register for the config done bit for completion status
3881  *  and configure the PHY through s/w for EEPROM-less parts.
3882  *
3883  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3884  *  config done bit, so only an error is logged and continues.  If we were
3885  *  to return with error, EEPROM-less silicon would not be able to be reset
3886  *  or change link.
3887  **/
3888 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3889 {
3890         s32 ret_val = 0;
3891         u32 bank = 0;
3892         u32 status;
3893
3894         e1000e_get_cfg_done(hw);
3895
3896         /* Wait for indication from h/w that it has completed basic config */
3897         if (hw->mac.type >= e1000_ich10lan) {
3898                 e1000_lan_init_done_ich8lan(hw);
3899         } else {
3900                 ret_val = e1000e_get_auto_rd_done(hw);
3901                 if (ret_val) {
3902                         /*
3903                          * When auto config read does not complete, do not
3904                          * return with an error. This can happen in situations
3905                          * where there is no eeprom and prevents getting link.
3906                          */
3907                         e_dbg("Auto Read Done did not complete\n");
3908                         ret_val = 0;
3909                 }
3910         }
3911
3912         /* Clear PHY Reset Asserted bit */
3913         status = er32(STATUS);
3914         if (status & E1000_STATUS_PHYRA)
3915                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3916         else
3917                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3918
3919         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3920         if (hw->mac.type <= e1000_ich9lan) {
3921                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3922                     (hw->phy.type == e1000_phy_igp_3)) {
3923                         e1000e_phy_init_script_igp3(hw);
3924                 }
3925         } else {
3926                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3927                         /* Maybe we should do a basic PHY config */
3928                         e_dbg("EEPROM not present\n");
3929                         ret_val = -E1000_ERR_CONFIG;
3930                 }
3931         }
3932
3933         return ret_val;
3934 }
3935
3936 /**
3937  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3938  * @hw: pointer to the HW structure
3939  *
3940  * In the case of a PHY power down to save power, or to turn off link during a
3941  * driver unload, or wake on lan is not enabled, remove the link.
3942  **/
3943 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3944 {
3945         /* If the management interface is not enabled, then power down */
3946         if (!(hw->mac.ops.check_mng_mode(hw) ||
3947               hw->phy.ops.check_reset_block(hw)))
3948                 e1000_power_down_phy_copper(hw);
3949 }
3950
3951 /**
3952  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3953  *  @hw: pointer to the HW structure
3954  *
3955  *  Clears hardware counters specific to the silicon family and calls
3956  *  clear_hw_cntrs_generic to clear all general purpose counters.
3957  **/
3958 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3959 {
3960         u16 phy_data;
3961         s32 ret_val;
3962
3963         e1000e_clear_hw_cntrs_base(hw);
3964
3965         er32(ALGNERRC);
3966         er32(RXERRC);
3967         er32(TNCRS);
3968         er32(CEXTERR);
3969         er32(TSCTC);
3970         er32(TSCTFC);
3971
3972         er32(MGTPRC);
3973         er32(MGTPDC);
3974         er32(MGTPTC);
3975
3976         er32(IAC);
3977         er32(ICRXOC);
3978
3979         /* Clear PHY statistics registers */
3980         if ((hw->phy.type == e1000_phy_82578) ||
3981             (hw->phy.type == e1000_phy_82579) ||
3982             (hw->phy.type == e1000_phy_82577)) {
3983                 ret_val = hw->phy.ops.acquire(hw);
3984                 if (ret_val)
3985                         return;
3986                 ret_val = hw->phy.ops.set_page(hw,
3987                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
3988                 if (ret_val)
3989                         goto release;
3990                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3991                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3992                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3993                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3994                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3995                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3996                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3997                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3998                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3999                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4000                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4001                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4002                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4003                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4004 release:
4005                 hw->phy.ops.release(hw);
4006         }
4007 }
4008
4009 static const struct e1000_mac_operations ich8_mac_ops = {
4010         /* check_mng_mode dependent on mac type */
4011         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4012         /* cleanup_led dependent on mac type */
4013         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4014         .get_bus_info           = e1000_get_bus_info_ich8lan,
4015         .set_lan_id             = e1000_set_lan_id_single_port,
4016         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4017         /* led_on dependent on mac type */
4018         /* led_off dependent on mac type */
4019         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4020         .reset_hw               = e1000_reset_hw_ich8lan,
4021         .init_hw                = e1000_init_hw_ich8lan,
4022         .setup_link             = e1000_setup_link_ich8lan,
4023         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4024         /* id_led_init dependent on mac type */
4025 };
4026
4027 static const struct e1000_phy_operations ich8_phy_ops = {
4028         .acquire                = e1000_acquire_swflag_ich8lan,
4029         .check_reset_block      = e1000_check_reset_block_ich8lan,
4030         .commit                 = NULL,
4031         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4032         .get_cable_length       = e1000e_get_cable_length_igp_2,
4033         .read_reg               = e1000e_read_phy_reg_igp,
4034         .release                = e1000_release_swflag_ich8lan,
4035         .reset                  = e1000_phy_hw_reset_ich8lan,
4036         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4037         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4038         .write_reg              = e1000e_write_phy_reg_igp,
4039 };
4040
4041 static const struct e1000_nvm_operations ich8_nvm_ops = {
4042         .acquire                = e1000_acquire_nvm_ich8lan,
4043         .read                   = e1000_read_nvm_ich8lan,
4044         .release                = e1000_release_nvm_ich8lan,
4045         .update                 = e1000_update_nvm_checksum_ich8lan,
4046         .valid_led_default      = e1000_valid_led_default_ich8lan,
4047         .validate               = e1000_validate_nvm_checksum_ich8lan,
4048         .write                  = e1000_write_nvm_ich8lan,
4049 };
4050
4051 const struct e1000_info e1000_ich8_info = {
4052         .mac                    = e1000_ich8lan,
4053         .flags                  = FLAG_HAS_WOL
4054                                   | FLAG_IS_ICH
4055                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4056                                   | FLAG_HAS_AMT
4057                                   | FLAG_HAS_FLASH
4058                                   | FLAG_APME_IN_WUC,
4059         .pba                    = 8,
4060         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4061         .get_variants           = e1000_get_variants_ich8lan,
4062         .mac_ops                = &ich8_mac_ops,
4063         .phy_ops                = &ich8_phy_ops,
4064         .nvm_ops                = &ich8_nvm_ops,
4065 };
4066
4067 const struct e1000_info e1000_ich9_info = {
4068         .mac                    = e1000_ich9lan,
4069         .flags                  = FLAG_HAS_JUMBO_FRAMES
4070                                   | FLAG_IS_ICH
4071                                   | FLAG_HAS_WOL
4072                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4073                                   | FLAG_HAS_AMT
4074                                   | FLAG_HAS_FLASH
4075                                   | FLAG_APME_IN_WUC,
4076         .pba                    = 18,
4077         .max_hw_frame_size      = DEFAULT_JUMBO,
4078         .get_variants           = e1000_get_variants_ich8lan,
4079         .mac_ops                = &ich8_mac_ops,
4080         .phy_ops                = &ich8_phy_ops,
4081         .nvm_ops                = &ich8_nvm_ops,
4082 };
4083
4084 const struct e1000_info e1000_ich10_info = {
4085         .mac                    = e1000_ich10lan,
4086         .flags                  = FLAG_HAS_JUMBO_FRAMES
4087                                   | FLAG_IS_ICH
4088                                   | FLAG_HAS_WOL
4089                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4090                                   | FLAG_HAS_AMT
4091                                   | FLAG_HAS_FLASH
4092                                   | FLAG_APME_IN_WUC,
4093         .pba                    = 18,
4094         .max_hw_frame_size      = DEFAULT_JUMBO,
4095         .get_variants           = e1000_get_variants_ich8lan,
4096         .mac_ops                = &ich8_mac_ops,
4097         .phy_ops                = &ich8_phy_ops,
4098         .nvm_ops                = &ich8_nvm_ops,
4099 };
4100
4101 const struct e1000_info e1000_pch_info = {
4102         .mac                    = e1000_pchlan,
4103         .flags                  = FLAG_IS_ICH
4104                                   | FLAG_HAS_WOL
4105                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4106                                   | FLAG_HAS_AMT
4107                                   | FLAG_HAS_FLASH
4108                                   | FLAG_HAS_JUMBO_FRAMES
4109                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4110                                   | FLAG_APME_IN_WUC,
4111         .flags2                 = FLAG2_HAS_PHY_STATS,
4112         .pba                    = 26,
4113         .max_hw_frame_size      = 4096,
4114         .get_variants           = e1000_get_variants_ich8lan,
4115         .mac_ops                = &ich8_mac_ops,
4116         .phy_ops                = &ich8_phy_ops,
4117         .nvm_ops                = &ich8_nvm_ops,
4118 };
4119
4120 const struct e1000_info e1000_pch2_info = {
4121         .mac                    = e1000_pch2lan,
4122         .flags                  = FLAG_IS_ICH
4123                                   | FLAG_HAS_WOL
4124                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4125                                   | FLAG_HAS_AMT
4126                                   | FLAG_HAS_FLASH
4127                                   | FLAG_HAS_JUMBO_FRAMES
4128                                   | FLAG_APME_IN_WUC,
4129         .flags2                 = FLAG2_HAS_PHY_STATS
4130                                   | FLAG2_HAS_EEE,
4131         .pba                    = 26,
4132         .max_hw_frame_size      = DEFAULT_JUMBO,
4133         .get_variants           = e1000_get_variants_ich8lan,
4134         .mac_ops                = &ich8_mac_ops,
4135         .phy_ops                = &ich8_phy_ops,
4136         .nvm_ops                = &ich8_nvm_ops,
4137 };