1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mdio.h>
42 enum {NETDEV_STATS, E1000_STATS};
45 char stat_string[ETH_GSTRING_LEN];
51 #define E1000_STAT(str, m) { \
53 .type = E1000_STATS, \
54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55 .stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
58 .type = NETDEV_STATS, \
59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63 E1000_STAT("rx_packets", stats.gprc),
64 E1000_STAT("tx_packets", stats.gptc),
65 E1000_STAT("rx_bytes", stats.gorc),
66 E1000_STAT("tx_bytes", stats.gotc),
67 E1000_STAT("rx_broadcast", stats.bprc),
68 E1000_STAT("tx_broadcast", stats.bptc),
69 E1000_STAT("rx_multicast", stats.mprc),
70 E1000_STAT("tx_multicast", stats.mptc),
71 E1000_NETDEV_STAT("rx_errors", rx_errors),
72 E1000_NETDEV_STAT("tx_errors", tx_errors),
73 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74 E1000_STAT("multicast", stats.mprc),
75 E1000_STAT("collisions", stats.colc),
76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78 E1000_STAT("rx_crc_errors", stats.crcerrs),
79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80 E1000_STAT("rx_no_buffer_count", stats.rnbc),
81 E1000_STAT("rx_missed_errors", stats.mpc),
82 E1000_STAT("tx_aborted_errors", stats.ecol),
83 E1000_STAT("tx_carrier_errors", stats.tncrs),
84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86 E1000_STAT("tx_window_errors", stats.latecol),
87 E1000_STAT("tx_abort_late_coll", stats.latecol),
88 E1000_STAT("tx_deferred_ok", stats.dc),
89 E1000_STAT("tx_single_coll_ok", stats.scc),
90 E1000_STAT("tx_multi_coll_ok", stats.mcc),
91 E1000_STAT("tx_timeout_count", tx_timeout_count),
92 E1000_STAT("tx_restart_queue", restart_queue),
93 E1000_STAT("rx_long_length_errors", stats.roc),
94 E1000_STAT("rx_short_length_errors", stats.ruc),
95 E1000_STAT("rx_align_errors", stats.algnerrc),
96 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100 E1000_STAT("tx_flow_control_xon", stats.xontxc),
101 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102 E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 E1000_STAT("rx_header_split", rx_hdr_split),
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 E1000_STAT("tx_smbus", stats.mgptc),
107 E1000_STAT("rx_smbus", stats.mgprc),
108 E1000_STAT("dropped_smbus", stats.mgpdc),
109 E1000_STAT("rx_dma_failed", rx_dma_failed),
110 E1000_STAT("tx_dma_failed", tx_dma_failed),
111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113 E1000_STAT("corr_ecc_errors", corr_errors),
116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119 "Register test (offline)", "Eeprom test (offline)",
120 "Interrupt test (offline)", "Loopback test (offline)",
121 "Link test (on/offline)"
123 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125 static int e1000_get_settings(struct net_device *netdev,
126 struct ethtool_cmd *ecmd)
128 struct e1000_adapter *adapter = netdev_priv(netdev);
129 struct e1000_hw *hw = &adapter->hw;
132 if (hw->phy.media_type == e1000_media_type_copper) {
133 ecmd->supported = (SUPPORTED_10baseT_Half |
134 SUPPORTED_10baseT_Full |
135 SUPPORTED_100baseT_Half |
136 SUPPORTED_100baseT_Full |
137 SUPPORTED_1000baseT_Full |
140 if (hw->phy.type == e1000_phy_ife)
141 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
142 ecmd->advertising = ADVERTISED_TP;
144 if (hw->mac.autoneg == 1) {
145 ecmd->advertising |= ADVERTISED_Autoneg;
146 /* the e1000 autoneg seems to match ethtool nicely */
147 ecmd->advertising |= hw->phy.autoneg_advertised;
150 ecmd->port = PORT_TP;
151 ecmd->phy_address = hw->phy.addr;
152 ecmd->transceiver = XCVR_INTERNAL;
155 ecmd->supported = (SUPPORTED_1000baseT_Full |
159 ecmd->advertising = (ADVERTISED_1000baseT_Full |
163 ecmd->port = PORT_FIBRE;
164 ecmd->transceiver = XCVR_EXTERNAL;
170 if (netif_running(netdev)) {
171 if (netif_carrier_ok(netdev)) {
172 speed = adapter->link_speed;
173 ecmd->duplex = adapter->link_duplex - 1;
176 u32 status = er32(STATUS);
177 if (status & E1000_STATUS_LU) {
178 if (status & E1000_STATUS_SPEED_1000)
180 else if (status & E1000_STATUS_SPEED_100)
185 if (status & E1000_STATUS_FD)
186 ecmd->duplex = DUPLEX_FULL;
188 ecmd->duplex = DUPLEX_HALF;
192 ethtool_cmd_speed_set(ecmd, speed);
193 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
194 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196 /* MDI-X => 2; MDI =>1; Invalid =>0 */
197 if ((hw->phy.media_type == e1000_media_type_copper) &&
198 netif_carrier_ok(netdev))
199 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
204 if (hw->phy.mdix == AUTO_ALL_MODES)
205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
214 struct e1000_mac_info *mac = &adapter->hw.mac;
218 /* Make sure dplx is at most 1 bit and lsb of speed is not set
219 * for the switch() below to work
221 if ((spd & 1) || (dplx & ~1))
224 /* Fiber NICs only allow 1000 gbps Full duplex */
225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
227 dplx != DUPLEX_FULL) {
231 switch (spd + dplx) {
232 case SPEED_10 + DUPLEX_HALF:
233 mac->forced_speed_duplex = ADVERTISE_10_HALF;
235 case SPEED_10 + DUPLEX_FULL:
236 mac->forced_speed_duplex = ADVERTISE_10_FULL;
238 case SPEED_100 + DUPLEX_HALF:
239 mac->forced_speed_duplex = ADVERTISE_100_HALF;
241 case SPEED_100 + DUPLEX_FULL:
242 mac->forced_speed_duplex = ADVERTISE_100_FULL;
244 case SPEED_1000 + DUPLEX_FULL:
246 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
248 case SPEED_1000 + DUPLEX_HALF: /* not supported */
253 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
254 adapter->hw.phy.mdix = AUTO_ALL_MODES;
259 e_err("Unsupported Speed/Duplex configuration\n");
263 static int e1000_set_settings(struct net_device *netdev,
264 struct ethtool_cmd *ecmd)
266 struct e1000_adapter *adapter = netdev_priv(netdev);
267 struct e1000_hw *hw = &adapter->hw;
269 /* When SoL/IDER sessions are active, autoneg/speed/duplex
272 if (hw->phy.ops.check_reset_block &&
273 hw->phy.ops.check_reset_block(hw)) {
274 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
278 /* MDI setting is only allowed when autoneg enabled because
279 * some hardware doesn't allow MDI setting when speed or
282 if (ecmd->eth_tp_mdix_ctrl) {
283 if (hw->phy.media_type != e1000_media_type_copper)
286 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287 (ecmd->autoneg != AUTONEG_ENABLE)) {
288 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
293 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
294 usleep_range(1000, 2000);
296 if (ecmd->autoneg == AUTONEG_ENABLE) {
298 if (hw->phy.media_type == e1000_media_type_fiber)
299 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
303 hw->phy.autoneg_advertised = ecmd->advertising |
306 ecmd->advertising = hw->phy.autoneg_advertised;
307 if (adapter->fc_autoneg)
308 hw->fc.requested_mode = e1000_fc_default;
310 u32 speed = ethtool_cmd_speed(ecmd);
311 /* calling this overrides forced MDI setting */
312 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
313 clear_bit(__E1000_RESETTING, &adapter->state);
318 /* MDI-X => 2; MDI => 1; Auto => 3 */
319 if (ecmd->eth_tp_mdix_ctrl) {
320 /* fix up the value for auto (3 => 0) as zero is mapped
323 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
324 hw->phy.mdix = AUTO_ALL_MODES;
326 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
330 if (netif_running(adapter->netdev)) {
331 e1000e_down(adapter);
334 e1000e_reset(adapter);
337 clear_bit(__E1000_RESETTING, &adapter->state);
341 static void e1000_get_pauseparam(struct net_device *netdev,
342 struct ethtool_pauseparam *pause)
344 struct e1000_adapter *adapter = netdev_priv(netdev);
345 struct e1000_hw *hw = &adapter->hw;
348 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350 if (hw->fc.current_mode == e1000_fc_rx_pause) {
352 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354 } else if (hw->fc.current_mode == e1000_fc_full) {
360 static int e1000_set_pauseparam(struct net_device *netdev,
361 struct ethtool_pauseparam *pause)
363 struct e1000_adapter *adapter = netdev_priv(netdev);
364 struct e1000_hw *hw = &adapter->hw;
367 adapter->fc_autoneg = pause->autoneg;
369 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
370 usleep_range(1000, 2000);
372 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
373 hw->fc.requested_mode = e1000_fc_default;
374 if (netif_running(adapter->netdev)) {
375 e1000e_down(adapter);
378 e1000e_reset(adapter);
381 if (pause->rx_pause && pause->tx_pause)
382 hw->fc.requested_mode = e1000_fc_full;
383 else if (pause->rx_pause && !pause->tx_pause)
384 hw->fc.requested_mode = e1000_fc_rx_pause;
385 else if (!pause->rx_pause && pause->tx_pause)
386 hw->fc.requested_mode = e1000_fc_tx_pause;
387 else if (!pause->rx_pause && !pause->tx_pause)
388 hw->fc.requested_mode = e1000_fc_none;
390 hw->fc.current_mode = hw->fc.requested_mode;
392 if (hw->phy.media_type == e1000_media_type_fiber) {
393 retval = hw->mac.ops.setup_link(hw);
394 /* implicit goto out */
396 retval = e1000e_force_mac_fc(hw);
399 e1000e_set_fc_watermarks(hw);
404 clear_bit(__E1000_RESETTING, &adapter->state);
408 static u32 e1000_get_msglevel(struct net_device *netdev)
410 struct e1000_adapter *adapter = netdev_priv(netdev);
411 return adapter->msg_enable;
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
416 struct e1000_adapter *adapter = netdev_priv(netdev);
417 adapter->msg_enable = data;
420 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
422 #define E1000_REGS_LEN 32 /* overestimate */
423 return E1000_REGS_LEN * sizeof(u32);
426 static void e1000_get_regs(struct net_device *netdev,
427 struct ethtool_regs *regs, void *p)
429 struct e1000_adapter *adapter = netdev_priv(netdev);
430 struct e1000_hw *hw = &adapter->hw;
434 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
436 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
437 adapter->pdev->device;
439 regs_buff[0] = er32(CTRL);
440 regs_buff[1] = er32(STATUS);
442 regs_buff[2] = er32(RCTL);
443 regs_buff[3] = er32(RDLEN(0));
444 regs_buff[4] = er32(RDH(0));
445 regs_buff[5] = er32(RDT(0));
446 regs_buff[6] = er32(RDTR);
448 regs_buff[7] = er32(TCTL);
449 regs_buff[8] = er32(TDLEN(0));
450 regs_buff[9] = er32(TDH(0));
451 regs_buff[10] = er32(TDT(0));
452 regs_buff[11] = er32(TIDV);
454 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
456 /* ethtool doesn't use anything past this point, so all this
457 * code is likely legacy junk for apps that may or may not exist
459 if (hw->phy.type == e1000_phy_m88) {
460 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
461 regs_buff[13] = (u32)phy_data; /* cable length */
462 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
463 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
464 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
465 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
466 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
467 regs_buff[18] = regs_buff[13]; /* cable polarity */
468 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[20] = regs_buff[17]; /* polarity correction */
470 /* phy receive errors */
471 regs_buff[22] = adapter->phy_stats.receive_errors;
472 regs_buff[23] = regs_buff[13]; /* mdix mode */
474 regs_buff[21] = 0; /* was idle_errors */
475 e1e_rphy(hw, MII_STAT1000, &phy_data);
476 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
477 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
480 static int e1000_get_eeprom_len(struct net_device *netdev)
482 struct e1000_adapter *adapter = netdev_priv(netdev);
483 return adapter->hw.nvm.word_size * 2;
486 static int e1000_get_eeprom(struct net_device *netdev,
487 struct ethtool_eeprom *eeprom, u8 *bytes)
489 struct e1000_adapter *adapter = netdev_priv(netdev);
490 struct e1000_hw *hw = &adapter->hw;
497 if (eeprom->len == 0)
500 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
502 first_word = eeprom->offset >> 1;
503 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
505 eeprom_buff = kmalloc(sizeof(u16) *
506 (last_word - first_word + 1), GFP_KERNEL);
510 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
511 ret_val = e1000_read_nvm(hw, first_word,
512 last_word - first_word + 1,
515 for (i = 0; i < last_word - first_word + 1; i++) {
516 ret_val = e1000_read_nvm(hw, first_word + i, 1,
524 /* a read error occurred, throw away the result */
525 memset(eeprom_buff, 0xff, sizeof(u16) *
526 (last_word - first_word + 1));
528 /* Device's eeprom is always little-endian, word addressable */
529 for (i = 0; i < last_word - first_word + 1; i++)
530 le16_to_cpus(&eeprom_buff[i]);
533 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
539 static int e1000_set_eeprom(struct net_device *netdev,
540 struct ethtool_eeprom *eeprom, u8 *bytes)
542 struct e1000_adapter *adapter = netdev_priv(netdev);
543 struct e1000_hw *hw = &adapter->hw;
552 if (eeprom->len == 0)
555 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
558 if (adapter->flags & FLAG_READ_ONLY_NVM)
561 max_len = hw->nvm.word_size * 2;
563 first_word = eeprom->offset >> 1;
564 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
565 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
569 ptr = (void *)eeprom_buff;
571 if (eeprom->offset & 1) {
572 /* need read/modify/write of first changed EEPROM word */
573 /* only the second byte of the word is being modified */
574 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
577 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
578 /* need read/modify/write of last changed EEPROM word */
579 /* only the first byte of the word is being modified */
580 ret_val = e1000_read_nvm(hw, last_word, 1,
581 &eeprom_buff[last_word - first_word]);
586 /* Device's eeprom is always little-endian, word addressable */
587 for (i = 0; i < last_word - first_word + 1; i++)
588 le16_to_cpus(&eeprom_buff[i]);
590 memcpy(ptr, bytes, eeprom->len);
592 for (i = 0; i < last_word - first_word + 1; i++)
593 cpu_to_le16s(&eeprom_buff[i]);
595 ret_val = e1000_write_nvm(hw, first_word,
596 last_word - first_word + 1, eeprom_buff);
601 /* Update the checksum over the first part of the EEPROM if needed
602 * and flush shadow RAM for applicable controllers
604 if ((first_word <= NVM_CHECKSUM_REG) ||
605 (hw->mac.type == e1000_82583) ||
606 (hw->mac.type == e1000_82574) ||
607 (hw->mac.type == e1000_82573))
608 ret_val = e1000e_update_nvm_checksum(hw);
615 static void e1000_get_drvinfo(struct net_device *netdev,
616 struct ethtool_drvinfo *drvinfo)
618 struct e1000_adapter *adapter = netdev_priv(netdev);
620 strlcpy(drvinfo->driver, e1000e_driver_name,
621 sizeof(drvinfo->driver));
622 strlcpy(drvinfo->version, e1000e_driver_version,
623 sizeof(drvinfo->version));
625 /* EEPROM image version # is reported as firmware version # for
628 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
630 (adapter->eeprom_vers & 0xF000) >> 12,
631 (adapter->eeprom_vers & 0x0FF0) >> 4,
632 (adapter->eeprom_vers & 0x000F));
634 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
635 sizeof(drvinfo->bus_info));
636 drvinfo->regdump_len = e1000_get_regs_len(netdev);
637 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
640 static void e1000_get_ringparam(struct net_device *netdev,
641 struct ethtool_ringparam *ring)
643 struct e1000_adapter *adapter = netdev_priv(netdev);
645 ring->rx_max_pending = E1000_MAX_RXD;
646 ring->tx_max_pending = E1000_MAX_TXD;
647 ring->rx_pending = adapter->rx_ring_count;
648 ring->tx_pending = adapter->tx_ring_count;
651 static int e1000_set_ringparam(struct net_device *netdev,
652 struct ethtool_ringparam *ring)
654 struct e1000_adapter *adapter = netdev_priv(netdev);
655 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
656 int err = 0, size = sizeof(struct e1000_ring);
657 bool set_tx = false, set_rx = false;
658 u16 new_rx_count, new_tx_count;
660 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
663 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
665 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
667 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
669 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
671 if ((new_tx_count == adapter->tx_ring_count) &&
672 (new_rx_count == adapter->rx_ring_count))
676 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
677 usleep_range(1000, 2000);
679 if (!netif_running(adapter->netdev)) {
680 /* Set counts now and allocate resources during open() */
681 adapter->tx_ring->count = new_tx_count;
682 adapter->rx_ring->count = new_rx_count;
683 adapter->tx_ring_count = new_tx_count;
684 adapter->rx_ring_count = new_rx_count;
688 set_tx = (new_tx_count != adapter->tx_ring_count);
689 set_rx = (new_rx_count != adapter->rx_ring_count);
691 /* Allocate temporary storage for ring updates */
693 temp_tx = vmalloc(size);
700 temp_rx = vmalloc(size);
707 e1000e_down(adapter);
709 /* We can't just free everything and then setup again, because the
710 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
711 * structs. First, attempt to allocate new resources...
714 memcpy(temp_tx, adapter->tx_ring, size);
715 temp_tx->count = new_tx_count;
716 err = e1000e_setup_tx_resources(temp_tx);
721 memcpy(temp_rx, adapter->rx_ring, size);
722 temp_rx->count = new_rx_count;
723 err = e1000e_setup_rx_resources(temp_rx);
728 /* ...then free the old resources and copy back any new ring data */
730 e1000e_free_tx_resources(adapter->tx_ring);
731 memcpy(adapter->tx_ring, temp_tx, size);
732 adapter->tx_ring_count = new_tx_count;
735 e1000e_free_rx_resources(adapter->rx_ring);
736 memcpy(adapter->rx_ring, temp_rx, size);
737 adapter->rx_ring_count = new_rx_count;
742 e1000e_free_tx_resources(temp_tx);
749 clear_bit(__E1000_RESETTING, &adapter->state);
753 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
754 int reg, int offset, u32 mask, u32 write)
757 static const u32 test[] = {
758 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
759 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
760 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
761 (test[pat] & write));
762 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
763 if (val != (test[pat] & write & mask)) {
764 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
765 reg + (offset << 2), val,
766 (test[pat] & write & mask));
774 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
775 int reg, u32 mask, u32 write)
778 __ew32(&adapter->hw, reg, write & mask);
779 val = __er32(&adapter->hw, reg);
780 if ((write & mask) != (val & mask)) {
781 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
782 reg, (val & mask), (write & mask));
788 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
790 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
793 #define REG_PATTERN_TEST(reg, mask, write) \
794 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
796 #define REG_SET_AND_CHECK(reg, mask, write) \
798 if (reg_set_and_check(adapter, data, reg, mask, write)) \
802 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
804 struct e1000_hw *hw = &adapter->hw;
805 struct e1000_mac_info *mac = &adapter->hw.mac;
814 /* The status register is Read Only, so a write should fail.
815 * Some bits that get toggled are ignored.
818 /* there are several bits on newer hardware that are r/w */
821 case e1000_80003es2lan:
829 before = er32(STATUS);
830 value = (er32(STATUS) & toggle);
831 ew32(STATUS, toggle);
832 after = er32(STATUS) & toggle;
833 if (value != after) {
834 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
839 /* restore previous status */
840 ew32(STATUS, before);
842 if (!(adapter->flags & FLAG_IS_ICH)) {
843 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
844 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
845 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
846 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
849 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
850 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
851 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
852 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
853 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
854 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
855 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
856 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
857 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
858 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
860 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
862 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
863 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
864 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
866 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
867 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
868 if (!(adapter->flags & FLAG_IS_ICH))
869 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
870 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
871 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
884 if (mac->type == e1000_pch_lpt)
885 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
886 E1000_FWSM_WLOCK_MAC_SHIFT;
888 for (i = 0; i < mac->rar_entry_count; i++) {
889 if (mac->type == e1000_pch_lpt) {
890 /* Cannot test write-protected SHRAL[n] registers */
891 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
894 /* SHRAH[9] different than the others */
901 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
905 for (i = 0; i < mac->mta_reg_count; i++)
906 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
913 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
920 /* Read and add up the contents of the EEPROM */
921 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
922 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
929 /* If Checksum is not Correct return error else test passed */
930 if ((checksum != (u16) NVM_SUM) && !(*data))
936 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
938 struct net_device *netdev = (struct net_device *) data;
939 struct e1000_adapter *adapter = netdev_priv(netdev);
940 struct e1000_hw *hw = &adapter->hw;
942 adapter->test_icr |= er32(ICR);
947 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
949 struct net_device *netdev = adapter->netdev;
950 struct e1000_hw *hw = &adapter->hw;
953 u32 irq = adapter->pdev->irq;
956 int int_mode = E1000E_INT_MODE_LEGACY;
960 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
961 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
962 int_mode = adapter->int_mode;
963 e1000e_reset_interrupt_capability(adapter);
964 adapter->int_mode = E1000E_INT_MODE_LEGACY;
965 e1000e_set_interrupt_capability(adapter);
967 /* Hook up test interrupt handler just for this test */
968 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
971 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
972 netdev->name, netdev)) {
977 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
979 /* Disable all the interrupts */
980 ew32(IMC, 0xFFFFFFFF);
982 usleep_range(10000, 20000);
984 /* Test each interrupt */
985 for (i = 0; i < 10; i++) {
986 /* Interrupt to test */
989 if (adapter->flags & FLAG_IS_ICH) {
991 case E1000_ICR_RXSEQ:
994 if (adapter->hw.mac.type == e1000_ich8lan ||
995 adapter->hw.mac.type == e1000_ich9lan)
1004 /* Disable the interrupt to be reported in
1005 * the cause register and then force the same
1006 * interrupt and see if one gets posted. If
1007 * an interrupt was posted to the bus, the
1010 adapter->test_icr = 0;
1014 usleep_range(10000, 20000);
1016 if (adapter->test_icr & mask) {
1022 /* Enable the interrupt to be reported in
1023 * the cause register and then force the same
1024 * interrupt and see if one gets posted. If
1025 * an interrupt was not posted to the bus, the
1028 adapter->test_icr = 0;
1032 usleep_range(10000, 20000);
1034 if (!(adapter->test_icr & mask)) {
1040 /* Disable the other interrupts to be reported in
1041 * the cause register and then force the other
1042 * interrupts and see if any get posted. If
1043 * an interrupt was posted to the bus, the
1046 adapter->test_icr = 0;
1047 ew32(IMC, ~mask & 0x00007FFF);
1048 ew32(ICS, ~mask & 0x00007FFF);
1050 usleep_range(10000, 20000);
1052 if (adapter->test_icr) {
1059 /* Disable all the interrupts */
1060 ew32(IMC, 0xFFFFFFFF);
1062 usleep_range(10000, 20000);
1064 /* Unhook test interrupt handler */
1065 free_irq(irq, netdev);
1068 if (int_mode == E1000E_INT_MODE_MSIX) {
1069 e1000e_reset_interrupt_capability(adapter);
1070 adapter->int_mode = int_mode;
1071 e1000e_set_interrupt_capability(adapter);
1077 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1079 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1080 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1081 struct pci_dev *pdev = adapter->pdev;
1084 if (tx_ring->desc && tx_ring->buffer_info) {
1085 for (i = 0; i < tx_ring->count; i++) {
1086 if (tx_ring->buffer_info[i].dma)
1087 dma_unmap_single(&pdev->dev,
1088 tx_ring->buffer_info[i].dma,
1089 tx_ring->buffer_info[i].length,
1091 if (tx_ring->buffer_info[i].skb)
1092 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1096 if (rx_ring->desc && rx_ring->buffer_info) {
1097 for (i = 0; i < rx_ring->count; i++) {
1098 if (rx_ring->buffer_info[i].dma)
1099 dma_unmap_single(&pdev->dev,
1100 rx_ring->buffer_info[i].dma,
1101 2048, DMA_FROM_DEVICE);
1102 if (rx_ring->buffer_info[i].skb)
1103 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1107 if (tx_ring->desc) {
1108 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1110 tx_ring->desc = NULL;
1112 if (rx_ring->desc) {
1113 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1115 rx_ring->desc = NULL;
1118 kfree(tx_ring->buffer_info);
1119 tx_ring->buffer_info = NULL;
1120 kfree(rx_ring->buffer_info);
1121 rx_ring->buffer_info = NULL;
1124 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1126 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1127 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1128 struct pci_dev *pdev = adapter->pdev;
1129 struct e1000_hw *hw = &adapter->hw;
1134 /* Setup Tx descriptor ring and Tx buffers */
1136 if (!tx_ring->count)
1137 tx_ring->count = E1000_DEFAULT_TXD;
1139 tx_ring->buffer_info = kcalloc(tx_ring->count,
1140 sizeof(struct e1000_buffer),
1142 if (!tx_ring->buffer_info) {
1147 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1148 tx_ring->size = ALIGN(tx_ring->size, 4096);
1149 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1150 &tx_ring->dma, GFP_KERNEL);
1151 if (!tx_ring->desc) {
1155 tx_ring->next_to_use = 0;
1156 tx_ring->next_to_clean = 0;
1158 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1159 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1160 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1163 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1164 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1165 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1167 for (i = 0; i < tx_ring->count; i++) {
1168 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1169 struct sk_buff *skb;
1170 unsigned int skb_size = 1024;
1172 skb = alloc_skb(skb_size, GFP_KERNEL);
1177 skb_put(skb, skb_size);
1178 tx_ring->buffer_info[i].skb = skb;
1179 tx_ring->buffer_info[i].length = skb->len;
1180 tx_ring->buffer_info[i].dma =
1181 dma_map_single(&pdev->dev, skb->data, skb->len,
1183 if (dma_mapping_error(&pdev->dev,
1184 tx_ring->buffer_info[i].dma)) {
1188 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1189 tx_desc->lower.data = cpu_to_le32(skb->len);
1190 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1191 E1000_TXD_CMD_IFCS |
1193 tx_desc->upper.data = 0;
1196 /* Setup Rx descriptor ring and Rx buffers */
1198 if (!rx_ring->count)
1199 rx_ring->count = E1000_DEFAULT_RXD;
1201 rx_ring->buffer_info = kcalloc(rx_ring->count,
1202 sizeof(struct e1000_buffer),
1204 if (!rx_ring->buffer_info) {
1209 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1210 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1211 &rx_ring->dma, GFP_KERNEL);
1212 if (!rx_ring->desc) {
1216 rx_ring->next_to_use = 0;
1217 rx_ring->next_to_clean = 0;
1220 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1221 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1222 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1223 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1224 ew32(RDLEN(0), rx_ring->size);
1227 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1228 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1229 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1230 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1231 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1234 for (i = 0; i < rx_ring->count; i++) {
1235 union e1000_rx_desc_extended *rx_desc;
1236 struct sk_buff *skb;
1238 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1243 skb_reserve(skb, NET_IP_ALIGN);
1244 rx_ring->buffer_info[i].skb = skb;
1245 rx_ring->buffer_info[i].dma =
1246 dma_map_single(&pdev->dev, skb->data, 2048,
1248 if (dma_mapping_error(&pdev->dev,
1249 rx_ring->buffer_info[i].dma)) {
1253 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1254 rx_desc->read.buffer_addr =
1255 cpu_to_le64(rx_ring->buffer_info[i].dma);
1256 memset(skb->data, 0x00, skb->len);
1262 e1000_free_desc_rings(adapter);
1266 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1268 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1269 e1e_wphy(&adapter->hw, 29, 0x001F);
1270 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1271 e1e_wphy(&adapter->hw, 29, 0x001A);
1272 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1275 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1277 struct e1000_hw *hw = &adapter->hw;
1282 hw->mac.autoneg = 0;
1284 if (hw->phy.type == e1000_phy_ife) {
1285 /* force 100, set loopback */
1286 e1e_wphy(hw, MII_BMCR, 0x6100);
1288 /* Now set up the MAC to the same speed/duplex as the PHY. */
1289 ctrl_reg = er32(CTRL);
1290 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1291 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1292 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1293 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1294 E1000_CTRL_FD); /* Force Duplex to FULL */
1296 ew32(CTRL, ctrl_reg);
1303 /* Specific PHY configuration for loopback */
1304 switch (hw->phy.type) {
1306 /* Auto-MDI/MDIX Off */
1307 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1308 /* reset to update Auto-MDI/MDIX */
1309 e1e_wphy(hw, MII_BMCR, 0x9140);
1311 e1e_wphy(hw, MII_BMCR, 0x8140);
1313 case e1000_phy_gg82563:
1314 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1317 /* Set Default MAC Interface speed to 1GB */
1318 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1321 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1322 /* Assert SW reset for above settings to take effect */
1323 hw->phy.ops.commit(hw);
1325 /* Force Full Duplex */
1326 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1327 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1328 /* Set Link Up (in force link) */
1329 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1330 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1332 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1333 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1334 /* Set Early Link Enable */
1335 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1336 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1338 case e1000_phy_82577:
1339 case e1000_phy_82578:
1340 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1341 ret_val = hw->phy.ops.acquire(hw);
1343 e_err("Cannot setup 1Gbps loopback.\n");
1346 e1000_configure_k1_ich8lan(hw, false);
1347 hw->phy.ops.release(hw);
1349 case e1000_phy_82579:
1350 /* Disable PHY energy detect power down */
1351 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1352 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1353 /* Disable full chip energy detect */
1354 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1355 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1356 /* Enable loopback on the PHY */
1357 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1363 /* force 1000, set loopback */
1364 e1e_wphy(hw, MII_BMCR, 0x4140);
1367 /* Now set up the MAC to the same speed/duplex as the PHY. */
1368 ctrl_reg = er32(CTRL);
1369 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1370 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1371 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1372 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1373 E1000_CTRL_FD); /* Force Duplex to FULL */
1375 if (adapter->flags & FLAG_IS_ICH)
1376 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1378 if (hw->phy.media_type == e1000_media_type_copper &&
1379 hw->phy.type == e1000_phy_m88) {
1380 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1382 /* Set the ILOS bit on the fiber Nic if half duplex link is
1385 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1386 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1389 ew32(CTRL, ctrl_reg);
1391 /* Disable the receiver on the PHY so when a cable is plugged in, the
1392 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1394 if (hw->phy.type == e1000_phy_m88)
1395 e1000_phy_disable_receiver(adapter);
1402 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1404 struct e1000_hw *hw = &adapter->hw;
1405 u32 ctrl = er32(CTRL);
1408 /* special requirements for 82571/82572 fiber adapters */
1410 /* jump through hoops to make sure link is up because serdes
1411 * link is hardwired up
1413 ctrl |= E1000_CTRL_SLU;
1416 /* disable autoneg */
1421 link = (er32(STATUS) & E1000_STATUS_LU);
1424 /* set invert loss of signal */
1426 ctrl |= E1000_CTRL_ILOS;
1430 /* special write to serdes control register to enable SerDes analog
1433 #define E1000_SERDES_LB_ON 0x410
1434 ew32(SCTL, E1000_SERDES_LB_ON);
1436 usleep_range(10000, 20000);
1441 /* only call this for fiber/serdes connections to es2lan */
1442 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1444 struct e1000_hw *hw = &adapter->hw;
1445 u32 ctrlext = er32(CTRL_EXT);
1446 u32 ctrl = er32(CTRL);
1448 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1449 * on mac_type 80003es2lan)
1451 adapter->tx_fifo_head = ctrlext;
1453 /* clear the serdes mode bits, putting the device into mac loopback */
1454 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1455 ew32(CTRL_EXT, ctrlext);
1457 /* force speed to 1000/FD, link up */
1458 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1459 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1460 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1463 /* set mac loopback */
1465 ctrl |= E1000_RCTL_LBM_MAC;
1468 /* set testing mode parameters (no need to reset later) */
1469 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1470 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1472 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1477 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1479 struct e1000_hw *hw = &adapter->hw;
1482 if (hw->phy.media_type == e1000_media_type_fiber ||
1483 hw->phy.media_type == e1000_media_type_internal_serdes) {
1484 switch (hw->mac.type) {
1485 case e1000_80003es2lan:
1486 return e1000_set_es2lan_mac_loopback(adapter);
1490 return e1000_set_82571_fiber_loopback(adapter);
1494 rctl |= E1000_RCTL_LBM_TCVR;
1498 } else if (hw->phy.media_type == e1000_media_type_copper) {
1499 return e1000_integrated_phy_loopback(adapter);
1505 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1507 struct e1000_hw *hw = &adapter->hw;
1512 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1515 switch (hw->mac.type) {
1516 case e1000_80003es2lan:
1517 if (hw->phy.media_type == e1000_media_type_fiber ||
1518 hw->phy.media_type == e1000_media_type_internal_serdes) {
1519 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1520 ew32(CTRL_EXT, adapter->tx_fifo_head);
1521 adapter->tx_fifo_head = 0;
1526 if (hw->phy.media_type == e1000_media_type_fiber ||
1527 hw->phy.media_type == e1000_media_type_internal_serdes) {
1528 #define E1000_SERDES_LB_OFF 0x400
1529 ew32(SCTL, E1000_SERDES_LB_OFF);
1531 usleep_range(10000, 20000);
1536 hw->mac.autoneg = 1;
1537 if (hw->phy.type == e1000_phy_gg82563)
1538 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1539 e1e_rphy(hw, MII_BMCR, &phy_reg);
1540 if (phy_reg & BMCR_LOOPBACK) {
1541 phy_reg &= ~BMCR_LOOPBACK;
1542 e1e_wphy(hw, MII_BMCR, phy_reg);
1543 if (hw->phy.ops.commit)
1544 hw->phy.ops.commit(hw);
1550 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1551 unsigned int frame_size)
1553 memset(skb->data, 0xFF, frame_size);
1555 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1556 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1557 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1560 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1561 unsigned int frame_size)
1564 if (*(skb->data + 3) == 0xFF)
1565 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1566 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1573 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1574 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1575 struct pci_dev *pdev = adapter->pdev;
1576 struct e1000_hw *hw = &adapter->hw;
1583 ew32(RDT(0), rx_ring->count - 1);
1585 /* Calculate the loop count based on the largest descriptor ring
1586 * The idea is to wrap the largest ring a number of times using 64
1587 * send/receive pairs during each loop
1590 if (rx_ring->count <= tx_ring->count)
1591 lc = ((tx_ring->count / 64) * 2) + 1;
1593 lc = ((rx_ring->count / 64) * 2) + 1;
1597 for (j = 0; j <= lc; j++) { /* loop count loop */
1598 for (i = 0; i < 64; i++) { /* send the packets */
1599 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1601 dma_sync_single_for_device(&pdev->dev,
1602 tx_ring->buffer_info[k].dma,
1603 tx_ring->buffer_info[k].length,
1606 if (k == tx_ring->count)
1612 time = jiffies; /* set the start time for the receive */
1614 do { /* receive the sent packets */
1615 dma_sync_single_for_cpu(&pdev->dev,
1616 rx_ring->buffer_info[l].dma, 2048,
1619 ret_val = e1000_check_lbtest_frame(
1620 rx_ring->buffer_info[l].skb, 1024);
1624 if (l == rx_ring->count)
1626 /* time + 20 msecs (200 msecs on 2.4) is more than
1627 * enough time to complete the receives, if it's
1628 * exceeded, break and error off
1630 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1631 if (good_cnt != 64) {
1632 ret_val = 13; /* ret_val is the same as mis-compare */
1635 if (jiffies >= (time + 20)) {
1636 ret_val = 14; /* error code for time out error */
1639 } /* end loop count loop */
1643 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1645 struct e1000_hw *hw = &adapter->hw;
1647 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1648 if (hw->phy.ops.check_reset_block &&
1649 hw->phy.ops.check_reset_block(hw)) {
1650 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1655 *data = e1000_setup_desc_rings(adapter);
1659 *data = e1000_setup_loopback_test(adapter);
1663 *data = e1000_run_loopback_test(adapter);
1664 e1000_loopback_cleanup(adapter);
1667 e1000_free_desc_rings(adapter);
1672 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1674 struct e1000_hw *hw = &adapter->hw;
1677 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1679 hw->mac.serdes_has_link = false;
1681 /* On some blade server designs, link establishment
1682 * could take as long as 2-3 minutes
1685 hw->mac.ops.check_for_link(hw);
1686 if (hw->mac.serdes_has_link)
1689 } while (i++ < 3750);
1693 hw->mac.ops.check_for_link(hw);
1694 if (hw->mac.autoneg)
1695 /* On some Phy/switch combinations, link establishment
1696 * can take a few seconds more than expected.
1700 if (!(er32(STATUS) & E1000_STATUS_LU))
1706 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1711 return E1000_TEST_LEN;
1713 return E1000_STATS_LEN;
1719 static void e1000_diag_test(struct net_device *netdev,
1720 struct ethtool_test *eth_test, u64 *data)
1722 struct e1000_adapter *adapter = netdev_priv(netdev);
1723 u16 autoneg_advertised;
1724 u8 forced_speed_duplex;
1726 bool if_running = netif_running(netdev);
1728 set_bit(__E1000_TESTING, &adapter->state);
1731 /* Get control of and reset hardware */
1732 if (adapter->flags & FLAG_HAS_AMT)
1733 e1000e_get_hw_control(adapter);
1735 e1000e_power_up_phy(adapter);
1737 adapter->hw.phy.autoneg_wait_to_complete = 1;
1738 e1000e_reset(adapter);
1739 adapter->hw.phy.autoneg_wait_to_complete = 0;
1742 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1745 /* save speed, duplex, autoneg settings */
1746 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1747 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1748 autoneg = adapter->hw.mac.autoneg;
1750 e_info("offline testing starting\n");
1753 /* indicate we're in test mode */
1756 if (e1000_reg_test(adapter, &data[0]))
1757 eth_test->flags |= ETH_TEST_FL_FAILED;
1759 e1000e_reset(adapter);
1760 if (e1000_eeprom_test(adapter, &data[1]))
1761 eth_test->flags |= ETH_TEST_FL_FAILED;
1763 e1000e_reset(adapter);
1764 if (e1000_intr_test(adapter, &data[2]))
1765 eth_test->flags |= ETH_TEST_FL_FAILED;
1767 e1000e_reset(adapter);
1768 if (e1000_loopback_test(adapter, &data[3]))
1769 eth_test->flags |= ETH_TEST_FL_FAILED;
1771 /* force this routine to wait until autoneg complete/timeout */
1772 adapter->hw.phy.autoneg_wait_to_complete = 1;
1773 e1000e_reset(adapter);
1774 adapter->hw.phy.autoneg_wait_to_complete = 0;
1776 if (e1000_link_test(adapter, &data[4]))
1777 eth_test->flags |= ETH_TEST_FL_FAILED;
1779 /* restore speed, duplex, autoneg settings */
1780 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1781 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1782 adapter->hw.mac.autoneg = autoneg;
1783 e1000e_reset(adapter);
1785 clear_bit(__E1000_TESTING, &adapter->state);
1791 e_info("online testing starting\n");
1793 /* register, eeprom, intr and loopback tests not run online */
1799 if (e1000_link_test(adapter, &data[4]))
1800 eth_test->flags |= ETH_TEST_FL_FAILED;
1802 clear_bit(__E1000_TESTING, &adapter->state);
1806 e1000e_reset(adapter);
1808 if (adapter->flags & FLAG_HAS_AMT)
1809 e1000e_release_hw_control(adapter);
1812 msleep_interruptible(4 * 1000);
1815 static void e1000_get_wol(struct net_device *netdev,
1816 struct ethtool_wolinfo *wol)
1818 struct e1000_adapter *adapter = netdev_priv(netdev);
1823 if (!(adapter->flags & FLAG_HAS_WOL) ||
1824 !device_can_wakeup(&adapter->pdev->dev))
1827 wol->supported = WAKE_UCAST | WAKE_MCAST |
1828 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1830 /* apply any specific unsupported masks here */
1831 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1832 wol->supported &= ~WAKE_UCAST;
1834 if (adapter->wol & E1000_WUFC_EX)
1835 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1838 if (adapter->wol & E1000_WUFC_EX)
1839 wol->wolopts |= WAKE_UCAST;
1840 if (adapter->wol & E1000_WUFC_MC)
1841 wol->wolopts |= WAKE_MCAST;
1842 if (adapter->wol & E1000_WUFC_BC)
1843 wol->wolopts |= WAKE_BCAST;
1844 if (adapter->wol & E1000_WUFC_MAG)
1845 wol->wolopts |= WAKE_MAGIC;
1846 if (adapter->wol & E1000_WUFC_LNKC)
1847 wol->wolopts |= WAKE_PHY;
1850 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1852 struct e1000_adapter *adapter = netdev_priv(netdev);
1854 if (!(adapter->flags & FLAG_HAS_WOL) ||
1855 !device_can_wakeup(&adapter->pdev->dev) ||
1856 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1857 WAKE_MAGIC | WAKE_PHY)))
1860 /* these settings will always override what we currently have */
1863 if (wol->wolopts & WAKE_UCAST)
1864 adapter->wol |= E1000_WUFC_EX;
1865 if (wol->wolopts & WAKE_MCAST)
1866 adapter->wol |= E1000_WUFC_MC;
1867 if (wol->wolopts & WAKE_BCAST)
1868 adapter->wol |= E1000_WUFC_BC;
1869 if (wol->wolopts & WAKE_MAGIC)
1870 adapter->wol |= E1000_WUFC_MAG;
1871 if (wol->wolopts & WAKE_PHY)
1872 adapter->wol |= E1000_WUFC_LNKC;
1874 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1879 static int e1000_set_phys_id(struct net_device *netdev,
1880 enum ethtool_phys_id_state state)
1882 struct e1000_adapter *adapter = netdev_priv(netdev);
1883 struct e1000_hw *hw = &adapter->hw;
1886 case ETHTOOL_ID_ACTIVE:
1887 if (!hw->mac.ops.blink_led)
1888 return 2; /* cycle on/off twice per second */
1890 hw->mac.ops.blink_led(hw);
1893 case ETHTOOL_ID_INACTIVE:
1894 if (hw->phy.type == e1000_phy_ife)
1895 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1896 hw->mac.ops.led_off(hw);
1897 hw->mac.ops.cleanup_led(hw);
1901 hw->mac.ops.led_on(hw);
1904 case ETHTOOL_ID_OFF:
1905 hw->mac.ops.led_off(hw);
1911 static int e1000_get_coalesce(struct net_device *netdev,
1912 struct ethtool_coalesce *ec)
1914 struct e1000_adapter *adapter = netdev_priv(netdev);
1916 if (adapter->itr_setting <= 4)
1917 ec->rx_coalesce_usecs = adapter->itr_setting;
1919 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1924 static int e1000_set_coalesce(struct net_device *netdev,
1925 struct ethtool_coalesce *ec)
1927 struct e1000_adapter *adapter = netdev_priv(netdev);
1929 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1930 ((ec->rx_coalesce_usecs > 4) &&
1931 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1932 (ec->rx_coalesce_usecs == 2))
1935 if (ec->rx_coalesce_usecs == 4) {
1936 adapter->itr_setting = 4;
1937 adapter->itr = adapter->itr_setting;
1938 } else if (ec->rx_coalesce_usecs <= 3) {
1939 adapter->itr = 20000;
1940 adapter->itr_setting = ec->rx_coalesce_usecs;
1942 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1943 adapter->itr_setting = adapter->itr & ~3;
1946 if (adapter->itr_setting != 0)
1947 e1000e_write_itr(adapter, adapter->itr);
1949 e1000e_write_itr(adapter, 0);
1954 static int e1000_nway_reset(struct net_device *netdev)
1956 struct e1000_adapter *adapter = netdev_priv(netdev);
1958 if (!netif_running(netdev))
1961 if (!adapter->hw.mac.autoneg)
1964 e1000e_reinit_locked(adapter);
1969 static void e1000_get_ethtool_stats(struct net_device *netdev,
1970 struct ethtool_stats __always_unused *stats,
1973 struct e1000_adapter *adapter = netdev_priv(netdev);
1974 struct rtnl_link_stats64 net_stats;
1978 e1000e_get_stats64(netdev, &net_stats);
1979 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1980 switch (e1000_gstrings_stats[i].type) {
1982 p = (char *) &net_stats +
1983 e1000_gstrings_stats[i].stat_offset;
1986 p = (char *) adapter +
1987 e1000_gstrings_stats[i].stat_offset;
1994 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1995 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1999 static void e1000_get_strings(struct net_device __always_unused *netdev,
2000 u32 stringset, u8 *data)
2005 switch (stringset) {
2007 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2010 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2011 memcpy(p, e1000_gstrings_stats[i].stat_string,
2013 p += ETH_GSTRING_LEN;
2019 static int e1000_get_rxnfc(struct net_device *netdev,
2020 struct ethtool_rxnfc *info,
2021 u32 __always_unused *rule_locs)
2025 switch (info->cmd) {
2026 case ETHTOOL_GRXFH: {
2027 struct e1000_adapter *adapter = netdev_priv(netdev);
2028 struct e1000_hw *hw = &adapter->hw;
2029 u32 mrqc = er32(MRQC);
2031 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2034 switch (info->flow_type) {
2036 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2037 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2041 case AH_ESP_V4_FLOW:
2043 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2044 info->data |= RXH_IP_SRC | RXH_IP_DST;
2047 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2048 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2052 case AH_ESP_V6_FLOW:
2054 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2055 info->data |= RXH_IP_SRC | RXH_IP_DST;
2067 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2069 struct e1000_adapter *adapter = netdev_priv(netdev);
2070 struct e1000_hw *hw = &adapter->hw;
2071 u16 cap_addr, adv_addr, lpa_addr, pcs_stat_addr, phy_data, lpi_ctrl;
2072 u32 status, ret_val;
2074 if (!(adapter->flags & FLAG_IS_ICH) ||
2075 !(adapter->flags2 & FLAG2_HAS_EEE))
2078 switch (hw->phy.type) {
2079 case e1000_phy_82579:
2080 cap_addr = I82579_EEE_CAPABILITY;
2081 adv_addr = I82579_EEE_ADVERTISEMENT;
2082 lpa_addr = I82579_EEE_LP_ABILITY;
2083 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2085 case e1000_phy_i217:
2086 cap_addr = I217_EEE_CAPABILITY;
2087 adv_addr = I217_EEE_ADVERTISEMENT;
2088 lpa_addr = I217_EEE_LP_ABILITY;
2089 pcs_stat_addr = I217_EEE_PCS_STATUS;
2095 ret_val = hw->phy.ops.acquire(hw);
2099 /* EEE Capability */
2100 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2103 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2105 /* EEE Advertised */
2106 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &phy_data);
2109 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2111 /* EEE Link Partner Advertised */
2112 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2115 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2117 /* EEE PCS Status */
2118 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2119 if (hw->phy.type == e1000_phy_82579)
2123 hw->phy.ops.release(hw);
2127 e1e_rphy(hw, I82579_LPI_CTRL, &lpi_ctrl);
2128 status = er32(STATUS);
2130 /* Result of the EEE auto negotiation - there is no register that
2131 * has the status of the EEE negotiation so do a best-guess based
2132 * on whether both Tx and Rx LPI indications have been received or
2133 * base it on the link speed, the EEE advertised speeds on both ends
2134 * and the speeds on which EEE is enabled locally.
2136 if (((phy_data & E1000_EEE_TX_LPI_RCVD) &&
2137 (phy_data & E1000_EEE_RX_LPI_RCVD)) ||
2138 ((status & E1000_STATUS_SPEED_100) &&
2139 (edata->advertised & ADVERTISED_100baseT_Full) &&
2140 (edata->lp_advertised & ADVERTISED_100baseT_Full) &&
2141 (lpi_ctrl & I82579_LPI_CTRL_100_ENABLE)) ||
2142 ((status & E1000_STATUS_SPEED_1000) &&
2143 (edata->advertised & ADVERTISED_1000baseT_Full) &&
2144 (edata->lp_advertised & ADVERTISED_1000baseT_Full) &&
2145 (lpi_ctrl & I82579_LPI_CTRL_1000_ENABLE)))
2146 edata->eee_active = true;
2148 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2149 edata->tx_lpi_enabled = true;
2150 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2155 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2157 struct e1000_adapter *adapter = netdev_priv(netdev);
2158 struct e1000_hw *hw = &adapter->hw;
2159 struct ethtool_eee eee_curr;
2162 if (!(adapter->flags & FLAG_IS_ICH) ||
2163 !(adapter->flags2 & FLAG2_HAS_EEE))
2166 ret_val = e1000e_get_eee(netdev, &eee_curr);
2170 if (eee_curr.advertised != edata->advertised) {
2171 e_err("Setting EEE advertisement is not supported\n");
2175 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2176 e_err("Setting EEE tx-lpi is not supported\n");
2180 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2181 e_err("Setting EEE Tx LPI timer is not supported\n");
2185 if (hw->dev_spec.ich8lan.eee_disable != !edata->eee_enabled) {
2186 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2188 /* reset the link */
2189 if (netif_running(netdev))
2190 e1000e_reinit_locked(adapter);
2192 e1000e_reset(adapter);
2198 static int e1000e_get_ts_info(struct net_device *netdev,
2199 struct ethtool_ts_info *info)
2201 struct e1000_adapter *adapter = netdev_priv(netdev);
2203 ethtool_op_get_ts_info(netdev, info);
2205 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2208 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2209 SOF_TIMESTAMPING_RX_HARDWARE |
2210 SOF_TIMESTAMPING_RAW_HARDWARE);
2212 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2214 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2215 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2216 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2217 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2218 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2219 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2220 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2221 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2222 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2223 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2224 (1 << HWTSTAMP_FILTER_ALL));
2226 if (adapter->ptp_clock)
2227 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2232 static const struct ethtool_ops e1000_ethtool_ops = {
2233 .get_settings = e1000_get_settings,
2234 .set_settings = e1000_set_settings,
2235 .get_drvinfo = e1000_get_drvinfo,
2236 .get_regs_len = e1000_get_regs_len,
2237 .get_regs = e1000_get_regs,
2238 .get_wol = e1000_get_wol,
2239 .set_wol = e1000_set_wol,
2240 .get_msglevel = e1000_get_msglevel,
2241 .set_msglevel = e1000_set_msglevel,
2242 .nway_reset = e1000_nway_reset,
2243 .get_link = ethtool_op_get_link,
2244 .get_eeprom_len = e1000_get_eeprom_len,
2245 .get_eeprom = e1000_get_eeprom,
2246 .set_eeprom = e1000_set_eeprom,
2247 .get_ringparam = e1000_get_ringparam,
2248 .set_ringparam = e1000_set_ringparam,
2249 .get_pauseparam = e1000_get_pauseparam,
2250 .set_pauseparam = e1000_set_pauseparam,
2251 .self_test = e1000_diag_test,
2252 .get_strings = e1000_get_strings,
2253 .set_phys_id = e1000_set_phys_id,
2254 .get_ethtool_stats = e1000_get_ethtool_stats,
2255 .get_sset_count = e1000e_get_sset_count,
2256 .get_coalesce = e1000_get_coalesce,
2257 .set_coalesce = e1000_set_coalesce,
2258 .get_rxnfc = e1000_get_rxnfc,
2259 .get_ts_info = e1000e_get_ts_info,
2260 .get_eee = e1000e_get_eee,
2261 .set_eee = e1000e_set_eee,
2264 void e1000e_set_ethtool_ops(struct net_device *netdev)
2266 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);