Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 82571EB Gigabit Ethernet Controller
23  * 82571EB Gigabit Ethernet Controller (Copper)
24  * 82571EB Gigabit Ethernet Controller (Fiber)
25  * 82571EB Dual Port Gigabit Mezzanine Adapter
26  * 82571EB Quad Port Gigabit Mezzanine Adapter
27  * 82571PT Gigabit PT Quad Port Server ExpressModule
28  * 82572EI Gigabit Ethernet Controller (Copper)
29  * 82572EI Gigabit Ethernet Controller (Fiber)
30  * 82572EI Gigabit Ethernet Controller
31  * 82573V Gigabit Ethernet Controller (Copper)
32  * 82573E Gigabit Ethernet Controller (Copper)
33  * 82573L Gigabit Ethernet Controller
34  * 82574L Gigabit Network Connection
35  * 82583V Gigabit Network Connection
36  */
37
38 #include "e1000.h"
39
40 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
43 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
44 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45                                       u16 words, u16 *data);
46 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
48 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
49 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50 static s32 e1000_led_on_82574(struct e1000_hw *hw);
51 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
52 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
53 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
56 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
58
59 /**
60  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
61  *  @hw: pointer to the HW structure
62  **/
63 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64 {
65         struct e1000_phy_info *phy = &hw->phy;
66         s32 ret_val;
67
68         if (hw->phy.media_type != e1000_media_type_copper) {
69                 phy->type = e1000_phy_none;
70                 return 0;
71         }
72
73         phy->addr = 1;
74         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75         phy->reset_delay_us = 100;
76
77         phy->ops.power_up = e1000_power_up_phy_copper;
78         phy->ops.power_down = e1000_power_down_phy_copper_82571;
79
80         switch (hw->mac.type) {
81         case e1000_82571:
82         case e1000_82572:
83                 phy->type = e1000_phy_igp_2;
84                 break;
85         case e1000_82573:
86                 phy->type = e1000_phy_m88;
87                 break;
88         case e1000_82574:
89         case e1000_82583:
90                 phy->type = e1000_phy_bm;
91                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
92                 phy->ops.release = e1000_put_hw_semaphore_82574;
93                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
95                 break;
96         default:
97                 return -E1000_ERR_PHY;
98         }
99
100         /* This can only be done after all function pointers are setup. */
101         ret_val = e1000_get_phy_id_82571(hw);
102         if (ret_val) {
103                 e_dbg("Error getting PHY ID\n");
104                 return ret_val;
105         }
106
107         /* Verify phy id */
108         switch (hw->mac.type) {
109         case e1000_82571:
110         case e1000_82572:
111                 if (phy->id != IGP01E1000_I_PHY_ID)
112                         ret_val = -E1000_ERR_PHY;
113                 break;
114         case e1000_82573:
115                 if (phy->id != M88E1111_I_PHY_ID)
116                         ret_val = -E1000_ERR_PHY;
117                 break;
118         case e1000_82574:
119         case e1000_82583:
120                 if (phy->id != BME1000_E_PHY_ID_R2)
121                         ret_val = -E1000_ERR_PHY;
122                 break;
123         default:
124                 ret_val = -E1000_ERR_PHY;
125                 break;
126         }
127
128         if (ret_val)
129                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
130
131         return ret_val;
132 }
133
134 /**
135  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
136  *  @hw: pointer to the HW structure
137  **/
138 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139 {
140         struct e1000_nvm_info *nvm = &hw->nvm;
141         u32 eecd = er32(EECD);
142         u16 size;
143
144         nvm->opcode_bits = 8;
145         nvm->delay_usec = 1;
146         switch (nvm->override) {
147         case e1000_nvm_override_spi_large:
148                 nvm->page_size = 32;
149                 nvm->address_bits = 16;
150                 break;
151         case e1000_nvm_override_spi_small:
152                 nvm->page_size = 8;
153                 nvm->address_bits = 8;
154                 break;
155         default:
156                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158                 break;
159         }
160
161         switch (hw->mac.type) {
162         case e1000_82573:
163         case e1000_82574:
164         case e1000_82583:
165                 if (((eecd >> 15) & 0x3) == 0x3) {
166                         nvm->type = e1000_nvm_flash_hw;
167                         nvm->word_size = 2048;
168                         /* Autonomous Flash update bit must be cleared due
169                          * to Flash update issue.
170                          */
171                         eecd &= ~E1000_EECD_AUPDEN;
172                         ew32(EECD, eecd);
173                         break;
174                 }
175                 /* Fall Through */
176         default:
177                 nvm->type = e1000_nvm_eeprom_spi;
178                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179                              E1000_EECD_SIZE_EX_SHIFT);
180                 /* Added to a constant, "size" becomes the left-shift value
181                  * for setting word_size.
182                  */
183                 size += NVM_WORD_SIZE_BASE_SHIFT;
184
185                 /* EEPROM access above 16k is unsupported */
186                 if (size > 14)
187                         size = 14;
188                 nvm->word_size = BIT(size);
189                 break;
190         }
191
192         /* Function Pointers */
193         switch (hw->mac.type) {
194         case e1000_82574:
195         case e1000_82583:
196                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
197                 nvm->ops.release = e1000_put_hw_semaphore_82574;
198                 break;
199         default:
200                 break;
201         }
202
203         return 0;
204 }
205
206 /**
207  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
208  *  @hw: pointer to the HW structure
209  **/
210 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
211 {
212         struct e1000_mac_info *mac = &hw->mac;
213         u32 swsm = 0;
214         u32 swsm2 = 0;
215         bool force_clear_smbi = false;
216
217         /* Set media type and media-dependent function pointers */
218         switch (hw->adapter->pdev->device) {
219         case E1000_DEV_ID_82571EB_FIBER:
220         case E1000_DEV_ID_82572EI_FIBER:
221         case E1000_DEV_ID_82571EB_QUAD_FIBER:
222                 hw->phy.media_type = e1000_media_type_fiber;
223                 mac->ops.setup_physical_interface =
224                     e1000_setup_fiber_serdes_link_82571;
225                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
226                 mac->ops.get_link_up_info =
227                     e1000e_get_speed_and_duplex_fiber_serdes;
228                 break;
229         case E1000_DEV_ID_82571EB_SERDES:
230         case E1000_DEV_ID_82571EB_SERDES_DUAL:
231         case E1000_DEV_ID_82571EB_SERDES_QUAD:
232         case E1000_DEV_ID_82572EI_SERDES:
233                 hw->phy.media_type = e1000_media_type_internal_serdes;
234                 mac->ops.setup_physical_interface =
235                     e1000_setup_fiber_serdes_link_82571;
236                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
237                 mac->ops.get_link_up_info =
238                     e1000e_get_speed_and_duplex_fiber_serdes;
239                 break;
240         default:
241                 hw->phy.media_type = e1000_media_type_copper;
242                 mac->ops.setup_physical_interface =
243                     e1000_setup_copper_link_82571;
244                 mac->ops.check_for_link = e1000e_check_for_copper_link;
245                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
246                 break;
247         }
248
249         /* Set mta register count */
250         mac->mta_reg_count = 128;
251         /* Set rar entry count */
252         mac->rar_entry_count = E1000_RAR_ENTRIES;
253         /* Adaptive IFS supported */
254         mac->adaptive_ifs = true;
255
256         /* MAC-specific function pointers */
257         switch (hw->mac.type) {
258         case e1000_82573:
259                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
260                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261                 mac->ops.led_on = e1000e_led_on_generic;
262                 mac->ops.blink_led = e1000e_blink_led_generic;
263
264                 /* FWSM register */
265                 mac->has_fwsm = true;
266                 /* ARC supported; valid only if manageability features are
267                  * enabled.
268                  */
269                 mac->arc_subsystem_valid = !!(er32(FWSM) &
270                                               E1000_FWSM_MODE_MASK);
271                 break;
272         case e1000_82574:
273         case e1000_82583:
274                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
275                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
276                 mac->ops.led_on = e1000_led_on_82574;
277                 break;
278         default:
279                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
280                 mac->ops.led_on = e1000e_led_on_generic;
281                 mac->ops.blink_led = e1000e_blink_led_generic;
282
283                 /* FWSM register */
284                 mac->has_fwsm = true;
285                 break;
286         }
287
288         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
289          * first NVM or PHY access. This should be done for single-port
290          * devices, and for one port only on dual-port devices so that
291          * for those devices we can still use the SMBI lock to synchronize
292          * inter-port accesses to the PHY & NVM.
293          */
294         switch (hw->mac.type) {
295         case e1000_82571:
296         case e1000_82572:
297                 swsm2 = er32(SWSM2);
298
299                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300                         /* Only do this for the first interface on this card */
301                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
302                         force_clear_smbi = true;
303                 } else {
304                         force_clear_smbi = false;
305                 }
306                 break;
307         default:
308                 force_clear_smbi = true;
309                 break;
310         }
311
312         if (force_clear_smbi) {
313                 /* Make sure SWSM.SMBI is clear */
314                 swsm = er32(SWSM);
315                 if (swsm & E1000_SWSM_SMBI) {
316                         /* This bit should not be set on a first interface, and
317                          * indicates that the bootagent or EFI code has
318                          * improperly left this bit enabled
319                          */
320                         e_dbg("Please update your 82571 Bootagent\n");
321                 }
322                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323         }
324
325         /* Initialize device specific counter of SMBI acquisition timeouts. */
326         hw->dev_spec.e82571.smb_counter = 0;
327
328         return 0;
329 }
330
331 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
332 {
333         struct e1000_hw *hw = &adapter->hw;
334         static int global_quad_port_a;  /* global port a indication */
335         struct pci_dev *pdev = adapter->pdev;
336         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
337         s32 rc;
338
339         rc = e1000_init_mac_params_82571(hw);
340         if (rc)
341                 return rc;
342
343         rc = e1000_init_nvm_params_82571(hw);
344         if (rc)
345                 return rc;
346
347         rc = e1000_init_phy_params_82571(hw);
348         if (rc)
349                 return rc;
350
351         /* tag quad port adapters first, it's used below */
352         switch (pdev->device) {
353         case E1000_DEV_ID_82571EB_QUAD_COPPER:
354         case E1000_DEV_ID_82571EB_QUAD_FIBER:
355         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
356         case E1000_DEV_ID_82571PT_QUAD_COPPER:
357                 adapter->flags |= FLAG_IS_QUAD_PORT;
358                 /* mark the first port */
359                 if (global_quad_port_a == 0)
360                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
361                 /* Reset for multiple quad port adapters */
362                 global_quad_port_a++;
363                 if (global_quad_port_a == 4)
364                         global_quad_port_a = 0;
365                 break;
366         default:
367                 break;
368         }
369
370         switch (adapter->hw.mac.type) {
371         case e1000_82571:
372                 /* these dual ports don't have WoL on port B at all */
373                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
374                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
375                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
376                     (is_port_b))
377                         adapter->flags &= ~FLAG_HAS_WOL;
378                 /* quad ports only support WoL on port A */
379                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
380                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
381                         adapter->flags &= ~FLAG_HAS_WOL;
382                 /* Does not support WoL on any port */
383                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
384                         adapter->flags &= ~FLAG_HAS_WOL;
385                 break;
386         case e1000_82573:
387                 if (pdev->device == E1000_DEV_ID_82573L) {
388                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
389                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
390                 }
391                 break;
392         default:
393                 break;
394         }
395
396         return 0;
397 }
398
399 /**
400  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
401  *  @hw: pointer to the HW structure
402  *
403  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
404  *  revision in the hardware structure.
405  **/
406 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
407 {
408         struct e1000_phy_info *phy = &hw->phy;
409         s32 ret_val;
410         u16 phy_id = 0;
411
412         switch (hw->mac.type) {
413         case e1000_82571:
414         case e1000_82572:
415                 /* The 82571 firmware may still be configuring the PHY.
416                  * In this case, we cannot access the PHY until the
417                  * configuration is done.  So we explicitly set the
418                  * PHY ID.
419                  */
420                 phy->id = IGP01E1000_I_PHY_ID;
421                 break;
422         case e1000_82573:
423                 return e1000e_get_phy_id(hw);
424         case e1000_82574:
425         case e1000_82583:
426                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
427                 if (ret_val)
428                         return ret_val;
429
430                 phy->id = (u32)(phy_id << 16);
431                 usleep_range(20, 40);
432                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
433                 if (ret_val)
434                         return ret_val;
435
436                 phy->id |= (u32)(phy_id);
437                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
438                 break;
439         default:
440                 return -E1000_ERR_PHY;
441         }
442
443         return 0;
444 }
445
446 /**
447  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
448  *  @hw: pointer to the HW structure
449  *
450  *  Acquire the HW semaphore to access the PHY or NVM
451  **/
452 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
453 {
454         u32 swsm;
455         s32 sw_timeout = hw->nvm.word_size + 1;
456         s32 fw_timeout = hw->nvm.word_size + 1;
457         s32 i = 0;
458
459         /* If we have timedout 3 times on trying to acquire
460          * the inter-port SMBI semaphore, there is old code
461          * operating on the other port, and it is not
462          * releasing SMBI. Modify the number of times that
463          * we try for the semaphore to interwork with this
464          * older code.
465          */
466         if (hw->dev_spec.e82571.smb_counter > 2)
467                 sw_timeout = 1;
468
469         /* Get the SW semaphore */
470         while (i < sw_timeout) {
471                 swsm = er32(SWSM);
472                 if (!(swsm & E1000_SWSM_SMBI))
473                         break;
474
475                 usleep_range(50, 100);
476                 i++;
477         }
478
479         if (i == sw_timeout) {
480                 e_dbg("Driver can't access device - SMBI bit is set.\n");
481                 hw->dev_spec.e82571.smb_counter++;
482         }
483         /* Get the FW semaphore. */
484         for (i = 0; i < fw_timeout; i++) {
485                 swsm = er32(SWSM);
486                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
487
488                 /* Semaphore acquired if bit latched */
489                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
490                         break;
491
492                 usleep_range(50, 100);
493         }
494
495         if (i == fw_timeout) {
496                 /* Release semaphores */
497                 e1000_put_hw_semaphore_82571(hw);
498                 e_dbg("Driver can't access the NVM\n");
499                 return -E1000_ERR_NVM;
500         }
501
502         return 0;
503 }
504
505 /**
506  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
507  *  @hw: pointer to the HW structure
508  *
509  *  Release hardware semaphore used to access the PHY or NVM
510  **/
511 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
512 {
513         u32 swsm;
514
515         swsm = er32(SWSM);
516         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
517         ew32(SWSM, swsm);
518 }
519
520 /**
521  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
522  *  @hw: pointer to the HW structure
523  *
524  *  Acquire the HW semaphore during reset.
525  *
526  **/
527 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
528 {
529         u32 extcnf_ctrl;
530         s32 i = 0;
531
532         extcnf_ctrl = er32(EXTCNF_CTRL);
533         do {
534                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
535                 ew32(EXTCNF_CTRL, extcnf_ctrl);
536                 extcnf_ctrl = er32(EXTCNF_CTRL);
537
538                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
539                         break;
540
541                 usleep_range(2000, 4000);
542                 i++;
543         } while (i < MDIO_OWNERSHIP_TIMEOUT);
544
545         if (i == MDIO_OWNERSHIP_TIMEOUT) {
546                 /* Release semaphores */
547                 e1000_put_hw_semaphore_82573(hw);
548                 e_dbg("Driver can't access the PHY\n");
549                 return -E1000_ERR_PHY;
550         }
551
552         return 0;
553 }
554
555 /**
556  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
557  *  @hw: pointer to the HW structure
558  *
559  *  Release hardware semaphore used during reset.
560  *
561  **/
562 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
563 {
564         u32 extcnf_ctrl;
565
566         extcnf_ctrl = er32(EXTCNF_CTRL);
567         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
568         ew32(EXTCNF_CTRL, extcnf_ctrl);
569 }
570
571 static DEFINE_MUTEX(swflag_mutex);
572
573 /**
574  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
575  *  @hw: pointer to the HW structure
576  *
577  *  Acquire the HW semaphore to access the PHY or NVM.
578  *
579  **/
580 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
581 {
582         s32 ret_val;
583
584         mutex_lock(&swflag_mutex);
585         ret_val = e1000_get_hw_semaphore_82573(hw);
586         if (ret_val)
587                 mutex_unlock(&swflag_mutex);
588         return ret_val;
589 }
590
591 /**
592  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
593  *  @hw: pointer to the HW structure
594  *
595  *  Release hardware semaphore used to access the PHY or NVM
596  *
597  **/
598 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
599 {
600         e1000_put_hw_semaphore_82573(hw);
601         mutex_unlock(&swflag_mutex);
602 }
603
604 /**
605  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
606  *  @hw: pointer to the HW structure
607  *  @active: true to enable LPLU, false to disable
608  *
609  *  Sets the LPLU D0 state according to the active flag.
610  *  LPLU will not be activated unless the
611  *  device autonegotiation advertisement meets standards of
612  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
613  *  This is a function pointer entry point only called by
614  *  PHY setup routines.
615  **/
616 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
617 {
618         u32 data = er32(POEMB);
619
620         if (active)
621                 data |= E1000_PHY_CTRL_D0A_LPLU;
622         else
623                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
624
625         ew32(POEMB, data);
626         return 0;
627 }
628
629 /**
630  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
631  *  @hw: pointer to the HW structure
632  *  @active: boolean used to enable/disable lplu
633  *
634  *  The low power link up (lplu) state is set to the power management level D3
635  *  when active is true, else clear lplu for D3. LPLU
636  *  is used during Dx states where the power conservation is most important.
637  *  During driver activity, SmartSpeed should be enabled so performance is
638  *  maintained.
639  **/
640 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
641 {
642         u32 data = er32(POEMB);
643
644         if (!active) {
645                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
646         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
647                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
648                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
649                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
650         }
651
652         ew32(POEMB, data);
653         return 0;
654 }
655
656 /**
657  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
658  *  @hw: pointer to the HW structure
659  *
660  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
661  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
662  *  for EEPROM access grant bit.  If the access grant bit is not set, release
663  *  hardware semaphore.
664  **/
665 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
666 {
667         s32 ret_val;
668
669         ret_val = e1000_get_hw_semaphore_82571(hw);
670         if (ret_val)
671                 return ret_val;
672
673         switch (hw->mac.type) {
674         case e1000_82573:
675                 break;
676         default:
677                 ret_val = e1000e_acquire_nvm(hw);
678                 break;
679         }
680
681         if (ret_val)
682                 e1000_put_hw_semaphore_82571(hw);
683
684         return ret_val;
685 }
686
687 /**
688  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
689  *  @hw: pointer to the HW structure
690  *
691  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
692  **/
693 static void e1000_release_nvm_82571(struct e1000_hw *hw)
694 {
695         e1000e_release_nvm(hw);
696         e1000_put_hw_semaphore_82571(hw);
697 }
698
699 /**
700  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
701  *  @hw: pointer to the HW structure
702  *  @offset: offset within the EEPROM to be written to
703  *  @words: number of words to write
704  *  @data: 16 bit word(s) to be written to the EEPROM
705  *
706  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
707  *
708  *  If e1000e_update_nvm_checksum is not called after this function, the
709  *  EEPROM will most likely contain an invalid checksum.
710  **/
711 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
712                                  u16 *data)
713 {
714         s32 ret_val;
715
716         switch (hw->mac.type) {
717         case e1000_82573:
718         case e1000_82574:
719         case e1000_82583:
720                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
721                 break;
722         case e1000_82571:
723         case e1000_82572:
724                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
725                 break;
726         default:
727                 ret_val = -E1000_ERR_NVM;
728                 break;
729         }
730
731         return ret_val;
732 }
733
734 /**
735  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
736  *  @hw: pointer to the HW structure
737  *
738  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
739  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
740  *  value to the EEPROM.
741  **/
742 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
743 {
744         u32 eecd;
745         s32 ret_val;
746         u16 i;
747
748         ret_val = e1000e_update_nvm_checksum_generic(hw);
749         if (ret_val)
750                 return ret_val;
751
752         /* If our nvm is an EEPROM, then we're done
753          * otherwise, commit the checksum to the flash NVM.
754          */
755         if (hw->nvm.type != e1000_nvm_flash_hw)
756                 return 0;
757
758         /* Check for pending operations. */
759         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
760                 usleep_range(1000, 2000);
761                 if (!(er32(EECD) & E1000_EECD_FLUPD))
762                         break;
763         }
764
765         if (i == E1000_FLASH_UPDATES)
766                 return -E1000_ERR_NVM;
767
768         /* Reset the firmware if using STM opcode. */
769         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
770                 /* The enabling of and the actual reset must be done
771                  * in two write cycles.
772                  */
773                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
774                 e1e_flush();
775                 ew32(HICR, E1000_HICR_FW_RESET);
776         }
777
778         /* Commit the write to flash */
779         eecd = er32(EECD) | E1000_EECD_FLUPD;
780         ew32(EECD, eecd);
781
782         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
783                 usleep_range(1000, 2000);
784                 if (!(er32(EECD) & E1000_EECD_FLUPD))
785                         break;
786         }
787
788         if (i == E1000_FLASH_UPDATES)
789                 return -E1000_ERR_NVM;
790
791         return 0;
792 }
793
794 /**
795  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
796  *  @hw: pointer to the HW structure
797  *
798  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
799  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
800  **/
801 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
802 {
803         if (hw->nvm.type == e1000_nvm_flash_hw)
804                 e1000_fix_nvm_checksum_82571(hw);
805
806         return e1000e_validate_nvm_checksum_generic(hw);
807 }
808
809 /**
810  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
811  *  @hw: pointer to the HW structure
812  *  @offset: offset within the EEPROM to be written to
813  *  @words: number of words to write
814  *  @data: 16 bit word(s) to be written to the EEPROM
815  *
816  *  After checking for invalid values, poll the EEPROM to ensure the previous
817  *  command has completed before trying to write the next word.  After write
818  *  poll for completion.
819  *
820  *  If e1000e_update_nvm_checksum is not called after this function, the
821  *  EEPROM will most likely contain an invalid checksum.
822  **/
823 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
824                                       u16 words, u16 *data)
825 {
826         struct e1000_nvm_info *nvm = &hw->nvm;
827         u32 i, eewr = 0;
828         s32 ret_val = 0;
829
830         /* A check for invalid values:  offset too large, too many words,
831          * and not enough words.
832          */
833         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
834             (words == 0)) {
835                 e_dbg("nvm parameter(s) out of bounds\n");
836                 return -E1000_ERR_NVM;
837         }
838
839         for (i = 0; i < words; i++) {
840                 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
841                         ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
842                         E1000_NVM_RW_REG_START);
843
844                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
845                 if (ret_val)
846                         break;
847
848                 ew32(EEWR, eewr);
849
850                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
851                 if (ret_val)
852                         break;
853         }
854
855         return ret_val;
856 }
857
858 /**
859  *  e1000_get_cfg_done_82571 - Poll for configuration done
860  *  @hw: pointer to the HW structure
861  *
862  *  Reads the management control register for the config done bit to be set.
863  **/
864 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
865 {
866         s32 timeout = PHY_CFG_TIMEOUT;
867
868         while (timeout) {
869                 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
870                         break;
871                 usleep_range(1000, 2000);
872                 timeout--;
873         }
874         if (!timeout) {
875                 e_dbg("MNG configuration cycle has not completed.\n");
876                 return -E1000_ERR_RESET;
877         }
878
879         return 0;
880 }
881
882 /**
883  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
884  *  @hw: pointer to the HW structure
885  *  @active: true to enable LPLU, false to disable
886  *
887  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
888  *  this function also disables smart speed and vice versa.  LPLU will not be
889  *  activated unless the device autonegotiation advertisement meets standards
890  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
891  *  pointer entry point only called by PHY setup routines.
892  **/
893 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
894 {
895         struct e1000_phy_info *phy = &hw->phy;
896         s32 ret_val;
897         u16 data;
898
899         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
900         if (ret_val)
901                 return ret_val;
902
903         if (active) {
904                 data |= IGP02E1000_PM_D0_LPLU;
905                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
906                 if (ret_val)
907                         return ret_val;
908
909                 /* When LPLU is enabled, we should disable SmartSpeed */
910                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
911                 if (ret_val)
912                         return ret_val;
913                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
914                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
915                 if (ret_val)
916                         return ret_val;
917         } else {
918                 data &= ~IGP02E1000_PM_D0_LPLU;
919                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
920                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
921                  * during Dx states where the power conservation is most
922                  * important.  During driver activity we should enable
923                  * SmartSpeed, so performance is maintained.
924                  */
925                 if (phy->smart_speed == e1000_smart_speed_on) {
926                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927                                            &data);
928                         if (ret_val)
929                                 return ret_val;
930
931                         data |= IGP01E1000_PSCFR_SMART_SPEED;
932                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
933                                            data);
934                         if (ret_val)
935                                 return ret_val;
936                 } else if (phy->smart_speed == e1000_smart_speed_off) {
937                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
938                                            &data);
939                         if (ret_val)
940                                 return ret_val;
941
942                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
943                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
944                                            data);
945                         if (ret_val)
946                                 return ret_val;
947                 }
948         }
949
950         return 0;
951 }
952
953 /**
954  *  e1000_reset_hw_82571 - Reset hardware
955  *  @hw: pointer to the HW structure
956  *
957  *  This resets the hardware into a known state.
958  **/
959 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
960 {
961         u32 ctrl, ctrl_ext, eecd, tctl;
962         s32 ret_val;
963
964         /* Prevent the PCI-E bus from sticking if there is no TLP connection
965          * on the last TLP read/write transaction when MAC is reset.
966          */
967         ret_val = e1000e_disable_pcie_master(hw);
968         if (ret_val)
969                 e_dbg("PCI-E Master disable polling has failed.\n");
970
971         e_dbg("Masking off all interrupts\n");
972         ew32(IMC, 0xffffffff);
973
974         ew32(RCTL, 0);
975         tctl = er32(TCTL);
976         tctl &= ~E1000_TCTL_EN;
977         ew32(TCTL, tctl);
978         e1e_flush();
979
980         usleep_range(10000, 20000);
981
982         /* Must acquire the MDIO ownership before MAC reset.
983          * Ownership defaults to firmware after a reset.
984          */
985         switch (hw->mac.type) {
986         case e1000_82573:
987                 ret_val = e1000_get_hw_semaphore_82573(hw);
988                 break;
989         case e1000_82574:
990         case e1000_82583:
991                 ret_val = e1000_get_hw_semaphore_82574(hw);
992                 break;
993         default:
994                 break;
995         }
996
997         ctrl = er32(CTRL);
998
999         e_dbg("Issuing a global reset to MAC\n");
1000         ew32(CTRL, ctrl | E1000_CTRL_RST);
1001
1002         /* Must release MDIO ownership and mutex after MAC reset. */
1003         switch (hw->mac.type) {
1004         case e1000_82573:
1005                 /* Release mutex only if the hw semaphore is acquired */
1006                 if (!ret_val)
1007                         e1000_put_hw_semaphore_82573(hw);
1008                 break;
1009         case e1000_82574:
1010         case e1000_82583:
1011                 /* Release mutex only if the hw semaphore is acquired */
1012                 if (!ret_val)
1013                         e1000_put_hw_semaphore_82574(hw);
1014                 break;
1015         default:
1016                 break;
1017         }
1018
1019         if (hw->nvm.type == e1000_nvm_flash_hw) {
1020                 usleep_range(10, 20);
1021                 ctrl_ext = er32(CTRL_EXT);
1022                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1023                 ew32(CTRL_EXT, ctrl_ext);
1024                 e1e_flush();
1025         }
1026
1027         ret_val = e1000e_get_auto_rd_done(hw);
1028         if (ret_val)
1029                 /* We don't want to continue accessing MAC registers. */
1030                 return ret_val;
1031
1032         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1033          * Need to wait for Phy configuration completion before accessing
1034          * NVM and Phy.
1035          */
1036
1037         switch (hw->mac.type) {
1038         case e1000_82571:
1039         case e1000_82572:
1040                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1041                  * to access the EEPROM.
1042                  */
1043                 eecd = er32(EECD);
1044                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1045                 ew32(EECD, eecd);
1046                 break;
1047         case e1000_82573:
1048         case e1000_82574:
1049         case e1000_82583:
1050                 msleep(25);
1051                 break;
1052         default:
1053                 break;
1054         }
1055
1056         /* Clear any pending interrupt events. */
1057         ew32(IMC, 0xffffffff);
1058         er32(ICR);
1059
1060         if (hw->mac.type == e1000_82571) {
1061                 /* Install any alternate MAC address into RAR0 */
1062                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1063                 if (ret_val)
1064                         return ret_val;
1065
1066                 e1000e_set_laa_state_82571(hw, true);
1067         }
1068
1069         /* Reinitialize the 82571 serdes link state machine */
1070         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1071                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1072
1073         return 0;
1074 }
1075
1076 /**
1077  *  e1000_init_hw_82571 - Initialize hardware
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  This inits the hardware readying it for operation.
1081  **/
1082 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1083 {
1084         struct e1000_mac_info *mac = &hw->mac;
1085         u32 reg_data;
1086         s32 ret_val;
1087         u16 i, rar_count = mac->rar_entry_count;
1088
1089         e1000_initialize_hw_bits_82571(hw);
1090
1091         /* Initialize identification LED */
1092         ret_val = mac->ops.id_led_init(hw);
1093         /* An error is not fatal and we should not stop init due to this */
1094         if (ret_val)
1095                 e_dbg("Error initializing identification LED\n");
1096
1097         /* Disabling VLAN filtering */
1098         e_dbg("Initializing the IEEE VLAN\n");
1099         mac->ops.clear_vfta(hw);
1100
1101         /* Setup the receive address.
1102          * If, however, a locally administered address was assigned to the
1103          * 82571, we must reserve a RAR for it to work around an issue where
1104          * resetting one port will reload the MAC on the other port.
1105          */
1106         if (e1000e_get_laa_state_82571(hw))
1107                 rar_count--;
1108         e1000e_init_rx_addrs(hw, rar_count);
1109
1110         /* Zero out the Multicast HASH table */
1111         e_dbg("Zeroing the MTA\n");
1112         for (i = 0; i < mac->mta_reg_count; i++)
1113                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1114
1115         /* Setup link and flow control */
1116         ret_val = mac->ops.setup_link(hw);
1117
1118         /* Set the transmit descriptor write-back policy */
1119         reg_data = er32(TXDCTL(0));
1120         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1122         ew32(TXDCTL(0), reg_data);
1123
1124         /* ...for both queues. */
1125         switch (mac->type) {
1126         case e1000_82573:
1127                 e1000e_enable_tx_pkt_filtering(hw);
1128                 /* fall through */
1129         case e1000_82574:
1130         case e1000_82583:
1131                 reg_data = er32(GCR);
1132                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1133                 ew32(GCR, reg_data);
1134                 break;
1135         default:
1136                 reg_data = er32(TXDCTL(1));
1137                 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1138                             E1000_TXDCTL_FULL_TX_DESC_WB |
1139                             E1000_TXDCTL_COUNT_DESC);
1140                 ew32(TXDCTL(1), reg_data);
1141                 break;
1142         }
1143
1144         /* Clear all of the statistics registers (clear on read).  It is
1145          * important that we do this after we have tried to establish link
1146          * because the symbol error count will increment wildly if there
1147          * is no link.
1148          */
1149         e1000_clear_hw_cntrs_82571(hw);
1150
1151         return ret_val;
1152 }
1153
1154 /**
1155  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  Initializes required hardware-dependent bits needed for normal operation.
1159  **/
1160 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1161 {
1162         u32 reg;
1163
1164         /* Transmit Descriptor Control 0 */
1165         reg = er32(TXDCTL(0));
1166         reg |= BIT(22);
1167         ew32(TXDCTL(0), reg);
1168
1169         /* Transmit Descriptor Control 1 */
1170         reg = er32(TXDCTL(1));
1171         reg |= BIT(22);
1172         ew32(TXDCTL(1), reg);
1173
1174         /* Transmit Arbitration Control 0 */
1175         reg = er32(TARC(0));
1176         reg &= ~(0xF << 27);    /* 30:27 */
1177         switch (hw->mac.type) {
1178         case e1000_82571:
1179         case e1000_82572:
1180                 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1181                 break;
1182         case e1000_82574:
1183         case e1000_82583:
1184                 reg |= BIT(26);
1185                 break;
1186         default:
1187                 break;
1188         }
1189         ew32(TARC(0), reg);
1190
1191         /* Transmit Arbitration Control 1 */
1192         reg = er32(TARC(1));
1193         switch (hw->mac.type) {
1194         case e1000_82571:
1195         case e1000_82572:
1196                 reg &= ~(BIT(29) | BIT(30));
1197                 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1198                 if (er32(TCTL) & E1000_TCTL_MULR)
1199                         reg &= ~BIT(28);
1200                 else
1201                         reg |= BIT(28);
1202                 ew32(TARC(1), reg);
1203                 break;
1204         default:
1205                 break;
1206         }
1207
1208         /* Device Control */
1209         switch (hw->mac.type) {
1210         case e1000_82573:
1211         case e1000_82574:
1212         case e1000_82583:
1213                 reg = er32(CTRL);
1214                 reg &= ~BIT(29);
1215                 ew32(CTRL, reg);
1216                 break;
1217         default:
1218                 break;
1219         }
1220
1221         /* Extended Device Control */
1222         switch (hw->mac.type) {
1223         case e1000_82573:
1224         case e1000_82574:
1225         case e1000_82583:
1226                 reg = er32(CTRL_EXT);
1227                 reg &= ~BIT(23);
1228                 reg |= BIT(22);
1229                 ew32(CTRL_EXT, reg);
1230                 break;
1231         default:
1232                 break;
1233         }
1234
1235         if (hw->mac.type == e1000_82571) {
1236                 reg = er32(PBA_ECC);
1237                 reg |= E1000_PBA_ECC_CORR_EN;
1238                 ew32(PBA_ECC, reg);
1239         }
1240
1241         /* Workaround for hardware errata.
1242          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1243          */
1244         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1245                 reg = er32(CTRL_EXT);
1246                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1247                 ew32(CTRL_EXT, reg);
1248         }
1249
1250         /* Disable IPv6 extension header parsing because some malformed
1251          * IPv6 headers can hang the Rx.
1252          */
1253         if (hw->mac.type <= e1000_82573) {
1254                 reg = er32(RFCTL);
1255                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1256                 ew32(RFCTL, reg);
1257         }
1258
1259         /* PCI-Ex Control Registers */
1260         switch (hw->mac.type) {
1261         case e1000_82574:
1262         case e1000_82583:
1263                 reg = er32(GCR);
1264                 reg |= BIT(22);
1265                 ew32(GCR, reg);
1266
1267                 /* Workaround for hardware errata.
1268                  * apply workaround for hardware errata documented in errata
1269                  * docs Fixes issue where some error prone or unreliable PCIe
1270                  * completions are occurring, particularly with ASPM enabled.
1271                  * Without fix, issue can cause Tx timeouts.
1272                  */
1273                 reg = er32(GCR2);
1274                 reg |= 1;
1275                 ew32(GCR2, reg);
1276                 break;
1277         default:
1278                 break;
1279         }
1280 }
1281
1282 /**
1283  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1284  *  @hw: pointer to the HW structure
1285  *
1286  *  Clears the register array which contains the VLAN filter table by
1287  *  setting all the values to 0.
1288  **/
1289 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1290 {
1291         u32 offset;
1292         u32 vfta_value = 0;
1293         u32 vfta_offset = 0;
1294         u32 vfta_bit_in_reg = 0;
1295
1296         switch (hw->mac.type) {
1297         case e1000_82573:
1298         case e1000_82574:
1299         case e1000_82583:
1300                 if (hw->mng_cookie.vlan_id != 0) {
1301                         /* The VFTA is a 4096b bit-field, each identifying
1302                          * a single VLAN ID.  The following operations
1303                          * determine which 32b entry (i.e. offset) into the
1304                          * array we want to set the VLAN ID (i.e. bit) of
1305                          * the manageability unit.
1306                          */
1307                         vfta_offset = (hw->mng_cookie.vlan_id >>
1308                                        E1000_VFTA_ENTRY_SHIFT) &
1309                             E1000_VFTA_ENTRY_MASK;
1310                         vfta_bit_in_reg =
1311                             BIT(hw->mng_cookie.vlan_id &
1312                                 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1313                 }
1314                 break;
1315         default:
1316                 break;
1317         }
1318         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1319                 /* If the offset we want to clear is the same offset of the
1320                  * manageability VLAN ID, then clear all bits except that of
1321                  * the manageability unit.
1322                  */
1323                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1324                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1325                 e1e_flush();
1326         }
1327 }
1328
1329 /**
1330  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1331  *  @hw: pointer to the HW structure
1332  *
1333  *  Reads the NVM Initialization Control Word 2 and returns true
1334  *  (>0) if any manageability is enabled, else false (0).
1335  **/
1336 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1337 {
1338         u16 data;
1339
1340         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1341         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1342 }
1343
1344 /**
1345  *  e1000_led_on_82574 - Turn LED on
1346  *  @hw: pointer to the HW structure
1347  *
1348  *  Turn LED on.
1349  **/
1350 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1351 {
1352         u32 ctrl;
1353         u32 i;
1354
1355         ctrl = hw->mac.ledctl_mode2;
1356         if (!(E1000_STATUS_LU & er32(STATUS))) {
1357                 /* If no link, then turn LED on by setting the invert bit
1358                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1359                  */
1360                 for (i = 0; i < 4; i++)
1361                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1362                             E1000_LEDCTL_MODE_LED_ON)
1363                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1364         }
1365         ew32(LEDCTL, ctrl);
1366
1367         return 0;
1368 }
1369
1370 /**
1371  *  e1000_check_phy_82574 - check 82574 phy hung state
1372  *  @hw: pointer to the HW structure
1373  *
1374  *  Returns whether phy is hung or not
1375  **/
1376 bool e1000_check_phy_82574(struct e1000_hw *hw)
1377 {
1378         u16 status_1kbt = 0;
1379         u16 receive_errors = 0;
1380         s32 ret_val;
1381
1382         /* Read PHY Receive Error counter first, if its is max - all F's then
1383          * read the Base1000T status register If both are max then PHY is hung.
1384          */
1385         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1386         if (ret_val)
1387                 return false;
1388         if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1389                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1390                 if (ret_val)
1391                         return false;
1392                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1393                     E1000_IDLE_ERROR_COUNT_MASK)
1394                         return true;
1395         }
1396
1397         return false;
1398 }
1399
1400 /**
1401  *  e1000_setup_link_82571 - Setup flow control and link settings
1402  *  @hw: pointer to the HW structure
1403  *
1404  *  Determines which flow control settings to use, then configures flow
1405  *  control.  Calls the appropriate media-specific link configuration
1406  *  function.  Assuming the adapter has a valid link partner, a valid link
1407  *  should be established.  Assumes the hardware has previously been reset
1408  *  and the transmitter and receiver are not enabled.
1409  **/
1410 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1411 {
1412         /* 82573 does not have a word in the NVM to determine
1413          * the default flow control setting, so we explicitly
1414          * set it to full.
1415          */
1416         switch (hw->mac.type) {
1417         case e1000_82573:
1418         case e1000_82574:
1419         case e1000_82583:
1420                 if (hw->fc.requested_mode == e1000_fc_default)
1421                         hw->fc.requested_mode = e1000_fc_full;
1422                 break;
1423         default:
1424                 break;
1425         }
1426
1427         return e1000e_setup_link_generic(hw);
1428 }
1429
1430 /**
1431  *  e1000_setup_copper_link_82571 - Configure copper link settings
1432  *  @hw: pointer to the HW structure
1433  *
1434  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1435  *  for link, once link is established calls to configure collision distance
1436  *  and flow control are called.
1437  **/
1438 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1439 {
1440         u32 ctrl;
1441         s32 ret_val;
1442
1443         ctrl = er32(CTRL);
1444         ctrl |= E1000_CTRL_SLU;
1445         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1446         ew32(CTRL, ctrl);
1447
1448         switch (hw->phy.type) {
1449         case e1000_phy_m88:
1450         case e1000_phy_bm:
1451                 ret_val = e1000e_copper_link_setup_m88(hw);
1452                 break;
1453         case e1000_phy_igp_2:
1454                 ret_val = e1000e_copper_link_setup_igp(hw);
1455                 break;
1456         default:
1457                 return -E1000_ERR_PHY;
1458         }
1459
1460         if (ret_val)
1461                 return ret_val;
1462
1463         return e1000e_setup_copper_link(hw);
1464 }
1465
1466 /**
1467  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1468  *  @hw: pointer to the HW structure
1469  *
1470  *  Configures collision distance and flow control for fiber and serdes links.
1471  *  Upon successful setup, poll for link.
1472  **/
1473 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1474 {
1475         switch (hw->mac.type) {
1476         case e1000_82571:
1477         case e1000_82572:
1478                 /* If SerDes loopback mode is entered, there is no form
1479                  * of reset to take the adapter out of that mode.  So we
1480                  * have to explicitly take the adapter out of loopback
1481                  * mode.  This prevents drivers from twiddling their thumbs
1482                  * if another tool failed to take it out of loopback mode.
1483                  */
1484                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1485                 break;
1486         default:
1487                 break;
1488         }
1489
1490         return e1000e_setup_fiber_serdes_link(hw);
1491 }
1492
1493 /**
1494  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1495  *  @hw: pointer to the HW structure
1496  *
1497  *  Reports the link state as up or down.
1498  *
1499  *  If autonegotiation is supported by the link partner, the link state is
1500  *  determined by the result of autonegotiation. This is the most likely case.
1501  *  If autonegotiation is not supported by the link partner, and the link
1502  *  has a valid signal, force the link up.
1503  *
1504  *  The link state is represented internally here by 4 states:
1505  *
1506  *  1) down
1507  *  2) autoneg_progress
1508  *  3) autoneg_complete (the link successfully autonegotiated)
1509  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1510  *
1511  **/
1512 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1513 {
1514         struct e1000_mac_info *mac = &hw->mac;
1515         u32 rxcw;
1516         u32 ctrl;
1517         u32 status;
1518         u32 txcw;
1519         u32 i;
1520         s32 ret_val = 0;
1521
1522         ctrl = er32(CTRL);
1523         status = er32(STATUS);
1524         er32(RXCW);
1525         /* SYNCH bit and IV bit are sticky */
1526         usleep_range(10, 20);
1527         rxcw = er32(RXCW);
1528
1529         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1530                 /* Receiver is synchronized with no invalid bits.  */
1531                 switch (mac->serdes_link_state) {
1532                 case e1000_serdes_link_autoneg_complete:
1533                         if (!(status & E1000_STATUS_LU)) {
1534                                 /* We have lost link, retry autoneg before
1535                                  * reporting link failure
1536                                  */
1537                                 mac->serdes_link_state =
1538                                     e1000_serdes_link_autoneg_progress;
1539                                 mac->serdes_has_link = false;
1540                                 e_dbg("AN_UP     -> AN_PROG\n");
1541                         } else {
1542                                 mac->serdes_has_link = true;
1543                         }
1544                         break;
1545
1546                 case e1000_serdes_link_forced_up:
1547                         /* If we are receiving /C/ ordered sets, re-enable
1548                          * auto-negotiation in the TXCW register and disable
1549                          * forced link in the Device Control register in an
1550                          * attempt to auto-negotiate with our link partner.
1551                          */
1552                         if (rxcw & E1000_RXCW_C) {
1553                                 /* Enable autoneg, and unforce link up */
1554                                 ew32(TXCW, mac->txcw);
1555                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1556                                 mac->serdes_link_state =
1557                                     e1000_serdes_link_autoneg_progress;
1558                                 mac->serdes_has_link = false;
1559                                 e_dbg("FORCED_UP -> AN_PROG\n");
1560                         } else {
1561                                 mac->serdes_has_link = true;
1562                         }
1563                         break;
1564
1565                 case e1000_serdes_link_autoneg_progress:
1566                         if (rxcw & E1000_RXCW_C) {
1567                                 /* We received /C/ ordered sets, meaning the
1568                                  * link partner has autonegotiated, and we can
1569                                  * trust the Link Up (LU) status bit.
1570                                  */
1571                                 if (status & E1000_STATUS_LU) {
1572                                         mac->serdes_link_state =
1573                                             e1000_serdes_link_autoneg_complete;
1574                                         e_dbg("AN_PROG   -> AN_UP\n");
1575                                         mac->serdes_has_link = true;
1576                                 } else {
1577                                         /* Autoneg completed, but failed. */
1578                                         mac->serdes_link_state =
1579                                             e1000_serdes_link_down;
1580                                         e_dbg("AN_PROG   -> DOWN\n");
1581                                 }
1582                         } else {
1583                                 /* The link partner did not autoneg.
1584                                  * Force link up and full duplex, and change
1585                                  * state to forced.
1586                                  */
1587                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1588                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1589                                 ew32(CTRL, ctrl);
1590
1591                                 /* Configure Flow Control after link up. */
1592                                 ret_val = e1000e_config_fc_after_link_up(hw);
1593                                 if (ret_val) {
1594                                         e_dbg("Error config flow control\n");
1595                                         break;
1596                                 }
1597                                 mac->serdes_link_state =
1598                                     e1000_serdes_link_forced_up;
1599                                 mac->serdes_has_link = true;
1600                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1601                         }
1602                         break;
1603
1604                 case e1000_serdes_link_down:
1605                 default:
1606                         /* The link was down but the receiver has now gained
1607                          * valid sync, so lets see if we can bring the link
1608                          * up.
1609                          */
1610                         ew32(TXCW, mac->txcw);
1611                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1612                         mac->serdes_link_state =
1613                             e1000_serdes_link_autoneg_progress;
1614                         mac->serdes_has_link = false;
1615                         e_dbg("DOWN      -> AN_PROG\n");
1616                         break;
1617                 }
1618         } else {
1619                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1620                         mac->serdes_has_link = false;
1621                         mac->serdes_link_state = e1000_serdes_link_down;
1622                         e_dbg("ANYSTATE  -> DOWN\n");
1623                 } else {
1624                         /* Check several times, if SYNCH bit and CONFIG
1625                          * bit both are consistently 1 then simply ignore
1626                          * the IV bit and restart Autoneg
1627                          */
1628                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1629                                 usleep_range(10, 20);
1630                                 rxcw = er32(RXCW);
1631                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1632                                     (rxcw & E1000_RXCW_C))
1633                                         continue;
1634
1635                                 if (rxcw & E1000_RXCW_IV) {
1636                                         mac->serdes_has_link = false;
1637                                         mac->serdes_link_state =
1638                                             e1000_serdes_link_down;
1639                                         e_dbg("ANYSTATE  -> DOWN\n");
1640                                         break;
1641                                 }
1642                         }
1643
1644                         if (i == AN_RETRY_COUNT) {
1645                                 txcw = er32(TXCW);
1646                                 txcw |= E1000_TXCW_ANE;
1647                                 ew32(TXCW, txcw);
1648                                 mac->serdes_link_state =
1649                                     e1000_serdes_link_autoneg_progress;
1650                                 mac->serdes_has_link = false;
1651                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1652                         }
1653                 }
1654         }
1655
1656         return ret_val;
1657 }
1658
1659 /**
1660  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1661  *  @hw: pointer to the HW structure
1662  *  @data: pointer to the NVM (EEPROM)
1663  *
1664  *  Read the EEPROM for the current default LED configuration.  If the
1665  *  LED configuration is not valid, set to a valid LED configuration.
1666  **/
1667 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1668 {
1669         s32 ret_val;
1670
1671         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1672         if (ret_val) {
1673                 e_dbg("NVM Read Error\n");
1674                 return ret_val;
1675         }
1676
1677         switch (hw->mac.type) {
1678         case e1000_82573:
1679         case e1000_82574:
1680         case e1000_82583:
1681                 if (*data == ID_LED_RESERVED_F746)
1682                         *data = ID_LED_DEFAULT_82573;
1683                 break;
1684         default:
1685                 if (*data == ID_LED_RESERVED_0000 ||
1686                     *data == ID_LED_RESERVED_FFFF)
1687                         *data = ID_LED_DEFAULT;
1688                 break;
1689         }
1690
1691         return 0;
1692 }
1693
1694 /**
1695  *  e1000e_get_laa_state_82571 - Get locally administered address state
1696  *  @hw: pointer to the HW structure
1697  *
1698  *  Retrieve and return the current locally administered address state.
1699  **/
1700 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1701 {
1702         if (hw->mac.type != e1000_82571)
1703                 return false;
1704
1705         return hw->dev_spec.e82571.laa_is_present;
1706 }
1707
1708 /**
1709  *  e1000e_set_laa_state_82571 - Set locally administered address state
1710  *  @hw: pointer to the HW structure
1711  *  @state: enable/disable locally administered address
1712  *
1713  *  Enable/Disable the current locally administered address state.
1714  **/
1715 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1716 {
1717         if (hw->mac.type != e1000_82571)
1718                 return;
1719
1720         hw->dev_spec.e82571.laa_is_present = state;
1721
1722         /* If workaround is activated... */
1723         if (state)
1724                 /* Hold a copy of the LAA in RAR[14] This is done so that
1725                  * between the time RAR[0] gets clobbered and the time it
1726                  * gets fixed, the actual LAA is in one of the RARs and no
1727                  * incoming packets directed to this port are dropped.
1728                  * Eventually the LAA will be in RAR[0] and RAR[14].
1729                  */
1730                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1731                                     hw->mac.rar_entry_count - 1);
1732 }
1733
1734 /**
1735  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1736  *  @hw: pointer to the HW structure
1737  *
1738  *  Verifies that the EEPROM has completed the update.  After updating the
1739  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1740  *  the checksum fix is not implemented, we need to set the bit and update
1741  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1742  *  we need to return bad checksum.
1743  **/
1744 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1745 {
1746         struct e1000_nvm_info *nvm = &hw->nvm;
1747         s32 ret_val;
1748         u16 data;
1749
1750         if (nvm->type != e1000_nvm_flash_hw)
1751                 return 0;
1752
1753         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1754          * 10h-12h.  Checksum may need to be fixed.
1755          */
1756         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1757         if (ret_val)
1758                 return ret_val;
1759
1760         if (!(data & 0x10)) {
1761                 /* Read 0x23 and check bit 15.  This bit is a 1
1762                  * when the checksum has already been fixed.  If
1763                  * the checksum is still wrong and this bit is a
1764                  * 1, we need to return bad checksum.  Otherwise,
1765                  * we need to set this bit to a 1 and update the
1766                  * checksum.
1767                  */
1768                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1769                 if (ret_val)
1770                         return ret_val;
1771
1772                 if (!(data & 0x8000)) {
1773                         data |= 0x8000;
1774                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1775                         if (ret_val)
1776                                 return ret_val;
1777                         ret_val = e1000e_update_nvm_checksum(hw);
1778                         if (ret_val)
1779                                 return ret_val;
1780                 }
1781         }
1782
1783         return 0;
1784 }
1785
1786 /**
1787  *  e1000_read_mac_addr_82571 - Read device MAC address
1788  *  @hw: pointer to the HW structure
1789  **/
1790 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1791 {
1792         if (hw->mac.type == e1000_82571) {
1793                 s32 ret_val;
1794
1795                 /* If there's an alternate MAC address place it in RAR0
1796                  * so that it will override the Si installed default perm
1797                  * address.
1798                  */
1799                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1800                 if (ret_val)
1801                         return ret_val;
1802         }
1803
1804         return e1000_read_mac_addr_generic(hw);
1805 }
1806
1807 /**
1808  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1809  * @hw: pointer to the HW structure
1810  *
1811  * In the case of a PHY power down to save power, or to turn off link during a
1812  * driver unload, or wake on lan is not enabled, remove the link.
1813  **/
1814 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1815 {
1816         struct e1000_phy_info *phy = &hw->phy;
1817         struct e1000_mac_info *mac = &hw->mac;
1818
1819         if (!phy->ops.check_reset_block)
1820                 return;
1821
1822         /* If the management interface is not enabled, then power down */
1823         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1824                 e1000_power_down_phy_copper(hw);
1825 }
1826
1827 /**
1828  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1829  *  @hw: pointer to the HW structure
1830  *
1831  *  Clears the hardware counters by reading the counter registers.
1832  **/
1833 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1834 {
1835         e1000e_clear_hw_cntrs_base(hw);
1836
1837         er32(PRC64);
1838         er32(PRC127);
1839         er32(PRC255);
1840         er32(PRC511);
1841         er32(PRC1023);
1842         er32(PRC1522);
1843         er32(PTC64);
1844         er32(PTC127);
1845         er32(PTC255);
1846         er32(PTC511);
1847         er32(PTC1023);
1848         er32(PTC1522);
1849
1850         er32(ALGNERRC);
1851         er32(RXERRC);
1852         er32(TNCRS);
1853         er32(CEXTERR);
1854         er32(TSCTC);
1855         er32(TSCTFC);
1856
1857         er32(MGTPRC);
1858         er32(MGTPDC);
1859         er32(MGTPTC);
1860
1861         er32(IAC);
1862         er32(ICRXOC);
1863
1864         er32(ICRXPTC);
1865         er32(ICRXATC);
1866         er32(ICTXPTC);
1867         er32(ICTXATC);
1868         er32(ICTXQEC);
1869         er32(ICTXQMTC);
1870         er32(ICRXDMTC);
1871 }
1872
1873 static const struct e1000_mac_operations e82571_mac_ops = {
1874         /* .check_mng_mode: mac type dependent */
1875         /* .check_for_link: media type dependent */
1876         .id_led_init            = e1000e_id_led_init_generic,
1877         .cleanup_led            = e1000e_cleanup_led_generic,
1878         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1879         .get_bus_info           = e1000e_get_bus_info_pcie,
1880         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1881         /* .get_link_up_info: media type dependent */
1882         /* .led_on: mac type dependent */
1883         .led_off                = e1000e_led_off_generic,
1884         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1885         .write_vfta             = e1000_write_vfta_generic,
1886         .clear_vfta             = e1000_clear_vfta_82571,
1887         .reset_hw               = e1000_reset_hw_82571,
1888         .init_hw                = e1000_init_hw_82571,
1889         .setup_link             = e1000_setup_link_82571,
1890         /* .setup_physical_interface: media type dependent */
1891         .setup_led              = e1000e_setup_led_generic,
1892         .config_collision_dist  = e1000e_config_collision_dist_generic,
1893         .read_mac_addr          = e1000_read_mac_addr_82571,
1894         .rar_set                = e1000e_rar_set_generic,
1895         .rar_get_count          = e1000e_rar_get_count_generic,
1896 };
1897
1898 static const struct e1000_phy_operations e82_phy_ops_igp = {
1899         .acquire                = e1000_get_hw_semaphore_82571,
1900         .check_polarity         = e1000_check_polarity_igp,
1901         .check_reset_block      = e1000e_check_reset_block_generic,
1902         .commit                 = NULL,
1903         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1904         .get_cfg_done           = e1000_get_cfg_done_82571,
1905         .get_cable_length       = e1000e_get_cable_length_igp_2,
1906         .get_info               = e1000e_get_phy_info_igp,
1907         .read_reg               = e1000e_read_phy_reg_igp,
1908         .release                = e1000_put_hw_semaphore_82571,
1909         .reset                  = e1000e_phy_hw_reset_generic,
1910         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1911         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1912         .write_reg              = e1000e_write_phy_reg_igp,
1913         .cfg_on_link_up         = NULL,
1914 };
1915
1916 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1917         .acquire                = e1000_get_hw_semaphore_82571,
1918         .check_polarity         = e1000_check_polarity_m88,
1919         .check_reset_block      = e1000e_check_reset_block_generic,
1920         .commit                 = e1000e_phy_sw_reset,
1921         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1922         .get_cfg_done           = e1000e_get_cfg_done_generic,
1923         .get_cable_length       = e1000e_get_cable_length_m88,
1924         .get_info               = e1000e_get_phy_info_m88,
1925         .read_reg               = e1000e_read_phy_reg_m88,
1926         .release                = e1000_put_hw_semaphore_82571,
1927         .reset                  = e1000e_phy_hw_reset_generic,
1928         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1929         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1930         .write_reg              = e1000e_write_phy_reg_m88,
1931         .cfg_on_link_up         = NULL,
1932 };
1933
1934 static const struct e1000_phy_operations e82_phy_ops_bm = {
1935         .acquire                = e1000_get_hw_semaphore_82571,
1936         .check_polarity         = e1000_check_polarity_m88,
1937         .check_reset_block      = e1000e_check_reset_block_generic,
1938         .commit                 = e1000e_phy_sw_reset,
1939         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1940         .get_cfg_done           = e1000e_get_cfg_done_generic,
1941         .get_cable_length       = e1000e_get_cable_length_m88,
1942         .get_info               = e1000e_get_phy_info_m88,
1943         .read_reg               = e1000e_read_phy_reg_bm2,
1944         .release                = e1000_put_hw_semaphore_82571,
1945         .reset                  = e1000e_phy_hw_reset_generic,
1946         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1947         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1948         .write_reg              = e1000e_write_phy_reg_bm2,
1949         .cfg_on_link_up         = NULL,
1950 };
1951
1952 static const struct e1000_nvm_operations e82571_nvm_ops = {
1953         .acquire                = e1000_acquire_nvm_82571,
1954         .read                   = e1000e_read_nvm_eerd,
1955         .release                = e1000_release_nvm_82571,
1956         .reload                 = e1000e_reload_nvm_generic,
1957         .update                 = e1000_update_nvm_checksum_82571,
1958         .valid_led_default      = e1000_valid_led_default_82571,
1959         .validate               = e1000_validate_nvm_checksum_82571,
1960         .write                  = e1000_write_nvm_82571,
1961 };
1962
1963 const struct e1000_info e1000_82571_info = {
1964         .mac                    = e1000_82571,
1965         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1966                                   | FLAG_HAS_JUMBO_FRAMES
1967                                   | FLAG_HAS_WOL
1968                                   | FLAG_APME_IN_CTRL3
1969                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1970                                   | FLAG_HAS_SMART_POWER_DOWN
1971                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1972                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1973                                   | FLAG_APME_CHECK_PORT_B,
1974         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975                                   | FLAG2_DMA_BURST,
1976         .pba                    = 38,
1977         .max_hw_frame_size      = DEFAULT_JUMBO,
1978         .get_variants           = e1000_get_variants_82571,
1979         .mac_ops                = &e82571_mac_ops,
1980         .phy_ops                = &e82_phy_ops_igp,
1981         .nvm_ops                = &e82571_nvm_ops,
1982 };
1983
1984 const struct e1000_info e1000_82572_info = {
1985         .mac                    = e1000_82572,
1986         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1987                                   | FLAG_HAS_JUMBO_FRAMES
1988                                   | FLAG_HAS_WOL
1989                                   | FLAG_APME_IN_CTRL3
1990                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1991                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1992         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1993                                   | FLAG2_DMA_BURST,
1994         .pba                    = 38,
1995         .max_hw_frame_size      = DEFAULT_JUMBO,
1996         .get_variants           = e1000_get_variants_82571,
1997         .mac_ops                = &e82571_mac_ops,
1998         .phy_ops                = &e82_phy_ops_igp,
1999         .nvm_ops                = &e82571_nvm_ops,
2000 };
2001
2002 const struct e1000_info e1000_82573_info = {
2003         .mac                    = e1000_82573,
2004         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2005                                   | FLAG_HAS_WOL
2006                                   | FLAG_APME_IN_CTRL3
2007                                   | FLAG_HAS_SMART_POWER_DOWN
2008                                   | FLAG_HAS_AMT
2009                                   | FLAG_HAS_SWSM_ON_LOAD,
2010         .flags2                 = FLAG2_DISABLE_ASPM_L1
2011                                   | FLAG2_DISABLE_ASPM_L0S,
2012         .pba                    = 20,
2013         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
2014         .get_variants           = e1000_get_variants_82571,
2015         .mac_ops                = &e82571_mac_ops,
2016         .phy_ops                = &e82_phy_ops_m88,
2017         .nvm_ops                = &e82571_nvm_ops,
2018 };
2019
2020 const struct e1000_info e1000_82574_info = {
2021         .mac                    = e1000_82574,
2022         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2023                                   | FLAG_HAS_MSIX
2024                                   | FLAG_HAS_JUMBO_FRAMES
2025                                   | FLAG_HAS_WOL
2026                                   | FLAG_HAS_HW_TIMESTAMP
2027                                   | FLAG_APME_IN_CTRL3
2028                                   | FLAG_HAS_SMART_POWER_DOWN
2029                                   | FLAG_HAS_AMT
2030                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2031         .flags2                  = FLAG2_CHECK_PHY_HANG
2032                                   | FLAG2_DISABLE_ASPM_L0S
2033                                   | FLAG2_DISABLE_ASPM_L1
2034                                   | FLAG2_NO_DISABLE_RX
2035                                   | FLAG2_DMA_BURST
2036                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
2037         .pba                    = 32,
2038         .max_hw_frame_size      = DEFAULT_JUMBO,
2039         .get_variants           = e1000_get_variants_82571,
2040         .mac_ops                = &e82571_mac_ops,
2041         .phy_ops                = &e82_phy_ops_bm,
2042         .nvm_ops                = &e82571_nvm_ops,
2043 };
2044
2045 const struct e1000_info e1000_82583_info = {
2046         .mac                    = e1000_82583,
2047         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2048                                   | FLAG_HAS_WOL
2049                                   | FLAG_HAS_HW_TIMESTAMP
2050                                   | FLAG_APME_IN_CTRL3
2051                                   | FLAG_HAS_SMART_POWER_DOWN
2052                                   | FLAG_HAS_AMT
2053                                   | FLAG_HAS_JUMBO_FRAMES
2054                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2055         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2056                                   | FLAG2_DISABLE_ASPM_L1
2057                                   | FLAG2_NO_DISABLE_RX
2058                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
2059         .pba                    = 32,
2060         .max_hw_frame_size      = DEFAULT_JUMBO,
2061         .get_variants           = e1000_get_variants_82571,
2062         .mac_ops                = &e82571_mac_ops,
2063         .phy_ops                = &e82_phy_ops_bm,
2064         .nvm_ops                = &e82571_nvm_ops,
2065 };