99eb09007e73db2b7d8b7466a2189920a39abe96
[profile/ivi/kernel-adaptation-intel-automotive.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
48
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK            0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO     0x0004
51
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
54
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
57
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
64
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
67                                                 /* 1=Reverse Auto-Negotiation */
68
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
75
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
77
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
80                                                            1 = 50-80M
81                                                            2 = 80-110M
82                                                            3 = 110-140M
83                                                            4 = >140M */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
93                                            /* 1=Enable SERDES Electrical Idle */
94
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
97
98 /*
99  * A table for the GG82563 cable length where the range is defined
100  * with a lower bound at "index" and the upper bound at
101  * "index + 5".
102  */
103 static const u16 e1000_gg82563_cable_length_table[] = {
104          0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
107
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121
122 /**
123  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124  *  @hw: pointer to the HW structure
125  **/
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127 {
128         struct e1000_phy_info *phy = &hw->phy;
129         s32 ret_val;
130
131         if (hw->phy.media_type != e1000_media_type_copper) {
132                 phy->type       = e1000_phy_none;
133                 return 0;
134         } else {
135                 phy->ops.power_up = e1000_power_up_phy_copper;
136                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137         }
138
139         phy->addr               = 1;
140         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
141         phy->reset_delay_us      = 100;
142         phy->type               = e1000_phy_gg82563;
143
144         /* This can only be done after all function pointers are setup. */
145         ret_val = e1000e_get_phy_id(hw);
146
147         /* Verify phy id */
148         if (phy->id != GG82563_E_PHY_ID)
149                 return -E1000_ERR_PHY;
150
151         return ret_val;
152 }
153
154 /**
155  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156  *  @hw: pointer to the HW structure
157  **/
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160         struct e1000_nvm_info *nvm = &hw->nvm;
161         u32 eecd = er32(EECD);
162         u16 size;
163
164         nvm->opcode_bits        = 8;
165         nvm->delay_usec  = 1;
166         switch (nvm->override) {
167         case e1000_nvm_override_spi_large:
168                 nvm->page_size    = 32;
169                 nvm->address_bits = 16;
170                 break;
171         case e1000_nvm_override_spi_small:
172                 nvm->page_size    = 8;
173                 nvm->address_bits = 8;
174                 break;
175         default:
176                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178                 break;
179         }
180
181         nvm->type = e1000_nvm_eeprom_spi;
182
183         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184                           E1000_EECD_SIZE_EX_SHIFT);
185
186         /*
187          * Added to a constant, "size" becomes the left-shift value
188          * for setting word_size.
189          */
190         size += NVM_WORD_SIZE_BASE_SHIFT;
191
192         /* EEPROM access above 16k is unsupported */
193         if (size > 14)
194                 size = 14;
195         nvm->word_size  = 1 << size;
196
197         return 0;
198 }
199
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  **/
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
205 {
206         struct e1000_mac_info *mac = &hw->mac;
207
208         /* Set media type and media-dependent function pointers */
209         switch (hw->adapter->pdev->device) {
210         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
211                 hw->phy.media_type = e1000_media_type_internal_serdes;
212                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
213                 mac->ops.setup_physical_interface =
214                     e1000e_setup_fiber_serdes_link;
215                 break;
216         default:
217                 hw->phy.media_type = e1000_media_type_copper;
218                 mac->ops.check_for_link = e1000e_check_for_copper_link;
219                 mac->ops.setup_physical_interface =
220                     e1000_setup_copper_link_80003es2lan;
221                 break;
222         }
223
224         /* Set mta register count */
225         mac->mta_reg_count = 128;
226         /* Set rar entry count */
227         mac->rar_entry_count = E1000_RAR_ENTRIES;
228         /* FWSM register */
229         mac->has_fwsm = true;
230         /* ARC supported; valid only if manageability features are enabled. */
231         mac->arc_subsystem_valid =
232                 (er32(FWSM) & E1000_FWSM_MODE_MASK)
233                         ? true : false;
234         /* Adaptive IFS not supported */
235         mac->adaptive_ifs = false;
236
237         /* set lan id for port to determine which phy lock to use */
238         hw->mac.ops.set_lan_id(hw);
239
240         return 0;
241 }
242
243 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
244 {
245         struct e1000_hw *hw = &adapter->hw;
246         s32 rc;
247
248         rc = e1000_init_mac_params_80003es2lan(hw);
249         if (rc)
250                 return rc;
251
252         rc = e1000_init_nvm_params_80003es2lan(hw);
253         if (rc)
254                 return rc;
255
256         rc = e1000_init_phy_params_80003es2lan(hw);
257         if (rc)
258                 return rc;
259
260         return 0;
261 }
262
263 /**
264  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
265  *  @hw: pointer to the HW structure
266  *
267  *  A wrapper to acquire access rights to the correct PHY.
268  **/
269 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
270 {
271         u16 mask;
272
273         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
274         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
275 }
276
277 /**
278  *  e1000_release_phy_80003es2lan - Release rights to access PHY
279  *  @hw: pointer to the HW structure
280  *
281  *  A wrapper to release access rights to the correct PHY.
282  **/
283 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
284 {
285         u16 mask;
286
287         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
288         e1000_release_swfw_sync_80003es2lan(hw, mask);
289 }
290
291 /**
292  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
293  *  @hw: pointer to the HW structure
294  *
295  *  Acquire the semaphore to access the Kumeran interface.
296  *
297  **/
298 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
299 {
300         u16 mask;
301
302         mask = E1000_SWFW_CSR_SM;
303
304         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
305 }
306
307 /**
308  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
309  *  @hw: pointer to the HW structure
310  *
311  *  Release the semaphore used to access the Kumeran interface
312  **/
313 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
314 {
315         u16 mask;
316
317         mask = E1000_SWFW_CSR_SM;
318
319         e1000_release_swfw_sync_80003es2lan(hw, mask);
320 }
321
322 /**
323  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
324  *  @hw: pointer to the HW structure
325  *
326  *  Acquire the semaphore to access the EEPROM.
327  **/
328 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
329 {
330         s32 ret_val;
331
332         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
333         if (ret_val)
334                 return ret_val;
335
336         ret_val = e1000e_acquire_nvm(hw);
337
338         if (ret_val)
339                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
340
341         return ret_val;
342 }
343
344 /**
345  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
346  *  @hw: pointer to the HW structure
347  *
348  *  Release the semaphore used to access the EEPROM.
349  **/
350 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
351 {
352         e1000e_release_nvm(hw);
353         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
354 }
355
356 /**
357  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
358  *  @hw: pointer to the HW structure
359  *  @mask: specifies which semaphore to acquire
360  *
361  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
362  *  will also specify which port we're acquiring the lock for.
363  **/
364 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
365 {
366         u32 swfw_sync;
367         u32 swmask = mask;
368         u32 fwmask = mask << 16;
369         s32 i = 0;
370         s32 timeout = 50;
371
372         while (i < timeout) {
373                 if (e1000e_get_hw_semaphore(hw))
374                         return -E1000_ERR_SWFW_SYNC;
375
376                 swfw_sync = er32(SW_FW_SYNC);
377                 if (!(swfw_sync & (fwmask | swmask)))
378                         break;
379
380                 /*
381                  * Firmware currently using resource (fwmask)
382                  * or other software thread using resource (swmask)
383                  */
384                 e1000e_put_hw_semaphore(hw);
385                 mdelay(5);
386                 i++;
387         }
388
389         if (i == timeout) {
390                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
391                 return -E1000_ERR_SWFW_SYNC;
392         }
393
394         swfw_sync |= swmask;
395         ew32(SW_FW_SYNC, swfw_sync);
396
397         e1000e_put_hw_semaphore(hw);
398
399         return 0;
400 }
401
402 /**
403  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
404  *  @hw: pointer to the HW structure
405  *  @mask: specifies which semaphore to acquire
406  *
407  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
408  *  will also specify which port we're releasing the lock for.
409  **/
410 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
411 {
412         u32 swfw_sync;
413
414         while (e1000e_get_hw_semaphore(hw) != 0)
415                 ; /* Empty */
416
417         swfw_sync = er32(SW_FW_SYNC);
418         swfw_sync &= ~mask;
419         ew32(SW_FW_SYNC, swfw_sync);
420
421         e1000e_put_hw_semaphore(hw);
422 }
423
424 /**
425  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
426  *  @hw: pointer to the HW structure
427  *  @offset: offset of the register to read
428  *  @data: pointer to the data returned from the operation
429  *
430  *  Read the GG82563 PHY register.
431  **/
432 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
433                                                   u32 offset, u16 *data)
434 {
435         s32 ret_val;
436         u32 page_select;
437         u16 temp;
438
439         ret_val = e1000_acquire_phy_80003es2lan(hw);
440         if (ret_val)
441                 return ret_val;
442
443         /* Select Configuration Page */
444         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
445                 page_select = GG82563_PHY_PAGE_SELECT;
446         } else {
447                 /*
448                  * Use Alternative Page Select register to access
449                  * registers 30 and 31
450                  */
451                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
452         }
453
454         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
455         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
456         if (ret_val) {
457                 e1000_release_phy_80003es2lan(hw);
458                 return ret_val;
459         }
460
461         if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
462                 /*
463                  * The "ready" bit in the MDIC register may be incorrectly set
464                  * before the device has completed the "Page Select" MDI
465                  * transaction.  So we wait 200us after each MDI command...
466                  */
467                 udelay(200);
468
469                 /* ...and verify the command was successful. */
470                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
471
472                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473                         ret_val = -E1000_ERR_PHY;
474                         e1000_release_phy_80003es2lan(hw);
475                         return ret_val;
476                 }
477
478                 udelay(200);
479
480                 ret_val = e1000e_read_phy_reg_mdic(hw,
481                                                   MAX_PHY_REG_ADDRESS & offset,
482                                                   data);
483
484                 udelay(200);
485         } else {
486                 ret_val = e1000e_read_phy_reg_mdic(hw,
487                                                   MAX_PHY_REG_ADDRESS & offset,
488                                                   data);
489         }
490
491         e1000_release_phy_80003es2lan(hw);
492
493         return ret_val;
494 }
495
496 /**
497  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
498  *  @hw: pointer to the HW structure
499  *  @offset: offset of the register to read
500  *  @data: value to write to the register
501  *
502  *  Write to the GG82563 PHY register.
503  **/
504 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
505                                                    u32 offset, u16 data)
506 {
507         s32 ret_val;
508         u32 page_select;
509         u16 temp;
510
511         ret_val = e1000_acquire_phy_80003es2lan(hw);
512         if (ret_val)
513                 return ret_val;
514
515         /* Select Configuration Page */
516         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
517                 page_select = GG82563_PHY_PAGE_SELECT;
518         } else {
519                 /*
520                  * Use Alternative Page Select register to access
521                  * registers 30 and 31
522                  */
523                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
524         }
525
526         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
527         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
528         if (ret_val) {
529                 e1000_release_phy_80003es2lan(hw);
530                 return ret_val;
531         }
532
533         if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
534                 /*
535                  * The "ready" bit in the MDIC register may be incorrectly set
536                  * before the device has completed the "Page Select" MDI
537                  * transaction.  So we wait 200us after each MDI command...
538                  */
539                 udelay(200);
540
541                 /* ...and verify the command was successful. */
542                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
543
544                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
545                         e1000_release_phy_80003es2lan(hw);
546                         return -E1000_ERR_PHY;
547                 }
548
549                 udelay(200);
550
551                 ret_val = e1000e_write_phy_reg_mdic(hw,
552                                                   MAX_PHY_REG_ADDRESS & offset,
553                                                   data);
554
555                 udelay(200);
556         } else {
557                 ret_val = e1000e_write_phy_reg_mdic(hw,
558                                                   MAX_PHY_REG_ADDRESS & offset,
559                                                   data);
560         }
561
562         e1000_release_phy_80003es2lan(hw);
563
564         return ret_val;
565 }
566
567 /**
568  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
569  *  @hw: pointer to the HW structure
570  *  @offset: offset of the register to read
571  *  @words: number of words to write
572  *  @data: buffer of data to write to the NVM
573  *
574  *  Write "words" of data to the ESB2 NVM.
575  **/
576 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
577                                        u16 words, u16 *data)
578 {
579         return e1000e_write_nvm_spi(hw, offset, words, data);
580 }
581
582 /**
583  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
584  *  @hw: pointer to the HW structure
585  *
586  *  Wait a specific amount of time for manageability processes to complete.
587  *  This is a function pointer entry point called by the phy module.
588  **/
589 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
590 {
591         s32 timeout = PHY_CFG_TIMEOUT;
592         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
593
594         if (hw->bus.func == 1)
595                 mask = E1000_NVM_CFG_DONE_PORT_1;
596
597         while (timeout) {
598                 if (er32(EEMNGCTL) & mask)
599                         break;
600                 usleep_range(1000, 2000);
601                 timeout--;
602         }
603         if (!timeout) {
604                 e_dbg("MNG configuration cycle has not completed.\n");
605                 return -E1000_ERR_RESET;
606         }
607
608         return 0;
609 }
610
611 /**
612  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
613  *  @hw: pointer to the HW structure
614  *
615  *  Force the speed and duplex settings onto the PHY.  This is a
616  *  function pointer entry point called by the phy module.
617  **/
618 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
619 {
620         s32 ret_val;
621         u16 phy_data;
622         bool link;
623
624         /*
625          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
626          * forced whenever speed and duplex are forced.
627          */
628         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
629         if (ret_val)
630                 return ret_val;
631
632         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
633         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
634         if (ret_val)
635                 return ret_val;
636
637         e_dbg("GG82563 PSCR: %X\n", phy_data);
638
639         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
640         if (ret_val)
641                 return ret_val;
642
643         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
644
645         /* Reset the phy to commit changes. */
646         phy_data |= MII_CR_RESET;
647
648         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
649         if (ret_val)
650                 return ret_val;
651
652         udelay(1);
653
654         if (hw->phy.autoneg_wait_to_complete) {
655                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
656
657                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
658                                                      100000, &link);
659                 if (ret_val)
660                         return ret_val;
661
662                 if (!link) {
663                         /*
664                          * We didn't get link.
665                          * Reset the DSP and cross our fingers.
666                          */
667                         ret_val = e1000e_phy_reset_dsp(hw);
668                         if (ret_val)
669                                 return ret_val;
670                 }
671
672                 /* Try once more */
673                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
674                                                      100000, &link);
675                 if (ret_val)
676                         return ret_val;
677         }
678
679         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
680         if (ret_val)
681                 return ret_val;
682
683         /*
684          * Resetting the phy means we need to verify the TX_CLK corresponds
685          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
686          */
687         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
688         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
689                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
690         else
691                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
692
693         /*
694          * In addition, we must re-enable CRS on Tx for both half and full
695          * duplex.
696          */
697         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
698         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
699
700         return ret_val;
701 }
702
703 /**
704  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
705  *  @hw: pointer to the HW structure
706  *
707  *  Find the approximate cable length as measured by the GG82563 PHY.
708  *  This is a function pointer entry point called by the phy module.
709  **/
710 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
711 {
712         struct e1000_phy_info *phy = &hw->phy;
713         s32 ret_val = 0;
714         u16 phy_data, index;
715
716         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
717         if (ret_val)
718                 goto out;
719
720         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
721
722         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
723                 ret_val = -E1000_ERR_PHY;
724                 goto out;
725         }
726
727         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
728         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
729
730         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
731
732 out:
733         return ret_val;
734 }
735
736 /**
737  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
738  *  @hw: pointer to the HW structure
739  *  @speed: pointer to speed buffer
740  *  @duplex: pointer to duplex buffer
741  *
742  *  Retrieve the current speed and duplex configuration.
743  **/
744 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
745                                               u16 *duplex)
746 {
747         s32 ret_val;
748
749         if (hw->phy.media_type == e1000_media_type_copper) {
750                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
751                                                                     speed,
752                                                                     duplex);
753                 hw->phy.ops.cfg_on_link_up(hw);
754         } else {
755                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
756                                                                   speed,
757                                                                   duplex);
758         }
759
760         return ret_val;
761 }
762
763 /**
764  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
765  *  @hw: pointer to the HW structure
766  *
767  *  Perform a global reset to the ESB2 controller.
768  **/
769 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
770 {
771         u32 ctrl;
772         s32 ret_val;
773
774         /*
775          * Prevent the PCI-E bus from sticking if there is no TLP connection
776          * on the last TLP read/write transaction when MAC is reset.
777          */
778         ret_val = e1000e_disable_pcie_master(hw);
779         if (ret_val)
780                 e_dbg("PCI-E Master disable polling has failed.\n");
781
782         e_dbg("Masking off all interrupts\n");
783         ew32(IMC, 0xffffffff);
784
785         ew32(RCTL, 0);
786         ew32(TCTL, E1000_TCTL_PSP);
787         e1e_flush();
788
789         usleep_range(10000, 20000);
790
791         ctrl = er32(CTRL);
792
793         ret_val = e1000_acquire_phy_80003es2lan(hw);
794         e_dbg("Issuing a global reset to MAC\n");
795         ew32(CTRL, ctrl | E1000_CTRL_RST);
796         e1000_release_phy_80003es2lan(hw);
797
798         ret_val = e1000e_get_auto_rd_done(hw);
799         if (ret_val)
800                 /* We don't want to continue accessing MAC registers. */
801                 return ret_val;
802
803         /* Clear any pending interrupt events. */
804         ew32(IMC, 0xffffffff);
805         er32(ICR);
806
807         ret_val = e1000_check_alt_mac_addr_generic(hw);
808
809         return ret_val;
810 }
811
812 /**
813  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
814  *  @hw: pointer to the HW structure
815  *
816  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
817  **/
818 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
819 {
820         struct e1000_mac_info *mac = &hw->mac;
821         u32 reg_data;
822         s32 ret_val;
823         u16 kum_reg_data;
824         u16 i;
825
826         e1000_initialize_hw_bits_80003es2lan(hw);
827
828         /* Initialize identification LED */
829         ret_val = e1000e_id_led_init(hw);
830         if (ret_val)
831                 e_dbg("Error initializing identification LED\n");
832                 /* This is not fatal and we should not stop init due to this */
833
834         /* Disabling VLAN filtering */
835         e_dbg("Initializing the IEEE VLAN\n");
836         mac->ops.clear_vfta(hw);
837
838         /* Setup the receive address. */
839         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
840
841         /* Zero out the Multicast HASH table */
842         e_dbg("Zeroing the MTA\n");
843         for (i = 0; i < mac->mta_reg_count; i++)
844                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
845
846         /* Setup link and flow control */
847         ret_val = e1000e_setup_link(hw);
848
849         /* Disable IBIST slave mode (far-end loopback) */
850         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
851                                         &kum_reg_data);
852         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
853         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
854                                          kum_reg_data);
855
856         /* Set the transmit descriptor write-back policy */
857         reg_data = er32(TXDCTL(0));
858         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
859                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
860         ew32(TXDCTL(0), reg_data);
861
862         /* ...for both queues. */
863         reg_data = er32(TXDCTL(1));
864         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
865                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
866         ew32(TXDCTL(1), reg_data);
867
868         /* Enable retransmit on late collisions */
869         reg_data = er32(TCTL);
870         reg_data |= E1000_TCTL_RTLC;
871         ew32(TCTL, reg_data);
872
873         /* Configure Gigabit Carry Extend Padding */
874         reg_data = er32(TCTL_EXT);
875         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
876         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
877         ew32(TCTL_EXT, reg_data);
878
879         /* Configure Transmit Inter-Packet Gap */
880         reg_data = er32(TIPG);
881         reg_data &= ~E1000_TIPG_IPGT_MASK;
882         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
883         ew32(TIPG, reg_data);
884
885         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
886         reg_data &= ~0x00100000;
887         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
888
889         /* default to true to enable the MDIC W/A */
890         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
891
892         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
893                                       E1000_KMRNCTRLSTA_OFFSET >>
894                                       E1000_KMRNCTRLSTA_OFFSET_SHIFT,
895                                       &i);
896         if (!ret_val) {
897                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
898                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
899                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
900         }
901
902         /*
903          * Clear all of the statistics registers (clear on read).  It is
904          * important that we do this after we have tried to establish link
905          * because the symbol error count will increment wildly if there
906          * is no link.
907          */
908         e1000_clear_hw_cntrs_80003es2lan(hw);
909
910         return ret_val;
911 }
912
913 /**
914  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
915  *  @hw: pointer to the HW structure
916  *
917  *  Initializes required hardware-dependent bits needed for normal operation.
918  **/
919 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
920 {
921         u32 reg;
922
923         /* Transmit Descriptor Control 0 */
924         reg = er32(TXDCTL(0));
925         reg |= (1 << 22);
926         ew32(TXDCTL(0), reg);
927
928         /* Transmit Descriptor Control 1 */
929         reg = er32(TXDCTL(1));
930         reg |= (1 << 22);
931         ew32(TXDCTL(1), reg);
932
933         /* Transmit Arbitration Control 0 */
934         reg = er32(TARC(0));
935         reg &= ~(0xF << 27); /* 30:27 */
936         if (hw->phy.media_type != e1000_media_type_copper)
937                 reg &= ~(1 << 20);
938         ew32(TARC(0), reg);
939
940         /* Transmit Arbitration Control 1 */
941         reg = er32(TARC(1));
942         if (er32(TCTL) & E1000_TCTL_MULR)
943                 reg &= ~(1 << 28);
944         else
945                 reg |= (1 << 28);
946         ew32(TARC(1), reg);
947 }
948
949 /**
950  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
951  *  @hw: pointer to the HW structure
952  *
953  *  Setup some GG82563 PHY registers for obtaining link
954  **/
955 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
956 {
957         struct e1000_phy_info *phy = &hw->phy;
958         s32 ret_val;
959         u32 ctrl_ext;
960         u16 data;
961
962         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
963         if (ret_val)
964                 return ret_val;
965
966         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
967         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
968         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
969
970         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
971         if (ret_val)
972                 return ret_val;
973
974         /*
975          * Options:
976          *   MDI/MDI-X = 0 (default)
977          *   0 - Auto for all speeds
978          *   1 - MDI mode
979          *   2 - MDI-X mode
980          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
981          */
982         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
983         if (ret_val)
984                 return ret_val;
985
986         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
987
988         switch (phy->mdix) {
989         case 1:
990                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
991                 break;
992         case 2:
993                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
994                 break;
995         case 0:
996         default:
997                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
998                 break;
999         }
1000
1001         /*
1002          * Options:
1003          *   disable_polarity_correction = 0 (default)
1004          *       Automatic Correction for Reversed Cable Polarity
1005          *   0 - Disabled
1006          *   1 - Enabled
1007          */
1008         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1009         if (phy->disable_polarity_correction)
1010                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1011
1012         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1013         if (ret_val)
1014                 return ret_val;
1015
1016         /* SW Reset the PHY so all changes take effect */
1017         ret_val = e1000e_commit_phy(hw);
1018         if (ret_val) {
1019                 e_dbg("Error Resetting the PHY\n");
1020                 return ret_val;
1021         }
1022
1023         /* Bypass Rx and Tx FIFO's */
1024         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1025                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1026                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1027                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1028         if (ret_val)
1029                 return ret_val;
1030
1031         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1032                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1033                                        &data);
1034         if (ret_val)
1035                 return ret_val;
1036         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1037         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1038                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1039                                         data);
1040         if (ret_val)
1041                 return ret_val;
1042
1043         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1044         if (ret_val)
1045                 return ret_val;
1046
1047         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1048         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1049         if (ret_val)
1050                 return ret_val;
1051
1052         ctrl_ext = er32(CTRL_EXT);
1053         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1054         ew32(CTRL_EXT, ctrl_ext);
1055
1056         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1057         if (ret_val)
1058                 return ret_val;
1059
1060         /*
1061          * Do not init these registers when the HW is in IAMT mode, since the
1062          * firmware will have already initialized them.  We only initialize
1063          * them if the HW is not in IAMT mode.
1064          */
1065         if (!e1000e_check_mng_mode(hw)) {
1066                 /* Enable Electrical Idle on the PHY */
1067                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1068                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1069                 if (ret_val)
1070                         return ret_val;
1071
1072                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1073                 if (ret_val)
1074                         return ret_val;
1075
1076                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1077                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1078                 if (ret_val)
1079                         return ret_val;
1080         }
1081
1082         /*
1083          * Workaround: Disable padding in Kumeran interface in the MAC
1084          * and in the PHY to avoid CRC errors.
1085          */
1086         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1087         if (ret_val)
1088                 return ret_val;
1089
1090         data |= GG82563_ICR_DIS_PADDING;
1091         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1092         if (ret_val)
1093                 return ret_val;
1094
1095         return 0;
1096 }
1097
1098 /**
1099  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1100  *  @hw: pointer to the HW structure
1101  *
1102  *  Essentially a wrapper for setting up all things "copper" related.
1103  *  This is a function pointer entry point called by the mac module.
1104  **/
1105 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1106 {
1107         u32 ctrl;
1108         s32 ret_val;
1109         u16 reg_data;
1110
1111         ctrl = er32(CTRL);
1112         ctrl |= E1000_CTRL_SLU;
1113         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1114         ew32(CTRL, ctrl);
1115
1116         /*
1117          * Set the mac to wait the maximum time between each
1118          * iteration and increase the max iterations when
1119          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1120          */
1121         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1122                                                    0xFFFF);
1123         if (ret_val)
1124                 return ret_val;
1125         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1126                                                   &reg_data);
1127         if (ret_val)
1128                 return ret_val;
1129         reg_data |= 0x3F;
1130         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1131                                                    reg_data);
1132         if (ret_val)
1133                 return ret_val;
1134         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1135                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1136                                       &reg_data);
1137         if (ret_val)
1138                 return ret_val;
1139         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1140         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1141                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1142                                         reg_data);
1143         if (ret_val)
1144                 return ret_val;
1145
1146         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1147         if (ret_val)
1148                 return ret_val;
1149
1150         return e1000e_setup_copper_link(hw);
1151 }
1152
1153 /**
1154  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1155  *  @hw: pointer to the HW structure
1156  *  @duplex: current duplex setting
1157  *
1158  *  Configure the KMRN interface by applying last minute quirks for
1159  *  10/100 operation.
1160  **/
1161 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1162 {
1163         s32 ret_val = 0;
1164         u16 speed;
1165         u16 duplex;
1166
1167         if (hw->phy.media_type == e1000_media_type_copper) {
1168                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1169                                                              &duplex);
1170                 if (ret_val)
1171                         return ret_val;
1172
1173                 if (speed == SPEED_1000)
1174                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1175                 else
1176                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1177         }
1178
1179         return ret_val;
1180 }
1181
1182 /**
1183  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1184  *  @hw: pointer to the HW structure
1185  *  @duplex: current duplex setting
1186  *
1187  *  Configure the KMRN interface by applying last minute quirks for
1188  *  10/100 operation.
1189  **/
1190 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1191 {
1192         s32 ret_val;
1193         u32 tipg;
1194         u32 i = 0;
1195         u16 reg_data, reg_data2;
1196
1197         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1198         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1199                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1200                                        reg_data);
1201         if (ret_val)
1202                 return ret_val;
1203
1204         /* Configure Transmit Inter-Packet Gap */
1205         tipg = er32(TIPG);
1206         tipg &= ~E1000_TIPG_IPGT_MASK;
1207         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1208         ew32(TIPG, tipg);
1209
1210         do {
1211                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1212                 if (ret_val)
1213                         return ret_val;
1214
1215                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1216                 if (ret_val)
1217                         return ret_val;
1218                 i++;
1219         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1220
1221         if (duplex == HALF_DUPLEX)
1222                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1223         else
1224                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1225
1226         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1227 }
1228
1229 /**
1230  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1231  *  @hw: pointer to the HW structure
1232  *
1233  *  Configure the KMRN interface by applying last minute quirks for
1234  *  gigabit operation.
1235  **/
1236 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1237 {
1238         s32 ret_val;
1239         u16 reg_data, reg_data2;
1240         u32 tipg;
1241         u32 i = 0;
1242
1243         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1244         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1245                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1246                                        reg_data);
1247         if (ret_val)
1248                 return ret_val;
1249
1250         /* Configure Transmit Inter-Packet Gap */
1251         tipg = er32(TIPG);
1252         tipg &= ~E1000_TIPG_IPGT_MASK;
1253         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1254         ew32(TIPG, tipg);
1255
1256         do {
1257                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1258                 if (ret_val)
1259                         return ret_val;
1260
1261                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1262                 if (ret_val)
1263                         return ret_val;
1264                 i++;
1265         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1266
1267         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1268         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1269
1270         return ret_val;
1271 }
1272
1273 /**
1274  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1275  *  @hw: pointer to the HW structure
1276  *  @offset: register offset to be read
1277  *  @data: pointer to the read data
1278  *
1279  *  Acquire semaphore, then read the PHY register at offset
1280  *  using the kumeran interface.  The information retrieved is stored in data.
1281  *  Release the semaphore before exiting.
1282  **/
1283 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1284                                            u16 *data)
1285 {
1286         u32 kmrnctrlsta;
1287         s32 ret_val = 0;
1288
1289         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1290         if (ret_val)
1291                 return ret_val;
1292
1293         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1294                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1295         ew32(KMRNCTRLSTA, kmrnctrlsta);
1296         e1e_flush();
1297
1298         udelay(2);
1299
1300         kmrnctrlsta = er32(KMRNCTRLSTA);
1301         *data = (u16)kmrnctrlsta;
1302
1303         e1000_release_mac_csr_80003es2lan(hw);
1304
1305         return ret_val;
1306 }
1307
1308 /**
1309  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1310  *  @hw: pointer to the HW structure
1311  *  @offset: register offset to write to
1312  *  @data: data to write at register offset
1313  *
1314  *  Acquire semaphore, then write the data to PHY register
1315  *  at the offset using the kumeran interface.  Release semaphore
1316  *  before exiting.
1317  **/
1318 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1319                                             u16 data)
1320 {
1321         u32 kmrnctrlsta;
1322         s32 ret_val = 0;
1323
1324         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1325         if (ret_val)
1326                 return ret_val;
1327
1328         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1329                        E1000_KMRNCTRLSTA_OFFSET) | data;
1330         ew32(KMRNCTRLSTA, kmrnctrlsta);
1331         e1e_flush();
1332
1333         udelay(2);
1334
1335         e1000_release_mac_csr_80003es2lan(hw);
1336
1337         return ret_val;
1338 }
1339
1340 /**
1341  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1342  *  @hw: pointer to the HW structure
1343  **/
1344 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1345 {
1346         s32 ret_val = 0;
1347
1348         /*
1349          * If there's an alternate MAC address place it in RAR0
1350          * so that it will override the Si installed default perm
1351          * address.
1352          */
1353         ret_val = e1000_check_alt_mac_addr_generic(hw);
1354         if (ret_val)
1355                 goto out;
1356
1357         ret_val = e1000_read_mac_addr_generic(hw);
1358
1359 out:
1360         return ret_val;
1361 }
1362
1363 /**
1364  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1365  * @hw: pointer to the HW structure
1366  *
1367  * In the case of a PHY power down to save power, or to turn off link during a
1368  * driver unload, or wake on lan is not enabled, remove the link.
1369  **/
1370 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1371 {
1372         /* If the management interface is not enabled, then power down */
1373         if (!(hw->mac.ops.check_mng_mode(hw) ||
1374               hw->phy.ops.check_reset_block(hw)))
1375                 e1000_power_down_phy_copper(hw);
1376 }
1377
1378 /**
1379  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1380  *  @hw: pointer to the HW structure
1381  *
1382  *  Clears the hardware counters by reading the counter registers.
1383  **/
1384 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1385 {
1386         e1000e_clear_hw_cntrs_base(hw);
1387
1388         er32(PRC64);
1389         er32(PRC127);
1390         er32(PRC255);
1391         er32(PRC511);
1392         er32(PRC1023);
1393         er32(PRC1522);
1394         er32(PTC64);
1395         er32(PTC127);
1396         er32(PTC255);
1397         er32(PTC511);
1398         er32(PTC1023);
1399         er32(PTC1522);
1400
1401         er32(ALGNERRC);
1402         er32(RXERRC);
1403         er32(TNCRS);
1404         er32(CEXTERR);
1405         er32(TSCTC);
1406         er32(TSCTFC);
1407
1408         er32(MGTPRC);
1409         er32(MGTPDC);
1410         er32(MGTPTC);
1411
1412         er32(IAC);
1413         er32(ICRXOC);
1414
1415         er32(ICRXPTC);
1416         er32(ICRXATC);
1417         er32(ICTXPTC);
1418         er32(ICTXATC);
1419         er32(ICTXQEC);
1420         er32(ICTXQMTC);
1421         er32(ICRXDMTC);
1422 }
1423
1424 static const struct e1000_mac_operations es2_mac_ops = {
1425         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1426         .id_led_init            = e1000e_id_led_init,
1427         .blink_led              = e1000e_blink_led_generic,
1428         .check_mng_mode         = e1000e_check_mng_mode_generic,
1429         /* check_for_link dependent on media type */
1430         .cleanup_led            = e1000e_cleanup_led_generic,
1431         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1432         .get_bus_info           = e1000e_get_bus_info_pcie,
1433         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1434         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1435         .led_on                 = e1000e_led_on_generic,
1436         .led_off                = e1000e_led_off_generic,
1437         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1438         .write_vfta             = e1000_write_vfta_generic,
1439         .clear_vfta             = e1000_clear_vfta_generic,
1440         .reset_hw               = e1000_reset_hw_80003es2lan,
1441         .init_hw                = e1000_init_hw_80003es2lan,
1442         .setup_link             = e1000e_setup_link,
1443         /* setup_physical_interface dependent on media type */
1444         .setup_led              = e1000e_setup_led_generic,
1445 };
1446
1447 static const struct e1000_phy_operations es2_phy_ops = {
1448         .acquire                = e1000_acquire_phy_80003es2lan,
1449         .check_polarity         = e1000_check_polarity_m88,
1450         .check_reset_block      = e1000e_check_reset_block_generic,
1451         .commit                 = e1000e_phy_sw_reset,
1452         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1453         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1454         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1455         .get_info               = e1000e_get_phy_info_m88,
1456         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1457         .release                = e1000_release_phy_80003es2lan,
1458         .reset                  = e1000e_phy_hw_reset_generic,
1459         .set_d0_lplu_state      = NULL,
1460         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1461         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1462         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1463 };
1464
1465 static const struct e1000_nvm_operations es2_nvm_ops = {
1466         .acquire                = e1000_acquire_nvm_80003es2lan,
1467         .read                   = e1000e_read_nvm_eerd,
1468         .release                = e1000_release_nvm_80003es2lan,
1469         .update                 = e1000e_update_nvm_checksum_generic,
1470         .valid_led_default      = e1000e_valid_led_default,
1471         .validate               = e1000e_validate_nvm_checksum_generic,
1472         .write                  = e1000_write_nvm_80003es2lan,
1473 };
1474
1475 const struct e1000_info e1000_es2_info = {
1476         .mac                    = e1000_80003es2lan,
1477         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1478                                   | FLAG_HAS_JUMBO_FRAMES
1479                                   | FLAG_HAS_WOL
1480                                   | FLAG_APME_IN_CTRL3
1481                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1482                                   | FLAG_RX_NEEDS_RESTART /* errata */
1483                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1484                                   | FLAG_APME_CHECK_PORT_B
1485                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1486         .flags2                 = FLAG2_DMA_BURST,
1487         .pba                    = 38,
1488         .max_hw_frame_size      = DEFAULT_JUMBO,
1489         .get_variants           = e1000_get_variants_80003es2lan,
1490         .mac_ops                = &es2_mac_ops,
1491         .phy_ops                = &es2_phy_ops,
1492         .nvm_ops                = &es2_nvm_ops,
1493 };
1494