Merge tag 'linux-watchdog-4.18-rc1' of git://www.linux-watchdog.org/linux-watchdog
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10
11 #define HCLGEVF_NAME    "hclgevf"
12
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20         /* required last entry */
21         {0, }
22 };
23
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27         struct hnae3_handle *handle)
28 {
29         return container_of(handle, struct hclgevf_dev, nic);
30 }
31
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35         struct hnae3_queue *queue;
36         struct hclgevf_desc desc;
37         struct hclgevf_tqp *tqp;
38         int status;
39         int i;
40
41         for (i = 0; i < hdev->num_tqps; i++) {
42                 queue = handle->kinfo.tqp[i];
43                 tqp = container_of(queue, struct hclgevf_tqp, q);
44                 hclgevf_cmd_setup_basic_desc(&desc,
45                                              HCLGEVF_OPC_QUERY_RX_STATUS,
46                                              true);
47
48                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50                 if (status) {
51                         dev_err(&hdev->pdev->dev,
52                                 "Query tqp stat fail, status = %d,queue = %d\n",
53                                 status, i);
54                         return status;
55                 }
56                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57                         le32_to_cpu(desc.data[1]);
58
59                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60                                              true);
61
62                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64                 if (status) {
65                         dev_err(&hdev->pdev->dev,
66                                 "Query tqp stat fail, status = %d,queue = %d\n",
67                                 status, i);
68                         return status;
69                 }
70                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71                         le32_to_cpu(desc.data[1]);
72         }
73
74         return 0;
75 }
76
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81         struct hclgevf_tqp *tqp;
82         u64 *buff = data;
83         int i;
84
85         for (i = 0; i < hdev->num_tqps; i++) {
86                 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88         }
89         for (i = 0; i < kinfo->num_tqps; i++) {
90                 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92         }
93
94         return buff;
95 }
96
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100
101         return hdev->num_tqps * 2;
102 }
103
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107         u8 *buff = data;
108         int i = 0;
109
110         for (i = 0; i < hdev->num_tqps; i++) {
111                 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112                         struct hclgevf_tqp, q);
113                 snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114                          tqp->index);
115                 buff += ETH_GSTRING_LEN;
116         }
117
118         for (i = 0; i < hdev->num_tqps; i++) {
119                 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120                         struct hclgevf_tqp, q);
121                 snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122                          tqp->index);
123                 buff += ETH_GSTRING_LEN;
124         }
125
126         return buff;
127 }
128
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130                                  struct net_device_stats *net_stats)
131 {
132         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133         int status;
134
135         status = hclgevf_tqps_update_stats(handle);
136         if (status)
137                 dev_err(&hdev->pdev->dev,
138                         "VF update of TQPS stats fail, status = %d.\n",
139                         status);
140 }
141
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144         if (strset == ETH_SS_TEST)
145                 return -EOPNOTSUPP;
146         else if (strset == ETH_SS_STATS)
147                 return hclgevf_tqps_get_sset_count(handle, strset);
148
149         return 0;
150 }
151
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153                                 u8 *data)
154 {
155         u8 *p = (char *)data;
156
157         if (strset == ETH_SS_STATS)
158                 p = hclgevf_tqps_get_strings(handle, p);
159 }
160
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163         hclgevf_tqps_get_stats(handle, data);
164 }
165
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168         u8 resp_msg;
169         int status;
170
171         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172                                       true, &resp_msg, sizeof(u8));
173         if (status) {
174                 dev_err(&hdev->pdev->dev,
175                         "VF request to get TC info from PF failed %d",
176                         status);
177                 return status;
178         }
179
180         hdev->hw_tc_map = resp_msg;
181
182         return 0;
183 }
184
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN       8
188         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189         int status;
190
191         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192                                       true, resp_msg,
193                                       HCLGEVF_TQPS_RSS_INFO_LEN);
194         if (status) {
195                 dev_err(&hdev->pdev->dev,
196                         "VF request to get tqp info from PF failed %d",
197                         status);
198                 return status;
199         }
200
201         memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202         memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203         memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204         memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205
206         return 0;
207 }
208
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211         struct hclgevf_tqp *tqp;
212         int i;
213
214         /* if this is on going reset then we need to re-allocate the TPQs
215          * since we cannot assume we would get same number of TPQs back from PF
216          */
217         if (hclgevf_dev_ongoing_reset(hdev))
218                 devm_kfree(&hdev->pdev->dev, hdev->htqp);
219
220         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
222         if (!hdev->htqp)
223                 return -ENOMEM;
224
225         tqp = hdev->htqp;
226
227         for (i = 0; i < hdev->num_tqps; i++) {
228                 tqp->dev = &hdev->pdev->dev;
229                 tqp->index = i;
230
231                 tqp->q.ae_algo = &ae_algovf;
232                 tqp->q.buf_size = hdev->rx_buf_len;
233                 tqp->q.desc_num = hdev->num_desc;
234                 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235                         i * HCLGEVF_TQP_REG_SIZE;
236
237                 tqp++;
238         }
239
240         return 0;
241 }
242
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245         struct hnae3_handle *nic = &hdev->nic;
246         struct hnae3_knic_private_info *kinfo;
247         u16 new_tqps = hdev->num_tqps;
248         int i;
249
250         kinfo = &nic->kinfo;
251         kinfo->num_tc = 0;
252         kinfo->num_desc = hdev->num_desc;
253         kinfo->rx_buf_len = hdev->rx_buf_len;
254         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255                 if (hdev->hw_tc_map & BIT(i))
256                         kinfo->num_tc++;
257
258         kinfo->rss_size
259                 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260         new_tqps = kinfo->rss_size * kinfo->num_tc;
261         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262
263         /* if this is on going reset then we need to re-allocate the hnae queues
264          * as well since number of TPQs from PF might have changed.
265          */
266         if (hclgevf_dev_ongoing_reset(hdev))
267                 devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268
269         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
271         if (!kinfo->tqp)
272                 return -ENOMEM;
273
274         for (i = 0; i < kinfo->num_tqps; i++) {
275                 hdev->htqp[i].q.handle = &hdev->nic;
276                 hdev->htqp[i].q.tqp_index = i;
277                 kinfo->tqp[i] = &hdev->htqp[i].q;
278         }
279
280         return 0;
281 }
282
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285         int status;
286         u8 resp_msg;
287
288         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289                                       0, false, &resp_msg, sizeof(u8));
290         if (status)
291                 dev_err(&hdev->pdev->dev,
292                         "VF failed to fetch link status(%d) from PF", status);
293 }
294
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297         struct hnae3_handle *handle = &hdev->nic;
298         struct hnae3_client *client;
299
300         client = handle->client;
301
302         if (link_state != hdev->hw.mac.link) {
303                 client->ops->link_status_change(handle, !!link_state);
304                 hdev->hw.mac.link = link_state;
305         }
306 }
307
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310         struct hnae3_handle *nic = &hdev->nic;
311         int ret;
312
313         nic->ae_algo = &ae_algovf;
314         nic->pdev = hdev->pdev;
315         nic->numa_node_mask = hdev->numa_node_mask;
316         nic->flags |= HNAE3_SUPPORT_VF;
317
318         if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319                 dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320                         hdev->ae_dev->dev_type);
321                 return -EINVAL;
322         }
323
324         ret = hclgevf_knic_setup(hdev);
325         if (ret)
326                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327                         ret);
328         return ret;
329 }
330
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
334         hdev->num_msi_left += 1;
335         hdev->num_msi_used -= 1;
336 }
337
338 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
339                               struct hnae3_vector_info *vector_info)
340 {
341         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
342         struct hnae3_vector_info *vector = vector_info;
343         int alloc = 0;
344         int i, j;
345
346         vector_num = min(hdev->num_msi_left, vector_num);
347
348         for (j = 0; j < vector_num; j++) {
349                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
350                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
351                                 vector->vector = pci_irq_vector(hdev->pdev, i);
352                                 vector->io_addr = hdev->hw.io_base +
353                                         HCLGEVF_VECTOR_REG_BASE +
354                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
355                                 hdev->vector_status[i] = 0;
356                                 hdev->vector_irq[i] = vector->vector;
357
358                                 vector++;
359                                 alloc++;
360
361                                 break;
362                         }
363                 }
364         }
365         hdev->num_msi_left -= alloc;
366         hdev->num_msi_used += alloc;
367
368         return alloc;
369 }
370
371 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
372 {
373         int i;
374
375         for (i = 0; i < hdev->num_msi; i++)
376                 if (vector == hdev->vector_irq[i])
377                         return i;
378
379         return -EINVAL;
380 }
381
382 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
383 {
384         return HCLGEVF_RSS_KEY_SIZE;
385 }
386
387 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
388 {
389         return HCLGEVF_RSS_IND_TBL_SIZE;
390 }
391
392 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
393 {
394         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
395         struct hclgevf_rss_indirection_table_cmd *req;
396         struct hclgevf_desc desc;
397         int status;
398         int i, j;
399
400         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
401
402         for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
403                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
404                                              false);
405                 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
406                 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
407                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
408                         req->rss_result[j] =
409                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
410
411                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
412                 if (status) {
413                         dev_err(&hdev->pdev->dev,
414                                 "VF failed(=%d) to set RSS indirection table\n",
415                                 status);
416                         return status;
417                 }
418         }
419
420         return 0;
421 }
422
423 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
424 {
425         struct hclgevf_rss_tc_mode_cmd *req;
426         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
427         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
428         u16 tc_size[HCLGEVF_MAX_TC_NUM];
429         struct hclgevf_desc desc;
430         u16 roundup_size;
431         int status;
432         int i;
433
434         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
435
436         roundup_size = roundup_pow_of_two(rss_size);
437         roundup_size = ilog2(roundup_size);
438
439         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
440                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
441                 tc_size[i] = roundup_size;
442                 tc_offset[i] = rss_size * i;
443         }
444
445         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
446         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
447                 hnae_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
448                              (tc_valid[i] & 0x1));
449                 hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
450                                HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
451                 hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
452                                HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
453         }
454         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
455         if (status)
456                 dev_err(&hdev->pdev->dev,
457                         "VF failed(=%d) to set rss tc mode\n", status);
458
459         return status;
460 }
461
462 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
463                                   u8 *key)
464 {
465         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
466         struct hclgevf_rss_config_cmd *req;
467         int lkup_times = key ? 3 : 1;
468         struct hclgevf_desc desc;
469         int key_offset;
470         int key_size;
471         int status;
472
473         req = (struct hclgevf_rss_config_cmd *)desc.data;
474         lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
475
476         for (key_offset = 0; key_offset < lkup_times; key_offset++) {
477                 hclgevf_cmd_setup_basic_desc(&desc,
478                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
479                                              true);
480                 req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
481
482                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
483                 if (status) {
484                         dev_err(&hdev->pdev->dev,
485                                 "failed to get hardware RSS cfg, status = %d\n",
486                                 status);
487                         return status;
488                 }
489
490                 if (key_offset == 2)
491                         key_size =
492                         HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
493                 else
494                         key_size = HCLGEVF_RSS_HASH_KEY_NUM;
495
496                 if (key)
497                         memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
498                                req->hash_key,
499                                key_size);
500         }
501
502         if (hash) {
503                 if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
504                         *hash = ETH_RSS_HASH_TOP;
505                 else
506                         *hash = ETH_RSS_HASH_UNKNOWN;
507         }
508
509         return 0;
510 }
511
512 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
513                            u8 *hfunc)
514 {
515         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
516         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
517         int i;
518
519         if (indir)
520                 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
521                         indir[i] = rss_cfg->rss_indirection_tbl[i];
522
523         return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
524 }
525
526 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
527                            const  u8 *key, const  u8 hfunc)
528 {
529         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
530         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
531         int i;
532
533         /* update the shadow RSS table with user specified qids */
534         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
535                 rss_cfg->rss_indirection_tbl[i] = indir[i];
536
537         /* update the hardware */
538         return hclgevf_set_rss_indir_table(hdev);
539 }
540
541 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
542 {
543         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
544         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
545
546         return rss_cfg->rss_size;
547 }
548
549 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
550                                        int vector,
551                                        struct hnae3_ring_chain_node *ring_chain)
552 {
553         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554         struct hnae3_ring_chain_node *node;
555         struct hclge_mbx_vf_to_pf_cmd *req;
556         struct hclgevf_desc desc;
557         int i = 0, vector_id;
558         int status;
559         u8 type;
560
561         req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
562         vector_id = hclgevf_get_vector_index(hdev, vector);
563         if (vector_id < 0) {
564                 dev_err(&handle->pdev->dev,
565                         "Get vector index fail. ret =%d\n", vector_id);
566                 return vector_id;
567         }
568
569         for (node = ring_chain; node; node = node->next) {
570                 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571                                         HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572
573                 if (i == 0) {
574                         hclgevf_cmd_setup_basic_desc(&desc,
575                                                      HCLGEVF_OPC_MBX_VF_TO_PF,
576                                                      false);
577                         type = en ?
578                                 HCLGE_MBX_MAP_RING_TO_VECTOR :
579                                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580                         req->msg[0] = type;
581                         req->msg[1] = vector_id;
582                 }
583
584                 req->msg[idx_offset] =
585                                 hnae_get_bit(node->flag, HNAE3_RING_TYPE_B);
586                 req->msg[idx_offset + 1] = node->tqp_index;
587                 req->msg[idx_offset + 2] = hnae_get_field(node->int_gl_idx,
588                                                           HNAE3_RING_GL_IDX_M,
589                                                           HNAE3_RING_GL_IDX_S);
590
591                 i++;
592                 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593                      HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594                      HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595                     !node->next) {
596                         req->msg[2] = i;
597
598                         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599                         if (status) {
600                                 dev_err(&hdev->pdev->dev,
601                                         "Map TQP fail, status is %d.\n",
602                                         status);
603                                 return status;
604                         }
605                         i = 0;
606                         hclgevf_cmd_setup_basic_desc(&desc,
607                                                      HCLGEVF_OPC_MBX_VF_TO_PF,
608                                                      false);
609                         req->msg[0] = type;
610                         req->msg[1] = vector_id;
611                 }
612         }
613
614         return 0;
615 }
616
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618                                       struct hnae3_ring_chain_node *ring_chain)
619 {
620         return hclgevf_bind_ring_to_vector(handle, true, vector, ring_chain);
621 }
622
623 static int hclgevf_unmap_ring_from_vector(
624                                 struct hnae3_handle *handle,
625                                 int vector,
626                                 struct hnae3_ring_chain_node *ring_chain)
627 {
628         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
629         int ret, vector_id;
630
631         vector_id = hclgevf_get_vector_index(hdev, vector);
632         if (vector_id < 0) {
633                 dev_err(&handle->pdev->dev,
634                         "Get vector index fail. ret =%d\n", vector_id);
635                 return vector_id;
636         }
637
638         ret = hclgevf_bind_ring_to_vector(handle, false, vector, ring_chain);
639         if (ret)
640                 dev_err(&handle->pdev->dev,
641                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
642                         vector_id,
643                         ret);
644
645         return ret;
646 }
647
648 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
649 {
650         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651
652         hclgevf_free_vector(hdev, vector);
653
654         return 0;
655 }
656
657 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
658                                         bool en_uc_pmc, bool en_mc_pmc)
659 {
660         struct hclge_mbx_vf_to_pf_cmd *req;
661         struct hclgevf_desc desc;
662         int status;
663
664         req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
665
666         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
667         req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
668         req->msg[1] = en_uc_pmc ? 1 : 0;
669         req->msg[2] = en_mc_pmc ? 1 : 0;
670
671         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
672         if (status)
673                 dev_err(&hdev->pdev->dev,
674                         "Set promisc mode fail, status is %d.\n", status);
675
676         return status;
677 }
678
679 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
680                                      bool en_uc_pmc, bool en_mc_pmc)
681 {
682         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
683
684         hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
685 }
686
687 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
688                               int stream_id, bool enable)
689 {
690         struct hclgevf_cfg_com_tqp_queue_cmd *req;
691         struct hclgevf_desc desc;
692         int status;
693
694         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
695
696         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
697                                      false);
698         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
699         req->stream_id = cpu_to_le16(stream_id);
700         req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
701
702         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
703         if (status)
704                 dev_err(&hdev->pdev->dev,
705                         "TQP enable fail, status =%d.\n", status);
706
707         return status;
708 }
709
710 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
711 {
712         struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
713
714         return tqp->index;
715 }
716
717 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
718 {
719         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720         struct hnae3_queue *queue;
721         struct hclgevf_tqp *tqp;
722         int i;
723
724         for (i = 0; i < hdev->num_tqps; i++) {
725                 queue = handle->kinfo.tqp[i];
726                 tqp = container_of(queue, struct hclgevf_tqp, q);
727                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
728         }
729 }
730
731 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
732 {
733         u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
734         int ret;
735
736         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
737                                    HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
738                                    NULL, 0, true, &resp_msg, sizeof(u8));
739
740         if (ret) {
741                 dev_err(&hdev->pdev->dev,
742                         "Read mta type fail, ret=%d.\n", ret);
743                 return ret;
744         }
745
746         if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
747                 dev_err(&hdev->pdev->dev,
748                         "Read mta type invalid, resp=%d.\n", resp_msg);
749                 return -EINVAL;
750         }
751
752         hdev->mta_mac_sel_type = resp_msg;
753
754         return 0;
755 }
756
757 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
758                                              const u8 *addr)
759 {
760         u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
761         u16 high_val = addr[1] | (addr[0] << 8);
762
763         return (high_val >> rsh) & 0xfff;
764 }
765
766 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
767                                         unsigned long *status)
768 {
769 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13
770 #define HCLGEVF_MTA_STATUS_MSG_BITS \
771                         (HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
772 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \
773                         (HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
774         u16 tbl_cnt;
775         u16 tbl_idx;
776         u8 msg_cnt;
777         u8 msg_idx;
778         int ret;
779
780         msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
781                                HCLGEVF_MTA_STATUS_MSG_BITS);
782         tbl_idx = 0;
783         msg_idx = 0;
784         while (msg_cnt--) {
785                 u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
786                 u8 *p = &msg[1];
787                 u8 msg_ofs;
788                 u8 msg_bit;
789
790                 memset(msg, 0, sizeof(msg));
791
792                 /* set index field */
793                 msg[0] = 0x7F & msg_idx;
794
795                 /* set end flag field */
796                 if (msg_cnt == 0) {
797                         msg[0] |= 0x80;
798                         tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
799                 } else {
800                         tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
801                 }
802
803                 /* set status field */
804                 msg_ofs = 0;
805                 msg_bit = 0;
806                 while (tbl_cnt--) {
807                         if (test_bit(tbl_idx, status))
808                                 p[msg_ofs] |= BIT(msg_bit);
809
810                         tbl_idx++;
811
812                         msg_bit++;
813                         if (msg_bit == BITS_PER_BYTE) {
814                                 msg_bit = 0;
815                                 msg_ofs++;
816                         }
817                 }
818
819                 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
820                                            HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
821                                            msg, sizeof(msg), false, NULL, 0);
822                 if (ret)
823                         break;
824
825                 msg_idx++;
826         }
827
828         return ret;
829 }
830
831 static int hclgevf_update_mta_status(struct hnae3_handle *handle)
832 {
833         unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
834         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
835         struct net_device *netdev = hdev->nic.kinfo.netdev;
836         struct netdev_hw_addr *ha;
837         u16 tbl_idx;
838
839         /* clear status */
840         memset(mta_status, 0, sizeof(mta_status));
841
842         /* update status from mc addr list */
843         netdev_for_each_mc_addr(ha, netdev) {
844                 tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
845                 set_bit(tbl_idx, mta_status);
846         }
847
848         return hclgevf_do_update_mta_status(hdev, mta_status);
849 }
850
851 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
852 {
853         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
854
855         ether_addr_copy(p, hdev->hw.mac.mac_addr);
856 }
857
858 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
859                                 bool is_first)
860 {
861         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
862         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
863         u8 *new_mac_addr = (u8 *)p;
864         u8 msg_data[ETH_ALEN * 2];
865         u16 subcode;
866         int status;
867
868         ether_addr_copy(msg_data, new_mac_addr);
869         ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
870
871         subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
872                         HCLGE_MBX_MAC_VLAN_UC_MODIFY;
873
874         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
875                                       subcode, msg_data, ETH_ALEN * 2,
876                                       true, NULL, 0);
877         if (!status)
878                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
879
880         return status;
881 }
882
883 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
884                                const unsigned char *addr)
885 {
886         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
887
888         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
889                                     HCLGE_MBX_MAC_VLAN_UC_ADD,
890                                     addr, ETH_ALEN, false, NULL, 0);
891 }
892
893 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
894                               const unsigned char *addr)
895 {
896         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
897
898         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
899                                     HCLGE_MBX_MAC_VLAN_UC_REMOVE,
900                                     addr, ETH_ALEN, false, NULL, 0);
901 }
902
903 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
904                                const unsigned char *addr)
905 {
906         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907
908         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
909                                     HCLGE_MBX_MAC_VLAN_MC_ADD,
910                                     addr, ETH_ALEN, false, NULL, 0);
911 }
912
913 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
914                               const unsigned char *addr)
915 {
916         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
917
918         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
919                                     HCLGE_MBX_MAC_VLAN_MC_REMOVE,
920                                     addr, ETH_ALEN, false, NULL, 0);
921 }
922
923 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
924                                    __be16 proto, u16 vlan_id,
925                                    bool is_kill)
926 {
927 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
928         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
929         u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
930
931         if (vlan_id > 4095)
932                 return -EINVAL;
933
934         if (proto != htons(ETH_P_8021Q))
935                 return -EPROTONOSUPPORT;
936
937         msg_data[0] = is_kill;
938         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
939         memcpy(&msg_data[3], &proto, sizeof(proto));
940         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
941                                     HCLGE_MBX_VLAN_FILTER, msg_data,
942                                     HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
943 }
944
945 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
946 {
947         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
948         u8 msg_data;
949
950         msg_data = enable ? 1 : 0;
951         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
952                                     HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
953                                     1, false, NULL, 0);
954 }
955
956 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
957 {
958         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
959         u8 msg_data[2];
960         int ret;
961
962         memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
963
964         /* disable vf queue before send queue reset msg to PF */
965         ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
966         if (ret)
967                 return;
968
969         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
970                              2, true, NULL, 0);
971 }
972
973 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
974                                  enum hnae3_reset_notify_type type)
975 {
976         struct hnae3_client *client = hdev->nic_client;
977         struct hnae3_handle *handle = &hdev->nic;
978
979         if (!client->ops->reset_notify)
980                 return -EOPNOTSUPP;
981
982         return client->ops->reset_notify(handle, type);
983 }
984
985 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
986 {
987 #define HCLGEVF_RESET_WAIT_MS   500
988 #define HCLGEVF_RESET_WAIT_CNT  20
989         u32 val, cnt = 0;
990
991         /* wait to check the hardware reset completion status */
992         val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
993         while (hnae_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
994                             (cnt < HCLGEVF_RESET_WAIT_CNT)) {
995                 msleep(HCLGEVF_RESET_WAIT_MS);
996                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
997                 cnt++;
998         }
999
1000         /* hardware completion status should be available by this time */
1001         if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1002                 dev_warn(&hdev->pdev->dev,
1003                          "could'nt get reset done status from h/w, timeout!\n");
1004                 return -EBUSY;
1005         }
1006
1007         /* we will wait a bit more to let reset of the stack to complete. This
1008          * might happen in case reset assertion was made by PF. Yes, this also
1009          * means we might end up waiting bit more even for VF reset.
1010          */
1011         msleep(5000);
1012
1013         return 0;
1014 }
1015
1016 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1017 {
1018         int ret;
1019
1020         /* uninitialize the nic client */
1021         hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1022
1023         /* re-initialize the hclge device */
1024         ret = hclgevf_init_hdev(hdev);
1025         if (ret) {
1026                 dev_err(&hdev->pdev->dev,
1027                         "hclge device re-init failed, VF is disabled!\n");
1028                 return ret;
1029         }
1030
1031         /* bring up the nic client again */
1032         hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1033
1034         return 0;
1035 }
1036
1037 static int hclgevf_reset(struct hclgevf_dev *hdev)
1038 {
1039         int ret;
1040
1041         rtnl_lock();
1042
1043         /* bring down the nic to stop any ongoing TX/RX */
1044         hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1045
1046         /* check if VF could successfully fetch the hardware reset completion
1047          * status from the hardware
1048          */
1049         ret = hclgevf_reset_wait(hdev);
1050         if (ret) {
1051                 /* can't do much in this situation, will disable VF */
1052                 dev_err(&hdev->pdev->dev,
1053                         "VF failed(=%d) to fetch H/W reset completion status\n",
1054                         ret);
1055
1056                 dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1057                 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1058
1059                 rtnl_unlock();
1060                 return ret;
1061         }
1062
1063         /* now, re-initialize the nic client and ae device*/
1064         ret = hclgevf_reset_stack(hdev);
1065         if (ret)
1066                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1067
1068         /* bring up the nic to enable TX/RX again */
1069         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1070
1071         rtnl_unlock();
1072
1073         return ret;
1074 }
1075
1076 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1077 {
1078         int status;
1079         u8 respmsg;
1080
1081         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1082                                       0, false, &respmsg, sizeof(u8));
1083         if (status)
1084                 dev_err(&hdev->pdev->dev,
1085                         "VF reset request to PF failed(=%d)\n", status);
1086
1087         return status;
1088 }
1089
1090 static void hclgevf_reset_event(struct hnae3_handle *handle)
1091 {
1092         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1093
1094         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1095
1096         handle->reset_level = HNAE3_VF_RESET;
1097
1098         /* reset of this VF requested */
1099         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1100         hclgevf_reset_task_schedule(hdev);
1101
1102         handle->last_reset_time = jiffies;
1103 }
1104
1105 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1106 {
1107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1108
1109         return hdev->fw_version;
1110 }
1111
1112 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1113 {
1114         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1115
1116         vector->vector_irq = pci_irq_vector(hdev->pdev,
1117                                             HCLGEVF_MISC_VECTOR_NUM);
1118         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1119         /* vector status always valid for Vector 0 */
1120         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1121         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1122
1123         hdev->num_msi_left -= 1;
1124         hdev->num_msi_used += 1;
1125 }
1126
1127 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1128 {
1129         if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1130             !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1131                 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1132                 schedule_work(&hdev->rst_service_task);
1133         }
1134 }
1135
1136 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1137 {
1138         if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1139             !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1140                 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1141                 schedule_work(&hdev->mbx_service_task);
1142         }
1143 }
1144
1145 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1146 {
1147         if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1148             !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1149                 schedule_work(&hdev->service_task);
1150 }
1151
1152 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1153 {
1154         /* if we have any pending mailbox event then schedule the mbx task */
1155         if (hdev->mbx_event_pending)
1156                 hclgevf_mbx_task_schedule(hdev);
1157
1158         if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1159                 hclgevf_reset_task_schedule(hdev);
1160 }
1161
1162 static void hclgevf_service_timer(struct timer_list *t)
1163 {
1164         struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1165
1166         mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1167
1168         hclgevf_task_schedule(hdev);
1169 }
1170
1171 static void hclgevf_reset_service_task(struct work_struct *work)
1172 {
1173         struct hclgevf_dev *hdev =
1174                 container_of(work, struct hclgevf_dev, rst_service_task);
1175         int ret;
1176
1177         if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1178                 return;
1179
1180         clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1181
1182         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1183                                &hdev->reset_state)) {
1184                 /* PF has initmated that it is about to reset the hardware.
1185                  * We now have to poll & check if harware has actually completed
1186                  * the reset sequence. On hardware reset completion, VF needs to
1187                  * reset the client and ae device.
1188                  */
1189                 hdev->reset_attempts = 0;
1190
1191                 ret = hclgevf_reset(hdev);
1192                 if (ret)
1193                         dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1194         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1195                                       &hdev->reset_state)) {
1196                 /* we could be here when either of below happens:
1197                  * 1. reset was initiated due to watchdog timeout due to
1198                  *    a. IMP was earlier reset and our TX got choked down and
1199                  *       which resulted in watchdog reacting and inducing VF
1200                  *       reset. This also means our cmdq would be unreliable.
1201                  *    b. problem in TX due to other lower layer(example link
1202                  *       layer not functioning properly etc.)
1203                  * 2. VF reset might have been initiated due to some config
1204                  *    change.
1205                  *
1206                  * NOTE: Theres no clear way to detect above cases than to react
1207                  * to the response of PF for this reset request. PF will ack the
1208                  * 1b and 2. cases but we will not get any intimation about 1a
1209                  * from PF as cmdq would be in unreliable state i.e. mailbox
1210                  * communication between PF and VF would be broken.
1211                  */
1212
1213                 /* if we are never geting into pending state it means either:
1214                  * 1. PF is not receiving our request which could be due to IMP
1215                  *    reset
1216                  * 2. PF is screwed
1217                  * We cannot do much for 2. but to check first we can try reset
1218                  * our PCIe + stack and see if it alleviates the problem.
1219                  */
1220                 if (hdev->reset_attempts > 3) {
1221                         /* prepare for full reset of stack + pcie interface */
1222                         hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1223
1224                         /* "defer" schedule the reset task again */
1225                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1226                 } else {
1227                         hdev->reset_attempts++;
1228
1229                         /* request PF for resetting this VF via mailbox */
1230                         ret = hclgevf_do_reset(hdev);
1231                         if (ret)
1232                                 dev_warn(&hdev->pdev->dev,
1233                                          "VF rst fail, stack will call\n");
1234                 }
1235         }
1236
1237         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1238 }
1239
1240 static void hclgevf_mailbox_service_task(struct work_struct *work)
1241 {
1242         struct hclgevf_dev *hdev;
1243
1244         hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1245
1246         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1247                 return;
1248
1249         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1250
1251         hclgevf_mbx_async_handler(hdev);
1252
1253         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1254 }
1255
1256 static void hclgevf_service_task(struct work_struct *work)
1257 {
1258         struct hclgevf_dev *hdev;
1259
1260         hdev = container_of(work, struct hclgevf_dev, service_task);
1261
1262         /* request the link status from the PF. PF would be able to tell VF
1263          * about such updates in future so we might remove this later
1264          */
1265         hclgevf_request_link_info(hdev);
1266
1267         hclgevf_deferred_task_schedule(hdev);
1268
1269         clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1270 }
1271
1272 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1273 {
1274         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1275 }
1276
1277 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1278 {
1279         u32 cmdq_src_reg;
1280
1281         /* fetch the events from their corresponding regs */
1282         cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1283                                         HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1284
1285         /* check for vector0 mailbox(=CMDQ RX) event source */
1286         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1287                 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1288                 *clearval = cmdq_src_reg;
1289                 return true;
1290         }
1291
1292         dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1293
1294         return false;
1295 }
1296
1297 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1298 {
1299         writel(en ? 1 : 0, vector->addr);
1300 }
1301
1302 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1303 {
1304         struct hclgevf_dev *hdev = data;
1305         u32 clearval;
1306
1307         hclgevf_enable_vector(&hdev->misc_vector, false);
1308         if (!hclgevf_check_event_cause(hdev, &clearval))
1309                 goto skip_sched;
1310
1311         hclgevf_mbx_handler(hdev);
1312
1313         hclgevf_clear_event_cause(hdev, clearval);
1314
1315 skip_sched:
1316         hclgevf_enable_vector(&hdev->misc_vector, true);
1317
1318         return IRQ_HANDLED;
1319 }
1320
1321 static int hclgevf_configure(struct hclgevf_dev *hdev)
1322 {
1323         int ret;
1324
1325         /* get queue configuration from PF */
1326         ret = hclge_get_queue_info(hdev);
1327         if (ret)
1328                 return ret;
1329         /* get tc configuration from PF */
1330         return hclgevf_get_tc_info(hdev);
1331 }
1332
1333 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1334 {
1335         struct pci_dev *pdev = ae_dev->pdev;
1336         struct hclgevf_dev *hdev = ae_dev->priv;
1337
1338         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1339         if (!hdev)
1340                 return -ENOMEM;
1341
1342         hdev->pdev = pdev;
1343         hdev->ae_dev = ae_dev;
1344         ae_dev->priv = hdev;
1345
1346         return 0;
1347 }
1348
1349 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1350 {
1351         struct hnae3_handle *roce = &hdev->roce;
1352         struct hnae3_handle *nic = &hdev->nic;
1353
1354         roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1355
1356         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1357             hdev->num_msi_left == 0)
1358                 return -EINVAL;
1359
1360         roce->rinfo.base_vector =
1361                 hdev->vector_status[hdev->num_msi_used];
1362
1363         roce->rinfo.netdev = nic->kinfo.netdev;
1364         roce->rinfo.roce_io_base = hdev->hw.io_base;
1365
1366         roce->pdev = nic->pdev;
1367         roce->ae_algo = nic->ae_algo;
1368         roce->numa_node_mask = nic->numa_node_mask;
1369
1370         return 0;
1371 }
1372
1373 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1374 {
1375         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1376         int i, ret;
1377
1378         rss_cfg->rss_size = hdev->rss_size_max;
1379
1380         /* Initialize RSS indirect table for each vport */
1381         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1382                 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1383
1384         ret = hclgevf_set_rss_indir_table(hdev);
1385         if (ret)
1386                 return ret;
1387
1388         return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1389 }
1390
1391 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1392 {
1393         /* other vlan config(like, VLAN TX/RX offload) would also be added
1394          * here later
1395          */
1396         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1397                                        false);
1398 }
1399
1400 static int hclgevf_ae_start(struct hnae3_handle *handle)
1401 {
1402         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1403         int i, queue_id;
1404
1405         for (i = 0; i < handle->kinfo.num_tqps; i++) {
1406                 /* ring enable */
1407                 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1408                 if (queue_id < 0) {
1409                         dev_warn(&hdev->pdev->dev,
1410                                  "Get invalid queue id, ignore it\n");
1411                         continue;
1412                 }
1413
1414                 hclgevf_tqp_enable(hdev, queue_id, 0, true);
1415         }
1416
1417         /* reset tqp stats */
1418         hclgevf_reset_tqp_stats(handle);
1419
1420         hclgevf_request_link_info(hdev);
1421
1422         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1423         mod_timer(&hdev->service_timer, jiffies + HZ);
1424
1425         return 0;
1426 }
1427
1428 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1429 {
1430         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1431         int i, queue_id;
1432
1433         for (i = 0; i < hdev->num_tqps; i++) {
1434                 /* Ring disable */
1435                 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1436                 if (queue_id < 0) {
1437                         dev_warn(&hdev->pdev->dev,
1438                                  "Get invalid queue id, ignore it\n");
1439                         continue;
1440                 }
1441
1442                 hclgevf_tqp_enable(hdev, queue_id, 0, false);
1443         }
1444
1445         /* reset tqp stats */
1446         hclgevf_reset_tqp_stats(handle);
1447         del_timer_sync(&hdev->service_timer);
1448         cancel_work_sync(&hdev->service_task);
1449         clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1450         hclgevf_update_link_status(hdev, 0);
1451 }
1452
1453 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1454 {
1455         /* if this is on going reset then skip this initialization */
1456         if (hclgevf_dev_ongoing_reset(hdev))
1457                 return;
1458
1459         /* setup tasks for the MBX */
1460         INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1461         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1462         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1463
1464         /* setup tasks for service timer */
1465         timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1466
1467         INIT_WORK(&hdev->service_task, hclgevf_service_task);
1468         clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1469
1470         INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1471
1472         mutex_init(&hdev->mbx_resp.mbx_mutex);
1473
1474         /* bring the device down */
1475         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1476 }
1477
1478 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1479 {
1480         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1481
1482         if (hdev->service_timer.function)
1483                 del_timer_sync(&hdev->service_timer);
1484         if (hdev->service_task.func)
1485                 cancel_work_sync(&hdev->service_task);
1486         if (hdev->mbx_service_task.func)
1487                 cancel_work_sync(&hdev->mbx_service_task);
1488         if (hdev->rst_service_task.func)
1489                 cancel_work_sync(&hdev->rst_service_task);
1490
1491         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1492 }
1493
1494 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1495 {
1496         struct pci_dev *pdev = hdev->pdev;
1497         int vectors;
1498         int i;
1499
1500         /* if this is on going reset then skip this initialization */
1501         if (hclgevf_dev_ongoing_reset(hdev))
1502                 return 0;
1503
1504         hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1505
1506         vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1507                                         PCI_IRQ_MSI | PCI_IRQ_MSIX);
1508         if (vectors < 0) {
1509                 dev_err(&pdev->dev,
1510                         "failed(%d) to allocate MSI/MSI-X vectors\n",
1511                         vectors);
1512                 return vectors;
1513         }
1514         if (vectors < hdev->num_msi)
1515                 dev_warn(&hdev->pdev->dev,
1516                          "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1517                          hdev->num_msi, vectors);
1518
1519         hdev->num_msi = vectors;
1520         hdev->num_msi_left = vectors;
1521         hdev->base_msi_vector = pdev->irq;
1522
1523         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1524                                            sizeof(u16), GFP_KERNEL);
1525         if (!hdev->vector_status) {
1526                 pci_free_irq_vectors(pdev);
1527                 return -ENOMEM;
1528         }
1529
1530         for (i = 0; i < hdev->num_msi; i++)
1531                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1532
1533         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1534                                         sizeof(int), GFP_KERNEL);
1535         if (!hdev->vector_irq) {
1536                 pci_free_irq_vectors(pdev);
1537                 return -ENOMEM;
1538         }
1539
1540         return 0;
1541 }
1542
1543 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1544 {
1545         struct pci_dev *pdev = hdev->pdev;
1546
1547         pci_free_irq_vectors(pdev);
1548 }
1549
1550 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1551 {
1552         int ret = 0;
1553
1554         /* if this is on going reset then skip this initialization */
1555         if (hclgevf_dev_ongoing_reset(hdev))
1556                 return 0;
1557
1558         hclgevf_get_misc_vector(hdev);
1559
1560         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1561                           0, "hclgevf_cmd", hdev);
1562         if (ret) {
1563                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1564                         hdev->misc_vector.vector_irq);
1565                 return ret;
1566         }
1567
1568         hclgevf_clear_event_cause(hdev, 0);
1569
1570         /* enable misc. vector(vector 0) */
1571         hclgevf_enable_vector(&hdev->misc_vector, true);
1572
1573         return ret;
1574 }
1575
1576 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1577 {
1578         /* disable misc vector(vector 0) */
1579         hclgevf_enable_vector(&hdev->misc_vector, false);
1580         synchronize_irq(hdev->misc_vector.vector_irq);
1581         free_irq(hdev->misc_vector.vector_irq, hdev);
1582         hclgevf_free_vector(hdev, 0);
1583 }
1584
1585 static int hclgevf_init_instance(struct hclgevf_dev *hdev,
1586                                  struct hnae3_client *client)
1587 {
1588         int ret;
1589
1590         switch (client->type) {
1591         case HNAE3_CLIENT_KNIC:
1592                 hdev->nic_client = client;
1593                 hdev->nic.client = client;
1594
1595                 ret = client->ops->init_instance(&hdev->nic);
1596                 if (ret)
1597                         return ret;
1598
1599                 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1600                         struct hnae3_client *rc = hdev->roce_client;
1601
1602                         ret = hclgevf_init_roce_base_info(hdev);
1603                         if (ret)
1604                                 return ret;
1605                         ret = rc->ops->init_instance(&hdev->roce);
1606                         if (ret)
1607                                 return ret;
1608                 }
1609                 break;
1610         case HNAE3_CLIENT_UNIC:
1611                 hdev->nic_client = client;
1612                 hdev->nic.client = client;
1613
1614                 ret = client->ops->init_instance(&hdev->nic);
1615                 if (ret)
1616                         return ret;
1617                 break;
1618         case HNAE3_CLIENT_ROCE:
1619                 if (hnae3_dev_roce_supported(hdev)) {
1620                         hdev->roce_client = client;
1621                         hdev->roce.client = client;
1622                 }
1623
1624                 if (hdev->roce_client && hdev->nic_client) {
1625                         ret = hclgevf_init_roce_base_info(hdev);
1626                         if (ret)
1627                                 return ret;
1628
1629                         ret = client->ops->init_instance(&hdev->roce);
1630                         if (ret)
1631                                 return ret;
1632                 }
1633         }
1634
1635         return 0;
1636 }
1637
1638 static void hclgevf_uninit_instance(struct hclgevf_dev *hdev,
1639                                     struct hnae3_client *client)
1640 {
1641         /* un-init roce, if it exists */
1642         if (hdev->roce_client)
1643                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1644
1645         /* un-init nic/unic, if this was not called by roce client */
1646         if ((client->ops->uninit_instance) &&
1647             (client->type != HNAE3_CLIENT_ROCE))
1648                 client->ops->uninit_instance(&hdev->nic, 0);
1649 }
1650
1651 static int hclgevf_register_client(struct hnae3_client *client,
1652                                    struct hnae3_ae_dev *ae_dev)
1653 {
1654         struct hclgevf_dev *hdev = ae_dev->priv;
1655
1656         return hclgevf_init_instance(hdev, client);
1657 }
1658
1659 static void hclgevf_unregister_client(struct hnae3_client *client,
1660                                       struct hnae3_ae_dev *ae_dev)
1661 {
1662         struct hclgevf_dev *hdev = ae_dev->priv;
1663
1664         hclgevf_uninit_instance(hdev, client);
1665 }
1666
1667 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1668 {
1669         struct pci_dev *pdev = hdev->pdev;
1670         struct hclgevf_hw *hw;
1671         int ret;
1672
1673         /* check if we need to skip initialization of pci. This will happen if
1674          * device is undergoing VF reset. Otherwise, we would need to
1675          * re-initialize pci interface again i.e. when device is not going
1676          * through *any* reset or actually undergoing full reset.
1677          */
1678         if (hclgevf_dev_ongoing_reset(hdev))
1679                 return 0;
1680
1681         ret = pci_enable_device(pdev);
1682         if (ret) {
1683                 dev_err(&pdev->dev, "failed to enable PCI device\n");
1684                 return ret;
1685         }
1686
1687         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1688         if (ret) {
1689                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1690                 goto err_disable_device;
1691         }
1692
1693         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1694         if (ret) {
1695                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1696                 goto err_disable_device;
1697         }
1698
1699         pci_set_master(pdev);
1700         hw = &hdev->hw;
1701         hw->hdev = hdev;
1702         hw->io_base = pci_iomap(pdev, 2, 0);
1703         if (!hw->io_base) {
1704                 dev_err(&pdev->dev, "can't map configuration register space\n");
1705                 ret = -ENOMEM;
1706                 goto err_clr_master;
1707         }
1708
1709         return 0;
1710
1711 err_clr_master:
1712         pci_clear_master(pdev);
1713         pci_release_regions(pdev);
1714 err_disable_device:
1715         pci_disable_device(pdev);
1716
1717         return ret;
1718 }
1719
1720 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1721 {
1722         struct pci_dev *pdev = hdev->pdev;
1723
1724         pci_iounmap(pdev, hdev->hw.io_base);
1725         pci_clear_master(pdev);
1726         pci_release_regions(pdev);
1727         pci_disable_device(pdev);
1728 }
1729
1730 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1731 {
1732         struct pci_dev *pdev = hdev->pdev;
1733         int ret;
1734
1735         /* check if device is on-going full reset(i.e. pcie as well) */
1736         if (hclgevf_dev_ongoing_full_reset(hdev)) {
1737                 dev_warn(&pdev->dev, "device is going full reset\n");
1738                 hclgevf_uninit_hdev(hdev);
1739         }
1740
1741         ret = hclgevf_pci_init(hdev);
1742         if (ret) {
1743                 dev_err(&pdev->dev, "PCI initialization failed\n");
1744                 return ret;
1745         }
1746
1747         ret = hclgevf_init_msi(hdev);
1748         if (ret) {
1749                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1750                 goto err_irq_init;
1751         }
1752
1753         hclgevf_state_init(hdev);
1754
1755         ret = hclgevf_cmd_init(hdev);
1756         if (ret)
1757                 goto err_cmd_init;
1758
1759         ret = hclgevf_misc_irq_init(hdev);
1760         if (ret) {
1761                 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1762                         ret);
1763                 goto err_misc_irq_init;
1764         }
1765
1766         ret = hclgevf_configure(hdev);
1767         if (ret) {
1768                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1769                 goto err_config;
1770         }
1771
1772         ret = hclgevf_alloc_tqps(hdev);
1773         if (ret) {
1774                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1775                 goto err_config;
1776         }
1777
1778         ret = hclgevf_set_handle_info(hdev);
1779         if (ret) {
1780                 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1781                 goto err_config;
1782         }
1783
1784         /* Initialize mta type for this VF */
1785         ret = hclgevf_cfg_func_mta_type(hdev);
1786         if (ret) {
1787                 dev_err(&hdev->pdev->dev,
1788                         "failed(%d) to initialize MTA type\n", ret);
1789                 goto err_config;
1790         }
1791
1792         /* Initialize RSS for this VF */
1793         ret = hclgevf_rss_init_hw(hdev);
1794         if (ret) {
1795                 dev_err(&hdev->pdev->dev,
1796                         "failed(%d) to initialize RSS\n", ret);
1797                 goto err_config;
1798         }
1799
1800         ret = hclgevf_init_vlan_config(hdev);
1801         if (ret) {
1802                 dev_err(&hdev->pdev->dev,
1803                         "failed(%d) to initialize VLAN config\n", ret);
1804                 goto err_config;
1805         }
1806
1807         pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1808
1809         return 0;
1810
1811 err_config:
1812         hclgevf_misc_irq_uninit(hdev);
1813 err_misc_irq_init:
1814         hclgevf_cmd_uninit(hdev);
1815 err_cmd_init:
1816         hclgevf_state_uninit(hdev);
1817         hclgevf_uninit_msi(hdev);
1818 err_irq_init:
1819         hclgevf_pci_uninit(hdev);
1820         return ret;
1821 }
1822
1823 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1824 {
1825         hclgevf_state_uninit(hdev);
1826         hclgevf_misc_irq_uninit(hdev);
1827         hclgevf_cmd_uninit(hdev);
1828         hclgevf_uninit_msi(hdev);
1829         hclgevf_pci_uninit(hdev);
1830 }
1831
1832 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1833 {
1834         struct pci_dev *pdev = ae_dev->pdev;
1835         int ret;
1836
1837         ret = hclgevf_alloc_hdev(ae_dev);
1838         if (ret) {
1839                 dev_err(&pdev->dev, "hclge device allocation failed\n");
1840                 return ret;
1841         }
1842
1843         ret = hclgevf_init_hdev(ae_dev->priv);
1844         if (ret)
1845                 dev_err(&pdev->dev, "hclge device initialization failed\n");
1846
1847         return ret;
1848 }
1849
1850 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1851 {
1852         struct hclgevf_dev *hdev = ae_dev->priv;
1853
1854         hclgevf_uninit_hdev(hdev);
1855         ae_dev->priv = NULL;
1856 }
1857
1858 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1859 {
1860         struct hnae3_handle *nic = &hdev->nic;
1861         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1862
1863         return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1864 }
1865
1866 /**
1867  * hclgevf_get_channels - Get the current channels enabled and max supported.
1868  * @handle: hardware information for network interface
1869  * @ch: ethtool channels structure
1870  *
1871  * We don't support separate tx and rx queues as channels. The other count
1872  * represents how many queues are being used for control. max_combined counts
1873  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1874  * q_vectors since we support a lot more queue pairs than q_vectors.
1875  **/
1876 static void hclgevf_get_channels(struct hnae3_handle *handle,
1877                                  struct ethtool_channels *ch)
1878 {
1879         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1880
1881         ch->max_combined = hclgevf_get_max_channels(hdev);
1882         ch->other_count = 0;
1883         ch->max_other = 0;
1884         ch->combined_count = hdev->num_tqps;
1885 }
1886
1887 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1888                                           u16 *free_tqps, u16 *max_rss_size)
1889 {
1890         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1891
1892         *free_tqps = 0;
1893         *max_rss_size = hdev->rss_size_max;
1894 }
1895
1896 static int hclgevf_get_status(struct hnae3_handle *handle)
1897 {
1898         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1899
1900         return hdev->hw.mac.link;
1901 }
1902
1903 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1904                                             u8 *auto_neg, u32 *speed,
1905                                             u8 *duplex)
1906 {
1907         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1908
1909         if (speed)
1910                 *speed = hdev->hw.mac.speed;
1911         if (duplex)
1912                 *duplex = hdev->hw.mac.duplex;
1913         if (auto_neg)
1914                 *auto_neg = AUTONEG_DISABLE;
1915 }
1916
1917 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1918                                  u8 duplex)
1919 {
1920         hdev->hw.mac.speed = speed;
1921         hdev->hw.mac.duplex = duplex;
1922 }
1923
1924 static const struct hnae3_ae_ops hclgevf_ops = {
1925         .init_ae_dev = hclgevf_init_ae_dev,
1926         .uninit_ae_dev = hclgevf_uninit_ae_dev,
1927         .init_client_instance = hclgevf_register_client,
1928         .uninit_client_instance = hclgevf_unregister_client,
1929         .start = hclgevf_ae_start,
1930         .stop = hclgevf_ae_stop,
1931         .map_ring_to_vector = hclgevf_map_ring_to_vector,
1932         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1933         .get_vector = hclgevf_get_vector,
1934         .put_vector = hclgevf_put_vector,
1935         .reset_queue = hclgevf_reset_tqp,
1936         .set_promisc_mode = hclgevf_set_promisc_mode,
1937         .get_mac_addr = hclgevf_get_mac_addr,
1938         .set_mac_addr = hclgevf_set_mac_addr,
1939         .add_uc_addr = hclgevf_add_uc_addr,
1940         .rm_uc_addr = hclgevf_rm_uc_addr,
1941         .add_mc_addr = hclgevf_add_mc_addr,
1942         .rm_mc_addr = hclgevf_rm_mc_addr,
1943         .update_mta_status = hclgevf_update_mta_status,
1944         .get_stats = hclgevf_get_stats,
1945         .update_stats = hclgevf_update_stats,
1946         .get_strings = hclgevf_get_strings,
1947         .get_sset_count = hclgevf_get_sset_count,
1948         .get_rss_key_size = hclgevf_get_rss_key_size,
1949         .get_rss_indir_size = hclgevf_get_rss_indir_size,
1950         .get_rss = hclgevf_get_rss,
1951         .set_rss = hclgevf_set_rss,
1952         .get_tc_size = hclgevf_get_tc_size,
1953         .get_fw_version = hclgevf_get_fw_version,
1954         .set_vlan_filter = hclgevf_set_vlan_filter,
1955         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
1956         .reset_event = hclgevf_reset_event,
1957         .get_channels = hclgevf_get_channels,
1958         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1959         .get_status = hclgevf_get_status,
1960         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1961 };
1962
1963 static struct hnae3_ae_algo ae_algovf = {
1964         .ops = &hclgevf_ops,
1965         .name = HCLGEVF_NAME,
1966         .pdev_id_table = ae_algovf_pci_tbl,
1967 };
1968
1969 static int hclgevf_init(void)
1970 {
1971         pr_info("%s is initializing\n", HCLGEVF_NAME);
1972
1973         hnae3_register_ae_algo(&ae_algovf);
1974
1975         return 0;
1976 }
1977
1978 static void hclgevf_exit(void)
1979 {
1980         hnae3_unregister_ae_algo(&ae_algovf);
1981 }
1982 module_init(hclgevf_init);
1983 module_exit(hclgevf_exit);
1984
1985 MODULE_LICENSE("GPL");
1986 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1987 MODULE_DESCRIPTION("HCLGEVF Driver");
1988 MODULE_VERSION(HCLGEVF_MOD_VERSION);