e96449eedfb5428a6361a76dc98a8f8df51744c5
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / freescale / enetc / enetc.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3
4 #include "enetc.h"
5 #include <linux/bpf_trace.h>
6 #include <linux/tcp.h>
7 #include <linux/udp.h>
8 #include <linux/vmalloc.h>
9 #include <linux/ptp_classify.h>
10 #include <net/ip6_checksum.h>
11 #include <net/pkt_sched.h>
12 #include <net/tso.h>
13
14 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
15 {
16         int num_tx_rings = priv->num_tx_rings;
17         int i;
18
19         for (i = 0; i < priv->num_rx_rings; i++)
20                 if (priv->rx_ring[i]->xdp.prog)
21                         return num_tx_rings - num_possible_cpus();
22
23         return num_tx_rings;
24 }
25
26 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
27                                                         struct enetc_bdr *tx_ring)
28 {
29         int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
30
31         return priv->rx_ring[index];
32 }
33
34 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
35 {
36         if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
37                 return NULL;
38
39         return tx_swbd->skb;
40 }
41
42 static struct xdp_frame *
43 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
44 {
45         if (tx_swbd->is_xdp_redirect)
46                 return tx_swbd->xdp_frame;
47
48         return NULL;
49 }
50
51 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
52                                 struct enetc_tx_swbd *tx_swbd)
53 {
54         /* For XDP_TX, pages come from RX, whereas for the other contexts where
55          * we have is_dma_page_set, those come from skb_frag_dma_map. We need
56          * to match the DMA mapping length, so we need to differentiate those.
57          */
58         if (tx_swbd->is_dma_page)
59                 dma_unmap_page(tx_ring->dev, tx_swbd->dma,
60                                tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
61                                tx_swbd->dir);
62         else
63                 dma_unmap_single(tx_ring->dev, tx_swbd->dma,
64                                  tx_swbd->len, tx_swbd->dir);
65         tx_swbd->dma = 0;
66 }
67
68 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
69                                 struct enetc_tx_swbd *tx_swbd)
70 {
71         struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
72         struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
73
74         if (tx_swbd->dma)
75                 enetc_unmap_tx_buff(tx_ring, tx_swbd);
76
77         if (xdp_frame) {
78                 xdp_return_frame(tx_swbd->xdp_frame);
79                 tx_swbd->xdp_frame = NULL;
80         } else if (skb) {
81                 dev_kfree_skb_any(skb);
82                 tx_swbd->skb = NULL;
83         }
84 }
85
86 /* Let H/W know BD ring has been updated */
87 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
88 {
89         /* includes wmb() */
90         enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
91 }
92
93 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
94                            u8 *msgtype, u8 *twostep,
95                            u16 *correction_offset, u16 *body_offset)
96 {
97         unsigned int ptp_class;
98         struct ptp_header *hdr;
99         unsigned int type;
100         u8 *base;
101
102         ptp_class = ptp_classify_raw(skb);
103         if (ptp_class == PTP_CLASS_NONE)
104                 return -EINVAL;
105
106         hdr = ptp_parse_header(skb, ptp_class);
107         if (!hdr)
108                 return -EINVAL;
109
110         type = ptp_class & PTP_CLASS_PMASK;
111         if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
112                 *udp = 1;
113         else
114                 *udp = 0;
115
116         *msgtype = ptp_get_msgtype(hdr, ptp_class);
117         *twostep = hdr->flag_field[0] & 0x2;
118
119         base = skb_mac_header(skb);
120         *correction_offset = (u8 *)&hdr->correction - base;
121         *body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
122
123         return 0;
124 }
125
126 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
127 {
128         bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
129         struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
130         struct enetc_hw *hw = &priv->si->hw;
131         struct enetc_tx_swbd *tx_swbd;
132         int len = skb_headlen(skb);
133         union enetc_tx_bd temp_bd;
134         u8 msgtype, twostep, udp;
135         union enetc_tx_bd *txbd;
136         u16 offset1, offset2;
137         int i, count = 0;
138         skb_frag_t *frag;
139         unsigned int f;
140         dma_addr_t dma;
141         u8 flags = 0;
142
143         i = tx_ring->next_to_use;
144         txbd = ENETC_TXBD(*tx_ring, i);
145         prefetchw(txbd);
146
147         dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
148         if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
149                 goto dma_err;
150
151         temp_bd.addr = cpu_to_le64(dma);
152         temp_bd.buf_len = cpu_to_le16(len);
153         temp_bd.lstatus = 0;
154
155         tx_swbd = &tx_ring->tx_swbd[i];
156         tx_swbd->dma = dma;
157         tx_swbd->len = len;
158         tx_swbd->is_dma_page = 0;
159         tx_swbd->dir = DMA_TO_DEVICE;
160         count++;
161
162         do_vlan = skb_vlan_tag_present(skb);
163         if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
164                 if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
165                                     &offset2) ||
166                     msgtype != PTP_MSGTYPE_SYNC || twostep)
167                         WARN_ONCE(1, "Bad packet for one-step timestamping\n");
168                 else
169                         do_onestep_tstamp = true;
170         } else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
171                 do_twostep_tstamp = true;
172         }
173
174         tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
175         tx_swbd->qbv_en = !!(priv->active_offloads & ENETC_F_QBV);
176         tx_swbd->check_wb = tx_swbd->do_twostep_tstamp || tx_swbd->qbv_en;
177
178         if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
179                 flags |= ENETC_TXBD_FLAGS_EX;
180
181         if (tx_ring->tsd_enable)
182                 flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
183
184         /* first BD needs frm_len and offload flags set */
185         temp_bd.frm_len = cpu_to_le16(skb->len);
186         temp_bd.flags = flags;
187
188         if (flags & ENETC_TXBD_FLAGS_TSE)
189                 temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
190                                                           flags);
191
192         if (flags & ENETC_TXBD_FLAGS_EX) {
193                 u8 e_flags = 0;
194                 *txbd = temp_bd;
195                 enetc_clear_tx_bd(&temp_bd);
196
197                 /* add extension BD for VLAN and/or timestamping */
198                 flags = 0;
199                 tx_swbd++;
200                 txbd++;
201                 i++;
202                 if (unlikely(i == tx_ring->bd_count)) {
203                         i = 0;
204                         tx_swbd = tx_ring->tx_swbd;
205                         txbd = ENETC_TXBD(*tx_ring, 0);
206                 }
207                 prefetchw(txbd);
208
209                 if (do_vlan) {
210                         temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
211                         temp_bd.ext.tpid = 0; /* < C-TAG */
212                         e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
213                 }
214
215                 if (do_onestep_tstamp) {
216                         u32 lo, hi, val;
217                         u64 sec, nsec;
218                         u8 *data;
219
220                         lo = enetc_rd_hot(hw, ENETC_SICTR0);
221                         hi = enetc_rd_hot(hw, ENETC_SICTR1);
222                         sec = (u64)hi << 32 | lo;
223                         nsec = do_div(sec, 1000000000);
224
225                         /* Configure extension BD */
226                         temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
227                         e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
228
229                         /* Update originTimestamp field of Sync packet
230                          * - 48 bits seconds field
231                          * - 32 bits nanseconds field
232                          */
233                         data = skb_mac_header(skb);
234                         *(__be16 *)(data + offset2) =
235                                 htons((sec >> 32) & 0xffff);
236                         *(__be32 *)(data + offset2 + 2) =
237                                 htonl(sec & 0xffffffff);
238                         *(__be32 *)(data + offset2 + 6) = htonl(nsec);
239
240                         /* Configure single-step register */
241                         val = ENETC_PM0_SINGLE_STEP_EN;
242                         val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
243                         if (udp)
244                                 val |= ENETC_PM0_SINGLE_STEP_CH;
245
246                         enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val);
247                         enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val);
248                 } else if (do_twostep_tstamp) {
249                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
250                         e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
251                 }
252
253                 temp_bd.ext.e_flags = e_flags;
254                 count++;
255         }
256
257         frag = &skb_shinfo(skb)->frags[0];
258         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
259                 len = skb_frag_size(frag);
260                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
261                                        DMA_TO_DEVICE);
262                 if (dma_mapping_error(tx_ring->dev, dma))
263                         goto dma_err;
264
265                 *txbd = temp_bd;
266                 enetc_clear_tx_bd(&temp_bd);
267
268                 flags = 0;
269                 tx_swbd++;
270                 txbd++;
271                 i++;
272                 if (unlikely(i == tx_ring->bd_count)) {
273                         i = 0;
274                         tx_swbd = tx_ring->tx_swbd;
275                         txbd = ENETC_TXBD(*tx_ring, 0);
276                 }
277                 prefetchw(txbd);
278
279                 temp_bd.addr = cpu_to_le64(dma);
280                 temp_bd.buf_len = cpu_to_le16(len);
281
282                 tx_swbd->dma = dma;
283                 tx_swbd->len = len;
284                 tx_swbd->is_dma_page = 1;
285                 tx_swbd->dir = DMA_TO_DEVICE;
286                 count++;
287         }
288
289         /* last BD needs 'F' bit set */
290         flags |= ENETC_TXBD_FLAGS_F;
291         temp_bd.flags = flags;
292         *txbd = temp_bd;
293
294         tx_ring->tx_swbd[i].is_eof = true;
295         tx_ring->tx_swbd[i].skb = skb;
296
297         enetc_bdr_idx_inc(tx_ring, &i);
298         tx_ring->next_to_use = i;
299
300         skb_tx_timestamp(skb);
301
302         enetc_update_tx_ring_tail(tx_ring);
303
304         return count;
305
306 dma_err:
307         dev_err(tx_ring->dev, "DMA map error");
308
309         do {
310                 tx_swbd = &tx_ring->tx_swbd[i];
311                 enetc_free_tx_frame(tx_ring, tx_swbd);
312                 if (i == 0)
313                         i = tx_ring->bd_count;
314                 i--;
315         } while (count--);
316
317         return 0;
318 }
319
320 static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
321                                  struct enetc_tx_swbd *tx_swbd,
322                                  union enetc_tx_bd *txbd, int *i, int hdr_len,
323                                  int data_len)
324 {
325         union enetc_tx_bd txbd_tmp;
326         u8 flags = 0, e_flags = 0;
327         dma_addr_t addr;
328
329         enetc_clear_tx_bd(&txbd_tmp);
330         addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
331
332         if (skb_vlan_tag_present(skb))
333                 flags |= ENETC_TXBD_FLAGS_EX;
334
335         txbd_tmp.addr = cpu_to_le64(addr);
336         txbd_tmp.buf_len = cpu_to_le16(hdr_len);
337
338         /* first BD needs frm_len and offload flags set */
339         txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
340         txbd_tmp.flags = flags;
341
342         /* For the TSO header we do not set the dma address since we do not
343          * want it unmapped when we do cleanup. We still set len so that we
344          * count the bytes sent.
345          */
346         tx_swbd->len = hdr_len;
347         tx_swbd->do_twostep_tstamp = false;
348         tx_swbd->check_wb = false;
349
350         /* Actually write the header in the BD */
351         *txbd = txbd_tmp;
352
353         /* Add extension BD for VLAN */
354         if (flags & ENETC_TXBD_FLAGS_EX) {
355                 /* Get the next BD */
356                 enetc_bdr_idx_inc(tx_ring, i);
357                 txbd = ENETC_TXBD(*tx_ring, *i);
358                 tx_swbd = &tx_ring->tx_swbd[*i];
359                 prefetchw(txbd);
360
361                 /* Setup the VLAN fields */
362                 enetc_clear_tx_bd(&txbd_tmp);
363                 txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
364                 txbd_tmp.ext.tpid = 0; /* < C-TAG */
365                 e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
366
367                 /* Write the BD */
368                 txbd_tmp.ext.e_flags = e_flags;
369                 *txbd = txbd_tmp;
370         }
371 }
372
373 static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
374                                  struct enetc_tx_swbd *tx_swbd,
375                                  union enetc_tx_bd *txbd, char *data,
376                                  int size, bool last_bd)
377 {
378         union enetc_tx_bd txbd_tmp;
379         dma_addr_t addr;
380         u8 flags = 0;
381
382         enetc_clear_tx_bd(&txbd_tmp);
383
384         addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
385         if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
386                 netdev_err(tx_ring->ndev, "DMA map error\n");
387                 return -ENOMEM;
388         }
389
390         if (last_bd) {
391                 flags |= ENETC_TXBD_FLAGS_F;
392                 tx_swbd->is_eof = 1;
393         }
394
395         txbd_tmp.addr = cpu_to_le64(addr);
396         txbd_tmp.buf_len = cpu_to_le16(size);
397         txbd_tmp.flags = flags;
398
399         tx_swbd->dma = addr;
400         tx_swbd->len = size;
401         tx_swbd->dir = DMA_TO_DEVICE;
402
403         *txbd = txbd_tmp;
404
405         return 0;
406 }
407
408 static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
409                                  char *hdr, int hdr_len, int *l4_hdr_len)
410 {
411         char *l4_hdr = hdr + skb_transport_offset(skb);
412         int mac_hdr_len = skb_network_offset(skb);
413
414         if (tso->tlen != sizeof(struct udphdr)) {
415                 struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
416
417                 tcph->check = 0;
418         } else {
419                 struct udphdr *udph = (struct udphdr *)(l4_hdr);
420
421                 udph->check = 0;
422         }
423
424         /* Compute the IP checksum. This is necessary since tso_build_hdr()
425          * already incremented the IP ID field.
426          */
427         if (!tso->ipv6) {
428                 struct iphdr *iph = (void *)(hdr + mac_hdr_len);
429
430                 iph->check = 0;
431                 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
432         }
433
434         /* Compute the checksum over the L4 header. */
435         *l4_hdr_len = hdr_len - skb_transport_offset(skb);
436         return csum_partial(l4_hdr, *l4_hdr_len, 0);
437 }
438
439 static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
440                                     struct sk_buff *skb, char *hdr, int len,
441                                     __wsum sum)
442 {
443         char *l4_hdr = hdr + skb_transport_offset(skb);
444         __sum16 csum_final;
445
446         /* Complete the L4 checksum by appending the pseudo-header to the
447          * already computed checksum.
448          */
449         if (!tso->ipv6)
450                 csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
451                                                ip_hdr(skb)->daddr,
452                                                len, ip_hdr(skb)->protocol, sum);
453         else
454                 csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
455                                              &ipv6_hdr(skb)->daddr,
456                                              len, ipv6_hdr(skb)->nexthdr, sum);
457
458         if (tso->tlen != sizeof(struct udphdr)) {
459                 struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
460
461                 tcph->check = csum_final;
462         } else {
463                 struct udphdr *udph = (struct udphdr *)(l4_hdr);
464
465                 udph->check = csum_final;
466         }
467 }
468
469 static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
470 {
471         int hdr_len, total_len, data_len;
472         struct enetc_tx_swbd *tx_swbd;
473         union enetc_tx_bd *txbd;
474         struct tso_t tso;
475         __wsum csum, csum2;
476         int count = 0, pos;
477         int err, i, bd_data_num;
478
479         /* Initialize the TSO handler, and prepare the first payload */
480         hdr_len = tso_start(skb, &tso);
481         total_len = skb->len - hdr_len;
482         i = tx_ring->next_to_use;
483
484         while (total_len > 0) {
485                 char *hdr;
486
487                 /* Get the BD */
488                 txbd = ENETC_TXBD(*tx_ring, i);
489                 tx_swbd = &tx_ring->tx_swbd[i];
490                 prefetchw(txbd);
491
492                 /* Determine the length of this packet */
493                 data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
494                 total_len -= data_len;
495
496                 /* prepare packet headers: MAC + IP + TCP */
497                 hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
498                 tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
499
500                 /* compute the csum over the L4 header */
501                 csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
502                 enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
503                 bd_data_num = 0;
504                 count++;
505
506                 while (data_len > 0) {
507                         int size;
508
509                         size = min_t(int, tso.size, data_len);
510
511                         /* Advance the index in the BDR */
512                         enetc_bdr_idx_inc(tx_ring, &i);
513                         txbd = ENETC_TXBD(*tx_ring, i);
514                         tx_swbd = &tx_ring->tx_swbd[i];
515                         prefetchw(txbd);
516
517                         /* Compute the checksum over this segment of data and
518                          * add it to the csum already computed (over the L4
519                          * header and possible other data segments).
520                          */
521                         csum2 = csum_partial(tso.data, size, 0);
522                         csum = csum_block_add(csum, csum2, pos);
523                         pos += size;
524
525                         err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
526                                                     tso.data, size,
527                                                     size == data_len);
528                         if (err)
529                                 goto err_map_data;
530
531                         data_len -= size;
532                         count++;
533                         bd_data_num++;
534                         tso_build_data(skb, &tso, size);
535
536                         if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
537                                 goto err_chained_bd;
538                 }
539
540                 enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
541
542                 if (total_len == 0)
543                         tx_swbd->skb = skb;
544
545                 /* Go to the next BD */
546                 enetc_bdr_idx_inc(tx_ring, &i);
547         }
548
549         tx_ring->next_to_use = i;
550         enetc_update_tx_ring_tail(tx_ring);
551
552         return count;
553
554 err_map_data:
555         dev_err(tx_ring->dev, "DMA map error");
556
557 err_chained_bd:
558         do {
559                 tx_swbd = &tx_ring->tx_swbd[i];
560                 enetc_free_tx_frame(tx_ring, tx_swbd);
561                 if (i == 0)
562                         i = tx_ring->bd_count;
563                 i--;
564         } while (count--);
565
566         return 0;
567 }
568
569 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
570                                     struct net_device *ndev)
571 {
572         struct enetc_ndev_priv *priv = netdev_priv(ndev);
573         struct enetc_bdr *tx_ring;
574         int count, err;
575
576         /* Queue one-step Sync packet if already locked */
577         if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
578                 if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
579                                           &priv->flags)) {
580                         skb_queue_tail(&priv->tx_skbs, skb);
581                         return NETDEV_TX_OK;
582                 }
583         }
584
585         tx_ring = priv->tx_ring[skb->queue_mapping];
586
587         if (skb_is_gso(skb)) {
588                 if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
589                         netif_stop_subqueue(ndev, tx_ring->index);
590                         return NETDEV_TX_BUSY;
591                 }
592
593                 enetc_lock_mdio();
594                 count = enetc_map_tx_tso_buffs(tx_ring, skb);
595                 enetc_unlock_mdio();
596         } else {
597                 if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
598                         if (unlikely(skb_linearize(skb)))
599                                 goto drop_packet_err;
600
601                 count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
602                 if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
603                         netif_stop_subqueue(ndev, tx_ring->index);
604                         return NETDEV_TX_BUSY;
605                 }
606
607                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
608                         err = skb_checksum_help(skb);
609                         if (err)
610                                 goto drop_packet_err;
611                 }
612                 enetc_lock_mdio();
613                 count = enetc_map_tx_buffs(tx_ring, skb);
614                 enetc_unlock_mdio();
615         }
616
617         if (unlikely(!count))
618                 goto drop_packet_err;
619
620         if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
621                 netif_stop_subqueue(ndev, tx_ring->index);
622
623         return NETDEV_TX_OK;
624
625 drop_packet_err:
626         dev_kfree_skb_any(skb);
627         return NETDEV_TX_OK;
628 }
629
630 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
631 {
632         struct enetc_ndev_priv *priv = netdev_priv(ndev);
633         u8 udp, msgtype, twostep;
634         u16 offset1, offset2;
635
636         /* Mark tx timestamp type on skb->cb[0] if requires */
637         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
638             (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
639                 skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
640         } else {
641                 skb->cb[0] = 0;
642         }
643
644         /* Fall back to two-step timestamp if not one-step Sync packet */
645         if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
646                 if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
647                                     &offset1, &offset2) ||
648                     msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
649                         skb->cb[0] = ENETC_F_TX_TSTAMP;
650         }
651
652         return enetc_start_xmit(skb, ndev);
653 }
654
655 static irqreturn_t enetc_msix(int irq, void *data)
656 {
657         struct enetc_int_vector *v = data;
658         int i;
659
660         enetc_lock_mdio();
661
662         /* disable interrupts */
663         enetc_wr_reg_hot(v->rbier, 0);
664         enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
665
666         for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
667                 enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
668
669         enetc_unlock_mdio();
670
671         napi_schedule(&v->napi);
672
673         return IRQ_HANDLED;
674 }
675
676 static void enetc_rx_dim_work(struct work_struct *w)
677 {
678         struct dim *dim = container_of(w, struct dim, work);
679         struct dim_cq_moder moder =
680                 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
681         struct enetc_int_vector *v =
682                 container_of(dim, struct enetc_int_vector, rx_dim);
683
684         v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
685         dim->state = DIM_START_MEASURE;
686 }
687
688 static void enetc_rx_net_dim(struct enetc_int_vector *v)
689 {
690         struct dim_sample dim_sample = {};
691
692         v->comp_cnt++;
693
694         if (!v->rx_napi_work)
695                 return;
696
697         dim_update_sample(v->comp_cnt,
698                           v->rx_ring.stats.packets,
699                           v->rx_ring.stats.bytes,
700                           &dim_sample);
701         net_dim(&v->rx_dim, dim_sample);
702 }
703
704 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
705 {
706         int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
707
708         return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
709 }
710
711 static bool enetc_page_reusable(struct page *page)
712 {
713         return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
714 }
715
716 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
717                              struct enetc_rx_swbd *old)
718 {
719         struct enetc_rx_swbd *new;
720
721         new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
722
723         /* next buf that may reuse a page */
724         enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
725
726         /* copy page reference */
727         *new = *old;
728 }
729
730 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
731                                 u64 *tstamp)
732 {
733         u32 lo, hi, tstamp_lo;
734
735         lo = enetc_rd_hot(hw, ENETC_SICTR0);
736         hi = enetc_rd_hot(hw, ENETC_SICTR1);
737         tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
738         if (lo <= tstamp_lo)
739                 hi -= 1;
740         *tstamp = (u64)hi << 32 | tstamp_lo;
741 }
742
743 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
744 {
745         struct skb_shared_hwtstamps shhwtstamps;
746
747         if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
748                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
749                 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
750                 skb_txtime_consumed(skb);
751                 skb_tstamp_tx(skb, &shhwtstamps);
752         }
753 }
754
755 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
756                                       struct enetc_tx_swbd *tx_swbd)
757 {
758         struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
759         struct enetc_rx_swbd rx_swbd = {
760                 .dma = tx_swbd->dma,
761                 .page = tx_swbd->page,
762                 .page_offset = tx_swbd->page_offset,
763                 .dir = tx_swbd->dir,
764                 .len = tx_swbd->len,
765         };
766         struct enetc_bdr *rx_ring;
767
768         rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
769
770         if (likely(enetc_swbd_unused(rx_ring))) {
771                 enetc_reuse_page(rx_ring, &rx_swbd);
772
773                 /* sync for use by the device */
774                 dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
775                                                  rx_swbd.page_offset,
776                                                  ENETC_RXB_DMA_SIZE_XDP,
777                                                  rx_swbd.dir);
778
779                 rx_ring->stats.recycles++;
780         } else {
781                 /* RX ring is already full, we need to unmap and free the
782                  * page, since there's nothing useful we can do with it.
783                  */
784                 rx_ring->stats.recycle_failures++;
785
786                 dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
787                                rx_swbd.dir);
788                 __free_page(rx_swbd.page);
789         }
790
791         rx_ring->xdp.xdp_tx_in_flight--;
792 }
793
794 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
795 {
796         int tx_frm_cnt = 0, tx_byte_cnt = 0, tx_win_drop = 0;
797         struct net_device *ndev = tx_ring->ndev;
798         struct enetc_ndev_priv *priv = netdev_priv(ndev);
799         struct enetc_tx_swbd *tx_swbd;
800         int i, bds_to_clean;
801         bool do_twostep_tstamp;
802         u64 tstamp = 0;
803
804         i = tx_ring->next_to_clean;
805         tx_swbd = &tx_ring->tx_swbd[i];
806
807         bds_to_clean = enetc_bd_ready_count(tx_ring, i);
808
809         do_twostep_tstamp = false;
810
811         while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
812                 struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
813                 struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
814                 bool is_eof = tx_swbd->is_eof;
815
816                 if (unlikely(tx_swbd->check_wb)) {
817                         union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
818
819                         if (txbd->flags & ENETC_TXBD_FLAGS_W &&
820                             tx_swbd->do_twostep_tstamp) {
821                                 enetc_get_tx_tstamp(&priv->si->hw, txbd,
822                                                     &tstamp);
823                                 do_twostep_tstamp = true;
824                         }
825
826                         if (tx_swbd->qbv_en &&
827                             txbd->wb.status & ENETC_TXBD_STATS_WIN)
828                                 tx_win_drop++;
829                 }
830
831                 if (tx_swbd->is_xdp_tx)
832                         enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
833                 else if (likely(tx_swbd->dma))
834                         enetc_unmap_tx_buff(tx_ring, tx_swbd);
835
836                 if (xdp_frame) {
837                         xdp_return_frame(xdp_frame);
838                 } else if (skb) {
839                         if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
840                                 /* Start work to release lock for next one-step
841                                  * timestamping packet. And send one skb in
842                                  * tx_skbs queue if has.
843                                  */
844                                 schedule_work(&priv->tx_onestep_tstamp);
845                         } else if (unlikely(do_twostep_tstamp)) {
846                                 enetc_tstamp_tx(skb, tstamp);
847                                 do_twostep_tstamp = false;
848                         }
849                         napi_consume_skb(skb, napi_budget);
850                 }
851
852                 tx_byte_cnt += tx_swbd->len;
853                 /* Scrub the swbd here so we don't have to do that
854                  * when we reuse it during xmit
855                  */
856                 memset(tx_swbd, 0, sizeof(*tx_swbd));
857
858                 bds_to_clean--;
859                 tx_swbd++;
860                 i++;
861                 if (unlikely(i == tx_ring->bd_count)) {
862                         i = 0;
863                         tx_swbd = tx_ring->tx_swbd;
864                 }
865
866                 /* BD iteration loop end */
867                 if (is_eof) {
868                         tx_frm_cnt++;
869                         /* re-arm interrupt source */
870                         enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
871                                          BIT(16 + tx_ring->index));
872                 }
873
874                 if (unlikely(!bds_to_clean))
875                         bds_to_clean = enetc_bd_ready_count(tx_ring, i);
876         }
877
878         tx_ring->next_to_clean = i;
879         tx_ring->stats.packets += tx_frm_cnt;
880         tx_ring->stats.bytes += tx_byte_cnt;
881         tx_ring->stats.win_drop += tx_win_drop;
882
883         if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
884                      __netif_subqueue_stopped(ndev, tx_ring->index) &&
885                      (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
886                 netif_wake_subqueue(ndev, tx_ring->index);
887         }
888
889         return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
890 }
891
892 static bool enetc_new_page(struct enetc_bdr *rx_ring,
893                            struct enetc_rx_swbd *rx_swbd)
894 {
895         bool xdp = !!(rx_ring->xdp.prog);
896         struct page *page;
897         dma_addr_t addr;
898
899         page = dev_alloc_page();
900         if (unlikely(!page))
901                 return false;
902
903         /* For XDP_TX, we forgo dma_unmap -> dma_map */
904         rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
905
906         addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
907         if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
908                 __free_page(page);
909
910                 return false;
911         }
912
913         rx_swbd->dma = addr;
914         rx_swbd->page = page;
915         rx_swbd->page_offset = rx_ring->buffer_offset;
916
917         return true;
918 }
919
920 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
921 {
922         struct enetc_rx_swbd *rx_swbd;
923         union enetc_rx_bd *rxbd;
924         int i, j;
925
926         i = rx_ring->next_to_use;
927         rx_swbd = &rx_ring->rx_swbd[i];
928         rxbd = enetc_rxbd(rx_ring, i);
929
930         for (j = 0; j < buff_cnt; j++) {
931                 /* try reuse page */
932                 if (unlikely(!rx_swbd->page)) {
933                         if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
934                                 rx_ring->stats.rx_alloc_errs++;
935                                 break;
936                         }
937                 }
938
939                 /* update RxBD */
940                 rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
941                                            rx_swbd->page_offset);
942                 /* clear 'R" as well */
943                 rxbd->r.lstatus = 0;
944
945                 enetc_rxbd_next(rx_ring, &rxbd, &i);
946                 rx_swbd = &rx_ring->rx_swbd[i];
947         }
948
949         if (likely(j)) {
950                 rx_ring->next_to_alloc = i; /* keep track from page reuse */
951                 rx_ring->next_to_use = i;
952
953                 /* update ENETC's consumer index */
954                 enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
955         }
956
957         return j;
958 }
959
960 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
961 static void enetc_get_rx_tstamp(struct net_device *ndev,
962                                 union enetc_rx_bd *rxbd,
963                                 struct sk_buff *skb)
964 {
965         struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
966         struct enetc_ndev_priv *priv = netdev_priv(ndev);
967         struct enetc_hw *hw = &priv->si->hw;
968         u32 lo, hi, tstamp_lo;
969         u64 tstamp;
970
971         if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
972                 lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
973                 hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
974                 rxbd = enetc_rxbd_ext(rxbd);
975                 tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
976                 if (lo <= tstamp_lo)
977                         hi -= 1;
978
979                 tstamp = (u64)hi << 32 | tstamp_lo;
980                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
981                 shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
982         }
983 }
984 #endif
985
986 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
987                                union enetc_rx_bd *rxbd, struct sk_buff *skb)
988 {
989         struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
990
991         /* TODO: hashing */
992         if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
993                 u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
994
995                 skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
996                 skb->ip_summed = CHECKSUM_COMPLETE;
997         }
998
999         if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
1000                 __be16 tpid = 0;
1001
1002                 switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
1003                 case 0:
1004                         tpid = htons(ETH_P_8021Q);
1005                         break;
1006                 case 1:
1007                         tpid = htons(ETH_P_8021AD);
1008                         break;
1009                 case 2:
1010                         tpid = htons(enetc_port_rd(&priv->si->hw,
1011                                                    ENETC_PCVLANR1));
1012                         break;
1013                 case 3:
1014                         tpid = htons(enetc_port_rd(&priv->si->hw,
1015                                                    ENETC_PCVLANR2));
1016                         break;
1017                 default:
1018                         break;
1019                 }
1020
1021                 __vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
1022         }
1023
1024 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1025         if (priv->active_offloads & ENETC_F_RX_TSTAMP)
1026                 enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
1027 #endif
1028 }
1029
1030 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
1031  * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
1032  * mapped buffers.
1033  */
1034 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
1035                                                int i, u16 size)
1036 {
1037         struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1038
1039         dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
1040                                       rx_swbd->page_offset,
1041                                       size, rx_swbd->dir);
1042         return rx_swbd;
1043 }
1044
1045 /* Reuse the current page without performing half-page buffer flipping */
1046 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
1047                               struct enetc_rx_swbd *rx_swbd)
1048 {
1049         size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
1050
1051         enetc_reuse_page(rx_ring, rx_swbd);
1052
1053         dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
1054                                          rx_swbd->page_offset,
1055                                          buffer_size, rx_swbd->dir);
1056
1057         rx_swbd->page = NULL;
1058 }
1059
1060 /* Reuse the current page by performing half-page buffer flipping */
1061 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
1062                                struct enetc_rx_swbd *rx_swbd)
1063 {
1064         if (likely(enetc_page_reusable(rx_swbd->page))) {
1065                 rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
1066                 page_ref_inc(rx_swbd->page);
1067
1068                 enetc_put_rx_buff(rx_ring, rx_swbd);
1069         } else {
1070                 dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1071                                rx_swbd->dir);
1072                 rx_swbd->page = NULL;
1073         }
1074 }
1075
1076 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
1077                                                 int i, u16 size)
1078 {
1079         struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1080         struct sk_buff *skb;
1081         void *ba;
1082
1083         ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
1084         skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
1085         if (unlikely(!skb)) {
1086                 rx_ring->stats.rx_alloc_errs++;
1087                 return NULL;
1088         }
1089
1090         skb_reserve(skb, rx_ring->buffer_offset);
1091         __skb_put(skb, size);
1092
1093         enetc_flip_rx_buff(rx_ring, rx_swbd);
1094
1095         return skb;
1096 }
1097
1098 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
1099                                      u16 size, struct sk_buff *skb)
1100 {
1101         struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1102
1103         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
1104                         rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
1105
1106         enetc_flip_rx_buff(rx_ring, rx_swbd);
1107 }
1108
1109 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
1110                                               u32 bd_status,
1111                                               union enetc_rx_bd **rxbd, int *i)
1112 {
1113         if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
1114                 return false;
1115
1116         enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1117         enetc_rxbd_next(rx_ring, rxbd, i);
1118
1119         while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1120                 dma_rmb();
1121                 bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1122
1123                 enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1124                 enetc_rxbd_next(rx_ring, rxbd, i);
1125         }
1126
1127         rx_ring->ndev->stats.rx_dropped++;
1128         rx_ring->ndev->stats.rx_errors++;
1129
1130         return true;
1131 }
1132
1133 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
1134                                        u32 bd_status, union enetc_rx_bd **rxbd,
1135                                        int *i, int *cleaned_cnt, int buffer_size)
1136 {
1137         struct sk_buff *skb;
1138         u16 size;
1139
1140         size = le16_to_cpu((*rxbd)->r.buf_len);
1141         skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
1142         if (!skb)
1143                 return NULL;
1144
1145         enetc_get_offloads(rx_ring, *rxbd, skb);
1146
1147         (*cleaned_cnt)++;
1148
1149         enetc_rxbd_next(rx_ring, rxbd, i);
1150
1151         /* not last BD in frame? */
1152         while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1153                 bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1154                 size = buffer_size;
1155
1156                 if (bd_status & ENETC_RXBD_LSTATUS_F) {
1157                         dma_rmb();
1158                         size = le16_to_cpu((*rxbd)->r.buf_len);
1159                 }
1160
1161                 enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
1162
1163                 (*cleaned_cnt)++;
1164
1165                 enetc_rxbd_next(rx_ring, rxbd, i);
1166         }
1167
1168         skb_record_rx_queue(skb, rx_ring->index);
1169         skb->protocol = eth_type_trans(skb, rx_ring->ndev);
1170
1171         return skb;
1172 }
1173
1174 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
1175
1176 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
1177                                struct napi_struct *napi, int work_limit)
1178 {
1179         int rx_frm_cnt = 0, rx_byte_cnt = 0;
1180         int cleaned_cnt, i;
1181
1182         cleaned_cnt = enetc_bd_unused(rx_ring);
1183         /* next descriptor to process */
1184         i = rx_ring->next_to_clean;
1185
1186         while (likely(rx_frm_cnt < work_limit)) {
1187                 union enetc_rx_bd *rxbd;
1188                 struct sk_buff *skb;
1189                 u32 bd_status;
1190
1191                 if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
1192                         cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
1193                                                             cleaned_cnt);
1194
1195                 rxbd = enetc_rxbd(rx_ring, i);
1196                 bd_status = le32_to_cpu(rxbd->r.lstatus);
1197                 if (!bd_status)
1198                         break;
1199
1200                 enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1201                 dma_rmb(); /* for reading other rxbd fields */
1202
1203                 if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1204                                                       &rxbd, &i))
1205                         break;
1206
1207                 skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
1208                                       &cleaned_cnt, ENETC_RXB_DMA_SIZE);
1209                 if (!skb)
1210                         break;
1211
1212                 rx_byte_cnt += skb->len;
1213                 rx_frm_cnt++;
1214
1215                 napi_gro_receive(napi, skb);
1216         }
1217
1218         rx_ring->next_to_clean = i;
1219
1220         rx_ring->stats.packets += rx_frm_cnt;
1221         rx_ring->stats.bytes += rx_byte_cnt;
1222
1223         return rx_frm_cnt;
1224 }
1225
1226 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
1227                                   struct enetc_tx_swbd *tx_swbd,
1228                                   int frm_len)
1229 {
1230         union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1231
1232         prefetchw(txbd);
1233
1234         enetc_clear_tx_bd(txbd);
1235         txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
1236         txbd->buf_len = cpu_to_le16(tx_swbd->len);
1237         txbd->frm_len = cpu_to_le16(frm_len);
1238
1239         memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
1240 }
1241
1242 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
1243  * descriptors.
1244  */
1245 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
1246                          struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
1247 {
1248         struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
1249         int i, k, frm_len = tmp_tx_swbd->len;
1250
1251         if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
1252                 return false;
1253
1254         while (unlikely(!tmp_tx_swbd->is_eof)) {
1255                 tmp_tx_swbd++;
1256                 frm_len += tmp_tx_swbd->len;
1257         }
1258
1259         i = tx_ring->next_to_use;
1260
1261         for (k = 0; k < num_tx_swbd; k++) {
1262                 struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
1263
1264                 enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
1265
1266                 /* last BD needs 'F' bit set */
1267                 if (xdp_tx_swbd->is_eof) {
1268                         union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1269
1270                         txbd->flags = ENETC_TXBD_FLAGS_F;
1271                 }
1272
1273                 enetc_bdr_idx_inc(tx_ring, &i);
1274         }
1275
1276         tx_ring->next_to_use = i;
1277
1278         return true;
1279 }
1280
1281 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
1282                                           struct enetc_tx_swbd *xdp_tx_arr,
1283                                           struct xdp_frame *xdp_frame)
1284 {
1285         struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
1286         struct skb_shared_info *shinfo;
1287         void *data = xdp_frame->data;
1288         int len = xdp_frame->len;
1289         skb_frag_t *frag;
1290         dma_addr_t dma;
1291         unsigned int f;
1292         int n = 0;
1293
1294         dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1295         if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1296                 netdev_err(tx_ring->ndev, "DMA map error\n");
1297                 return -1;
1298         }
1299
1300         xdp_tx_swbd->dma = dma;
1301         xdp_tx_swbd->dir = DMA_TO_DEVICE;
1302         xdp_tx_swbd->len = len;
1303         xdp_tx_swbd->is_xdp_redirect = true;
1304         xdp_tx_swbd->is_eof = false;
1305         xdp_tx_swbd->xdp_frame = NULL;
1306
1307         n++;
1308         xdp_tx_swbd = &xdp_tx_arr[n];
1309
1310         shinfo = xdp_get_shared_info_from_frame(xdp_frame);
1311
1312         for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
1313              f++, frag++) {
1314                 data = skb_frag_address(frag);
1315                 len = skb_frag_size(frag);
1316
1317                 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1318                 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1319                         /* Undo the DMA mapping for all fragments */
1320                         while (--n >= 0)
1321                                 enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
1322
1323                         netdev_err(tx_ring->ndev, "DMA map error\n");
1324                         return -1;
1325                 }
1326
1327                 xdp_tx_swbd->dma = dma;
1328                 xdp_tx_swbd->dir = DMA_TO_DEVICE;
1329                 xdp_tx_swbd->len = len;
1330                 xdp_tx_swbd->is_xdp_redirect = true;
1331                 xdp_tx_swbd->is_eof = false;
1332                 xdp_tx_swbd->xdp_frame = NULL;
1333
1334                 n++;
1335                 xdp_tx_swbd = &xdp_tx_arr[n];
1336         }
1337
1338         xdp_tx_arr[n - 1].is_eof = true;
1339         xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
1340
1341         return n;
1342 }
1343
1344 int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
1345                    struct xdp_frame **frames, u32 flags)
1346 {
1347         struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
1348         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1349         struct enetc_bdr *tx_ring;
1350         int xdp_tx_bd_cnt, i, k;
1351         int xdp_tx_frm_cnt = 0;
1352
1353         enetc_lock_mdio();
1354
1355         tx_ring = priv->xdp_tx_ring[smp_processor_id()];
1356
1357         prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
1358
1359         for (k = 0; k < num_frames; k++) {
1360                 xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
1361                                                                xdp_redirect_arr,
1362                                                                frames[k]);
1363                 if (unlikely(xdp_tx_bd_cnt < 0))
1364                         break;
1365
1366                 if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
1367                                            xdp_tx_bd_cnt))) {
1368                         for (i = 0; i < xdp_tx_bd_cnt; i++)
1369                                 enetc_unmap_tx_buff(tx_ring,
1370                                                     &xdp_redirect_arr[i]);
1371                         tx_ring->stats.xdp_tx_drops++;
1372                         break;
1373                 }
1374
1375                 xdp_tx_frm_cnt++;
1376         }
1377
1378         if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
1379                 enetc_update_tx_ring_tail(tx_ring);
1380
1381         tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
1382
1383         enetc_unlock_mdio();
1384
1385         return xdp_tx_frm_cnt;
1386 }
1387
1388 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1389                                      struct xdp_buff *xdp_buff, u16 size)
1390 {
1391         struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1392         void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
1393         struct skb_shared_info *shinfo;
1394
1395         /* To be used for XDP_TX */
1396         rx_swbd->len = size;
1397
1398         xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
1399                          rx_ring->buffer_offset, size, false);
1400
1401         shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1402         shinfo->nr_frags = 0;
1403 }
1404
1405 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1406                                      u16 size, struct xdp_buff *xdp_buff)
1407 {
1408         struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1409         struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1410         skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags];
1411
1412         /* To be used for XDP_TX */
1413         rx_swbd->len = size;
1414
1415         skb_frag_off_set(frag, rx_swbd->page_offset);
1416         skb_frag_size_set(frag, size);
1417         __skb_frag_set_page(frag, rx_swbd->page);
1418
1419         shinfo->nr_frags++;
1420 }
1421
1422 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
1423                                  union enetc_rx_bd **rxbd, int *i,
1424                                  int *cleaned_cnt, struct xdp_buff *xdp_buff)
1425 {
1426         u16 size = le16_to_cpu((*rxbd)->r.buf_len);
1427
1428         xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
1429
1430         enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
1431         (*cleaned_cnt)++;
1432         enetc_rxbd_next(rx_ring, rxbd, i);
1433
1434         /* not last BD in frame? */
1435         while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1436                 bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1437                 size = ENETC_RXB_DMA_SIZE_XDP;
1438
1439                 if (bd_status & ENETC_RXBD_LSTATUS_F) {
1440                         dma_rmb();
1441                         size = le16_to_cpu((*rxbd)->r.buf_len);
1442                 }
1443
1444                 enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
1445                 (*cleaned_cnt)++;
1446                 enetc_rxbd_next(rx_ring, rxbd, i);
1447         }
1448 }
1449
1450 /* Convert RX buffer descriptors to TX buffer descriptors. These will be
1451  * recycled back into the RX ring in enetc_clean_tx_ring.
1452  */
1453 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
1454                                         struct enetc_bdr *rx_ring,
1455                                         int rx_ring_first, int rx_ring_last)
1456 {
1457         int n = 0;
1458
1459         for (; rx_ring_first != rx_ring_last;
1460              n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
1461                 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1462                 struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
1463
1464                 /* No need to dma_map, we already have DMA_BIDIRECTIONAL */
1465                 tx_swbd->dma = rx_swbd->dma;
1466                 tx_swbd->dir = rx_swbd->dir;
1467                 tx_swbd->page = rx_swbd->page;
1468                 tx_swbd->page_offset = rx_swbd->page_offset;
1469                 tx_swbd->len = rx_swbd->len;
1470                 tx_swbd->is_dma_page = true;
1471                 tx_swbd->is_xdp_tx = true;
1472                 tx_swbd->is_eof = false;
1473         }
1474
1475         /* We rely on caller providing an rx_ring_last > rx_ring_first */
1476         xdp_tx_arr[n - 1].is_eof = true;
1477
1478         return n;
1479 }
1480
1481 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
1482                            int rx_ring_last)
1483 {
1484         while (rx_ring_first != rx_ring_last) {
1485                 enetc_put_rx_buff(rx_ring,
1486                                   &rx_ring->rx_swbd[rx_ring_first]);
1487                 enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1488         }
1489         rx_ring->stats.xdp_drops++;
1490 }
1491
1492 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
1493                                    struct napi_struct *napi, int work_limit,
1494                                    struct bpf_prog *prog)
1495 {
1496         int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
1497         struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
1498         struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1499         int rx_frm_cnt = 0, rx_byte_cnt = 0;
1500         struct enetc_bdr *tx_ring;
1501         int cleaned_cnt, i;
1502         u32 xdp_act;
1503
1504         cleaned_cnt = enetc_bd_unused(rx_ring);
1505         /* next descriptor to process */
1506         i = rx_ring->next_to_clean;
1507
1508         while (likely(rx_frm_cnt < work_limit)) {
1509                 union enetc_rx_bd *rxbd, *orig_rxbd;
1510                 int orig_i, orig_cleaned_cnt;
1511                 struct xdp_buff xdp_buff;
1512                 struct sk_buff *skb;
1513                 u32 bd_status;
1514                 int err;
1515
1516                 rxbd = enetc_rxbd(rx_ring, i);
1517                 bd_status = le32_to_cpu(rxbd->r.lstatus);
1518                 if (!bd_status)
1519                         break;
1520
1521                 enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1522                 dma_rmb(); /* for reading other rxbd fields */
1523
1524                 if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1525                                                       &rxbd, &i))
1526                         break;
1527
1528                 orig_rxbd = rxbd;
1529                 orig_cleaned_cnt = cleaned_cnt;
1530                 orig_i = i;
1531
1532                 enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
1533                                      &cleaned_cnt, &xdp_buff);
1534
1535                 xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
1536
1537                 switch (xdp_act) {
1538                 default:
1539                         bpf_warn_invalid_xdp_action(rx_ring->ndev, prog, xdp_act);
1540                         fallthrough;
1541                 case XDP_ABORTED:
1542                         trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
1543                         fallthrough;
1544                 case XDP_DROP:
1545                         enetc_xdp_drop(rx_ring, orig_i, i);
1546                         break;
1547                 case XDP_PASS:
1548                         rxbd = orig_rxbd;
1549                         cleaned_cnt = orig_cleaned_cnt;
1550                         i = orig_i;
1551
1552                         skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
1553                                               &i, &cleaned_cnt,
1554                                               ENETC_RXB_DMA_SIZE_XDP);
1555                         if (unlikely(!skb))
1556                                 goto out;
1557
1558                         napi_gro_receive(napi, skb);
1559                         break;
1560                 case XDP_TX:
1561                         tx_ring = priv->xdp_tx_ring[rx_ring->index];
1562                         xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
1563                                                                      rx_ring,
1564                                                                      orig_i, i);
1565
1566                         if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
1567                                 enetc_xdp_drop(rx_ring, orig_i, i);
1568                                 tx_ring->stats.xdp_tx_drops++;
1569                         } else {
1570                                 tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
1571                                 rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
1572                                 xdp_tx_frm_cnt++;
1573                                 /* The XDP_TX enqueue was successful, so we
1574                                  * need to scrub the RX software BDs because
1575                                  * the ownership of the buffers no longer
1576                                  * belongs to the RX ring, and we must prevent
1577                                  * enetc_refill_rx_ring() from reusing
1578                                  * rx_swbd->page.
1579                                  */
1580                                 while (orig_i != i) {
1581                                         rx_ring->rx_swbd[orig_i].page = NULL;
1582                                         enetc_bdr_idx_inc(rx_ring, &orig_i);
1583                                 }
1584                         }
1585                         break;
1586                 case XDP_REDIRECT:
1587                         /* xdp_return_frame does not support S/G in the sense
1588                          * that it leaks the fragments (__xdp_return should not
1589                          * call page_frag_free only for the initial buffer).
1590                          * Until XDP_REDIRECT gains support for S/G let's keep
1591                          * the code structure in place, but dead. We drop the
1592                          * S/G frames ourselves to avoid memory leaks which
1593                          * would otherwise leave the kernel OOM.
1594                          */
1595                         if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) {
1596                                 enetc_xdp_drop(rx_ring, orig_i, i);
1597                                 rx_ring->stats.xdp_redirect_sg++;
1598                                 break;
1599                         }
1600
1601                         err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
1602                         if (unlikely(err)) {
1603                                 enetc_xdp_drop(rx_ring, orig_i, i);
1604                                 rx_ring->stats.xdp_redirect_failures++;
1605                         } else {
1606                                 while (orig_i != i) {
1607                                         enetc_flip_rx_buff(rx_ring,
1608                                                            &rx_ring->rx_swbd[orig_i]);
1609                                         enetc_bdr_idx_inc(rx_ring, &orig_i);
1610                                 }
1611                                 xdp_redirect_frm_cnt++;
1612                                 rx_ring->stats.xdp_redirect++;
1613                         }
1614                 }
1615
1616                 rx_frm_cnt++;
1617         }
1618
1619 out:
1620         rx_ring->next_to_clean = i;
1621
1622         rx_ring->stats.packets += rx_frm_cnt;
1623         rx_ring->stats.bytes += rx_byte_cnt;
1624
1625         if (xdp_redirect_frm_cnt)
1626                 xdp_do_flush_map();
1627
1628         if (xdp_tx_frm_cnt)
1629                 enetc_update_tx_ring_tail(tx_ring);
1630
1631         if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
1632                 enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
1633                                      rx_ring->xdp.xdp_tx_in_flight);
1634
1635         return rx_frm_cnt;
1636 }
1637
1638 static int enetc_poll(struct napi_struct *napi, int budget)
1639 {
1640         struct enetc_int_vector
1641                 *v = container_of(napi, struct enetc_int_vector, napi);
1642         struct enetc_bdr *rx_ring = &v->rx_ring;
1643         struct bpf_prog *prog;
1644         bool complete = true;
1645         int work_done;
1646         int i;
1647
1648         enetc_lock_mdio();
1649
1650         for (i = 0; i < v->count_tx_rings; i++)
1651                 if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
1652                         complete = false;
1653
1654         prog = rx_ring->xdp.prog;
1655         if (prog)
1656                 work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
1657         else
1658                 work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
1659         if (work_done == budget)
1660                 complete = false;
1661         if (work_done)
1662                 v->rx_napi_work = true;
1663
1664         if (!complete) {
1665                 enetc_unlock_mdio();
1666                 return budget;
1667         }
1668
1669         napi_complete_done(napi, work_done);
1670
1671         if (likely(v->rx_dim_en))
1672                 enetc_rx_net_dim(v);
1673
1674         v->rx_napi_work = false;
1675
1676         /* enable interrupts */
1677         enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
1678
1679         for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
1680                 enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
1681                                  ENETC_TBIER_TXTIE);
1682
1683         enetc_unlock_mdio();
1684
1685         return work_done;
1686 }
1687
1688 /* Probing and Init */
1689 #define ENETC_MAX_RFS_SIZE 64
1690 void enetc_get_si_caps(struct enetc_si *si)
1691 {
1692         struct enetc_hw *hw = &si->hw;
1693         u32 val;
1694
1695         /* find out how many of various resources we have to work with */
1696         val = enetc_rd(hw, ENETC_SICAPR0);
1697         si->num_rx_rings = (val >> 16) & 0xff;
1698         si->num_tx_rings = val & 0xff;
1699
1700         val = enetc_rd(hw, ENETC_SIRFSCAPR);
1701         si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
1702         si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
1703
1704         si->num_rss = 0;
1705         val = enetc_rd(hw, ENETC_SIPCAPR0);
1706         if (val & ENETC_SIPCAPR0_RSS) {
1707                 u32 rss;
1708
1709                 rss = enetc_rd(hw, ENETC_SIRSSCAPR);
1710                 si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
1711         }
1712
1713         if (val & ENETC_SIPCAPR0_QBV)
1714                 si->hw_features |= ENETC_SI_F_QBV;
1715
1716         if (val & ENETC_SIPCAPR0_PSFP)
1717                 si->hw_features |= ENETC_SI_F_PSFP;
1718 }
1719
1720 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
1721 {
1722         r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
1723                                         &r->bd_dma_base, GFP_KERNEL);
1724         if (!r->bd_base)
1725                 return -ENOMEM;
1726
1727         /* h/w requires 128B alignment */
1728         if (!IS_ALIGNED(r->bd_dma_base, 128)) {
1729                 dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
1730                                   r->bd_dma_base);
1731                 return -EINVAL;
1732         }
1733
1734         return 0;
1735 }
1736
1737 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
1738 {
1739         int err;
1740
1741         txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
1742         if (!txr->tx_swbd)
1743                 return -ENOMEM;
1744
1745         err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
1746         if (err)
1747                 goto err_alloc_bdr;
1748
1749         txr->tso_headers = dma_alloc_coherent(txr->dev,
1750                                               txr->bd_count * TSO_HEADER_SIZE,
1751                                               &txr->tso_headers_dma,
1752                                               GFP_KERNEL);
1753         if (!txr->tso_headers) {
1754                 err = -ENOMEM;
1755                 goto err_alloc_tso;
1756         }
1757
1758         txr->next_to_clean = 0;
1759         txr->next_to_use = 0;
1760
1761         return 0;
1762
1763 err_alloc_tso:
1764         dma_free_coherent(txr->dev, txr->bd_count * sizeof(union enetc_tx_bd),
1765                           txr->bd_base, txr->bd_dma_base);
1766         txr->bd_base = NULL;
1767 err_alloc_bdr:
1768         vfree(txr->tx_swbd);
1769         txr->tx_swbd = NULL;
1770
1771         return err;
1772 }
1773
1774 static void enetc_free_txbdr(struct enetc_bdr *txr)
1775 {
1776         int size, i;
1777
1778         for (i = 0; i < txr->bd_count; i++)
1779                 enetc_free_tx_frame(txr, &txr->tx_swbd[i]);
1780
1781         size = txr->bd_count * sizeof(union enetc_tx_bd);
1782
1783         dma_free_coherent(txr->dev, txr->bd_count * TSO_HEADER_SIZE,
1784                           txr->tso_headers, txr->tso_headers_dma);
1785         txr->tso_headers = NULL;
1786
1787         dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
1788         txr->bd_base = NULL;
1789
1790         vfree(txr->tx_swbd);
1791         txr->tx_swbd = NULL;
1792 }
1793
1794 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
1795 {
1796         int i, err;
1797
1798         for (i = 0; i < priv->num_tx_rings; i++) {
1799                 err = enetc_alloc_txbdr(priv->tx_ring[i]);
1800
1801                 if (err)
1802                         goto fail;
1803         }
1804
1805         return 0;
1806
1807 fail:
1808         while (i-- > 0)
1809                 enetc_free_txbdr(priv->tx_ring[i]);
1810
1811         return err;
1812 }
1813
1814 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
1815 {
1816         int i;
1817
1818         for (i = 0; i < priv->num_tx_rings; i++)
1819                 enetc_free_txbdr(priv->tx_ring[i]);
1820 }
1821
1822 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
1823 {
1824         size_t size = sizeof(union enetc_rx_bd);
1825         int err;
1826
1827         rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
1828         if (!rxr->rx_swbd)
1829                 return -ENOMEM;
1830
1831         if (extended)
1832                 size *= 2;
1833
1834         err = enetc_dma_alloc_bdr(rxr, size);
1835         if (err) {
1836                 vfree(rxr->rx_swbd);
1837                 return err;
1838         }
1839
1840         rxr->next_to_clean = 0;
1841         rxr->next_to_use = 0;
1842         rxr->next_to_alloc = 0;
1843         rxr->ext_en = extended;
1844
1845         return 0;
1846 }
1847
1848 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
1849 {
1850         int size;
1851
1852         size = rxr->bd_count * sizeof(union enetc_rx_bd);
1853
1854         dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
1855         rxr->bd_base = NULL;
1856
1857         vfree(rxr->rx_swbd);
1858         rxr->rx_swbd = NULL;
1859 }
1860
1861 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
1862 {
1863         bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
1864         int i, err;
1865
1866         for (i = 0; i < priv->num_rx_rings; i++) {
1867                 err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
1868
1869                 if (err)
1870                         goto fail;
1871         }
1872
1873         return 0;
1874
1875 fail:
1876         while (i-- > 0)
1877                 enetc_free_rxbdr(priv->rx_ring[i]);
1878
1879         return err;
1880 }
1881
1882 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
1883 {
1884         int i;
1885
1886         for (i = 0; i < priv->num_rx_rings; i++)
1887                 enetc_free_rxbdr(priv->rx_ring[i]);
1888 }
1889
1890 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
1891 {
1892         int i;
1893
1894         if (!tx_ring->tx_swbd)
1895                 return;
1896
1897         for (i = 0; i < tx_ring->bd_count; i++) {
1898                 struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
1899
1900                 enetc_free_tx_frame(tx_ring, tx_swbd);
1901         }
1902
1903         tx_ring->next_to_clean = 0;
1904         tx_ring->next_to_use = 0;
1905 }
1906
1907 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
1908 {
1909         int i;
1910
1911         if (!rx_ring->rx_swbd)
1912                 return;
1913
1914         for (i = 0; i < rx_ring->bd_count; i++) {
1915                 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1916
1917                 if (!rx_swbd->page)
1918                         continue;
1919
1920                 dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1921                                rx_swbd->dir);
1922                 __free_page(rx_swbd->page);
1923                 rx_swbd->page = NULL;
1924         }
1925
1926         rx_ring->next_to_clean = 0;
1927         rx_ring->next_to_use = 0;
1928         rx_ring->next_to_alloc = 0;
1929 }
1930
1931 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
1932 {
1933         int i;
1934
1935         for (i = 0; i < priv->num_rx_rings; i++)
1936                 enetc_free_rx_ring(priv->rx_ring[i]);
1937
1938         for (i = 0; i < priv->num_tx_rings; i++)
1939                 enetc_free_tx_ring(priv->tx_ring[i]);
1940 }
1941
1942 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1943 {
1944         int *rss_table;
1945         int i;
1946
1947         rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1948         if (!rss_table)
1949                 return -ENOMEM;
1950
1951         /* Set up RSS table defaults */
1952         for (i = 0; i < si->num_rss; i++)
1953                 rss_table[i] = i % num_groups;
1954
1955         enetc_set_rss_table(si, rss_table, si->num_rss);
1956
1957         kfree(rss_table);
1958
1959         return 0;
1960 }
1961
1962 int enetc_configure_si(struct enetc_ndev_priv *priv)
1963 {
1964         struct enetc_si *si = priv->si;
1965         struct enetc_hw *hw = &si->hw;
1966         int err;
1967
1968         /* set SI cache attributes */
1969         enetc_wr(hw, ENETC_SICAR0,
1970                  ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1971         enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1972         /* enable SI */
1973         enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1974
1975         if (si->num_rss) {
1976                 err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1977                 if (err)
1978                         return err;
1979         }
1980
1981         return 0;
1982 }
1983
1984 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1985 {
1986         struct enetc_si *si = priv->si;
1987         int cpus = num_online_cpus();
1988
1989         priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
1990         priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
1991
1992         /* Enable all available TX rings in order to configure as many
1993          * priorities as possible, when needed.
1994          * TODO: Make # of TX rings run-time configurable
1995          */
1996         priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1997         priv->num_tx_rings = si->num_tx_rings;
1998         priv->bdr_int_num = cpus;
1999         priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
2000         priv->tx_ictt = ENETC_TXIC_TIMETHR;
2001 }
2002
2003 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
2004 {
2005         struct enetc_si *si = priv->si;
2006
2007         priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
2008                                   GFP_KERNEL);
2009         if (!priv->cls_rules)
2010                 return -ENOMEM;
2011
2012         return 0;
2013 }
2014
2015 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
2016 {
2017         kfree(priv->cls_rules);
2018 }
2019
2020 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2021 {
2022         int idx = tx_ring->index;
2023         u32 tbmr;
2024
2025         enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
2026                        lower_32_bits(tx_ring->bd_dma_base));
2027
2028         enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
2029                        upper_32_bits(tx_ring->bd_dma_base));
2030
2031         WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
2032         enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
2033                        ENETC_RTBLENR_LEN(tx_ring->bd_count));
2034
2035         /* clearing PI/CI registers for Tx not supported, adjust sw indexes */
2036         tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
2037         tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
2038
2039         /* enable Tx ints by setting pkt thr to 1 */
2040         enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
2041
2042         tbmr = ENETC_TBMR_EN | ENETC_TBMR_SET_PRIO(tx_ring->prio);
2043         if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
2044                 tbmr |= ENETC_TBMR_VIH;
2045
2046         /* enable ring */
2047         enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2048
2049         tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
2050         tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
2051         tx_ring->idr = hw->reg + ENETC_SITXIDR;
2052 }
2053
2054 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2055 {
2056         int idx = rx_ring->index;
2057         u32 rbmr;
2058
2059         enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
2060                        lower_32_bits(rx_ring->bd_dma_base));
2061
2062         enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
2063                        upper_32_bits(rx_ring->bd_dma_base));
2064
2065         WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
2066         enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
2067                        ENETC_RTBLENR_LEN(rx_ring->bd_count));
2068
2069         if (rx_ring->xdp.prog)
2070                 enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
2071         else
2072                 enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
2073
2074         /* Also prepare the consumer index in case page allocation never
2075          * succeeds. In that case, hardware will never advance producer index
2076          * to match consumer index, and will drop all frames.
2077          */
2078         enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
2079         enetc_rxbdr_wr(hw, idx, ENETC_RBCIR, 1);
2080
2081         /* enable Rx ints by setting pkt thr to 1 */
2082         enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
2083
2084         rbmr = ENETC_RBMR_EN;
2085
2086         if (rx_ring->ext_en)
2087                 rbmr |= ENETC_RBMR_BDS;
2088
2089         if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
2090                 rbmr |= ENETC_RBMR_VTE;
2091
2092         rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
2093         rx_ring->idr = hw->reg + ENETC_SIRXIDR;
2094
2095         enetc_lock_mdio();
2096         enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
2097         enetc_unlock_mdio();
2098
2099         /* enable ring */
2100         enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2101 }
2102
2103 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
2104 {
2105         struct enetc_hw *hw = &priv->si->hw;
2106         int i;
2107
2108         for (i = 0; i < priv->num_tx_rings; i++)
2109                 enetc_setup_txbdr(hw, priv->tx_ring[i]);
2110
2111         for (i = 0; i < priv->num_rx_rings; i++)
2112                 enetc_setup_rxbdr(hw, priv->rx_ring[i]);
2113 }
2114
2115 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2116 {
2117         int idx = rx_ring->index;
2118
2119         /* disable EN bit on ring */
2120         enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
2121 }
2122
2123 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2124 {
2125         int delay = 8, timeout = 100;
2126         int idx = tx_ring->index;
2127
2128         /* disable EN bit on ring */
2129         enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
2130
2131         /* wait for busy to clear */
2132         while (delay < timeout &&
2133                enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
2134                 msleep(delay);
2135                 delay *= 2;
2136         }
2137
2138         if (delay >= timeout)
2139                 netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
2140                             idx);
2141 }
2142
2143 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
2144 {
2145         struct enetc_hw *hw = &priv->si->hw;
2146         int i;
2147
2148         for (i = 0; i < priv->num_tx_rings; i++)
2149                 enetc_clear_txbdr(hw, priv->tx_ring[i]);
2150
2151         for (i = 0; i < priv->num_rx_rings; i++)
2152                 enetc_clear_rxbdr(hw, priv->rx_ring[i]);
2153
2154         udelay(1);
2155 }
2156
2157 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
2158 {
2159         struct pci_dev *pdev = priv->si->pdev;
2160         struct enetc_hw *hw = &priv->si->hw;
2161         int i, j, err;
2162
2163         for (i = 0; i < priv->bdr_int_num; i++) {
2164                 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2165                 struct enetc_int_vector *v = priv->int_vector[i];
2166                 int entry = ENETC_BDR_INT_BASE_IDX + i;
2167
2168                 snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
2169                          priv->ndev->name, i);
2170                 err = request_irq(irq, enetc_msix, 0, v->name, v);
2171                 if (err) {
2172                         dev_err(priv->dev, "request_irq() failed!\n");
2173                         goto irq_err;
2174                 }
2175                 disable_irq(irq);
2176
2177                 v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
2178                 v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
2179                 v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
2180
2181                 enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
2182
2183                 for (j = 0; j < v->count_tx_rings; j++) {
2184                         int idx = v->tx_ring[j].index;
2185
2186                         enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
2187                 }
2188                 irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
2189         }
2190
2191         return 0;
2192
2193 irq_err:
2194         while (i--) {
2195                 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2196
2197                 irq_set_affinity_hint(irq, NULL);
2198                 free_irq(irq, priv->int_vector[i]);
2199         }
2200
2201         return err;
2202 }
2203
2204 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
2205 {
2206         struct pci_dev *pdev = priv->si->pdev;
2207         int i;
2208
2209         for (i = 0; i < priv->bdr_int_num; i++) {
2210                 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2211
2212                 irq_set_affinity_hint(irq, NULL);
2213                 free_irq(irq, priv->int_vector[i]);
2214         }
2215 }
2216
2217 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
2218 {
2219         struct enetc_hw *hw = &priv->si->hw;
2220         u32 icpt, ictt;
2221         int i;
2222
2223         /* enable Tx & Rx event indication */
2224         if (priv->ic_mode &
2225             (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
2226                 icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
2227                 /* init to non-0 minimum, will be adjusted later */
2228                 ictt = 0x1;
2229         } else {
2230                 icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
2231                 ictt = 0;
2232         }
2233
2234         for (i = 0; i < priv->num_rx_rings; i++) {
2235                 enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
2236                 enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
2237                 enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
2238         }
2239
2240         if (priv->ic_mode & ENETC_IC_TX_MANUAL)
2241                 icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
2242         else
2243                 icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
2244
2245         for (i = 0; i < priv->num_tx_rings; i++) {
2246                 enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
2247                 enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
2248                 enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
2249         }
2250 }
2251
2252 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
2253 {
2254         struct enetc_hw *hw = &priv->si->hw;
2255         int i;
2256
2257         for (i = 0; i < priv->num_tx_rings; i++)
2258                 enetc_txbdr_wr(hw, i, ENETC_TBIER, 0);
2259
2260         for (i = 0; i < priv->num_rx_rings; i++)
2261                 enetc_rxbdr_wr(hw, i, ENETC_RBIER, 0);
2262 }
2263
2264 static int enetc_phylink_connect(struct net_device *ndev)
2265 {
2266         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2267         struct ethtool_eee edata;
2268         int err;
2269
2270         if (!priv->phylink)
2271                 return 0; /* phy-less mode */
2272
2273         err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
2274         if (err) {
2275                 dev_err(&ndev->dev, "could not attach to PHY\n");
2276                 return err;
2277         }
2278
2279         /* disable EEE autoneg, until ENETC driver supports it */
2280         memset(&edata, 0, sizeof(struct ethtool_eee));
2281         phylink_ethtool_set_eee(priv->phylink, &edata);
2282
2283         return 0;
2284 }
2285
2286 static void enetc_tx_onestep_tstamp(struct work_struct *work)
2287 {
2288         struct enetc_ndev_priv *priv;
2289         struct sk_buff *skb;
2290
2291         priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
2292
2293         netif_tx_lock_bh(priv->ndev);
2294
2295         clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
2296         skb = skb_dequeue(&priv->tx_skbs);
2297         if (skb)
2298                 enetc_start_xmit(skb, priv->ndev);
2299
2300         netif_tx_unlock_bh(priv->ndev);
2301 }
2302
2303 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
2304 {
2305         INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
2306         skb_queue_head_init(&priv->tx_skbs);
2307 }
2308
2309 void enetc_start(struct net_device *ndev)
2310 {
2311         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2312         int i;
2313
2314         enetc_setup_interrupts(priv);
2315
2316         for (i = 0; i < priv->bdr_int_num; i++) {
2317                 int irq = pci_irq_vector(priv->si->pdev,
2318                                          ENETC_BDR_INT_BASE_IDX + i);
2319
2320                 napi_enable(&priv->int_vector[i]->napi);
2321                 enable_irq(irq);
2322         }
2323
2324         if (priv->phylink)
2325                 phylink_start(priv->phylink);
2326         else
2327                 netif_carrier_on(ndev);
2328
2329         netif_tx_start_all_queues(ndev);
2330 }
2331
2332 int enetc_open(struct net_device *ndev)
2333 {
2334         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2335         int num_stack_tx_queues;
2336         int err;
2337
2338         err = enetc_setup_irqs(priv);
2339         if (err)
2340                 return err;
2341
2342         err = enetc_phylink_connect(ndev);
2343         if (err)
2344                 goto err_phy_connect;
2345
2346         err = enetc_alloc_tx_resources(priv);
2347         if (err)
2348                 goto err_alloc_tx;
2349
2350         err = enetc_alloc_rx_resources(priv);
2351         if (err)
2352                 goto err_alloc_rx;
2353
2354         num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2355
2356         err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2357         if (err)
2358                 goto err_set_queues;
2359
2360         err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
2361         if (err)
2362                 goto err_set_queues;
2363
2364         enetc_tx_onestep_tstamp_init(priv);
2365         enetc_setup_bdrs(priv);
2366         enetc_start(ndev);
2367
2368         return 0;
2369
2370 err_set_queues:
2371         enetc_free_rx_resources(priv);
2372 err_alloc_rx:
2373         enetc_free_tx_resources(priv);
2374 err_alloc_tx:
2375         if (priv->phylink)
2376                 phylink_disconnect_phy(priv->phylink);
2377 err_phy_connect:
2378         enetc_free_irqs(priv);
2379
2380         return err;
2381 }
2382
2383 void enetc_stop(struct net_device *ndev)
2384 {
2385         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2386         int i;
2387
2388         netif_tx_stop_all_queues(ndev);
2389
2390         for (i = 0; i < priv->bdr_int_num; i++) {
2391                 int irq = pci_irq_vector(priv->si->pdev,
2392                                          ENETC_BDR_INT_BASE_IDX + i);
2393
2394                 disable_irq(irq);
2395                 napi_synchronize(&priv->int_vector[i]->napi);
2396                 napi_disable(&priv->int_vector[i]->napi);
2397         }
2398
2399         if (priv->phylink)
2400                 phylink_stop(priv->phylink);
2401         else
2402                 netif_carrier_off(ndev);
2403
2404         enetc_clear_interrupts(priv);
2405 }
2406
2407 int enetc_close(struct net_device *ndev)
2408 {
2409         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2410
2411         enetc_stop(ndev);
2412         enetc_clear_bdrs(priv);
2413
2414         if (priv->phylink)
2415                 phylink_disconnect_phy(priv->phylink);
2416         enetc_free_rxtx_rings(priv);
2417         enetc_free_rx_resources(priv);
2418         enetc_free_tx_resources(priv);
2419         enetc_free_irqs(priv);
2420
2421         return 0;
2422 }
2423
2424 int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
2425 {
2426         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2427         struct tc_mqprio_qopt *mqprio = type_data;
2428         struct enetc_hw *hw = &priv->si->hw;
2429         struct enetc_bdr *tx_ring;
2430         int num_stack_tx_queues;
2431         u8 num_tc;
2432         int i;
2433
2434         num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2435         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
2436         num_tc = mqprio->num_tc;
2437
2438         if (!num_tc) {
2439                 netdev_reset_tc(ndev);
2440                 netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2441
2442                 /* Reset all ring priorities to 0 */
2443                 for (i = 0; i < priv->num_tx_rings; i++) {
2444                         tx_ring = priv->tx_ring[i];
2445                         tx_ring->prio = 0;
2446                         enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
2447                 }
2448
2449                 return 0;
2450         }
2451
2452         /* Check if we have enough BD rings available to accommodate all TCs */
2453         if (num_tc > num_stack_tx_queues) {
2454                 netdev_err(ndev, "Max %d traffic classes supported\n",
2455                            priv->num_tx_rings);
2456                 return -EINVAL;
2457         }
2458
2459         /* For the moment, we use only one BD ring per TC.
2460          *
2461          * Configure num_tc BD rings with increasing priorities.
2462          */
2463         for (i = 0; i < num_tc; i++) {
2464                 tx_ring = priv->tx_ring[i];
2465                 tx_ring->prio = i;
2466                 enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
2467         }
2468
2469         /* Reset the number of netdev queues based on the TC count */
2470         netif_set_real_num_tx_queues(ndev, num_tc);
2471
2472         netdev_set_num_tc(ndev, num_tc);
2473
2474         /* Each TC is associated with one netdev queue */
2475         for (i = 0; i < num_tc; i++)
2476                 netdev_set_tc_queue(ndev, i, 1, i);
2477
2478         return 0;
2479 }
2480
2481 static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog,
2482                                 struct netlink_ext_ack *extack)
2483 {
2484         struct enetc_ndev_priv *priv = netdev_priv(dev);
2485         struct bpf_prog *old_prog;
2486         bool is_up;
2487         int i;
2488
2489         /* The buffer layout is changing, so we need to drain the old
2490          * RX buffers and seed new ones.
2491          */
2492         is_up = netif_running(dev);
2493         if (is_up)
2494                 dev_close(dev);
2495
2496         old_prog = xchg(&priv->xdp_prog, prog);
2497         if (old_prog)
2498                 bpf_prog_put(old_prog);
2499
2500         for (i = 0; i < priv->num_rx_rings; i++) {
2501                 struct enetc_bdr *rx_ring = priv->rx_ring[i];
2502
2503                 rx_ring->xdp.prog = prog;
2504
2505                 if (prog)
2506                         rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
2507                 else
2508                         rx_ring->buffer_offset = ENETC_RXB_PAD;
2509         }
2510
2511         if (is_up)
2512                 return dev_open(dev, extack);
2513
2514         return 0;
2515 }
2516
2517 int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp)
2518 {
2519         switch (xdp->command) {
2520         case XDP_SETUP_PROG:
2521                 return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack);
2522         default:
2523                 return -EINVAL;
2524         }
2525
2526         return 0;
2527 }
2528
2529 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
2530 {
2531         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2532         struct net_device_stats *stats = &ndev->stats;
2533         unsigned long packets = 0, bytes = 0;
2534         unsigned long tx_dropped = 0;
2535         int i;
2536
2537         for (i = 0; i < priv->num_rx_rings; i++) {
2538                 packets += priv->rx_ring[i]->stats.packets;
2539                 bytes   += priv->rx_ring[i]->stats.bytes;
2540         }
2541
2542         stats->rx_packets = packets;
2543         stats->rx_bytes = bytes;
2544         bytes = 0;
2545         packets = 0;
2546
2547         for (i = 0; i < priv->num_tx_rings; i++) {
2548                 packets += priv->tx_ring[i]->stats.packets;
2549                 bytes   += priv->tx_ring[i]->stats.bytes;
2550                 tx_dropped += priv->tx_ring[i]->stats.win_drop;
2551         }
2552
2553         stats->tx_packets = packets;
2554         stats->tx_bytes = bytes;
2555         stats->tx_dropped = tx_dropped;
2556
2557         return stats;
2558 }
2559
2560 static int enetc_set_rss(struct net_device *ndev, int en)
2561 {
2562         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2563         struct enetc_hw *hw = &priv->si->hw;
2564         u32 reg;
2565
2566         enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
2567
2568         reg = enetc_rd(hw, ENETC_SIMR);
2569         reg &= ~ENETC_SIMR_RSSE;
2570         reg |= (en) ? ENETC_SIMR_RSSE : 0;
2571         enetc_wr(hw, ENETC_SIMR, reg);
2572
2573         return 0;
2574 }
2575
2576 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
2577 {
2578         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2579         struct enetc_hw *hw = &priv->si->hw;
2580         int i;
2581
2582         for (i = 0; i < priv->num_rx_rings; i++)
2583                 enetc_bdr_enable_rxvlan(hw, i, en);
2584 }
2585
2586 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
2587 {
2588         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2589         struct enetc_hw *hw = &priv->si->hw;
2590         int i;
2591
2592         for (i = 0; i < priv->num_tx_rings; i++)
2593                 enetc_bdr_enable_txvlan(hw, i, en);
2594 }
2595
2596 void enetc_set_features(struct net_device *ndev, netdev_features_t features)
2597 {
2598         netdev_features_t changed = ndev->features ^ features;
2599
2600         if (changed & NETIF_F_RXHASH)
2601                 enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
2602
2603         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2604                 enetc_enable_rxvlan(ndev,
2605                                     !!(features & NETIF_F_HW_VLAN_CTAG_RX));
2606
2607         if (changed & NETIF_F_HW_VLAN_CTAG_TX)
2608                 enetc_enable_txvlan(ndev,
2609                                     !!(features & NETIF_F_HW_VLAN_CTAG_TX));
2610 }
2611
2612 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2613 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
2614 {
2615         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2616         struct hwtstamp_config config;
2617         int ao;
2618
2619         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2620                 return -EFAULT;
2621
2622         switch (config.tx_type) {
2623         case HWTSTAMP_TX_OFF:
2624                 priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2625                 break;
2626         case HWTSTAMP_TX_ON:
2627                 priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2628                 priv->active_offloads |= ENETC_F_TX_TSTAMP;
2629                 break;
2630         case HWTSTAMP_TX_ONESTEP_SYNC:
2631                 priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2632                 priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
2633                 break;
2634         default:
2635                 return -ERANGE;
2636         }
2637
2638         ao = priv->active_offloads;
2639         switch (config.rx_filter) {
2640         case HWTSTAMP_FILTER_NONE:
2641                 priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
2642                 break;
2643         default:
2644                 priv->active_offloads |= ENETC_F_RX_TSTAMP;
2645                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2646         }
2647
2648         if (netif_running(ndev) && ao != priv->active_offloads) {
2649                 enetc_close(ndev);
2650                 enetc_open(ndev);
2651         }
2652
2653         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2654                -EFAULT : 0;
2655 }
2656
2657 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
2658 {
2659         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2660         struct hwtstamp_config config;
2661
2662         config.flags = 0;
2663
2664         if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
2665                 config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
2666         else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
2667                 config.tx_type = HWTSTAMP_TX_ON;
2668         else
2669                 config.tx_type = HWTSTAMP_TX_OFF;
2670
2671         config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
2672                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
2673
2674         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2675                -EFAULT : 0;
2676 }
2677 #endif
2678
2679 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2680 {
2681         struct enetc_ndev_priv *priv = netdev_priv(ndev);
2682 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2683         if (cmd == SIOCSHWTSTAMP)
2684                 return enetc_hwtstamp_set(ndev, rq);
2685         if (cmd == SIOCGHWTSTAMP)
2686                 return enetc_hwtstamp_get(ndev, rq);
2687 #endif
2688
2689         if (!priv->phylink)
2690                 return -EOPNOTSUPP;
2691
2692         return phylink_mii_ioctl(priv->phylink, rq, cmd);
2693 }
2694
2695 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
2696 {
2697         struct pci_dev *pdev = priv->si->pdev;
2698         int first_xdp_tx_ring;
2699         int i, n, err, nvec;
2700         int v_tx_rings;
2701
2702         nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
2703         /* allocate MSIX for both messaging and Rx/Tx interrupts */
2704         n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
2705
2706         if (n < 0)
2707                 return n;
2708
2709         if (n != nvec)
2710                 return -EPERM;
2711
2712         /* # of tx rings per int vector */
2713         v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
2714
2715         for (i = 0; i < priv->bdr_int_num; i++) {
2716                 struct enetc_int_vector *v;
2717                 struct enetc_bdr *bdr;
2718                 int j;
2719
2720                 v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
2721                 if (!v) {
2722                         err = -ENOMEM;
2723                         goto fail;
2724                 }
2725
2726                 priv->int_vector[i] = v;
2727
2728                 bdr = &v->rx_ring;
2729                 bdr->index = i;
2730                 bdr->ndev = priv->ndev;
2731                 bdr->dev = priv->dev;
2732                 bdr->bd_count = priv->rx_bd_count;
2733                 bdr->buffer_offset = ENETC_RXB_PAD;
2734                 priv->rx_ring[i] = bdr;
2735
2736                 err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
2737                 if (err) {
2738                         kfree(v);
2739                         goto fail;
2740                 }
2741
2742                 err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
2743                                                  MEM_TYPE_PAGE_SHARED, NULL);
2744                 if (err) {
2745                         xdp_rxq_info_unreg(&bdr->xdp.rxq);
2746                         kfree(v);
2747                         goto fail;
2748                 }
2749
2750                 /* init defaults for adaptive IC */
2751                 if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
2752                         v->rx_ictt = 0x1;
2753                         v->rx_dim_en = true;
2754                 }
2755                 INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
2756                 netif_napi_add(priv->ndev, &v->napi, enetc_poll);
2757                 v->count_tx_rings = v_tx_rings;
2758
2759                 for (j = 0; j < v_tx_rings; j++) {
2760                         int idx;
2761
2762                         /* default tx ring mapping policy */
2763                         idx = priv->bdr_int_num * j + i;
2764                         __set_bit(idx, &v->tx_rings_map);
2765                         bdr = &v->tx_ring[j];
2766                         bdr->index = idx;
2767                         bdr->ndev = priv->ndev;
2768                         bdr->dev = priv->dev;
2769                         bdr->bd_count = priv->tx_bd_count;
2770                         priv->tx_ring[idx] = bdr;
2771                 }
2772         }
2773
2774         first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
2775         priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
2776
2777         return 0;
2778
2779 fail:
2780         while (i--) {
2781                 struct enetc_int_vector *v = priv->int_vector[i];
2782                 struct enetc_bdr *rx_ring = &v->rx_ring;
2783
2784                 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2785                 xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2786                 netif_napi_del(&v->napi);
2787                 cancel_work_sync(&v->rx_dim.work);
2788                 kfree(v);
2789         }
2790
2791         pci_free_irq_vectors(pdev);
2792
2793         return err;
2794 }
2795
2796 void enetc_free_msix(struct enetc_ndev_priv *priv)
2797 {
2798         int i;
2799
2800         for (i = 0; i < priv->bdr_int_num; i++) {
2801                 struct enetc_int_vector *v = priv->int_vector[i];
2802                 struct enetc_bdr *rx_ring = &v->rx_ring;
2803
2804                 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2805                 xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2806                 netif_napi_del(&v->napi);
2807                 cancel_work_sync(&v->rx_dim.work);
2808         }
2809
2810         for (i = 0; i < priv->num_rx_rings; i++)
2811                 priv->rx_ring[i] = NULL;
2812
2813         for (i = 0; i < priv->num_tx_rings; i++)
2814                 priv->tx_ring[i] = NULL;
2815
2816         for (i = 0; i < priv->bdr_int_num; i++) {
2817                 kfree(priv->int_vector[i]);
2818                 priv->int_vector[i] = NULL;
2819         }
2820
2821         /* disable all MSIX for this device */
2822         pci_free_irq_vectors(priv->si->pdev);
2823 }
2824
2825 static void enetc_kfree_si(struct enetc_si *si)
2826 {
2827         char *p = (char *)si - si->pad;
2828
2829         kfree(p);
2830 }
2831
2832 static void enetc_detect_errata(struct enetc_si *si)
2833 {
2834         if (si->pdev->revision == ENETC_REV1)
2835                 si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
2836 }
2837
2838 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
2839 {
2840         struct enetc_si *si, *p;
2841         struct enetc_hw *hw;
2842         size_t alloc_size;
2843         int err, len;
2844
2845         pcie_flr(pdev);
2846         err = pci_enable_device_mem(pdev);
2847         if (err)
2848                 return dev_err_probe(&pdev->dev, err, "device enable failed\n");
2849
2850         /* set up for high or low dma */
2851         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2852         if (err) {
2853                 dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
2854                 goto err_dma;
2855         }
2856
2857         err = pci_request_mem_regions(pdev, name);
2858         if (err) {
2859                 dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
2860                 goto err_pci_mem_reg;
2861         }
2862
2863         pci_set_master(pdev);
2864
2865         alloc_size = sizeof(struct enetc_si);
2866         if (sizeof_priv) {
2867                 /* align priv to 32B */
2868                 alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
2869                 alloc_size += sizeof_priv;
2870         }
2871         /* force 32B alignment for enetc_si */
2872         alloc_size += ENETC_SI_ALIGN - 1;
2873
2874         p = kzalloc(alloc_size, GFP_KERNEL);
2875         if (!p) {
2876                 err = -ENOMEM;
2877                 goto err_alloc_si;
2878         }
2879
2880         si = PTR_ALIGN(p, ENETC_SI_ALIGN);
2881         si->pad = (char *)si - (char *)p;
2882
2883         pci_set_drvdata(pdev, si);
2884         si->pdev = pdev;
2885         hw = &si->hw;
2886
2887         len = pci_resource_len(pdev, ENETC_BAR_REGS);
2888         hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
2889         if (!hw->reg) {
2890                 err = -ENXIO;
2891                 dev_err(&pdev->dev, "ioremap() failed\n");
2892                 goto err_ioremap;
2893         }
2894         if (len > ENETC_PORT_BASE)
2895                 hw->port = hw->reg + ENETC_PORT_BASE;
2896         if (len > ENETC_GLOBAL_BASE)
2897                 hw->global = hw->reg + ENETC_GLOBAL_BASE;
2898
2899         enetc_detect_errata(si);
2900
2901         return 0;
2902
2903 err_ioremap:
2904         enetc_kfree_si(si);
2905 err_alloc_si:
2906         pci_release_mem_regions(pdev);
2907 err_pci_mem_reg:
2908 err_dma:
2909         pci_disable_device(pdev);
2910
2911         return err;
2912 }
2913
2914 void enetc_pci_remove(struct pci_dev *pdev)
2915 {
2916         struct enetc_si *si = pci_get_drvdata(pdev);
2917         struct enetc_hw *hw = &si->hw;
2918
2919         iounmap(hw->reg);
2920         enetc_kfree_si(si);
2921         pci_release_mem_regions(pdev);
2922         pci_disable_device(pdev);
2923 }