m68k: Migrate exception table users off module.h and onto extable.h
[platform/kernel/linux-exynos.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
317                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
318                      FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
319
320 /**
321  *      init_link_config - initialize a link's SW state
322  *      @lc: structure holding the link state
323  *      @caps: link capabilities
324  *
325  *      Initializes the SW state maintained for each link, including the link's
326  *      capabilities and default speed/flow-control/autonegotiation settings.
327  */
328 static void init_link_config(struct link_config *lc, unsigned int caps)
329 {
330         lc->supported = caps;
331         lc->lp_advertising = 0;
332         lc->requested_speed = 0;
333         lc->speed = 0;
334         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
335         if (lc->supported & FW_PORT_CAP_ANEG) {
336                 lc->advertising = lc->supported & ADVERT_MASK;
337                 lc->autoneg = AUTONEG_ENABLE;
338                 lc->requested_fc |= PAUSE_AUTONEG;
339         } else {
340                 lc->advertising = 0;
341                 lc->autoneg = AUTONEG_DISABLE;
342         }
343 }
344
345 /**
346  *      t4vf_port_init - initialize port hardware/software state
347  *      @adapter: the adapter
348  *      @pidx: the adapter port index
349  */
350 int t4vf_port_init(struct adapter *adapter, int pidx)
351 {
352         struct port_info *pi = adap2pinfo(adapter, pidx);
353         struct fw_vi_cmd vi_cmd, vi_rpl;
354         struct fw_port_cmd port_cmd, port_rpl;
355         int v;
356
357         /*
358          * Execute a VI Read command to get our Virtual Interface information
359          * like MAC address, etc.
360          */
361         memset(&vi_cmd, 0, sizeof(vi_cmd));
362         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
363                                        FW_CMD_REQUEST_F |
364                                        FW_CMD_READ_F);
365         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
366         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
367         v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
368         if (v)
369                 return v;
370
371         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
372         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
373         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
374
375         /*
376          * If we don't have read access to our port information, we're done
377          * now.  Otherwise, execute a PORT Read command to get it ...
378          */
379         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
380                 return 0;
381
382         memset(&port_cmd, 0, sizeof(port_cmd));
383         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
384                                             FW_CMD_REQUEST_F |
385                                             FW_CMD_READ_F |
386                                             FW_PORT_CMD_PORTID_V(pi->port_id));
387         port_cmd.action_to_len16 =
388                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
389                             FW_LEN16(port_cmd));
390         v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
391         if (v)
392                 return v;
393
394         v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
395         pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
396                         FW_PORT_CMD_MDIOADDR_G(v) : -1;
397         pi->port_type = FW_PORT_CMD_PTYPE_G(v);
398         pi->mod_type = FW_PORT_MOD_TYPE_NA;
399
400         init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
401
402         return 0;
403 }
404
405 /**
406  *      t4vf_fw_reset - issue a reset to FW
407  *      @adapter: the adapter
408  *
409  *      Issues a reset command to FW.  For a Physical Function this would
410  *      result in the Firmware resetting all of its state.  For a Virtual
411  *      Function this just resets the state associated with the VF.
412  */
413 int t4vf_fw_reset(struct adapter *adapter)
414 {
415         struct fw_reset_cmd cmd;
416
417         memset(&cmd, 0, sizeof(cmd));
418         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
419                                       FW_CMD_WRITE_F);
420         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
421         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
422 }
423
424 /**
425  *      t4vf_query_params - query FW or device parameters
426  *      @adapter: the adapter
427  *      @nparams: the number of parameters
428  *      @params: the parameter names
429  *      @vals: the parameter values
430  *
431  *      Reads the values of firmware or device parameters.  Up to 7 parameters
432  *      can be queried at once.
433  */
434 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
435                              const u32 *params, u32 *vals)
436 {
437         int i, ret;
438         struct fw_params_cmd cmd, rpl;
439         struct fw_params_param *p;
440         size_t len16;
441
442         if (nparams > 7)
443                 return -EINVAL;
444
445         memset(&cmd, 0, sizeof(cmd));
446         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
447                                     FW_CMD_REQUEST_F |
448                                     FW_CMD_READ_F);
449         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
450                                       param[nparams].mnem), 16);
451         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
452         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
453                 p->mnem = htonl(*params++);
454
455         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
456         if (ret == 0)
457                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
458                         *vals++ = be32_to_cpu(p->val);
459         return ret;
460 }
461
462 /**
463  *      t4vf_set_params - sets FW or device parameters
464  *      @adapter: the adapter
465  *      @nparams: the number of parameters
466  *      @params: the parameter names
467  *      @vals: the parameter values
468  *
469  *      Sets the values of firmware or device parameters.  Up to 7 parameters
470  *      can be specified at once.
471  */
472 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
473                     const u32 *params, const u32 *vals)
474 {
475         int i;
476         struct fw_params_cmd cmd;
477         struct fw_params_param *p;
478         size_t len16;
479
480         if (nparams > 7)
481                 return -EINVAL;
482
483         memset(&cmd, 0, sizeof(cmd));
484         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
485                                     FW_CMD_REQUEST_F |
486                                     FW_CMD_WRITE_F);
487         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
488                                       param[nparams]), 16);
489         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
490         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
491                 p->mnem = cpu_to_be32(*params++);
492                 p->val = cpu_to_be32(*vals++);
493         }
494
495         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
496 }
497
498 /**
499  *      t4vf_fl_pkt_align - return the fl packet alignment
500  *      @adapter: the adapter
501  *
502  *      T4 has a single field to specify the packing and padding boundary.
503  *      T5 onwards has separate fields for this and hence the alignment for
504  *      next packet offset is maximum of these two.  And T6 changes the
505  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
506  *      if we put this in low-level Common Code ...
507  *
508  */
509 int t4vf_fl_pkt_align(struct adapter *adapter)
510 {
511         u32 sge_control, sge_control2;
512         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
513
514         sge_control = adapter->params.sge.sge_control;
515
516         /* T4 uses a single control field to specify both the PCIe Padding and
517          * Packing Boundary.  T5 introduced the ability to specify these
518          * separately.  The actual Ingress Packet Data alignment boundary
519          * within Packed Buffer Mode is the maximum of these two
520          * specifications.  (Note that it makes no real practical sense to
521          * have the Pading Boudary be larger than the Packing Boundary but you
522          * could set the chip up that way and, in fact, legacy T4 code would
523          * end doing this because it would initialize the Padding Boundary and
524          * leave the Packing Boundary initialized to 0 (16 bytes).)
525          * Padding Boundary values in T6 starts from 8B,
526          * where as it is 32B for T4 and T5.
527          */
528         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
529                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
530         else
531                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
532
533         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
534
535         fl_align = ingpadboundary;
536         if (!is_t4(adapter->params.chip)) {
537                 /* T5 has a different interpretation of one of the PCIe Packing
538                  * Boundary values.
539                  */
540                 sge_control2 = adapter->params.sge.sge_control2;
541                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
542                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
543                         ingpackboundary = 16;
544                 else
545                         ingpackboundary = 1 << (ingpackboundary +
546                                                 INGPACKBOUNDARY_SHIFT_X);
547
548                 fl_align = max(ingpadboundary, ingpackboundary);
549         }
550         return fl_align;
551 }
552
553 /**
554  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
555  *      @adapter: the adapter
556  *      @qid: the Queue ID
557  *      @qtype: the Ingress or Egress type for @qid
558  *      @pbar2_qoffset: BAR2 Queue Offset
559  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
560  *
561  *      Returns the BAR2 SGE Queue Registers information associated with the
562  *      indicated Absolute Queue ID.  These are passed back in return value
563  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
564  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
565  *
566  *      This may return an error which indicates that BAR2 SGE Queue
567  *      registers aren't available.  If an error is not returned, then the
568  *      following values are returned:
569  *
570  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
571  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
572  *
573  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
574  *      require the "Inferred Queue ID" ability may be used.  E.g. the
575  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
576  *      then these "Inferred Queue ID" register may not be used.
577  */
578 int t4vf_bar2_sge_qregs(struct adapter *adapter,
579                         unsigned int qid,
580                         enum t4_bar2_qtype qtype,
581                         u64 *pbar2_qoffset,
582                         unsigned int *pbar2_qid)
583 {
584         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
585         u64 bar2_page_offset, bar2_qoffset;
586         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
587
588         /* T4 doesn't support BAR2 SGE Queue registers.
589          */
590         if (is_t4(adapter->params.chip))
591                 return -EINVAL;
592
593         /* Get our SGE Page Size parameters.
594          */
595         page_shift = adapter->params.sge.sge_vf_hps + 10;
596         page_size = 1 << page_shift;
597
598         /* Get the right Queues per Page parameters for our Queue.
599          */
600         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
601                      ? adapter->params.sge.sge_vf_eq_qpp
602                      : adapter->params.sge.sge_vf_iq_qpp);
603         qpp_mask = (1 << qpp_shift) - 1;
604
605         /* Calculate the basics of the BAR2 SGE Queue register area:
606          *  o The BAR2 page the Queue registers will be in.
607          *  o The BAR2 Queue ID.
608          *  o The BAR2 Queue ID Offset into the BAR2 page.
609          */
610         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
611         bar2_qid = qid & qpp_mask;
612         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
613
614         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
615          * hardware will infer the Absolute Queue ID simply from the writes to
616          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
617          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
618          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
619          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
620          * from the BAR2 Page and BAR2 Queue ID.
621          *
622          * One important censequence of this is that some BAR2 SGE registers
623          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
624          * there.  But other registers synthesize the SGE Queue ID purely
625          * from the writes to the registers -- the Write Combined Doorbell
626          * Buffer is a good example.  These BAR2 SGE Registers are only
627          * available for those BAR2 SGE Register areas where the SGE Absolute
628          * Queue ID can be inferred from simple writes.
629          */
630         bar2_qoffset = bar2_page_offset;
631         bar2_qinferred = (bar2_qid_offset < page_size);
632         if (bar2_qinferred) {
633                 bar2_qoffset += bar2_qid_offset;
634                 bar2_qid = 0;
635         }
636
637         *pbar2_qoffset = bar2_qoffset;
638         *pbar2_qid = bar2_qid;
639         return 0;
640 }
641
642 /**
643  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
644  *      @adapter: the adapter
645  *
646  *      Retrieves various core SGE parameters in the form of hardware SGE
647  *      register values.  The caller is responsible for decoding these as
648  *      needed.  The SGE parameters are stored in @adapter->params.sge.
649  */
650 int t4vf_get_sge_params(struct adapter *adapter)
651 {
652         struct sge_params *sge_params = &adapter->params.sge;
653         u32 params[7], vals[7];
654         int v;
655
656         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
657                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
658         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
659                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
660         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
661                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
662         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
663                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
664         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
665                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
666         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
667                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
668         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
669                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
670         v = t4vf_query_params(adapter, 7, params, vals);
671         if (v)
672                 return v;
673         sge_params->sge_control = vals[0];
674         sge_params->sge_host_page_size = vals[1];
675         sge_params->sge_fl_buffer_size[0] = vals[2];
676         sge_params->sge_fl_buffer_size[1] = vals[3];
677         sge_params->sge_timer_value_0_and_1 = vals[4];
678         sge_params->sge_timer_value_2_and_3 = vals[5];
679         sge_params->sge_timer_value_4_and_5 = vals[6];
680
681         /* T4 uses a single control field to specify both the PCIe Padding and
682          * Packing Boundary.  T5 introduced the ability to specify these
683          * separately with the Padding Boundary in SGE_CONTROL and and Packing
684          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
685          * SGE_CONTROL in order to determine how ingress packet data will be
686          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
687          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
688          * failure grabbing it we throw an error since we can't figure out the
689          * right value.
690          */
691         if (!is_t4(adapter->params.chip)) {
692                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
693                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
694                 v = t4vf_query_params(adapter, 1, params, vals);
695                 if (v != FW_SUCCESS) {
696                         dev_err(adapter->pdev_dev,
697                                 "Unable to get SGE Control2; "
698                                 "probably old firmware.\n");
699                         return v;
700                 }
701                 sge_params->sge_control2 = vals[0];
702         }
703
704         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
705                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
706         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
707                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
708         v = t4vf_query_params(adapter, 2, params, vals);
709         if (v)
710                 return v;
711         sge_params->sge_ingress_rx_threshold = vals[0];
712         sge_params->sge_congestion_control = vals[1];
713
714         /* For T5 and later we want to use the new BAR2 Doorbells.
715          * Unfortunately, older firmware didn't allow the this register to be
716          * read.
717          */
718         if (!is_t4(adapter->params.chip)) {
719                 u32 whoami;
720                 unsigned int pf, s_hps, s_qpp;
721
722                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
723                              FW_PARAMS_PARAM_XYZ_V(
724                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
725                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
726                              FW_PARAMS_PARAM_XYZ_V(
727                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
728                 v = t4vf_query_params(adapter, 2, params, vals);
729                 if (v != FW_SUCCESS) {
730                         dev_warn(adapter->pdev_dev,
731                                  "Unable to get VF SGE Queues/Page; "
732                                  "probably old firmware.\n");
733                         return v;
734                 }
735                 sge_params->sge_egress_queues_per_page = vals[0];
736                 sge_params->sge_ingress_queues_per_page = vals[1];
737
738                 /* We need the Queues/Page for our VF.  This is based on the
739                  * PF from which we're instantiated and is indexed in the
740                  * register we just read. Do it once here so other code in
741                  * the driver can just use it.
742                  */
743                 whoami = t4_read_reg(adapter,
744                                      T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
745                 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
746                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
747
748                 s_hps = (HOSTPAGESIZEPF0_S +
749                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
750                 sge_params->sge_vf_hps =
751                         ((sge_params->sge_host_page_size >> s_hps)
752                          & HOSTPAGESIZEPF0_M);
753
754                 s_qpp = (QUEUESPERPAGEPF0_S +
755                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
756                 sge_params->sge_vf_eq_qpp =
757                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
758                          & QUEUESPERPAGEPF0_M);
759                 sge_params->sge_vf_iq_qpp =
760                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
761                          & QUEUESPERPAGEPF0_M);
762         }
763
764         return 0;
765 }
766
767 /**
768  *      t4vf_get_vpd_params - retrieve device VPD paremeters
769  *      @adapter: the adapter
770  *
771  *      Retrives various device Vital Product Data parameters.  The parameters
772  *      are stored in @adapter->params.vpd.
773  */
774 int t4vf_get_vpd_params(struct adapter *adapter)
775 {
776         struct vpd_params *vpd_params = &adapter->params.vpd;
777         u32 params[7], vals[7];
778         int v;
779
780         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
781                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
782         v = t4vf_query_params(adapter, 1, params, vals);
783         if (v)
784                 return v;
785         vpd_params->cclk = vals[0];
786
787         return 0;
788 }
789
790 /**
791  *      t4vf_get_dev_params - retrieve device paremeters
792  *      @adapter: the adapter
793  *
794  *      Retrives various device parameters.  The parameters are stored in
795  *      @adapter->params.dev.
796  */
797 int t4vf_get_dev_params(struct adapter *adapter)
798 {
799         struct dev_params *dev_params = &adapter->params.dev;
800         u32 params[7], vals[7];
801         int v;
802
803         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
804                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
805         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
806                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
807         v = t4vf_query_params(adapter, 2, params, vals);
808         if (v)
809                 return v;
810         dev_params->fwrev = vals[0];
811         dev_params->tprev = vals[1];
812
813         return 0;
814 }
815
816 /**
817  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
818  *      @adapter: the adapter
819  *
820  *      Retrieves global RSS mode and parameters with which we have to live
821  *      and stores them in the @adapter's RSS parameters.
822  */
823 int t4vf_get_rss_glb_config(struct adapter *adapter)
824 {
825         struct rss_params *rss = &adapter->params.rss;
826         struct fw_rss_glb_config_cmd cmd, rpl;
827         int v;
828
829         /*
830          * Execute an RSS Global Configuration read command to retrieve
831          * our RSS configuration.
832          */
833         memset(&cmd, 0, sizeof(cmd));
834         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
835                                       FW_CMD_REQUEST_F |
836                                       FW_CMD_READ_F);
837         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
838         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
839         if (v)
840                 return v;
841
842         /*
843          * Transate the big-endian RSS Global Configuration into our
844          * cpu-endian format based on the RSS mode.  We also do first level
845          * filtering at this point to weed out modes which don't support
846          * VF Drivers ...
847          */
848         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
849                         be32_to_cpu(rpl.u.manual.mode_pkd));
850         switch (rss->mode) {
851         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
852                 u32 word = be32_to_cpu(
853                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
854
855                 rss->u.basicvirtual.synmapen =
856                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
857                 rss->u.basicvirtual.syn4tupenipv6 =
858                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
859                 rss->u.basicvirtual.syn2tupenipv6 =
860                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
861                 rss->u.basicvirtual.syn4tupenipv4 =
862                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
863                 rss->u.basicvirtual.syn2tupenipv4 =
864                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
865
866                 rss->u.basicvirtual.ofdmapen =
867                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
868
869                 rss->u.basicvirtual.tnlmapen =
870                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
871                 rss->u.basicvirtual.tnlalllookup =
872                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
873
874                 rss->u.basicvirtual.hashtoeplitz =
875                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
876
877                 /* we need at least Tunnel Map Enable to be set */
878                 if (!rss->u.basicvirtual.tnlmapen)
879                         return -EINVAL;
880                 break;
881         }
882
883         default:
884                 /* all unknown/unsupported RSS modes result in an error */
885                 return -EINVAL;
886         }
887
888         return 0;
889 }
890
891 /**
892  *      t4vf_get_vfres - retrieve VF resource limits
893  *      @adapter: the adapter
894  *
895  *      Retrieves configured resource limits and capabilities for a virtual
896  *      function.  The results are stored in @adapter->vfres.
897  */
898 int t4vf_get_vfres(struct adapter *adapter)
899 {
900         struct vf_resources *vfres = &adapter->params.vfres;
901         struct fw_pfvf_cmd cmd, rpl;
902         int v;
903         u32 word;
904
905         /*
906          * Execute PFVF Read command to get VF resource limits; bail out early
907          * with error on command failure.
908          */
909         memset(&cmd, 0, sizeof(cmd));
910         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
911                                     FW_CMD_REQUEST_F |
912                                     FW_CMD_READ_F);
913         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
914         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
915         if (v)
916                 return v;
917
918         /*
919          * Extract VF resource limits and return success.
920          */
921         word = be32_to_cpu(rpl.niqflint_niq);
922         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
923         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
924
925         word = be32_to_cpu(rpl.type_to_neq);
926         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
927         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
928
929         word = be32_to_cpu(rpl.tc_to_nexactf);
930         vfres->tc = FW_PFVF_CMD_TC_G(word);
931         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
932         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
933
934         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
935         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
936         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
937         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
938
939         return 0;
940 }
941
942 /**
943  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
944  *      @adapter: the adapter
945  *      @viid: Virtual Interface ID
946  *      @config: pointer to host-native VI RSS Configuration buffer
947  *
948  *      Reads the Virtual Interface's RSS configuration information and
949  *      translates it into CPU-native format.
950  */
951 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
952                             union rss_vi_config *config)
953 {
954         struct fw_rss_vi_config_cmd cmd, rpl;
955         int v;
956
957         memset(&cmd, 0, sizeof(cmd));
958         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
959                                      FW_CMD_REQUEST_F |
960                                      FW_CMD_READ_F |
961                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
962         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
963         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
964         if (v)
965                 return v;
966
967         switch (adapter->params.rss.mode) {
968         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
969                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
970
971                 config->basicvirtual.ip6fourtupen =
972                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
973                 config->basicvirtual.ip6twotupen =
974                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
975                 config->basicvirtual.ip4fourtupen =
976                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
977                 config->basicvirtual.ip4twotupen =
978                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
979                 config->basicvirtual.udpen =
980                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
981                 config->basicvirtual.defaultq =
982                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
983                 break;
984         }
985
986         default:
987                 return -EINVAL;
988         }
989
990         return 0;
991 }
992
993 /**
994  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
995  *      @adapter: the adapter
996  *      @viid: Virtual Interface ID
997  *      @config: pointer to host-native VI RSS Configuration buffer
998  *
999  *      Write the Virtual Interface's RSS configuration information
1000  *      (translating it into firmware-native format before writing).
1001  */
1002 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1003                              union rss_vi_config *config)
1004 {
1005         struct fw_rss_vi_config_cmd cmd, rpl;
1006
1007         memset(&cmd, 0, sizeof(cmd));
1008         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1009                                      FW_CMD_REQUEST_F |
1010                                      FW_CMD_WRITE_F |
1011                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1012         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1013         switch (adapter->params.rss.mode) {
1014         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1015                 u32 word = 0;
1016
1017                 if (config->basicvirtual.ip6fourtupen)
1018                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1019                 if (config->basicvirtual.ip6twotupen)
1020                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1021                 if (config->basicvirtual.ip4fourtupen)
1022                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1023                 if (config->basicvirtual.ip4twotupen)
1024                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1025                 if (config->basicvirtual.udpen)
1026                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1027                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1028                                 config->basicvirtual.defaultq);
1029                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1030                 break;
1031         }
1032
1033         default:
1034                 return -EINVAL;
1035         }
1036
1037         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1038 }
1039
1040 /**
1041  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1042  *      @adapter: the adapter
1043  *      @viid: Virtual Interface of RSS Table Slice
1044  *      @start: starting entry in the table to write
1045  *      @n: how many table entries to write
1046  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1047  *      @nrspq: number of values in @rspq
1048  *
1049  *      Programs the selected part of the VI's RSS mapping table with the
1050  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1051  *      until the full table range is populated.
1052  *
1053  *      The caller must ensure the values in @rspq are in the range 0..1023.
1054  */
1055 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1056                           int start, int n, const u16 *rspq, int nrspq)
1057 {
1058         const u16 *rsp = rspq;
1059         const u16 *rsp_end = rspq+nrspq;
1060         struct fw_rss_ind_tbl_cmd cmd;
1061
1062         /*
1063          * Initialize firmware command template to write the RSS table.
1064          */
1065         memset(&cmd, 0, sizeof(cmd));
1066         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1067                                      FW_CMD_REQUEST_F |
1068                                      FW_CMD_WRITE_F |
1069                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1070         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1071
1072         /*
1073          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1074          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1075          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1076          * reserved.
1077          */
1078         while (n > 0) {
1079                 __be32 *qp = &cmd.iq0_to_iq2;
1080                 int nq = min(n, 32);
1081                 int ret;
1082
1083                 /*
1084                  * Set up the firmware RSS command header to send the next
1085                  * "nq" Ingress Queue IDs to the firmware.
1086                  */
1087                 cmd.niqid = cpu_to_be16(nq);
1088                 cmd.startidx = cpu_to_be16(start);
1089
1090                 /*
1091                  * "nq" more done for the start of the next loop.
1092                  */
1093                 start += nq;
1094                 n -= nq;
1095
1096                 /*
1097                  * While there are still Ingress Queue IDs to stuff into the
1098                  * current firmware RSS command, retrieve them from the
1099                  * Ingress Queue ID array and insert them into the command.
1100                  */
1101                 while (nq > 0) {
1102                         /*
1103                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1104                          * around the Ingress Queue ID array if necessary) and
1105                          * insert them into the firmware RSS command at the
1106                          * current 3-tuple position within the commad.
1107                          */
1108                         u16 qbuf[3];
1109                         u16 *qbp = qbuf;
1110                         int nqbuf = min(3, nq);
1111
1112                         nq -= nqbuf;
1113                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1114                         while (nqbuf) {
1115                                 nqbuf--;
1116                                 *qbp++ = *rsp++;
1117                                 if (rsp >= rsp_end)
1118                                         rsp = rspq;
1119                         }
1120                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1121                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1122                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1123                 }
1124
1125                 /*
1126                  * Send this portion of the RRS table update to the firmware;
1127                  * bail out on any errors.
1128                  */
1129                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1130                 if (ret)
1131                         return ret;
1132         }
1133         return 0;
1134 }
1135
1136 /**
1137  *      t4vf_alloc_vi - allocate a virtual interface on a port
1138  *      @adapter: the adapter
1139  *      @port_id: physical port associated with the VI
1140  *
1141  *      Allocate a new Virtual Interface and bind it to the indicated
1142  *      physical port.  Return the new Virtual Interface Identifier on
1143  *      success, or a [negative] error number on failure.
1144  */
1145 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1146 {
1147         struct fw_vi_cmd cmd, rpl;
1148         int v;
1149
1150         /*
1151          * Execute a VI command to allocate Virtual Interface and return its
1152          * VIID.
1153          */
1154         memset(&cmd, 0, sizeof(cmd));
1155         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1156                                     FW_CMD_REQUEST_F |
1157                                     FW_CMD_WRITE_F |
1158                                     FW_CMD_EXEC_F);
1159         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1160                                          FW_VI_CMD_ALLOC_F);
1161         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1162         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1163         if (v)
1164                 return v;
1165
1166         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1167 }
1168
1169 /**
1170  *      t4vf_free_vi -- free a virtual interface
1171  *      @adapter: the adapter
1172  *      @viid: the virtual interface identifier
1173  *
1174  *      Free a previously allocated Virtual Interface.  Return an error on
1175  *      failure.
1176  */
1177 int t4vf_free_vi(struct adapter *adapter, int viid)
1178 {
1179         struct fw_vi_cmd cmd;
1180
1181         /*
1182          * Execute a VI command to free the Virtual Interface.
1183          */
1184         memset(&cmd, 0, sizeof(cmd));
1185         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1186                                     FW_CMD_REQUEST_F |
1187                                     FW_CMD_EXEC_F);
1188         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1189                                          FW_VI_CMD_FREE_F);
1190         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1191         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1192 }
1193
1194 /**
1195  *      t4vf_enable_vi - enable/disable a virtual interface
1196  *      @adapter: the adapter
1197  *      @viid: the Virtual Interface ID
1198  *      @rx_en: 1=enable Rx, 0=disable Rx
1199  *      @tx_en: 1=enable Tx, 0=disable Tx
1200  *
1201  *      Enables/disables a virtual interface.
1202  */
1203 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1204                    bool rx_en, bool tx_en)
1205 {
1206         struct fw_vi_enable_cmd cmd;
1207
1208         memset(&cmd, 0, sizeof(cmd));
1209         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1210                                      FW_CMD_REQUEST_F |
1211                                      FW_CMD_EXEC_F |
1212                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1213         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1214                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1215                                        FW_LEN16(cmd));
1216         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1217 }
1218
1219 /**
1220  *      t4vf_identify_port - identify a VI's port by blinking its LED
1221  *      @adapter: the adapter
1222  *      @viid: the Virtual Interface ID
1223  *      @nblinks: how many times to blink LED at 2.5 Hz
1224  *
1225  *      Identifies a VI's port by blinking its LED.
1226  */
1227 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1228                        unsigned int nblinks)
1229 {
1230         struct fw_vi_enable_cmd cmd;
1231
1232         memset(&cmd, 0, sizeof(cmd));
1233         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1234                                      FW_CMD_REQUEST_F |
1235                                      FW_CMD_EXEC_F |
1236                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1237         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1238                                        FW_LEN16(cmd));
1239         cmd.blinkdur = cpu_to_be16(nblinks);
1240         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1241 }
1242
1243 /**
1244  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1245  *      @adapter: the adapter
1246  *      @viid: the VI id
1247  *      @mtu: the new MTU or -1 for no change
1248  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1249  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1250  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1251  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1252  *              -1 no change
1253  *
1254  *      Sets Rx properties of a virtual interface.
1255  */
1256 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1257                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1258                     bool sleep_ok)
1259 {
1260         struct fw_vi_rxmode_cmd cmd;
1261
1262         /* convert to FW values */
1263         if (mtu < 0)
1264                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1265         if (promisc < 0)
1266                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1267         if (all_multi < 0)
1268                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1269         if (bcast < 0)
1270                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1271         if (vlanex < 0)
1272                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1273
1274         memset(&cmd, 0, sizeof(cmd));
1275         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1276                                      FW_CMD_REQUEST_F |
1277                                      FW_CMD_WRITE_F |
1278                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1279         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1280         cmd.mtu_to_vlanexen =
1281                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1282                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1283                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1284                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1285                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1286         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1287 }
1288
1289 /**
1290  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1291  *      @adapter: the adapter
1292  *      @viid: the Virtual Interface Identifier
1293  *      @free: if true any existing filters for this VI id are first removed
1294  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1295  *      @addr: the MAC address(es)
1296  *      @idx: where to store the index of each allocated filter
1297  *      @hash: pointer to hash address filter bitmap
1298  *      @sleep_ok: call is allowed to sleep
1299  *
1300  *      Allocates an exact-match filter for each of the supplied addresses and
1301  *      sets it to the corresponding address.  If @idx is not %NULL it should
1302  *      have at least @naddr entries, each of which will be set to the index of
1303  *      the filter allocated for the corresponding MAC address.  If a filter
1304  *      could not be allocated for an address its index is set to 0xffff.
1305  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1306  *      are hashed and update the hash filter bitmap pointed at by @hash.
1307  *
1308  *      Returns a negative error number or the number of filters allocated.
1309  */
1310 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1311                         unsigned int naddr, const u8 **addr, u16 *idx,
1312                         u64 *hash, bool sleep_ok)
1313 {
1314         int offset, ret = 0;
1315         unsigned nfilters = 0;
1316         unsigned int rem = naddr;
1317         struct fw_vi_mac_cmd cmd, rpl;
1318         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1319
1320         if (naddr > max_naddr)
1321                 return -EINVAL;
1322
1323         for (offset = 0; offset < naddr; /**/) {
1324                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1325                                          ? rem
1326                                          : ARRAY_SIZE(cmd.u.exact));
1327                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1328                                                      u.exact[fw_naddr]), 16);
1329                 struct fw_vi_mac_exact *p;
1330                 int i;
1331
1332                 memset(&cmd, 0, sizeof(cmd));
1333                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1334                                              FW_CMD_REQUEST_F |
1335                                              FW_CMD_WRITE_F |
1336                                              (free ? FW_CMD_EXEC_F : 0) |
1337                                              FW_VI_MAC_CMD_VIID_V(viid));
1338                 cmd.freemacs_to_len16 =
1339                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1340                                     FW_CMD_LEN16_V(len16));
1341
1342                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1343                         p->valid_to_idx = cpu_to_be16(
1344                                 FW_VI_MAC_CMD_VALID_F |
1345                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1346                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1347                 }
1348
1349
1350                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1351                                         sleep_ok);
1352                 if (ret && ret != -ENOMEM)
1353                         break;
1354
1355                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1356                         u16 index = FW_VI_MAC_CMD_IDX_G(
1357                                 be16_to_cpu(p->valid_to_idx));
1358
1359                         if (idx)
1360                                 idx[offset+i] =
1361                                         (index >= max_naddr
1362                                          ? 0xffff
1363                                          : index);
1364                         if (index < max_naddr)
1365                                 nfilters++;
1366                         else if (hash)
1367                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1368                 }
1369
1370                 free = false;
1371                 offset += fw_naddr;
1372                 rem -= fw_naddr;
1373         }
1374
1375         /*
1376          * If there were no errors or we merely ran out of room in our MAC
1377          * address arena, return the number of filters actually written.
1378          */
1379         if (ret == 0 || ret == -ENOMEM)
1380                 ret = nfilters;
1381         return ret;
1382 }
1383
1384 /**
1385  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1386  *      @adapter: the adapter
1387  *      @viid: the VI id
1388  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1389  *      @addr: the MAC address(es)
1390  *      @sleep_ok: call is allowed to sleep
1391  *
1392  *      Frees the exact-match filter for each of the supplied addresses
1393  *
1394  *      Returns a negative error number or the number of filters freed.
1395  */
1396 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1397                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1398 {
1399         int offset, ret = 0;
1400         struct fw_vi_mac_cmd cmd;
1401         unsigned int nfilters = 0;
1402         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1403         unsigned int rem = naddr;
1404
1405         if (naddr > max_naddr)
1406                 return -EINVAL;
1407
1408         for (offset = 0; offset < (int)naddr ; /**/) {
1409                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1410                                          rem : ARRAY_SIZE(cmd.u.exact));
1411                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1412                                                      u.exact[fw_naddr]), 16);
1413                 struct fw_vi_mac_exact *p;
1414                 int i;
1415
1416                 memset(&cmd, 0, sizeof(cmd));
1417                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1418                                      FW_CMD_REQUEST_F |
1419                                      FW_CMD_WRITE_F |
1420                                      FW_CMD_EXEC_V(0) |
1421                                      FW_VI_MAC_CMD_VIID_V(viid));
1422                 cmd.freemacs_to_len16 =
1423                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1424                                             FW_CMD_LEN16_V(len16));
1425
1426                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1427                         p->valid_to_idx = cpu_to_be16(
1428                                 FW_VI_MAC_CMD_VALID_F |
1429                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1430                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1431                 }
1432
1433                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1434                                         sleep_ok);
1435                 if (ret)
1436                         break;
1437
1438                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1439                         u16 index = FW_VI_MAC_CMD_IDX_G(
1440                                                 be16_to_cpu(p->valid_to_idx));
1441
1442                         if (index < max_naddr)
1443                                 nfilters++;
1444                 }
1445
1446                 offset += fw_naddr;
1447                 rem -= fw_naddr;
1448         }
1449
1450         if (ret == 0)
1451                 ret = nfilters;
1452         return ret;
1453 }
1454
1455 /**
1456  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1457  *      @adapter: the adapter
1458  *      @viid: the Virtual Interface ID
1459  *      @idx: index of existing filter for old value of MAC address, or -1
1460  *      @addr: the new MAC address value
1461  *      @persist: if idx < 0, the new MAC allocation should be persistent
1462  *
1463  *      Modifies an exact-match filter and sets it to the new MAC address.
1464  *      Note that in general it is not possible to modify the value of a given
1465  *      filter so the generic way to modify an address filter is to free the
1466  *      one being used by the old address value and allocate a new filter for
1467  *      the new address value.  @idx can be -1 if the address is a new
1468  *      addition.
1469  *
1470  *      Returns a negative error number or the index of the filter with the new
1471  *      MAC value.
1472  */
1473 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1474                     int idx, const u8 *addr, bool persist)
1475 {
1476         int ret;
1477         struct fw_vi_mac_cmd cmd, rpl;
1478         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1479         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1480                                              u.exact[1]), 16);
1481         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1482
1483         /*
1484          * If this is a new allocation, determine whether it should be
1485          * persistent (across a "freemacs" operation) or not.
1486          */
1487         if (idx < 0)
1488                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1489
1490         memset(&cmd, 0, sizeof(cmd));
1491         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1492                                      FW_CMD_REQUEST_F |
1493                                      FW_CMD_WRITE_F |
1494                                      FW_VI_MAC_CMD_VIID_V(viid));
1495         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1496         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1497                                       FW_VI_MAC_CMD_IDX_V(idx));
1498         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1499
1500         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1501         if (ret == 0) {
1502                 p = &rpl.u.exact[0];
1503                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1504                 if (ret >= max_mac_addr)
1505                         ret = -ENOMEM;
1506         }
1507         return ret;
1508 }
1509
1510 /**
1511  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1512  *      @adapter: the adapter
1513  *      @viid: the Virtual Interface Identifier
1514  *      @ucast: whether the hash filter should also match unicast addresses
1515  *      @vec: the value to be written to the hash filter
1516  *      @sleep_ok: call is allowed to sleep
1517  *
1518  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1519  */
1520 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1521                        bool ucast, u64 vec, bool sleep_ok)
1522 {
1523         struct fw_vi_mac_cmd cmd;
1524         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1525                                              u.exact[0]), 16);
1526
1527         memset(&cmd, 0, sizeof(cmd));
1528         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1529                                      FW_CMD_REQUEST_F |
1530                                      FW_CMD_WRITE_F |
1531                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1532         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1533                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1534                                             FW_CMD_LEN16_V(len16));
1535         cmd.u.hash.hashvec = cpu_to_be64(vec);
1536         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1537 }
1538
1539 /**
1540  *      t4vf_get_port_stats - collect "port" statistics
1541  *      @adapter: the adapter
1542  *      @pidx: the port index
1543  *      @s: the stats structure to fill
1544  *
1545  *      Collect statistics for the "port"'s Virtual Interface.
1546  */
1547 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1548                         struct t4vf_port_stats *s)
1549 {
1550         struct port_info *pi = adap2pinfo(adapter, pidx);
1551         struct fw_vi_stats_vf fwstats;
1552         unsigned int rem = VI_VF_NUM_STATS;
1553         __be64 *fwsp = (__be64 *)&fwstats;
1554
1555         /*
1556          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1557          * commands.  We could use a Work Request and get all of them at once
1558          * but that's an asynchronous interface which is awkward to use.
1559          */
1560         while (rem) {
1561                 unsigned int ix = VI_VF_NUM_STATS - rem;
1562                 unsigned int nstats = min(6U, rem);
1563                 struct fw_vi_stats_cmd cmd, rpl;
1564                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1565                               sizeof(struct fw_vi_stats_ctl));
1566                 size_t len16 = DIV_ROUND_UP(len, 16);
1567                 int ret;
1568
1569                 memset(&cmd, 0, sizeof(cmd));
1570                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1571                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1572                                              FW_CMD_REQUEST_F |
1573                                              FW_CMD_READ_F);
1574                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1575                 cmd.u.ctl.nstats_ix =
1576                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1577                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1578                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1579                 if (ret)
1580                         return ret;
1581
1582                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1583
1584                 rem -= nstats;
1585                 fwsp += nstats;
1586         }
1587
1588         /*
1589          * Translate firmware statistics into host native statistics.
1590          */
1591         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1592         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1593         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1594         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1595         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1596         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1597         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1598         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1599         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1600
1601         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1602         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1603         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1604         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1605         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1606         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1607
1608         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1609
1610         return 0;
1611 }
1612
1613 /**
1614  *      t4vf_iq_free - free an ingress queue and its free lists
1615  *      @adapter: the adapter
1616  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1617  *      @iqid: ingress queue ID
1618  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1619  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1620  *
1621  *      Frees an ingress queue and its associated free lists, if any.
1622  */
1623 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1624                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1625 {
1626         struct fw_iq_cmd cmd;
1627
1628         memset(&cmd, 0, sizeof(cmd));
1629         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1630                                     FW_CMD_REQUEST_F |
1631                                     FW_CMD_EXEC_F);
1632         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1633                                          FW_LEN16(cmd));
1634         cmd.type_to_iqandstindex =
1635                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1636
1637         cmd.iqid = cpu_to_be16(iqid);
1638         cmd.fl0id = cpu_to_be16(fl0id);
1639         cmd.fl1id = cpu_to_be16(fl1id);
1640         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1641 }
1642
1643 /**
1644  *      t4vf_eth_eq_free - free an Ethernet egress queue
1645  *      @adapter: the adapter
1646  *      @eqid: egress queue ID
1647  *
1648  *      Frees an Ethernet egress queue.
1649  */
1650 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1651 {
1652         struct fw_eq_eth_cmd cmd;
1653
1654         memset(&cmd, 0, sizeof(cmd));
1655         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1656                                     FW_CMD_REQUEST_F |
1657                                     FW_CMD_EXEC_F);
1658         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1659                                          FW_LEN16(cmd));
1660         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1661         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1662 }
1663
1664 /**
1665  *      t4vf_handle_fw_rpl - process a firmware reply message
1666  *      @adapter: the adapter
1667  *      @rpl: start of the firmware message
1668  *
1669  *      Processes a firmware message, such as link state change messages.
1670  */
1671 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1672 {
1673         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1674         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1675
1676         switch (opcode) {
1677         case FW_PORT_CMD: {
1678                 /*
1679                  * Link/module state change message.
1680                  */
1681                 const struct fw_port_cmd *port_cmd =
1682                         (const struct fw_port_cmd *)rpl;
1683                 u32 stat, mod;
1684                 int action, port_id, link_ok, speed, fc, pidx;
1685
1686                 /*
1687                  * Extract various fields from port status change message.
1688                  */
1689                 action = FW_PORT_CMD_ACTION_G(
1690                         be32_to_cpu(port_cmd->action_to_len16));
1691                 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1692                         dev_err(adapter->pdev_dev,
1693                                 "Unknown firmware PORT reply action %x\n",
1694                                 action);
1695                         break;
1696                 }
1697
1698                 port_id = FW_PORT_CMD_PORTID_G(
1699                         be32_to_cpu(port_cmd->op_to_portid));
1700
1701                 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1702                 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1703                 speed = 0;
1704                 fc = 0;
1705                 if (stat & FW_PORT_CMD_RXPAUSE_F)
1706                         fc |= PAUSE_RX;
1707                 if (stat & FW_PORT_CMD_TXPAUSE_F)
1708                         fc |= PAUSE_TX;
1709                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1710                         speed = 100;
1711                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1712                         speed = 1000;
1713                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1714                         speed = 10000;
1715                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1716                         speed = 40000;
1717
1718                 /*
1719                  * Scan all of our "ports" (Virtual Interfaces) looking for
1720                  * those bound to the physical port which has changed.  If
1721                  * our recorded state doesn't match the current state,
1722                  * signal that change to the OS code.
1723                  */
1724                 for_each_port(adapter, pidx) {
1725                         struct port_info *pi = adap2pinfo(adapter, pidx);
1726                         struct link_config *lc;
1727
1728                         if (pi->port_id != port_id)
1729                                 continue;
1730
1731                         lc = &pi->link_cfg;
1732
1733                         mod = FW_PORT_CMD_MODTYPE_G(stat);
1734                         if (mod != pi->mod_type) {
1735                                 pi->mod_type = mod;
1736                                 t4vf_os_portmod_changed(adapter, pidx);
1737                         }
1738
1739                         if (link_ok != lc->link_ok || speed != lc->speed ||
1740                             fc != lc->fc) {
1741                                 /* something changed */
1742                                 lc->link_ok = link_ok;
1743                                 lc->speed = speed;
1744                                 lc->fc = fc;
1745                                 lc->supported =
1746                                         be16_to_cpu(port_cmd->u.info.pcap);
1747                                 lc->lp_advertising =
1748                                         be16_to_cpu(port_cmd->u.info.lpacap);
1749                                 t4vf_os_link_changed(adapter, pidx, link_ok);
1750                         }
1751                 }
1752                 break;
1753         }
1754
1755         default:
1756                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1757                         opcode);
1758         }
1759         return 0;
1760 }
1761
1762 /**
1763  */
1764 int t4vf_prep_adapter(struct adapter *adapter)
1765 {
1766         int err;
1767         unsigned int chipid;
1768
1769         /* Wait for the device to become ready before proceeding ...
1770          */
1771         err = t4vf_wait_dev_ready(adapter);
1772         if (err)
1773                 return err;
1774
1775         /* Default port and clock for debugging in case we can't reach
1776          * firmware.
1777          */
1778         adapter->params.nports = 1;
1779         adapter->params.vfres.pmask = 1;
1780         adapter->params.vpd.cclk = 50000;
1781
1782         adapter->params.chip = 0;
1783         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1784         case CHELSIO_T4:
1785                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1786                 adapter->params.arch.sge_fl_db = DBPRIO_F;
1787                 adapter->params.arch.mps_tcam_size =
1788                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
1789                 break;
1790
1791         case CHELSIO_T5:
1792                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1793                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1794                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1795                 adapter->params.arch.mps_tcam_size =
1796                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1797                 break;
1798
1799         case CHELSIO_T6:
1800                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1801                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1802                 adapter->params.arch.sge_fl_db = 0;
1803                 adapter->params.arch.mps_tcam_size =
1804                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1805                 break;
1806         }
1807
1808         return 0;
1809 }