Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rearely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boudaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9820, 0x983c,
1383                 0x9850, 0x9864,
1384                 0x9c00, 0x9c6c,
1385                 0x9c80, 0x9cec,
1386                 0x9d00, 0x9d6c,
1387                 0x9d80, 0x9dec,
1388                 0x9e00, 0x9e6c,
1389                 0x9e80, 0x9eec,
1390                 0x9f00, 0x9f6c,
1391                 0x9f80, 0xa020,
1392                 0xd004, 0xd004,
1393                 0xd010, 0xd03c,
1394                 0xdfc0, 0xdfe0,
1395                 0xe000, 0x1106c,
1396                 0x11074, 0x11088,
1397                 0x1109c, 0x1117c,
1398                 0x11190, 0x11204,
1399                 0x19040, 0x1906c,
1400                 0x19078, 0x19080,
1401                 0x1908c, 0x190e8,
1402                 0x190f0, 0x190f8,
1403                 0x19100, 0x19110,
1404                 0x19120, 0x19124,
1405                 0x19150, 0x19194,
1406                 0x1919c, 0x191b0,
1407                 0x191d0, 0x191e8,
1408                 0x19238, 0x19290,
1409                 0x193f8, 0x19428,
1410                 0x19430, 0x19444,
1411                 0x1944c, 0x1946c,
1412                 0x19474, 0x19474,
1413                 0x19490, 0x194cc,
1414                 0x194f0, 0x194f8,
1415                 0x19c00, 0x19c08,
1416                 0x19c10, 0x19c60,
1417                 0x19c94, 0x19ce4,
1418                 0x19cf0, 0x19d40,
1419                 0x19d50, 0x19d94,
1420                 0x19da0, 0x19de8,
1421                 0x19df0, 0x19e10,
1422                 0x19e50, 0x19e90,
1423                 0x19ea0, 0x19f24,
1424                 0x19f34, 0x19f34,
1425                 0x19f40, 0x19f50,
1426                 0x19f90, 0x19fb4,
1427                 0x19fc4, 0x19fe4,
1428                 0x1a000, 0x1a004,
1429                 0x1a010, 0x1a06c,
1430                 0x1a0b0, 0x1a0e4,
1431                 0x1a0ec, 0x1a0f8,
1432                 0x1a100, 0x1a108,
1433                 0x1a114, 0x1a120,
1434                 0x1a128, 0x1a130,
1435                 0x1a138, 0x1a138,
1436                 0x1a190, 0x1a1c4,
1437                 0x1a1fc, 0x1a1fc,
1438                 0x1e008, 0x1e00c,
1439                 0x1e040, 0x1e044,
1440                 0x1e04c, 0x1e04c,
1441                 0x1e284, 0x1e290,
1442                 0x1e2c0, 0x1e2c0,
1443                 0x1e2e0, 0x1e2e0,
1444                 0x1e300, 0x1e384,
1445                 0x1e3c0, 0x1e3c8,
1446                 0x1e408, 0x1e40c,
1447                 0x1e440, 0x1e444,
1448                 0x1e44c, 0x1e44c,
1449                 0x1e684, 0x1e690,
1450                 0x1e6c0, 0x1e6c0,
1451                 0x1e6e0, 0x1e6e0,
1452                 0x1e700, 0x1e784,
1453                 0x1e7c0, 0x1e7c8,
1454                 0x1e808, 0x1e80c,
1455                 0x1e840, 0x1e844,
1456                 0x1e84c, 0x1e84c,
1457                 0x1ea84, 0x1ea90,
1458                 0x1eac0, 0x1eac0,
1459                 0x1eae0, 0x1eae0,
1460                 0x1eb00, 0x1eb84,
1461                 0x1ebc0, 0x1ebc8,
1462                 0x1ec08, 0x1ec0c,
1463                 0x1ec40, 0x1ec44,
1464                 0x1ec4c, 0x1ec4c,
1465                 0x1ee84, 0x1ee90,
1466                 0x1eec0, 0x1eec0,
1467                 0x1eee0, 0x1eee0,
1468                 0x1ef00, 0x1ef84,
1469                 0x1efc0, 0x1efc8,
1470                 0x1f008, 0x1f00c,
1471                 0x1f040, 0x1f044,
1472                 0x1f04c, 0x1f04c,
1473                 0x1f284, 0x1f290,
1474                 0x1f2c0, 0x1f2c0,
1475                 0x1f2e0, 0x1f2e0,
1476                 0x1f300, 0x1f384,
1477                 0x1f3c0, 0x1f3c8,
1478                 0x1f408, 0x1f40c,
1479                 0x1f440, 0x1f444,
1480                 0x1f44c, 0x1f44c,
1481                 0x1f684, 0x1f690,
1482                 0x1f6c0, 0x1f6c0,
1483                 0x1f6e0, 0x1f6e0,
1484                 0x1f700, 0x1f784,
1485                 0x1f7c0, 0x1f7c8,
1486                 0x1f808, 0x1f80c,
1487                 0x1f840, 0x1f844,
1488                 0x1f84c, 0x1f84c,
1489                 0x1fa84, 0x1fa90,
1490                 0x1fac0, 0x1fac0,
1491                 0x1fae0, 0x1fae0,
1492                 0x1fb00, 0x1fb84,
1493                 0x1fbc0, 0x1fbc8,
1494                 0x1fc08, 0x1fc0c,
1495                 0x1fc40, 0x1fc44,
1496                 0x1fc4c, 0x1fc4c,
1497                 0x1fe84, 0x1fe90,
1498                 0x1fec0, 0x1fec0,
1499                 0x1fee0, 0x1fee0,
1500                 0x1ff00, 0x1ff84,
1501                 0x1ffc0, 0x1ffc8,
1502                 0x30000, 0x30030,
1503                 0x30100, 0x30144,
1504                 0x30190, 0x301a0,
1505                 0x301a8, 0x301b8,
1506                 0x301c4, 0x301c8,
1507                 0x301d0, 0x301d0,
1508                 0x30200, 0x30318,
1509                 0x30400, 0x304b4,
1510                 0x304c0, 0x3052c,
1511                 0x30540, 0x3061c,
1512                 0x30800, 0x30828,
1513                 0x30834, 0x30834,
1514                 0x308c0, 0x30908,
1515                 0x30910, 0x309ac,
1516                 0x30a00, 0x30a14,
1517                 0x30a1c, 0x30a2c,
1518                 0x30a44, 0x30a50,
1519                 0x30a74, 0x30a74,
1520                 0x30a7c, 0x30afc,
1521                 0x30b08, 0x30c24,
1522                 0x30d00, 0x30d00,
1523                 0x30d08, 0x30d14,
1524                 0x30d1c, 0x30d20,
1525                 0x30d3c, 0x30d3c,
1526                 0x30d48, 0x30d50,
1527                 0x31200, 0x3120c,
1528                 0x31220, 0x31220,
1529                 0x31240, 0x31240,
1530                 0x31600, 0x3160c,
1531                 0x31a00, 0x31a1c,
1532                 0x31e00, 0x31e20,
1533                 0x31e38, 0x31e3c,
1534                 0x31e80, 0x31e80,
1535                 0x31e88, 0x31ea8,
1536                 0x31eb0, 0x31eb4,
1537                 0x31ec8, 0x31ed4,
1538                 0x31fb8, 0x32004,
1539                 0x32200, 0x32200,
1540                 0x32208, 0x32240,
1541                 0x32248, 0x32280,
1542                 0x32288, 0x322c0,
1543                 0x322c8, 0x322fc,
1544                 0x32600, 0x32630,
1545                 0x32a00, 0x32abc,
1546                 0x32b00, 0x32b10,
1547                 0x32b20, 0x32b30,
1548                 0x32b40, 0x32b50,
1549                 0x32b60, 0x32b70,
1550                 0x33000, 0x33028,
1551                 0x33030, 0x33048,
1552                 0x33060, 0x33068,
1553                 0x33070, 0x3309c,
1554                 0x330f0, 0x33128,
1555                 0x33130, 0x33148,
1556                 0x33160, 0x33168,
1557                 0x33170, 0x3319c,
1558                 0x331f0, 0x33238,
1559                 0x33240, 0x33240,
1560                 0x33248, 0x33250,
1561                 0x3325c, 0x33264,
1562                 0x33270, 0x332b8,
1563                 0x332c0, 0x332e4,
1564                 0x332f8, 0x33338,
1565                 0x33340, 0x33340,
1566                 0x33348, 0x33350,
1567                 0x3335c, 0x33364,
1568                 0x33370, 0x333b8,
1569                 0x333c0, 0x333e4,
1570                 0x333f8, 0x33428,
1571                 0x33430, 0x33448,
1572                 0x33460, 0x33468,
1573                 0x33470, 0x3349c,
1574                 0x334f0, 0x33528,
1575                 0x33530, 0x33548,
1576                 0x33560, 0x33568,
1577                 0x33570, 0x3359c,
1578                 0x335f0, 0x33638,
1579                 0x33640, 0x33640,
1580                 0x33648, 0x33650,
1581                 0x3365c, 0x33664,
1582                 0x33670, 0x336b8,
1583                 0x336c0, 0x336e4,
1584                 0x336f8, 0x33738,
1585                 0x33740, 0x33740,
1586                 0x33748, 0x33750,
1587                 0x3375c, 0x33764,
1588                 0x33770, 0x337b8,
1589                 0x337c0, 0x337e4,
1590                 0x337f8, 0x337fc,
1591                 0x33814, 0x33814,
1592                 0x3382c, 0x3382c,
1593                 0x33880, 0x3388c,
1594                 0x338e8, 0x338ec,
1595                 0x33900, 0x33928,
1596                 0x33930, 0x33948,
1597                 0x33960, 0x33968,
1598                 0x33970, 0x3399c,
1599                 0x339f0, 0x33a38,
1600                 0x33a40, 0x33a40,
1601                 0x33a48, 0x33a50,
1602                 0x33a5c, 0x33a64,
1603                 0x33a70, 0x33ab8,
1604                 0x33ac0, 0x33ae4,
1605                 0x33af8, 0x33b10,
1606                 0x33b28, 0x33b28,
1607                 0x33b3c, 0x33b50,
1608                 0x33bf0, 0x33c10,
1609                 0x33c28, 0x33c28,
1610                 0x33c3c, 0x33c50,
1611                 0x33cf0, 0x33cfc,
1612                 0x34000, 0x34030,
1613                 0x34100, 0x34144,
1614                 0x34190, 0x341a0,
1615                 0x341a8, 0x341b8,
1616                 0x341c4, 0x341c8,
1617                 0x341d0, 0x341d0,
1618                 0x34200, 0x34318,
1619                 0x34400, 0x344b4,
1620                 0x344c0, 0x3452c,
1621                 0x34540, 0x3461c,
1622                 0x34800, 0x34828,
1623                 0x34834, 0x34834,
1624                 0x348c0, 0x34908,
1625                 0x34910, 0x349ac,
1626                 0x34a00, 0x34a14,
1627                 0x34a1c, 0x34a2c,
1628                 0x34a44, 0x34a50,
1629                 0x34a74, 0x34a74,
1630                 0x34a7c, 0x34afc,
1631                 0x34b08, 0x34c24,
1632                 0x34d00, 0x34d00,
1633                 0x34d08, 0x34d14,
1634                 0x34d1c, 0x34d20,
1635                 0x34d3c, 0x34d3c,
1636                 0x34d48, 0x34d50,
1637                 0x35200, 0x3520c,
1638                 0x35220, 0x35220,
1639                 0x35240, 0x35240,
1640                 0x35600, 0x3560c,
1641                 0x35a00, 0x35a1c,
1642                 0x35e00, 0x35e20,
1643                 0x35e38, 0x35e3c,
1644                 0x35e80, 0x35e80,
1645                 0x35e88, 0x35ea8,
1646                 0x35eb0, 0x35eb4,
1647                 0x35ec8, 0x35ed4,
1648                 0x35fb8, 0x36004,
1649                 0x36200, 0x36200,
1650                 0x36208, 0x36240,
1651                 0x36248, 0x36280,
1652                 0x36288, 0x362c0,
1653                 0x362c8, 0x362fc,
1654                 0x36600, 0x36630,
1655                 0x36a00, 0x36abc,
1656                 0x36b00, 0x36b10,
1657                 0x36b20, 0x36b30,
1658                 0x36b40, 0x36b50,
1659                 0x36b60, 0x36b70,
1660                 0x37000, 0x37028,
1661                 0x37030, 0x37048,
1662                 0x37060, 0x37068,
1663                 0x37070, 0x3709c,
1664                 0x370f0, 0x37128,
1665                 0x37130, 0x37148,
1666                 0x37160, 0x37168,
1667                 0x37170, 0x3719c,
1668                 0x371f0, 0x37238,
1669                 0x37240, 0x37240,
1670                 0x37248, 0x37250,
1671                 0x3725c, 0x37264,
1672                 0x37270, 0x372b8,
1673                 0x372c0, 0x372e4,
1674                 0x372f8, 0x37338,
1675                 0x37340, 0x37340,
1676                 0x37348, 0x37350,
1677                 0x3735c, 0x37364,
1678                 0x37370, 0x373b8,
1679                 0x373c0, 0x373e4,
1680                 0x373f8, 0x37428,
1681                 0x37430, 0x37448,
1682                 0x37460, 0x37468,
1683                 0x37470, 0x3749c,
1684                 0x374f0, 0x37528,
1685                 0x37530, 0x37548,
1686                 0x37560, 0x37568,
1687                 0x37570, 0x3759c,
1688                 0x375f0, 0x37638,
1689                 0x37640, 0x37640,
1690                 0x37648, 0x37650,
1691                 0x3765c, 0x37664,
1692                 0x37670, 0x376b8,
1693                 0x376c0, 0x376e4,
1694                 0x376f8, 0x37738,
1695                 0x37740, 0x37740,
1696                 0x37748, 0x37750,
1697                 0x3775c, 0x37764,
1698                 0x37770, 0x377b8,
1699                 0x377c0, 0x377e4,
1700                 0x377f8, 0x377fc,
1701                 0x37814, 0x37814,
1702                 0x3782c, 0x3782c,
1703                 0x37880, 0x3788c,
1704                 0x378e8, 0x378ec,
1705                 0x37900, 0x37928,
1706                 0x37930, 0x37948,
1707                 0x37960, 0x37968,
1708                 0x37970, 0x3799c,
1709                 0x379f0, 0x37a38,
1710                 0x37a40, 0x37a40,
1711                 0x37a48, 0x37a50,
1712                 0x37a5c, 0x37a64,
1713                 0x37a70, 0x37ab8,
1714                 0x37ac0, 0x37ae4,
1715                 0x37af8, 0x37b10,
1716                 0x37b28, 0x37b28,
1717                 0x37b3c, 0x37b50,
1718                 0x37bf0, 0x37c10,
1719                 0x37c28, 0x37c28,
1720                 0x37c3c, 0x37c50,
1721                 0x37cf0, 0x37cfc,
1722                 0x38000, 0x38030,
1723                 0x38100, 0x38144,
1724                 0x38190, 0x381a0,
1725                 0x381a8, 0x381b8,
1726                 0x381c4, 0x381c8,
1727                 0x381d0, 0x381d0,
1728                 0x38200, 0x38318,
1729                 0x38400, 0x384b4,
1730                 0x384c0, 0x3852c,
1731                 0x38540, 0x3861c,
1732                 0x38800, 0x38828,
1733                 0x38834, 0x38834,
1734                 0x388c0, 0x38908,
1735                 0x38910, 0x389ac,
1736                 0x38a00, 0x38a14,
1737                 0x38a1c, 0x38a2c,
1738                 0x38a44, 0x38a50,
1739                 0x38a74, 0x38a74,
1740                 0x38a7c, 0x38afc,
1741                 0x38b08, 0x38c24,
1742                 0x38d00, 0x38d00,
1743                 0x38d08, 0x38d14,
1744                 0x38d1c, 0x38d20,
1745                 0x38d3c, 0x38d3c,
1746                 0x38d48, 0x38d50,
1747                 0x39200, 0x3920c,
1748                 0x39220, 0x39220,
1749                 0x39240, 0x39240,
1750                 0x39600, 0x3960c,
1751                 0x39a00, 0x39a1c,
1752                 0x39e00, 0x39e20,
1753                 0x39e38, 0x39e3c,
1754                 0x39e80, 0x39e80,
1755                 0x39e88, 0x39ea8,
1756                 0x39eb0, 0x39eb4,
1757                 0x39ec8, 0x39ed4,
1758                 0x39fb8, 0x3a004,
1759                 0x3a200, 0x3a200,
1760                 0x3a208, 0x3a240,
1761                 0x3a248, 0x3a280,
1762                 0x3a288, 0x3a2c0,
1763                 0x3a2c8, 0x3a2fc,
1764                 0x3a600, 0x3a630,
1765                 0x3aa00, 0x3aabc,
1766                 0x3ab00, 0x3ab10,
1767                 0x3ab20, 0x3ab30,
1768                 0x3ab40, 0x3ab50,
1769                 0x3ab60, 0x3ab70,
1770                 0x3b000, 0x3b028,
1771                 0x3b030, 0x3b048,
1772                 0x3b060, 0x3b068,
1773                 0x3b070, 0x3b09c,
1774                 0x3b0f0, 0x3b128,
1775                 0x3b130, 0x3b148,
1776                 0x3b160, 0x3b168,
1777                 0x3b170, 0x3b19c,
1778                 0x3b1f0, 0x3b238,
1779                 0x3b240, 0x3b240,
1780                 0x3b248, 0x3b250,
1781                 0x3b25c, 0x3b264,
1782                 0x3b270, 0x3b2b8,
1783                 0x3b2c0, 0x3b2e4,
1784                 0x3b2f8, 0x3b338,
1785                 0x3b340, 0x3b340,
1786                 0x3b348, 0x3b350,
1787                 0x3b35c, 0x3b364,
1788                 0x3b370, 0x3b3b8,
1789                 0x3b3c0, 0x3b3e4,
1790                 0x3b3f8, 0x3b428,
1791                 0x3b430, 0x3b448,
1792                 0x3b460, 0x3b468,
1793                 0x3b470, 0x3b49c,
1794                 0x3b4f0, 0x3b528,
1795                 0x3b530, 0x3b548,
1796                 0x3b560, 0x3b568,
1797                 0x3b570, 0x3b59c,
1798                 0x3b5f0, 0x3b638,
1799                 0x3b640, 0x3b640,
1800                 0x3b648, 0x3b650,
1801                 0x3b65c, 0x3b664,
1802                 0x3b670, 0x3b6b8,
1803                 0x3b6c0, 0x3b6e4,
1804                 0x3b6f8, 0x3b738,
1805                 0x3b740, 0x3b740,
1806                 0x3b748, 0x3b750,
1807                 0x3b75c, 0x3b764,
1808                 0x3b770, 0x3b7b8,
1809                 0x3b7c0, 0x3b7e4,
1810                 0x3b7f8, 0x3b7fc,
1811                 0x3b814, 0x3b814,
1812                 0x3b82c, 0x3b82c,
1813                 0x3b880, 0x3b88c,
1814                 0x3b8e8, 0x3b8ec,
1815                 0x3b900, 0x3b928,
1816                 0x3b930, 0x3b948,
1817                 0x3b960, 0x3b968,
1818                 0x3b970, 0x3b99c,
1819                 0x3b9f0, 0x3ba38,
1820                 0x3ba40, 0x3ba40,
1821                 0x3ba48, 0x3ba50,
1822                 0x3ba5c, 0x3ba64,
1823                 0x3ba70, 0x3bab8,
1824                 0x3bac0, 0x3bae4,
1825                 0x3baf8, 0x3bb10,
1826                 0x3bb28, 0x3bb28,
1827                 0x3bb3c, 0x3bb50,
1828                 0x3bbf0, 0x3bc10,
1829                 0x3bc28, 0x3bc28,
1830                 0x3bc3c, 0x3bc50,
1831                 0x3bcf0, 0x3bcfc,
1832                 0x3c000, 0x3c030,
1833                 0x3c100, 0x3c144,
1834                 0x3c190, 0x3c1a0,
1835                 0x3c1a8, 0x3c1b8,
1836                 0x3c1c4, 0x3c1c8,
1837                 0x3c1d0, 0x3c1d0,
1838                 0x3c200, 0x3c318,
1839                 0x3c400, 0x3c4b4,
1840                 0x3c4c0, 0x3c52c,
1841                 0x3c540, 0x3c61c,
1842                 0x3c800, 0x3c828,
1843                 0x3c834, 0x3c834,
1844                 0x3c8c0, 0x3c908,
1845                 0x3c910, 0x3c9ac,
1846                 0x3ca00, 0x3ca14,
1847                 0x3ca1c, 0x3ca2c,
1848                 0x3ca44, 0x3ca50,
1849                 0x3ca74, 0x3ca74,
1850                 0x3ca7c, 0x3cafc,
1851                 0x3cb08, 0x3cc24,
1852                 0x3cd00, 0x3cd00,
1853                 0x3cd08, 0x3cd14,
1854                 0x3cd1c, 0x3cd20,
1855                 0x3cd3c, 0x3cd3c,
1856                 0x3cd48, 0x3cd50,
1857                 0x3d200, 0x3d20c,
1858                 0x3d220, 0x3d220,
1859                 0x3d240, 0x3d240,
1860                 0x3d600, 0x3d60c,
1861                 0x3da00, 0x3da1c,
1862                 0x3de00, 0x3de20,
1863                 0x3de38, 0x3de3c,
1864                 0x3de80, 0x3de80,
1865                 0x3de88, 0x3dea8,
1866                 0x3deb0, 0x3deb4,
1867                 0x3dec8, 0x3ded4,
1868                 0x3dfb8, 0x3e004,
1869                 0x3e200, 0x3e200,
1870                 0x3e208, 0x3e240,
1871                 0x3e248, 0x3e280,
1872                 0x3e288, 0x3e2c0,
1873                 0x3e2c8, 0x3e2fc,
1874                 0x3e600, 0x3e630,
1875                 0x3ea00, 0x3eabc,
1876                 0x3eb00, 0x3eb10,
1877                 0x3eb20, 0x3eb30,
1878                 0x3eb40, 0x3eb50,
1879                 0x3eb60, 0x3eb70,
1880                 0x3f000, 0x3f028,
1881                 0x3f030, 0x3f048,
1882                 0x3f060, 0x3f068,
1883                 0x3f070, 0x3f09c,
1884                 0x3f0f0, 0x3f128,
1885                 0x3f130, 0x3f148,
1886                 0x3f160, 0x3f168,
1887                 0x3f170, 0x3f19c,
1888                 0x3f1f0, 0x3f238,
1889                 0x3f240, 0x3f240,
1890                 0x3f248, 0x3f250,
1891                 0x3f25c, 0x3f264,
1892                 0x3f270, 0x3f2b8,
1893                 0x3f2c0, 0x3f2e4,
1894                 0x3f2f8, 0x3f338,
1895                 0x3f340, 0x3f340,
1896                 0x3f348, 0x3f350,
1897                 0x3f35c, 0x3f364,
1898                 0x3f370, 0x3f3b8,
1899                 0x3f3c0, 0x3f3e4,
1900                 0x3f3f8, 0x3f428,
1901                 0x3f430, 0x3f448,
1902                 0x3f460, 0x3f468,
1903                 0x3f470, 0x3f49c,
1904                 0x3f4f0, 0x3f528,
1905                 0x3f530, 0x3f548,
1906                 0x3f560, 0x3f568,
1907                 0x3f570, 0x3f59c,
1908                 0x3f5f0, 0x3f638,
1909                 0x3f640, 0x3f640,
1910                 0x3f648, 0x3f650,
1911                 0x3f65c, 0x3f664,
1912                 0x3f670, 0x3f6b8,
1913                 0x3f6c0, 0x3f6e4,
1914                 0x3f6f8, 0x3f738,
1915                 0x3f740, 0x3f740,
1916                 0x3f748, 0x3f750,
1917                 0x3f75c, 0x3f764,
1918                 0x3f770, 0x3f7b8,
1919                 0x3f7c0, 0x3f7e4,
1920                 0x3f7f8, 0x3f7fc,
1921                 0x3f814, 0x3f814,
1922                 0x3f82c, 0x3f82c,
1923                 0x3f880, 0x3f88c,
1924                 0x3f8e8, 0x3f8ec,
1925                 0x3f900, 0x3f928,
1926                 0x3f930, 0x3f948,
1927                 0x3f960, 0x3f968,
1928                 0x3f970, 0x3f99c,
1929                 0x3f9f0, 0x3fa38,
1930                 0x3fa40, 0x3fa40,
1931                 0x3fa48, 0x3fa50,
1932                 0x3fa5c, 0x3fa64,
1933                 0x3fa70, 0x3fab8,
1934                 0x3fac0, 0x3fae4,
1935                 0x3faf8, 0x3fb10,
1936                 0x3fb28, 0x3fb28,
1937                 0x3fb3c, 0x3fb50,
1938                 0x3fbf0, 0x3fc10,
1939                 0x3fc28, 0x3fc28,
1940                 0x3fc3c, 0x3fc50,
1941                 0x3fcf0, 0x3fcfc,
1942                 0x40000, 0x4000c,
1943                 0x40040, 0x40050,
1944                 0x40060, 0x40068,
1945                 0x4007c, 0x4008c,
1946                 0x40094, 0x400b0,
1947                 0x400c0, 0x40144,
1948                 0x40180, 0x4018c,
1949                 0x40200, 0x40254,
1950                 0x40260, 0x40264,
1951                 0x40270, 0x40288,
1952                 0x40290, 0x40298,
1953                 0x402ac, 0x402c8,
1954                 0x402d0, 0x402e0,
1955                 0x402f0, 0x402f0,
1956                 0x40300, 0x4033c,
1957                 0x403f8, 0x403fc,
1958                 0x41304, 0x413c4,
1959                 0x41400, 0x4140c,
1960                 0x41414, 0x4141c,
1961                 0x41480, 0x414d0,
1962                 0x44000, 0x44054,
1963                 0x4405c, 0x44078,
1964                 0x440c0, 0x44174,
1965                 0x44180, 0x441ac,
1966                 0x441b4, 0x441b8,
1967                 0x441c0, 0x44254,
1968                 0x4425c, 0x44278,
1969                 0x442c0, 0x44374,
1970                 0x44380, 0x443ac,
1971                 0x443b4, 0x443b8,
1972                 0x443c0, 0x44454,
1973                 0x4445c, 0x44478,
1974                 0x444c0, 0x44574,
1975                 0x44580, 0x445ac,
1976                 0x445b4, 0x445b8,
1977                 0x445c0, 0x44654,
1978                 0x4465c, 0x44678,
1979                 0x446c0, 0x44774,
1980                 0x44780, 0x447ac,
1981                 0x447b4, 0x447b8,
1982                 0x447c0, 0x44854,
1983                 0x4485c, 0x44878,
1984                 0x448c0, 0x44974,
1985                 0x44980, 0x449ac,
1986                 0x449b4, 0x449b8,
1987                 0x449c0, 0x449fc,
1988                 0x45000, 0x45004,
1989                 0x45010, 0x45030,
1990                 0x45040, 0x45060,
1991                 0x45068, 0x45068,
1992                 0x45080, 0x45084,
1993                 0x450a0, 0x450b0,
1994                 0x45200, 0x45204,
1995                 0x45210, 0x45230,
1996                 0x45240, 0x45260,
1997                 0x45268, 0x45268,
1998                 0x45280, 0x45284,
1999                 0x452a0, 0x452b0,
2000                 0x460c0, 0x460e4,
2001                 0x47000, 0x4703c,
2002                 0x47044, 0x4708c,
2003                 0x47200, 0x47250,
2004                 0x47400, 0x47408,
2005                 0x47414, 0x47420,
2006                 0x47600, 0x47618,
2007                 0x47800, 0x47814,
2008                 0x48000, 0x4800c,
2009                 0x48040, 0x48050,
2010                 0x48060, 0x48068,
2011                 0x4807c, 0x4808c,
2012                 0x48094, 0x480b0,
2013                 0x480c0, 0x48144,
2014                 0x48180, 0x4818c,
2015                 0x48200, 0x48254,
2016                 0x48260, 0x48264,
2017                 0x48270, 0x48288,
2018                 0x48290, 0x48298,
2019                 0x482ac, 0x482c8,
2020                 0x482d0, 0x482e0,
2021                 0x482f0, 0x482f0,
2022                 0x48300, 0x4833c,
2023                 0x483f8, 0x483fc,
2024                 0x49304, 0x493c4,
2025                 0x49400, 0x4940c,
2026                 0x49414, 0x4941c,
2027                 0x49480, 0x494d0,
2028                 0x4c000, 0x4c054,
2029                 0x4c05c, 0x4c078,
2030                 0x4c0c0, 0x4c174,
2031                 0x4c180, 0x4c1ac,
2032                 0x4c1b4, 0x4c1b8,
2033                 0x4c1c0, 0x4c254,
2034                 0x4c25c, 0x4c278,
2035                 0x4c2c0, 0x4c374,
2036                 0x4c380, 0x4c3ac,
2037                 0x4c3b4, 0x4c3b8,
2038                 0x4c3c0, 0x4c454,
2039                 0x4c45c, 0x4c478,
2040                 0x4c4c0, 0x4c574,
2041                 0x4c580, 0x4c5ac,
2042                 0x4c5b4, 0x4c5b8,
2043                 0x4c5c0, 0x4c654,
2044                 0x4c65c, 0x4c678,
2045                 0x4c6c0, 0x4c774,
2046                 0x4c780, 0x4c7ac,
2047                 0x4c7b4, 0x4c7b8,
2048                 0x4c7c0, 0x4c854,
2049                 0x4c85c, 0x4c878,
2050                 0x4c8c0, 0x4c974,
2051                 0x4c980, 0x4c9ac,
2052                 0x4c9b4, 0x4c9b8,
2053                 0x4c9c0, 0x4c9fc,
2054                 0x4d000, 0x4d004,
2055                 0x4d010, 0x4d030,
2056                 0x4d040, 0x4d060,
2057                 0x4d068, 0x4d068,
2058                 0x4d080, 0x4d084,
2059                 0x4d0a0, 0x4d0b0,
2060                 0x4d200, 0x4d204,
2061                 0x4d210, 0x4d230,
2062                 0x4d240, 0x4d260,
2063                 0x4d268, 0x4d268,
2064                 0x4d280, 0x4d284,
2065                 0x4d2a0, 0x4d2b0,
2066                 0x4e0c0, 0x4e0e4,
2067                 0x4f000, 0x4f03c,
2068                 0x4f044, 0x4f08c,
2069                 0x4f200, 0x4f250,
2070                 0x4f400, 0x4f408,
2071                 0x4f414, 0x4f420,
2072                 0x4f600, 0x4f618,
2073                 0x4f800, 0x4f814,
2074                 0x50000, 0x50084,
2075                 0x50090, 0x500cc,
2076                 0x50400, 0x50400,
2077                 0x50800, 0x50884,
2078                 0x50890, 0x508cc,
2079                 0x50c00, 0x50c00,
2080                 0x51000, 0x5101c,
2081                 0x51300, 0x51308,
2082         };
2083
2084         static const unsigned int t6_reg_ranges[] = {
2085                 0x1008, 0x101c,
2086                 0x1024, 0x10a8,
2087                 0x10b4, 0x10f8,
2088                 0x1100, 0x1114,
2089                 0x111c, 0x112c,
2090                 0x1138, 0x113c,
2091                 0x1144, 0x114c,
2092                 0x1180, 0x1184,
2093                 0x1190, 0x1194,
2094                 0x11a0, 0x11a4,
2095                 0x11b0, 0x11b4,
2096                 0x11fc, 0x1274,
2097                 0x1280, 0x133c,
2098                 0x1800, 0x18fc,
2099                 0x3000, 0x302c,
2100                 0x3060, 0x30b0,
2101                 0x30b8, 0x30d8,
2102                 0x30e0, 0x30fc,
2103                 0x3140, 0x357c,
2104                 0x35a8, 0x35cc,
2105                 0x35ec, 0x35ec,
2106                 0x3600, 0x5624,
2107                 0x56cc, 0x56ec,
2108                 0x56f4, 0x5720,
2109                 0x5728, 0x575c,
2110                 0x580c, 0x5814,
2111                 0x5890, 0x589c,
2112                 0x58a4, 0x58ac,
2113                 0x58b8, 0x58bc,
2114                 0x5940, 0x595c,
2115                 0x5980, 0x598c,
2116                 0x59b0, 0x59c8,
2117                 0x59d0, 0x59dc,
2118                 0x59fc, 0x5a18,
2119                 0x5a60, 0x5a6c,
2120                 0x5a80, 0x5a8c,
2121                 0x5a94, 0x5a9c,
2122                 0x5b94, 0x5bfc,
2123                 0x5c10, 0x5e48,
2124                 0x5e50, 0x5e94,
2125                 0x5ea0, 0x5eb0,
2126                 0x5ec0, 0x5ec0,
2127                 0x5ec8, 0x5ed0,
2128                 0x5ee0, 0x5ee0,
2129                 0x5ef0, 0x5ef0,
2130                 0x5f00, 0x5f00,
2131                 0x6000, 0x6020,
2132                 0x6028, 0x6040,
2133                 0x6058, 0x609c,
2134                 0x60a8, 0x619c,
2135                 0x7700, 0x7798,
2136                 0x77c0, 0x7880,
2137                 0x78cc, 0x78fc,
2138                 0x7b00, 0x7b58,
2139                 0x7b60, 0x7b84,
2140                 0x7b8c, 0x7c54,
2141                 0x7d00, 0x7d38,
2142                 0x7d40, 0x7d84,
2143                 0x7d8c, 0x7ddc,
2144                 0x7de4, 0x7e04,
2145                 0x7e10, 0x7e1c,
2146                 0x7e24, 0x7e38,
2147                 0x7e40, 0x7e44,
2148                 0x7e4c, 0x7e78,
2149                 0x7e80, 0x7edc,
2150                 0x7ee8, 0x7efc,
2151                 0x8dc0, 0x8de4,
2152                 0x8df8, 0x8e04,
2153                 0x8e10, 0x8e84,
2154                 0x8ea0, 0x8f88,
2155                 0x8fb8, 0x9058,
2156                 0x9060, 0x9060,
2157                 0x9068, 0x90f8,
2158                 0x9100, 0x9124,
2159                 0x9400, 0x9470,
2160                 0x9600, 0x9600,
2161                 0x9608, 0x9638,
2162                 0x9640, 0x9704,
2163                 0x9710, 0x971c,
2164                 0x9800, 0x9808,
2165                 0x9820, 0x983c,
2166                 0x9850, 0x9864,
2167                 0x9c00, 0x9c6c,
2168                 0x9c80, 0x9cec,
2169                 0x9d00, 0x9d6c,
2170                 0x9d80, 0x9dec,
2171                 0x9e00, 0x9e6c,
2172                 0x9e80, 0x9eec,
2173                 0x9f00, 0x9f6c,
2174                 0x9f80, 0xa020,
2175                 0xd004, 0xd03c,
2176                 0xd100, 0xd118,
2177                 0xd200, 0xd214,
2178                 0xd220, 0xd234,
2179                 0xd240, 0xd254,
2180                 0xd260, 0xd274,
2181                 0xd280, 0xd294,
2182                 0xd2a0, 0xd2b4,
2183                 0xd2c0, 0xd2d4,
2184                 0xd2e0, 0xd2f4,
2185                 0xd300, 0xd31c,
2186                 0xdfc0, 0xdfe0,
2187                 0xe000, 0xf008,
2188                 0xf010, 0xf018,
2189                 0xf020, 0xf028,
2190                 0x11000, 0x11014,
2191                 0x11048, 0x1106c,
2192                 0x11074, 0x11088,
2193                 0x11098, 0x11120,
2194                 0x1112c, 0x1117c,
2195                 0x11190, 0x112e0,
2196                 0x11300, 0x1130c,
2197                 0x12000, 0x1206c,
2198                 0x19040, 0x1906c,
2199                 0x19078, 0x19080,
2200                 0x1908c, 0x190e8,
2201                 0x190f0, 0x190f8,
2202                 0x19100, 0x19110,
2203                 0x19120, 0x19124,
2204                 0x19150, 0x19194,
2205                 0x1919c, 0x191b0,
2206                 0x191d0, 0x191e8,
2207                 0x19238, 0x19290,
2208                 0x192a4, 0x192b0,
2209                 0x192bc, 0x192bc,
2210                 0x19348, 0x1934c,
2211                 0x193f8, 0x19418,
2212                 0x19420, 0x19428,
2213                 0x19430, 0x19444,
2214                 0x1944c, 0x1946c,
2215                 0x19474, 0x19474,
2216                 0x19490, 0x194cc,
2217                 0x194f0, 0x194f8,
2218                 0x19c00, 0x19c48,
2219                 0x19c50, 0x19c80,
2220                 0x19c94, 0x19c98,
2221                 0x19ca0, 0x19cbc,
2222                 0x19ce4, 0x19ce4,
2223                 0x19cf0, 0x19cf8,
2224                 0x19d00, 0x19d28,
2225                 0x19d50, 0x19d78,
2226                 0x19d94, 0x19d98,
2227                 0x19da0, 0x19dc8,
2228                 0x19df0, 0x19e10,
2229                 0x19e50, 0x19e6c,
2230                 0x19ea0, 0x19ebc,
2231                 0x19ec4, 0x19ef4,
2232                 0x19f04, 0x19f2c,
2233                 0x19f34, 0x19f34,
2234                 0x19f40, 0x19f50,
2235                 0x19f90, 0x19fac,
2236                 0x19fc4, 0x19fc8,
2237                 0x19fd0, 0x19fe4,
2238                 0x1a000, 0x1a004,
2239                 0x1a010, 0x1a06c,
2240                 0x1a0b0, 0x1a0e4,
2241                 0x1a0ec, 0x1a0f8,
2242                 0x1a100, 0x1a108,
2243                 0x1a114, 0x1a120,
2244                 0x1a128, 0x1a130,
2245                 0x1a138, 0x1a138,
2246                 0x1a190, 0x1a1c4,
2247                 0x1a1fc, 0x1a1fc,
2248                 0x1e008, 0x1e00c,
2249                 0x1e040, 0x1e044,
2250                 0x1e04c, 0x1e04c,
2251                 0x1e284, 0x1e290,
2252                 0x1e2c0, 0x1e2c0,
2253                 0x1e2e0, 0x1e2e0,
2254                 0x1e300, 0x1e384,
2255                 0x1e3c0, 0x1e3c8,
2256                 0x1e408, 0x1e40c,
2257                 0x1e440, 0x1e444,
2258                 0x1e44c, 0x1e44c,
2259                 0x1e684, 0x1e690,
2260                 0x1e6c0, 0x1e6c0,
2261                 0x1e6e0, 0x1e6e0,
2262                 0x1e700, 0x1e784,
2263                 0x1e7c0, 0x1e7c8,
2264                 0x1e808, 0x1e80c,
2265                 0x1e840, 0x1e844,
2266                 0x1e84c, 0x1e84c,
2267                 0x1ea84, 0x1ea90,
2268                 0x1eac0, 0x1eac0,
2269                 0x1eae0, 0x1eae0,
2270                 0x1eb00, 0x1eb84,
2271                 0x1ebc0, 0x1ebc8,
2272                 0x1ec08, 0x1ec0c,
2273                 0x1ec40, 0x1ec44,
2274                 0x1ec4c, 0x1ec4c,
2275                 0x1ee84, 0x1ee90,
2276                 0x1eec0, 0x1eec0,
2277                 0x1eee0, 0x1eee0,
2278                 0x1ef00, 0x1ef84,
2279                 0x1efc0, 0x1efc8,
2280                 0x1f008, 0x1f00c,
2281                 0x1f040, 0x1f044,
2282                 0x1f04c, 0x1f04c,
2283                 0x1f284, 0x1f290,
2284                 0x1f2c0, 0x1f2c0,
2285                 0x1f2e0, 0x1f2e0,
2286                 0x1f300, 0x1f384,
2287                 0x1f3c0, 0x1f3c8,
2288                 0x1f408, 0x1f40c,
2289                 0x1f440, 0x1f444,
2290                 0x1f44c, 0x1f44c,
2291                 0x1f684, 0x1f690,
2292                 0x1f6c0, 0x1f6c0,
2293                 0x1f6e0, 0x1f6e0,
2294                 0x1f700, 0x1f784,
2295                 0x1f7c0, 0x1f7c8,
2296                 0x1f808, 0x1f80c,
2297                 0x1f840, 0x1f844,
2298                 0x1f84c, 0x1f84c,
2299                 0x1fa84, 0x1fa90,
2300                 0x1fac0, 0x1fac0,
2301                 0x1fae0, 0x1fae0,
2302                 0x1fb00, 0x1fb84,
2303                 0x1fbc0, 0x1fbc8,
2304                 0x1fc08, 0x1fc0c,
2305                 0x1fc40, 0x1fc44,
2306                 0x1fc4c, 0x1fc4c,
2307                 0x1fe84, 0x1fe90,
2308                 0x1fec0, 0x1fec0,
2309                 0x1fee0, 0x1fee0,
2310                 0x1ff00, 0x1ff84,
2311                 0x1ffc0, 0x1ffc8,
2312                 0x30000, 0x30030,
2313                 0x30100, 0x30168,
2314                 0x30190, 0x301a0,
2315                 0x301a8, 0x301b8,
2316                 0x301c4, 0x301c8,
2317                 0x301d0, 0x301d0,
2318                 0x30200, 0x30320,
2319                 0x30400, 0x304b4,
2320                 0x304c0, 0x3052c,
2321                 0x30540, 0x3061c,
2322                 0x30800, 0x308a0,
2323                 0x308c0, 0x30908,
2324                 0x30910, 0x309b8,
2325                 0x30a00, 0x30a04,
2326                 0x30a0c, 0x30a14,
2327                 0x30a1c, 0x30a2c,
2328                 0x30a44, 0x30a50,
2329                 0x30a74, 0x30a74,
2330                 0x30a7c, 0x30afc,
2331                 0x30b08, 0x30c24,
2332                 0x30d00, 0x30d14,
2333                 0x30d1c, 0x30d3c,
2334                 0x30d44, 0x30d4c,
2335                 0x30d54, 0x30d74,
2336                 0x30d7c, 0x30d7c,
2337                 0x30de0, 0x30de0,
2338                 0x30e00, 0x30ed4,
2339                 0x30f00, 0x30fa4,
2340                 0x30fc0, 0x30fc4,
2341                 0x31000, 0x31004,
2342                 0x31080, 0x310fc,
2343                 0x31208, 0x31220,
2344                 0x3123c, 0x31254,
2345                 0x31300, 0x31300,
2346                 0x31308, 0x3131c,
2347                 0x31338, 0x3133c,
2348                 0x31380, 0x31380,
2349                 0x31388, 0x313a8,
2350                 0x313b4, 0x313b4,
2351                 0x31400, 0x31420,
2352                 0x31438, 0x3143c,
2353                 0x31480, 0x31480,
2354                 0x314a8, 0x314a8,
2355                 0x314b0, 0x314b4,
2356                 0x314c8, 0x314d4,
2357                 0x31a40, 0x31a4c,
2358                 0x31af0, 0x31b20,
2359                 0x31b38, 0x31b3c,
2360                 0x31b80, 0x31b80,
2361                 0x31ba8, 0x31ba8,
2362                 0x31bb0, 0x31bb4,
2363                 0x31bc8, 0x31bd4,
2364                 0x32140, 0x3218c,
2365                 0x321f0, 0x321f4,
2366                 0x32200, 0x32200,
2367                 0x32218, 0x32218,
2368                 0x32400, 0x32400,
2369                 0x32408, 0x3241c,
2370                 0x32618, 0x32620,
2371                 0x32664, 0x32664,
2372                 0x326a8, 0x326a8,
2373                 0x326ec, 0x326ec,
2374                 0x32a00, 0x32abc,
2375                 0x32b00, 0x32b18,
2376                 0x32b20, 0x32b38,
2377                 0x32b40, 0x32b58,
2378                 0x32b60, 0x32b78,
2379                 0x32c00, 0x32c00,
2380                 0x32c08, 0x32c3c,
2381                 0x33000, 0x3302c,
2382                 0x33034, 0x33050,
2383                 0x33058, 0x33058,
2384                 0x33060, 0x3308c,
2385                 0x3309c, 0x330ac,
2386                 0x330c0, 0x330c0,
2387                 0x330c8, 0x330d0,
2388                 0x330d8, 0x330e0,
2389                 0x330ec, 0x3312c,
2390                 0x33134, 0x33150,
2391                 0x33158, 0x33158,
2392                 0x33160, 0x3318c,
2393                 0x3319c, 0x331ac,
2394                 0x331c0, 0x331c0,
2395                 0x331c8, 0x331d0,
2396                 0x331d8, 0x331e0,
2397                 0x331ec, 0x33290,
2398                 0x33298, 0x332c4,
2399                 0x332e4, 0x33390,
2400                 0x33398, 0x333c4,
2401                 0x333e4, 0x3342c,
2402                 0x33434, 0x33450,
2403                 0x33458, 0x33458,
2404                 0x33460, 0x3348c,
2405                 0x3349c, 0x334ac,
2406                 0x334c0, 0x334c0,
2407                 0x334c8, 0x334d0,
2408                 0x334d8, 0x334e0,
2409                 0x334ec, 0x3352c,
2410                 0x33534, 0x33550,
2411                 0x33558, 0x33558,
2412                 0x33560, 0x3358c,
2413                 0x3359c, 0x335ac,
2414                 0x335c0, 0x335c0,
2415                 0x335c8, 0x335d0,
2416                 0x335d8, 0x335e0,
2417                 0x335ec, 0x33690,
2418                 0x33698, 0x336c4,
2419                 0x336e4, 0x33790,
2420                 0x33798, 0x337c4,
2421                 0x337e4, 0x337fc,
2422                 0x33814, 0x33814,
2423                 0x33854, 0x33868,
2424                 0x33880, 0x3388c,
2425                 0x338c0, 0x338d0,
2426                 0x338e8, 0x338ec,
2427                 0x33900, 0x3392c,
2428                 0x33934, 0x33950,
2429                 0x33958, 0x33958,
2430                 0x33960, 0x3398c,
2431                 0x3399c, 0x339ac,
2432                 0x339c0, 0x339c0,
2433                 0x339c8, 0x339d0,
2434                 0x339d8, 0x339e0,
2435                 0x339ec, 0x33a90,
2436                 0x33a98, 0x33ac4,
2437                 0x33ae4, 0x33b10,
2438                 0x33b24, 0x33b28,
2439                 0x33b38, 0x33b50,
2440                 0x33bf0, 0x33c10,
2441                 0x33c24, 0x33c28,
2442                 0x33c38, 0x33c50,
2443                 0x33cf0, 0x33cfc,
2444                 0x34000, 0x34030,
2445                 0x34100, 0x34168,
2446                 0x34190, 0x341a0,
2447                 0x341a8, 0x341b8,
2448                 0x341c4, 0x341c8,
2449                 0x341d0, 0x341d0,
2450                 0x34200, 0x34320,
2451                 0x34400, 0x344b4,
2452                 0x344c0, 0x3452c,
2453                 0x34540, 0x3461c,
2454                 0x34800, 0x348a0,
2455                 0x348c0, 0x34908,
2456                 0x34910, 0x349b8,
2457                 0x34a00, 0x34a04,
2458                 0x34a0c, 0x34a14,
2459                 0x34a1c, 0x34a2c,
2460                 0x34a44, 0x34a50,
2461                 0x34a74, 0x34a74,
2462                 0x34a7c, 0x34afc,
2463                 0x34b08, 0x34c24,
2464                 0x34d00, 0x34d14,
2465                 0x34d1c, 0x34d3c,
2466                 0x34d44, 0x34d4c,
2467                 0x34d54, 0x34d74,
2468                 0x34d7c, 0x34d7c,
2469                 0x34de0, 0x34de0,
2470                 0x34e00, 0x34ed4,
2471                 0x34f00, 0x34fa4,
2472                 0x34fc0, 0x34fc4,
2473                 0x35000, 0x35004,
2474                 0x35080, 0x350fc,
2475                 0x35208, 0x35220,
2476                 0x3523c, 0x35254,
2477                 0x35300, 0x35300,
2478                 0x35308, 0x3531c,
2479                 0x35338, 0x3533c,
2480                 0x35380, 0x35380,
2481                 0x35388, 0x353a8,
2482                 0x353b4, 0x353b4,
2483                 0x35400, 0x35420,
2484                 0x35438, 0x3543c,
2485                 0x35480, 0x35480,
2486                 0x354a8, 0x354a8,
2487                 0x354b0, 0x354b4,
2488                 0x354c8, 0x354d4,
2489                 0x35a40, 0x35a4c,
2490                 0x35af0, 0x35b20,
2491                 0x35b38, 0x35b3c,
2492                 0x35b80, 0x35b80,
2493                 0x35ba8, 0x35ba8,
2494                 0x35bb0, 0x35bb4,
2495                 0x35bc8, 0x35bd4,
2496                 0x36140, 0x3618c,
2497                 0x361f0, 0x361f4,
2498                 0x36200, 0x36200,
2499                 0x36218, 0x36218,
2500                 0x36400, 0x36400,
2501                 0x36408, 0x3641c,
2502                 0x36618, 0x36620,
2503                 0x36664, 0x36664,
2504                 0x366a8, 0x366a8,
2505                 0x366ec, 0x366ec,
2506                 0x36a00, 0x36abc,
2507                 0x36b00, 0x36b18,
2508                 0x36b20, 0x36b38,
2509                 0x36b40, 0x36b58,
2510                 0x36b60, 0x36b78,
2511                 0x36c00, 0x36c00,
2512                 0x36c08, 0x36c3c,
2513                 0x37000, 0x3702c,
2514                 0x37034, 0x37050,
2515                 0x37058, 0x37058,
2516                 0x37060, 0x3708c,
2517                 0x3709c, 0x370ac,
2518                 0x370c0, 0x370c0,
2519                 0x370c8, 0x370d0,
2520                 0x370d8, 0x370e0,
2521                 0x370ec, 0x3712c,
2522                 0x37134, 0x37150,
2523                 0x37158, 0x37158,
2524                 0x37160, 0x3718c,
2525                 0x3719c, 0x371ac,
2526                 0x371c0, 0x371c0,
2527                 0x371c8, 0x371d0,
2528                 0x371d8, 0x371e0,
2529                 0x371ec, 0x37290,
2530                 0x37298, 0x372c4,
2531                 0x372e4, 0x37390,
2532                 0x37398, 0x373c4,
2533                 0x373e4, 0x3742c,
2534                 0x37434, 0x37450,
2535                 0x37458, 0x37458,
2536                 0x37460, 0x3748c,
2537                 0x3749c, 0x374ac,
2538                 0x374c0, 0x374c0,
2539                 0x374c8, 0x374d0,
2540                 0x374d8, 0x374e0,
2541                 0x374ec, 0x3752c,
2542                 0x37534, 0x37550,
2543                 0x37558, 0x37558,
2544                 0x37560, 0x3758c,
2545                 0x3759c, 0x375ac,
2546                 0x375c0, 0x375c0,
2547                 0x375c8, 0x375d0,
2548                 0x375d8, 0x375e0,
2549                 0x375ec, 0x37690,
2550                 0x37698, 0x376c4,
2551                 0x376e4, 0x37790,
2552                 0x37798, 0x377c4,
2553                 0x377e4, 0x377fc,
2554                 0x37814, 0x37814,
2555                 0x37854, 0x37868,
2556                 0x37880, 0x3788c,
2557                 0x378c0, 0x378d0,
2558                 0x378e8, 0x378ec,
2559                 0x37900, 0x3792c,
2560                 0x37934, 0x37950,
2561                 0x37958, 0x37958,
2562                 0x37960, 0x3798c,
2563                 0x3799c, 0x379ac,
2564                 0x379c0, 0x379c0,
2565                 0x379c8, 0x379d0,
2566                 0x379d8, 0x379e0,
2567                 0x379ec, 0x37a90,
2568                 0x37a98, 0x37ac4,
2569                 0x37ae4, 0x37b10,
2570                 0x37b24, 0x37b28,
2571                 0x37b38, 0x37b50,
2572                 0x37bf0, 0x37c10,
2573                 0x37c24, 0x37c28,
2574                 0x37c38, 0x37c50,
2575                 0x37cf0, 0x37cfc,
2576                 0x40040, 0x40040,
2577                 0x40080, 0x40084,
2578                 0x40100, 0x40100,
2579                 0x40140, 0x401bc,
2580                 0x40200, 0x40214,
2581                 0x40228, 0x40228,
2582                 0x40240, 0x40258,
2583                 0x40280, 0x40280,
2584                 0x40304, 0x40304,
2585                 0x40330, 0x4033c,
2586                 0x41304, 0x413c8,
2587                 0x413d0, 0x413dc,
2588                 0x413f0, 0x413f0,
2589                 0x41400, 0x4140c,
2590                 0x41414, 0x4141c,
2591                 0x41480, 0x414d0,
2592                 0x44000, 0x4407c,
2593                 0x440c0, 0x441ac,
2594                 0x441b4, 0x4427c,
2595                 0x442c0, 0x443ac,
2596                 0x443b4, 0x4447c,
2597                 0x444c0, 0x445ac,
2598                 0x445b4, 0x4467c,
2599                 0x446c0, 0x447ac,
2600                 0x447b4, 0x4487c,
2601                 0x448c0, 0x449ac,
2602                 0x449b4, 0x44a7c,
2603                 0x44ac0, 0x44bac,
2604                 0x44bb4, 0x44c7c,
2605                 0x44cc0, 0x44dac,
2606                 0x44db4, 0x44e7c,
2607                 0x44ec0, 0x44fac,
2608                 0x44fb4, 0x4507c,
2609                 0x450c0, 0x451ac,
2610                 0x451b4, 0x451fc,
2611                 0x45800, 0x45804,
2612                 0x45810, 0x45830,
2613                 0x45840, 0x45860,
2614                 0x45868, 0x45868,
2615                 0x45880, 0x45884,
2616                 0x458a0, 0x458b0,
2617                 0x45a00, 0x45a04,
2618                 0x45a10, 0x45a30,
2619                 0x45a40, 0x45a60,
2620                 0x45a68, 0x45a68,
2621                 0x45a80, 0x45a84,
2622                 0x45aa0, 0x45ab0,
2623                 0x460c0, 0x460e4,
2624                 0x47000, 0x4703c,
2625                 0x47044, 0x4708c,
2626                 0x47200, 0x47250,
2627                 0x47400, 0x47408,
2628                 0x47414, 0x47420,
2629                 0x47600, 0x47618,
2630                 0x47800, 0x47814,
2631                 0x47820, 0x4782c,
2632                 0x50000, 0x50084,
2633                 0x50090, 0x500cc,
2634                 0x50300, 0x50384,
2635                 0x50400, 0x50400,
2636                 0x50800, 0x50884,
2637                 0x50890, 0x508cc,
2638                 0x50b00, 0x50b84,
2639                 0x50c00, 0x50c00,
2640                 0x51000, 0x51020,
2641                 0x51028, 0x510b0,
2642                 0x51300, 0x51324,
2643         };
2644
2645         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2646         const unsigned int *reg_ranges;
2647         int reg_ranges_size, range;
2648         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2649
2650         /* Select the right set of register ranges to dump depending on the
2651          * adapter chip type.
2652          */
2653         switch (chip_version) {
2654         case CHELSIO_T4:
2655                 reg_ranges = t4_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T5:
2660                 reg_ranges = t5_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2662                 break;
2663
2664         case CHELSIO_T6:
2665                 reg_ranges = t6_reg_ranges;
2666                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2667                 break;
2668
2669         default:
2670                 dev_err(adap->pdev_dev,
2671                         "Unsupported chip version %d\n", chip_version);
2672                 return;
2673         }
2674
2675         /* Clear the register buffer and insert the appropriate register
2676          * values selected by the above register ranges.
2677          */
2678         memset(buf, 0, buf_size);
2679         for (range = 0; range < reg_ranges_size; range += 2) {
2680                 unsigned int reg = reg_ranges[range];
2681                 unsigned int last_reg = reg_ranges[range + 1];
2682                 u32 *bufp = (u32 *)((char *)buf + reg);
2683
2684                 /* Iterate across the register range filling in the register
2685                  * buffer but don't write past the end of the register buffer.
2686                  */
2687                 while (reg <= last_reg && bufp < buf_end) {
2688                         *bufp++ = t4_read_reg(adap, reg);
2689                         reg += sizeof(u32);
2690                 }
2691         }
2692 }
2693
2694 #define EEPROM_STAT_ADDR   0x7bfc
2695 #define VPD_BASE           0x400
2696 #define VPD_BASE_OLD       0
2697 #define VPD_LEN            1024
2698 #define CHELSIO_VPD_UNIQUE_ID 0x82
2699
2700 /**
2701  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2702  * @phys_addr: the physical EEPROM address
2703  * @fn: the PCI function number
2704  * @sz: size of function-specific area
2705  *
2706  * Translate a physical EEPROM address to virtual.  The first 1K is
2707  * accessed through virtual addresses starting at 31K, the rest is
2708  * accessed through virtual addresses starting at 0.
2709  *
2710  * The mapping is as follows:
2711  * [0..1K) -> [31K..32K)
2712  * [1K..1K+A) -> [31K-A..31K)
2713  * [1K+A..ES) -> [0..ES-A-1K)
2714  *
2715  * where A = @fn * @sz, and ES = EEPROM size.
2716  */
2717 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2718 {
2719         fn *= sz;
2720         if (phys_addr < 1024)
2721                 return phys_addr + (31 << 10);
2722         if (phys_addr < 1024 + fn)
2723                 return 31744 - fn + phys_addr - 1024;
2724         if (phys_addr < EEPROMSIZE)
2725                 return phys_addr - 1024 - fn;
2726         return -EINVAL;
2727 }
2728
2729 /**
2730  *      t4_seeprom_wp - enable/disable EEPROM write protection
2731  *      @adapter: the adapter
2732  *      @enable: whether to enable or disable write protection
2733  *
2734  *      Enables or disables write protection on the serial EEPROM.
2735  */
2736 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2737 {
2738         unsigned int v = enable ? 0xc : 0;
2739         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2740         return ret < 0 ? ret : 0;
2741 }
2742
2743 /**
2744  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2745  *      @adapter: adapter to read
2746  *      @p: where to store the parameters
2747  *
2748  *      Reads card parameters stored in VPD EEPROM.
2749  */
2750 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2751 {
2752         int i, ret = 0, addr;
2753         int ec, sn, pn, na;
2754         u8 *vpd, csum;
2755         unsigned int vpdr_len, kw_offset, id_len;
2756
2757         vpd = vmalloc(VPD_LEN);
2758         if (!vpd)
2759                 return -ENOMEM;
2760
2761         /* Card information normally starts at VPD_BASE but early cards had
2762          * it at 0.
2763          */
2764         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2765         if (ret < 0)
2766                 goto out;
2767
2768         /* The VPD shall have a unique identifier specified by the PCI SIG.
2769          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2770          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2771          * is expected to automatically put this entry at the
2772          * beginning of the VPD.
2773          */
2774         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2775
2776         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2777         if (ret < 0)
2778                 goto out;
2779
2780         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2781                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2782                 ret = -EINVAL;
2783                 goto out;
2784         }
2785
2786         id_len = pci_vpd_lrdt_size(vpd);
2787         if (id_len > ID_LEN)
2788                 id_len = ID_LEN;
2789
2790         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2791         if (i < 0) {
2792                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2793                 ret = -EINVAL;
2794                 goto out;
2795         }
2796
2797         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2798         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2799         if (vpdr_len + kw_offset > VPD_LEN) {
2800                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2801                 ret = -EINVAL;
2802                 goto out;
2803         }
2804
2805 #define FIND_VPD_KW(var, name) do { \
2806         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2807         if (var < 0) { \
2808                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2809                 ret = -EINVAL; \
2810                 goto out; \
2811         } \
2812         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2813 } while (0)
2814
2815         FIND_VPD_KW(i, "RV");
2816         for (csum = 0; i >= 0; i--)
2817                 csum += vpd[i];
2818
2819         if (csum) {
2820                 dev_err(adapter->pdev_dev,
2821                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2822                 ret = -EINVAL;
2823                 goto out;
2824         }
2825
2826         FIND_VPD_KW(ec, "EC");
2827         FIND_VPD_KW(sn, "SN");
2828         FIND_VPD_KW(pn, "PN");
2829         FIND_VPD_KW(na, "NA");
2830 #undef FIND_VPD_KW
2831
2832         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2833         strim(p->id);
2834         memcpy(p->ec, vpd + ec, EC_LEN);
2835         strim(p->ec);
2836         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2837         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2838         strim(p->sn);
2839         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2840         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2841         strim(p->pn);
2842         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2843         strim((char *)p->na);
2844
2845 out:
2846         vfree(vpd);
2847         return ret < 0 ? ret : 0;
2848 }
2849
2850 /**
2851  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2852  *      @adapter: adapter to read
2853  *      @p: where to store the parameters
2854  *
2855  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2856  *      Clock.  This can only be called after a connection to the firmware
2857  *      is established.
2858  */
2859 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2860 {
2861         u32 cclk_param, cclk_val;
2862         int ret;
2863
2864         /* Grab the raw VPD parameters.
2865          */
2866         ret = t4_get_raw_vpd_params(adapter, p);
2867         if (ret)
2868                 return ret;
2869
2870         /* Ask firmware for the Core Clock since it knows how to translate the
2871          * Reference Clock ('V2') VPD field into a Core Clock value ...
2872          */
2873         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2874                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2875         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2876                               1, &cclk_param, &cclk_val);
2877
2878         if (ret)
2879                 return ret;
2880         p->cclk = cclk_val;
2881
2882         return 0;
2883 }
2884
2885 /**
2886  *      t4_get_pfres - retrieve VF resource limits
2887  *      @adapter: the adapter
2888  *
2889  *      Retrieves configured resource limits and capabilities for a physical
2890  *      function.  The results are stored in @adapter->pfres.
2891  */
2892 int t4_get_pfres(struct adapter *adapter)
2893 {
2894         struct pf_resources *pfres = &adapter->params.pfres;
2895         struct fw_pfvf_cmd cmd, rpl;
2896         int v;
2897         u32 word;
2898
2899         /* Execute PFVF Read command to get VF resource limits; bail out early
2900          * with error on command failure.
2901          */
2902         memset(&cmd, 0, sizeof(cmd));
2903         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2904                                     FW_CMD_REQUEST_F |
2905                                     FW_CMD_READ_F |
2906                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2907                                     FW_PFVF_CMD_VFN_V(0));
2908         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2909         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2910         if (v != FW_SUCCESS)
2911                 return v;
2912
2913         /* Extract PF resource limits and return success.
2914          */
2915         word = be32_to_cpu(rpl.niqflint_niq);
2916         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2917         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2918
2919         word = be32_to_cpu(rpl.type_to_neq);
2920         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2921         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2922
2923         word = be32_to_cpu(rpl.tc_to_nexactf);
2924         pfres->tc = FW_PFVF_CMD_TC_G(word);
2925         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2926         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2927
2928         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2929         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2930         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2931         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2932
2933         return 0;
2934 }
2935
2936 /* serial flash and firmware constants */
2937 enum {
2938         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2939
2940         /* flash command opcodes */
2941         SF_PROG_PAGE    = 2,          /* program page */
2942         SF_WR_DISABLE   = 4,          /* disable writes */
2943         SF_RD_STATUS    = 5,          /* read status register */
2944         SF_WR_ENABLE    = 6,          /* enable writes */
2945         SF_RD_DATA_FAST = 0xb,        /* read flash */
2946         SF_RD_ID        = 0x9f,       /* read ID */
2947         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2948 };
2949
2950 /**
2951  *      sf1_read - read data from the serial flash
2952  *      @adapter: the adapter
2953  *      @byte_cnt: number of bytes to read
2954  *      @cont: whether another operation will be chained
2955  *      @lock: whether to lock SF for PL access only
2956  *      @valp: where to store the read data
2957  *
2958  *      Reads up to 4 bytes of data from the serial flash.  The location of
2959  *      the read needs to be specified prior to calling this by issuing the
2960  *      appropriate commands to the serial flash.
2961  */
2962 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2963                     int lock, u32 *valp)
2964 {
2965         int ret;
2966
2967         if (!byte_cnt || byte_cnt > 4)
2968                 return -EINVAL;
2969         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2970                 return -EBUSY;
2971         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2972                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2973         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2974         if (!ret)
2975                 *valp = t4_read_reg(adapter, SF_DATA_A);
2976         return ret;
2977 }
2978
2979 /**
2980  *      sf1_write - write data to the serial flash
2981  *      @adapter: the adapter
2982  *      @byte_cnt: number of bytes to write
2983  *      @cont: whether another operation will be chained
2984  *      @lock: whether to lock SF for PL access only
2985  *      @val: value to write
2986  *
2987  *      Writes up to 4 bytes of data to the serial flash.  The location of
2988  *      the write needs to be specified prior to calling this by issuing the
2989  *      appropriate commands to the serial flash.
2990  */
2991 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2992                      int lock, u32 val)
2993 {
2994         if (!byte_cnt || byte_cnt > 4)
2995                 return -EINVAL;
2996         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2997                 return -EBUSY;
2998         t4_write_reg(adapter, SF_DATA_A, val);
2999         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
3000                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
3001         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
3002 }
3003
3004 /**
3005  *      flash_wait_op - wait for a flash operation to complete
3006  *      @adapter: the adapter
3007  *      @attempts: max number of polls of the status register
3008  *      @delay: delay between polls in ms
3009  *
3010  *      Wait for a flash operation to complete by polling the status register.
3011  */
3012 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3013 {
3014         int ret;
3015         u32 status;
3016
3017         while (1) {
3018                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3019                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3020                         return ret;
3021                 if (!(status & 1))
3022                         return 0;
3023                 if (--attempts == 0)
3024                         return -EAGAIN;
3025                 if (delay)
3026                         msleep(delay);
3027         }
3028 }
3029
3030 /**
3031  *      t4_read_flash - read words from serial flash
3032  *      @adapter: the adapter
3033  *      @addr: the start address for the read
3034  *      @nwords: how many 32-bit words to read
3035  *      @data: where to store the read data
3036  *      @byte_oriented: whether to store data as bytes or as words
3037  *
3038  *      Read the specified number of 32-bit words from the serial flash.
3039  *      If @byte_oriented is set the read data is stored as a byte array
3040  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3041  *      natural endianness.
3042  */
3043 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3044                   unsigned int nwords, u32 *data, int byte_oriented)
3045 {
3046         int ret;
3047
3048         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3049                 return -EINVAL;
3050
3051         addr = swab32(addr) | SF_RD_DATA_FAST;
3052
3053         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3054             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3055                 return ret;
3056
3057         for ( ; nwords; nwords--, data++) {
3058                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3059                 if (nwords == 1)
3060                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3061                 if (ret)
3062                         return ret;
3063                 if (byte_oriented)
3064                         *data = (__force __u32)(cpu_to_be32(*data));
3065         }
3066         return 0;
3067 }
3068
3069 /**
3070  *      t4_write_flash - write up to a page of data to the serial flash
3071  *      @adapter: the adapter
3072  *      @addr: the start address to write
3073  *      @n: length of data to write in bytes
3074  *      @data: the data to write
3075  *
3076  *      Writes up to a page of data (256 bytes) to the serial flash starting
3077  *      at the given address.  All the data must be written to the same page.
3078  */
3079 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3080                           unsigned int n, const u8 *data)
3081 {
3082         int ret;
3083         u32 buf[64];
3084         unsigned int i, c, left, val, offset = addr & 0xff;
3085
3086         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3087                 return -EINVAL;
3088
3089         val = swab32(addr) | SF_PROG_PAGE;
3090
3091         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3092             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3093                 goto unlock;
3094
3095         for (left = n; left; left -= c) {
3096                 c = min(left, 4U);
3097                 for (val = 0, i = 0; i < c; ++i)
3098                         val = (val << 8) + *data++;
3099
3100                 ret = sf1_write(adapter, c, c != left, 1, val);
3101                 if (ret)
3102                         goto unlock;
3103         }
3104         ret = flash_wait_op(adapter, 8, 1);
3105         if (ret)
3106                 goto unlock;
3107
3108         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3109
3110         /* Read the page to verify the write succeeded */
3111         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3112         if (ret)
3113                 return ret;
3114
3115         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3116                 dev_err(adapter->pdev_dev,
3117                         "failed to correctly write the flash page at %#x\n",
3118                         addr);
3119                 return -EIO;
3120         }
3121         return 0;
3122
3123 unlock:
3124         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3125         return ret;
3126 }
3127
3128 /**
3129  *      t4_get_fw_version - read the firmware version
3130  *      @adapter: the adapter
3131  *      @vers: where to place the version
3132  *
3133  *      Reads the FW version from flash.
3134  */
3135 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3136 {
3137         return t4_read_flash(adapter, FLASH_FW_START +
3138                              offsetof(struct fw_hdr, fw_ver), 1,
3139                              vers, 0);
3140 }
3141
3142 /**
3143  *      t4_get_bs_version - read the firmware bootstrap version
3144  *      @adapter: the adapter
3145  *      @vers: where to place the version
3146  *
3147  *      Reads the FW Bootstrap version from flash.
3148  */
3149 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3150 {
3151         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3152                              offsetof(struct fw_hdr, fw_ver), 1,
3153                              vers, 0);
3154 }
3155
3156 /**
3157  *      t4_get_tp_version - read the TP microcode version
3158  *      @adapter: the adapter
3159  *      @vers: where to place the version
3160  *
3161  *      Reads the TP microcode version from flash.
3162  */
3163 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3164 {
3165         return t4_read_flash(adapter, FLASH_FW_START +
3166                              offsetof(struct fw_hdr, tp_microcode_ver),
3167                              1, vers, 0);
3168 }
3169
3170 /**
3171  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3172  *      @adapter: the adapter
3173  *      @vers: where to place the version
3174  *
3175  *      Reads the Expansion ROM header from FLASH and returns the version
3176  *      number (if present) through the @vers return value pointer.  We return
3177  *      this in the Firmware Version Format since it's convenient.  Return
3178  *      0 on success, -ENOENT if no Expansion ROM is present.
3179  */
3180 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3181 {
3182         struct exprom_header {
3183                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3184                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3185         } *hdr;
3186         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3187                                            sizeof(u32))];
3188         int ret;
3189
3190         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3191                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3192                             0);
3193         if (ret)
3194                 return ret;
3195
3196         hdr = (struct exprom_header *)exprom_header_buf;
3197         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3198                 return -ENOENT;
3199
3200         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3201                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3202                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3203                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3204         return 0;
3205 }
3206
3207 /**
3208  *      t4_get_vpd_version - return the VPD version
3209  *      @adapter: the adapter
3210  *      @vers: where to place the version
3211  *
3212  *      Reads the VPD via the Firmware interface (thus this can only be called
3213  *      once we're ready to issue Firmware commands).  The format of the
3214  *      VPD version is adapter specific.  Returns 0 on success, an error on
3215  *      failure.
3216  *
3217  *      Note that early versions of the Firmware didn't include the ability
3218  *      to retrieve the VPD version, so we zero-out the return-value parameter
3219  *      in that case to avoid leaving it with garbage in it.
3220  *
3221  *      Also note that the Firmware will return its cached copy of the VPD
3222  *      Revision ID, not the actual Revision ID as written in the Serial
3223  *      EEPROM.  This is only an issue if a new VPD has been written and the
3224  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3225  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3226  *      if the Host Driver will be performing a full adapter initialization.
3227  */
3228 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3229 {
3230         u32 vpdrev_param;
3231         int ret;
3232
3233         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3234                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3235         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3236                               1, &vpdrev_param, vers);
3237         if (ret)
3238                 *vers = 0;
3239         return ret;
3240 }
3241
3242 /**
3243  *      t4_get_scfg_version - return the Serial Configuration version
3244  *      @adapter: the adapter
3245  *      @vers: where to place the version
3246  *
3247  *      Reads the Serial Configuration Version via the Firmware interface
3248  *      (thus this can only be called once we're ready to issue Firmware
3249  *      commands).  The format of the Serial Configuration version is
3250  *      adapter specific.  Returns 0 on success, an error on failure.
3251  *
3252  *      Note that early versions of the Firmware didn't include the ability
3253  *      to retrieve the Serial Configuration version, so we zero-out the
3254  *      return-value parameter in that case to avoid leaving it with
3255  *      garbage in it.
3256  *
3257  *      Also note that the Firmware will return its cached copy of the Serial
3258  *      Initialization Revision ID, not the actual Revision ID as written in
3259  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3260  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3261  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3262  *      been issued if the Host Driver will be performing a full adapter
3263  *      initialization.
3264  */
3265 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3266 {
3267         u32 scfgrev_param;
3268         int ret;
3269
3270         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3271                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3272         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3273                               1, &scfgrev_param, vers);
3274         if (ret)
3275                 *vers = 0;
3276         return ret;
3277 }
3278
3279 /**
3280  *      t4_get_version_info - extract various chip/firmware version information
3281  *      @adapter: the adapter
3282  *
3283  *      Reads various chip/firmware version numbers and stores them into the
3284  *      adapter Adapter Parameters structure.  If any of the efforts fails
3285  *      the first failure will be returned, but all of the version numbers
3286  *      will be read.
3287  */
3288 int t4_get_version_info(struct adapter *adapter)
3289 {
3290         int ret = 0;
3291
3292         #define FIRST_RET(__getvinfo) \
3293         do { \
3294                 int __ret = __getvinfo; \
3295                 if (__ret && !ret) \
3296                         ret = __ret; \
3297         } while (0)
3298
3299         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3300         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3301         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3302         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3303         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3304         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3305
3306         #undef FIRST_RET
3307         return ret;
3308 }
3309
3310 /**
3311  *      t4_dump_version_info - dump all of the adapter configuration IDs
3312  *      @adapter: the adapter
3313  *
3314  *      Dumps all of the various bits of adapter configuration version/revision
3315  *      IDs information.  This is typically called at some point after
3316  *      t4_get_version_info() has been called.
3317  */
3318 void t4_dump_version_info(struct adapter *adapter)
3319 {
3320         /* Device information */
3321         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3322                  adapter->params.vpd.id,
3323                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3324         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3325                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3326
3327         /* Firmware Version */
3328         if (!adapter->params.fw_vers)
3329                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3330         else
3331                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3332                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3333                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3334                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3335                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3336
3337         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3338          * Firmware, so dev_info() is more appropriate here.)
3339          */
3340         if (!adapter->params.bs_vers)
3341                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3342         else
3343                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3344                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3345                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3346                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3347                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3348
3349         /* TP Microcode Version */
3350         if (!adapter->params.tp_vers)
3351                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3352         else
3353                 dev_info(adapter->pdev_dev,
3354                          "TP Microcode version: %u.%u.%u.%u\n",
3355                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3356                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3357                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3358                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3359
3360         /* Expansion ROM version */
3361         if (!adapter->params.er_vers)
3362                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3363         else
3364                 dev_info(adapter->pdev_dev,
3365                          "Expansion ROM version: %u.%u.%u.%u\n",
3366                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3367                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3368                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3369                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3370
3371         /* Serial Configuration version */
3372         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3373                  adapter->params.scfg_vers);
3374
3375         /* VPD Version */
3376         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3377                  adapter->params.vpd_vers);
3378 }
3379
3380 /**
3381  *      t4_check_fw_version - check if the FW is supported with this driver
3382  *      @adap: the adapter
3383  *
3384  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3385  *      if there's exact match, a negative error if the version could not be
3386  *      read or there's a major version mismatch
3387  */
3388 int t4_check_fw_version(struct adapter *adap)
3389 {
3390         int i, ret, major, minor, micro;
3391         int exp_major, exp_minor, exp_micro;
3392         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3393
3394         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395         /* Try multiple times before returning error */
3396         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3397                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3398
3399         if (ret)
3400                 return ret;
3401
3402         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3403         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3404         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3405
3406         switch (chip_version) {
3407         case CHELSIO_T4:
3408                 exp_major = T4FW_MIN_VERSION_MAJOR;
3409                 exp_minor = T4FW_MIN_VERSION_MINOR;
3410                 exp_micro = T4FW_MIN_VERSION_MICRO;
3411                 break;
3412         case CHELSIO_T5:
3413                 exp_major = T5FW_MIN_VERSION_MAJOR;
3414                 exp_minor = T5FW_MIN_VERSION_MINOR;
3415                 exp_micro = T5FW_MIN_VERSION_MICRO;
3416                 break;
3417         case CHELSIO_T6:
3418                 exp_major = T6FW_MIN_VERSION_MAJOR;
3419                 exp_minor = T6FW_MIN_VERSION_MINOR;
3420                 exp_micro = T6FW_MIN_VERSION_MICRO;
3421                 break;
3422         default:
3423                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3424                         adap->chip);
3425                 return -EINVAL;
3426         }
3427
3428         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3429             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3430                 dev_err(adap->pdev_dev,
3431                         "Card has firmware version %u.%u.%u, minimum "
3432                         "supported firmware is %u.%u.%u.\n", major, minor,
3433                         micro, exp_major, exp_minor, exp_micro);
3434                 return -EFAULT;
3435         }
3436         return 0;
3437 }
3438
3439 /* Is the given firmware API compatible with the one the driver was compiled
3440  * with?
3441  */
3442 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3443 {
3444
3445         /* short circuit if it's the exact same firmware version */
3446         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3447                 return 1;
3448
3449 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3450         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3451             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3452                 return 1;
3453 #undef SAME_INTF
3454
3455         return 0;
3456 }
3457
3458 /* The firmware in the filesystem is usable, but should it be installed?
3459  * This routine explains itself in detail if it indicates the filesystem
3460  * firmware should be installed.
3461  */
3462 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3463                                 int k, int c)
3464 {
3465         const char *reason;
3466
3467         if (!card_fw_usable) {
3468                 reason = "incompatible or unusable";
3469                 goto install;
3470         }
3471
3472         if (k > c) {
3473                 reason = "older than the version supported with this driver";
3474                 goto install;
3475         }
3476
3477         return 0;
3478
3479 install:
3480         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3481                 "installing firmware %u.%u.%u.%u on card.\n",
3482                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3483                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3484                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3485                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3486
3487         return 1;
3488 }
3489
3490 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3491                const u8 *fw_data, unsigned int fw_size,
3492                struct fw_hdr *card_fw, enum dev_state state,
3493                int *reset)
3494 {
3495         int ret, card_fw_usable, fs_fw_usable;
3496         const struct fw_hdr *fs_fw;
3497         const struct fw_hdr *drv_fw;
3498
3499         drv_fw = &fw_info->fw_hdr;
3500
3501         /* Read the header of the firmware on the card */
3502         ret = -t4_read_flash(adap, FLASH_FW_START,
3503                             sizeof(*card_fw) / sizeof(uint32_t),
3504                             (uint32_t *)card_fw, 1);
3505         if (ret == 0) {
3506                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3507         } else {
3508                 dev_err(adap->pdev_dev,
3509                         "Unable to read card's firmware header: %d\n", ret);
3510                 card_fw_usable = 0;
3511         }
3512
3513         if (fw_data != NULL) {
3514                 fs_fw = (const void *)fw_data;
3515                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3516         } else {
3517                 fs_fw = NULL;
3518                 fs_fw_usable = 0;
3519         }
3520
3521         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3522             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3523                 /* Common case: the firmware on the card is an exact match and
3524                  * the filesystem one is an exact match too, or the filesystem
3525                  * one is absent/incompatible.
3526                  */
3527         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3528                    should_install_fs_fw(adap, card_fw_usable,
3529                                         be32_to_cpu(fs_fw->fw_ver),
3530                                         be32_to_cpu(card_fw->fw_ver))) {
3531                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3532                                      fw_size, 0);
3533                 if (ret != 0) {
3534                         dev_err(adap->pdev_dev,
3535                                 "failed to install firmware: %d\n", ret);
3536                         goto bye;
3537                 }
3538
3539                 /* Installed successfully, update the cached header too. */
3540                 *card_fw = *fs_fw;
3541                 card_fw_usable = 1;
3542                 *reset = 0;     /* already reset as part of load_fw */
3543         }
3544
3545         if (!card_fw_usable) {
3546                 uint32_t d, c, k;
3547
3548                 d = be32_to_cpu(drv_fw->fw_ver);
3549                 c = be32_to_cpu(card_fw->fw_ver);
3550                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3551
3552                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3553                         "chip state %d, "
3554                         "driver compiled with %d.%d.%d.%d, "
3555                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3556                         state,
3557                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3558                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3559                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3560                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3561                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3562                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3563                 ret = EINVAL;
3564                 goto bye;
3565         }
3566
3567         /* We're using whatever's on the card and it's known to be good. */
3568         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3569         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3570
3571 bye:
3572         return ret;
3573 }
3574
3575 /**
3576  *      t4_flash_erase_sectors - erase a range of flash sectors
3577  *      @adapter: the adapter
3578  *      @start: the first sector to erase
3579  *      @end: the last sector to erase
3580  *
3581  *      Erases the sectors in the given inclusive range.
3582  */
3583 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3584 {
3585         int ret = 0;
3586
3587         if (end >= adapter->params.sf_nsec)
3588                 return -EINVAL;
3589
3590         while (start <= end) {
3591                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3592                     (ret = sf1_write(adapter, 4, 0, 1,
3593                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3594                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3595                         dev_err(adapter->pdev_dev,
3596                                 "erase of flash sector %d failed, error %d\n",
3597                                 start, ret);
3598                         break;
3599                 }
3600                 start++;
3601         }
3602         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3603         return ret;
3604 }
3605
3606 /**
3607  *      t4_flash_cfg_addr - return the address of the flash configuration file
3608  *      @adapter: the adapter
3609  *
3610  *      Return the address within the flash where the Firmware Configuration
3611  *      File is stored.
3612  */
3613 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3614 {
3615         if (adapter->params.sf_size == 0x100000)
3616                 return FLASH_FPGA_CFG_START;
3617         else
3618                 return FLASH_CFG_START;
3619 }
3620
3621 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3622  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3623  * and emit an error message for mismatched firmware to save our caller the
3624  * effort ...
3625  */
3626 static bool t4_fw_matches_chip(const struct adapter *adap,
3627                                const struct fw_hdr *hdr)
3628 {
3629         /* The expression below will return FALSE for any unsupported adapter
3630          * which will keep us "honest" in the future ...
3631          */
3632         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3633             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3634             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3635                 return true;
3636
3637         dev_err(adap->pdev_dev,
3638                 "FW image (%d) is not suitable for this adapter (%d)\n",
3639                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3640         return false;
3641 }
3642
3643 /**
3644  *      t4_load_fw - download firmware
3645  *      @adap: the adapter
3646  *      @fw_data: the firmware image to write
3647  *      @size: image size
3648  *
3649  *      Write the supplied firmware image to the card's serial flash.
3650  */
3651 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3652 {
3653         u32 csum;
3654         int ret, addr;
3655         unsigned int i;
3656         u8 first_page[SF_PAGE_SIZE];
3657         const __be32 *p = (const __be32 *)fw_data;
3658         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3659         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3660         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3661         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3662         unsigned int fw_start = FLASH_FW_START;
3663
3664         if (!size) {
3665                 dev_err(adap->pdev_dev, "FW image has no data\n");
3666                 return -EINVAL;
3667         }
3668         if (size & 511) {
3669                 dev_err(adap->pdev_dev,
3670                         "FW image size not multiple of 512 bytes\n");
3671                 return -EINVAL;
3672         }
3673         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3674                 dev_err(adap->pdev_dev,
3675                         "FW image size differs from size in FW header\n");
3676                 return -EINVAL;
3677         }
3678         if (size > fw_size) {
3679                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3680                         fw_size);
3681                 return -EFBIG;
3682         }
3683         if (!t4_fw_matches_chip(adap, hdr))
3684                 return -EINVAL;
3685
3686         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3687                 csum += be32_to_cpu(p[i]);
3688
3689         if (csum != 0xffffffff) {
3690                 dev_err(adap->pdev_dev,
3691                         "corrupted firmware image, checksum %#x\n", csum);
3692                 return -EINVAL;
3693         }
3694
3695         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3696         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3697         if (ret)
3698                 goto out;
3699
3700         /*
3701          * We write the correct version at the end so the driver can see a bad
3702          * version if the FW write fails.  Start by writing a copy of the
3703          * first page with a bad version.
3704          */
3705         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3706         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3707         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3708         if (ret)
3709                 goto out;
3710
3711         addr = fw_start;
3712         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3713                 addr += SF_PAGE_SIZE;
3714                 fw_data += SF_PAGE_SIZE;
3715                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3716                 if (ret)
3717                         goto out;
3718         }
3719
3720         ret = t4_write_flash(adap,
3721                              fw_start + offsetof(struct fw_hdr, fw_ver),
3722                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3723 out:
3724         if (ret)
3725                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3726                         ret);
3727         else
3728                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3729         return ret;
3730 }
3731
3732 /**
3733  *      t4_phy_fw_ver - return current PHY firmware version
3734  *      @adap: the adapter
3735  *      @phy_fw_ver: return value buffer for PHY firmware version
3736  *
3737  *      Returns the current version of external PHY firmware on the
3738  *      adapter.
3739  */
3740 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3741 {
3742         u32 param, val;
3743         int ret;
3744
3745         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3746                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3747                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3748                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3749         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750                               &param, &val);
3751         if (ret < 0)
3752                 return ret;
3753         *phy_fw_ver = val;
3754         return 0;
3755 }
3756
3757 /**
3758  *      t4_load_phy_fw - download port PHY firmware
3759  *      @adap: the adapter
3760  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3761  *      @win_lock: the lock to use to guard the memory copy
3762  *      @phy_fw_version: function to check PHY firmware versions
3763  *      @phy_fw_data: the PHY firmware image to write
3764  *      @phy_fw_size: image size
3765  *
3766  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3767  *      @phy_fw_version is supplied, then it will be used to determine if
3768  *      it's necessary to perform the transfer by comparing the version
3769  *      of any existing adapter PHY firmware with that of the passed in
3770  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3771  *      around the call to t4_memory_rw() which transfers the PHY firmware
3772  *      to the adapter.
3773  *
3774  *      A negative error number will be returned if an error occurs.  If
3775  *      version number support is available and there's no need to upgrade
3776  *      the firmware, 0 will be returned.  If firmware is successfully
3777  *      transferred to the adapter, 1 will be retured.
3778  *
3779  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3780  *      a result, a RESET of the adapter would cause that RAM to lose its
3781  *      contents.  Thus, loading PHY firmware on such adapters must happen
3782  *      after any FW_RESET_CMDs ...
3783  */
3784 int t4_load_phy_fw(struct adapter *adap,
3785                    int win, spinlock_t *win_lock,
3786                    int (*phy_fw_version)(const u8 *, size_t),
3787                    const u8 *phy_fw_data, size_t phy_fw_size)
3788 {
3789         unsigned long mtype = 0, maddr = 0;
3790         u32 param, val;
3791         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3792         int ret;
3793
3794         /* If we have version number support, then check to see if the adapter
3795          * already has up-to-date PHY firmware loaded.
3796          */
3797          if (phy_fw_version) {
3798                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3799                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3800                 if (ret < 0)
3801                         return ret;
3802
3803                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3804                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3805                                 "version %#x\n", cur_phy_fw_ver);
3806                         return 0;
3807                 }
3808         }
3809
3810         /* Ask the firmware where it wants us to copy the PHY firmware image.
3811          * The size of the file requires a special version of the READ coommand
3812          * which will pass the file size via the values field in PARAMS_CMD and
3813          * retrieve the return value from firmware and place it in the same
3814          * buffer values
3815          */
3816         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3817                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3818                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3819                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3820         val = phy_fw_size;
3821         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3822                                  &param, &val, 1, true);
3823         if (ret < 0)
3824                 return ret;
3825         mtype = val >> 8;
3826         maddr = (val & 0xff) << 16;
3827
3828         /* Copy the supplied PHY Firmware image to the adapter memory location
3829          * allocated by the adapter firmware.
3830          */
3831         if (win_lock)
3832                 spin_lock_bh(win_lock);
3833         ret = t4_memory_rw(adap, win, mtype, maddr,
3834                            phy_fw_size, (__be32 *)phy_fw_data,
3835                            T4_MEMORY_WRITE);
3836         if (win_lock)
3837                 spin_unlock_bh(win_lock);
3838         if (ret)
3839                 return ret;
3840
3841         /* Tell the firmware that the PHY firmware image has been written to
3842          * RAM and it can now start copying it over to the PHYs.  The chip
3843          * firmware will RESET the affected PHYs as part of this operation
3844          * leaving them running the new PHY firmware image.
3845          */
3846         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3847                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3848                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3849                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3850         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3851                                     &param, &val, 30000);
3852
3853         /* If we have version number support, then check to see that the new
3854          * firmware got loaded properly.
3855          */
3856         if (phy_fw_version) {
3857                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3858                 if (ret < 0)
3859                         return ret;
3860
3861                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3862                         CH_WARN(adap, "PHY Firmware did not update: "
3863                                 "version on adapter %#x, "
3864                                 "version flashed %#x\n",
3865                                 cur_phy_fw_ver, new_phy_fw_vers);
3866                         return -ENXIO;
3867                 }
3868         }
3869
3870         return 1;
3871 }
3872
3873 /**
3874  *      t4_fwcache - firmware cache operation
3875  *      @adap: the adapter
3876  *      @op  : the operation (flush or flush and invalidate)
3877  */
3878 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3879 {
3880         struct fw_params_cmd c;
3881
3882         memset(&c, 0, sizeof(c));
3883         c.op_to_vfn =
3884                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3885                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3886                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3887                             FW_PARAMS_CMD_VFN_V(0));
3888         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3889         c.param[0].mnem =
3890                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3891                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3892         c.param[0].val = cpu_to_be32(op);
3893
3894         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3895 }
3896
3897 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3898                         unsigned int *pif_req_wrptr,
3899                         unsigned int *pif_rsp_wrptr)
3900 {
3901         int i, j;
3902         u32 cfg, val, req, rsp;
3903
3904         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3905         if (cfg & LADBGEN_F)
3906                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3907
3908         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3909         req = POLADBGWRPTR_G(val);
3910         rsp = PILADBGWRPTR_G(val);
3911         if (pif_req_wrptr)
3912                 *pif_req_wrptr = req;
3913         if (pif_rsp_wrptr)
3914                 *pif_rsp_wrptr = rsp;
3915
3916         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3917                 for (j = 0; j < 6; j++) {
3918                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3919                                      PILADBGRDPTR_V(rsp));
3920                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3921                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3922                         req++;
3923                         rsp++;
3924                 }
3925                 req = (req + 2) & POLADBGRDPTR_M;
3926                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3927         }
3928         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3929 }
3930
3931 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3932 {
3933         u32 cfg;
3934         int i, j, idx;
3935
3936         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3937         if (cfg & LADBGEN_F)
3938                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3939
3940         for (i = 0; i < CIM_MALA_SIZE; i++) {
3941                 for (j = 0; j < 5; j++) {
3942                         idx = 8 * i + j;
3943                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3944                                      PILADBGRDPTR_V(idx));
3945                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3946                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3947                 }
3948         }
3949         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3950 }
3951
3952 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3953 {
3954         unsigned int i, j;
3955
3956         for (i = 0; i < 8; i++) {
3957                 u32 *p = la_buf + i;
3958
3959                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3960                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3961                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3962                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3963                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3964         }
3965 }
3966
3967 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3968                      FW_PORT_CAP32_ANEG)
3969
3970 /**
3971  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3972  *      @caps16: a 16-bit Port Capabilities value
3973  *
3974  *      Returns the equivalent 32-bit Port Capabilities value.
3975  */
3976 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3977 {
3978         fw_port_cap32_t caps32 = 0;
3979
3980         #define CAP16_TO_CAP32(__cap) \
3981                 do { \
3982                         if (caps16 & FW_PORT_CAP_##__cap) \
3983                                 caps32 |= FW_PORT_CAP32_##__cap; \
3984                 } while (0)
3985
3986         CAP16_TO_CAP32(SPEED_100M);
3987         CAP16_TO_CAP32(SPEED_1G);
3988         CAP16_TO_CAP32(SPEED_25G);
3989         CAP16_TO_CAP32(SPEED_10G);
3990         CAP16_TO_CAP32(SPEED_40G);
3991         CAP16_TO_CAP32(SPEED_100G);
3992         CAP16_TO_CAP32(FC_RX);
3993         CAP16_TO_CAP32(FC_TX);
3994         CAP16_TO_CAP32(ANEG);
3995         CAP16_TO_CAP32(FORCE_PAUSE);
3996         CAP16_TO_CAP32(MDIAUTO);
3997         CAP16_TO_CAP32(MDISTRAIGHT);
3998         CAP16_TO_CAP32(FEC_RS);
3999         CAP16_TO_CAP32(FEC_BASER_RS);
4000         CAP16_TO_CAP32(802_3_PAUSE);
4001         CAP16_TO_CAP32(802_3_ASM_DIR);
4002
4003         #undef CAP16_TO_CAP32
4004
4005         return caps32;
4006 }
4007
4008 /**
4009  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4010  *      @caps32: a 32-bit Port Capabilities value
4011  *
4012  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4013  *      not all 32-bit Port Capabilities can be represented in the 16-bit
4014  *      Port Capabilities and some fields/values may not make it.
4015  */
4016 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4017 {
4018         fw_port_cap16_t caps16 = 0;
4019
4020         #define CAP32_TO_CAP16(__cap) \
4021                 do { \
4022                         if (caps32 & FW_PORT_CAP32_##__cap) \
4023                                 caps16 |= FW_PORT_CAP_##__cap; \
4024                 } while (0)
4025
4026         CAP32_TO_CAP16(SPEED_100M);
4027         CAP32_TO_CAP16(SPEED_1G);
4028         CAP32_TO_CAP16(SPEED_10G);
4029         CAP32_TO_CAP16(SPEED_25G);
4030         CAP32_TO_CAP16(SPEED_40G);
4031         CAP32_TO_CAP16(SPEED_100G);
4032         CAP32_TO_CAP16(FC_RX);
4033         CAP32_TO_CAP16(FC_TX);
4034         CAP32_TO_CAP16(802_3_PAUSE);
4035         CAP32_TO_CAP16(802_3_ASM_DIR);
4036         CAP32_TO_CAP16(ANEG);
4037         CAP32_TO_CAP16(FORCE_PAUSE);
4038         CAP32_TO_CAP16(MDIAUTO);
4039         CAP32_TO_CAP16(MDISTRAIGHT);
4040         CAP32_TO_CAP16(FEC_RS);
4041         CAP32_TO_CAP16(FEC_BASER_RS);
4042
4043         #undef CAP32_TO_CAP16
4044
4045         return caps16;
4046 }
4047
4048 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4049 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4050 {
4051         enum cc_pause cc_pause = 0;
4052
4053         if (fw_pause & FW_PORT_CAP32_FC_RX)
4054                 cc_pause |= PAUSE_RX;
4055         if (fw_pause & FW_PORT_CAP32_FC_TX)
4056                 cc_pause |= PAUSE_TX;
4057
4058         return cc_pause;
4059 }
4060
4061 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4062 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4063 {
4064         fw_port_cap32_t fw_pause = 0;
4065
4066         if (cc_pause & PAUSE_RX)
4067                 fw_pause |= FW_PORT_CAP32_FC_RX;
4068         if (cc_pause & PAUSE_TX)
4069                 fw_pause |= FW_PORT_CAP32_FC_TX;
4070         if (!(cc_pause & PAUSE_AUTONEG))
4071                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4072
4073         return fw_pause;
4074 }
4075
4076 /* Translate Firmware Forward Error Correction specification to Common Code */
4077 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4078 {
4079         enum cc_fec cc_fec = 0;
4080
4081         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4082                 cc_fec |= FEC_RS;
4083         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4084                 cc_fec |= FEC_BASER_RS;
4085
4086         return cc_fec;
4087 }
4088
4089 /* Translate Common Code Forward Error Correction specification to Firmware */
4090 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4091 {
4092         fw_port_cap32_t fw_fec = 0;
4093
4094         if (cc_fec & FEC_RS)
4095                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4096         if (cc_fec & FEC_BASER_RS)
4097                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4098
4099         return fw_fec;
4100 }
4101
4102 /**
4103  *      t4_link_l1cfg - apply link configuration to MAC/PHY
4104  *      @adapter: the adapter
4105  *      @mbox: the Firmware Mailbox to use
4106  *      @port: the Port ID
4107  *      @lc: the Port's Link Configuration
4108  *
4109  *      Set up a port's MAC and PHY according to a desired link configuration.
4110  *      - If the PHY can auto-negotiate first decide what to advertise, then
4111  *        enable/disable auto-negotiation as desired, and reset.
4112  *      - If the PHY does not auto-negotiate just reset it.
4113  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4114  *        otherwise do it later based on the outcome of auto-negotiation.
4115  */
4116 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4117                        unsigned int port, struct link_config *lc,
4118                        bool sleep_ok, int timeout)
4119 {
4120         unsigned int fw_caps = adapter->params.fw_caps_support;
4121         fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
4122         struct fw_port_cmd cmd;
4123         unsigned int fw_mdi;
4124         int ret;
4125
4126         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4127         /* Convert driver coding of Pause Frame Flow Control settings into the
4128          * Firmware's API.
4129          */
4130         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4131
4132         /* Convert Common Code Forward Error Control settings into the
4133          * Firmware's API.  If the current Requested FEC has "Automatic"
4134          * (IEEE 802.3) specified, then we use whatever the Firmware
4135          * sent us as part of it's IEEE 802.3-based interpratation of
4136          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4137          * use whatever is in the current Requested FEC settings.
4138          */
4139         if (lc->requested_fec & FEC_AUTO)
4140                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4141         else
4142                 cc_fec = lc->requested_fec;
4143         fw_fec = cc_to_fwcap_fec(cc_fec);
4144
4145         /* Figure out what our Requested Port Capabilities are going to be.
4146          */
4147         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4148                 rcap = lc->acaps | fw_fc | fw_fec;
4149                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4150                 lc->fec = cc_fec;
4151         } else if (lc->autoneg == AUTONEG_DISABLE) {
4152                 rcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4153                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4154                 lc->fec = cc_fec;
4155         } else {
4156                 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
4157         }
4158
4159         /* Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4160          * we need to exclude this from this check in order to maintain
4161          * compatibility ...
4162          */
4163         if ((rcap & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4164                 dev_err(adapter->pdev_dev,
4165                         "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4166                         rcap, lc->pcaps);
4167                 return -EINVAL;
4168         }
4169
4170         /* And send that on to the Firmware ...
4171          */
4172         memset(&cmd, 0, sizeof(cmd));
4173         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4174                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4175                                        FW_PORT_CMD_PORTID_V(port));
4176         cmd.action_to_len16 =
4177                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4178                                                  ? FW_PORT_ACTION_L1_CFG
4179                                                  : FW_PORT_ACTION_L1_CFG32) |
4180                                                  FW_LEN16(cmd));
4181         if (fw_caps == FW_CAPS16)
4182                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4183         else
4184                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4185
4186         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4187                                       sleep_ok, timeout);
4188         if (ret) {
4189                 dev_err(adapter->pdev_dev,
4190                         "Requested Port Capabilities %#x rejected, error %d\n",
4191                         rcap, -ret);
4192                 return ret;
4193         }
4194         return ret;
4195 }
4196
4197 /**
4198  *      t4_restart_aneg - restart autonegotiation
4199  *      @adap: the adapter
4200  *      @mbox: mbox to use for the FW command
4201  *      @port: the port id
4202  *
4203  *      Restarts autonegotiation for the selected port.
4204  */
4205 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4206 {
4207         unsigned int fw_caps = adap->params.fw_caps_support;
4208         struct fw_port_cmd c;
4209
4210         memset(&c, 0, sizeof(c));
4211         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4212                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4213                                      FW_PORT_CMD_PORTID_V(port));
4214         c.action_to_len16 =
4215                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4216                                                  ? FW_PORT_ACTION_L1_CFG
4217                                                  : FW_PORT_ACTION_L1_CFG32) |
4218                             FW_LEN16(c));
4219         if (fw_caps == FW_CAPS16)
4220                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4221         else
4222                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4223         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4224 }
4225
4226 typedef void (*int_handler_t)(struct adapter *adap);
4227
4228 struct intr_info {
4229         unsigned int mask;       /* bits to check in interrupt status */
4230         const char *msg;         /* message to print or NULL */
4231         short stat_idx;          /* stat counter to increment or -1 */
4232         unsigned short fatal;    /* whether the condition reported is fatal */
4233         int_handler_t int_handler; /* platform-specific int handler */
4234 };
4235
4236 /**
4237  *      t4_handle_intr_status - table driven interrupt handler
4238  *      @adapter: the adapter that generated the interrupt
4239  *      @reg: the interrupt status register to process
4240  *      @acts: table of interrupt actions
4241  *
4242  *      A table driven interrupt handler that applies a set of masks to an
4243  *      interrupt status word and performs the corresponding actions if the
4244  *      interrupts described by the mask have occurred.  The actions include
4245  *      optionally emitting a warning or alert message.  The table is terminated
4246  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4247  *      conditions.
4248  */
4249 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4250                                  const struct intr_info *acts)
4251 {
4252         int fatal = 0;
4253         unsigned int mask = 0;
4254         unsigned int status = t4_read_reg(adapter, reg);
4255
4256         for ( ; acts->mask; ++acts) {
4257                 if (!(status & acts->mask))
4258                         continue;
4259                 if (acts->fatal) {
4260                         fatal++;
4261                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4262                                   status & acts->mask);
4263                 } else if (acts->msg && printk_ratelimit())
4264                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4265                                  status & acts->mask);
4266                 if (acts->int_handler)
4267                         acts->int_handler(adapter);
4268                 mask |= acts->mask;
4269         }
4270         status &= mask;
4271         if (status)                           /* clear processed interrupts */
4272                 t4_write_reg(adapter, reg, status);
4273         return fatal;
4274 }
4275
4276 /*
4277  * Interrupt handler for the PCIE module.
4278  */
4279 static void pcie_intr_handler(struct adapter *adapter)
4280 {
4281         static const struct intr_info sysbus_intr_info[] = {
4282                 { RNPP_F, "RXNP array parity error", -1, 1 },
4283                 { RPCP_F, "RXPC array parity error", -1, 1 },
4284                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4285                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4286                 { RFTP_F, "RXFT array parity error", -1, 1 },
4287                 { 0 }
4288         };
4289         static const struct intr_info pcie_port_intr_info[] = {
4290                 { TPCP_F, "TXPC array parity error", -1, 1 },
4291                 { TNPP_F, "TXNP array parity error", -1, 1 },
4292                 { TFTP_F, "TXFT array parity error", -1, 1 },
4293                 { TCAP_F, "TXCA array parity error", -1, 1 },
4294                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4295                 { RCAP_F, "RXCA array parity error", -1, 1 },
4296                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4297                 { RDPE_F, "Rx data parity error", -1, 1 },
4298                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4299                 { 0 }
4300         };
4301         static const struct intr_info pcie_intr_info[] = {
4302                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4303                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4304                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4305                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4306                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4307                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4308                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4309                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4310                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4311                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4312                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4313                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4314                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4315                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4316                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4317                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4318                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4319                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4320                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4321                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4322                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4323                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4324                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4325                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4326                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4327                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4328                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4329                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4330                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4331                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4332                   -1, 0 },
4333                 { 0 }
4334         };
4335
4336         static struct intr_info t5_pcie_intr_info[] = {
4337                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4338                   -1, 1 },
4339                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4340                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4341                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4342                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4343                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4344                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4345                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4346                   -1, 1 },
4347                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4348                   -1, 1 },
4349                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4350                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4351                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4352                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4353                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4354                   -1, 1 },
4355                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4356                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4357                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4358                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4359                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4360                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4361                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4362                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4363                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4364                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4365                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4366                   -1, 1 },
4367                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4368                   -1, 1 },
4369                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4370                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4371                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4372                 { READRSPERR_F, "Outbound read error", -1, 0 },
4373                 { 0 }
4374         };
4375
4376         int fat;
4377
4378         if (is_t4(adapter->params.chip))
4379                 fat = t4_handle_intr_status(adapter,
4380                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4381                                 sysbus_intr_info) +
4382                         t4_handle_intr_status(adapter,
4383                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4384                                         pcie_port_intr_info) +
4385                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4386                                               pcie_intr_info);
4387         else
4388                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4389                                             t5_pcie_intr_info);
4390
4391         if (fat)
4392                 t4_fatal_err(adapter);
4393 }
4394
4395 /*
4396  * TP interrupt handler.
4397  */
4398 static void tp_intr_handler(struct adapter *adapter)
4399 {
4400         static const struct intr_info tp_intr_info[] = {
4401                 { 0x3fffffff, "TP parity error", -1, 1 },
4402                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4403                 { 0 }
4404         };
4405
4406         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4407                 t4_fatal_err(adapter);
4408 }
4409
4410 /*
4411  * SGE interrupt handler.
4412  */
4413 static void sge_intr_handler(struct adapter *adapter)
4414 {
4415         u64 v;
4416         u32 err;
4417
4418         static const struct intr_info sge_intr_info[] = {
4419                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4420                   "SGE received CPL exceeding IQE size", -1, 1 },
4421                 { ERR_INVALID_CIDX_INC_F,
4422                   "SGE GTS CIDX increment too large", -1, 0 },
4423                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4424                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4425                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4426                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4427                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4428                   0 },
4429                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4430                   0 },
4431                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4432                   0 },
4433                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4434                   0 },
4435                 { ERR_ING_CTXT_PRIO_F,
4436                   "SGE too many priority ingress contexts", -1, 0 },
4437                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4438                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4439                 { 0 }
4440         };
4441
4442         static struct intr_info t4t5_sge_intr_info[] = {
4443                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4444                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4445                 { ERR_EGR_CTXT_PRIO_F,
4446                   "SGE too many priority egress contexts", -1, 0 },
4447                 { 0 }
4448         };
4449
4450         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
4451                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
4452         if (v) {
4453                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
4454                                 (unsigned long long)v);
4455                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
4456                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
4457         }
4458
4459         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4460         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4461                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4462                                            t4t5_sge_intr_info);
4463
4464         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4465         if (err & ERROR_QID_VALID_F) {
4466                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4467                         ERROR_QID_G(err));
4468                 if (err & UNCAPTURED_ERROR_F)
4469                         dev_err(adapter->pdev_dev,
4470                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4471                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4472                              UNCAPTURED_ERROR_F);
4473         }
4474
4475         if (v != 0)
4476                 t4_fatal_err(adapter);
4477 }
4478
4479 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4480                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4481 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4482                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4483
4484 /*
4485  * CIM interrupt handler.
4486  */
4487 static void cim_intr_handler(struct adapter *adapter)
4488 {
4489         static const struct intr_info cim_intr_info[] = {
4490                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4491                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4492                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4493                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4494                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4495                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4496                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4497                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4498                 { 0 }
4499         };
4500         static const struct intr_info cim_upintr_info[] = {
4501                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4502                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4503                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4504                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4505                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4506                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4507                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4508                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4509                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4510                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4511                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4512                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4513                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4514                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4515                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4516                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4517                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4518                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4519                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4520                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4521                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4522                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4523                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4524                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4525                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4526                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4527                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4528                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4529                 { 0 }
4530         };
4531
4532         u32 val, fw_err;
4533         int fat;
4534
4535         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4536         if (fw_err & PCIE_FW_ERR_F)
4537                 t4_report_fw_error(adapter);
4538
4539         /* When the Firmware detects an internal error which normally
4540          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4541          * in order to make sure the Host sees the Firmware Crash.  So
4542          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4543          * ignore the Timer0 interrupt.
4544          */
4545
4546         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4547         if (val & TIMER0INT_F)
4548                 if (!(fw_err & PCIE_FW_ERR_F) ||
4549                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4550                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4551                                      TIMER0INT_F);
4552
4553         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4554                                     cim_intr_info) +
4555               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4556                                     cim_upintr_info);
4557         if (fat)
4558                 t4_fatal_err(adapter);
4559 }
4560
4561 /*
4562  * ULP RX interrupt handler.
4563  */
4564 static void ulprx_intr_handler(struct adapter *adapter)
4565 {
4566         static const struct intr_info ulprx_intr_info[] = {
4567                 { 0x1800000, "ULPRX context error", -1, 1 },
4568                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4569                 { 0 }
4570         };
4571
4572         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4573                 t4_fatal_err(adapter);
4574 }
4575
4576 /*
4577  * ULP TX interrupt handler.
4578  */
4579 static void ulptx_intr_handler(struct adapter *adapter)
4580 {
4581         static const struct intr_info ulptx_intr_info[] = {
4582                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4583                   0 },
4584                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4585                   0 },
4586                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4587                   0 },
4588                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4589                   0 },
4590                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4591                 { 0 }
4592         };
4593
4594         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4595                 t4_fatal_err(adapter);
4596 }
4597
4598 /*
4599  * PM TX interrupt handler.
4600  */
4601 static void pmtx_intr_handler(struct adapter *adapter)
4602 {
4603         static const struct intr_info pmtx_intr_info[] = {
4604                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4605                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4606                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4607                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4608                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4609                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4610                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4611                   -1, 1 },
4612                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4613                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4614                 { 0 }
4615         };
4616
4617         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4618                 t4_fatal_err(adapter);
4619 }
4620
4621 /*
4622  * PM RX interrupt handler.
4623  */
4624 static void pmrx_intr_handler(struct adapter *adapter)
4625 {
4626         static const struct intr_info pmrx_intr_info[] = {
4627                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4628                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4629                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4630                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4631                   -1, 1 },
4632                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4633                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4634                 { 0 }
4635         };
4636
4637         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4638                 t4_fatal_err(adapter);
4639 }
4640
4641 /*
4642  * CPL switch interrupt handler.
4643  */
4644 static void cplsw_intr_handler(struct adapter *adapter)
4645 {
4646         static const struct intr_info cplsw_intr_info[] = {
4647                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4648                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4649                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4650                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4651                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4652                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4653                 { 0 }
4654         };
4655
4656         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4657                 t4_fatal_err(adapter);
4658 }
4659
4660 /*
4661  * LE interrupt handler.
4662  */
4663 static void le_intr_handler(struct adapter *adap)
4664 {
4665         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4666         static const struct intr_info le_intr_info[] = {
4667                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4668                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4669                 { PARITYERR_F, "LE parity error", -1, 1 },
4670                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4671                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4672                 { 0 }
4673         };
4674
4675         static struct intr_info t6_le_intr_info[] = {
4676                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4677                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4678                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4679                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4680                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4681                 { 0 }
4682         };
4683
4684         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4685                                   (chip <= CHELSIO_T5) ?
4686                                   le_intr_info : t6_le_intr_info))
4687                 t4_fatal_err(adap);
4688 }
4689
4690 /*
4691  * MPS interrupt handler.
4692  */
4693 static void mps_intr_handler(struct adapter *adapter)
4694 {
4695         static const struct intr_info mps_rx_intr_info[] = {
4696                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4697                 { 0 }
4698         };
4699         static const struct intr_info mps_tx_intr_info[] = {
4700                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4701                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4702                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4703                   -1, 1 },
4704                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4705                   -1, 1 },
4706                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4707                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4708                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4709                 { 0 }
4710         };
4711         static const struct intr_info t6_mps_tx_intr_info[] = {
4712                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4713                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4714                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4715                   -1, 1 },
4716                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4717                   -1, 1 },
4718                 /* MPS Tx Bubble is normal for T6 */
4719                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4720                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4721                 { 0 }
4722         };
4723         static const struct intr_info mps_trc_intr_info[] = {
4724                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4725                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4726                   -1, 1 },
4727                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4728                 { 0 }
4729         };
4730         static const struct intr_info mps_stat_sram_intr_info[] = {
4731                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4732                 { 0 }
4733         };
4734         static const struct intr_info mps_stat_tx_intr_info[] = {
4735                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4736                 { 0 }
4737         };
4738         static const struct intr_info mps_stat_rx_intr_info[] = {
4739                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4740                 { 0 }
4741         };
4742         static const struct intr_info mps_cls_intr_info[] = {
4743                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4744                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4745                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4746                 { 0 }
4747         };
4748
4749         int fat;
4750
4751         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4752                                     mps_rx_intr_info) +
4753               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4754                                     is_t6(adapter->params.chip)
4755                                     ? t6_mps_tx_intr_info
4756                                     : mps_tx_intr_info) +
4757               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4758                                     mps_trc_intr_info) +
4759               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4760                                     mps_stat_sram_intr_info) +
4761               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4762                                     mps_stat_tx_intr_info) +
4763               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4764                                     mps_stat_rx_intr_info) +
4765               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4766                                     mps_cls_intr_info);
4767
4768         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4769         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4770         if (fat)
4771                 t4_fatal_err(adapter);
4772 }
4773
4774 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4775                       ECC_UE_INT_CAUSE_F)
4776
4777 /*
4778  * EDC/MC interrupt handler.
4779  */
4780 static void mem_intr_handler(struct adapter *adapter, int idx)
4781 {
4782         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4783
4784         unsigned int addr, cnt_addr, v;
4785
4786         if (idx <= MEM_EDC1) {
4787                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4788                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4789         } else if (idx == MEM_MC) {
4790                 if (is_t4(adapter->params.chip)) {
4791                         addr = MC_INT_CAUSE_A;
4792                         cnt_addr = MC_ECC_STATUS_A;
4793                 } else {
4794                         addr = MC_P_INT_CAUSE_A;
4795                         cnt_addr = MC_P_ECC_STATUS_A;
4796                 }
4797         } else {
4798                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4799                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4800         }
4801
4802         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4803         if (v & PERR_INT_CAUSE_F)
4804                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4805                           name[idx]);
4806         if (v & ECC_CE_INT_CAUSE_F) {
4807                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4808
4809                 t4_edc_err_read(adapter, idx);
4810
4811                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4812                 if (printk_ratelimit())
4813                         dev_warn(adapter->pdev_dev,
4814                                  "%u %s correctable ECC data error%s\n",
4815                                  cnt, name[idx], cnt > 1 ? "s" : "");
4816         }
4817         if (v & ECC_UE_INT_CAUSE_F)
4818                 dev_alert(adapter->pdev_dev,
4819                           "%s uncorrectable ECC data error\n", name[idx]);
4820
4821         t4_write_reg(adapter, addr, v);
4822         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4823                 t4_fatal_err(adapter);
4824 }
4825
4826 /*
4827  * MA interrupt handler.
4828  */
4829 static void ma_intr_handler(struct adapter *adap)
4830 {
4831         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4832
4833         if (status & MEM_PERR_INT_CAUSE_F) {
4834                 dev_alert(adap->pdev_dev,
4835                           "MA parity error, parity status %#x\n",
4836                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4837                 if (is_t5(adap->params.chip))
4838                         dev_alert(adap->pdev_dev,
4839                                   "MA parity error, parity status %#x\n",
4840                                   t4_read_reg(adap,
4841                                               MA_PARITY_ERROR_STATUS2_A));
4842         }
4843         if (status & MEM_WRAP_INT_CAUSE_F) {
4844                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4845                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4846                           "client %u to address %#x\n",
4847                           MEM_WRAP_CLIENT_NUM_G(v),
4848                           MEM_WRAP_ADDRESS_G(v) << 4);
4849         }
4850         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4851         t4_fatal_err(adap);
4852 }
4853
4854 /*
4855  * SMB interrupt handler.
4856  */
4857 static void smb_intr_handler(struct adapter *adap)
4858 {
4859         static const struct intr_info smb_intr_info[] = {
4860                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4861                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4862                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4863                 { 0 }
4864         };
4865
4866         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4867                 t4_fatal_err(adap);
4868 }
4869
4870 /*
4871  * NC-SI interrupt handler.
4872  */
4873 static void ncsi_intr_handler(struct adapter *adap)
4874 {
4875         static const struct intr_info ncsi_intr_info[] = {
4876                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4877                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4878                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4879                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4880                 { 0 }
4881         };
4882
4883         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4884                 t4_fatal_err(adap);
4885 }
4886
4887 /*
4888  * XGMAC interrupt handler.
4889  */
4890 static void xgmac_intr_handler(struct adapter *adap, int port)
4891 {
4892         u32 v, int_cause_reg;
4893
4894         if (is_t4(adap->params.chip))
4895                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4896         else
4897                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4898
4899         v = t4_read_reg(adap, int_cause_reg);
4900
4901         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4902         if (!v)
4903                 return;
4904
4905         if (v & TXFIFO_PRTY_ERR_F)
4906                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4907                           port);
4908         if (v & RXFIFO_PRTY_ERR_F)
4909                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4910                           port);
4911         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4912         t4_fatal_err(adap);
4913 }
4914
4915 /*
4916  * PL interrupt handler.
4917  */
4918 static void pl_intr_handler(struct adapter *adap)
4919 {
4920         static const struct intr_info pl_intr_info[] = {
4921                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4922                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4923                 { 0 }
4924         };
4925
4926         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4927                 t4_fatal_err(adap);
4928 }
4929
4930 #define PF_INTR_MASK (PFSW_F)
4931 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4932                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4933                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4934
4935 /**
4936  *      t4_slow_intr_handler - control path interrupt handler
4937  *      @adapter: the adapter
4938  *
4939  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4940  *      The designation 'slow' is because it involves register reads, while
4941  *      data interrupts typically don't involve any MMIOs.
4942  */
4943 int t4_slow_intr_handler(struct adapter *adapter)
4944 {
4945         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4946
4947         if (!(cause & GLBL_INTR_MASK))
4948                 return 0;
4949         if (cause & CIM_F)
4950                 cim_intr_handler(adapter);
4951         if (cause & MPS_F)
4952                 mps_intr_handler(adapter);
4953         if (cause & NCSI_F)
4954                 ncsi_intr_handler(adapter);
4955         if (cause & PL_F)
4956                 pl_intr_handler(adapter);
4957         if (cause & SMB_F)
4958                 smb_intr_handler(adapter);
4959         if (cause & XGMAC0_F)
4960                 xgmac_intr_handler(adapter, 0);
4961         if (cause & XGMAC1_F)
4962                 xgmac_intr_handler(adapter, 1);
4963         if (cause & XGMAC_KR0_F)
4964                 xgmac_intr_handler(adapter, 2);
4965         if (cause & XGMAC_KR1_F)
4966                 xgmac_intr_handler(adapter, 3);
4967         if (cause & PCIE_F)
4968                 pcie_intr_handler(adapter);
4969         if (cause & MC_F)
4970                 mem_intr_handler(adapter, MEM_MC);
4971         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4972                 mem_intr_handler(adapter, MEM_MC1);
4973         if (cause & EDC0_F)
4974                 mem_intr_handler(adapter, MEM_EDC0);
4975         if (cause & EDC1_F)
4976                 mem_intr_handler(adapter, MEM_EDC1);
4977         if (cause & LE_F)
4978                 le_intr_handler(adapter);
4979         if (cause & TP_F)
4980                 tp_intr_handler(adapter);
4981         if (cause & MA_F)
4982                 ma_intr_handler(adapter);
4983         if (cause & PM_TX_F)
4984                 pmtx_intr_handler(adapter);
4985         if (cause & PM_RX_F)
4986                 pmrx_intr_handler(adapter);
4987         if (cause & ULP_RX_F)
4988                 ulprx_intr_handler(adapter);
4989         if (cause & CPL_SWITCH_F)
4990                 cplsw_intr_handler(adapter);
4991         if (cause & SGE_F)
4992                 sge_intr_handler(adapter);
4993         if (cause & ULP_TX_F)
4994                 ulptx_intr_handler(adapter);
4995
4996         /* Clear the interrupts just processed for which we are the master. */
4997         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4998         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4999         return 1;
5000 }
5001
5002 /**
5003  *      t4_intr_enable - enable interrupts
5004  *      @adapter: the adapter whose interrupts should be enabled
5005  *
5006  *      Enable PF-specific interrupts for the calling function and the top-level
5007  *      interrupt concentrator for global interrupts.  Interrupts are already
5008  *      enabled at each module, here we just enable the roots of the interrupt
5009  *      hierarchies.
5010  *
5011  *      Note: this function should be called only when the driver manages
5012  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5013  *      function at a time should be doing this.
5014  */
5015 void t4_intr_enable(struct adapter *adapter)
5016 {
5017         u32 val = 0;
5018         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5019         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5020                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5021
5022         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5023                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5024         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5025                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5026                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5027                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5028                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5029                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5030                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5031         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5032         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5033 }
5034
5035 /**
5036  *      t4_intr_disable - disable interrupts
5037  *      @adapter: the adapter whose interrupts should be disabled
5038  *
5039  *      Disable interrupts.  We only disable the top-level interrupt
5040  *      concentrators.  The caller must be a PCI function managing global
5041  *      interrupts.
5042  */
5043 void t4_intr_disable(struct adapter *adapter)
5044 {
5045         u32 whoami, pf;
5046
5047         if (pci_channel_offline(adapter->pdev))
5048                 return;
5049
5050         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5051         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5052                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5053
5054         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5055         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5056 }
5057
5058 unsigned int t4_chip_rss_size(struct adapter *adap)
5059 {
5060         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5061                 return RSS_NENTRIES;
5062         else
5063                 return T6_RSS_NENTRIES;
5064 }
5065
5066 /**
5067  *      t4_config_rss_range - configure a portion of the RSS mapping table
5068  *      @adapter: the adapter
5069  *      @mbox: mbox to use for the FW command
5070  *      @viid: virtual interface whose RSS subtable is to be written
5071  *      @start: start entry in the table to write
5072  *      @n: how many table entries to write
5073  *      @rspq: values for the response queue lookup table
5074  *      @nrspq: number of values in @rspq
5075  *
5076  *      Programs the selected part of the VI's RSS mapping table with the
5077  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5078  *      until the full table range is populated.
5079  *
5080  *      The caller must ensure the values in @rspq are in the range allowed for
5081  *      @viid.
5082  */
5083 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5084                         int start, int n, const u16 *rspq, unsigned int nrspq)
5085 {
5086         int ret;
5087         const u16 *rsp = rspq;
5088         const u16 *rsp_end = rspq + nrspq;
5089         struct fw_rss_ind_tbl_cmd cmd;
5090
5091         memset(&cmd, 0, sizeof(cmd));
5092         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5093                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5094                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5095         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5096
5097         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5098         while (n > 0) {
5099                 int nq = min(n, 32);
5100                 __be32 *qp = &cmd.iq0_to_iq2;
5101
5102                 cmd.niqid = cpu_to_be16(nq);
5103                 cmd.startidx = cpu_to_be16(start);
5104
5105                 start += nq;
5106                 n -= nq;
5107
5108                 while (nq > 0) {
5109                         unsigned int v;
5110
5111                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5112                         if (++rsp >= rsp_end)
5113                                 rsp = rspq;
5114                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5115                         if (++rsp >= rsp_end)
5116                                 rsp = rspq;
5117                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5118                         if (++rsp >= rsp_end)
5119                                 rsp = rspq;
5120
5121                         *qp++ = cpu_to_be32(v);
5122                         nq -= 3;
5123                 }
5124
5125                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5126                 if (ret)
5127                         return ret;
5128         }
5129         return 0;
5130 }
5131
5132 /**
5133  *      t4_config_glbl_rss - configure the global RSS mode
5134  *      @adapter: the adapter
5135  *      @mbox: mbox to use for the FW command
5136  *      @mode: global RSS mode
5137  *      @flags: mode-specific flags
5138  *
5139  *      Sets the global RSS mode.
5140  */
5141 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5142                        unsigned int flags)
5143 {
5144         struct fw_rss_glb_config_cmd c;
5145
5146         memset(&c, 0, sizeof(c));
5147         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5148                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5149         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5150         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5151                 c.u.manual.mode_pkd =
5152                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5153         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5154                 c.u.basicvirtual.mode_pkd =
5155                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5156                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5157         } else
5158                 return -EINVAL;
5159         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5160 }
5161
5162 /**
5163  *      t4_config_vi_rss - configure per VI RSS settings
5164  *      @adapter: the adapter
5165  *      @mbox: mbox to use for the FW command
5166  *      @viid: the VI id
5167  *      @flags: RSS flags
5168  *      @defq: id of the default RSS queue for the VI.
5169  *
5170  *      Configures VI-specific RSS properties.
5171  */
5172 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5173                      unsigned int flags, unsigned int defq)
5174 {
5175         struct fw_rss_vi_config_cmd c;
5176
5177         memset(&c, 0, sizeof(c));
5178         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5179                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5180                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5181         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5182         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5183                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5184         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5185 }
5186
5187 /* Read an RSS table row */
5188 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5189 {
5190         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5191         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5192                                    5, 0, val);
5193 }
5194
5195 /**
5196  *      t4_read_rss - read the contents of the RSS mapping table
5197  *      @adapter: the adapter
5198  *      @map: holds the contents of the RSS mapping table
5199  *
5200  *      Reads the contents of the RSS hash->queue mapping table.
5201  */
5202 int t4_read_rss(struct adapter *adapter, u16 *map)
5203 {
5204         int i, ret, nentries;
5205         u32 val;
5206
5207         nentries = t4_chip_rss_size(adapter);
5208         for (i = 0; i < nentries / 2; ++i) {
5209                 ret = rd_rss_row(adapter, i, &val);
5210                 if (ret)
5211                         return ret;
5212                 *map++ = LKPTBLQUEUE0_G(val);
5213                 *map++ = LKPTBLQUEUE1_G(val);
5214         }
5215         return 0;
5216 }
5217
5218 static unsigned int t4_use_ldst(struct adapter *adap)
5219 {
5220         return (adap->flags & FW_OK) && !adap->use_bd;
5221 }
5222
5223 /**
5224  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5225  * @adap: the adapter
5226  * @cmd: TP fw ldst address space type
5227  * @vals: where the indirect register values are stored/written
5228  * @nregs: how many indirect registers to read/write
5229  * @start_idx: index of first indirect register to read/write
5230  * @rw: Read (1) or Write (0)
5231  * @sleep_ok: if true we may sleep while awaiting command completion
5232  *
5233  * Access TP indirect registers through LDST
5234  */
5235 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5236                             unsigned int nregs, unsigned int start_index,
5237                             unsigned int rw, bool sleep_ok)
5238 {
5239         int ret = 0;
5240         unsigned int i;
5241         struct fw_ldst_cmd c;
5242
5243         for (i = 0; i < nregs; i++) {
5244                 memset(&c, 0, sizeof(c));
5245                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5246                                                 FW_CMD_REQUEST_F |
5247                                                 (rw ? FW_CMD_READ_F :
5248                                                       FW_CMD_WRITE_F) |
5249                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5250                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5251
5252                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5253                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5254                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5255                                       sleep_ok);
5256                 if (ret)
5257                         return ret;
5258
5259                 if (rw)
5260                         vals[i] = be32_to_cpu(c.u.addrval.val);
5261         }
5262         return 0;
5263 }
5264
5265 /**
5266  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5267  * @adap: the adapter
5268  * @reg_addr: Address Register
5269  * @reg_data: Data register
5270  * @buff: where the indirect register values are stored/written
5271  * @nregs: how many indirect registers to read/write
5272  * @start_index: index of first indirect register to read/write
5273  * @rw: READ(1) or WRITE(0)
5274  * @sleep_ok: if true we may sleep while awaiting command completion
5275  *
5276  * Read/Write TP indirect registers through LDST if possible.
5277  * Else, use backdoor access
5278  **/
5279 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5280                               u32 *buff, u32 nregs, u32 start_index, int rw,
5281                               bool sleep_ok)
5282 {
5283         int rc = -EINVAL;
5284         int cmd;
5285
5286         switch (reg_addr) {
5287         case TP_PIO_ADDR_A:
5288                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5289                 break;
5290         case TP_TM_PIO_ADDR_A:
5291                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5292                 break;
5293         case TP_MIB_INDEX_A:
5294                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5295                 break;
5296         default:
5297                 goto indirect_access;
5298         }
5299
5300         if (t4_use_ldst(adap))
5301                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5302                                       sleep_ok);
5303
5304 indirect_access:
5305
5306         if (rc) {
5307                 if (rw)
5308                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5309                                          start_index);
5310                 else
5311                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5312                                           start_index);
5313         }
5314 }
5315
5316 /**
5317  * t4_tp_pio_read - Read TP PIO registers
5318  * @adap: the adapter
5319  * @buff: where the indirect register values are written
5320  * @nregs: how many indirect registers to read
5321  * @start_index: index of first indirect register to read
5322  * @sleep_ok: if true we may sleep while awaiting command completion
5323  *
5324  * Read TP PIO Registers
5325  **/
5326 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5327                     u32 start_index, bool sleep_ok)
5328 {
5329         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5330                           start_index, 1, sleep_ok);
5331 }
5332
5333 /**
5334  * t4_tp_pio_write - Write TP PIO registers
5335  * @adap: the adapter
5336  * @buff: where the indirect register values are stored
5337  * @nregs: how many indirect registers to write
5338  * @start_index: index of first indirect register to write
5339  * @sleep_ok: if true we may sleep while awaiting command completion
5340  *
5341  * Write TP PIO Registers
5342  **/
5343 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5344                             u32 start_index, bool sleep_ok)
5345 {
5346         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5347                           start_index, 0, sleep_ok);
5348 }
5349
5350 /**
5351  * t4_tp_tm_pio_read - Read TP TM PIO registers
5352  * @adap: the adapter
5353  * @buff: where the indirect register values are written
5354  * @nregs: how many indirect registers to read
5355  * @start_index: index of first indirect register to read
5356  * @sleep_ok: if true we may sleep while awaiting command completion
5357  *
5358  * Read TP TM PIO Registers
5359  **/
5360 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5361                        u32 start_index, bool sleep_ok)
5362 {
5363         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5364                           nregs, start_index, 1, sleep_ok);
5365 }
5366
5367 /**
5368  * t4_tp_mib_read - Read TP MIB registers
5369  * @adap: the adapter
5370  * @buff: where the indirect register values are written
5371  * @nregs: how many indirect registers to read
5372  * @start_index: index of first indirect register to read
5373  * @sleep_ok: if true we may sleep while awaiting command completion
5374  *
5375  * Read TP MIB Registers
5376  **/
5377 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5378                     bool sleep_ok)
5379 {
5380         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5381                           start_index, 1, sleep_ok);
5382 }
5383
5384 /**
5385  *      t4_read_rss_key - read the global RSS key
5386  *      @adap: the adapter
5387  *      @key: 10-entry array holding the 320-bit RSS key
5388  *      @sleep_ok: if true we may sleep while awaiting command completion
5389  *
5390  *      Reads the global 320-bit RSS key.
5391  */
5392 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5393 {
5394         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5395 }
5396
5397 /**
5398  *      t4_write_rss_key - program one of the RSS keys
5399  *      @adap: the adapter
5400  *      @key: 10-entry array holding the 320-bit RSS key
5401  *      @idx: which RSS key to write
5402  *      @sleep_ok: if true we may sleep while awaiting command completion
5403  *
5404  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5405  *      0..15 the corresponding entry in the RSS key table is written,
5406  *      otherwise the global RSS key is written.
5407  */
5408 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5409                       bool sleep_ok)
5410 {
5411         u8 rss_key_addr_cnt = 16;
5412         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5413
5414         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5415          * allows access to key addresses 16-63 by using KeyWrAddrX
5416          * as index[5:4](upper 2) into key table
5417          */
5418         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5419             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5420                 rss_key_addr_cnt = 32;
5421
5422         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5423
5424         if (idx >= 0 && idx < rss_key_addr_cnt) {
5425                 if (rss_key_addr_cnt > 16)
5426                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5427                                      KEYWRADDRX_V(idx >> 4) |
5428                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5429                 else
5430                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5431                                      KEYWRADDR_V(idx) | KEYWREN_F);
5432         }
5433 }
5434
5435 /**
5436  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5437  *      @adapter: the adapter
5438  *      @index: the entry in the PF RSS table to read
5439  *      @valp: where to store the returned value
5440  *      @sleep_ok: if true we may sleep while awaiting command completion
5441  *
5442  *      Reads the PF RSS Configuration Table at the specified index and returns
5443  *      the value found there.
5444  */
5445 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5446                            u32 *valp, bool sleep_ok)
5447 {
5448         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5449 }
5450
5451 /**
5452  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5453  *      @adapter: the adapter
5454  *      @index: the entry in the VF RSS table to read
5455  *      @vfl: where to store the returned VFL
5456  *      @vfh: where to store the returned VFH
5457  *      @sleep_ok: if true we may sleep while awaiting command completion
5458  *
5459  *      Reads the VF RSS Configuration Table at the specified index and returns
5460  *      the (VFL, VFH) values found there.
5461  */
5462 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5463                            u32 *vfl, u32 *vfh, bool sleep_ok)
5464 {
5465         u32 vrt, mask, data;
5466
5467         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5468                 mask = VFWRADDR_V(VFWRADDR_M);
5469                 data = VFWRADDR_V(index);
5470         } else {
5471                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5472                  data = T6_VFWRADDR_V(index);
5473         }
5474
5475         /* Request that the index'th VF Table values be read into VFL/VFH.
5476          */
5477         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5478         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5479         vrt |= data | VFRDEN_F;
5480         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5481
5482         /* Grab the VFL/VFH values ...
5483          */
5484         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5485         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5486 }
5487
5488 /**
5489  *      t4_read_rss_pf_map - read PF RSS Map
5490  *      @adapter: the adapter
5491  *      @sleep_ok: if true we may sleep while awaiting command completion
5492  *
5493  *      Reads the PF RSS Map register and returns its value.
5494  */
5495 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5496 {
5497         u32 pfmap;
5498
5499         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5500         return pfmap;
5501 }
5502
5503 /**
5504  *      t4_read_rss_pf_mask - read PF RSS Mask
5505  *      @adapter: the adapter
5506  *      @sleep_ok: if true we may sleep while awaiting command completion
5507  *
5508  *      Reads the PF RSS Mask register and returns its value.
5509  */
5510 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5511 {
5512         u32 pfmask;
5513
5514         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5515         return pfmask;
5516 }
5517
5518 /**
5519  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5520  *      @adap: the adapter
5521  *      @v4: holds the TCP/IP counter values
5522  *      @v6: holds the TCP/IPv6 counter values
5523  *      @sleep_ok: if true we may sleep while awaiting command completion
5524  *
5525  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5526  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5527  */
5528 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5529                          struct tp_tcp_stats *v6, bool sleep_ok)
5530 {
5531         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5532
5533 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5534 #define STAT(x)     val[STAT_IDX(x)]
5535 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5536
5537         if (v4) {
5538                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5539                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5540                 v4->tcp_out_rsts = STAT(OUT_RST);
5541                 v4->tcp_in_segs  = STAT64(IN_SEG);
5542                 v4->tcp_out_segs = STAT64(OUT_SEG);
5543                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5544         }
5545         if (v6) {
5546                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5547                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5548                 v6->tcp_out_rsts = STAT(OUT_RST);
5549                 v6->tcp_in_segs  = STAT64(IN_SEG);
5550                 v6->tcp_out_segs = STAT64(OUT_SEG);
5551                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5552         }
5553 #undef STAT64
5554 #undef STAT
5555 #undef STAT_IDX
5556 }
5557
5558 /**
5559  *      t4_tp_get_err_stats - read TP's error MIB counters
5560  *      @adap: the adapter
5561  *      @st: holds the counter values
5562  *      @sleep_ok: if true we may sleep while awaiting command completion
5563  *
5564  *      Returns the values of TP's error counters.
5565  */
5566 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5567                          bool sleep_ok)
5568 {
5569         int nchan = adap->params.arch.nchan;
5570
5571         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5572                        sleep_ok);
5573         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5574                        sleep_ok);
5575         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5576                        sleep_ok);
5577         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5578                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5579         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5580                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5581         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5582                        sleep_ok);
5583         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5584                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5585         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5586                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5587         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5588                        sleep_ok);
5589 }
5590
5591 /**
5592  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5593  *      @adap: the adapter
5594  *      @st: holds the counter values
5595  *      @sleep_ok: if true we may sleep while awaiting command completion
5596  *
5597  *      Returns the values of TP's CPL counters.
5598  */
5599 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5600                          bool sleep_ok)
5601 {
5602         int nchan = adap->params.arch.nchan;
5603
5604         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5605
5606         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5607 }
5608
5609 /**
5610  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5611  *      @adap: the adapter
5612  *      @st: holds the counter values
5613  *      @sleep_ok: if true we may sleep while awaiting command completion
5614  *
5615  *      Returns the values of TP's RDMA counters.
5616  */
5617 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5618                           bool sleep_ok)
5619 {
5620         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5621                        sleep_ok);
5622 }
5623
5624 /**
5625  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5626  *      @adap: the adapter
5627  *      @idx: the port index
5628  *      @st: holds the counter values
5629  *      @sleep_ok: if true we may sleep while awaiting command completion
5630  *
5631  *      Returns the values of TP's FCoE counters for the selected port.
5632  */
5633 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5634                        struct tp_fcoe_stats *st, bool sleep_ok)
5635 {
5636         u32 val[2];
5637
5638         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5639                        sleep_ok);
5640
5641         t4_tp_mib_read(adap, &st->frames_drop, 1,
5642                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5643
5644         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5645                        sleep_ok);
5646
5647         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5648 }
5649
5650 /**
5651  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5652  *      @adap: the adapter
5653  *      @st: holds the counter values
5654  *      @sleep_ok: if true we may sleep while awaiting command completion
5655  *
5656  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5657  */
5658 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5659                       bool sleep_ok)
5660 {
5661         u32 val[4];
5662
5663         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5664         st->frames = val[0];
5665         st->drops = val[1];
5666         st->octets = ((u64)val[2] << 32) | val[3];
5667 }
5668
5669 /**
5670  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5671  *      @adap: the adapter
5672  *      @mtus: where to store the MTU values
5673  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5674  *
5675  *      Reads the HW path MTU table.
5676  */
5677 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5678 {
5679         u32 v;
5680         int i;
5681
5682         for (i = 0; i < NMTUS; ++i) {
5683                 t4_write_reg(adap, TP_MTU_TABLE_A,
5684                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5685                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5686                 mtus[i] = MTUVALUE_G(v);
5687                 if (mtu_log)
5688                         mtu_log[i] = MTUWIDTH_G(v);
5689         }
5690 }
5691
5692 /**
5693  *      t4_read_cong_tbl - reads the congestion control table
5694  *      @adap: the adapter
5695  *      @incr: where to store the alpha values
5696  *
5697  *      Reads the additive increments programmed into the HW congestion
5698  *      control table.
5699  */
5700 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5701 {
5702         unsigned int mtu, w;
5703
5704         for (mtu = 0; mtu < NMTUS; ++mtu)
5705                 for (w = 0; w < NCCTRL_WIN; ++w) {
5706                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5707                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5708                         incr[mtu][w] = (u16)t4_read_reg(adap,
5709                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5710                 }
5711 }
5712
5713 /**
5714  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5715  *      @adap: the adapter
5716  *      @addr: the indirect TP register address
5717  *      @mask: specifies the field within the register to modify
5718  *      @val: new value for the field
5719  *
5720  *      Sets a field of an indirect TP register to the given value.
5721  */
5722 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5723                             unsigned int mask, unsigned int val)
5724 {
5725         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5726         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5727         t4_write_reg(adap, TP_PIO_DATA_A, val);
5728 }
5729
5730 /**
5731  *      init_cong_ctrl - initialize congestion control parameters
5732  *      @a: the alpha values for congestion control
5733  *      @b: the beta values for congestion control
5734  *
5735  *      Initialize the congestion control parameters.
5736  */
5737 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5738 {
5739         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5740         a[9] = 2;
5741         a[10] = 3;
5742         a[11] = 4;
5743         a[12] = 5;
5744         a[13] = 6;
5745         a[14] = 7;
5746         a[15] = 8;
5747         a[16] = 9;
5748         a[17] = 10;
5749         a[18] = 14;
5750         a[19] = 17;
5751         a[20] = 21;
5752         a[21] = 25;
5753         a[22] = 30;
5754         a[23] = 35;
5755         a[24] = 45;
5756         a[25] = 60;
5757         a[26] = 80;
5758         a[27] = 100;
5759         a[28] = 200;
5760         a[29] = 300;
5761         a[30] = 400;
5762         a[31] = 500;
5763
5764         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5765         b[9] = b[10] = 1;
5766         b[11] = b[12] = 2;
5767         b[13] = b[14] = b[15] = b[16] = 3;
5768         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5769         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5770         b[28] = b[29] = 6;
5771         b[30] = b[31] = 7;
5772 }
5773
5774 /* The minimum additive increment value for the congestion control table */
5775 #define CC_MIN_INCR 2U
5776
5777 /**
5778  *      t4_load_mtus - write the MTU and congestion control HW tables
5779  *      @adap: the adapter
5780  *      @mtus: the values for the MTU table
5781  *      @alpha: the values for the congestion control alpha parameter
5782  *      @beta: the values for the congestion control beta parameter
5783  *
5784  *      Write the HW MTU table with the supplied MTUs and the high-speed
5785  *      congestion control table with the supplied alpha, beta, and MTUs.
5786  *      We write the two tables together because the additive increments
5787  *      depend on the MTUs.
5788  */
5789 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5790                   const unsigned short *alpha, const unsigned short *beta)
5791 {
5792         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5793                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5794                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5795                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5796         };
5797
5798         unsigned int i, w;
5799
5800         for (i = 0; i < NMTUS; ++i) {
5801                 unsigned int mtu = mtus[i];
5802                 unsigned int log2 = fls(mtu);
5803
5804                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5805                         log2--;
5806                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5807                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5808
5809                 for (w = 0; w < NCCTRL_WIN; ++w) {
5810                         unsigned int inc;
5811
5812                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5813                                   CC_MIN_INCR);
5814
5815                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5816                                      (w << 16) | (beta[w] << 13) | inc);
5817                 }
5818         }
5819 }
5820
5821 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5822  * clocks.  The formula is
5823  *
5824  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5825  *
5826  * which is equivalent to
5827  *
5828  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5829  */
5830 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5831 {
5832         u64 v = bytes256 * adap->params.vpd.cclk;
5833
5834         return v * 62 + v / 2;
5835 }
5836
5837 /**
5838  *      t4_get_chan_txrate - get the current per channel Tx rates
5839  *      @adap: the adapter
5840  *      @nic_rate: rates for NIC traffic
5841  *      @ofld_rate: rates for offloaded traffic
5842  *
5843  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5844  *      for each channel.
5845  */
5846 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5847 {
5848         u32 v;
5849
5850         v = t4_read_reg(adap, TP_TX_TRATE_A);
5851         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5852         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5853         if (adap->params.arch.nchan == NCHAN) {
5854                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5855                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5856         }
5857
5858         v = t4_read_reg(adap, TP_TX_ORATE_A);
5859         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5860         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5861         if (adap->params.arch.nchan == NCHAN) {
5862                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5863                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5864         }
5865 }
5866
5867 /**
5868  *      t4_set_trace_filter - configure one of the tracing filters
5869  *      @adap: the adapter
5870  *      @tp: the desired trace filter parameters
5871  *      @idx: which filter to configure
5872  *      @enable: whether to enable or disable the filter
5873  *
5874  *      Configures one of the tracing filters available in HW.  If @enable is
5875  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5876  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5877  */
5878 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5879                         int idx, int enable)
5880 {
5881         int i, ofst = idx * 4;
5882         u32 data_reg, mask_reg, cfg;
5883
5884         if (!enable) {
5885                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5886                 return 0;
5887         }
5888
5889         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5890         if (cfg & TRCMULTIFILTER_F) {
5891                 /* If multiple tracers are enabled, then maximum
5892                  * capture size is 2.5KB (FIFO size of a single channel)
5893                  * minus 2 flits for CPL_TRACE_PKT header.
5894                  */
5895                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5896                         return -EINVAL;
5897         } else {
5898                 /* If multiple tracers are disabled, to avoid deadlocks
5899                  * maximum packet capture size of 9600 bytes is recommended.
5900                  * Also in this mode, only trace0 can be enabled and running.
5901                  */
5902                 if (tp->snap_len > 9600 || idx)
5903                         return -EINVAL;
5904         }
5905
5906         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5907             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5908             tp->min_len > TFMINPKTSIZE_M)
5909                 return -EINVAL;
5910
5911         /* stop the tracer we'll be changing */
5912         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5913
5914         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5915         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5916         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5917
5918         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5919                 t4_write_reg(adap, data_reg, tp->data[i]);
5920                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5921         }
5922         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5923                      TFCAPTUREMAX_V(tp->snap_len) |
5924                      TFMINPKTSIZE_V(tp->min_len));
5925         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5926                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5927                      (is_t4(adap->params.chip) ?
5928                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5929                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5930                      T5_TFINVERTMATCH_V(tp->invert)));
5931
5932         return 0;
5933 }
5934
5935 /**
5936  *      t4_get_trace_filter - query one of the tracing filters
5937  *      @adap: the adapter
5938  *      @tp: the current trace filter parameters
5939  *      @idx: which trace filter to query
5940  *      @enabled: non-zero if the filter is enabled
5941  *
5942  *      Returns the current settings of one of the HW tracing filters.
5943  */
5944 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5945                          int *enabled)
5946 {
5947         u32 ctla, ctlb;
5948         int i, ofst = idx * 4;
5949         u32 data_reg, mask_reg;
5950
5951         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5952         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5953
5954         if (is_t4(adap->params.chip)) {
5955                 *enabled = !!(ctla & TFEN_F);
5956                 tp->port =  TFPORT_G(ctla);
5957                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5958         } else {
5959                 *enabled = !!(ctla & T5_TFEN_F);
5960                 tp->port = T5_TFPORT_G(ctla);
5961                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5962         }
5963         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5964         tp->min_len = TFMINPKTSIZE_G(ctlb);
5965         tp->skip_ofst = TFOFFSET_G(ctla);
5966         tp->skip_len = TFLENGTH_G(ctla);
5967
5968         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5969         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5970         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5971
5972         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5973                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5974                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5975         }
5976 }
5977
5978 /**
5979  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5980  *      @adap: the adapter
5981  *      @cnt: where to store the count statistics
5982  *      @cycles: where to store the cycle statistics
5983  *
5984  *      Returns performance statistics from PMTX.
5985  */
5986 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5987 {
5988         int i;
5989         u32 data[2];
5990
5991         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5992                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5993                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5994                 if (is_t4(adap->params.chip)) {
5995                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5996                 } else {
5997                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5998                                          PM_TX_DBG_DATA_A, data, 2,
5999                                          PM_TX_DBG_STAT_MSB_A);
6000                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6001                 }
6002         }
6003 }
6004
6005 /**
6006  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6007  *      @adap: the adapter
6008  *      @cnt: where to store the count statistics
6009  *      @cycles: where to store the cycle statistics
6010  *
6011  *      Returns performance statistics from PMRX.
6012  */
6013 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6014 {
6015         int i;
6016         u32 data[2];
6017
6018         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6019                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6020                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6021                 if (is_t4(adap->params.chip)) {
6022                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6023                 } else {
6024                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6025                                          PM_RX_DBG_DATA_A, data, 2,
6026                                          PM_RX_DBG_STAT_MSB_A);
6027                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6028                 }
6029         }
6030 }
6031
6032 /**
6033  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6034  *      @adap: the adapter
6035  *      @pidx: the port index
6036  *
6037  *      Computes and returns a bitmap indicating which MPS buffer groups are
6038  *      associated with the given Port.  Bit i is set if buffer group i is
6039  *      used by the Port.
6040  */
6041 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6042                                               int pidx)
6043 {
6044         unsigned int chip_version, nports;
6045
6046         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6047         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6048
6049         switch (chip_version) {
6050         case CHELSIO_T4:
6051         case CHELSIO_T5:
6052                 switch (nports) {
6053                 case 1: return 0xf;
6054                 case 2: return 3 << (2 * pidx);
6055                 case 4: return 1 << pidx;
6056                 }
6057                 break;
6058
6059         case CHELSIO_T6:
6060                 switch (nports) {
6061                 case 2: return 1 << (2 * pidx);
6062                 }
6063                 break;
6064         }
6065
6066         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6067                 chip_version, nports);
6068
6069         return 0;
6070 }
6071
6072 /**
6073  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6074  *      @adapter: the adapter
6075  *      @pidx: the port index
6076  *
6077  *      Returns a bitmap indicating which MPS buffer groups are associated
6078  *      with the given Port.  Bit i is set if buffer group i is used by the
6079  *      Port.
6080  */
6081 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6082 {
6083         u8 *mps_bg_map;
6084         unsigned int nports;
6085
6086         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6087         if (pidx >= nports) {
6088                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6089                         pidx, nports);
6090                 return 0;
6091         }
6092
6093         /* If we've already retrieved/computed this, just return the result.
6094          */
6095         mps_bg_map = adapter->params.mps_bg_map;
6096         if (mps_bg_map[pidx])
6097                 return mps_bg_map[pidx];
6098
6099         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6100          * If we're talking to such Firmware, let it tell us.  If the new
6101          * API isn't supported, revert back to old hardcoded way.  The value
6102          * obtained from Firmware is encoded in below format:
6103          *
6104          * val = (( MPSBGMAP[Port 3] << 24 ) |
6105          *        ( MPSBGMAP[Port 2] << 16 ) |
6106          *        ( MPSBGMAP[Port 1] <<  8 ) |
6107          *        ( MPSBGMAP[Port 0] <<  0 ))
6108          */
6109         if (adapter->flags & FW_OK) {
6110                 u32 param, val;
6111                 int ret;
6112
6113                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6114                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6115                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6116                                          0, 1, &param, &val);
6117                 if (!ret) {
6118                         int p;
6119
6120                         /* Store the BG Map for all of the Ports in order to
6121                          * avoid more calls to the Firmware in the future.
6122                          */
6123                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6124                                 mps_bg_map[p] = val & 0xff;
6125
6126                         return mps_bg_map[pidx];
6127                 }
6128         }
6129
6130         /* Either we're not talking to the Firmware or we're dealing with
6131          * older Firmware which doesn't support the new API to get the MPS
6132          * Buffer Group Map.  Fall back to computing it ourselves.
6133          */
6134         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6135         return mps_bg_map[pidx];
6136 }
6137
6138 /**
6139  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6140  *      @adapter: the adapter
6141  *      @pidx: the port index
6142  *
6143  *      Returns a bitmap indicating which TP Ingress Channels are associated
6144  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6145  *      the Port.
6146  */
6147 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6148 {
6149         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6150         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6151
6152         if (pidx >= nports) {
6153                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6154                          pidx, nports);
6155                 return 0;
6156         }
6157
6158         switch (chip_version) {
6159         case CHELSIO_T4:
6160         case CHELSIO_T5:
6161                 /* Note that this happens to be the same values as the MPS
6162                  * Buffer Group Map for these Chips.  But we replicate the code
6163                  * here because they're really separate concepts.
6164                  */
6165                 switch (nports) {
6166                 case 1: return 0xf;
6167                 case 2: return 3 << (2 * pidx);
6168                 case 4: return 1 << pidx;
6169                 }
6170                 break;
6171
6172         case CHELSIO_T6:
6173                 switch (nports) {
6174                 case 1:
6175                 case 2: return 1 << pidx;
6176                 }
6177                 break;
6178         }
6179
6180         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6181                 chip_version, nports);
6182         return 0;
6183 }
6184
6185 /**
6186  *      t4_get_port_type_description - return Port Type string description
6187  *      @port_type: firmware Port Type enumeration
6188  */
6189 const char *t4_get_port_type_description(enum fw_port_type port_type)
6190 {
6191         static const char *const port_type_description[] = {
6192                 "Fiber_XFI",
6193                 "Fiber_XAUI",
6194                 "BT_SGMII",
6195                 "BT_XFI",
6196                 "BT_XAUI",
6197                 "KX4",
6198                 "CX4",
6199                 "KX",
6200                 "KR",
6201                 "SFP",
6202                 "BP_AP",
6203                 "BP4_AP",
6204                 "QSFP_10G",
6205                 "QSA",
6206                 "QSFP",
6207                 "BP40_BA",
6208                 "KR4_100G",
6209                 "CR4_QSFP",
6210                 "CR_QSFP",
6211                 "CR2_QSFP",
6212                 "SFP28",
6213                 "KR_SFP28",
6214                 "KR_XLAUI"
6215         };
6216
6217         if (port_type < ARRAY_SIZE(port_type_description))
6218                 return port_type_description[port_type];
6219         return "UNKNOWN";
6220 }
6221
6222 /**
6223  *      t4_get_port_stats_offset - collect port stats relative to a previous
6224  *                                 snapshot
6225  *      @adap: The adapter
6226  *      @idx: The port
6227  *      @stats: Current stats to fill
6228  *      @offset: Previous stats snapshot
6229  */
6230 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6231                               struct port_stats *stats,
6232                               struct port_stats *offset)
6233 {
6234         u64 *s, *o;
6235         int i;
6236
6237         t4_get_port_stats(adap, idx, stats);
6238         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6239                         i < (sizeof(struct port_stats) / sizeof(u64));
6240                         i++, s++, o++)
6241                 *s -= *o;
6242 }
6243
6244 /**
6245  *      t4_get_port_stats - collect port statistics
6246  *      @adap: the adapter
6247  *      @idx: the port index
6248  *      @p: the stats structure to fill
6249  *
6250  *      Collect statistics related to the given port from HW.
6251  */
6252 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6253 {
6254         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6255         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6256
6257 #define GET_STAT(name) \
6258         t4_read_reg64(adap, \
6259         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6260         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6261 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6262
6263         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6264         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6265         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6266         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6267         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6268         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6269         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6270         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6271         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6272         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6273         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6274         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6275         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6276         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6277         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6278         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6279         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6280         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6281         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6282         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6283         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6284         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6285         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6286
6287         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6288                 if (stat_ctl & COUNTPAUSESTATTX_F)
6289                         p->tx_frames_64 -= p->tx_pause;
6290                 if (stat_ctl & COUNTPAUSEMCTX_F)
6291                         p->tx_mcast_frames -= p->tx_pause;
6292         }
6293         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6294         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6295         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6296         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6297         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6298         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6299         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6300         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6301         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6302         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6303         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6304         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6305         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6306         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6307         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6308         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6309         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6310         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6311         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6312         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6313         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6314         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6315         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6316         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6317         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6318         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6319         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6320
6321         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6322                 if (stat_ctl & COUNTPAUSESTATRX_F)
6323                         p->rx_frames_64 -= p->rx_pause;
6324                 if (stat_ctl & COUNTPAUSEMCRX_F)
6325                         p->rx_mcast_frames -= p->rx_pause;
6326         }
6327
6328         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6329         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6330         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6331         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6332         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6333         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6334         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6335         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6336
6337 #undef GET_STAT
6338 #undef GET_STAT_COM
6339 }
6340
6341 /**
6342  *      t4_get_lb_stats - collect loopback port statistics
6343  *      @adap: the adapter
6344  *      @idx: the loopback port index
6345  *      @p: the stats structure to fill
6346  *
6347  *      Return HW statistics for the given loopback port.
6348  */
6349 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6350 {
6351         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6352
6353 #define GET_STAT(name) \
6354         t4_read_reg64(adap, \
6355         (is_t4(adap->params.chip) ? \
6356         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6357         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6358 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6359
6360         p->octets           = GET_STAT(BYTES);
6361         p->frames           = GET_STAT(FRAMES);
6362         p->bcast_frames     = GET_STAT(BCAST);
6363         p->mcast_frames     = GET_STAT(MCAST);
6364         p->ucast_frames     = GET_STAT(UCAST);
6365         p->error_frames     = GET_STAT(ERROR);
6366
6367         p->frames_64        = GET_STAT(64B);
6368         p->frames_65_127    = GET_STAT(65B_127B);
6369         p->frames_128_255   = GET_STAT(128B_255B);
6370         p->frames_256_511   = GET_STAT(256B_511B);
6371         p->frames_512_1023  = GET_STAT(512B_1023B);
6372         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6373         p->frames_1519_max  = GET_STAT(1519B_MAX);
6374         p->drop             = GET_STAT(DROP_FRAMES);
6375
6376         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6377         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6378         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6379         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6380         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6381         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6382         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6383         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6384
6385 #undef GET_STAT
6386 #undef GET_STAT_COM
6387 }
6388
6389 /*     t4_mk_filtdelwr - create a delete filter WR
6390  *     @ftid: the filter ID
6391  *     @wr: the filter work request to populate
6392  *     @qid: ingress queue to receive the delete notification
6393  *
6394  *     Creates a filter work request to delete the supplied filter.  If @qid is
6395  *     negative the delete notification is suppressed.
6396  */
6397 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6398 {
6399         memset(wr, 0, sizeof(*wr));
6400         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6401         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6402         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6403                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6404         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6405         if (qid >= 0)
6406                 wr->rx_chan_rx_rpl_iq =
6407                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6408 }
6409
6410 #define INIT_CMD(var, cmd, rd_wr) do { \
6411         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6412                                         FW_CMD_REQUEST_F | \
6413                                         FW_CMD_##rd_wr##_F); \
6414         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6415 } while (0)
6416
6417 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6418                           u32 addr, u32 val)
6419 {
6420         u32 ldst_addrspace;
6421         struct fw_ldst_cmd c;
6422
6423         memset(&c, 0, sizeof(c));
6424         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6425         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6426                                         FW_CMD_REQUEST_F |
6427                                         FW_CMD_WRITE_F |
6428                                         ldst_addrspace);
6429         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6430         c.u.addrval.addr = cpu_to_be32(addr);
6431         c.u.addrval.val = cpu_to_be32(val);
6432
6433         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6434 }
6435
6436 /**
6437  *      t4_mdio_rd - read a PHY register through MDIO
6438  *      @adap: the adapter
6439  *      @mbox: mailbox to use for the FW command
6440  *      @phy_addr: the PHY address
6441  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6442  *      @reg: the register to read
6443  *      @valp: where to store the value
6444  *
6445  *      Issues a FW command through the given mailbox to read a PHY register.
6446  */
6447 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6448                unsigned int mmd, unsigned int reg, u16 *valp)
6449 {
6450         int ret;
6451         u32 ldst_addrspace;
6452         struct fw_ldst_cmd c;
6453
6454         memset(&c, 0, sizeof(c));
6455         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6456         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6457                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6458                                         ldst_addrspace);
6459         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6460         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6461                                          FW_LDST_CMD_MMD_V(mmd));
6462         c.u.mdio.raddr = cpu_to_be16(reg);
6463
6464         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6465         if (ret == 0)
6466                 *valp = be16_to_cpu(c.u.mdio.rval);
6467         return ret;
6468 }
6469
6470 /**
6471  *      t4_mdio_wr - write a PHY register through MDIO
6472  *      @adap: the adapter
6473  *      @mbox: mailbox to use for the FW command
6474  *      @phy_addr: the PHY address
6475  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6476  *      @reg: the register to write
6477  *      @valp: value to write
6478  *
6479  *      Issues a FW command through the given mailbox to write a PHY register.
6480  */
6481 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6482                unsigned int mmd, unsigned int reg, u16 val)
6483 {
6484         u32 ldst_addrspace;
6485         struct fw_ldst_cmd c;
6486
6487         memset(&c, 0, sizeof(c));
6488         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6489         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6490                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6491                                         ldst_addrspace);
6492         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6493         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6494                                          FW_LDST_CMD_MMD_V(mmd));
6495         c.u.mdio.raddr = cpu_to_be16(reg);
6496         c.u.mdio.rval = cpu_to_be16(val);
6497
6498         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6499 }
6500
6501 /**
6502  *      t4_sge_decode_idma_state - decode the idma state
6503  *      @adap: the adapter
6504  *      @state: the state idma is stuck in
6505  */
6506 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6507 {
6508         static const char * const t4_decode[] = {
6509                 "IDMA_IDLE",
6510                 "IDMA_PUSH_MORE_CPL_FIFO",
6511                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6512                 "Not used",
6513                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6514                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6515                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6516                 "IDMA_SEND_FIFO_TO_IMSG",
6517                 "IDMA_FL_REQ_DATA_FL_PREP",
6518                 "IDMA_FL_REQ_DATA_FL",
6519                 "IDMA_FL_DROP",
6520                 "IDMA_FL_H_REQ_HEADER_FL",
6521                 "IDMA_FL_H_SEND_PCIEHDR",
6522                 "IDMA_FL_H_PUSH_CPL_FIFO",
6523                 "IDMA_FL_H_SEND_CPL",
6524                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6525                 "IDMA_FL_H_SEND_IP_HDR",
6526                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6527                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6528                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6529                 "IDMA_FL_D_SEND_PCIEHDR",
6530                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6531                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6532                 "IDMA_FL_SEND_PCIEHDR",
6533                 "IDMA_FL_PUSH_CPL_FIFO",
6534                 "IDMA_FL_SEND_CPL",
6535                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6536                 "IDMA_FL_SEND_PAYLOAD",
6537                 "IDMA_FL_REQ_NEXT_DATA_FL",
6538                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6539                 "IDMA_FL_SEND_PADDING",
6540                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6541                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6542                 "IDMA_FL_REQ_DATAFL_DONE",
6543                 "IDMA_FL_REQ_HEADERFL_DONE",
6544         };
6545         static const char * const t5_decode[] = {
6546                 "IDMA_IDLE",
6547                 "IDMA_ALMOST_IDLE",
6548                 "IDMA_PUSH_MORE_CPL_FIFO",
6549                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6550                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6551                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6552                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6553                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6554                 "IDMA_SEND_FIFO_TO_IMSG",
6555                 "IDMA_FL_REQ_DATA_FL",
6556                 "IDMA_FL_DROP",
6557                 "IDMA_FL_DROP_SEND_INC",
6558                 "IDMA_FL_H_REQ_HEADER_FL",
6559                 "IDMA_FL_H_SEND_PCIEHDR",
6560                 "IDMA_FL_H_PUSH_CPL_FIFO",
6561                 "IDMA_FL_H_SEND_CPL",
6562                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6563                 "IDMA_FL_H_SEND_IP_HDR",
6564                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6565                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6566                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6567                 "IDMA_FL_D_SEND_PCIEHDR",
6568                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6569                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6570                 "IDMA_FL_SEND_PCIEHDR",
6571                 "IDMA_FL_PUSH_CPL_FIFO",
6572                 "IDMA_FL_SEND_CPL",
6573                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6574                 "IDMA_FL_SEND_PAYLOAD",
6575                 "IDMA_FL_REQ_NEXT_DATA_FL",
6576                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6577                 "IDMA_FL_SEND_PADDING",
6578                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6579         };
6580         static const char * const t6_decode[] = {
6581                 "IDMA_IDLE",
6582                 "IDMA_PUSH_MORE_CPL_FIFO",
6583                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6584                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6585                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6586                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6587                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6588                 "IDMA_FL_REQ_DATA_FL",
6589                 "IDMA_FL_DROP",
6590                 "IDMA_FL_DROP_SEND_INC",
6591                 "IDMA_FL_H_REQ_HEADER_FL",
6592                 "IDMA_FL_H_SEND_PCIEHDR",
6593                 "IDMA_FL_H_PUSH_CPL_FIFO",
6594                 "IDMA_FL_H_SEND_CPL",
6595                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6596                 "IDMA_FL_H_SEND_IP_HDR",
6597                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6598                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6599                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6600                 "IDMA_FL_D_SEND_PCIEHDR",
6601                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6602                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6603                 "IDMA_FL_SEND_PCIEHDR",
6604                 "IDMA_FL_PUSH_CPL_FIFO",
6605                 "IDMA_FL_SEND_CPL",
6606                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6607                 "IDMA_FL_SEND_PAYLOAD",
6608                 "IDMA_FL_REQ_NEXT_DATA_FL",
6609                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6610                 "IDMA_FL_SEND_PADDING",
6611                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6612         };
6613         static const u32 sge_regs[] = {
6614                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6615                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6616                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6617         };
6618         const char **sge_idma_decode;
6619         int sge_idma_decode_nstates;
6620         int i;
6621         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6622
6623         /* Select the right set of decode strings to dump depending on the
6624          * adapter chip type.
6625          */
6626         switch (chip_version) {
6627         case CHELSIO_T4:
6628                 sge_idma_decode = (const char **)t4_decode;
6629                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6630                 break;
6631
6632         case CHELSIO_T5:
6633                 sge_idma_decode = (const char **)t5_decode;
6634                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6635                 break;
6636
6637         case CHELSIO_T6:
6638                 sge_idma_decode = (const char **)t6_decode;
6639                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6640                 break;
6641
6642         default:
6643                 dev_err(adapter->pdev_dev,
6644                         "Unsupported chip version %d\n", chip_version);
6645                 return;
6646         }
6647
6648         if (is_t4(adapter->params.chip)) {
6649                 sge_idma_decode = (const char **)t4_decode;
6650                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6651         } else {
6652                 sge_idma_decode = (const char **)t5_decode;
6653                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6654         }
6655
6656         if (state < sge_idma_decode_nstates)
6657                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6658         else
6659                 CH_WARN(adapter, "idma state %d unknown\n", state);
6660
6661         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6662                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6663                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6664 }
6665
6666 /**
6667  *      t4_sge_ctxt_flush - flush the SGE context cache
6668  *      @adap: the adapter
6669  *      @mbox: mailbox to use for the FW command
6670  *      @ctx_type: Egress or Ingress
6671  *
6672  *      Issues a FW command through the given mailbox to flush the
6673  *      SGE context cache.
6674  */
6675 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6676 {
6677         int ret;
6678         u32 ldst_addrspace;
6679         struct fw_ldst_cmd c;
6680
6681         memset(&c, 0, sizeof(c));
6682         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6683                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6684                                                  FW_LDST_ADDRSPC_SGE_INGC);
6685         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6686                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6687                                         ldst_addrspace);
6688         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6689         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6690
6691         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6692         return ret;
6693 }
6694
6695 /**
6696  *      t4_fw_hello - establish communication with FW
6697  *      @adap: the adapter
6698  *      @mbox: mailbox to use for the FW command
6699  *      @evt_mbox: mailbox to receive async FW events
6700  *      @master: specifies the caller's willingness to be the device master
6701  *      @state: returns the current device state (if non-NULL)
6702  *
6703  *      Issues a command to establish communication with FW.  Returns either
6704  *      an error (negative integer) or the mailbox of the Master PF.
6705  */
6706 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6707                 enum dev_master master, enum dev_state *state)
6708 {
6709         int ret;
6710         struct fw_hello_cmd c;
6711         u32 v;
6712         unsigned int master_mbox;
6713         int retries = FW_CMD_HELLO_RETRIES;
6714
6715 retry:
6716         memset(&c, 0, sizeof(c));
6717         INIT_CMD(c, HELLO, WRITE);
6718         c.err_to_clearinit = cpu_to_be32(
6719                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6720                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6721                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6722                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6723                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6724                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6725                 FW_HELLO_CMD_CLEARINIT_F);
6726
6727         /*
6728          * Issue the HELLO command to the firmware.  If it's not successful
6729          * but indicates that we got a "busy" or "timeout" condition, retry
6730          * the HELLO until we exhaust our retry limit.  If we do exceed our
6731          * retry limit, check to see if the firmware left us any error
6732          * information and report that if so.
6733          */
6734         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6735         if (ret < 0) {
6736                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6737                         goto retry;
6738                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6739                         t4_report_fw_error(adap);
6740                 return ret;
6741         }
6742
6743         v = be32_to_cpu(c.err_to_clearinit);
6744         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6745         if (state) {
6746                 if (v & FW_HELLO_CMD_ERR_F)
6747                         *state = DEV_STATE_ERR;
6748                 else if (v & FW_HELLO_CMD_INIT_F)
6749                         *state = DEV_STATE_INIT;
6750                 else
6751                         *state = DEV_STATE_UNINIT;
6752         }
6753
6754         /*
6755          * If we're not the Master PF then we need to wait around for the
6756          * Master PF Driver to finish setting up the adapter.
6757          *
6758          * Note that we also do this wait if we're a non-Master-capable PF and
6759          * there is no current Master PF; a Master PF may show up momentarily
6760          * and we wouldn't want to fail pointlessly.  (This can happen when an
6761          * OS loads lots of different drivers rapidly at the same time).  In
6762          * this case, the Master PF returned by the firmware will be
6763          * PCIE_FW_MASTER_M so the test below will work ...
6764          */
6765         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6766             master_mbox != mbox) {
6767                 int waiting = FW_CMD_HELLO_TIMEOUT;
6768
6769                 /*
6770                  * Wait for the firmware to either indicate an error or
6771                  * initialized state.  If we see either of these we bail out
6772                  * and report the issue to the caller.  If we exhaust the
6773                  * "hello timeout" and we haven't exhausted our retries, try
6774                  * again.  Otherwise bail with a timeout error.
6775                  */
6776                 for (;;) {
6777                         u32 pcie_fw;
6778
6779                         msleep(50);
6780                         waiting -= 50;
6781
6782                         /*
6783                          * If neither Error nor Initialialized are indicated
6784                          * by the firmware keep waiting till we exaust our
6785                          * timeout ... and then retry if we haven't exhausted
6786                          * our retries ...
6787                          */
6788                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6789                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6790                                 if (waiting <= 0) {
6791                                         if (retries-- > 0)
6792                                                 goto retry;
6793
6794                                         return -ETIMEDOUT;
6795                                 }
6796                                 continue;
6797                         }
6798
6799                         /*
6800                          * We either have an Error or Initialized condition
6801                          * report errors preferentially.
6802                          */
6803                         if (state) {
6804                                 if (pcie_fw & PCIE_FW_ERR_F)
6805                                         *state = DEV_STATE_ERR;
6806                                 else if (pcie_fw & PCIE_FW_INIT_F)
6807                                         *state = DEV_STATE_INIT;
6808                         }
6809
6810                         /*
6811                          * If we arrived before a Master PF was selected and
6812                          * there's not a valid Master PF, grab its identity
6813                          * for our caller.
6814                          */
6815                         if (master_mbox == PCIE_FW_MASTER_M &&
6816                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6817                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6818                         break;
6819                 }
6820         }
6821
6822         return master_mbox;
6823 }
6824
6825 /**
6826  *      t4_fw_bye - end communication with FW
6827  *      @adap: the adapter
6828  *      @mbox: mailbox to use for the FW command
6829  *
6830  *      Issues a command to terminate communication with FW.
6831  */
6832 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6833 {
6834         struct fw_bye_cmd c;
6835
6836         memset(&c, 0, sizeof(c));
6837         INIT_CMD(c, BYE, WRITE);
6838         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6839 }
6840
6841 /**
6842  *      t4_init_cmd - ask FW to initialize the device
6843  *      @adap: the adapter
6844  *      @mbox: mailbox to use for the FW command
6845  *
6846  *      Issues a command to FW to partially initialize the device.  This
6847  *      performs initialization that generally doesn't depend on user input.
6848  */
6849 int t4_early_init(struct adapter *adap, unsigned int mbox)
6850 {
6851         struct fw_initialize_cmd c;
6852
6853         memset(&c, 0, sizeof(c));
6854         INIT_CMD(c, INITIALIZE, WRITE);
6855         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6856 }
6857
6858 /**
6859  *      t4_fw_reset - issue a reset to FW
6860  *      @adap: the adapter
6861  *      @mbox: mailbox to use for the FW command
6862  *      @reset: specifies the type of reset to perform
6863  *
6864  *      Issues a reset command of the specified type to FW.
6865  */
6866 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6867 {
6868         struct fw_reset_cmd c;
6869
6870         memset(&c, 0, sizeof(c));
6871         INIT_CMD(c, RESET, WRITE);
6872         c.val = cpu_to_be32(reset);
6873         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6874 }
6875
6876 /**
6877  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6878  *      @adap: the adapter
6879  *      @mbox: mailbox to use for the FW RESET command (if desired)
6880  *      @force: force uP into RESET even if FW RESET command fails
6881  *
6882  *      Issues a RESET command to firmware (if desired) with a HALT indication
6883  *      and then puts the microprocessor into RESET state.  The RESET command
6884  *      will only be issued if a legitimate mailbox is provided (mbox <=
6885  *      PCIE_FW_MASTER_M).
6886  *
6887  *      This is generally used in order for the host to safely manipulate the
6888  *      adapter without fear of conflicting with whatever the firmware might
6889  *      be doing.  The only way out of this state is to RESTART the firmware
6890  *      ...
6891  */
6892 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6893 {
6894         int ret = 0;
6895
6896         /*
6897          * If a legitimate mailbox is provided, issue a RESET command
6898          * with a HALT indication.
6899          */
6900         if (mbox <= PCIE_FW_MASTER_M) {
6901                 struct fw_reset_cmd c;
6902
6903                 memset(&c, 0, sizeof(c));
6904                 INIT_CMD(c, RESET, WRITE);
6905                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6906                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6907                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6908         }
6909
6910         /*
6911          * Normally we won't complete the operation if the firmware RESET
6912          * command fails but if our caller insists we'll go ahead and put the
6913          * uP into RESET.  This can be useful if the firmware is hung or even
6914          * missing ...  We'll have to take the risk of putting the uP into
6915          * RESET without the cooperation of firmware in that case.
6916          *
6917          * We also force the firmware's HALT flag to be on in case we bypassed
6918          * the firmware RESET command above or we're dealing with old firmware
6919          * which doesn't have the HALT capability.  This will serve as a flag
6920          * for the incoming firmware to know that it's coming out of a HALT
6921          * rather than a RESET ... if it's new enough to understand that ...
6922          */
6923         if (ret == 0 || force) {
6924                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6925                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6926                                  PCIE_FW_HALT_F);
6927         }
6928
6929         /*
6930          * And we always return the result of the firmware RESET command
6931          * even when we force the uP into RESET ...
6932          */
6933         return ret;
6934 }
6935
6936 /**
6937  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6938  *      @adap: the adapter
6939  *      @reset: if we want to do a RESET to restart things
6940  *
6941  *      Restart firmware previously halted by t4_fw_halt().  On successful
6942  *      return the previous PF Master remains as the new PF Master and there
6943  *      is no need to issue a new HELLO command, etc.
6944  *
6945  *      We do this in two ways:
6946  *
6947  *       1. If we're dealing with newer firmware we'll simply want to take
6948  *          the chip's microprocessor out of RESET.  This will cause the
6949  *          firmware to start up from its start vector.  And then we'll loop
6950  *          until the firmware indicates it's started again (PCIE_FW.HALT
6951  *          reset to 0) or we timeout.
6952  *
6953  *       2. If we're dealing with older firmware then we'll need to RESET
6954  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6955  *          flag and automatically RESET itself on startup.
6956  */
6957 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6958 {
6959         if (reset) {
6960                 /*
6961                  * Since we're directing the RESET instead of the firmware
6962                  * doing it automatically, we need to clear the PCIE_FW.HALT
6963                  * bit.
6964                  */
6965                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6966
6967                 /*
6968                  * If we've been given a valid mailbox, first try to get the
6969                  * firmware to do the RESET.  If that works, great and we can
6970                  * return success.  Otherwise, if we haven't been given a
6971                  * valid mailbox or the RESET command failed, fall back to
6972                  * hitting the chip with a hammer.
6973                  */
6974                 if (mbox <= PCIE_FW_MASTER_M) {
6975                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6976                         msleep(100);
6977                         if (t4_fw_reset(adap, mbox,
6978                                         PIORST_F | PIORSTMODE_F) == 0)
6979                                 return 0;
6980                 }
6981
6982                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6983                 msleep(2000);
6984         } else {
6985                 int ms;
6986
6987                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6988                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6989                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6990                                 return 0;
6991                         msleep(100);
6992                         ms += 100;
6993                 }
6994                 return -ETIMEDOUT;
6995         }
6996         return 0;
6997 }
6998
6999 /**
7000  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7001  *      @adap: the adapter
7002  *      @mbox: mailbox to use for the FW RESET command (if desired)
7003  *      @fw_data: the firmware image to write
7004  *      @size: image size
7005  *      @force: force upgrade even if firmware doesn't cooperate
7006  *
7007  *      Perform all of the steps necessary for upgrading an adapter's
7008  *      firmware image.  Normally this requires the cooperation of the
7009  *      existing firmware in order to halt all existing activities
7010  *      but if an invalid mailbox token is passed in we skip that step
7011  *      (though we'll still put the adapter microprocessor into RESET in
7012  *      that case).
7013  *
7014  *      On successful return the new firmware will have been loaded and
7015  *      the adapter will have been fully RESET losing all previous setup
7016  *      state.  On unsuccessful return the adapter may be completely hosed ...
7017  *      positive errno indicates that the adapter is ~probably~ intact, a
7018  *      negative errno indicates that things are looking bad ...
7019  */
7020 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7021                   const u8 *fw_data, unsigned int size, int force)
7022 {
7023         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7024         int reset, ret;
7025
7026         if (!t4_fw_matches_chip(adap, fw_hdr))
7027                 return -EINVAL;
7028
7029         /* Disable FW_OK flag so that mbox commands with FW_OK flag set
7030          * wont be sent when we are flashing FW.
7031          */
7032         adap->flags &= ~FW_OK;
7033
7034         ret = t4_fw_halt(adap, mbox, force);
7035         if (ret < 0 && !force)
7036                 goto out;
7037
7038         ret = t4_load_fw(adap, fw_data, size);
7039         if (ret < 0)
7040                 goto out;
7041
7042         /*
7043          * If there was a Firmware Configuration File stored in FLASH,
7044          * there's a good chance that it won't be compatible with the new
7045          * Firmware.  In order to prevent difficult to diagnose adapter
7046          * initialization issues, we clear out the Firmware Configuration File
7047          * portion of the FLASH .  The user will need to re-FLASH a new
7048          * Firmware Configuration File which is compatible with the new
7049          * Firmware if that's desired.
7050          */
7051         (void)t4_load_cfg(adap, NULL, 0);
7052
7053         /*
7054          * Older versions of the firmware don't understand the new
7055          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7056          * restart.  So for newly loaded older firmware we'll have to do the
7057          * RESET for it so it starts up on a clean slate.  We can tell if
7058          * the newly loaded firmware will handle this right by checking
7059          * its header flags to see if it advertises the capability.
7060          */
7061         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7062         ret = t4_fw_restart(adap, mbox, reset);
7063
7064         /* Grab potentially new Firmware Device Log parameters so we can see
7065          * how healthy the new Firmware is.  It's okay to contact the new
7066          * Firmware for these parameters even though, as far as it's
7067          * concerned, we've never said "HELLO" to it ...
7068          */
7069         (void)t4_init_devlog_params(adap);
7070 out:
7071         adap->flags |= FW_OK;
7072         return ret;
7073 }
7074
7075 /**
7076  *      t4_fl_pkt_align - return the fl packet alignment
7077  *      @adap: the adapter
7078  *
7079  *      T4 has a single field to specify the packing and padding boundary.
7080  *      T5 onwards has separate fields for this and hence the alignment for
7081  *      next packet offset is maximum of these two.
7082  *
7083  */
7084 int t4_fl_pkt_align(struct adapter *adap)
7085 {
7086         u32 sge_control, sge_control2;
7087         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7088
7089         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7090
7091         /* T4 uses a single control field to specify both the PCIe Padding and
7092          * Packing Boundary.  T5 introduced the ability to specify these
7093          * separately.  The actual Ingress Packet Data alignment boundary
7094          * within Packed Buffer Mode is the maximum of these two
7095          * specifications.  (Note that it makes no real practical sense to
7096          * have the Pading Boudary be larger than the Packing Boundary but you
7097          * could set the chip up that way and, in fact, legacy T4 code would
7098          * end doing this because it would initialize the Padding Boundary and
7099          * leave the Packing Boundary initialized to 0 (16 bytes).)
7100          * Padding Boundary values in T6 starts from 8B,
7101          * where as it is 32B for T4 and T5.
7102          */
7103         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7104                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7105         else
7106                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7107
7108         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7109
7110         fl_align = ingpadboundary;
7111         if (!is_t4(adap->params.chip)) {
7112                 /* T5 has a weird interpretation of one of the PCIe Packing
7113                  * Boundary values.  No idea why ...
7114                  */
7115                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7116                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7117                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7118                         ingpackboundary = 16;
7119                 else
7120                         ingpackboundary = 1 << (ingpackboundary +
7121                                                 INGPACKBOUNDARY_SHIFT_X);
7122
7123                 fl_align = max(ingpadboundary, ingpackboundary);
7124         }
7125         return fl_align;
7126 }
7127
7128 /**
7129  *      t4_fixup_host_params - fix up host-dependent parameters
7130  *      @adap: the adapter
7131  *      @page_size: the host's Base Page Size
7132  *      @cache_line_size: the host's Cache Line Size
7133  *
7134  *      Various registers in T4 contain values which are dependent on the
7135  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7136  *      those registers with the appropriate values as passed in ...
7137  */
7138 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7139                          unsigned int cache_line_size)
7140 {
7141         unsigned int page_shift = fls(page_size) - 1;
7142         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7143         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7144         unsigned int fl_align_log = fls(fl_align) - 1;
7145
7146         if (is_t4(adap->params.chip)) {
7147                 t4_set_reg_field(adap, SGE_CONTROL_A,
7148                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7149                                  EGRSTATUSPAGESIZE_F,
7150                                  INGPADBOUNDARY_V(fl_align_log -
7151                                                   INGPADBOUNDARY_SHIFT_X) |
7152                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7153         } else {
7154                 unsigned int pack_align;
7155                 unsigned int ingpad, ingpack;
7156                 unsigned int pcie_cap;
7157
7158                 /* T5 introduced the separation of the Free List Padding and
7159                  * Packing Boundaries.  Thus, we can select a smaller Padding
7160                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7161                  * Bandwidth, and use a Packing Boundary which is large enough
7162                  * to avoid false sharing between CPUs, etc.
7163                  *
7164                  * For the PCI Link, the smaller the Padding Boundary the
7165                  * better.  For the Memory Controller, a smaller Padding
7166                  * Boundary is better until we cross under the Memory Line
7167                  * Size (the minimum unit of transfer to/from Memory).  If we
7168                  * have a Padding Boundary which is smaller than the Memory
7169                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7170                  * Memory Controller which is never good.
7171                  */
7172
7173                 /* We want the Packing Boundary to be based on the Cache Line
7174                  * Size in order to help avoid False Sharing performance
7175                  * issues between CPUs, etc.  We also want the Packing
7176                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7177                  * get best performance when the Packing Boundary is a
7178                  * multiple of the Maximum Payload Size.
7179                  */
7180                 pack_align = fl_align;
7181                 pcie_cap = pci_find_capability(adap->pdev, PCI_CAP_ID_EXP);
7182                 if (pcie_cap) {
7183                         unsigned int mps, mps_log;
7184                         u16 devctl;
7185
7186                         /* The PCIe Device Control Maximum Payload Size field
7187                          * [bits 7:5] encodes sizes as powers of 2 starting at
7188                          * 128 bytes.
7189                          */
7190                         pci_read_config_word(adap->pdev,
7191                                              pcie_cap + PCI_EXP_DEVCTL,
7192                                              &devctl);
7193                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7194                         mps = 1 << mps_log;
7195                         if (mps > pack_align)
7196                                 pack_align = mps;
7197                 }
7198
7199                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7200                  * value for the Packing Boundary.  This corresponds to 16
7201                  * bytes instead of the expected 32 bytes.  So if we want 32
7202                  * bytes, the best we can really do is 64 bytes ...
7203                  */
7204                 if (pack_align <= 16) {
7205                         ingpack = INGPACKBOUNDARY_16B_X;
7206                         fl_align = 16;
7207                 } else if (pack_align == 32) {
7208                         ingpack = INGPACKBOUNDARY_64B_X;
7209                         fl_align = 64;
7210                 } else {
7211                         unsigned int pack_align_log = fls(pack_align) - 1;
7212
7213                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7214                         fl_align = pack_align;
7215                 }
7216
7217                 /* Use the smallest Ingress Padding which isn't smaller than
7218                  * the Memory Controller Read/Write Size.  We'll take that as
7219                  * being 8 bytes since we don't know of any system with a
7220                  * wider Memory Controller Bus Width.
7221                  */
7222                 if (is_t5(adap->params.chip))
7223                         ingpad = INGPADBOUNDARY_32B_X;
7224                 else
7225                         ingpad = T6_INGPADBOUNDARY_8B_X;
7226
7227                 t4_set_reg_field(adap, SGE_CONTROL_A,
7228                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7229                                  EGRSTATUSPAGESIZE_F,
7230                                  INGPADBOUNDARY_V(ingpad) |
7231                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7232                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7233                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7234                                  INGPACKBOUNDARY_V(ingpack));
7235         }
7236         /*
7237          * Adjust various SGE Free List Host Buffer Sizes.
7238          *
7239          * This is something of a crock since we're using fixed indices into
7240          * the array which are also known by the sge.c code and the T4
7241          * Firmware Configuration File.  We need to come up with a much better
7242          * approach to managing this array.  For now, the first four entries
7243          * are:
7244          *
7245          *   0: Host Page Size
7246          *   1: 64KB
7247          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7248          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7249          *
7250          * For the single-MTU buffers in unpacked mode we need to include
7251          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7252          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7253          * Padding boundary.  All of these are accommodated in the Factory
7254          * Default Firmware Configuration File but we need to adjust it for
7255          * this host's cache line size.
7256          */
7257         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7258         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7259                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7260                      & ~(fl_align-1));
7261         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7262                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7263                      & ~(fl_align-1));
7264
7265         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7266
7267         return 0;
7268 }
7269
7270 /**
7271  *      t4_fw_initialize - ask FW to initialize the device
7272  *      @adap: the adapter
7273  *      @mbox: mailbox to use for the FW command
7274  *
7275  *      Issues a command to FW to partially initialize the device.  This
7276  *      performs initialization that generally doesn't depend on user input.
7277  */
7278 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7279 {
7280         struct fw_initialize_cmd c;
7281
7282         memset(&c, 0, sizeof(c));
7283         INIT_CMD(c, INITIALIZE, WRITE);
7284         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7285 }
7286
7287 /**
7288  *      t4_query_params_rw - query FW or device parameters
7289  *      @adap: the adapter
7290  *      @mbox: mailbox to use for the FW command
7291  *      @pf: the PF
7292  *      @vf: the VF
7293  *      @nparams: the number of parameters
7294  *      @params: the parameter names
7295  *      @val: the parameter values
7296  *      @rw: Write and read flag
7297  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7298  *
7299  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7300  *      queried at once.
7301  */
7302 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7303                        unsigned int vf, unsigned int nparams, const u32 *params,
7304                        u32 *val, int rw, bool sleep_ok)
7305 {
7306         int i, ret;
7307         struct fw_params_cmd c;
7308         __be32 *p = &c.param[0].mnem;
7309
7310         if (nparams > 7)
7311                 return -EINVAL;
7312
7313         memset(&c, 0, sizeof(c));
7314         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7315                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7316                                   FW_PARAMS_CMD_PFN_V(pf) |
7317                                   FW_PARAMS_CMD_VFN_V(vf));
7318         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7319
7320         for (i = 0; i < nparams; i++) {
7321                 *p++ = cpu_to_be32(*params++);
7322                 if (rw)
7323                         *p = cpu_to_be32(*(val + i));
7324                 p++;
7325         }
7326
7327         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7328         if (ret == 0)
7329                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7330                         *val++ = be32_to_cpu(*p);
7331         return ret;
7332 }
7333
7334 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7335                     unsigned int vf, unsigned int nparams, const u32 *params,
7336                     u32 *val)
7337 {
7338         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7339                                   true);
7340 }
7341
7342 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7343                        unsigned int vf, unsigned int nparams, const u32 *params,
7344                        u32 *val)
7345 {
7346         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7347                                   false);
7348 }
7349
7350 /**
7351  *      t4_set_params_timeout - sets FW or device parameters
7352  *      @adap: the adapter
7353  *      @mbox: mailbox to use for the FW command
7354  *      @pf: the PF
7355  *      @vf: the VF
7356  *      @nparams: the number of parameters
7357  *      @params: the parameter names
7358  *      @val: the parameter values
7359  *      @timeout: the timeout time
7360  *
7361  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7362  *      specified at once.
7363  */
7364 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7365                           unsigned int pf, unsigned int vf,
7366                           unsigned int nparams, const u32 *params,
7367                           const u32 *val, int timeout)
7368 {
7369         struct fw_params_cmd c;
7370         __be32 *p = &c.param[0].mnem;
7371
7372         if (nparams > 7)
7373                 return -EINVAL;
7374
7375         memset(&c, 0, sizeof(c));
7376         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7377                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7378                                   FW_PARAMS_CMD_PFN_V(pf) |
7379                                   FW_PARAMS_CMD_VFN_V(vf));
7380         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7381
7382         while (nparams--) {
7383                 *p++ = cpu_to_be32(*params++);
7384                 *p++ = cpu_to_be32(*val++);
7385         }
7386
7387         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7388 }
7389
7390 /**
7391  *      t4_set_params - sets FW or device parameters
7392  *      @adap: the adapter
7393  *      @mbox: mailbox to use for the FW command
7394  *      @pf: the PF
7395  *      @vf: the VF
7396  *      @nparams: the number of parameters
7397  *      @params: the parameter names
7398  *      @val: the parameter values
7399  *
7400  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7401  *      specified at once.
7402  */
7403 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7404                   unsigned int vf, unsigned int nparams, const u32 *params,
7405                   const u32 *val)
7406 {
7407         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7408                                      FW_CMD_MAX_TIMEOUT);
7409 }
7410
7411 /**
7412  *      t4_cfg_pfvf - configure PF/VF resource limits
7413  *      @adap: the adapter
7414  *      @mbox: mailbox to use for the FW command
7415  *      @pf: the PF being configured
7416  *      @vf: the VF being configured
7417  *      @txq: the max number of egress queues
7418  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7419  *      @rxqi: the max number of interrupt-capable ingress queues
7420  *      @rxq: the max number of interruptless ingress queues
7421  *      @tc: the PCI traffic class
7422  *      @vi: the max number of virtual interfaces
7423  *      @cmask: the channel access rights mask for the PF/VF
7424  *      @pmask: the port access rights mask for the PF/VF
7425  *      @nexact: the maximum number of exact MPS filters
7426  *      @rcaps: read capabilities
7427  *      @wxcaps: write/execute capabilities
7428  *
7429  *      Configures resource limits and capabilities for a physical or virtual
7430  *      function.
7431  */
7432 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7433                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7434                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7435                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7436                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7437 {
7438         struct fw_pfvf_cmd c;
7439
7440         memset(&c, 0, sizeof(c));
7441         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7442                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7443                                   FW_PFVF_CMD_VFN_V(vf));
7444         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7445         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7446                                      FW_PFVF_CMD_NIQ_V(rxq));
7447         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7448                                     FW_PFVF_CMD_PMASK_V(pmask) |
7449                                     FW_PFVF_CMD_NEQ_V(txq));
7450         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7451                                       FW_PFVF_CMD_NVI_V(vi) |
7452                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7453         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7454                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7455                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7456         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7457 }
7458
7459 /**
7460  *      t4_alloc_vi - allocate a virtual interface
7461  *      @adap: the adapter
7462  *      @mbox: mailbox to use for the FW command
7463  *      @port: physical port associated with the VI
7464  *      @pf: the PF owning the VI
7465  *      @vf: the VF owning the VI
7466  *      @nmac: number of MAC addresses needed (1 to 5)
7467  *      @mac: the MAC addresses of the VI
7468  *      @rss_size: size of RSS table slice associated with this VI
7469  *
7470  *      Allocates a virtual interface for the given physical port.  If @mac is
7471  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7472  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7473  *      stored consecutively so the space needed is @nmac * 6 bytes.
7474  *      Returns a negative error number or the non-negative VI id.
7475  */
7476 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7477                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7478                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7479 {
7480         int ret;
7481         struct fw_vi_cmd c;
7482
7483         memset(&c, 0, sizeof(c));
7484         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7485                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7486                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7487         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7488         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7489         c.nmac = nmac - 1;
7490
7491         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7492         if (ret)
7493                 return ret;
7494
7495         if (mac) {
7496                 memcpy(mac, c.mac, sizeof(c.mac));
7497                 switch (nmac) {
7498                 case 5:
7499                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7500                         /* Fall through */
7501                 case 4:
7502                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7503                         /* Fall through */
7504                 case 3:
7505                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7506                         /* Fall through */
7507                 case 2:
7508                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7509                 }
7510         }
7511         if (rss_size)
7512                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7513
7514         if (vivld)
7515                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7516
7517         if (vin)
7518                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7519
7520         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7521 }
7522
7523 /**
7524  *      t4_free_vi - free a virtual interface
7525  *      @adap: the adapter
7526  *      @mbox: mailbox to use for the FW command
7527  *      @pf: the PF owning the VI
7528  *      @vf: the VF owning the VI
7529  *      @viid: virtual interface identifiler
7530  *
7531  *      Free a previously allocated virtual interface.
7532  */
7533 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7534                unsigned int vf, unsigned int viid)
7535 {
7536         struct fw_vi_cmd c;
7537
7538         memset(&c, 0, sizeof(c));
7539         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7540                                   FW_CMD_REQUEST_F |
7541                                   FW_CMD_EXEC_F |
7542                                   FW_VI_CMD_PFN_V(pf) |
7543                                   FW_VI_CMD_VFN_V(vf));
7544         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7545         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7546
7547         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7548 }
7549
7550 /**
7551  *      t4_set_rxmode - set Rx properties of a virtual interface
7552  *      @adap: the adapter
7553  *      @mbox: mailbox to use for the FW command
7554  *      @viid: the VI id
7555  *      @mtu: the new MTU or -1
7556  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7557  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7558  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7559  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7560  *      @sleep_ok: if true we may sleep while awaiting command completion
7561  *
7562  *      Sets Rx properties of a virtual interface.
7563  */
7564 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7565                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7566                   bool sleep_ok)
7567 {
7568         struct fw_vi_rxmode_cmd c;
7569
7570         /* convert to FW values */
7571         if (mtu < 0)
7572                 mtu = FW_RXMODE_MTU_NO_CHG;
7573         if (promisc < 0)
7574                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7575         if (all_multi < 0)
7576                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7577         if (bcast < 0)
7578                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7579         if (vlanex < 0)
7580                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7581
7582         memset(&c, 0, sizeof(c));
7583         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7584                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7585                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7586         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7587         c.mtu_to_vlanexen =
7588                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7589                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7590                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7591                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7592                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7593         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7594 }
7595
7596 /**
7597  *      t4_free_encap_mac_filt - frees MPS entry at given index
7598  *      @adap: the adapter
7599  *      @viid: the VI id
7600  *      @idx: index of MPS entry to be freed
7601  *      @sleep_ok: call is allowed to sleep
7602  *
7603  *      Frees the MPS entry at supplied index
7604  *
7605  *      Returns a negative error number or zero on success
7606  */
7607 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7608                            int idx, bool sleep_ok)
7609 {
7610         struct fw_vi_mac_exact *p;
7611         u8 addr[] = {0, 0, 0, 0, 0, 0};
7612         struct fw_vi_mac_cmd c;
7613         int ret = 0;
7614         u32 exact;
7615
7616         memset(&c, 0, sizeof(c));
7617         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7618                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7619                                    FW_CMD_EXEC_V(0) |
7620                                    FW_VI_MAC_CMD_VIID_V(viid));
7621         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7622         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7623                                           exact |
7624                                           FW_CMD_LEN16_V(1));
7625         p = c.u.exact;
7626         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7627                                       FW_VI_MAC_CMD_IDX_V(idx));
7628         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7629         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7630         return ret;
7631 }
7632
7633 /**
7634  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7635  *      @adap: the adapter
7636  *      @viid: the VI id
7637  *      @addr: the MAC address
7638  *      @mask: the mask
7639  *      @idx: index of the entry in mps tcam
7640  *      @lookup_type: MAC address for inner (1) or outer (0) header
7641  *      @port_id: the port index
7642  *      @sleep_ok: call is allowed to sleep
7643  *
7644  *      Removes the mac entry at the specified index using raw mac interface.
7645  *
7646  *      Returns a negative error number on failure.
7647  */
7648 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7649                          const u8 *addr, const u8 *mask, unsigned int idx,
7650                          u8 lookup_type, u8 port_id, bool sleep_ok)
7651 {
7652         struct fw_vi_mac_cmd c;
7653         struct fw_vi_mac_raw *p = &c.u.raw;
7654         u32 val;
7655
7656         memset(&c, 0, sizeof(c));
7657         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7658                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7659                                    FW_CMD_EXEC_V(0) |
7660                                    FW_VI_MAC_CMD_VIID_V(viid));
7661         val = FW_CMD_LEN16_V(1) |
7662               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7663         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7664                                           FW_CMD_LEN16_V(val));
7665
7666         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7667                                      FW_VI_MAC_ID_BASED_FREE);
7668
7669         /* Lookup Type. Outer header: 0, Inner header: 1 */
7670         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7671                                    DATAPORTNUM_V(port_id));
7672         /* Lookup mask and port mask */
7673         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7674                                     DATAPORTNUM_V(DATAPORTNUM_M));
7675
7676         /* Copy the address and the mask */
7677         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7678         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7679
7680         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7681 }
7682
7683 /**
7684  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7685  *      @adap: the adapter
7686  *      @viid: the VI id
7687  *      @mac: the MAC address
7688  *      @mask: the mask
7689  *      @vni: the VNI id for the tunnel protocol
7690  *      @vni_mask: mask for the VNI id
7691  *      @dip_hit: to enable DIP match for the MPS entry
7692  *      @lookup_type: MAC address for inner (1) or outer (0) header
7693  *      @sleep_ok: call is allowed to sleep
7694  *
7695  *      Allocates an MPS entry with specified MAC address and VNI value.
7696  *
7697  *      Returns a negative error number or the allocated index for this mac.
7698  */
7699 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7700                             const u8 *addr, const u8 *mask, unsigned int vni,
7701                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7702                             bool sleep_ok)
7703 {
7704         struct fw_vi_mac_cmd c;
7705         struct fw_vi_mac_vni *p = c.u.exact_vni;
7706         int ret = 0;
7707         u32 val;
7708
7709         memset(&c, 0, sizeof(c));
7710         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7711                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7712                                    FW_VI_MAC_CMD_VIID_V(viid));
7713         val = FW_CMD_LEN16_V(1) |
7714               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7715         c.freemacs_to_len16 = cpu_to_be32(val);
7716         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7717                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7718         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7719         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7720
7721         p->lookup_type_to_vni =
7722                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7723                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7724                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7725         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7726         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7727         if (ret == 0)
7728                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7729         return ret;
7730 }
7731
7732 /**
7733  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7734  *      @adap: the adapter
7735  *      @viid: the VI id
7736  *      @mac: the MAC address
7737  *      @mask: the mask
7738  *      @idx: index at which to add this entry
7739  *      @port_id: the port index
7740  *      @lookup_type: MAC address for inner (1) or outer (0) header
7741  *      @sleep_ok: call is allowed to sleep
7742  *
7743  *      Adds the mac entry at the specified index using raw mac interface.
7744  *
7745  *      Returns a negative error number or the allocated index for this mac.
7746  */
7747 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7748                           const u8 *addr, const u8 *mask, unsigned int idx,
7749                           u8 lookup_type, u8 port_id, bool sleep_ok)
7750 {
7751         int ret = 0;
7752         struct fw_vi_mac_cmd c;
7753         struct fw_vi_mac_raw *p = &c.u.raw;
7754         u32 val;
7755
7756         memset(&c, 0, sizeof(c));
7757         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7758                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7759                                    FW_VI_MAC_CMD_VIID_V(viid));
7760         val = FW_CMD_LEN16_V(1) |
7761               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7762         c.freemacs_to_len16 = cpu_to_be32(val);
7763
7764         /* Specify that this is an inner mac address */
7765         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7766
7767         /* Lookup Type. Outer header: 0, Inner header: 1 */
7768         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7769                                    DATAPORTNUM_V(port_id));
7770         /* Lookup mask and port mask */
7771         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7772                                     DATAPORTNUM_V(DATAPORTNUM_M));
7773
7774         /* Copy the address and the mask */
7775         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7776         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7777
7778         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7779         if (ret == 0) {
7780                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7781                 if (ret != idx)
7782                         ret = -ENOMEM;
7783         }
7784
7785         return ret;
7786 }
7787
7788 /**
7789  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7790  *      @adap: the adapter
7791  *      @mbox: mailbox to use for the FW command
7792  *      @viid: the VI id
7793  *      @free: if true any existing filters for this VI id are first removed
7794  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7795  *      @addr: the MAC address(es)
7796  *      @idx: where to store the index of each allocated filter
7797  *      @hash: pointer to hash address filter bitmap
7798  *      @sleep_ok: call is allowed to sleep
7799  *
7800  *      Allocates an exact-match filter for each of the supplied addresses and
7801  *      sets it to the corresponding address.  If @idx is not %NULL it should
7802  *      have at least @naddr entries, each of which will be set to the index of
7803  *      the filter allocated for the corresponding MAC address.  If a filter
7804  *      could not be allocated for an address its index is set to 0xffff.
7805  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7806  *      are hashed and update the hash filter bitmap pointed at by @hash.
7807  *
7808  *      Returns a negative error number or the number of filters allocated.
7809  */
7810 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7811                       unsigned int viid, bool free, unsigned int naddr,
7812                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7813 {
7814         int offset, ret = 0;
7815         struct fw_vi_mac_cmd c;
7816         unsigned int nfilters = 0;
7817         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7818         unsigned int rem = naddr;
7819
7820         if (naddr > max_naddr)
7821                 return -EINVAL;
7822
7823         for (offset = 0; offset < naddr ; /**/) {
7824                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7825                                          rem : ARRAY_SIZE(c.u.exact));
7826                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7827                                                      u.exact[fw_naddr]), 16);
7828                 struct fw_vi_mac_exact *p;
7829                 int i;
7830
7831                 memset(&c, 0, sizeof(c));
7832                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7833                                            FW_CMD_REQUEST_F |
7834                                            FW_CMD_WRITE_F |
7835                                            FW_CMD_EXEC_V(free) |
7836                                            FW_VI_MAC_CMD_VIID_V(viid));
7837                 c.freemacs_to_len16 =
7838                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7839                                     FW_CMD_LEN16_V(len16));
7840
7841                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7842                         p->valid_to_idx =
7843                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7844                                             FW_VI_MAC_CMD_IDX_V(
7845                                                     FW_VI_MAC_ADD_MAC));
7846                         memcpy(p->macaddr, addr[offset + i],
7847                                sizeof(p->macaddr));
7848                 }
7849
7850                 /* It's okay if we run out of space in our MAC address arena.
7851                  * Some of the addresses we submit may get stored so we need
7852                  * to run through the reply to see what the results were ...
7853                  */
7854                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7855                 if (ret && ret != -FW_ENOMEM)
7856                         break;
7857
7858                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7859                         u16 index = FW_VI_MAC_CMD_IDX_G(
7860                                         be16_to_cpu(p->valid_to_idx));
7861
7862                         if (idx)
7863                                 idx[offset + i] = (index >= max_naddr ?
7864                                                    0xffff : index);
7865                         if (index < max_naddr)
7866                                 nfilters++;
7867                         else if (hash)
7868                                 *hash |= (1ULL <<
7869                                           hash_mac_addr(addr[offset + i]));
7870                 }
7871
7872                 free = false;
7873                 offset += fw_naddr;
7874                 rem -= fw_naddr;
7875         }
7876
7877         if (ret == 0 || ret == -FW_ENOMEM)
7878                 ret = nfilters;
7879         return ret;
7880 }
7881
7882 /**
7883  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
7884  *      @adap: the adapter
7885  *      @mbox: mailbox to use for the FW command
7886  *      @viid: the VI id
7887  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7888  *      @addr: the MAC address(es)
7889  *      @sleep_ok: call is allowed to sleep
7890  *
7891  *      Frees the exact-match filter for each of the supplied addresses
7892  *
7893  *      Returns a negative error number or the number of filters freed.
7894  */
7895 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
7896                      unsigned int viid, unsigned int naddr,
7897                      const u8 **addr, bool sleep_ok)
7898 {
7899         int offset, ret = 0;
7900         struct fw_vi_mac_cmd c;
7901         unsigned int nfilters = 0;
7902         unsigned int max_naddr = is_t4(adap->params.chip) ?
7903                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
7904                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7905         unsigned int rem = naddr;
7906
7907         if (naddr > max_naddr)
7908                 return -EINVAL;
7909
7910         for (offset = 0; offset < (int)naddr ; /**/) {
7911                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7912                                          ? rem
7913                                          : ARRAY_SIZE(c.u.exact));
7914                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7915                                                      u.exact[fw_naddr]), 16);
7916                 struct fw_vi_mac_exact *p;
7917                 int i;
7918
7919                 memset(&c, 0, sizeof(c));
7920                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7921                                      FW_CMD_REQUEST_F |
7922                                      FW_CMD_WRITE_F |
7923                                      FW_CMD_EXEC_V(0) |
7924                                      FW_VI_MAC_CMD_VIID_V(viid));
7925                 c.freemacs_to_len16 =
7926                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7927                                             FW_CMD_LEN16_V(len16));
7928
7929                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
7930                         p->valid_to_idx = cpu_to_be16(
7931                                 FW_VI_MAC_CMD_VALID_F |
7932                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
7933                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7934                 }
7935
7936                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7937                 if (ret)
7938                         break;
7939
7940                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7941                         u16 index = FW_VI_MAC_CMD_IDX_G(
7942                                                 be16_to_cpu(p->valid_to_idx));
7943
7944                         if (index < max_naddr)
7945                                 nfilters++;
7946                 }
7947
7948                 offset += fw_naddr;
7949                 rem -= fw_naddr;
7950         }
7951
7952         if (ret == 0)
7953                 ret = nfilters;
7954         return ret;
7955 }
7956
7957 /**
7958  *      t4_change_mac - modifies the exact-match filter for a MAC address
7959  *      @adap: the adapter
7960  *      @mbox: mailbox to use for the FW command
7961  *      @viid: the VI id
7962  *      @idx: index of existing filter for old value of MAC address, or -1
7963  *      @addr: the new MAC address value
7964  *      @persist: whether a new MAC allocation should be persistent
7965  *      @add_smt: if true also add the address to the HW SMT
7966  *
7967  *      Modifies an exact-match filter and sets it to the new MAC address.
7968  *      Note that in general it is not possible to modify the value of a given
7969  *      filter so the generic way to modify an address filter is to free the one
7970  *      being used by the old address value and allocate a new filter for the
7971  *      new address value.  @idx can be -1 if the address is a new addition.
7972  *
7973  *      Returns a negative error number or the index of the filter with the new
7974  *      MAC value.
7975  */
7976 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7977                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
7978 {
7979         int ret, mode;
7980         struct fw_vi_mac_cmd c;
7981         struct fw_vi_mac_exact *p = c.u.exact;
7982         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
7983
7984         if (idx < 0)                             /* new allocation */
7985                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7986         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7987
7988         memset(&c, 0, sizeof(c));
7989         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7990                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7991                                    FW_VI_MAC_CMD_VIID_V(viid));
7992         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
7993         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7994                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
7995                                       FW_VI_MAC_CMD_IDX_V(idx));
7996         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7997
7998         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7999         if (ret == 0) {
8000                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8001                 if (ret >= max_mac_addr)
8002                         ret = -ENOMEM;
8003                 if (smt_idx) {
8004                         if (adap->params.viid_smt_extn_support) {
8005                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8006                                                     (be32_to_cpu(c.op_to_viid));
8007                         } else {
8008                                 /* In T4/T5, SMT contains 256 SMAC entries
8009                                  * organized in 128 rows of 2 entries each.
8010                                  * In T6, SMT contains 256 SMAC entries in
8011                                  * 256 rows.
8012                                  */
8013                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8014                                                                      CHELSIO_T5)
8015                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8016                                 else
8017                                         *smt_idx = (viid & FW_VIID_VIN_M);
8018                         }
8019                 }
8020         }
8021         return ret;
8022 }
8023
8024 /**
8025  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8026  *      @adap: the adapter
8027  *      @mbox: mailbox to use for the FW command
8028  *      @viid: the VI id
8029  *      @ucast: whether the hash filter should also match unicast addresses
8030  *      @vec: the value to be written to the hash filter
8031  *      @sleep_ok: call is allowed to sleep
8032  *
8033  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8034  */
8035 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8036                      bool ucast, u64 vec, bool sleep_ok)
8037 {
8038         struct fw_vi_mac_cmd c;
8039
8040         memset(&c, 0, sizeof(c));
8041         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8042                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8043                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8044         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8045                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8046                                           FW_CMD_LEN16_V(1));
8047         c.u.hash.hashvec = cpu_to_be64(vec);
8048         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8049 }
8050
8051 /**
8052  *      t4_enable_vi_params - enable/disable a virtual interface
8053  *      @adap: the adapter
8054  *      @mbox: mailbox to use for the FW command
8055  *      @viid: the VI id
8056  *      @rx_en: 1=enable Rx, 0=disable Rx
8057  *      @tx_en: 1=enable Tx, 0=disable Tx
8058  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8059  *
8060  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8061  *      only makes sense when enabling a Virtual Interface ...
8062  */
8063 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8064                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8065 {
8066         struct fw_vi_enable_cmd c;
8067
8068         memset(&c, 0, sizeof(c));
8069         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8070                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8071                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8072         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8073                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8074                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8075                                      FW_LEN16(c));
8076         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8077 }
8078
8079 /**
8080  *      t4_enable_vi - enable/disable a virtual interface
8081  *      @adap: the adapter
8082  *      @mbox: mailbox to use for the FW command
8083  *      @viid: the VI id
8084  *      @rx_en: 1=enable Rx, 0=disable Rx
8085  *      @tx_en: 1=enable Tx, 0=disable Tx
8086  *
8087  *      Enables/disables a virtual interface.
8088  */
8089 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8090                  bool rx_en, bool tx_en)
8091 {
8092         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8093 }
8094
8095 /**
8096  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8097  *      @adap: the adapter
8098  *      @mbox: mailbox to use for the FW command
8099  *      @pi: the Port Information structure
8100  *      @rx_en: 1=enable Rx, 0=disable Rx
8101  *      @tx_en: 1=enable Tx, 0=disable Tx
8102  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8103  *
8104  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8105  *      Enable only makes sense when enabling a Virtual Interface ...
8106  *      If the Virtual Interface enable/disable operation is successful,
8107  *      we notify the OS-specific code of a potential Link Status change
8108  *      via the OS Contract API t4_os_link_changed().
8109  */
8110 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8111                         struct port_info *pi,
8112                         bool rx_en, bool tx_en, bool dcb_en)
8113 {
8114         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8115                                       rx_en, tx_en, dcb_en);
8116         if (ret)
8117                 return ret;
8118         t4_os_link_changed(adap, pi->port_id,
8119                            rx_en && tx_en && pi->link_cfg.link_ok);
8120         return 0;
8121 }
8122
8123 /**
8124  *      t4_identify_port - identify a VI's port by blinking its LED
8125  *      @adap: the adapter
8126  *      @mbox: mailbox to use for the FW command
8127  *      @viid: the VI id
8128  *      @nblinks: how many times to blink LED at 2.5 Hz
8129  *
8130  *      Identifies a VI's port by blinking its LED.
8131  */
8132 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8133                      unsigned int nblinks)
8134 {
8135         struct fw_vi_enable_cmd c;
8136
8137         memset(&c, 0, sizeof(c));
8138         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8139                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8140                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8141         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8142         c.blinkdur = cpu_to_be16(nblinks);
8143         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8144 }
8145
8146 /**
8147  *      t4_iq_stop - stop an ingress queue and its FLs
8148  *      @adap: the adapter
8149  *      @mbox: mailbox to use for the FW command
8150  *      @pf: the PF owning the queues
8151  *      @vf: the VF owning the queues
8152  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8153  *      @iqid: ingress queue id
8154  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8155  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8156  *
8157  *      Stops an ingress queue and its associated FLs, if any.  This causes
8158  *      any current or future data/messages destined for these queues to be
8159  *      tossed.
8160  */
8161 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8162                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8163                unsigned int fl0id, unsigned int fl1id)
8164 {
8165         struct fw_iq_cmd c;
8166
8167         memset(&c, 0, sizeof(c));
8168         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8169                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8170                                   FW_IQ_CMD_VFN_V(vf));
8171         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8172         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8173         c.iqid = cpu_to_be16(iqid);
8174         c.fl0id = cpu_to_be16(fl0id);
8175         c.fl1id = cpu_to_be16(fl1id);
8176         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8177 }
8178
8179 /**
8180  *      t4_iq_free - free an ingress queue and its FLs
8181  *      @adap: the adapter
8182  *      @mbox: mailbox to use for the FW command
8183  *      @pf: the PF owning the queues
8184  *      @vf: the VF owning the queues
8185  *      @iqtype: the ingress queue type
8186  *      @iqid: ingress queue id
8187  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8188  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8189  *
8190  *      Frees an ingress queue and its associated FLs, if any.
8191  */
8192 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8193                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8194                unsigned int fl0id, unsigned int fl1id)
8195 {
8196         struct fw_iq_cmd c;
8197
8198         memset(&c, 0, sizeof(c));
8199         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8200                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8201                                   FW_IQ_CMD_VFN_V(vf));
8202         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8203         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8204         c.iqid = cpu_to_be16(iqid);
8205         c.fl0id = cpu_to_be16(fl0id);
8206         c.fl1id = cpu_to_be16(fl1id);
8207         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8208 }
8209
8210 /**
8211  *      t4_eth_eq_free - free an Ethernet egress queue
8212  *      @adap: the adapter
8213  *      @mbox: mailbox to use for the FW command
8214  *      @pf: the PF owning the queue
8215  *      @vf: the VF owning the queue
8216  *      @eqid: egress queue id
8217  *
8218  *      Frees an Ethernet egress queue.
8219  */
8220 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8221                    unsigned int vf, unsigned int eqid)
8222 {
8223         struct fw_eq_eth_cmd c;
8224
8225         memset(&c, 0, sizeof(c));
8226         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8227                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8228                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8229                                   FW_EQ_ETH_CMD_VFN_V(vf));
8230         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8231         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8232         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8233 }
8234
8235 /**
8236  *      t4_ctrl_eq_free - free a control egress queue
8237  *      @adap: the adapter
8238  *      @mbox: mailbox to use for the FW command
8239  *      @pf: the PF owning the queue
8240  *      @vf: the VF owning the queue
8241  *      @eqid: egress queue id
8242  *
8243  *      Frees a control egress queue.
8244  */
8245 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8246                     unsigned int vf, unsigned int eqid)
8247 {
8248         struct fw_eq_ctrl_cmd c;
8249
8250         memset(&c, 0, sizeof(c));
8251         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8252                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8253                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8254                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8255         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8256         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8257         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8258 }
8259
8260 /**
8261  *      t4_ofld_eq_free - free an offload egress queue
8262  *      @adap: the adapter
8263  *      @mbox: mailbox to use for the FW command
8264  *      @pf: the PF owning the queue
8265  *      @vf: the VF owning the queue
8266  *      @eqid: egress queue id
8267  *
8268  *      Frees a control egress queue.
8269  */
8270 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8271                     unsigned int vf, unsigned int eqid)
8272 {
8273         struct fw_eq_ofld_cmd c;
8274
8275         memset(&c, 0, sizeof(c));
8276         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8277                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8278                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8279                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8280         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8281         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8282         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8283 }
8284
8285 /**
8286  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8287  *      @adap: the adapter
8288  *      @link_down_rc: Link Down Reason Code
8289  *
8290  *      Returns a string representation of the Link Down Reason Code.
8291  */
8292 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8293 {
8294         static const char * const reason[] = {
8295                 "Link Down",
8296                 "Remote Fault",
8297                 "Auto-negotiation Failure",
8298                 "Reserved",
8299                 "Insufficient Airflow",
8300                 "Unable To Determine Reason",
8301                 "No RX Signal Detected",
8302                 "Reserved",
8303         };
8304
8305         if (link_down_rc >= ARRAY_SIZE(reason))
8306                 return "Bad Reason Code";
8307
8308         return reason[link_down_rc];
8309 }
8310
8311 /**
8312  * Return the highest speed set in the port capabilities, in Mb/s.
8313  */
8314 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8315 {
8316         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8317                 do { \
8318                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8319                                 return __speed; \
8320                 } while (0)
8321
8322         TEST_SPEED_RETURN(400G, 400000);
8323         TEST_SPEED_RETURN(200G, 200000);
8324         TEST_SPEED_RETURN(100G, 100000);
8325         TEST_SPEED_RETURN(50G,   50000);
8326         TEST_SPEED_RETURN(40G,   40000);
8327         TEST_SPEED_RETURN(25G,   25000);
8328         TEST_SPEED_RETURN(10G,   10000);
8329         TEST_SPEED_RETURN(1G,     1000);
8330         TEST_SPEED_RETURN(100M,    100);
8331
8332         #undef TEST_SPEED_RETURN
8333
8334         return 0;
8335 }
8336
8337 /**
8338  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8339  *      @acaps: advertised Port Capabilities
8340  *
8341  *      Get the highest speed for the port from the advertised Port
8342  *      Capabilities.  It will be either the highest speed from the list of
8343  *      speeds or whatever user has set using ethtool.
8344  */
8345 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8346 {
8347         #define TEST_SPEED_RETURN(__caps_speed) \
8348                 do { \
8349                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8350                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8351                 } while (0)
8352
8353         TEST_SPEED_RETURN(400G);
8354         TEST_SPEED_RETURN(200G);
8355         TEST_SPEED_RETURN(100G);
8356         TEST_SPEED_RETURN(50G);
8357         TEST_SPEED_RETURN(40G);
8358         TEST_SPEED_RETURN(25G);
8359         TEST_SPEED_RETURN(10G);
8360         TEST_SPEED_RETURN(1G);
8361         TEST_SPEED_RETURN(100M);
8362
8363         #undef TEST_SPEED_RETURN
8364
8365         return 0;
8366 }
8367
8368 /**
8369  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8370  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8371  *
8372  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8373  *      32-bit Port Capabilities value.
8374  */
8375 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8376 {
8377         fw_port_cap32_t linkattr = 0;
8378
8379         /* Unfortunately the format of the Link Status in the old
8380          * 16-bit Port Information message isn't the same as the
8381          * 16-bit Port Capabilities bitfield used everywhere else ...
8382          */
8383         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8384                 linkattr |= FW_PORT_CAP32_FC_RX;
8385         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8386                 linkattr |= FW_PORT_CAP32_FC_TX;
8387         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8388                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8389         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8390                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8391         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8392                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8393         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8394                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8395         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8396                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8397         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8398                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8399
8400         return linkattr;
8401 }
8402
8403 /**
8404  *      t4_handle_get_port_info - process a FW reply message
8405  *      @pi: the port info
8406  *      @rpl: start of the FW message
8407  *
8408  *      Processes a GET_PORT_INFO FW reply message.
8409  */
8410 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8411 {
8412         const struct fw_port_cmd *cmd = (const void *)rpl;
8413         int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8414         struct adapter *adapter = pi->adapter;
8415         struct link_config *lc = &pi->link_cfg;
8416         int link_ok, linkdnrc;
8417         enum fw_port_type port_type;
8418         enum fw_port_module_type mod_type;
8419         unsigned int speed, fc, fec;
8420         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8421
8422         /* Extract the various fields from the Port Information message.
8423          */
8424         switch (action) {
8425         case FW_PORT_ACTION_GET_PORT_INFO: {
8426                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8427
8428                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8429                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8430                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8431                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8432                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8433                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8434                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8435                 linkattr = lstatus_to_fwcap(lstatus);
8436                 break;
8437         }
8438
8439         case FW_PORT_ACTION_GET_PORT_INFO32: {
8440                 u32 lstatus32;
8441
8442                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8443                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8444                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8445                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8446                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8447                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8448                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8449                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8450                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8451                 break;
8452         }
8453
8454         default:
8455                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8456                         be32_to_cpu(cmd->action_to_len16));
8457                 return;
8458         }
8459
8460         fec = fwcap_to_cc_fec(acaps);
8461         fc = fwcap_to_cc_pause(linkattr);
8462         speed = fwcap_to_speed(linkattr);
8463
8464         lc->new_module = false;
8465         lc->redo_l1cfg = false;
8466
8467         if (mod_type != pi->mod_type) {
8468                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8469                  * various fundamental Port Capabilities which used to be
8470                  * immutable can now change radically.  We can now have
8471                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8472                  * all change based on what Transceiver Module is inserted.
8473                  * So we need to record the Physical "Port" Capabilities on
8474                  * every Transceiver Module change.
8475                  */
8476                 lc->pcaps = pcaps;
8477
8478                 /* When a new Transceiver Module is inserted, the Firmware
8479                  * will examine its i2c EPROM to determine its type and
8480                  * general operating parameters including things like Forward
8481                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8482                  * how to interpret these i2c values to determine default
8483                  * "sutomatic" settings.  We record these for future use when
8484                  * the user explicitly requests these standards-based values.
8485                  */
8486                 lc->def_acaps = acaps;
8487
8488                 /* Some versions of the early T6 Firmware "cheated" when
8489                  * handling different Transceiver Modules by changing the
8490                  * underlaying Port Type reported to the Host Drivers.  As
8491                  * such we need to capture whatever Port Type the Firmware
8492                  * sends us and record it in case it's different from what we
8493                  * were told earlier.  Unfortunately, since Firmware is
8494                  * forever, we'll need to keep this code here forever, but in
8495                  * later T6 Firmware it should just be an assignment of the
8496                  * same value already recorded.
8497                  */
8498                 pi->port_type = port_type;
8499
8500                 pi->mod_type = mod_type;
8501
8502                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8503                 t4_os_portmod_changed(adapter, pi->port_id);
8504         }
8505
8506         if (link_ok != lc->link_ok || speed != lc->speed ||
8507             fc != lc->fc || fec != lc->fec) {   /* something changed */
8508                 if (!link_ok && lc->link_ok) {
8509                         lc->link_down_rc = linkdnrc;
8510                         dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
8511                                  pi->tx_chan, t4_link_down_rc_str(linkdnrc));
8512                 }
8513                 lc->link_ok = link_ok;
8514                 lc->speed = speed;
8515                 lc->fc = fc;
8516                 lc->fec = fec;
8517
8518                 lc->lpacaps = lpacaps;
8519                 lc->acaps = acaps & ADVERT_MASK;
8520
8521                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8522                         lc->autoneg = AUTONEG_DISABLE;
8523                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8524                         lc->autoneg = AUTONEG_ENABLE;
8525                 } else {
8526                         /* When Autoneg is disabled, user needs to set
8527                          * single speed.
8528                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8529                          */
8530                         lc->acaps = 0;
8531                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8532                         lc->autoneg = AUTONEG_DISABLE;
8533                 }
8534
8535                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8536         }
8537
8538         if (lc->new_module && lc->redo_l1cfg) {
8539                 struct link_config old_lc;
8540                 int ret;
8541
8542                 /* Save the current L1 Configuration and restore it if an
8543                  * error occurs.  We probably should fix the l1_cfg*()
8544                  * routines not to change the link_config when an error
8545                  * occurs ...
8546                  */
8547                 old_lc = *lc;
8548                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8549                 if (ret) {
8550                         *lc = old_lc;
8551                         dev_warn(adapter->pdev_dev,
8552                                  "Attempt to update new Transceiver Module settings failed\n");
8553                 }
8554         }
8555         lc->new_module = false;
8556         lc->redo_l1cfg = false;
8557 }
8558
8559 /**
8560  *      t4_update_port_info - retrieve and update port information if changed
8561  *      @pi: the port_info
8562  *
8563  *      We issue a Get Port Information Command to the Firmware and, if
8564  *      successful, we check to see if anything is different from what we
8565  *      last recorded and update things accordingly.
8566  */
8567 int t4_update_port_info(struct port_info *pi)
8568 {
8569         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8570         struct fw_port_cmd port_cmd;
8571         int ret;
8572
8573         memset(&port_cmd, 0, sizeof(port_cmd));
8574         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8575                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8576                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8577         port_cmd.action_to_len16 = cpu_to_be32(
8578                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8579                                      ? FW_PORT_ACTION_GET_PORT_INFO
8580                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8581                 FW_LEN16(port_cmd));
8582         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8583                          &port_cmd, sizeof(port_cmd), &port_cmd);
8584         if (ret)
8585                 return ret;
8586
8587         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8588         return 0;
8589 }
8590
8591 /**
8592  *      t4_get_link_params - retrieve basic link parameters for given port
8593  *      @pi: the port
8594  *      @link_okp: value return pointer for link up/down
8595  *      @speedp: value return pointer for speed (Mb/s)
8596  *      @mtup: value return pointer for mtu
8597  *
8598  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8599  *      and MTU for a specified port.  A negative error is returned on
8600  *      failure; 0 on success.
8601  */
8602 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8603                        unsigned int *speedp, unsigned int *mtup)
8604 {
8605         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8606         struct fw_port_cmd port_cmd;
8607         unsigned int action, link_ok, mtu;
8608         fw_port_cap32_t linkattr;
8609         int ret;
8610
8611         memset(&port_cmd, 0, sizeof(port_cmd));
8612         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8613                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8614                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8615         action = (fw_caps == FW_CAPS16
8616                   ? FW_PORT_ACTION_GET_PORT_INFO
8617                   : FW_PORT_ACTION_GET_PORT_INFO32);
8618         port_cmd.action_to_len16 = cpu_to_be32(
8619                 FW_PORT_CMD_ACTION_V(action) |
8620                 FW_LEN16(port_cmd));
8621         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8622                          &port_cmd, sizeof(port_cmd), &port_cmd);
8623         if (ret)
8624                 return ret;
8625
8626         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8627                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8628
8629                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8630                 linkattr = lstatus_to_fwcap(lstatus);
8631                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8632         } else {
8633                 u32 lstatus32 =
8634                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8635
8636                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8637                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8638                 mtu = FW_PORT_CMD_MTU32_G(
8639                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8640         }
8641
8642         *link_okp = link_ok;
8643         *speedp = fwcap_to_speed(linkattr);
8644         *mtup = mtu;
8645
8646         return 0;
8647 }
8648
8649 /**
8650  *      t4_handle_fw_rpl - process a FW reply message
8651  *      @adap: the adapter
8652  *      @rpl: start of the FW message
8653  *
8654  *      Processes a FW message, such as link state change messages.
8655  */
8656 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8657 {
8658         u8 opcode = *(const u8 *)rpl;
8659
8660         /* This might be a port command ... this simplifies the following
8661          * conditionals ...  We can get away with pre-dereferencing
8662          * action_to_len16 because it's in the first 16 bytes and all messages
8663          * will be at least that long.
8664          */
8665         const struct fw_port_cmd *p = (const void *)rpl;
8666         unsigned int action =
8667                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8668
8669         if (opcode == FW_PORT_CMD &&
8670             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8671              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8672                 int i;
8673                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8674                 struct port_info *pi = NULL;
8675
8676                 for_each_port(adap, i) {
8677                         pi = adap2pinfo(adap, i);
8678                         if (pi->tx_chan == chan)
8679                                 break;
8680                 }
8681
8682                 t4_handle_get_port_info(pi, rpl);
8683         } else {
8684                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8685                          opcode);
8686                 return -EINVAL;
8687         }
8688         return 0;
8689 }
8690
8691 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8692 {
8693         u16 val;
8694
8695         if (pci_is_pcie(adapter->pdev)) {
8696                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8697                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8698                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8699         }
8700 }
8701
8702 /**
8703  *      init_link_config - initialize a link's SW state
8704  *      @lc: pointer to structure holding the link state
8705  *      @pcaps: link Port Capabilities
8706  *      @acaps: link current Advertised Port Capabilities
8707  *
8708  *      Initializes the SW state maintained for each link, including the link's
8709  *      capabilities and default speed/flow-control/autonegotiation settings.
8710  */
8711 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8712                              fw_port_cap32_t acaps)
8713 {
8714         lc->pcaps = pcaps;
8715         lc->def_acaps = acaps;
8716         lc->lpacaps = 0;
8717         lc->speed_caps = 0;
8718         lc->speed = 0;
8719         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8720
8721         /* For Forward Error Control, we default to whatever the Firmware
8722          * tells us the Link is currently advertising.
8723          */
8724         lc->requested_fec = FEC_AUTO;
8725         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8726
8727         /* If the Port is capable of Auto-Negtotiation, initialize it as
8728          * "enabled" and copy over all of the Physical Port Capabilities
8729          * to the Advertised Port Capabilities.  Otherwise mark it as
8730          * Auto-Negotiate disabled and select the highest supported speed
8731          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8732          * and t4_handle_get_port_info().
8733          */
8734         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8735                 lc->acaps = lc->pcaps & ADVERT_MASK;
8736                 lc->autoneg = AUTONEG_ENABLE;
8737                 lc->requested_fc |= PAUSE_AUTONEG;
8738         } else {
8739                 lc->acaps = 0;
8740                 lc->autoneg = AUTONEG_DISABLE;
8741                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8742         }
8743 }
8744
8745 #define CIM_PF_NOACCESS 0xeeeeeeee
8746
8747 int t4_wait_dev_ready(void __iomem *regs)
8748 {
8749         u32 whoami;
8750
8751         whoami = readl(regs + PL_WHOAMI_A);
8752         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8753                 return 0;
8754
8755         msleep(500);
8756         whoami = readl(regs + PL_WHOAMI_A);
8757         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8758 }
8759
8760 struct flash_desc {
8761         u32 vendor_and_model_id;
8762         u32 size_mb;
8763 };
8764
8765 static int t4_get_flash_params(struct adapter *adap)
8766 {
8767         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8768          * to the preexisting code.  All flash parts have 64KB sectors.
8769          */
8770         static struct flash_desc supported_flash[] = {
8771                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8772         };
8773
8774         unsigned int part, manufacturer;
8775         unsigned int density, size = 0;
8776         u32 flashid = 0;
8777         int ret;
8778
8779         /* Issue a Read ID Command to the Flash part.  We decode supported
8780          * Flash parts and their sizes from this.  There's a newer Query
8781          * Command which can retrieve detailed geometry information but many
8782          * Flash parts don't support it.
8783          */
8784
8785         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8786         if (!ret)
8787                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8788         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8789         if (ret)
8790                 return ret;
8791
8792         /* Check to see if it's one of our non-standard supported Flash parts.
8793          */
8794         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8795                 if (supported_flash[part].vendor_and_model_id == flashid) {
8796                         adap->params.sf_size = supported_flash[part].size_mb;
8797                         adap->params.sf_nsec =
8798                                 adap->params.sf_size / SF_SEC_SIZE;
8799                         goto found;
8800                 }
8801
8802         /* Decode Flash part size.  The code below looks repetative with
8803          * common encodings, but that's not guaranteed in the JEDEC
8804          * specification for the Read JADEC ID command.  The only thing that
8805          * we're guaranteed by the JADEC specification is where the
8806          * Manufacturer ID is in the returned result.  After that each
8807          * Manufacturer ~could~ encode things completely differently.
8808          * Note, all Flash parts must have 64KB sectors.
8809          */
8810         manufacturer = flashid & 0xff;
8811         switch (manufacturer) {
8812         case 0x20: { /* Micron/Numonix */
8813                 /* This Density -> Size decoding table is taken from Micron
8814                  * Data Sheets.
8815                  */
8816                 density = (flashid >> 16) & 0xff;
8817                 switch (density) {
8818                 case 0x14: /* 1MB */
8819                         size = 1 << 20;
8820                         break;
8821                 case 0x15: /* 2MB */
8822                         size = 1 << 21;
8823                         break;
8824                 case 0x16: /* 4MB */
8825                         size = 1 << 22;
8826                         break;
8827                 case 0x17: /* 8MB */
8828                         size = 1 << 23;
8829                         break;
8830                 case 0x18: /* 16MB */
8831                         size = 1 << 24;
8832                         break;
8833                 case 0x19: /* 32MB */
8834                         size = 1 << 25;
8835                         break;
8836                 case 0x20: /* 64MB */
8837                         size = 1 << 26;
8838                         break;
8839                 case 0x21: /* 128MB */
8840                         size = 1 << 27;
8841                         break;
8842                 case 0x22: /* 256MB */
8843                         size = 1 << 28;
8844                         break;
8845                 }
8846                 break;
8847         }
8848         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
8849                 /* This Density -> Size decoding table is taken from ISSI
8850                  * Data Sheets.
8851                  */
8852                 density = (flashid >> 16) & 0xff;
8853                 switch (density) {
8854                 case 0x16: /* 32 MB */
8855                         size = 1 << 25;
8856                         break;
8857                 case 0x17: /* 64MB */
8858                         size = 1 << 26;
8859                         break;
8860                 }
8861                 break;
8862         }
8863         case 0xc2: { /* Macronix */
8864                 /* This Density -> Size decoding table is taken from Macronix
8865                  * Data Sheets.
8866                  */
8867                 density = (flashid >> 16) & 0xff;
8868                 switch (density) {
8869                 case 0x17: /* 8MB */
8870                         size = 1 << 23;
8871                         break;
8872                 case 0x18: /* 16MB */
8873                         size = 1 << 24;
8874                         break;
8875                 }
8876                 break;
8877         }
8878         case 0xef: { /* Winbond */
8879                 /* This Density -> Size decoding table is taken from Winbond
8880                  * Data Sheets.
8881                  */
8882                 density = (flashid >> 16) & 0xff;
8883                 switch (density) {
8884                 case 0x17: /* 8MB */
8885                         size = 1 << 23;
8886                         break;
8887                 case 0x18: /* 16MB */
8888                         size = 1 << 24;
8889                         break;
8890                 }
8891                 break;
8892         }
8893         }
8894
8895         /* If we didn't recognize the FLASH part, that's no real issue: the
8896          * Hardware/Software contract says that Hardware will _*ALWAYS*_
8897          * use a FLASH part which is at least 4MB in size and has 64KB
8898          * sectors.  The unrecognized FLASH part is likely to be much larger
8899          * than 4MB, but that's all we really need.
8900          */
8901         if (size == 0) {
8902                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
8903                          flashid);
8904                 size = 1 << 22;
8905         }
8906
8907         /* Store decoded Flash size and fall through into vetting code. */
8908         adap->params.sf_size = size;
8909         adap->params.sf_nsec = size / SF_SEC_SIZE;
8910
8911 found:
8912         if (adap->params.sf_size < FLASH_MIN_SIZE)
8913                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8914                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
8915         return 0;
8916 }
8917
8918 /**
8919  *      t4_prep_adapter - prepare SW and HW for operation
8920  *      @adapter: the adapter
8921  *      @reset: if true perform a HW reset
8922  *
8923  *      Initialize adapter SW state for the various HW modules, set initial
8924  *      values for some adapter tunables, take PHYs out of reset, and
8925  *      initialize the MDIO interface.
8926  */
8927 int t4_prep_adapter(struct adapter *adapter)
8928 {
8929         int ret, ver;
8930         uint16_t device_id;
8931         u32 pl_rev;
8932
8933         get_pci_mode(adapter, &adapter->params.pci);
8934         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
8935
8936         ret = t4_get_flash_params(adapter);
8937         if (ret < 0) {
8938                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
8939                 return ret;
8940         }
8941
8942         /* Retrieve adapter's device ID
8943          */
8944         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
8945         ver = device_id >> 12;
8946         adapter->params.chip = 0;
8947         switch (ver) {
8948         case CHELSIO_T4:
8949                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
8950                 adapter->params.arch.sge_fl_db = DBPRIO_F;
8951                 adapter->params.arch.mps_tcam_size =
8952                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
8953                 adapter->params.arch.mps_rplc_size = 128;
8954                 adapter->params.arch.nchan = NCHAN;
8955                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8956                 adapter->params.arch.vfcount = 128;
8957                 /* Congestion map is for 4 channels so that
8958                  * MPS can have 4 priority per port.
8959                  */
8960                 adapter->params.arch.cng_ch_bits_log = 2;
8961                 break;
8962         case CHELSIO_T5:
8963                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
8964                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
8965                 adapter->params.arch.mps_tcam_size =
8966                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8967                 adapter->params.arch.mps_rplc_size = 128;
8968                 adapter->params.arch.nchan = NCHAN;
8969                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
8970                 adapter->params.arch.vfcount = 128;
8971                 adapter->params.arch.cng_ch_bits_log = 2;
8972                 break;
8973         case CHELSIO_T6:
8974                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
8975                 adapter->params.arch.sge_fl_db = 0;
8976                 adapter->params.arch.mps_tcam_size =
8977                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8978                 adapter->params.arch.mps_rplc_size = 256;
8979                 adapter->params.arch.nchan = 2;
8980                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
8981                 adapter->params.arch.vfcount = 256;
8982                 /* Congestion map will be for 2 channels so that
8983                  * MPS can have 8 priority per port.
8984                  */
8985                 adapter->params.arch.cng_ch_bits_log = 3;
8986                 break;
8987         default:
8988                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
8989                         device_id);
8990                 return -EINVAL;
8991         }
8992
8993         adapter->params.cim_la_size = CIMLA_SIZE;
8994         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8995
8996         /*
8997          * Default port for debugging in case we can't reach FW.
8998          */
8999         adapter->params.nports = 1;
9000         adapter->params.portvec = 1;
9001         adapter->params.vpd.cclk = 50000;
9002
9003         /* Set PCIe completion timeout to 4 seconds. */
9004         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9005                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9006         return 0;
9007 }
9008
9009 /**
9010  *      t4_shutdown_adapter - shut down adapter, host & wire
9011  *      @adapter: the adapter
9012  *
9013  *      Perform an emergency shutdown of the adapter and stop it from
9014  *      continuing any further communication on the ports or DMA to the
9015  *      host.  This is typically used when the adapter and/or firmware
9016  *      have crashed and we want to prevent any further accidental
9017  *      communication with the rest of the world.  This will also force
9018  *      the port Link Status to go down -- if register writes work --
9019  *      which should help our peers figure out that we're down.
9020  */
9021 int t4_shutdown_adapter(struct adapter *adapter)
9022 {
9023         int port;
9024
9025         t4_intr_disable(adapter);
9026         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9027         for_each_port(adapter, port) {
9028                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9029                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9030                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9031
9032                 t4_write_reg(adapter, a_port_cfg,
9033                              t4_read_reg(adapter, a_port_cfg)
9034                              & ~SIGNAL_DET_V(1));
9035         }
9036         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9037
9038         return 0;
9039 }
9040
9041 /**
9042  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9043  *      @adapter: the adapter
9044  *      @qid: the Queue ID
9045  *      @qtype: the Ingress or Egress type for @qid
9046  *      @user: true if this request is for a user mode queue
9047  *      @pbar2_qoffset: BAR2 Queue Offset
9048  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9049  *
9050  *      Returns the BAR2 SGE Queue Registers information associated with the
9051  *      indicated Absolute Queue ID.  These are passed back in return value
9052  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9053  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9054  *
9055  *      This may return an error which indicates that BAR2 SGE Queue
9056  *      registers aren't available.  If an error is not returned, then the
9057  *      following values are returned:
9058  *
9059  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9060  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9061  *
9062  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9063  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9064  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9065  *      then these "Inferred Queue ID" register may not be used.
9066  */
9067 int t4_bar2_sge_qregs(struct adapter *adapter,
9068                       unsigned int qid,
9069                       enum t4_bar2_qtype qtype,
9070                       int user,
9071                       u64 *pbar2_qoffset,
9072                       unsigned int *pbar2_qid)
9073 {
9074         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9075         u64 bar2_page_offset, bar2_qoffset;
9076         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9077
9078         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9079         if (!user && is_t4(adapter->params.chip))
9080                 return -EINVAL;
9081
9082         /* Get our SGE Page Size parameters.
9083          */
9084         page_shift = adapter->params.sge.hps + 10;
9085         page_size = 1 << page_shift;
9086
9087         /* Get the right Queues per Page parameters for our Queue.
9088          */
9089         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9090                      ? adapter->params.sge.eq_qpp
9091                      : adapter->params.sge.iq_qpp);
9092         qpp_mask = (1 << qpp_shift) - 1;
9093
9094         /*  Calculate the basics of the BAR2 SGE Queue register area:
9095          *  o The BAR2 page the Queue registers will be in.
9096          *  o The BAR2 Queue ID.
9097          *  o The BAR2 Queue ID Offset into the BAR2 page.
9098          */
9099         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9100         bar2_qid = qid & qpp_mask;
9101         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9102
9103         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9104          * hardware will infer the Absolute Queue ID simply from the writes to
9105          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9106          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9107          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9108          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9109          * from the BAR2 Page and BAR2 Queue ID.
9110          *
9111          * One important censequence of this is that some BAR2 SGE registers
9112          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9113          * there.  But other registers synthesize the SGE Queue ID purely
9114          * from the writes to the registers -- the Write Combined Doorbell
9115          * Buffer is a good example.  These BAR2 SGE Registers are only
9116          * available for those BAR2 SGE Register areas where the SGE Absolute
9117          * Queue ID can be inferred from simple writes.
9118          */
9119         bar2_qoffset = bar2_page_offset;
9120         bar2_qinferred = (bar2_qid_offset < page_size);
9121         if (bar2_qinferred) {
9122                 bar2_qoffset += bar2_qid_offset;
9123                 bar2_qid = 0;
9124         }
9125
9126         *pbar2_qoffset = bar2_qoffset;
9127         *pbar2_qid = bar2_qid;
9128         return 0;
9129 }
9130
9131 /**
9132  *      t4_init_devlog_params - initialize adapter->params.devlog
9133  *      @adap: the adapter
9134  *
9135  *      Initialize various fields of the adapter's Firmware Device Log
9136  *      Parameters structure.
9137  */
9138 int t4_init_devlog_params(struct adapter *adap)
9139 {
9140         struct devlog_params *dparams = &adap->params.devlog;
9141         u32 pf_dparams;
9142         unsigned int devlog_meminfo;
9143         struct fw_devlog_cmd devlog_cmd;
9144         int ret;
9145
9146         /* If we're dealing with newer firmware, the Device Log Paramerters
9147          * are stored in a designated register which allows us to access the
9148          * Device Log even if we can't talk to the firmware.
9149          */
9150         pf_dparams =
9151                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9152         if (pf_dparams) {
9153                 unsigned int nentries, nentries128;
9154
9155                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9156                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9157
9158                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9159                 nentries = (nentries128 + 1) * 128;
9160                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9161
9162                 return 0;
9163         }
9164
9165         /* Otherwise, ask the firmware for it's Device Log Parameters.
9166          */
9167         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9168         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9169                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9170         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9171         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9172                          &devlog_cmd);
9173         if (ret)
9174                 return ret;
9175
9176         devlog_meminfo =
9177                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9178         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9179         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9180         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9181
9182         return 0;
9183 }
9184
9185 /**
9186  *      t4_init_sge_params - initialize adap->params.sge
9187  *      @adapter: the adapter
9188  *
9189  *      Initialize various fields of the adapter's SGE Parameters structure.
9190  */
9191 int t4_init_sge_params(struct adapter *adapter)
9192 {
9193         struct sge_params *sge_params = &adapter->params.sge;
9194         u32 hps, qpp;
9195         unsigned int s_hps, s_qpp;
9196
9197         /* Extract the SGE Page Size for our PF.
9198          */
9199         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9200         s_hps = (HOSTPAGESIZEPF0_S +
9201                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9202         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9203
9204         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9205          */
9206         s_qpp = (QUEUESPERPAGEPF0_S +
9207                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9208         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9209         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9210         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9211         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9212
9213         return 0;
9214 }
9215
9216 /**
9217  *      t4_init_tp_params - initialize adap->params.tp
9218  *      @adap: the adapter
9219  *      @sleep_ok: if true we may sleep while awaiting command completion
9220  *
9221  *      Initialize various fields of the adapter's TP Parameters structure.
9222  */
9223 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9224 {
9225         int chan;
9226         u32 v;
9227
9228         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9229         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9230         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9231
9232         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9233         for (chan = 0; chan < NCHAN; chan++)
9234                 adap->params.tp.tx_modq[chan] = chan;
9235
9236         /* Cache the adapter's Compressed Filter Mode and global Incress
9237          * Configuration.
9238          */
9239         t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9240                        TP_VLAN_PRI_MAP_A, sleep_ok);
9241         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9242                        TP_INGRESS_CONFIG_A, sleep_ok);
9243
9244         /* For T6, cache the adapter's compressed error vector
9245          * and passing outer header info for encapsulated packets.
9246          */
9247         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9248                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9249                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9250         }
9251
9252         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9253          * shift positions of several elements of the Compressed Filter Tuple
9254          * for this adapter which we need frequently ...
9255          */
9256         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9257         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9258         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9259         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9260         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9261         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9262                                                                PROTOCOL_F);
9263         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9264                                                                 ETHERTYPE_F);
9265         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9266                                                                MACMATCH_F);
9267         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9268                                                                 MPSHITTYPE_F);
9269         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9270                                                            FRAGMENTATION_F);
9271
9272         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9273          * represents the presence of an Outer VLAN instead of a VNIC ID.
9274          */
9275         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9276                 adap->params.tp.vnic_shift = -1;
9277
9278         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9279         adap->params.tp.hash_filter_mask = v;
9280         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9281         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9282         return 0;
9283 }
9284
9285 /**
9286  *      t4_filter_field_shift - calculate filter field shift
9287  *      @adap: the adapter
9288  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9289  *
9290  *      Return the shift position of a filter field within the Compressed
9291  *      Filter Tuple.  The filter field is specified via its selection bit
9292  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9293  */
9294 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9295 {
9296         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9297         unsigned int sel;
9298         int field_shift;
9299
9300         if ((filter_mode & filter_sel) == 0)
9301                 return -1;
9302
9303         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9304                 switch (filter_mode & sel) {
9305                 case FCOE_F:
9306                         field_shift += FT_FCOE_W;
9307                         break;
9308                 case PORT_F:
9309                         field_shift += FT_PORT_W;
9310                         break;
9311                 case VNIC_ID_F:
9312                         field_shift += FT_VNIC_ID_W;
9313                         break;
9314                 case VLAN_F:
9315                         field_shift += FT_VLAN_W;
9316                         break;
9317                 case TOS_F:
9318                         field_shift += FT_TOS_W;
9319                         break;
9320                 case PROTOCOL_F:
9321                         field_shift += FT_PROTOCOL_W;
9322                         break;
9323                 case ETHERTYPE_F:
9324                         field_shift += FT_ETHERTYPE_W;
9325                         break;
9326                 case MACMATCH_F:
9327                         field_shift += FT_MACMATCH_W;
9328                         break;
9329                 case MPSHITTYPE_F:
9330                         field_shift += FT_MPSHITTYPE_W;
9331                         break;
9332                 case FRAGMENTATION_F:
9333                         field_shift += FT_FRAGMENTATION_W;
9334                         break;
9335                 }
9336         }
9337         return field_shift;
9338 }
9339
9340 int t4_init_rss_mode(struct adapter *adap, int mbox)
9341 {
9342         int i, ret;
9343         struct fw_rss_vi_config_cmd rvc;
9344
9345         memset(&rvc, 0, sizeof(rvc));
9346
9347         for_each_port(adap, i) {
9348                 struct port_info *p = adap2pinfo(adap, i);
9349
9350                 rvc.op_to_viid =
9351                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9352                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9353                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9354                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9355                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9356                 if (ret)
9357                         return ret;
9358                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9359         }
9360         return 0;
9361 }
9362
9363 /**
9364  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9365  *      @pi: the port_info
9366  *      @mbox: mailbox to use for the FW command
9367  *      @port: physical port associated with the VI
9368  *      @pf: the PF owning the VI
9369  *      @vf: the VF owning the VI
9370  *      @mac: the MAC address of the VI
9371  *
9372  *      Allocates a virtual interface for the given physical port.  If @mac is
9373  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9374  *      @mac should be large enough to hold an Ethernet address.
9375  *      Returns < 0 on error.
9376  */
9377 int t4_init_portinfo(struct port_info *pi, int mbox,
9378                      int port, int pf, int vf, u8 mac[])
9379 {
9380         struct adapter *adapter = pi->adapter;
9381         unsigned int fw_caps = adapter->params.fw_caps_support;
9382         struct fw_port_cmd cmd;
9383         unsigned int rss_size;
9384         enum fw_port_type port_type;
9385         int mdio_addr;
9386         fw_port_cap32_t pcaps, acaps;
9387         u8 vivld = 0, vin = 0;
9388         int ret;
9389
9390         /* If we haven't yet determined whether we're talking to Firmware
9391          * which knows the new 32-bit Port Capabilities, it's time to find
9392          * out now.  This will also tell new Firmware to send us Port Status
9393          * Updates using the new 32-bit Port Capabilities version of the
9394          * Port Information message.
9395          */
9396         if (fw_caps == FW_CAPS_UNKNOWN) {
9397                 u32 param, val;
9398
9399                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9400                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9401                 val = 1;
9402                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9403                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9404                 adapter->params.fw_caps_support = fw_caps;
9405         }
9406
9407         memset(&cmd, 0, sizeof(cmd));
9408         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9409                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9410                                        FW_PORT_CMD_PORTID_V(port));
9411         cmd.action_to_len16 = cpu_to_be32(
9412                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9413                                      ? FW_PORT_ACTION_GET_PORT_INFO
9414                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9415                 FW_LEN16(cmd));
9416         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9417         if (ret)
9418                 return ret;
9419
9420         /* Extract the various fields from the Port Information message.
9421          */
9422         if (fw_caps == FW_CAPS16) {
9423                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9424
9425                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9426                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9427                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9428                              : -1);
9429                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9430                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9431         } else {
9432                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9433
9434                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9435                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9436                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9437                              : -1);
9438                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9439                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9440         }
9441
9442         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9443                           &vivld, &vin);
9444         if (ret < 0)
9445                 return ret;
9446
9447         pi->viid = ret;
9448         pi->tx_chan = port;
9449         pi->lport = port;
9450         pi->rss_size = rss_size;
9451
9452         /* If fw supports returning the VIN as part of FW_VI_CMD,
9453          * save the returned values.
9454          */
9455         if (adapter->params.viid_smt_extn_support) {
9456                 pi->vivld = vivld;
9457                 pi->vin = vin;
9458         } else {
9459                 /* Retrieve the values from VIID */
9460                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9461                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9462         }
9463
9464         pi->port_type = port_type;
9465         pi->mdio_addr = mdio_addr;
9466         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9467
9468         init_link_config(&pi->link_cfg, pcaps, acaps);
9469         return 0;
9470 }
9471
9472 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9473 {
9474         u8 addr[6];
9475         int ret, i, j = 0;
9476
9477         for_each_port(adap, i) {
9478                 struct port_info *pi = adap2pinfo(adap, i);
9479
9480                 while ((adap->params.portvec & (1 << j)) == 0)
9481                         j++;
9482
9483                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9484                 if (ret)
9485                         return ret;
9486
9487                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9488                 j++;
9489         }
9490         return 0;
9491 }
9492
9493 /**
9494  *      t4_read_cimq_cfg - read CIM queue configuration
9495  *      @adap: the adapter
9496  *      @base: holds the queue base addresses in bytes
9497  *      @size: holds the queue sizes in bytes
9498  *      @thres: holds the queue full thresholds in bytes
9499  *
9500  *      Returns the current configuration of the CIM queues, starting with
9501  *      the IBQs, then the OBQs.
9502  */
9503 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9504 {
9505         unsigned int i, v;
9506         int cim_num_obq = is_t4(adap->params.chip) ?
9507                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9508
9509         for (i = 0; i < CIM_NUM_IBQ; i++) {
9510                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9511                              QUENUMSELECT_V(i));
9512                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9513                 /* value is in 256-byte units */
9514                 *base++ = CIMQBASE_G(v) * 256;
9515                 *size++ = CIMQSIZE_G(v) * 256;
9516                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9517         }
9518         for (i = 0; i < cim_num_obq; i++) {
9519                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9520                              QUENUMSELECT_V(i));
9521                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9522                 /* value is in 256-byte units */
9523                 *base++ = CIMQBASE_G(v) * 256;
9524                 *size++ = CIMQSIZE_G(v) * 256;
9525         }
9526 }
9527
9528 /**
9529  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9530  *      @adap: the adapter
9531  *      @qid: the queue index
9532  *      @data: where to store the queue contents
9533  *      @n: capacity of @data in 32-bit words
9534  *
9535  *      Reads the contents of the selected CIM queue starting at address 0 up
9536  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9537  *      error and the number of 32-bit words actually read on success.
9538  */
9539 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9540 {
9541         int i, err, attempts;
9542         unsigned int addr;
9543         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9544
9545         if (qid > 5 || (n & 3))
9546                 return -EINVAL;
9547
9548         addr = qid * nwords;
9549         if (n > nwords)
9550                 n = nwords;
9551
9552         /* It might take 3-10ms before the IBQ debug read access is allowed.
9553          * Wait for 1 Sec with a delay of 1 usec.
9554          */
9555         attempts = 1000000;
9556
9557         for (i = 0; i < n; i++, addr++) {
9558                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9559                              IBQDBGEN_F);
9560                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9561                                       attempts, 1);
9562                 if (err)
9563                         return err;
9564                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9565         }
9566         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9567         return i;
9568 }
9569
9570 /**
9571  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9572  *      @adap: the adapter
9573  *      @qid: the queue index
9574  *      @data: where to store the queue contents
9575  *      @n: capacity of @data in 32-bit words
9576  *
9577  *      Reads the contents of the selected CIM queue starting at address 0 up
9578  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9579  *      error and the number of 32-bit words actually read on success.
9580  */
9581 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9582 {
9583         int i, err;
9584         unsigned int addr, v, nwords;
9585         int cim_num_obq = is_t4(adap->params.chip) ?
9586                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9587
9588         if ((qid > (cim_num_obq - 1)) || (n & 3))
9589                 return -EINVAL;
9590
9591         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9592                      QUENUMSELECT_V(qid));
9593         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9594
9595         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9596         nwords = CIMQSIZE_G(v) * 64;  /* same */
9597         if (n > nwords)
9598                 n = nwords;
9599
9600         for (i = 0; i < n; i++, addr++) {
9601                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9602                              OBQDBGEN_F);
9603                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9604                                       2, 1);
9605                 if (err)
9606                         return err;
9607                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9608         }
9609         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9610         return i;
9611 }
9612
9613 /**
9614  *      t4_cim_read - read a block from CIM internal address space
9615  *      @adap: the adapter
9616  *      @addr: the start address within the CIM address space
9617  *      @n: number of words to read
9618  *      @valp: where to store the result
9619  *
9620  *      Reads a block of 4-byte words from the CIM intenal address space.
9621  */
9622 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9623                 unsigned int *valp)
9624 {
9625         int ret = 0;
9626
9627         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9628                 return -EBUSY;
9629
9630         for ( ; !ret && n--; addr += 4) {
9631                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9632                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9633                                       0, 5, 2);
9634                 if (!ret)
9635                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9636         }
9637         return ret;
9638 }
9639
9640 /**
9641  *      t4_cim_write - write a block into CIM internal address space
9642  *      @adap: the adapter
9643  *      @addr: the start address within the CIM address space
9644  *      @n: number of words to write
9645  *      @valp: set of values to write
9646  *
9647  *      Writes a block of 4-byte words into the CIM intenal address space.
9648  */
9649 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9650                  const unsigned int *valp)
9651 {
9652         int ret = 0;
9653
9654         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9655                 return -EBUSY;
9656
9657         for ( ; !ret && n--; addr += 4) {
9658                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9659                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9660                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9661                                       0, 5, 2);
9662         }
9663         return ret;
9664 }
9665
9666 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9667                          unsigned int val)
9668 {
9669         return t4_cim_write(adap, addr, 1, &val);
9670 }
9671
9672 /**
9673  *      t4_cim_read_la - read CIM LA capture buffer
9674  *      @adap: the adapter
9675  *      @la_buf: where to store the LA data
9676  *      @wrptr: the HW write pointer within the capture buffer
9677  *
9678  *      Reads the contents of the CIM LA buffer with the most recent entry at
9679  *      the end of the returned data and with the entry at @wrptr first.
9680  *      We try to leave the LA in the running state we find it in.
9681  */
9682 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9683 {
9684         int i, ret;
9685         unsigned int cfg, val, idx;
9686
9687         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9688         if (ret)
9689                 return ret;
9690
9691         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9692                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9693                 if (ret)
9694                         return ret;
9695         }
9696
9697         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9698         if (ret)
9699                 goto restart;
9700
9701         idx = UPDBGLAWRPTR_G(val);
9702         if (wrptr)
9703                 *wrptr = idx;
9704
9705         for (i = 0; i < adap->params.cim_la_size; i++) {
9706                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9707                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9708                 if (ret)
9709                         break;
9710                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9711                 if (ret)
9712                         break;
9713                 if (val & UPDBGLARDEN_F) {
9714                         ret = -ETIMEDOUT;
9715                         break;
9716                 }
9717                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9718                 if (ret)
9719                         break;
9720
9721                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9722                  * identify the 32-bit portion of the full 312-bit data
9723                  */
9724                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9725                         idx = (idx & 0xff0) + 0x10;
9726                 else
9727                         idx++;
9728                 /* address can't exceed 0xfff */
9729                 idx &= UPDBGLARDPTR_M;
9730         }
9731 restart:
9732         if (cfg & UPDBGLAEN_F) {
9733                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9734                                       cfg & ~UPDBGLARDEN_F);
9735                 if (!ret)
9736                         ret = r;
9737         }
9738         return ret;
9739 }
9740
9741 /**
9742  *      t4_tp_read_la - read TP LA capture buffer
9743  *      @adap: the adapter
9744  *      @la_buf: where to store the LA data
9745  *      @wrptr: the HW write pointer within the capture buffer
9746  *
9747  *      Reads the contents of the TP LA buffer with the most recent entry at
9748  *      the end of the returned data and with the entry at @wrptr first.
9749  *      We leave the LA in the running state we find it in.
9750  */
9751 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9752 {
9753         bool last_incomplete;
9754         unsigned int i, cfg, val, idx;
9755
9756         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9757         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9758                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9759                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9760
9761         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9762         idx = DBGLAWPTR_G(val);
9763         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9764         if (last_incomplete)
9765                 idx = (idx + 1) & DBGLARPTR_M;
9766         if (wrptr)
9767                 *wrptr = idx;
9768
9769         val &= 0xffff;
9770         val &= ~DBGLARPTR_V(DBGLARPTR_M);
9771         val |= adap->params.tp.la_mask;
9772
9773         for (i = 0; i < TPLA_SIZE; i++) {
9774                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
9775                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
9776                 idx = (idx + 1) & DBGLARPTR_M;
9777         }
9778
9779         /* Wipe out last entry if it isn't valid */
9780         if (last_incomplete)
9781                 la_buf[TPLA_SIZE - 1] = ~0ULL;
9782
9783         if (cfg & DBGLAENABLE_F)                    /* restore running state */
9784                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9785                              cfg | adap->params.tp.la_mask);
9786 }
9787
9788 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9789  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9790  * state for more than the Warning Threshold then we'll issue a warning about
9791  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9792  * appears to be hung every Warning Repeat second till the situation clears.
9793  * If the situation clears, we'll note that as well.
9794  */
9795 #define SGE_IDMA_WARN_THRESH 1
9796 #define SGE_IDMA_WARN_REPEAT 300
9797
9798 /**
9799  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9800  *      @adapter: the adapter
9801  *      @idma: the adapter IDMA Monitor state
9802  *
9803  *      Initialize the state of an SGE Ingress DMA Monitor.
9804  */
9805 void t4_idma_monitor_init(struct adapter *adapter,
9806                           struct sge_idma_monitor_state *idma)
9807 {
9808         /* Initialize the state variables for detecting an SGE Ingress DMA
9809          * hang.  The SGE has internal counters which count up on each clock
9810          * tick whenever the SGE finds its Ingress DMA State Engines in the
9811          * same state they were on the previous clock tick.  The clock used is
9812          * the Core Clock so we have a limit on the maximum "time" they can
9813          * record; typically a very small number of seconds.  For instance,
9814          * with a 600MHz Core Clock, we can only count up to a bit more than
9815          * 7s.  So we'll synthesize a larger counter in order to not run the
9816          * risk of having the "timers" overflow and give us the flexibility to
9817          * maintain a Hung SGE State Machine of our own which operates across
9818          * a longer time frame.
9819          */
9820         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9821         idma->idma_stalled[0] = 0;
9822         idma->idma_stalled[1] = 0;
9823 }
9824
9825 /**
9826  *      t4_idma_monitor - monitor SGE Ingress DMA state
9827  *      @adapter: the adapter
9828  *      @idma: the adapter IDMA Monitor state
9829  *      @hz: number of ticks/second
9830  *      @ticks: number of ticks since the last IDMA Monitor call
9831  */
9832 void t4_idma_monitor(struct adapter *adapter,
9833                      struct sge_idma_monitor_state *idma,
9834                      int hz, int ticks)
9835 {
9836         int i, idma_same_state_cnt[2];
9837
9838          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9839           * are counters inside the SGE which count up on each clock when the
9840           * SGE finds its Ingress DMA State Engines in the same states they
9841           * were in the previous clock.  The counters will peg out at
9842           * 0xffffffff without wrapping around so once they pass the 1s
9843           * threshold they'll stay above that till the IDMA state changes.
9844           */
9845         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
9846         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
9847         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9848
9849         for (i = 0; i < 2; i++) {
9850                 u32 debug0, debug11;
9851
9852                 /* If the Ingress DMA Same State Counter ("timer") is less
9853                  * than 1s, then we can reset our synthesized Stall Timer and
9854                  * continue.  If we have previously emitted warnings about a
9855                  * potential stalled Ingress Queue, issue a note indicating
9856                  * that the Ingress Queue has resumed forward progress.
9857                  */
9858                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9859                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
9860                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
9861                                          "resumed after %d seconds\n",
9862                                          i, idma->idma_qid[i],
9863                                          idma->idma_stalled[i] / hz);
9864                         idma->idma_stalled[i] = 0;
9865                         continue;
9866                 }
9867
9868                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9869                  * domain.  The first time we get here it'll be because we
9870                  * passed the 1s Threshold; each additional time it'll be
9871                  * because the RX Timer Callback is being fired on its regular
9872                  * schedule.
9873                  *
9874                  * If the stall is below our Potential Hung Ingress Queue
9875                  * Warning Threshold, continue.
9876                  */
9877                 if (idma->idma_stalled[i] == 0) {
9878                         idma->idma_stalled[i] = hz;
9879                         idma->idma_warn[i] = 0;
9880                 } else {
9881                         idma->idma_stalled[i] += ticks;
9882                         idma->idma_warn[i] -= ticks;
9883                 }
9884
9885                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
9886                         continue;
9887
9888                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9889                  */
9890                 if (idma->idma_warn[i] > 0)
9891                         continue;
9892                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
9893
9894                 /* Read and save the SGE IDMA State and Queue ID information.
9895                  * We do this every time in case it changes across time ...
9896                  * can't be too careful ...
9897                  */
9898                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
9899                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9900                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9901
9902                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
9903                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
9904                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9905
9906                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
9907                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9908                          i, idma->idma_qid[i], idma->idma_state[i],
9909                          idma->idma_stalled[i] / hz,
9910                          debug0, debug11);
9911                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9912         }
9913 }
9914
9915 /**
9916  *      t4_load_cfg - download config file
9917  *      @adap: the adapter
9918  *      @cfg_data: the cfg text file to write
9919  *      @size: text file size
9920  *
9921  *      Write the supplied config text file to the card's serial flash.
9922  */
9923 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9924 {
9925         int ret, i, n, cfg_addr;
9926         unsigned int addr;
9927         unsigned int flash_cfg_start_sec;
9928         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9929
9930         cfg_addr = t4_flash_cfg_addr(adap);
9931         if (cfg_addr < 0)
9932                 return cfg_addr;
9933
9934         addr = cfg_addr;
9935         flash_cfg_start_sec = addr / SF_SEC_SIZE;
9936
9937         if (size > FLASH_CFG_MAX_SIZE) {
9938                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
9939                         FLASH_CFG_MAX_SIZE);
9940                 return -EFBIG;
9941         }
9942
9943         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
9944                          sf_sec_size);
9945         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9946                                      flash_cfg_start_sec + i - 1);
9947         /* If size == 0 then we're simply erasing the FLASH sectors associated
9948          * with the on-adapter Firmware Configuration File.
9949          */
9950         if (ret || size == 0)
9951                 goto out;
9952
9953         /* this will write to the flash up to SF_PAGE_SIZE at a time */
9954         for (i = 0; i < size; i += SF_PAGE_SIZE) {
9955                 if ((size - i) <  SF_PAGE_SIZE)
9956                         n = size - i;
9957                 else
9958                         n = SF_PAGE_SIZE;
9959                 ret = t4_write_flash(adap, addr, n, cfg_data);
9960                 if (ret)
9961                         goto out;
9962
9963                 addr += SF_PAGE_SIZE;
9964                 cfg_data += SF_PAGE_SIZE;
9965         }
9966
9967 out:
9968         if (ret)
9969                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
9970                         (size == 0 ? "clear" : "download"), ret);
9971         return ret;
9972 }
9973
9974 /**
9975  *      t4_set_vf_mac - Set MAC address for the specified VF
9976  *      @adapter: The adapter
9977  *      @vf: one of the VFs instantiated by the specified PF
9978  *      @naddr: the number of MAC addresses
9979  *      @addr: the MAC address(es) to be set to the specified VF
9980  */
9981 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
9982                       unsigned int naddr, u8 *addr)
9983 {
9984         struct fw_acl_mac_cmd cmd;
9985
9986         memset(&cmd, 0, sizeof(cmd));
9987         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
9988                                     FW_CMD_REQUEST_F |
9989                                     FW_CMD_WRITE_F |
9990                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
9991                                     FW_ACL_MAC_CMD_VFN_V(vf));
9992
9993         /* Note: Do not enable the ACL */
9994         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
9995         cmd.nmac = naddr;
9996
9997         switch (adapter->pf) {
9998         case 3:
9999                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10000                 break;
10001         case 2:
10002                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10003                 break;
10004         case 1:
10005                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10006                 break;
10007         case 0:
10008                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10009                 break;
10010         }
10011
10012         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10013 }
10014
10015 /**
10016  * t4_read_pace_tbl - read the pace table
10017  * @adap: the adapter
10018  * @pace_vals: holds the returned values
10019  *
10020  * Returns the values of TP's pace table in microseconds.
10021  */
10022 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10023 {
10024         unsigned int i, v;
10025
10026         for (i = 0; i < NTX_SCHED; i++) {
10027                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10028                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10029                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10030         }
10031 }
10032
10033 /**
10034  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10035  * @adap: the adapter
10036  * @sched: the scheduler index
10037  * @kbps: the byte rate in Kbps
10038  * @ipg: the interpacket delay in tenths of nanoseconds
10039  * @sleep_ok: if true we may sleep while awaiting command completion
10040  *
10041  * Return the current configuration of a HW Tx scheduler.
10042  */
10043 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10044                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10045 {
10046         unsigned int v, addr, bpt, cpt;
10047
10048         if (kbps) {
10049                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10050                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10051                 if (sched & 1)
10052                         v >>= 16;
10053                 bpt = (v >> 8) & 0xff;
10054                 cpt = v & 0xff;
10055                 if (!cpt) {
10056                         *kbps = 0;      /* scheduler disabled */
10057                 } else {
10058                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10059                         *kbps = (v * bpt) / 125;
10060                 }
10061         }
10062         if (ipg) {
10063                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10064                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10065                 if (sched & 1)
10066                         v >>= 16;
10067                 v &= 0xffff;
10068                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10069         }
10070 }
10071
10072 /* t4_sge_ctxt_rd - read an SGE context through FW
10073  * @adap: the adapter
10074  * @mbox: mailbox to use for the FW command
10075  * @cid: the context id
10076  * @ctype: the context type
10077  * @data: where to store the context data
10078  *
10079  * Issues a FW command through the given mailbox to read an SGE context.
10080  */
10081 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10082                    enum ctxt_type ctype, u32 *data)
10083 {
10084         struct fw_ldst_cmd c;
10085         int ret;
10086
10087         if (ctype == CTXT_FLM)
10088                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10089         else
10090                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10091
10092         memset(&c, 0, sizeof(c));
10093         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10094                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10095                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10096         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10097         c.u.idctxt.physid = cpu_to_be32(cid);
10098
10099         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10100         if (ret == 0) {
10101                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10102                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10103                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10104                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10105                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10106                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10107         }
10108         return ret;
10109 }
10110
10111 /**
10112  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10113  * @adap: the adapter
10114  * @cid: the context id
10115  * @ctype: the context type
10116  * @data: where to store the context data
10117  *
10118  * Reads an SGE context directly, bypassing FW.  This is only for
10119  * debugging when FW is unavailable.
10120  */
10121 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10122                       enum ctxt_type ctype, u32 *data)
10123 {
10124         int i, ret;
10125
10126         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10127         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10128         if (!ret)
10129                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10130                         *data++ = t4_read_reg(adap, i);
10131         return ret;
10132 }
10133
10134 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10135                     int rateunit, int ratemode, int channel, int class,
10136                     int minrate, int maxrate, int weight, int pktsize)
10137 {
10138         struct fw_sched_cmd cmd;
10139
10140         memset(&cmd, 0, sizeof(cmd));
10141         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10142                                       FW_CMD_REQUEST_F |
10143                                       FW_CMD_WRITE_F);
10144         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10145
10146         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10147         cmd.u.params.type = type;
10148         cmd.u.params.level = level;
10149         cmd.u.params.mode = mode;
10150         cmd.u.params.ch = channel;
10151         cmd.u.params.cl = class;
10152         cmd.u.params.unit = rateunit;
10153         cmd.u.params.rate = ratemode;
10154         cmd.u.params.min = cpu_to_be32(minrate);
10155         cmd.u.params.max = cpu_to_be32(maxrate);
10156         cmd.u.params.weight = cpu_to_be16(weight);
10157         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10158
10159         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10160                                NULL, 1);
10161 }
10162
10163 /**
10164  *      t4_i2c_rd - read I2C data from adapter
10165  *      @adap: the adapter
10166  *      @port: Port number if per-port device; <0 if not
10167  *      @devid: per-port device ID or absolute device ID
10168  *      @offset: byte offset into device I2C space
10169  *      @len: byte length of I2C space data
10170  *      @buf: buffer in which to return I2C data
10171  *
10172  *      Reads the I2C data from the indicated device and location.
10173  */
10174 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10175               unsigned int devid, unsigned int offset,
10176               unsigned int len, u8 *buf)
10177 {
10178         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10179         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10180         int ret = 0;
10181
10182         if (len > I2C_PAGE_SIZE)
10183                 return -EINVAL;
10184
10185         /* Dont allow reads that spans multiple pages */
10186         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10187                 return -EINVAL;
10188
10189         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10190         ldst_cmd.op_to_addrspace =
10191                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10192                             FW_CMD_REQUEST_F |
10193                             FW_CMD_READ_F |
10194                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10195         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10196         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10197         ldst_cmd.u.i2c.did = devid;
10198
10199         while (len > 0) {
10200                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10201
10202                 ldst_cmd.u.i2c.boffset = offset;
10203                 ldst_cmd.u.i2c.blen = i2c_len;
10204
10205                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10206                                  &ldst_rpl);
10207                 if (ret)
10208                         break;
10209
10210                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10211                 offset += i2c_len;
10212                 buf += i2c_len;
10213                 len -= i2c_len;
10214         }
10215
10216         return ret;
10217 }
10218
10219 /**
10220  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10221  *      @adapter: the adapter
10222  *      @mbox: mailbox to use for the FW command
10223  *      @vf: one of the VFs instantiated by the specified PF
10224  *      @vlan: The vlanid to be set
10225  */
10226 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10227                     u16 vlan)
10228 {
10229         struct fw_acl_vlan_cmd vlan_cmd;
10230         unsigned int enable;
10231
10232         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10233         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10234         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10235                                          FW_CMD_REQUEST_F |
10236                                          FW_CMD_WRITE_F |
10237                                          FW_CMD_EXEC_F |
10238                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10239                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10240         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10241         /* Drop all packets that donot match vlan id */
10242         vlan_cmd.dropnovlan_fm = (enable
10243                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10244                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10245         if (enable != 0) {
10246                 vlan_cmd.nvlan = 1;
10247                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10248         }
10249
10250         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10251 }