2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/delay.h>
38 #include "t4_values.h"
40 #include "t4fw_version.h"
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
61 u32 val = t4_read_reg(adapter, reg);
63 if (!!(val & mask) == polarity) {
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
89 * Sets a register field specified by the supplied mask to the
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
102 * t4_read_indirect - read indirectly addressed registers
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
110 * Reads registers that are accessed indirectly through an address/data
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
125 * t4_write_indirect - write indirectly addressed registers
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
161 if (is_t4(adap->params.chip))
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
176 * t4_report_fw_error - report firmware error
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
183 static void t4_report_fw_error(struct adapter *adap)
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
214 * Handle a FW assertion reported in a mailbox.
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
218 struct fw_debug_cmd asrt;
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229 * @adapter: the adapter
230 * @cmd: the Firmware Mailbox Command or Reply
231 * @size: command length in bytes
232 * @access: the time (ms) needed to access the Firmware Mailbox
233 * @execute: the time (ms) the command spent being executed
235 static void t4_record_mbox(struct adapter *adapter,
236 const __be64 *cmd, unsigned int size,
237 int access, int execute)
239 struct mbox_cmd_log *log = adapter->mbox_log;
240 struct mbox_cmd *entry;
243 entry = mbox_cmd_log_entry(log, log->cursor++);
244 if (log->cursor == log->size)
247 for (i = 0; i < size / 8; i++)
248 entry->cmd[i] = be64_to_cpu(cmd[i]);
249 while (i < MBOX_LEN / 8)
251 entry->timestamp = jiffies;
252 entry->seqno = log->seqno++;
253 entry->access = access;
254 entry->execute = execute;
258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
260 * @mbox: index of the mailbox to use
261 * @cmd: the command to write
262 * @size: command length in bytes
263 * @rpl: where to optionally store the reply
264 * @sleep_ok: if true we may sleep while awaiting command completion
265 * @timeout: time to wait for command to finish before timing out
267 * Sends the given command to FW through the selected mailbox and waits
268 * for the FW to execute the command. If @rpl is not %NULL it is used to
269 * store the FW's reply to the command. The command and its optional
270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
271 * to respond. @sleep_ok determines whether we may sleep while awaiting
272 * the response. If sleeping is allowed we use progressive backoff
275 * The return value is 0 on success or a negative errno on failure. A
276 * failure can happen either because we are not able to execute the
277 * command or FW executes it but signals an error. In the latter case
278 * the return value is the error code indicated by FW (negated).
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 int size, void *rpl, bool sleep_ok, int timeout)
283 static const int delay[] = {
284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
291 int i, ms, delay_idx, ret;
292 const __be64 *p = cmd;
293 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
294 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
295 __be64 cmd_rpl[MBOX_LEN / 8];
298 if ((size & 15) || size > MBOX_LEN)
302 * If the device is off-line, as in EEH, commands will time out.
303 * Fail them early so we don't waste time waiting.
305 if (adap->pdev->error_state != pci_channel_io_normal)
308 /* If we have a negative timeout, that implies that we can't sleep. */
314 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
315 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
316 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
318 if (v != MBOX_OWNER_DRV) {
319 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
320 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
324 /* Copy in the new mailbox command and send it on its way ... */
325 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
326 for (i = 0; i < size; i += 8)
327 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
329 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
330 t4_read_reg(adap, ctl_reg); /* flush write */
336 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
340 ms = delay[delay_idx]; /* last element may repeat */
341 if (delay_idx < ARRAY_SIZE(delay) - 1)
347 v = t4_read_reg(adap, ctl_reg);
348 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
349 if (!(v & MBMSGVALID_F)) {
350 t4_write_reg(adap, ctl_reg, 0);
354 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
355 res = be64_to_cpu(cmd_rpl[0]);
357 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
358 fw_asrt(adap, data_reg);
359 res = FW_CMD_RETVAL_V(EIO);
361 memcpy(rpl, cmd_rpl, size);
364 t4_write_reg(adap, ctl_reg, 0);
367 t4_record_mbox(adap, cmd_rpl,
368 MBOX_LEN, access, execute);
369 return -FW_CMD_RETVAL_G((int)res);
373 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
374 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
375 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
376 *(const u8 *)cmd, mbox);
377 t4_report_fw_error(adap);
381 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
382 void *rpl, bool sleep_ok)
384 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
388 static int t4_edc_err_read(struct adapter *adap, int idx)
390 u32 edc_ecc_err_addr_reg;
393 if (is_t4(adap->params.chip)) {
394 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
397 if (idx != 0 && idx != 1) {
398 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
402 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
403 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
406 "edc%d err addr 0x%x: 0x%x.\n",
407 idx, edc_ecc_err_addr_reg,
408 t4_read_reg(adap, edc_ecc_err_addr_reg));
410 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
412 (unsigned long long)t4_read_reg64(adap, rdata_reg),
413 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
414 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
415 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
416 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
417 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
418 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
419 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
420 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
426 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
428 * @win: PCI-E Memory Window to use
429 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
430 * @addr: address within indicated memory type
431 * @len: amount of memory to transfer
432 * @hbuf: host memory buffer
433 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
435 * Reads/writes an [almost] arbitrary memory region in the firmware: the
436 * firmware memory address and host buffer must be aligned on 32-bit
437 * boudaries; the length may be arbitrary. The memory is transferred as
438 * a raw byte sequence from/to the firmware's memory. If this memory
439 * contains data structures which contain multi-byte integers, it's the
440 * caller's responsibility to perform appropriate byte order conversions.
442 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
443 u32 len, void *hbuf, int dir)
445 u32 pos, offset, resid, memoffset;
446 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
449 /* Argument sanity checks ...
451 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
455 /* It's convenient to be able to handle lengths which aren't a
456 * multiple of 32-bits because we often end up transferring files to
457 * the firmware. So we'll handle that by normalizing the length here
458 * and then handling any residual transfer at the end.
463 /* Offset into the region of memory which is being accessed
466 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
467 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
469 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
470 if (mtype != MEM_MC1)
471 memoffset = (mtype * (edc_size * 1024 * 1024));
473 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
474 MA_EXT_MEMORY0_BAR_A));
475 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
478 /* Determine the PCIE_MEM_ACCESS_OFFSET */
479 addr = addr + memoffset;
481 /* Each PCI-E Memory Window is programmed with a window size -- or
482 * "aperture" -- which controls the granularity of its mapping onto
483 * adapter memory. We need to grab that aperture in order to know
484 * how to use the specified window. The window is also programmed
485 * with the base address of the Memory Window in BAR0's address
486 * space. For T4 this is an absolute PCI-E Bus Address. For T5
487 * the address is relative to BAR0.
489 mem_reg = t4_read_reg(adap,
490 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
492 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
493 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
494 if (is_t4(adap->params.chip))
495 mem_base -= adap->t4_bar0;
496 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
498 /* Calculate our initial PCI-E Memory Window Position and Offset into
501 pos = addr & ~(mem_aperture-1);
504 /* Set up initial PCI-E Memory Window to cover the start of our
505 * transfer. (Read it back to ensure that changes propagate before we
506 * attempt to use the new value.)
509 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
512 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
514 /* Transfer data to/from the adapter as long as there's an integral
515 * number of 32-bit transfers to complete.
517 * A note on Endianness issues:
519 * The "register" reads and writes below from/to the PCI-E Memory
520 * Window invoke the standard adapter Big-Endian to PCI-E Link
521 * Little-Endian "swizzel." As a result, if we have the following
522 * data in adapter memory:
524 * Memory: ... | b0 | b1 | b2 | b3 | ...
525 * Address: i+0 i+1 i+2 i+3
527 * Then a read of the adapter memory via the PCI-E Memory Window
532 * [ b3 | b2 | b1 | b0 ]
534 * If this value is stored into local memory on a Little-Endian system
535 * it will show up correctly in local memory as:
537 * ( ..., b0, b1, b2, b3, ... )
539 * But on a Big-Endian system, the store will show up in memory
540 * incorrectly swizzled as:
542 * ( ..., b3, b2, b1, b0, ... )
544 * So we need to account for this in the reads and writes to the
545 * PCI-E Memory Window below by undoing the register read/write
549 if (dir == T4_MEMORY_READ)
550 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
553 t4_write_reg(adap, mem_base + offset,
554 (__force u32)cpu_to_le32(*buf++));
555 offset += sizeof(__be32);
556 len -= sizeof(__be32);
558 /* If we've reached the end of our current window aperture,
559 * move the PCI-E Memory Window on to the next. Note that
560 * doing this here after "len" may be 0 allows us to set up
561 * the PCI-E Memory Window for a possible final residual
564 if (offset == mem_aperture) {
568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
576 /* If the original transfer had a length which wasn't a multiple of
577 * 32-bits, now's where we need to finish off the transfer of the
578 * residual amount. The PCI-E Memory Window has already been moved
579 * above (if necessary) to cover this final transfer.
589 if (dir == T4_MEMORY_READ) {
590 last.word = le32_to_cpu(
591 (__force __le32)t4_read_reg(adap,
593 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
594 bp[i] = last.byte[i];
597 for (i = resid; i < 4; i++)
599 t4_write_reg(adap, mem_base + offset,
600 (__force u32)cpu_to_le32(last.word));
607 /* Return the specified PCI-E Configuration Space register from our Physical
608 * Function. We try first via a Firmware LDST Command since we prefer to let
609 * the firmware own all of these registers, but if that fails we go for it
610 * directly ourselves.
612 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
614 u32 val, ldst_addrspace;
616 /* If fw_attach != 0, construct and send the Firmware LDST Command to
617 * retrieve the specified PCI-E Configuration Space register.
619 struct fw_ldst_cmd ldst_cmd;
622 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
623 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
624 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
628 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
629 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
630 ldst_cmd.u.pcie.ctrl_to_fn =
631 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
632 ldst_cmd.u.pcie.r = reg;
634 /* If the LDST Command succeeds, return the result, otherwise
635 * fall through to reading it directly ourselves ...
637 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
640 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
642 /* Read the desired Configuration Space register via the PCI-E
643 * Backdoor mechanism.
645 t4_hw_pci_read_cfg4(adap, reg, &val);
649 /* Get the window based on base passed to it.
650 * Window aperture is currently unhandled, but there is no use case for it
653 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
658 if (is_t4(adap->params.chip)) {
661 /* Truncation intentional: we only read the bottom 32-bits of
662 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
663 * mechanism to read BAR0 instead of using
664 * pci_resource_start() because we could be operating from
665 * within a Virtual Machine which is trapping our accesses to
666 * our Configuration Space and we need to set up the PCI-E
667 * Memory Window decoders with the actual addresses which will
668 * be coming across the PCI-E link.
670 bar0 = t4_read_pcie_cfg4(adap, pci_base);
672 adap->t4_bar0 = bar0;
674 ret = bar0 + memwin_base;
676 /* For T5, only relative offset inside the PCIe BAR is passed */
682 /* Get the default utility window (win0) used by everyone */
683 u32 t4_get_util_window(struct adapter *adap)
685 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
686 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
689 /* Set up memory window for accessing adapter memory ranges. (Read
690 * back MA register to ensure that changes propagate before we attempt
691 * to use the new values.)
693 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
696 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
697 memwin_base | BIR_V(0) |
698 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
700 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
704 * t4_get_regs_len - return the size of the chips register set
705 * @adapter: the adapter
707 * Returns the size of the chip's BAR0 register space.
709 unsigned int t4_get_regs_len(struct adapter *adapter)
711 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
713 switch (chip_version) {
715 return T4_REGMAP_SIZE;
719 return T5_REGMAP_SIZE;
722 dev_err(adapter->pdev_dev,
723 "Unsupported chip version %d\n", chip_version);
728 * t4_get_regs - read chip registers into provided buffer
730 * @buf: register buffer
731 * @buf_size: size (in bytes) of register buffer
733 * If the provided register buffer isn't large enough for the chip's
734 * full register range, the register dump will be truncated to the
735 * register buffer's size.
737 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
739 static const unsigned int t4_reg_ranges[] = {
1197 static const unsigned int t5_reg_ranges[] = {
1972 static const unsigned int t6_reg_ranges[] = {
2549 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2550 const unsigned int *reg_ranges;
2551 int reg_ranges_size, range;
2552 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2554 /* Select the right set of register ranges to dump depending on the
2555 * adapter chip type.
2557 switch (chip_version) {
2559 reg_ranges = t4_reg_ranges;
2560 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2564 reg_ranges = t5_reg_ranges;
2565 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2569 reg_ranges = t6_reg_ranges;
2570 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2574 dev_err(adap->pdev_dev,
2575 "Unsupported chip version %d\n", chip_version);
2579 /* Clear the register buffer and insert the appropriate register
2580 * values selected by the above register ranges.
2582 memset(buf, 0, buf_size);
2583 for (range = 0; range < reg_ranges_size; range += 2) {
2584 unsigned int reg = reg_ranges[range];
2585 unsigned int last_reg = reg_ranges[range + 1];
2586 u32 *bufp = (u32 *)((char *)buf + reg);
2588 /* Iterate across the register range filling in the register
2589 * buffer but don't write past the end of the register buffer.
2591 while (reg <= last_reg && bufp < buf_end) {
2592 *bufp++ = t4_read_reg(adap, reg);
2598 #define EEPROM_STAT_ADDR 0x7bfc
2599 #define VPD_SIZE 0x800
2600 #define VPD_BASE 0x400
2601 #define VPD_BASE_OLD 0
2602 #define VPD_LEN 1024
2603 #define CHELSIO_VPD_UNIQUE_ID 0x82
2606 * t4_seeprom_wp - enable/disable EEPROM write protection
2607 * @adapter: the adapter
2608 * @enable: whether to enable or disable write protection
2610 * Enables or disables write protection on the serial EEPROM.
2612 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2614 unsigned int v = enable ? 0xc : 0;
2615 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2616 return ret < 0 ? ret : 0;
2620 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2621 * @adapter: adapter to read
2622 * @p: where to store the parameters
2624 * Reads card parameters stored in VPD EEPROM.
2626 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2628 int i, ret = 0, addr;
2631 unsigned int vpdr_len, kw_offset, id_len;
2633 vpd = vmalloc(VPD_LEN);
2637 /* We have two VPD data structures stored in the adapter VPD area.
2638 * By default, Linux calculates the size of the VPD area by traversing
2639 * the first VPD area at offset 0x0, so we need to tell the OS what
2640 * our real VPD size is.
2642 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2646 /* Card information normally starts at VPD_BASE but early cards had
2649 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2653 /* The VPD shall have a unique identifier specified by the PCI SIG.
2654 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2655 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2656 * is expected to automatically put this entry at the
2657 * beginning of the VPD.
2659 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2661 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2665 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2666 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2671 id_len = pci_vpd_lrdt_size(vpd);
2672 if (id_len > ID_LEN)
2675 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2677 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2682 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2683 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2684 if (vpdr_len + kw_offset > VPD_LEN) {
2685 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2690 #define FIND_VPD_KW(var, name) do { \
2691 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2693 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2697 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2700 FIND_VPD_KW(i, "RV");
2701 for (csum = 0; i >= 0; i--)
2705 dev_err(adapter->pdev_dev,
2706 "corrupted VPD EEPROM, actual csum %u\n", csum);
2711 FIND_VPD_KW(ec, "EC");
2712 FIND_VPD_KW(sn, "SN");
2713 FIND_VPD_KW(pn, "PN");
2714 FIND_VPD_KW(na, "NA");
2717 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2719 memcpy(p->ec, vpd + ec, EC_LEN);
2721 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2722 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2724 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2725 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2727 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2728 strim((char *)p->na);
2736 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2737 * @adapter: adapter to read
2738 * @p: where to store the parameters
2740 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2741 * Clock. This can only be called after a connection to the firmware
2744 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2746 u32 cclk_param, cclk_val;
2749 /* Grab the raw VPD parameters.
2751 ret = t4_get_raw_vpd_params(adapter, p);
2755 /* Ask firmware for the Core Clock since it knows how to translate the
2756 * Reference Clock ('V2') VPD field into a Core Clock value ...
2758 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2759 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2760 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2761 1, &cclk_param, &cclk_val);
2770 /* serial flash and firmware constants */
2772 SF_ATTEMPTS = 10, /* max retries for SF operations */
2774 /* flash command opcodes */
2775 SF_PROG_PAGE = 2, /* program page */
2776 SF_WR_DISABLE = 4, /* disable writes */
2777 SF_RD_STATUS = 5, /* read status register */
2778 SF_WR_ENABLE = 6, /* enable writes */
2779 SF_RD_DATA_FAST = 0xb, /* read flash */
2780 SF_RD_ID = 0x9f, /* read ID */
2781 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2783 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2787 * sf1_read - read data from the serial flash
2788 * @adapter: the adapter
2789 * @byte_cnt: number of bytes to read
2790 * @cont: whether another operation will be chained
2791 * @lock: whether to lock SF for PL access only
2792 * @valp: where to store the read data
2794 * Reads up to 4 bytes of data from the serial flash. The location of
2795 * the read needs to be specified prior to calling this by issuing the
2796 * appropriate commands to the serial flash.
2798 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2799 int lock, u32 *valp)
2803 if (!byte_cnt || byte_cnt > 4)
2805 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2807 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2808 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2809 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2811 *valp = t4_read_reg(adapter, SF_DATA_A);
2816 * sf1_write - write data to the serial flash
2817 * @adapter: the adapter
2818 * @byte_cnt: number of bytes to write
2819 * @cont: whether another operation will be chained
2820 * @lock: whether to lock SF for PL access only
2821 * @val: value to write
2823 * Writes up to 4 bytes of data to the serial flash. The location of
2824 * the write needs to be specified prior to calling this by issuing the
2825 * appropriate commands to the serial flash.
2827 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2830 if (!byte_cnt || byte_cnt > 4)
2832 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2834 t4_write_reg(adapter, SF_DATA_A, val);
2835 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2836 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2837 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2841 * flash_wait_op - wait for a flash operation to complete
2842 * @adapter: the adapter
2843 * @attempts: max number of polls of the status register
2844 * @delay: delay between polls in ms
2846 * Wait for a flash operation to complete by polling the status register.
2848 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2854 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2855 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2859 if (--attempts == 0)
2867 * t4_read_flash - read words from serial flash
2868 * @adapter: the adapter
2869 * @addr: the start address for the read
2870 * @nwords: how many 32-bit words to read
2871 * @data: where to store the read data
2872 * @byte_oriented: whether to store data as bytes or as words
2874 * Read the specified number of 32-bit words from the serial flash.
2875 * If @byte_oriented is set the read data is stored as a byte array
2876 * (i.e., big-endian), otherwise as 32-bit words in the platform's
2877 * natural endianness.
2879 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2880 unsigned int nwords, u32 *data, int byte_oriented)
2884 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2887 addr = swab32(addr) | SF_RD_DATA_FAST;
2889 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2890 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2893 for ( ; nwords; nwords--, data++) {
2894 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2896 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2900 *data = (__force __u32)(cpu_to_be32(*data));
2906 * t4_write_flash - write up to a page of data to the serial flash
2907 * @adapter: the adapter
2908 * @addr: the start address to write
2909 * @n: length of data to write in bytes
2910 * @data: the data to write
2912 * Writes up to a page of data (256 bytes) to the serial flash starting
2913 * at the given address. All the data must be written to the same page.
2915 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2916 unsigned int n, const u8 *data)
2920 unsigned int i, c, left, val, offset = addr & 0xff;
2922 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2925 val = swab32(addr) | SF_PROG_PAGE;
2927 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2928 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2931 for (left = n; left; left -= c) {
2933 for (val = 0, i = 0; i < c; ++i)
2934 val = (val << 8) + *data++;
2936 ret = sf1_write(adapter, c, c != left, 1, val);
2940 ret = flash_wait_op(adapter, 8, 1);
2944 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2946 /* Read the page to verify the write succeeded */
2947 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2951 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2952 dev_err(adapter->pdev_dev,
2953 "failed to correctly write the flash page at %#x\n",
2960 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2965 * t4_get_fw_version - read the firmware version
2966 * @adapter: the adapter
2967 * @vers: where to place the version
2969 * Reads the FW version from flash.
2971 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2973 return t4_read_flash(adapter, FLASH_FW_START +
2974 offsetof(struct fw_hdr, fw_ver), 1,
2979 * t4_get_bs_version - read the firmware bootstrap version
2980 * @adapter: the adapter
2981 * @vers: where to place the version
2983 * Reads the FW Bootstrap version from flash.
2985 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2987 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2988 offsetof(struct fw_hdr, fw_ver), 1,
2993 * t4_get_tp_version - read the TP microcode version
2994 * @adapter: the adapter
2995 * @vers: where to place the version
2997 * Reads the TP microcode version from flash.
2999 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3001 return t4_read_flash(adapter, FLASH_FW_START +
3002 offsetof(struct fw_hdr, tp_microcode_ver),
3007 * t4_get_exprom_version - return the Expansion ROM version (if any)
3008 * @adapter: the adapter
3009 * @vers: where to place the version
3011 * Reads the Expansion ROM header from FLASH and returns the version
3012 * number (if present) through the @vers return value pointer. We return
3013 * this in the Firmware Version Format since it's convenient. Return
3014 * 0 on success, -ENOENT if no Expansion ROM is present.
3016 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3018 struct exprom_header {
3019 unsigned char hdr_arr[16]; /* must start with 0x55aa */
3020 unsigned char hdr_ver[4]; /* Expansion ROM version */
3022 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3026 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3027 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3032 hdr = (struct exprom_header *)exprom_header_buf;
3033 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3036 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3037 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3038 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3039 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3044 * t4_check_fw_version - check if the FW is supported with this driver
3045 * @adap: the adapter
3047 * Checks if an adapter's FW is compatible with the driver. Returns 0
3048 * if there's exact match, a negative error if the version could not be
3049 * read or there's a major version mismatch
3051 int t4_check_fw_version(struct adapter *adap)
3053 int i, ret, major, minor, micro;
3054 int exp_major, exp_minor, exp_micro;
3055 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3057 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3058 /* Try multiple times before returning error */
3059 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3060 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3065 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3066 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3067 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3069 switch (chip_version) {
3071 exp_major = T4FW_MIN_VERSION_MAJOR;
3072 exp_minor = T4FW_MIN_VERSION_MINOR;
3073 exp_micro = T4FW_MIN_VERSION_MICRO;
3076 exp_major = T5FW_MIN_VERSION_MAJOR;
3077 exp_minor = T5FW_MIN_VERSION_MINOR;
3078 exp_micro = T5FW_MIN_VERSION_MICRO;
3081 exp_major = T6FW_MIN_VERSION_MAJOR;
3082 exp_minor = T6FW_MIN_VERSION_MINOR;
3083 exp_micro = T6FW_MIN_VERSION_MICRO;
3086 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3091 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3092 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3093 dev_err(adap->pdev_dev,
3094 "Card has firmware version %u.%u.%u, minimum "
3095 "supported firmware is %u.%u.%u.\n", major, minor,
3096 micro, exp_major, exp_minor, exp_micro);
3102 /* Is the given firmware API compatible with the one the driver was compiled
3105 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3108 /* short circuit if it's the exact same firmware version */
3109 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3112 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3113 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3114 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3121 /* The firmware in the filesystem is usable, but should it be installed?
3122 * This routine explains itself in detail if it indicates the filesystem
3123 * firmware should be installed.
3125 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3130 if (!card_fw_usable) {
3131 reason = "incompatible or unusable";
3136 reason = "older than the version supported with this driver";
3143 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3144 "installing firmware %u.%u.%u.%u on card.\n",
3145 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3146 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3147 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3148 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3153 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3154 const u8 *fw_data, unsigned int fw_size,
3155 struct fw_hdr *card_fw, enum dev_state state,
3158 int ret, card_fw_usable, fs_fw_usable;
3159 const struct fw_hdr *fs_fw;
3160 const struct fw_hdr *drv_fw;
3162 drv_fw = &fw_info->fw_hdr;
3164 /* Read the header of the firmware on the card */
3165 ret = -t4_read_flash(adap, FLASH_FW_START,
3166 sizeof(*card_fw) / sizeof(uint32_t),
3167 (uint32_t *)card_fw, 1);
3169 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3171 dev_err(adap->pdev_dev,
3172 "Unable to read card's firmware header: %d\n", ret);
3176 if (fw_data != NULL) {
3177 fs_fw = (const void *)fw_data;
3178 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3184 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3185 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3186 /* Common case: the firmware on the card is an exact match and
3187 * the filesystem one is an exact match too, or the filesystem
3188 * one is absent/incompatible.
3190 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3191 should_install_fs_fw(adap, card_fw_usable,
3192 be32_to_cpu(fs_fw->fw_ver),
3193 be32_to_cpu(card_fw->fw_ver))) {
3194 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3197 dev_err(adap->pdev_dev,
3198 "failed to install firmware: %d\n", ret);
3202 /* Installed successfully, update the cached header too. */
3205 *reset = 0; /* already reset as part of load_fw */
3208 if (!card_fw_usable) {
3211 d = be32_to_cpu(drv_fw->fw_ver);
3212 c = be32_to_cpu(card_fw->fw_ver);
3213 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3215 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3217 "driver compiled with %d.%d.%d.%d, "
3218 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3220 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3221 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3222 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3223 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3224 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3225 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3230 /* We're using whatever's on the card and it's known to be good. */
3231 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3232 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3239 * t4_flash_erase_sectors - erase a range of flash sectors
3240 * @adapter: the adapter
3241 * @start: the first sector to erase
3242 * @end: the last sector to erase
3244 * Erases the sectors in the given inclusive range.
3246 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3250 if (end >= adapter->params.sf_nsec)
3253 while (start <= end) {
3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255 (ret = sf1_write(adapter, 4, 0, 1,
3256 SF_ERASE_SECTOR | (start << 8))) != 0 ||
3257 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3258 dev_err(adapter->pdev_dev,
3259 "erase of flash sector %d failed, error %d\n",
3265 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3270 * t4_flash_cfg_addr - return the address of the flash configuration file
3271 * @adapter: the adapter
3273 * Return the address within the flash where the Firmware Configuration
3276 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3278 if (adapter->params.sf_size == 0x100000)
3279 return FLASH_FPGA_CFG_START;
3281 return FLASH_CFG_START;
3284 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
3285 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3286 * and emit an error message for mismatched firmware to save our caller the
3289 static bool t4_fw_matches_chip(const struct adapter *adap,
3290 const struct fw_hdr *hdr)
3292 /* The expression below will return FALSE for any unsupported adapter
3293 * which will keep us "honest" in the future ...
3295 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3296 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3297 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3300 dev_err(adap->pdev_dev,
3301 "FW image (%d) is not suitable for this adapter (%d)\n",
3302 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3307 * t4_load_fw - download firmware
3308 * @adap: the adapter
3309 * @fw_data: the firmware image to write
3312 * Write the supplied firmware image to the card's serial flash.
3314 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3319 u8 first_page[SF_PAGE_SIZE];
3320 const __be32 *p = (const __be32 *)fw_data;
3321 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3322 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3323 unsigned int fw_img_start = adap->params.sf_fw_start;
3324 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3327 dev_err(adap->pdev_dev, "FW image has no data\n");
3331 dev_err(adap->pdev_dev,
3332 "FW image size not multiple of 512 bytes\n");
3335 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3336 dev_err(adap->pdev_dev,
3337 "FW image size differs from size in FW header\n");
3340 if (size > FW_MAX_SIZE) {
3341 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3345 if (!t4_fw_matches_chip(adap, hdr))
3348 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3349 csum += be32_to_cpu(p[i]);
3351 if (csum != 0xffffffff) {
3352 dev_err(adap->pdev_dev,
3353 "corrupted firmware image, checksum %#x\n", csum);
3357 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3358 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3363 * We write the correct version at the end so the driver can see a bad
3364 * version if the FW write fails. Start by writing a copy of the
3365 * first page with a bad version.
3367 memcpy(first_page, fw_data, SF_PAGE_SIZE);
3368 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3369 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3373 addr = fw_img_start;
3374 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3375 addr += SF_PAGE_SIZE;
3376 fw_data += SF_PAGE_SIZE;
3377 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3382 ret = t4_write_flash(adap,
3383 fw_img_start + offsetof(struct fw_hdr, fw_ver),
3384 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3387 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3390 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3395 * t4_phy_fw_ver - return current PHY firmware version
3396 * @adap: the adapter
3397 * @phy_fw_ver: return value buffer for PHY firmware version
3399 * Returns the current version of external PHY firmware on the
3402 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3407 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3408 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3409 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3410 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3411 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3420 * t4_load_phy_fw - download port PHY firmware
3421 * @adap: the adapter
3422 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3423 * @win_lock: the lock to use to guard the memory copy
3424 * @phy_fw_version: function to check PHY firmware versions
3425 * @phy_fw_data: the PHY firmware image to write
3426 * @phy_fw_size: image size
3428 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3429 * @phy_fw_version is supplied, then it will be used to determine if
3430 * it's necessary to perform the transfer by comparing the version
3431 * of any existing adapter PHY firmware with that of the passed in
3432 * PHY firmware image. If @win_lock is non-NULL then it will be used
3433 * around the call to t4_memory_rw() which transfers the PHY firmware
3436 * A negative error number will be returned if an error occurs. If
3437 * version number support is available and there's no need to upgrade
3438 * the firmware, 0 will be returned. If firmware is successfully
3439 * transferred to the adapter, 1 will be retured.
3441 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3442 * a result, a RESET of the adapter would cause that RAM to lose its
3443 * contents. Thus, loading PHY firmware on such adapters must happen
3444 * after any FW_RESET_CMDs ...
3446 int t4_load_phy_fw(struct adapter *adap,
3447 int win, spinlock_t *win_lock,
3448 int (*phy_fw_version)(const u8 *, size_t),
3449 const u8 *phy_fw_data, size_t phy_fw_size)
3451 unsigned long mtype = 0, maddr = 0;
3453 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3456 /* If we have version number support, then check to see if the adapter
3457 * already has up-to-date PHY firmware loaded.
3459 if (phy_fw_version) {
3460 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3461 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3465 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3466 CH_WARN(adap, "PHY Firmware already up-to-date, "
3467 "version %#x\n", cur_phy_fw_ver);
3472 /* Ask the firmware where it wants us to copy the PHY firmware image.
3473 * The size of the file requires a special version of the READ coommand
3474 * which will pass the file size via the values field in PARAMS_CMD and
3475 * retrieve the return value from firmware and place it in the same
3478 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3479 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3480 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3481 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3483 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3488 maddr = (val & 0xff) << 16;
3490 /* Copy the supplied PHY Firmware image to the adapter memory location
3491 * allocated by the adapter firmware.
3494 spin_lock_bh(win_lock);
3495 ret = t4_memory_rw(adap, win, mtype, maddr,
3496 phy_fw_size, (__be32 *)phy_fw_data,
3499 spin_unlock_bh(win_lock);
3503 /* Tell the firmware that the PHY firmware image has been written to
3504 * RAM and it can now start copying it over to the PHYs. The chip
3505 * firmware will RESET the affected PHYs as part of this operation
3506 * leaving them running the new PHY firmware image.
3508 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3509 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3510 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3511 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3512 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3513 ¶m, &val, 30000);
3515 /* If we have version number support, then check to see that the new
3516 * firmware got loaded properly.
3518 if (phy_fw_version) {
3519 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3523 if (cur_phy_fw_ver != new_phy_fw_vers) {
3524 CH_WARN(adap, "PHY Firmware did not update: "
3525 "version on adapter %#x, "
3526 "version flashed %#x\n",
3527 cur_phy_fw_ver, new_phy_fw_vers);
3536 * t4_fwcache - firmware cache operation
3537 * @adap: the adapter
3538 * @op : the operation (flush or flush and invalidate)
3540 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3542 struct fw_params_cmd c;
3544 memset(&c, 0, sizeof(c));
3546 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3547 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3548 FW_PARAMS_CMD_PFN_V(adap->pf) |
3549 FW_PARAMS_CMD_VFN_V(0));
3550 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3552 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3553 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3554 c.param[0].val = (__force __be32)op;
3556 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3559 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3560 unsigned int *pif_req_wrptr,
3561 unsigned int *pif_rsp_wrptr)
3564 u32 cfg, val, req, rsp;
3566 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3567 if (cfg & LADBGEN_F)
3568 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3570 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3571 req = POLADBGWRPTR_G(val);
3572 rsp = PILADBGWRPTR_G(val);
3574 *pif_req_wrptr = req;
3576 *pif_rsp_wrptr = rsp;
3578 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3579 for (j = 0; j < 6; j++) {
3580 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3581 PILADBGRDPTR_V(rsp));
3582 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3583 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3587 req = (req + 2) & POLADBGRDPTR_M;
3588 rsp = (rsp + 2) & PILADBGRDPTR_M;
3590 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3593 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3598 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3599 if (cfg & LADBGEN_F)
3600 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3602 for (i = 0; i < CIM_MALA_SIZE; i++) {
3603 for (j = 0; j < 5; j++) {
3605 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3606 PILADBGRDPTR_V(idx));
3607 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3608 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3611 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3614 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3618 for (i = 0; i < 8; i++) {
3619 u32 *p = la_buf + i;
3621 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3622 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3623 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3624 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3625 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3629 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3630 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3634 * t4_link_l1cfg - apply link configuration to MAC/PHY
3635 * @phy: the PHY to setup
3636 * @mac: the MAC to setup
3637 * @lc: the requested link configuration
3639 * Set up a port's MAC and PHY according to a desired link configuration.
3640 * - If the PHY can auto-negotiate first decide what to advertise, then
3641 * enable/disable auto-negotiation as desired, and reset.
3642 * - If the PHY does not auto-negotiate just reset it.
3643 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3644 * otherwise do it later based on the outcome of auto-negotiation.
3646 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3647 struct link_config *lc)
3649 struct fw_port_cmd c;
3650 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3653 if (lc->requested_fc & PAUSE_RX)
3654 fc |= FW_PORT_CAP_FC_RX;
3655 if (lc->requested_fc & PAUSE_TX)
3656 fc |= FW_PORT_CAP_FC_TX;
3658 memset(&c, 0, sizeof(c));
3659 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3660 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3661 FW_PORT_CMD_PORTID_V(port));
3663 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3666 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3667 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3669 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3670 } else if (lc->autoneg == AUTONEG_DISABLE) {
3671 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3672 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3674 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3676 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3680 * t4_restart_aneg - restart autonegotiation
3681 * @adap: the adapter
3682 * @mbox: mbox to use for the FW command
3683 * @port: the port id
3685 * Restarts autonegotiation for the selected port.
3687 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3689 struct fw_port_cmd c;
3691 memset(&c, 0, sizeof(c));
3692 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3693 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3694 FW_PORT_CMD_PORTID_V(port));
3696 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3698 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3699 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3702 typedef void (*int_handler_t)(struct adapter *adap);
3705 unsigned int mask; /* bits to check in interrupt status */
3706 const char *msg; /* message to print or NULL */
3707 short stat_idx; /* stat counter to increment or -1 */
3708 unsigned short fatal; /* whether the condition reported is fatal */
3709 int_handler_t int_handler; /* platform-specific int handler */
3713 * t4_handle_intr_status - table driven interrupt handler
3714 * @adapter: the adapter that generated the interrupt
3715 * @reg: the interrupt status register to process
3716 * @acts: table of interrupt actions
3718 * A table driven interrupt handler that applies a set of masks to an
3719 * interrupt status word and performs the corresponding actions if the
3720 * interrupts described by the mask have occurred. The actions include
3721 * optionally emitting a warning or alert message. The table is terminated
3722 * by an entry specifying mask 0. Returns the number of fatal interrupt
3725 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3726 const struct intr_info *acts)
3729 unsigned int mask = 0;
3730 unsigned int status = t4_read_reg(adapter, reg);
3732 for ( ; acts->mask; ++acts) {
3733 if (!(status & acts->mask))
3737 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3738 status & acts->mask);
3739 } else if (acts->msg && printk_ratelimit())
3740 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3741 status & acts->mask);
3742 if (acts->int_handler)
3743 acts->int_handler(adapter);
3747 if (status) /* clear processed interrupts */
3748 t4_write_reg(adapter, reg, status);
3753 * Interrupt handler for the PCIE module.
3755 static void pcie_intr_handler(struct adapter *adapter)
3757 static const struct intr_info sysbus_intr_info[] = {
3758 { RNPP_F, "RXNP array parity error", -1, 1 },
3759 { RPCP_F, "RXPC array parity error", -1, 1 },
3760 { RCIP_F, "RXCIF array parity error", -1, 1 },
3761 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3762 { RFTP_F, "RXFT array parity error", -1, 1 },
3765 static const struct intr_info pcie_port_intr_info[] = {
3766 { TPCP_F, "TXPC array parity error", -1, 1 },
3767 { TNPP_F, "TXNP array parity error", -1, 1 },
3768 { TFTP_F, "TXFT array parity error", -1, 1 },
3769 { TCAP_F, "TXCA array parity error", -1, 1 },
3770 { TCIP_F, "TXCIF array parity error", -1, 1 },
3771 { RCAP_F, "RXCA array parity error", -1, 1 },
3772 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3773 { RDPE_F, "Rx data parity error", -1, 1 },
3774 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3777 static const struct intr_info pcie_intr_info[] = {
3778 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3779 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3780 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3781 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3782 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3783 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3784 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3785 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3786 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3787 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3788 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3789 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3790 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3791 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3792 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3793 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3794 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3795 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3796 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3797 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3798 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3799 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3800 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3801 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3802 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3803 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3804 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3805 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3806 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3807 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3812 static struct intr_info t5_pcie_intr_info[] = {
3813 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3815 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3816 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3817 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3818 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3819 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3820 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3821 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3823 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3825 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3826 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3827 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3828 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3829 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3831 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3832 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3833 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3834 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3835 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3836 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3837 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3838 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3839 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3840 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3841 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3843 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3845 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3846 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3847 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3848 { READRSPERR_F, "Outbound read error", -1, 0 },
3854 if (is_t4(adapter->params.chip))
3855 fat = t4_handle_intr_status(adapter,
3856 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3858 t4_handle_intr_status(adapter,
3859 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3860 pcie_port_intr_info) +
3861 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3864 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3868 t4_fatal_err(adapter);
3872 * TP interrupt handler.
3874 static void tp_intr_handler(struct adapter *adapter)
3876 static const struct intr_info tp_intr_info[] = {
3877 { 0x3fffffff, "TP parity error", -1, 1 },
3878 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3882 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3883 t4_fatal_err(adapter);
3887 * SGE interrupt handler.
3889 static void sge_intr_handler(struct adapter *adapter)
3894 static const struct intr_info sge_intr_info[] = {
3895 { ERR_CPL_EXCEED_IQE_SIZE_F,
3896 "SGE received CPL exceeding IQE size", -1, 1 },
3897 { ERR_INVALID_CIDX_INC_F,
3898 "SGE GTS CIDX increment too large", -1, 0 },
3899 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3900 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3901 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3902 "SGE IQID > 1023 received CPL for FL", -1, 0 },
3903 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3905 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3907 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3909 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3911 { ERR_ING_CTXT_PRIO_F,
3912 "SGE too many priority ingress contexts", -1, 0 },
3913 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3914 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3918 static struct intr_info t4t5_sge_intr_info[] = {
3919 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3920 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3921 { ERR_EGR_CTXT_PRIO_F,
3922 "SGE too many priority egress contexts", -1, 0 },
3926 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3927 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3929 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3930 (unsigned long long)v);
3931 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3932 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3935 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3936 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3937 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3938 t4t5_sge_intr_info);
3940 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3941 if (err & ERROR_QID_VALID_F) {
3942 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3944 if (err & UNCAPTURED_ERROR_F)
3945 dev_err(adapter->pdev_dev,
3946 "SGE UNCAPTURED_ERROR set (clearing)\n");
3947 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3948 UNCAPTURED_ERROR_F);
3952 t4_fatal_err(adapter);
3955 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3956 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3957 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3958 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3961 * CIM interrupt handler.
3963 static void cim_intr_handler(struct adapter *adapter)
3965 static const struct intr_info cim_intr_info[] = {
3966 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3967 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3968 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3969 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3970 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3971 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3972 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3975 static const struct intr_info cim_upintr_info[] = {
3976 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3977 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3978 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3979 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3980 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3981 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3982 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3983 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3984 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3985 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3986 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3987 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3988 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3989 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3990 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3991 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3992 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3993 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3994 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3995 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3996 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3997 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3998 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3999 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4000 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4001 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4002 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4003 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4009 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4010 t4_report_fw_error(adapter);
4012 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4014 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4017 t4_fatal_err(adapter);
4021 * ULP RX interrupt handler.
4023 static void ulprx_intr_handler(struct adapter *adapter)
4025 static const struct intr_info ulprx_intr_info[] = {
4026 { 0x1800000, "ULPRX context error", -1, 1 },
4027 { 0x7fffff, "ULPRX parity error", -1, 1 },
4031 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4032 t4_fatal_err(adapter);
4036 * ULP TX interrupt handler.
4038 static void ulptx_intr_handler(struct adapter *adapter)
4040 static const struct intr_info ulptx_intr_info[] = {
4041 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4043 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4045 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4047 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4049 { 0xfffffff, "ULPTX parity error", -1, 1 },
4053 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4054 t4_fatal_err(adapter);
4058 * PM TX interrupt handler.
4060 static void pmtx_intr_handler(struct adapter *adapter)
4062 static const struct intr_info pmtx_intr_info[] = {
4063 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4064 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4065 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4066 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4067 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4068 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4069 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4071 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4072 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4076 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4077 t4_fatal_err(adapter);
4081 * PM RX interrupt handler.
4083 static void pmrx_intr_handler(struct adapter *adapter)
4085 static const struct intr_info pmrx_intr_info[] = {
4086 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4087 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4088 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4089 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4091 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4092 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4096 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4097 t4_fatal_err(adapter);
4101 * CPL switch interrupt handler.
4103 static void cplsw_intr_handler(struct adapter *adapter)
4105 static const struct intr_info cplsw_intr_info[] = {
4106 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4107 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4108 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4109 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4110 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4111 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4115 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4116 t4_fatal_err(adapter);
4120 * LE interrupt handler.
4122 static void le_intr_handler(struct adapter *adap)
4124 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4125 static const struct intr_info le_intr_info[] = {
4126 { LIPMISS_F, "LE LIP miss", -1, 0 },
4127 { LIP0_F, "LE 0 LIP error", -1, 0 },
4128 { PARITYERR_F, "LE parity error", -1, 1 },
4129 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4130 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4134 static struct intr_info t6_le_intr_info[] = {
4135 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4136 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4137 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4138 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4139 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4143 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4144 (chip <= CHELSIO_T5) ?
4145 le_intr_info : t6_le_intr_info))
4150 * MPS interrupt handler.
4152 static void mps_intr_handler(struct adapter *adapter)
4154 static const struct intr_info mps_rx_intr_info[] = {
4155 { 0xffffff, "MPS Rx parity error", -1, 1 },
4158 static const struct intr_info mps_tx_intr_info[] = {
4159 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4160 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4161 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4163 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4165 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4166 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4167 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4170 static const struct intr_info mps_trc_intr_info[] = {
4171 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4172 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4174 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4177 static const struct intr_info mps_stat_sram_intr_info[] = {
4178 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4181 static const struct intr_info mps_stat_tx_intr_info[] = {
4182 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4185 static const struct intr_info mps_stat_rx_intr_info[] = {
4186 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4189 static const struct intr_info mps_cls_intr_info[] = {
4190 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4191 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4192 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4198 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4200 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4202 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4203 mps_trc_intr_info) +
4204 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4205 mps_stat_sram_intr_info) +
4206 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4207 mps_stat_tx_intr_info) +
4208 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4209 mps_stat_rx_intr_info) +
4210 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4213 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4214 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
4216 t4_fatal_err(adapter);
4219 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4223 * EDC/MC interrupt handler.
4225 static void mem_intr_handler(struct adapter *adapter, int idx)
4227 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4229 unsigned int addr, cnt_addr, v;
4231 if (idx <= MEM_EDC1) {
4232 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4233 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4234 } else if (idx == MEM_MC) {
4235 if (is_t4(adapter->params.chip)) {
4236 addr = MC_INT_CAUSE_A;
4237 cnt_addr = MC_ECC_STATUS_A;
4239 addr = MC_P_INT_CAUSE_A;
4240 cnt_addr = MC_P_ECC_STATUS_A;
4243 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4244 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4247 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4248 if (v & PERR_INT_CAUSE_F)
4249 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4251 if (v & ECC_CE_INT_CAUSE_F) {
4252 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4254 t4_edc_err_read(adapter, idx);
4256 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4257 if (printk_ratelimit())
4258 dev_warn(adapter->pdev_dev,
4259 "%u %s correctable ECC data error%s\n",
4260 cnt, name[idx], cnt > 1 ? "s" : "");
4262 if (v & ECC_UE_INT_CAUSE_F)
4263 dev_alert(adapter->pdev_dev,
4264 "%s uncorrectable ECC data error\n", name[idx]);
4266 t4_write_reg(adapter, addr, v);
4267 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4268 t4_fatal_err(adapter);
4272 * MA interrupt handler.
4274 static void ma_intr_handler(struct adapter *adap)
4276 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4278 if (status & MEM_PERR_INT_CAUSE_F) {
4279 dev_alert(adap->pdev_dev,
4280 "MA parity error, parity status %#x\n",
4281 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4282 if (is_t5(adap->params.chip))
4283 dev_alert(adap->pdev_dev,
4284 "MA parity error, parity status %#x\n",
4286 MA_PARITY_ERROR_STATUS2_A));
4288 if (status & MEM_WRAP_INT_CAUSE_F) {
4289 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4290 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4291 "client %u to address %#x\n",
4292 MEM_WRAP_CLIENT_NUM_G(v),
4293 MEM_WRAP_ADDRESS_G(v) << 4);
4295 t4_write_reg(adap, MA_INT_CAUSE_A, status);
4300 * SMB interrupt handler.
4302 static void smb_intr_handler(struct adapter *adap)
4304 static const struct intr_info smb_intr_info[] = {
4305 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4306 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4307 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4311 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4316 * NC-SI interrupt handler.
4318 static void ncsi_intr_handler(struct adapter *adap)
4320 static const struct intr_info ncsi_intr_info[] = {
4321 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4322 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4323 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4324 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4328 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4333 * XGMAC interrupt handler.
4335 static void xgmac_intr_handler(struct adapter *adap, int port)
4337 u32 v, int_cause_reg;
4339 if (is_t4(adap->params.chip))
4340 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4342 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4344 v = t4_read_reg(adap, int_cause_reg);
4346 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4350 if (v & TXFIFO_PRTY_ERR_F)
4351 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4353 if (v & RXFIFO_PRTY_ERR_F)
4354 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4356 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4361 * PL interrupt handler.
4363 static void pl_intr_handler(struct adapter *adap)
4365 static const struct intr_info pl_intr_info[] = {
4366 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4367 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4371 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4375 #define PF_INTR_MASK (PFSW_F)
4376 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4377 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4378 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4381 * t4_slow_intr_handler - control path interrupt handler
4382 * @adapter: the adapter
4384 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4385 * The designation 'slow' is because it involves register reads, while
4386 * data interrupts typically don't involve any MMIOs.
4388 int t4_slow_intr_handler(struct adapter *adapter)
4390 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4392 if (!(cause & GLBL_INTR_MASK))
4395 cim_intr_handler(adapter);
4397 mps_intr_handler(adapter);
4399 ncsi_intr_handler(adapter);
4401 pl_intr_handler(adapter);
4403 smb_intr_handler(adapter);
4404 if (cause & XGMAC0_F)
4405 xgmac_intr_handler(adapter, 0);
4406 if (cause & XGMAC1_F)
4407 xgmac_intr_handler(adapter, 1);
4408 if (cause & XGMAC_KR0_F)
4409 xgmac_intr_handler(adapter, 2);
4410 if (cause & XGMAC_KR1_F)
4411 xgmac_intr_handler(adapter, 3);
4413 pcie_intr_handler(adapter);
4415 mem_intr_handler(adapter, MEM_MC);
4416 if (is_t5(adapter->params.chip) && (cause & MC1_F))
4417 mem_intr_handler(adapter, MEM_MC1);
4419 mem_intr_handler(adapter, MEM_EDC0);
4421 mem_intr_handler(adapter, MEM_EDC1);
4423 le_intr_handler(adapter);
4425 tp_intr_handler(adapter);
4427 ma_intr_handler(adapter);
4428 if (cause & PM_TX_F)
4429 pmtx_intr_handler(adapter);
4430 if (cause & PM_RX_F)
4431 pmrx_intr_handler(adapter);
4432 if (cause & ULP_RX_F)
4433 ulprx_intr_handler(adapter);
4434 if (cause & CPL_SWITCH_F)
4435 cplsw_intr_handler(adapter);
4437 sge_intr_handler(adapter);
4438 if (cause & ULP_TX_F)
4439 ulptx_intr_handler(adapter);
4441 /* Clear the interrupts just processed for which we are the master. */
4442 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4443 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4448 * t4_intr_enable - enable interrupts
4449 * @adapter: the adapter whose interrupts should be enabled
4451 * Enable PF-specific interrupts for the calling function and the top-level
4452 * interrupt concentrator for global interrupts. Interrupts are already
4453 * enabled at each module, here we just enable the roots of the interrupt
4456 * Note: this function should be called only when the driver manages
4457 * non PF-specific interrupts from the various HW modules. Only one PCI
4458 * function at a time should be doing this.
4460 void t4_intr_enable(struct adapter *adapter)
4463 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4464 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4465 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4467 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4468 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4469 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4470 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4471 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4472 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4473 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4474 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4475 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4476 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4477 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4481 * t4_intr_disable - disable interrupts
4482 * @adapter: the adapter whose interrupts should be disabled
4484 * Disable interrupts. We only disable the top-level interrupt
4485 * concentrators. The caller must be a PCI function managing global
4488 void t4_intr_disable(struct adapter *adapter)
4490 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4491 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4492 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4494 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4495 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4499 * t4_config_rss_range - configure a portion of the RSS mapping table
4500 * @adapter: the adapter
4501 * @mbox: mbox to use for the FW command
4502 * @viid: virtual interface whose RSS subtable is to be written
4503 * @start: start entry in the table to write
4504 * @n: how many table entries to write
4505 * @rspq: values for the response queue lookup table
4506 * @nrspq: number of values in @rspq
4508 * Programs the selected part of the VI's RSS mapping table with the
4509 * provided values. If @nrspq < @n the supplied values are used repeatedly
4510 * until the full table range is populated.
4512 * The caller must ensure the values in @rspq are in the range allowed for
4515 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4516 int start, int n, const u16 *rspq, unsigned int nrspq)
4519 const u16 *rsp = rspq;
4520 const u16 *rsp_end = rspq + nrspq;
4521 struct fw_rss_ind_tbl_cmd cmd;
4523 memset(&cmd, 0, sizeof(cmd));
4524 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4525 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4526 FW_RSS_IND_TBL_CMD_VIID_V(viid));
4527 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4529 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4531 int nq = min(n, 32);
4532 __be32 *qp = &cmd.iq0_to_iq2;
4534 cmd.niqid = cpu_to_be16(nq);
4535 cmd.startidx = cpu_to_be16(start);
4543 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4544 if (++rsp >= rsp_end)
4546 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4547 if (++rsp >= rsp_end)
4549 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4550 if (++rsp >= rsp_end)
4553 *qp++ = cpu_to_be32(v);
4557 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4565 * t4_config_glbl_rss - configure the global RSS mode
4566 * @adapter: the adapter
4567 * @mbox: mbox to use for the FW command
4568 * @mode: global RSS mode
4569 * @flags: mode-specific flags
4571 * Sets the global RSS mode.
4573 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4576 struct fw_rss_glb_config_cmd c;
4578 memset(&c, 0, sizeof(c));
4579 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4580 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4581 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4582 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4583 c.u.manual.mode_pkd =
4584 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4585 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4586 c.u.basicvirtual.mode_pkd =
4587 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4588 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4591 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4595 * t4_config_vi_rss - configure per VI RSS settings
4596 * @adapter: the adapter
4597 * @mbox: mbox to use for the FW command
4600 * @defq: id of the default RSS queue for the VI.
4602 * Configures VI-specific RSS properties.
4604 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4605 unsigned int flags, unsigned int defq)
4607 struct fw_rss_vi_config_cmd c;
4609 memset(&c, 0, sizeof(c));
4610 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4611 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4612 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4613 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4614 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4615 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4616 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4619 /* Read an RSS table row */
4620 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4622 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4623 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4628 * t4_read_rss - read the contents of the RSS mapping table
4629 * @adapter: the adapter
4630 * @map: holds the contents of the RSS mapping table
4632 * Reads the contents of the RSS hash->queue mapping table.
4634 int t4_read_rss(struct adapter *adapter, u16 *map)
4639 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4640 ret = rd_rss_row(adapter, i, &val);
4643 *map++ = LKPTBLQUEUE0_G(val);
4644 *map++ = LKPTBLQUEUE1_G(val);
4649 static unsigned int t4_use_ldst(struct adapter *adap)
4651 return (adap->flags & FW_OK) || !adap->use_bd;
4655 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4656 * @adap: the adapter
4657 * @vals: where the indirect register values are stored/written
4658 * @nregs: how many indirect registers to read/write
4659 * @start_idx: index of first indirect register to read/write
4660 * @rw: Read (1) or Write (0)
4662 * Access TP PIO registers through LDST
4664 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4665 unsigned int start_index, unsigned int rw)
4668 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4669 struct fw_ldst_cmd c;
4671 for (i = 0 ; i < nregs; i++) {
4672 memset(&c, 0, sizeof(c));
4673 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4675 (rw ? FW_CMD_READ_F :
4677 FW_LDST_CMD_ADDRSPACE_V(cmd));
4678 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4680 c.u.addrval.addr = cpu_to_be32(start_index + i);
4681 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4682 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4684 vals[i] = be32_to_cpu(c.u.addrval.val);
4689 * t4_read_rss_key - read the global RSS key
4690 * @adap: the adapter
4691 * @key: 10-entry array holding the 320-bit RSS key
4693 * Reads the global 320-bit RSS key.
4695 void t4_read_rss_key(struct adapter *adap, u32 *key)
4697 if (t4_use_ldst(adap))
4698 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4700 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4701 TP_RSS_SECRET_KEY0_A);
4705 * t4_write_rss_key - program one of the RSS keys
4706 * @adap: the adapter
4707 * @key: 10-entry array holding the 320-bit RSS key
4708 * @idx: which RSS key to write
4710 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4711 * 0..15 the corresponding entry in the RSS key table is written,
4712 * otherwise the global RSS key is written.
4714 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4716 u8 rss_key_addr_cnt = 16;
4717 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4719 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4720 * allows access to key addresses 16-63 by using KeyWrAddrX
4721 * as index[5:4](upper 2) into key table
4723 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4724 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4725 rss_key_addr_cnt = 32;
4727 if (t4_use_ldst(adap))
4728 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4730 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4731 TP_RSS_SECRET_KEY0_A);
4733 if (idx >= 0 && idx < rss_key_addr_cnt) {
4734 if (rss_key_addr_cnt > 16)
4735 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4736 KEYWRADDRX_V(idx >> 4) |
4737 T6_VFWRADDR_V(idx) | KEYWREN_F);
4739 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4740 KEYWRADDR_V(idx) | KEYWREN_F);
4745 * t4_read_rss_pf_config - read PF RSS Configuration Table
4746 * @adapter: the adapter
4747 * @index: the entry in the PF RSS table to read
4748 * @valp: where to store the returned value
4750 * Reads the PF RSS Configuration Table at the specified index and returns
4751 * the value found there.
4753 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4756 if (t4_use_ldst(adapter))
4757 t4_fw_tp_pio_rw(adapter, valp, 1,
4758 TP_RSS_PF0_CONFIG_A + index, 1);
4760 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4761 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4765 * t4_read_rss_vf_config - read VF RSS Configuration Table
4766 * @adapter: the adapter
4767 * @index: the entry in the VF RSS table to read
4768 * @vfl: where to store the returned VFL
4769 * @vfh: where to store the returned VFH
4771 * Reads the VF RSS Configuration Table at the specified index and returns
4772 * the (VFL, VFH) values found there.
4774 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4777 u32 vrt, mask, data;
4779 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4780 mask = VFWRADDR_V(VFWRADDR_M);
4781 data = VFWRADDR_V(index);
4783 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4784 data = T6_VFWRADDR_V(index);
4787 /* Request that the index'th VF Table values be read into VFL/VFH.
4789 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4790 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4791 vrt |= data | VFRDEN_F;
4792 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4794 /* Grab the VFL/VFH values ...
4796 if (t4_use_ldst(adapter)) {
4797 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4798 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4800 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4801 vfl, 1, TP_RSS_VFL_CONFIG_A);
4802 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4803 vfh, 1, TP_RSS_VFH_CONFIG_A);
4808 * t4_read_rss_pf_map - read PF RSS Map
4809 * @adapter: the adapter
4811 * Reads the PF RSS Map register and returns its value.
4813 u32 t4_read_rss_pf_map(struct adapter *adapter)
4817 if (t4_use_ldst(adapter))
4818 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4820 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4821 &pfmap, 1, TP_RSS_PF_MAP_A);
4826 * t4_read_rss_pf_mask - read PF RSS Mask
4827 * @adapter: the adapter
4829 * Reads the PF RSS Mask register and returns its value.
4831 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4835 if (t4_use_ldst(adapter))
4836 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4838 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4839 &pfmask, 1, TP_RSS_PF_MSK_A);
4844 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4845 * @adap: the adapter
4846 * @v4: holds the TCP/IP counter values
4847 * @v6: holds the TCP/IPv6 counter values
4849 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4850 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4852 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4853 struct tp_tcp_stats *v6)
4855 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4857 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4858 #define STAT(x) val[STAT_IDX(x)]
4859 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4862 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4863 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4864 v4->tcp_out_rsts = STAT(OUT_RST);
4865 v4->tcp_in_segs = STAT64(IN_SEG);
4866 v4->tcp_out_segs = STAT64(OUT_SEG);
4867 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4870 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4871 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4872 v6->tcp_out_rsts = STAT(OUT_RST);
4873 v6->tcp_in_segs = STAT64(IN_SEG);
4874 v6->tcp_out_segs = STAT64(OUT_SEG);
4875 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4883 * t4_tp_get_err_stats - read TP's error MIB counters
4884 * @adap: the adapter
4885 * @st: holds the counter values
4887 * Returns the values of TP's error counters.
4889 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4891 int nchan = adap->params.arch.nchan;
4893 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4894 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4895 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4896 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4897 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4898 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4899 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4900 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4901 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4902 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4903 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4904 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4905 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4906 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4907 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4908 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4910 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4911 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4915 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4916 * @adap: the adapter
4917 * @st: holds the counter values
4919 * Returns the values of TP's CPL counters.
4921 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4923 int nchan = adap->params.arch.nchan;
4925 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4926 nchan, TP_MIB_CPL_IN_REQ_0_A);
4927 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4928 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4933 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4934 * @adap: the adapter
4935 * @st: holds the counter values
4937 * Returns the values of TP's RDMA counters.
4939 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4941 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4942 2, TP_MIB_RQE_DFR_PKT_A);
4946 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4947 * @adap: the adapter
4948 * @idx: the port index
4949 * @st: holds the counter values
4951 * Returns the values of TP's FCoE counters for the selected port.
4953 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4954 struct tp_fcoe_stats *st)
4958 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4959 1, TP_MIB_FCOE_DDP_0_A + idx);
4960 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4961 1, TP_MIB_FCOE_DROP_0_A + idx);
4962 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4963 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4964 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4968 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4969 * @adap: the adapter
4970 * @st: holds the counter values
4972 * Returns the values of TP's counters for non-TCP directly-placed packets.
4974 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4978 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4980 st->frames = val[0];
4982 st->octets = ((u64)val[2] << 32) | val[3];
4986 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4987 * @adap: the adapter
4988 * @mtus: where to store the MTU values
4989 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4991 * Reads the HW path MTU table.
4993 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4998 for (i = 0; i < NMTUS; ++i) {
4999 t4_write_reg(adap, TP_MTU_TABLE_A,
5000 MTUINDEX_V(0xff) | MTUVALUE_V(i));
5001 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5002 mtus[i] = MTUVALUE_G(v);
5004 mtu_log[i] = MTUWIDTH_G(v);
5009 * t4_read_cong_tbl - reads the congestion control table
5010 * @adap: the adapter
5011 * @incr: where to store the alpha values
5013 * Reads the additive increments programmed into the HW congestion
5016 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5018 unsigned int mtu, w;
5020 for (mtu = 0; mtu < NMTUS; ++mtu)
5021 for (w = 0; w < NCCTRL_WIN; ++w) {
5022 t4_write_reg(adap, TP_CCTRL_TABLE_A,
5023 ROWINDEX_V(0xffff) | (mtu << 5) | w);
5024 incr[mtu][w] = (u16)t4_read_reg(adap,
5025 TP_CCTRL_TABLE_A) & 0x1fff;
5030 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5031 * @adap: the adapter
5032 * @addr: the indirect TP register address
5033 * @mask: specifies the field within the register to modify
5034 * @val: new value for the field
5036 * Sets a field of an indirect TP register to the given value.
5038 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5039 unsigned int mask, unsigned int val)
5041 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5042 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5043 t4_write_reg(adap, TP_PIO_DATA_A, val);
5047 * init_cong_ctrl - initialize congestion control parameters
5048 * @a: the alpha values for congestion control
5049 * @b: the beta values for congestion control
5051 * Initialize the congestion control parameters.
5053 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5055 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5080 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5083 b[13] = b[14] = b[15] = b[16] = 3;
5084 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5085 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5090 /* The minimum additive increment value for the congestion control table */
5091 #define CC_MIN_INCR 2U
5094 * t4_load_mtus - write the MTU and congestion control HW tables
5095 * @adap: the adapter
5096 * @mtus: the values for the MTU table
5097 * @alpha: the values for the congestion control alpha parameter
5098 * @beta: the values for the congestion control beta parameter
5100 * Write the HW MTU table with the supplied MTUs and the high-speed
5101 * congestion control table with the supplied alpha, beta, and MTUs.
5102 * We write the two tables together because the additive increments
5103 * depend on the MTUs.
5105 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5106 const unsigned short *alpha, const unsigned short *beta)
5108 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5109 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5110 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5111 28672, 40960, 57344, 81920, 114688, 163840, 229376
5116 for (i = 0; i < NMTUS; ++i) {
5117 unsigned int mtu = mtus[i];
5118 unsigned int log2 = fls(mtu);
5120 if (!(mtu & ((1 << log2) >> 2))) /* round */
5122 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5123 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5125 for (w = 0; w < NCCTRL_WIN; ++w) {
5128 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5131 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5132 (w << 16) | (beta[w] << 13) | inc);
5137 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5138 * clocks. The formula is
5140 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5142 * which is equivalent to
5144 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5146 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5148 u64 v = bytes256 * adap->params.vpd.cclk;
5150 return v * 62 + v / 2;
5154 * t4_get_chan_txrate - get the current per channel Tx rates
5155 * @adap: the adapter
5156 * @nic_rate: rates for NIC traffic
5157 * @ofld_rate: rates for offloaded traffic
5159 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5162 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5166 v = t4_read_reg(adap, TP_TX_TRATE_A);
5167 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5168 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5169 if (adap->params.arch.nchan == NCHAN) {
5170 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5171 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5174 v = t4_read_reg(adap, TP_TX_ORATE_A);
5175 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5176 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5177 if (adap->params.arch.nchan == NCHAN) {
5178 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5179 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5184 * t4_set_trace_filter - configure one of the tracing filters
5185 * @adap: the adapter
5186 * @tp: the desired trace filter parameters
5187 * @idx: which filter to configure
5188 * @enable: whether to enable or disable the filter
5190 * Configures one of the tracing filters available in HW. If @enable is
5191 * %0 @tp is not examined and may be %NULL. The user is responsible to
5192 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5194 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5195 int idx, int enable)
5197 int i, ofst = idx * 4;
5198 u32 data_reg, mask_reg, cfg;
5199 u32 multitrc = TRCMULTIFILTER_F;
5202 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5206 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5207 if (cfg & TRCMULTIFILTER_F) {
5208 /* If multiple tracers are enabled, then maximum
5209 * capture size is 2.5KB (FIFO size of a single channel)
5210 * minus 2 flits for CPL_TRACE_PKT header.
5212 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5215 /* If multiple tracers are disabled, to avoid deadlocks
5216 * maximum packet capture size of 9600 bytes is recommended.
5217 * Also in this mode, only trace0 can be enabled and running.
5220 if (tp->snap_len > 9600 || idx)
5224 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5225 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5226 tp->min_len > TFMINPKTSIZE_M)
5229 /* stop the tracer we'll be changing */
5230 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5232 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5233 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5234 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5236 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5237 t4_write_reg(adap, data_reg, tp->data[i]);
5238 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5240 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5241 TFCAPTUREMAX_V(tp->snap_len) |
5242 TFMINPKTSIZE_V(tp->min_len));
5243 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5244 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5245 (is_t4(adap->params.chip) ?
5246 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5247 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5248 T5_TFINVERTMATCH_V(tp->invert)));
5254 * t4_get_trace_filter - query one of the tracing filters
5255 * @adap: the adapter
5256 * @tp: the current trace filter parameters
5257 * @idx: which trace filter to query
5258 * @enabled: non-zero if the filter is enabled
5260 * Returns the current settings of one of the HW tracing filters.
5262 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5266 int i, ofst = idx * 4;
5267 u32 data_reg, mask_reg;
5269 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5270 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5272 if (is_t4(adap->params.chip)) {
5273 *enabled = !!(ctla & TFEN_F);
5274 tp->port = TFPORT_G(ctla);
5275 tp->invert = !!(ctla & TFINVERTMATCH_F);
5277 *enabled = !!(ctla & T5_TFEN_F);
5278 tp->port = T5_TFPORT_G(ctla);
5279 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5281 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5282 tp->min_len = TFMINPKTSIZE_G(ctlb);
5283 tp->skip_ofst = TFOFFSET_G(ctla);
5284 tp->skip_len = TFLENGTH_G(ctla);
5286 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5287 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5288 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5290 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5291 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5292 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5297 * t4_pmtx_get_stats - returns the HW stats from PMTX
5298 * @adap: the adapter
5299 * @cnt: where to store the count statistics
5300 * @cycles: where to store the cycle statistics
5302 * Returns performance statistics from PMTX.
5304 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5309 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5310 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5311 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5312 if (is_t4(adap->params.chip)) {
5313 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5315 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5316 PM_TX_DBG_DATA_A, data, 2,
5317 PM_TX_DBG_STAT_MSB_A);
5318 cycles[i] = (((u64)data[0] << 32) | data[1]);
5324 * t4_pmrx_get_stats - returns the HW stats from PMRX
5325 * @adap: the adapter
5326 * @cnt: where to store the count statistics
5327 * @cycles: where to store the cycle statistics
5329 * Returns performance statistics from PMRX.
5331 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5336 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5337 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5338 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5339 if (is_t4(adap->params.chip)) {
5340 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5342 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5343 PM_RX_DBG_DATA_A, data, 2,
5344 PM_RX_DBG_STAT_MSB_A);
5345 cycles[i] = (((u64)data[0] << 32) | data[1]);
5351 * t4_get_mps_bg_map - return the buffer groups associated with a port
5352 * @adap: the adapter
5353 * @idx: the port index
5355 * Returns a bitmap indicating which MPS buffer groups are associated
5356 * with the given port. Bit i is set if buffer group i is used by the
5359 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5361 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5364 return idx == 0 ? 0xf : 0;
5365 /* In T6 (which is a 2 port card),
5366 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5367 * For 2 port T4/T5 adapter,
5368 * port 0 is mapped to channel 0 and 1,
5369 * port 1 is mapped to channel 2 and 3.
5372 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5373 return idx < 2 ? (3 << (2 * idx)) : 0;
5378 * t4_get_port_type_description - return Port Type string description
5379 * @port_type: firmware Port Type enumeration
5381 const char *t4_get_port_type_description(enum fw_port_type port_type)
5383 static const char *const port_type_description[] = {
5402 if (port_type < ARRAY_SIZE(port_type_description))
5403 return port_type_description[port_type];
5408 * t4_get_port_stats_offset - collect port stats relative to a previous
5410 * @adap: The adapter
5412 * @stats: Current stats to fill
5413 * @offset: Previous stats snapshot
5415 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5416 struct port_stats *stats,
5417 struct port_stats *offset)
5422 t4_get_port_stats(adap, idx, stats);
5423 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5424 i < (sizeof(struct port_stats) / sizeof(u64));
5430 * t4_get_port_stats - collect port statistics
5431 * @adap: the adapter
5432 * @idx: the port index
5433 * @p: the stats structure to fill
5435 * Collect statistics related to the given port from HW.
5437 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5439 u32 bgmap = t4_get_mps_bg_map(adap, idx);
5441 #define GET_STAT(name) \
5442 t4_read_reg64(adap, \
5443 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5444 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5445 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5447 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5448 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5449 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5450 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5451 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5452 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5453 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5454 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5455 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5456 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5457 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5458 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5459 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5460 p->tx_drop = GET_STAT(TX_PORT_DROP);
5461 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5462 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5463 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5464 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5465 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5466 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5467 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5468 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5469 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5471 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5472 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5473 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5474 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5475 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5476 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5477 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5478 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5479 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5480 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5481 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5482 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5483 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5484 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5485 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5486 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5487 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5488 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5489 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5490 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5491 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5492 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5493 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5494 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5495 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5496 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5497 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5499 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5500 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5501 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5502 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5503 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5504 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5505 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5506 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5513 * t4_get_lb_stats - collect loopback port statistics
5514 * @adap: the adapter
5515 * @idx: the loopback port index
5516 * @p: the stats structure to fill
5518 * Return HW statistics for the given loopback port.
5520 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5522 u32 bgmap = t4_get_mps_bg_map(adap, idx);
5524 #define GET_STAT(name) \
5525 t4_read_reg64(adap, \
5526 (is_t4(adap->params.chip) ? \
5527 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5528 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5529 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5531 p->octets = GET_STAT(BYTES);
5532 p->frames = GET_STAT(FRAMES);
5533 p->bcast_frames = GET_STAT(BCAST);
5534 p->mcast_frames = GET_STAT(MCAST);
5535 p->ucast_frames = GET_STAT(UCAST);
5536 p->error_frames = GET_STAT(ERROR);
5538 p->frames_64 = GET_STAT(64B);
5539 p->frames_65_127 = GET_STAT(65B_127B);
5540 p->frames_128_255 = GET_STAT(128B_255B);
5541 p->frames_256_511 = GET_STAT(256B_511B);
5542 p->frames_512_1023 = GET_STAT(512B_1023B);
5543 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5544 p->frames_1519_max = GET_STAT(1519B_MAX);
5545 p->drop = GET_STAT(DROP_FRAMES);
5547 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5548 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5549 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5550 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5551 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5552 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5553 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5554 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5560 /* t4_mk_filtdelwr - create a delete filter WR
5561 * @ftid: the filter ID
5562 * @wr: the filter work request to populate
5563 * @qid: ingress queue to receive the delete notification
5565 * Creates a filter work request to delete the supplied filter. If @qid is
5566 * negative the delete notification is suppressed.
5568 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5570 memset(wr, 0, sizeof(*wr));
5571 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5572 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5573 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5574 FW_FILTER_WR_NOREPLY_V(qid < 0));
5575 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5577 wr->rx_chan_rx_rpl_iq =
5578 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5581 #define INIT_CMD(var, cmd, rd_wr) do { \
5582 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5583 FW_CMD_REQUEST_F | \
5584 FW_CMD_##rd_wr##_F); \
5585 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5588 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5592 struct fw_ldst_cmd c;
5594 memset(&c, 0, sizeof(c));
5595 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5596 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5600 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5601 c.u.addrval.addr = cpu_to_be32(addr);
5602 c.u.addrval.val = cpu_to_be32(val);
5604 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5608 * t4_mdio_rd - read a PHY register through MDIO
5609 * @adap: the adapter
5610 * @mbox: mailbox to use for the FW command
5611 * @phy_addr: the PHY address
5612 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5613 * @reg: the register to read
5614 * @valp: where to store the value
5616 * Issues a FW command through the given mailbox to read a PHY register.
5618 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5619 unsigned int mmd, unsigned int reg, u16 *valp)
5623 struct fw_ldst_cmd c;
5625 memset(&c, 0, sizeof(c));
5626 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5627 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5628 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5630 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5631 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5632 FW_LDST_CMD_MMD_V(mmd));
5633 c.u.mdio.raddr = cpu_to_be16(reg);
5635 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5637 *valp = be16_to_cpu(c.u.mdio.rval);
5642 * t4_mdio_wr - write a PHY register through MDIO
5643 * @adap: the adapter
5644 * @mbox: mailbox to use for the FW command
5645 * @phy_addr: the PHY address
5646 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5647 * @reg: the register to write
5648 * @valp: value to write
5650 * Issues a FW command through the given mailbox to write a PHY register.
5652 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5653 unsigned int mmd, unsigned int reg, u16 val)
5656 struct fw_ldst_cmd c;
5658 memset(&c, 0, sizeof(c));
5659 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5660 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5661 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5663 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5664 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5665 FW_LDST_CMD_MMD_V(mmd));
5666 c.u.mdio.raddr = cpu_to_be16(reg);
5667 c.u.mdio.rval = cpu_to_be16(val);
5669 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5673 * t4_sge_decode_idma_state - decode the idma state
5674 * @adap: the adapter
5675 * @state: the state idma is stuck in
5677 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5679 static const char * const t4_decode[] = {
5681 "IDMA_PUSH_MORE_CPL_FIFO",
5682 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5684 "IDMA_PHYSADDR_SEND_PCIEHDR",
5685 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5686 "IDMA_PHYSADDR_SEND_PAYLOAD",
5687 "IDMA_SEND_FIFO_TO_IMSG",
5688 "IDMA_FL_REQ_DATA_FL_PREP",
5689 "IDMA_FL_REQ_DATA_FL",
5691 "IDMA_FL_H_REQ_HEADER_FL",
5692 "IDMA_FL_H_SEND_PCIEHDR",
5693 "IDMA_FL_H_PUSH_CPL_FIFO",
5694 "IDMA_FL_H_SEND_CPL",
5695 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5696 "IDMA_FL_H_SEND_IP_HDR",
5697 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5698 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5699 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5700 "IDMA_FL_D_SEND_PCIEHDR",
5701 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5702 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5703 "IDMA_FL_SEND_PCIEHDR",
5704 "IDMA_FL_PUSH_CPL_FIFO",
5706 "IDMA_FL_SEND_PAYLOAD_FIRST",
5707 "IDMA_FL_SEND_PAYLOAD",
5708 "IDMA_FL_REQ_NEXT_DATA_FL",
5709 "IDMA_FL_SEND_NEXT_PCIEHDR",
5710 "IDMA_FL_SEND_PADDING",
5711 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5712 "IDMA_FL_SEND_FIFO_TO_IMSG",
5713 "IDMA_FL_REQ_DATAFL_DONE",
5714 "IDMA_FL_REQ_HEADERFL_DONE",
5716 static const char * const t5_decode[] = {
5719 "IDMA_PUSH_MORE_CPL_FIFO",
5720 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5721 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5722 "IDMA_PHYSADDR_SEND_PCIEHDR",
5723 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5724 "IDMA_PHYSADDR_SEND_PAYLOAD",
5725 "IDMA_SEND_FIFO_TO_IMSG",
5726 "IDMA_FL_REQ_DATA_FL",
5728 "IDMA_FL_DROP_SEND_INC",
5729 "IDMA_FL_H_REQ_HEADER_FL",
5730 "IDMA_FL_H_SEND_PCIEHDR",
5731 "IDMA_FL_H_PUSH_CPL_FIFO",
5732 "IDMA_FL_H_SEND_CPL",
5733 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5734 "IDMA_FL_H_SEND_IP_HDR",
5735 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5736 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5737 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5738 "IDMA_FL_D_SEND_PCIEHDR",
5739 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5740 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5741 "IDMA_FL_SEND_PCIEHDR",
5742 "IDMA_FL_PUSH_CPL_FIFO",
5744 "IDMA_FL_SEND_PAYLOAD_FIRST",
5745 "IDMA_FL_SEND_PAYLOAD",
5746 "IDMA_FL_REQ_NEXT_DATA_FL",
5747 "IDMA_FL_SEND_NEXT_PCIEHDR",
5748 "IDMA_FL_SEND_PADDING",
5749 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5751 static const char * const t6_decode[] = {
5753 "IDMA_PUSH_MORE_CPL_FIFO",
5754 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5755 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5756 "IDMA_PHYSADDR_SEND_PCIEHDR",
5757 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5758 "IDMA_PHYSADDR_SEND_PAYLOAD",
5759 "IDMA_FL_REQ_DATA_FL",
5761 "IDMA_FL_DROP_SEND_INC",
5762 "IDMA_FL_H_REQ_HEADER_FL",
5763 "IDMA_FL_H_SEND_PCIEHDR",
5764 "IDMA_FL_H_PUSH_CPL_FIFO",
5765 "IDMA_FL_H_SEND_CPL",
5766 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5767 "IDMA_FL_H_SEND_IP_HDR",
5768 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5769 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5770 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5771 "IDMA_FL_D_SEND_PCIEHDR",
5772 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5773 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5774 "IDMA_FL_SEND_PCIEHDR",
5775 "IDMA_FL_PUSH_CPL_FIFO",
5777 "IDMA_FL_SEND_PAYLOAD_FIRST",
5778 "IDMA_FL_SEND_PAYLOAD",
5779 "IDMA_FL_REQ_NEXT_DATA_FL",
5780 "IDMA_FL_SEND_NEXT_PCIEHDR",
5781 "IDMA_FL_SEND_PADDING",
5782 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5784 static const u32 sge_regs[] = {
5785 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5786 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5787 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5789 const char **sge_idma_decode;
5790 int sge_idma_decode_nstates;
5792 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5794 /* Select the right set of decode strings to dump depending on the
5795 * adapter chip type.
5797 switch (chip_version) {
5799 sge_idma_decode = (const char **)t4_decode;
5800 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5804 sge_idma_decode = (const char **)t5_decode;
5805 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5809 sge_idma_decode = (const char **)t6_decode;
5810 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5814 dev_err(adapter->pdev_dev,
5815 "Unsupported chip version %d\n", chip_version);
5819 if (is_t4(adapter->params.chip)) {
5820 sge_idma_decode = (const char **)t4_decode;
5821 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5823 sge_idma_decode = (const char **)t5_decode;
5824 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5827 if (state < sge_idma_decode_nstates)
5828 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5830 CH_WARN(adapter, "idma state %d unknown\n", state);
5832 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5833 CH_WARN(adapter, "SGE register %#x value %#x\n",
5834 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5838 * t4_sge_ctxt_flush - flush the SGE context cache
5839 * @adap: the adapter
5840 * @mbox: mailbox to use for the FW command
5842 * Issues a FW command through the given mailbox to flush the
5843 * SGE context cache.
5845 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5849 struct fw_ldst_cmd c;
5851 memset(&c, 0, sizeof(c));
5852 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5853 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5854 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5856 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5857 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5859 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5864 * t4_fw_hello - establish communication with FW
5865 * @adap: the adapter
5866 * @mbox: mailbox to use for the FW command
5867 * @evt_mbox: mailbox to receive async FW events
5868 * @master: specifies the caller's willingness to be the device master
5869 * @state: returns the current device state (if non-NULL)
5871 * Issues a command to establish communication with FW. Returns either
5872 * an error (negative integer) or the mailbox of the Master PF.
5874 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5875 enum dev_master master, enum dev_state *state)
5878 struct fw_hello_cmd c;
5880 unsigned int master_mbox;
5881 int retries = FW_CMD_HELLO_RETRIES;
5884 memset(&c, 0, sizeof(c));
5885 INIT_CMD(c, HELLO, WRITE);
5886 c.err_to_clearinit = cpu_to_be32(
5887 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5888 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5889 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5890 mbox : FW_HELLO_CMD_MBMASTER_M) |
5891 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5892 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5893 FW_HELLO_CMD_CLEARINIT_F);
5896 * Issue the HELLO command to the firmware. If it's not successful
5897 * but indicates that we got a "busy" or "timeout" condition, retry
5898 * the HELLO until we exhaust our retry limit. If we do exceed our
5899 * retry limit, check to see if the firmware left us any error
5900 * information and report that if so.
5902 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5904 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5906 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5907 t4_report_fw_error(adap);
5911 v = be32_to_cpu(c.err_to_clearinit);
5912 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5914 if (v & FW_HELLO_CMD_ERR_F)
5915 *state = DEV_STATE_ERR;
5916 else if (v & FW_HELLO_CMD_INIT_F)
5917 *state = DEV_STATE_INIT;
5919 *state = DEV_STATE_UNINIT;
5923 * If we're not the Master PF then we need to wait around for the
5924 * Master PF Driver to finish setting up the adapter.
5926 * Note that we also do this wait if we're a non-Master-capable PF and
5927 * there is no current Master PF; a Master PF may show up momentarily
5928 * and we wouldn't want to fail pointlessly. (This can happen when an
5929 * OS loads lots of different drivers rapidly at the same time). In
5930 * this case, the Master PF returned by the firmware will be
5931 * PCIE_FW_MASTER_M so the test below will work ...
5933 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5934 master_mbox != mbox) {
5935 int waiting = FW_CMD_HELLO_TIMEOUT;
5938 * Wait for the firmware to either indicate an error or
5939 * initialized state. If we see either of these we bail out
5940 * and report the issue to the caller. If we exhaust the
5941 * "hello timeout" and we haven't exhausted our retries, try
5942 * again. Otherwise bail with a timeout error.
5951 * If neither Error nor Initialialized are indicated
5952 * by the firmware keep waiting till we exaust our
5953 * timeout ... and then retry if we haven't exhausted
5956 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5957 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5968 * We either have an Error or Initialized condition
5969 * report errors preferentially.
5972 if (pcie_fw & PCIE_FW_ERR_F)
5973 *state = DEV_STATE_ERR;
5974 else if (pcie_fw & PCIE_FW_INIT_F)
5975 *state = DEV_STATE_INIT;
5979 * If we arrived before a Master PF was selected and
5980 * there's not a valid Master PF, grab its identity
5983 if (master_mbox == PCIE_FW_MASTER_M &&
5984 (pcie_fw & PCIE_FW_MASTER_VLD_F))
5985 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5994 * t4_fw_bye - end communication with FW
5995 * @adap: the adapter
5996 * @mbox: mailbox to use for the FW command
5998 * Issues a command to terminate communication with FW.
6000 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6002 struct fw_bye_cmd c;
6004 memset(&c, 0, sizeof(c));
6005 INIT_CMD(c, BYE, WRITE);
6006 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6010 * t4_init_cmd - ask FW to initialize the device
6011 * @adap: the adapter
6012 * @mbox: mailbox to use for the FW command
6014 * Issues a command to FW to partially initialize the device. This
6015 * performs initialization that generally doesn't depend on user input.
6017 int t4_early_init(struct adapter *adap, unsigned int mbox)
6019 struct fw_initialize_cmd c;
6021 memset(&c, 0, sizeof(c));
6022 INIT_CMD(c, INITIALIZE, WRITE);
6023 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6027 * t4_fw_reset - issue a reset to FW
6028 * @adap: the adapter
6029 * @mbox: mailbox to use for the FW command
6030 * @reset: specifies the type of reset to perform
6032 * Issues a reset command of the specified type to FW.
6034 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6036 struct fw_reset_cmd c;
6038 memset(&c, 0, sizeof(c));
6039 INIT_CMD(c, RESET, WRITE);
6040 c.val = cpu_to_be32(reset);
6041 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6045 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6046 * @adap: the adapter
6047 * @mbox: mailbox to use for the FW RESET command (if desired)
6048 * @force: force uP into RESET even if FW RESET command fails
6050 * Issues a RESET command to firmware (if desired) with a HALT indication
6051 * and then puts the microprocessor into RESET state. The RESET command
6052 * will only be issued if a legitimate mailbox is provided (mbox <=
6053 * PCIE_FW_MASTER_M).
6055 * This is generally used in order for the host to safely manipulate the
6056 * adapter without fear of conflicting with whatever the firmware might
6057 * be doing. The only way out of this state is to RESTART the firmware
6060 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6065 * If a legitimate mailbox is provided, issue a RESET command
6066 * with a HALT indication.
6068 if (mbox <= PCIE_FW_MASTER_M) {
6069 struct fw_reset_cmd c;
6071 memset(&c, 0, sizeof(c));
6072 INIT_CMD(c, RESET, WRITE);
6073 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6074 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6075 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6079 * Normally we won't complete the operation if the firmware RESET
6080 * command fails but if our caller insists we'll go ahead and put the
6081 * uP into RESET. This can be useful if the firmware is hung or even
6082 * missing ... We'll have to take the risk of putting the uP into
6083 * RESET without the cooperation of firmware in that case.
6085 * We also force the firmware's HALT flag to be on in case we bypassed
6086 * the firmware RESET command above or we're dealing with old firmware
6087 * which doesn't have the HALT capability. This will serve as a flag
6088 * for the incoming firmware to know that it's coming out of a HALT
6089 * rather than a RESET ... if it's new enough to understand that ...
6091 if (ret == 0 || force) {
6092 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6093 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6098 * And we always return the result of the firmware RESET command
6099 * even when we force the uP into RESET ...
6105 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6106 * @adap: the adapter
6107 * @reset: if we want to do a RESET to restart things
6109 * Restart firmware previously halted by t4_fw_halt(). On successful
6110 * return the previous PF Master remains as the new PF Master and there
6111 * is no need to issue a new HELLO command, etc.
6113 * We do this in two ways:
6115 * 1. If we're dealing with newer firmware we'll simply want to take
6116 * the chip's microprocessor out of RESET. This will cause the
6117 * firmware to start up from its start vector. And then we'll loop
6118 * until the firmware indicates it's started again (PCIE_FW.HALT
6119 * reset to 0) or we timeout.
6121 * 2. If we're dealing with older firmware then we'll need to RESET
6122 * the chip since older firmware won't recognize the PCIE_FW.HALT
6123 * flag and automatically RESET itself on startup.
6125 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6129 * Since we're directing the RESET instead of the firmware
6130 * doing it automatically, we need to clear the PCIE_FW.HALT
6133 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6136 * If we've been given a valid mailbox, first try to get the
6137 * firmware to do the RESET. If that works, great and we can
6138 * return success. Otherwise, if we haven't been given a
6139 * valid mailbox or the RESET command failed, fall back to
6140 * hitting the chip with a hammer.
6142 if (mbox <= PCIE_FW_MASTER_M) {
6143 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6145 if (t4_fw_reset(adap, mbox,
6146 PIORST_F | PIORSTMODE_F) == 0)
6150 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6155 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6156 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6157 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6168 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6169 * @adap: the adapter
6170 * @mbox: mailbox to use for the FW RESET command (if desired)
6171 * @fw_data: the firmware image to write
6173 * @force: force upgrade even if firmware doesn't cooperate
6175 * Perform all of the steps necessary for upgrading an adapter's
6176 * firmware image. Normally this requires the cooperation of the
6177 * existing firmware in order to halt all existing activities
6178 * but if an invalid mailbox token is passed in we skip that step
6179 * (though we'll still put the adapter microprocessor into RESET in
6182 * On successful return the new firmware will have been loaded and
6183 * the adapter will have been fully RESET losing all previous setup
6184 * state. On unsuccessful return the adapter may be completely hosed ...
6185 * positive errno indicates that the adapter is ~probably~ intact, a
6186 * negative errno indicates that things are looking bad ...
6188 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6189 const u8 *fw_data, unsigned int size, int force)
6191 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6194 if (!t4_fw_matches_chip(adap, fw_hdr))
6197 ret = t4_fw_halt(adap, mbox, force);
6198 if (ret < 0 && !force)
6201 ret = t4_load_fw(adap, fw_data, size);
6206 * Older versions of the firmware don't understand the new
6207 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6208 * restart. So for newly loaded older firmware we'll have to do the
6209 * RESET for it so it starts up on a clean slate. We can tell if
6210 * the newly loaded firmware will handle this right by checking
6211 * its header flags to see if it advertises the capability.
6213 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6214 return t4_fw_restart(adap, mbox, reset);
6218 * t4_fl_pkt_align - return the fl packet alignment
6219 * @adap: the adapter
6221 * T4 has a single field to specify the packing and padding boundary.
6222 * T5 onwards has separate fields for this and hence the alignment for
6223 * next packet offset is maximum of these two.
6226 int t4_fl_pkt_align(struct adapter *adap)
6228 u32 sge_control, sge_control2;
6229 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6231 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6233 /* T4 uses a single control field to specify both the PCIe Padding and
6234 * Packing Boundary. T5 introduced the ability to specify these
6235 * separately. The actual Ingress Packet Data alignment boundary
6236 * within Packed Buffer Mode is the maximum of these two
6237 * specifications. (Note that it makes no real practical sense to
6238 * have the Pading Boudary be larger than the Packing Boundary but you
6239 * could set the chip up that way and, in fact, legacy T4 code would
6240 * end doing this because it would initialize the Padding Boundary and
6241 * leave the Packing Boundary initialized to 0 (16 bytes).)
6242 * Padding Boundary values in T6 starts from 8B,
6243 * where as it is 32B for T4 and T5.
6245 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6246 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6248 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6250 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6252 fl_align = ingpadboundary;
6253 if (!is_t4(adap->params.chip)) {
6254 /* T5 has a weird interpretation of one of the PCIe Packing
6255 * Boundary values. No idea why ...
6257 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6258 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6259 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6260 ingpackboundary = 16;
6262 ingpackboundary = 1 << (ingpackboundary +
6263 INGPACKBOUNDARY_SHIFT_X);
6265 fl_align = max(ingpadboundary, ingpackboundary);
6271 * t4_fixup_host_params - fix up host-dependent parameters
6272 * @adap: the adapter
6273 * @page_size: the host's Base Page Size
6274 * @cache_line_size: the host's Cache Line Size
6276 * Various registers in T4 contain values which are dependent on the
6277 * host's Base Page and Cache Line Sizes. This function will fix all of
6278 * those registers with the appropriate values as passed in ...
6280 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6281 unsigned int cache_line_size)
6283 unsigned int page_shift = fls(page_size) - 1;
6284 unsigned int sge_hps = page_shift - 10;
6285 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6286 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6287 unsigned int fl_align_log = fls(fl_align) - 1;
6288 unsigned int ingpad;
6290 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6291 HOSTPAGESIZEPF0_V(sge_hps) |
6292 HOSTPAGESIZEPF1_V(sge_hps) |
6293 HOSTPAGESIZEPF2_V(sge_hps) |
6294 HOSTPAGESIZEPF3_V(sge_hps) |
6295 HOSTPAGESIZEPF4_V(sge_hps) |
6296 HOSTPAGESIZEPF5_V(sge_hps) |
6297 HOSTPAGESIZEPF6_V(sge_hps) |
6298 HOSTPAGESIZEPF7_V(sge_hps));
6300 if (is_t4(adap->params.chip)) {
6301 t4_set_reg_field(adap, SGE_CONTROL_A,
6302 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6303 EGRSTATUSPAGESIZE_F,
6304 INGPADBOUNDARY_V(fl_align_log -
6305 INGPADBOUNDARY_SHIFT_X) |
6306 EGRSTATUSPAGESIZE_V(stat_len != 64));
6308 /* T5 introduced the separation of the Free List Padding and
6309 * Packing Boundaries. Thus, we can select a smaller Padding
6310 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6311 * Bandwidth, and use a Packing Boundary which is large enough
6312 * to avoid false sharing between CPUs, etc.
6314 * For the PCI Link, the smaller the Padding Boundary the
6315 * better. For the Memory Controller, a smaller Padding
6316 * Boundary is better until we cross under the Memory Line
6317 * Size (the minimum unit of transfer to/from Memory). If we
6318 * have a Padding Boundary which is smaller than the Memory
6319 * Line Size, that'll involve a Read-Modify-Write cycle on the
6320 * Memory Controller which is never good. For T5 the smallest
6321 * Padding Boundary which we can select is 32 bytes which is
6322 * larger than any known Memory Controller Line Size so we'll
6325 * T5 has a different interpretation of the "0" value for the
6326 * Packing Boundary. This corresponds to 16 bytes instead of
6327 * the expected 32 bytes. We never have a Packing Boundary
6328 * less than 32 bytes so we can't use that special value but
6329 * on the other hand, if we wanted 32 bytes, the best we can
6330 * really do is 64 bytes.
6332 if (fl_align <= 32) {
6337 if (is_t5(adap->params.chip))
6338 ingpad = INGPCIEBOUNDARY_32B_X;
6340 ingpad = T6_INGPADBOUNDARY_32B_X;
6342 t4_set_reg_field(adap, SGE_CONTROL_A,
6343 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6344 EGRSTATUSPAGESIZE_F,
6345 INGPADBOUNDARY_V(ingpad) |
6346 EGRSTATUSPAGESIZE_V(stat_len != 64));
6347 t4_set_reg_field(adap, SGE_CONTROL2_A,
6348 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6349 INGPACKBOUNDARY_V(fl_align_log -
6350 INGPACKBOUNDARY_SHIFT_X));
6353 * Adjust various SGE Free List Host Buffer Sizes.
6355 * This is something of a crock since we're using fixed indices into
6356 * the array which are also known by the sge.c code and the T4
6357 * Firmware Configuration File. We need to come up with a much better
6358 * approach to managing this array. For now, the first four entries
6363 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6364 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6366 * For the single-MTU buffers in unpacked mode we need to include
6367 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6368 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6369 * Padding boundary. All of these are accommodated in the Factory
6370 * Default Firmware Configuration File but we need to adjust it for
6371 * this host's cache line size.
6373 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6374 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6375 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6377 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6378 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6381 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6387 * t4_fw_initialize - ask FW to initialize the device
6388 * @adap: the adapter
6389 * @mbox: mailbox to use for the FW command
6391 * Issues a command to FW to partially initialize the device. This
6392 * performs initialization that generally doesn't depend on user input.
6394 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6396 struct fw_initialize_cmd c;
6398 memset(&c, 0, sizeof(c));
6399 INIT_CMD(c, INITIALIZE, WRITE);
6400 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6404 * t4_query_params_rw - query FW or device parameters
6405 * @adap: the adapter
6406 * @mbox: mailbox to use for the FW command
6409 * @nparams: the number of parameters
6410 * @params: the parameter names
6411 * @val: the parameter values
6412 * @rw: Write and read flag
6414 * Reads the value of FW or device parameters. Up to 7 parameters can be
6417 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6418 unsigned int vf, unsigned int nparams, const u32 *params,
6422 struct fw_params_cmd c;
6423 __be32 *p = &c.param[0].mnem;
6428 memset(&c, 0, sizeof(c));
6429 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6430 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6431 FW_PARAMS_CMD_PFN_V(pf) |
6432 FW_PARAMS_CMD_VFN_V(vf));
6433 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6435 for (i = 0; i < nparams; i++) {
6436 *p++ = cpu_to_be32(*params++);
6438 *p = cpu_to_be32(*(val + i));
6442 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6444 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6445 *val++ = be32_to_cpu(*p);
6449 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6450 unsigned int vf, unsigned int nparams, const u32 *params,
6453 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6457 * t4_set_params_timeout - sets FW or device parameters
6458 * @adap: the adapter
6459 * @mbox: mailbox to use for the FW command
6462 * @nparams: the number of parameters
6463 * @params: the parameter names
6464 * @val: the parameter values
6465 * @timeout: the timeout time
6467 * Sets the value of FW or device parameters. Up to 7 parameters can be
6468 * specified at once.
6470 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6471 unsigned int pf, unsigned int vf,
6472 unsigned int nparams, const u32 *params,
6473 const u32 *val, int timeout)
6475 struct fw_params_cmd c;
6476 __be32 *p = &c.param[0].mnem;
6481 memset(&c, 0, sizeof(c));
6482 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6483 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6484 FW_PARAMS_CMD_PFN_V(pf) |
6485 FW_PARAMS_CMD_VFN_V(vf));
6486 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6489 *p++ = cpu_to_be32(*params++);
6490 *p++ = cpu_to_be32(*val++);
6493 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6497 * t4_set_params - sets FW or device parameters
6498 * @adap: the adapter
6499 * @mbox: mailbox to use for the FW command
6502 * @nparams: the number of parameters
6503 * @params: the parameter names
6504 * @val: the parameter values
6506 * Sets the value of FW or device parameters. Up to 7 parameters can be
6507 * specified at once.
6509 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6510 unsigned int vf, unsigned int nparams, const u32 *params,
6513 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6514 FW_CMD_MAX_TIMEOUT);
6518 * t4_cfg_pfvf - configure PF/VF resource limits
6519 * @adap: the adapter
6520 * @mbox: mailbox to use for the FW command
6521 * @pf: the PF being configured
6522 * @vf: the VF being configured
6523 * @txq: the max number of egress queues
6524 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6525 * @rxqi: the max number of interrupt-capable ingress queues
6526 * @rxq: the max number of interruptless ingress queues
6527 * @tc: the PCI traffic class
6528 * @vi: the max number of virtual interfaces
6529 * @cmask: the channel access rights mask for the PF/VF
6530 * @pmask: the port access rights mask for the PF/VF
6531 * @nexact: the maximum number of exact MPS filters
6532 * @rcaps: read capabilities
6533 * @wxcaps: write/execute capabilities
6535 * Configures resource limits and capabilities for a physical or virtual
6538 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6539 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6540 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6541 unsigned int vi, unsigned int cmask, unsigned int pmask,
6542 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6544 struct fw_pfvf_cmd c;
6546 memset(&c, 0, sizeof(c));
6547 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6548 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6549 FW_PFVF_CMD_VFN_V(vf));
6550 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6551 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6552 FW_PFVF_CMD_NIQ_V(rxq));
6553 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6554 FW_PFVF_CMD_PMASK_V(pmask) |
6555 FW_PFVF_CMD_NEQ_V(txq));
6556 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6557 FW_PFVF_CMD_NVI_V(vi) |
6558 FW_PFVF_CMD_NEXACTF_V(nexact));
6559 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6560 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6561 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6562 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6566 * t4_alloc_vi - allocate a virtual interface
6567 * @adap: the adapter
6568 * @mbox: mailbox to use for the FW command
6569 * @port: physical port associated with the VI
6570 * @pf: the PF owning the VI
6571 * @vf: the VF owning the VI
6572 * @nmac: number of MAC addresses needed (1 to 5)
6573 * @mac: the MAC addresses of the VI
6574 * @rss_size: size of RSS table slice associated with this VI
6576 * Allocates a virtual interface for the given physical port. If @mac is
6577 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6578 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6579 * stored consecutively so the space needed is @nmac * 6 bytes.
6580 * Returns a negative error number or the non-negative VI id.
6582 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6583 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6584 unsigned int *rss_size)
6589 memset(&c, 0, sizeof(c));
6590 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6591 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6592 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6593 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6594 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6597 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6602 memcpy(mac, c.mac, sizeof(c.mac));
6605 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6607 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6609 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6611 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6615 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6616 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6620 * t4_free_vi - free a virtual interface
6621 * @adap: the adapter
6622 * @mbox: mailbox to use for the FW command
6623 * @pf: the PF owning the VI
6624 * @vf: the VF owning the VI
6625 * @viid: virtual interface identifiler
6627 * Free a previously allocated virtual interface.
6629 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6630 unsigned int vf, unsigned int viid)
6634 memset(&c, 0, sizeof(c));
6635 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6638 FW_VI_CMD_PFN_V(pf) |
6639 FW_VI_CMD_VFN_V(vf));
6640 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6641 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6643 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6647 * t4_set_rxmode - set Rx properties of a virtual interface
6648 * @adap: the adapter
6649 * @mbox: mailbox to use for the FW command
6651 * @mtu: the new MTU or -1
6652 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6653 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6654 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6655 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6656 * @sleep_ok: if true we may sleep while awaiting command completion
6658 * Sets Rx properties of a virtual interface.
6660 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6661 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6664 struct fw_vi_rxmode_cmd c;
6666 /* convert to FW values */
6668 mtu = FW_RXMODE_MTU_NO_CHG;
6670 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6672 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6674 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6676 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6678 memset(&c, 0, sizeof(c));
6679 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6680 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6681 FW_VI_RXMODE_CMD_VIID_V(viid));
6682 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6684 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6685 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6686 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6687 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6688 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6689 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6693 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6694 * @adap: the adapter
6695 * @mbox: mailbox to use for the FW command
6697 * @free: if true any existing filters for this VI id are first removed
6698 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6699 * @addr: the MAC address(es)
6700 * @idx: where to store the index of each allocated filter
6701 * @hash: pointer to hash address filter bitmap
6702 * @sleep_ok: call is allowed to sleep
6704 * Allocates an exact-match filter for each of the supplied addresses and
6705 * sets it to the corresponding address. If @idx is not %NULL it should
6706 * have at least @naddr entries, each of which will be set to the index of
6707 * the filter allocated for the corresponding MAC address. If a filter
6708 * could not be allocated for an address its index is set to 0xffff.
6709 * If @hash is not %NULL addresses that fail to allocate an exact filter
6710 * are hashed and update the hash filter bitmap pointed at by @hash.
6712 * Returns a negative error number or the number of filters allocated.
6714 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6715 unsigned int viid, bool free, unsigned int naddr,
6716 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6718 int offset, ret = 0;
6719 struct fw_vi_mac_cmd c;
6720 unsigned int nfilters = 0;
6721 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6722 unsigned int rem = naddr;
6724 if (naddr > max_naddr)
6727 for (offset = 0; offset < naddr ; /**/) {
6728 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6729 rem : ARRAY_SIZE(c.u.exact));
6730 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6731 u.exact[fw_naddr]), 16);
6732 struct fw_vi_mac_exact *p;
6735 memset(&c, 0, sizeof(c));
6736 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6739 FW_CMD_EXEC_V(free) |
6740 FW_VI_MAC_CMD_VIID_V(viid));
6741 c.freemacs_to_len16 =
6742 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6743 FW_CMD_LEN16_V(len16));
6745 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6747 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6748 FW_VI_MAC_CMD_IDX_V(
6749 FW_VI_MAC_ADD_MAC));
6750 memcpy(p->macaddr, addr[offset + i],
6751 sizeof(p->macaddr));
6754 /* It's okay if we run out of space in our MAC address arena.
6755 * Some of the addresses we submit may get stored so we need
6756 * to run through the reply to see what the results were ...
6758 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6759 if (ret && ret != -FW_ENOMEM)
6762 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6763 u16 index = FW_VI_MAC_CMD_IDX_G(
6764 be16_to_cpu(p->valid_to_idx));
6767 idx[offset + i] = (index >= max_naddr ?
6769 if (index < max_naddr)
6773 hash_mac_addr(addr[offset + i]));
6781 if (ret == 0 || ret == -FW_ENOMEM)
6787 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
6788 * @adap: the adapter
6789 * @mbox: mailbox to use for the FW command
6791 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6792 * @addr: the MAC address(es)
6793 * @sleep_ok: call is allowed to sleep
6795 * Frees the exact-match filter for each of the supplied addresses
6797 * Returns a negative error number or the number of filters freed.
6799 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6800 unsigned int viid, unsigned int naddr,
6801 const u8 **addr, bool sleep_ok)
6803 int offset, ret = 0;
6804 struct fw_vi_mac_cmd c;
6805 unsigned int nfilters = 0;
6806 unsigned int max_naddr = is_t4(adap->params.chip) ?
6807 NUM_MPS_CLS_SRAM_L_INSTANCES :
6808 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6809 unsigned int rem = naddr;
6811 if (naddr > max_naddr)
6814 for (offset = 0; offset < (int)naddr ; /**/) {
6815 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6817 : ARRAY_SIZE(c.u.exact));
6818 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6819 u.exact[fw_naddr]), 16);
6820 struct fw_vi_mac_exact *p;
6823 memset(&c, 0, sizeof(c));
6824 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6828 FW_VI_MAC_CMD_VIID_V(viid));
6829 c.freemacs_to_len16 =
6830 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6831 FW_CMD_LEN16_V(len16));
6833 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6834 p->valid_to_idx = cpu_to_be16(
6835 FW_VI_MAC_CMD_VALID_F |
6836 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6837 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6840 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6844 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6845 u16 index = FW_VI_MAC_CMD_IDX_G(
6846 be16_to_cpu(p->valid_to_idx));
6848 if (index < max_naddr)
6862 * t4_change_mac - modifies the exact-match filter for a MAC address
6863 * @adap: the adapter
6864 * @mbox: mailbox to use for the FW command
6866 * @idx: index of existing filter for old value of MAC address, or -1
6867 * @addr: the new MAC address value
6868 * @persist: whether a new MAC allocation should be persistent
6869 * @add_smt: if true also add the address to the HW SMT
6871 * Modifies an exact-match filter and sets it to the new MAC address.
6872 * Note that in general it is not possible to modify the value of a given
6873 * filter so the generic way to modify an address filter is to free the one
6874 * being used by the old address value and allocate a new filter for the
6875 * new address value. @idx can be -1 if the address is a new addition.
6877 * Returns a negative error number or the index of the filter with the new
6880 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6881 int idx, const u8 *addr, bool persist, bool add_smt)
6884 struct fw_vi_mac_cmd c;
6885 struct fw_vi_mac_exact *p = c.u.exact;
6886 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6888 if (idx < 0) /* new allocation */
6889 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6890 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6892 memset(&c, 0, sizeof(c));
6893 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6894 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6895 FW_VI_MAC_CMD_VIID_V(viid));
6896 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6897 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6898 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6899 FW_VI_MAC_CMD_IDX_V(idx));
6900 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6902 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6904 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6905 if (ret >= max_mac_addr)
6912 * t4_set_addr_hash - program the MAC inexact-match hash filter
6913 * @adap: the adapter
6914 * @mbox: mailbox to use for the FW command
6916 * @ucast: whether the hash filter should also match unicast addresses
6917 * @vec: the value to be written to the hash filter
6918 * @sleep_ok: call is allowed to sleep
6920 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6922 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6923 bool ucast, u64 vec, bool sleep_ok)
6925 struct fw_vi_mac_cmd c;
6927 memset(&c, 0, sizeof(c));
6928 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6929 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6930 FW_VI_ENABLE_CMD_VIID_V(viid));
6931 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6932 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6934 c.u.hash.hashvec = cpu_to_be64(vec);
6935 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6939 * t4_enable_vi_params - enable/disable a virtual interface
6940 * @adap: the adapter
6941 * @mbox: mailbox to use for the FW command
6943 * @rx_en: 1=enable Rx, 0=disable Rx
6944 * @tx_en: 1=enable Tx, 0=disable Tx
6945 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6947 * Enables/disables a virtual interface. Note that setting DCB Enable
6948 * only makes sense when enabling a Virtual Interface ...
6950 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6951 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6953 struct fw_vi_enable_cmd c;
6955 memset(&c, 0, sizeof(c));
6956 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6957 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6958 FW_VI_ENABLE_CMD_VIID_V(viid));
6959 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6960 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6961 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6963 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6967 * t4_enable_vi - enable/disable a virtual interface
6968 * @adap: the adapter
6969 * @mbox: mailbox to use for the FW command
6971 * @rx_en: 1=enable Rx, 0=disable Rx
6972 * @tx_en: 1=enable Tx, 0=disable Tx
6974 * Enables/disables a virtual interface.
6976 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6977 bool rx_en, bool tx_en)
6979 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6983 * t4_identify_port - identify a VI's port by blinking its LED
6984 * @adap: the adapter
6985 * @mbox: mailbox to use for the FW command
6987 * @nblinks: how many times to blink LED at 2.5 Hz
6989 * Identifies a VI's port by blinking its LED.
6991 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6992 unsigned int nblinks)
6994 struct fw_vi_enable_cmd c;
6996 memset(&c, 0, sizeof(c));
6997 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6998 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6999 FW_VI_ENABLE_CMD_VIID_V(viid));
7000 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7001 c.blinkdur = cpu_to_be16(nblinks);
7002 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7006 * t4_iq_stop - stop an ingress queue and its FLs
7007 * @adap: the adapter
7008 * @mbox: mailbox to use for the FW command
7009 * @pf: the PF owning the queues
7010 * @vf: the VF owning the queues
7011 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7012 * @iqid: ingress queue id
7013 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7014 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7016 * Stops an ingress queue and its associated FLs, if any. This causes
7017 * any current or future data/messages destined for these queues to be
7020 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7021 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7022 unsigned int fl0id, unsigned int fl1id)
7026 memset(&c, 0, sizeof(c));
7027 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7028 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7029 FW_IQ_CMD_VFN_V(vf));
7030 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7031 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7032 c.iqid = cpu_to_be16(iqid);
7033 c.fl0id = cpu_to_be16(fl0id);
7034 c.fl1id = cpu_to_be16(fl1id);
7035 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039 * t4_iq_free - free an ingress queue and its FLs
7040 * @adap: the adapter
7041 * @mbox: mailbox to use for the FW command
7042 * @pf: the PF owning the queues
7043 * @vf: the VF owning the queues
7044 * @iqtype: the ingress queue type
7045 * @iqid: ingress queue id
7046 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7047 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7049 * Frees an ingress queue and its associated FLs, if any.
7051 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7053 unsigned int fl0id, unsigned int fl1id)
7057 memset(&c, 0, sizeof(c));
7058 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7059 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7060 FW_IQ_CMD_VFN_V(vf));
7061 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7062 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7063 c.iqid = cpu_to_be16(iqid);
7064 c.fl0id = cpu_to_be16(fl0id);
7065 c.fl1id = cpu_to_be16(fl1id);
7066 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7070 * t4_eth_eq_free - free an Ethernet egress queue
7071 * @adap: the adapter
7072 * @mbox: mailbox to use for the FW command
7073 * @pf: the PF owning the queue
7074 * @vf: the VF owning the queue
7075 * @eqid: egress queue id
7077 * Frees an Ethernet egress queue.
7079 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7080 unsigned int vf, unsigned int eqid)
7082 struct fw_eq_eth_cmd c;
7084 memset(&c, 0, sizeof(c));
7085 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7086 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7087 FW_EQ_ETH_CMD_PFN_V(pf) |
7088 FW_EQ_ETH_CMD_VFN_V(vf));
7089 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7090 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7091 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7095 * t4_ctrl_eq_free - free a control egress queue
7096 * @adap: the adapter
7097 * @mbox: mailbox to use for the FW command
7098 * @pf: the PF owning the queue
7099 * @vf: the VF owning the queue
7100 * @eqid: egress queue id
7102 * Frees a control egress queue.
7104 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7105 unsigned int vf, unsigned int eqid)
7107 struct fw_eq_ctrl_cmd c;
7109 memset(&c, 0, sizeof(c));
7110 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7111 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7112 FW_EQ_CTRL_CMD_PFN_V(pf) |
7113 FW_EQ_CTRL_CMD_VFN_V(vf));
7114 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7115 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7116 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7120 * t4_ofld_eq_free - free an offload egress queue
7121 * @adap: the adapter
7122 * @mbox: mailbox to use for the FW command
7123 * @pf: the PF owning the queue
7124 * @vf: the VF owning the queue
7125 * @eqid: egress queue id
7127 * Frees a control egress queue.
7129 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7130 unsigned int vf, unsigned int eqid)
7132 struct fw_eq_ofld_cmd c;
7134 memset(&c, 0, sizeof(c));
7135 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7136 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7137 FW_EQ_OFLD_CMD_PFN_V(pf) |
7138 FW_EQ_OFLD_CMD_VFN_V(vf));
7139 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7140 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7141 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7145 * t4_link_down_rc_str - return a string for a Link Down Reason Code
7146 * @adap: the adapter
7147 * @link_down_rc: Link Down Reason Code
7149 * Returns a string representation of the Link Down Reason Code.
7151 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7153 static const char * const reason[] = {
7156 "Auto-negotiation Failure",
7158 "Insufficient Airflow",
7159 "Unable To Determine Reason",
7160 "No RX Signal Detected",
7164 if (link_down_rc >= ARRAY_SIZE(reason))
7165 return "Bad Reason Code";
7167 return reason[link_down_rc];
7171 * t4_handle_get_port_info - process a FW reply message
7172 * @pi: the port info
7173 * @rpl: start of the FW message
7175 * Processes a GET_PORT_INFO FW reply message.
7177 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7179 const struct fw_port_cmd *p = (const void *)rpl;
7180 struct adapter *adap = pi->adapter;
7182 /* link/module state change message */
7183 int speed = 0, fc = 0;
7184 struct link_config *lc;
7185 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7186 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7187 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7189 if (stat & FW_PORT_CMD_RXPAUSE_F)
7191 if (stat & FW_PORT_CMD_TXPAUSE_F)
7193 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7195 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7197 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7199 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7204 if (mod != pi->mod_type) {
7206 t4_os_portmod_changed(adap, pi->port_id);
7208 if (link_ok != lc->link_ok || speed != lc->speed ||
7209 fc != lc->fc) { /* something changed */
7210 if (!link_ok && lc->link_ok) {
7211 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7213 lc->link_down_rc = rc;
7214 dev_warn(adap->pdev_dev,
7215 "Port %d link down, reason: %s\n",
7216 pi->port_id, t4_link_down_rc_str(rc));
7218 lc->link_ok = link_ok;
7221 lc->supported = be16_to_cpu(p->u.info.pcap);
7222 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7223 t4_os_link_changed(adap, pi->port_id, link_ok);
7228 * t4_handle_fw_rpl - process a FW reply message
7229 * @adap: the adapter
7230 * @rpl: start of the FW message
7232 * Processes a FW message, such as link state change messages.
7234 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7236 u8 opcode = *(const u8 *)rpl;
7238 /* This might be a port command ... this simplifies the following
7239 * conditionals ... We can get away with pre-dereferencing
7240 * action_to_len16 because it's in the first 16 bytes and all messages
7241 * will be at least that long.
7243 const struct fw_port_cmd *p = (const void *)rpl;
7244 unsigned int action =
7245 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7247 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7249 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7250 struct port_info *pi = NULL;
7252 for_each_port(adap, i) {
7253 pi = adap2pinfo(adap, i);
7254 if (pi->tx_chan == chan)
7258 t4_handle_get_port_info(pi, rpl);
7260 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7266 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7270 if (pci_is_pcie(adapter->pdev)) {
7271 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7272 p->speed = val & PCI_EXP_LNKSTA_CLS;
7273 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7278 * init_link_config - initialize a link's SW state
7279 * @lc: structure holding the link state
7280 * @caps: link capabilities
7282 * Initializes the SW state maintained for each link, including the link's
7283 * capabilities and default speed/flow-control/autonegotiation settings.
7285 static void init_link_config(struct link_config *lc, unsigned int caps)
7287 lc->supported = caps;
7288 lc->lp_advertising = 0;
7289 lc->requested_speed = 0;
7291 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7292 if (lc->supported & FW_PORT_CAP_ANEG) {
7293 lc->advertising = lc->supported & ADVERT_MASK;
7294 lc->autoneg = AUTONEG_ENABLE;
7295 lc->requested_fc |= PAUSE_AUTONEG;
7297 lc->advertising = 0;
7298 lc->autoneg = AUTONEG_DISABLE;
7302 #define CIM_PF_NOACCESS 0xeeeeeeee
7304 int t4_wait_dev_ready(void __iomem *regs)
7308 whoami = readl(regs + PL_WHOAMI_A);
7309 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7313 whoami = readl(regs + PL_WHOAMI_A);
7314 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7318 u32 vendor_and_model_id;
7322 static int get_flash_params(struct adapter *adap)
7324 /* Table for non-Numonix supported flash parts. Numonix parts are left
7325 * to the preexisting code. All flash parts have 64KB sectors.
7327 static struct flash_desc supported_flash[] = {
7328 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7334 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7336 ret = sf1_read(adap, 3, 0, 1, &info);
7337 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
7341 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7342 if (supported_flash[ret].vendor_and_model_id == info) {
7343 adap->params.sf_size = supported_flash[ret].size_mb;
7344 adap->params.sf_nsec =
7345 adap->params.sf_size / SF_SEC_SIZE;
7349 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7351 info >>= 16; /* log2 of size */
7352 if (info >= 0x14 && info < 0x18)
7353 adap->params.sf_nsec = 1 << (info - 16);
7354 else if (info == 0x18)
7355 adap->params.sf_nsec = 64;
7358 adap->params.sf_size = 1 << info;
7359 adap->params.sf_fw_start =
7360 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7362 if (adap->params.sf_size < FLASH_MIN_SIZE)
7363 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7364 adap->params.sf_size, FLASH_MIN_SIZE);
7368 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7373 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7375 pci_read_config_word(adapter->pdev,
7376 pcie_cap + PCI_EXP_DEVCTL2, &val);
7377 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7379 pci_write_config_word(adapter->pdev,
7380 pcie_cap + PCI_EXP_DEVCTL2, val);
7385 * t4_prep_adapter - prepare SW and HW for operation
7386 * @adapter: the adapter
7387 * @reset: if true perform a HW reset
7389 * Initialize adapter SW state for the various HW modules, set initial
7390 * values for some adapter tunables, take PHYs out of reset, and
7391 * initialize the MDIO interface.
7393 int t4_prep_adapter(struct adapter *adapter)
7399 get_pci_mode(adapter, &adapter->params.pci);
7400 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7402 ret = get_flash_params(adapter);
7404 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7408 /* Retrieve adapter's device ID
7410 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7411 ver = device_id >> 12;
7412 adapter->params.chip = 0;
7415 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7416 adapter->params.arch.sge_fl_db = DBPRIO_F;
7417 adapter->params.arch.mps_tcam_size =
7418 NUM_MPS_CLS_SRAM_L_INSTANCES;
7419 adapter->params.arch.mps_rplc_size = 128;
7420 adapter->params.arch.nchan = NCHAN;
7421 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7422 adapter->params.arch.vfcount = 128;
7423 /* Congestion map is for 4 channels so that
7424 * MPS can have 4 priority per port.
7426 adapter->params.arch.cng_ch_bits_log = 2;
7429 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7430 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7431 adapter->params.arch.mps_tcam_size =
7432 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7433 adapter->params.arch.mps_rplc_size = 128;
7434 adapter->params.arch.nchan = NCHAN;
7435 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7436 adapter->params.arch.vfcount = 128;
7437 adapter->params.arch.cng_ch_bits_log = 2;
7440 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7441 adapter->params.arch.sge_fl_db = 0;
7442 adapter->params.arch.mps_tcam_size =
7443 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7444 adapter->params.arch.mps_rplc_size = 256;
7445 adapter->params.arch.nchan = 2;
7446 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7447 adapter->params.arch.vfcount = 256;
7448 /* Congestion map will be for 2 channels so that
7449 * MPS can have 8 priority per port.
7451 adapter->params.arch.cng_ch_bits_log = 3;
7454 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7459 adapter->params.cim_la_size = CIMLA_SIZE;
7460 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7463 * Default port for debugging in case we can't reach FW.
7465 adapter->params.nports = 1;
7466 adapter->params.portvec = 1;
7467 adapter->params.vpd.cclk = 50000;
7469 /* Set pci completion timeout value to 4 seconds. */
7470 set_pcie_completion_timeout(adapter, 0xd);
7475 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7476 * @adapter: the adapter
7477 * @qid: the Queue ID
7478 * @qtype: the Ingress or Egress type for @qid
7479 * @user: true if this request is for a user mode queue
7480 * @pbar2_qoffset: BAR2 Queue Offset
7481 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7483 * Returns the BAR2 SGE Queue Registers information associated with the
7484 * indicated Absolute Queue ID. These are passed back in return value
7485 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7486 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7488 * This may return an error which indicates that BAR2 SGE Queue
7489 * registers aren't available. If an error is not returned, then the
7490 * following values are returned:
7492 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7493 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7495 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7496 * require the "Inferred Queue ID" ability may be used. E.g. the
7497 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7498 * then these "Inferred Queue ID" register may not be used.
7500 int t4_bar2_sge_qregs(struct adapter *adapter,
7502 enum t4_bar2_qtype qtype,
7505 unsigned int *pbar2_qid)
7507 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7508 u64 bar2_page_offset, bar2_qoffset;
7509 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7511 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7512 if (!user && is_t4(adapter->params.chip))
7515 /* Get our SGE Page Size parameters.
7517 page_shift = adapter->params.sge.hps + 10;
7518 page_size = 1 << page_shift;
7520 /* Get the right Queues per Page parameters for our Queue.
7522 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7523 ? adapter->params.sge.eq_qpp
7524 : adapter->params.sge.iq_qpp);
7525 qpp_mask = (1 << qpp_shift) - 1;
7527 /* Calculate the basics of the BAR2 SGE Queue register area:
7528 * o The BAR2 page the Queue registers will be in.
7529 * o The BAR2 Queue ID.
7530 * o The BAR2 Queue ID Offset into the BAR2 page.
7532 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7533 bar2_qid = qid & qpp_mask;
7534 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7536 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7537 * hardware will infer the Absolute Queue ID simply from the writes to
7538 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7539 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7540 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7541 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7542 * from the BAR2 Page and BAR2 Queue ID.
7544 * One important censequence of this is that some BAR2 SGE registers
7545 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7546 * there. But other registers synthesize the SGE Queue ID purely
7547 * from the writes to the registers -- the Write Combined Doorbell
7548 * Buffer is a good example. These BAR2 SGE Registers are only
7549 * available for those BAR2 SGE Register areas where the SGE Absolute
7550 * Queue ID can be inferred from simple writes.
7552 bar2_qoffset = bar2_page_offset;
7553 bar2_qinferred = (bar2_qid_offset < page_size);
7554 if (bar2_qinferred) {
7555 bar2_qoffset += bar2_qid_offset;
7559 *pbar2_qoffset = bar2_qoffset;
7560 *pbar2_qid = bar2_qid;
7565 * t4_init_devlog_params - initialize adapter->params.devlog
7566 * @adap: the adapter
7568 * Initialize various fields of the adapter's Firmware Device Log
7569 * Parameters structure.
7571 int t4_init_devlog_params(struct adapter *adap)
7573 struct devlog_params *dparams = &adap->params.devlog;
7575 unsigned int devlog_meminfo;
7576 struct fw_devlog_cmd devlog_cmd;
7579 /* If we're dealing with newer firmware, the Device Log Paramerters
7580 * are stored in a designated register which allows us to access the
7581 * Device Log even if we can't talk to the firmware.
7584 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7586 unsigned int nentries, nentries128;
7588 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7589 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7591 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7592 nentries = (nentries128 + 1) * 128;
7593 dparams->size = nentries * sizeof(struct fw_devlog_e);
7598 /* Otherwise, ask the firmware for it's Device Log Parameters.
7600 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7601 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7602 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7603 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7604 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7610 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7611 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7612 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7613 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7619 * t4_init_sge_params - initialize adap->params.sge
7620 * @adapter: the adapter
7622 * Initialize various fields of the adapter's SGE Parameters structure.
7624 int t4_init_sge_params(struct adapter *adapter)
7626 struct sge_params *sge_params = &adapter->params.sge;
7628 unsigned int s_hps, s_qpp;
7630 /* Extract the SGE Page Size for our PF.
7632 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7633 s_hps = (HOSTPAGESIZEPF0_S +
7634 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7635 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7637 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7639 s_qpp = (QUEUESPERPAGEPF0_S +
7640 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7641 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7642 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7643 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7644 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7650 * t4_init_tp_params - initialize adap->params.tp
7651 * @adap: the adapter
7653 * Initialize various fields of the adapter's TP Parameters structure.
7655 int t4_init_tp_params(struct adapter *adap)
7660 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7661 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7662 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7664 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7665 for (chan = 0; chan < NCHAN; chan++)
7666 adap->params.tp.tx_modq[chan] = chan;
7668 /* Cache the adapter's Compressed Filter Mode and global Incress
7671 if (t4_use_ldst(adap)) {
7672 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7673 TP_VLAN_PRI_MAP_A, 1);
7674 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7675 TP_INGRESS_CONFIG_A, 1);
7677 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7678 &adap->params.tp.vlan_pri_map, 1,
7680 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7681 &adap->params.tp.ingress_config, 1,
7682 TP_INGRESS_CONFIG_A);
7685 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7686 * shift positions of several elements of the Compressed Filter Tuple
7687 * for this adapter which we need frequently ...
7689 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7690 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7691 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7692 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7695 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7696 * represents the presence of an Outer VLAN instead of a VNIC ID.
7698 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7699 adap->params.tp.vnic_shift = -1;
7705 * t4_filter_field_shift - calculate filter field shift
7706 * @adap: the adapter
7707 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7709 * Return the shift position of a filter field within the Compressed
7710 * Filter Tuple. The filter field is specified via its selection bit
7711 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7713 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7715 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7719 if ((filter_mode & filter_sel) == 0)
7722 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7723 switch (filter_mode & sel) {
7725 field_shift += FT_FCOE_W;
7728 field_shift += FT_PORT_W;
7731 field_shift += FT_VNIC_ID_W;
7734 field_shift += FT_VLAN_W;
7737 field_shift += FT_TOS_W;
7740 field_shift += FT_PROTOCOL_W;
7743 field_shift += FT_ETHERTYPE_W;
7746 field_shift += FT_MACMATCH_W;
7749 field_shift += FT_MPSHITTYPE_W;
7751 case FRAGMENTATION_F:
7752 field_shift += FT_FRAGMENTATION_W;
7759 int t4_init_rss_mode(struct adapter *adap, int mbox)
7762 struct fw_rss_vi_config_cmd rvc;
7764 memset(&rvc, 0, sizeof(rvc));
7766 for_each_port(adap, i) {
7767 struct port_info *p = adap2pinfo(adap, i);
7770 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7771 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7772 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7773 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7774 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7777 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7783 * t4_init_portinfo - allocate a virtual interface amd initialize port_info
7784 * @pi: the port_info
7785 * @mbox: mailbox to use for the FW command
7786 * @port: physical port associated with the VI
7787 * @pf: the PF owning the VI
7788 * @vf: the VF owning the VI
7789 * @mac: the MAC address of the VI
7791 * Allocates a virtual interface for the given physical port. If @mac is
7792 * not %NULL it contains the MAC address of the VI as assigned by FW.
7793 * @mac should be large enough to hold an Ethernet address.
7794 * Returns < 0 on error.
7796 int t4_init_portinfo(struct port_info *pi, int mbox,
7797 int port, int pf, int vf, u8 mac[])
7800 struct fw_port_cmd c;
7801 unsigned int rss_size;
7803 memset(&c, 0, sizeof(c));
7804 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7805 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7806 FW_PORT_CMD_PORTID_V(port));
7807 c.action_to_len16 = cpu_to_be32(
7808 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7810 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7814 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7821 pi->rss_size = rss_size;
7823 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7824 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7825 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7826 pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7827 pi->mod_type = FW_PORT_MOD_TYPE_NA;
7829 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7833 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7838 for_each_port(adap, i) {
7839 struct port_info *pi = adap2pinfo(adap, i);
7841 while ((adap->params.portvec & (1 << j)) == 0)
7844 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
7848 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7849 adap->port[i]->dev_port = j;
7856 * t4_read_cimq_cfg - read CIM queue configuration
7857 * @adap: the adapter
7858 * @base: holds the queue base addresses in bytes
7859 * @size: holds the queue sizes in bytes
7860 * @thres: holds the queue full thresholds in bytes
7862 * Returns the current configuration of the CIM queues, starting with
7863 * the IBQs, then the OBQs.
7865 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7868 int cim_num_obq = is_t4(adap->params.chip) ?
7869 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7871 for (i = 0; i < CIM_NUM_IBQ; i++) {
7872 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7874 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7875 /* value is in 256-byte units */
7876 *base++ = CIMQBASE_G(v) * 256;
7877 *size++ = CIMQSIZE_G(v) * 256;
7878 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7880 for (i = 0; i < cim_num_obq; i++) {
7881 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7883 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7884 /* value is in 256-byte units */
7885 *base++ = CIMQBASE_G(v) * 256;
7886 *size++ = CIMQSIZE_G(v) * 256;
7891 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7892 * @adap: the adapter
7893 * @qid: the queue index
7894 * @data: where to store the queue contents
7895 * @n: capacity of @data in 32-bit words
7897 * Reads the contents of the selected CIM queue starting at address 0 up
7898 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7899 * error and the number of 32-bit words actually read on success.
7901 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7903 int i, err, attempts;
7905 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7907 if (qid > 5 || (n & 3))
7910 addr = qid * nwords;
7914 /* It might take 3-10ms before the IBQ debug read access is allowed.
7915 * Wait for 1 Sec with a delay of 1 usec.
7919 for (i = 0; i < n; i++, addr++) {
7920 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7922 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7926 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7928 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7933 * t4_read_cim_obq - read the contents of a CIM outbound queue
7934 * @adap: the adapter
7935 * @qid: the queue index
7936 * @data: where to store the queue contents
7937 * @n: capacity of @data in 32-bit words
7939 * Reads the contents of the selected CIM queue starting at address 0 up
7940 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7941 * error and the number of 32-bit words actually read on success.
7943 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7946 unsigned int addr, v, nwords;
7947 int cim_num_obq = is_t4(adap->params.chip) ?
7948 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7950 if ((qid > (cim_num_obq - 1)) || (n & 3))
7953 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7954 QUENUMSELECT_V(qid));
7955 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7957 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7958 nwords = CIMQSIZE_G(v) * 64; /* same */
7962 for (i = 0; i < n; i++, addr++) {
7963 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7965 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7969 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7971 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7976 * t4_cim_read - read a block from CIM internal address space
7977 * @adap: the adapter
7978 * @addr: the start address within the CIM address space
7979 * @n: number of words to read
7980 * @valp: where to store the result
7982 * Reads a block of 4-byte words from the CIM intenal address space.
7984 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7989 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7992 for ( ; !ret && n--; addr += 4) {
7993 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7994 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7997 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8003 * t4_cim_write - write a block into CIM internal address space
8004 * @adap: the adapter
8005 * @addr: the start address within the CIM address space
8006 * @n: number of words to write
8007 * @valp: set of values to write
8009 * Writes a block of 4-byte words into the CIM intenal address space.
8011 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8012 const unsigned int *valp)
8016 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8019 for ( ; !ret && n--; addr += 4) {
8020 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8021 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8022 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8028 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8031 return t4_cim_write(adap, addr, 1, &val);
8035 * t4_cim_read_la - read CIM LA capture buffer
8036 * @adap: the adapter
8037 * @la_buf: where to store the LA data
8038 * @wrptr: the HW write pointer within the capture buffer
8040 * Reads the contents of the CIM LA buffer with the most recent entry at
8041 * the end of the returned data and with the entry at @wrptr first.
8042 * We try to leave the LA in the running state we find it in.
8044 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8047 unsigned int cfg, val, idx;
8049 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8053 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
8054 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8059 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8063 idx = UPDBGLAWRPTR_G(val);
8067 for (i = 0; i < adap->params.cim_la_size; i++) {
8068 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8069 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8072 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8075 if (val & UPDBGLARDEN_F) {
8079 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8082 idx = (idx + 1) & UPDBGLARDPTR_M;
8085 if (cfg & UPDBGLAEN_F) {
8086 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8087 cfg & ~UPDBGLARDEN_F);
8095 * t4_tp_read_la - read TP LA capture buffer
8096 * @adap: the adapter
8097 * @la_buf: where to store the LA data
8098 * @wrptr: the HW write pointer within the capture buffer
8100 * Reads the contents of the TP LA buffer with the most recent entry at
8101 * the end of the returned data and with the entry at @wrptr first.
8102 * We leave the LA in the running state we find it in.
8104 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8106 bool last_incomplete;
8107 unsigned int i, cfg, val, idx;
8109 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8110 if (cfg & DBGLAENABLE_F) /* freeze LA */
8111 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8112 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8114 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8115 idx = DBGLAWPTR_G(val);
8116 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8117 if (last_incomplete)
8118 idx = (idx + 1) & DBGLARPTR_M;
8123 val &= ~DBGLARPTR_V(DBGLARPTR_M);
8124 val |= adap->params.tp.la_mask;
8126 for (i = 0; i < TPLA_SIZE; i++) {
8127 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8128 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8129 idx = (idx + 1) & DBGLARPTR_M;
8132 /* Wipe out last entry if it isn't valid */
8133 if (last_incomplete)
8134 la_buf[TPLA_SIZE - 1] = ~0ULL;
8136 if (cfg & DBGLAENABLE_F) /* restore running state */
8137 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8138 cfg | adap->params.tp.la_mask);
8141 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8142 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
8143 * state for more than the Warning Threshold then we'll issue a warning about
8144 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
8145 * appears to be hung every Warning Repeat second till the situation clears.
8146 * If the situation clears, we'll note that as well.
8148 #define SGE_IDMA_WARN_THRESH 1
8149 #define SGE_IDMA_WARN_REPEAT 300
8152 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8153 * @adapter: the adapter
8154 * @idma: the adapter IDMA Monitor state
8156 * Initialize the state of an SGE Ingress DMA Monitor.
8158 void t4_idma_monitor_init(struct adapter *adapter,
8159 struct sge_idma_monitor_state *idma)
8161 /* Initialize the state variables for detecting an SGE Ingress DMA
8162 * hang. The SGE has internal counters which count up on each clock
8163 * tick whenever the SGE finds its Ingress DMA State Engines in the
8164 * same state they were on the previous clock tick. The clock used is
8165 * the Core Clock so we have a limit on the maximum "time" they can
8166 * record; typically a very small number of seconds. For instance,
8167 * with a 600MHz Core Clock, we can only count up to a bit more than
8168 * 7s. So we'll synthesize a larger counter in order to not run the
8169 * risk of having the "timers" overflow and give us the flexibility to
8170 * maintain a Hung SGE State Machine of our own which operates across
8171 * a longer time frame.
8173 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8174 idma->idma_stalled[0] = 0;
8175 idma->idma_stalled[1] = 0;
8179 * t4_idma_monitor - monitor SGE Ingress DMA state
8180 * @adapter: the adapter
8181 * @idma: the adapter IDMA Monitor state
8182 * @hz: number of ticks/second
8183 * @ticks: number of ticks since the last IDMA Monitor call
8185 void t4_idma_monitor(struct adapter *adapter,
8186 struct sge_idma_monitor_state *idma,
8189 int i, idma_same_state_cnt[2];
8191 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8192 * are counters inside the SGE which count up on each clock when the
8193 * SGE finds its Ingress DMA State Engines in the same states they
8194 * were in the previous clock. The counters will peg out at
8195 * 0xffffffff without wrapping around so once they pass the 1s
8196 * threshold they'll stay above that till the IDMA state changes.
8198 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8199 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8200 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8202 for (i = 0; i < 2; i++) {
8203 u32 debug0, debug11;
8205 /* If the Ingress DMA Same State Counter ("timer") is less
8206 * than 1s, then we can reset our synthesized Stall Timer and
8207 * continue. If we have previously emitted warnings about a
8208 * potential stalled Ingress Queue, issue a note indicating
8209 * that the Ingress Queue has resumed forward progress.
8211 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8212 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8213 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8214 "resumed after %d seconds\n",
8215 i, idma->idma_qid[i],
8216 idma->idma_stalled[i] / hz);
8217 idma->idma_stalled[i] = 0;
8221 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8222 * domain. The first time we get here it'll be because we
8223 * passed the 1s Threshold; each additional time it'll be
8224 * because the RX Timer Callback is being fired on its regular
8227 * If the stall is below our Potential Hung Ingress Queue
8228 * Warning Threshold, continue.
8230 if (idma->idma_stalled[i] == 0) {
8231 idma->idma_stalled[i] = hz;
8232 idma->idma_warn[i] = 0;
8234 idma->idma_stalled[i] += ticks;
8235 idma->idma_warn[i] -= ticks;
8238 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8241 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8243 if (idma->idma_warn[i] > 0)
8245 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8247 /* Read and save the SGE IDMA State and Queue ID information.
8248 * We do this every time in case it changes across time ...
8249 * can't be too careful ...
8251 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8252 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8253 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8255 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8256 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8257 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8259 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8260 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8261 i, idma->idma_qid[i], idma->idma_state[i],
8262 idma->idma_stalled[i] / hz,
8264 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);