89179e31668786a25b8894faafd397d5db9f8564
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "srq.h"
78 #include "cxgb4_debugfs.h"
79 #include "clip_tbl.h"
80 #include "l2t.h"
81 #include "smt.h"
82 #include "sched.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
87
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
89
90 #ifdef DRV_VERSION
91 #undef DRV_VERSION
92 #endif
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102  */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104         static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110  * called for both.
111  */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115                 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118                 { 0, } \
119         }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181
182 static struct dentry *cxgb4_debugfs_root;
183
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186
187 static void link_report(struct net_device *dev)
188 {
189         if (!netif_carrier_ok(dev))
190                 netdev_info(dev, "link down\n");
191         else {
192                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
193
194                 const char *s;
195                 const struct port_info *p = netdev_priv(dev);
196
197                 switch (p->link_cfg.speed) {
198                 case 100:
199                         s = "100Mbps";
200                         break;
201                 case 1000:
202                         s = "1Gbps";
203                         break;
204                 case 10000:
205                         s = "10Gbps";
206                         break;
207                 case 25000:
208                         s = "25Gbps";
209                         break;
210                 case 40000:
211                         s = "40Gbps";
212                         break;
213                 case 50000:
214                         s = "50Gbps";
215                         break;
216                 case 100000:
217                         s = "100Gbps";
218                         break;
219                 default:
220                         pr_info("%s: unsupported speed: %d\n",
221                                 dev->name, p->link_cfg.speed);
222                         return;
223                 }
224
225                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
226                             fc[p->link_cfg.fc]);
227         }
228 }
229
230 #ifdef CONFIG_CHELSIO_T4_DCB
231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
233 {
234         struct port_info *pi = netdev_priv(dev);
235         struct adapter *adap = pi->adapter;
236         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
237         int i;
238
239         /* We use a simple mapping of Port TX Queue Index to DCB
240          * Priority when we're enabling DCB.
241          */
242         for (i = 0; i < pi->nqsets; i++, txq++) {
243                 u32 name, value;
244                 int err;
245
246                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
247                         FW_PARAMS_PARAM_X_V(
248                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
249                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
250                 value = enable ? i : 0xffffffff;
251
252                 /* Since we can be called while atomic (from "interrupt
253                  * level") we need to issue the Set Parameters Commannd
254                  * without sleeping (timeout < 0).
255                  */
256                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
257                                             &name, &value,
258                                             -FW_CMD_MAX_TIMEOUT);
259
260                 if (err)
261                         dev_err(adap->pdev_dev,
262                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
263                                 enable ? "set" : "unset", pi->port_id, i, -err);
264                 else
265                         txq->dcb_prio = enable ? value : 0;
266         }
267 }
268
269 int cxgb4_dcb_enabled(const struct net_device *dev)
270 {
271         struct port_info *pi = netdev_priv(dev);
272
273         if (!pi->dcb.enabled)
274                 return 0;
275
276         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
277                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
278 }
279 #endif /* CONFIG_CHELSIO_T4_DCB */
280
281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
282 {
283         struct net_device *dev = adapter->port[port_id];
284
285         /* Skip changes from disabled ports. */
286         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
287                 if (link_stat)
288                         netif_carrier_on(dev);
289                 else {
290 #ifdef CONFIG_CHELSIO_T4_DCB
291                         if (cxgb4_dcb_enabled(dev)) {
292                                 cxgb4_dcb_reset(dev);
293                                 dcb_tx_queue_prio_enable(dev, false);
294                         }
295 #endif /* CONFIG_CHELSIO_T4_DCB */
296                         netif_carrier_off(dev);
297                 }
298
299                 link_report(dev);
300         }
301 }
302
303 void t4_os_portmod_changed(struct adapter *adap, int port_id)
304 {
305         static const char *mod_str[] = {
306                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
307         };
308
309         struct net_device *dev = adap->port[port_id];
310         struct port_info *pi = netdev_priv(dev);
311
312         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
313                 netdev_info(dev, "port module unplugged\n");
314         else if (pi->mod_type < ARRAY_SIZE(mod_str))
315                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
316         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
317                 netdev_info(dev, "%s: unsupported port module inserted\n",
318                             dev->name);
319         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
320                 netdev_info(dev, "%s: unknown port module inserted\n",
321                             dev->name);
322         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
323                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
324         else
325                 netdev_info(dev, "%s: unknown module type %d inserted\n",
326                             dev->name, pi->mod_type);
327
328         /* If the interface is running, then we'll need any "sticky" Link
329          * Parameters redone with a new Transceiver Module.
330          */
331         pi->link_cfg.redo_l1cfg = netif_running(dev);
332 }
333
334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
335 module_param(dbfifo_int_thresh, int, 0644);
336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
337
338 /*
339  * usecs to sleep while draining the dbfifo
340  */
341 static int dbfifo_drain_delay = 1000;
342 module_param(dbfifo_drain_delay, int, 0644);
343 MODULE_PARM_DESC(dbfifo_drain_delay,
344                  "usecs to sleep while draining the dbfifo");
345
346 static inline int cxgb4_set_addr_hash(struct port_info *pi)
347 {
348         struct adapter *adap = pi->adapter;
349         u64 vec = 0;
350         bool ucast = false;
351         struct hash_mac_addr *entry;
352
353         /* Calculate the hash vector for the updated list and program it */
354         list_for_each_entry(entry, &adap->mac_hlist, list) {
355                 ucast |= is_unicast_ether_addr(entry->addr);
356                 vec |= (1ULL << hash_mac_addr(entry->addr));
357         }
358         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
359                                 vec, false);
360 }
361
362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
363 {
364         struct port_info *pi = netdev_priv(netdev);
365         struct adapter *adap = pi->adapter;
366         int ret;
367         u64 mhash = 0;
368         u64 uhash = 0;
369         bool free = false;
370         bool ucast = is_unicast_ether_addr(mac_addr);
371         const u8 *maclist[1] = {mac_addr};
372         struct hash_mac_addr *new_entry;
373
374         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
375                                 NULL, ucast ? &uhash : &mhash, false);
376         if (ret < 0)
377                 goto out;
378         /* if hash != 0, then add the addr to hash addr list
379          * so on the end we will calculate the hash for the
380          * list and program it
381          */
382         if (uhash || mhash) {
383                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
384                 if (!new_entry)
385                         return -ENOMEM;
386                 ether_addr_copy(new_entry->addr, mac_addr);
387                 list_add_tail(&new_entry->list, &adap->mac_hlist);
388                 ret = cxgb4_set_addr_hash(pi);
389         }
390 out:
391         return ret < 0 ? ret : 0;
392 }
393
394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
395 {
396         struct port_info *pi = netdev_priv(netdev);
397         struct adapter *adap = pi->adapter;
398         int ret;
399         const u8 *maclist[1] = {mac_addr};
400         struct hash_mac_addr *entry, *tmp;
401
402         /* If the MAC address to be removed is in the hash addr
403          * list, delete it from the list and update hash vector
404          */
405         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
406                 if (ether_addr_equal(entry->addr, mac_addr)) {
407                         list_del(&entry->list);
408                         kfree(entry);
409                         return cxgb4_set_addr_hash(pi);
410                 }
411         }
412
413         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
414         return ret < 0 ? -EINVAL : 0;
415 }
416
417 /*
418  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
419  * If @mtu is -1 it is left unchanged.
420  */
421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
422 {
423         struct port_info *pi = netdev_priv(dev);
424         struct adapter *adapter = pi->adapter;
425
426         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
427         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428
429         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
430                              (dev->flags & IFF_PROMISC) ? 1 : 0,
431                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
432                              sleep_ok);
433 }
434
435 /**
436  *      cxgb4_change_mac - Update match filter for a MAC address.
437  *      @pi: the port_info
438  *      @viid: the VI id
439  *      @tcam_idx: TCAM index of existing filter for old value of MAC address,
440  *                 or -1
441  *      @addr: the new MAC address value
442  *      @persist: whether a new MAC allocation should be persistent
443  *      @add_smt: if true also add the address to the HW SMT
444  *
445  *      Modifies an MPS filter and sets it to the new MAC address if
446  *      @tcam_idx >= 0, or adds the MAC address to a new filter if
447  *      @tcam_idx < 0. In the latter case the address is added persistently
448  *      if @persist is %true.
449  *      Addresses are programmed to hash region, if tcam runs out of entries.
450  *
451  */
452 static int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
453                             int *tcam_idx, const u8 *addr, bool persist,
454                             u8 *smt_idx)
455 {
456         struct adapter *adapter = pi->adapter;
457         struct hash_mac_addr *entry, *new_entry;
458         int ret;
459
460         ret = t4_change_mac(adapter, adapter->mbox, viid,
461                             *tcam_idx, addr, persist, smt_idx);
462         /* We ran out of TCAM entries. try programming hash region. */
463         if (ret == -ENOMEM) {
464                 /* If the MAC address to be updated is in the hash addr
465                  * list, update it from the list
466                  */
467                 list_for_each_entry(entry, &adapter->mac_hlist, list) {
468                         if (entry->iface_mac) {
469                                 ether_addr_copy(entry->addr, addr);
470                                 goto set_hash;
471                         }
472                 }
473                 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
474                 if (!new_entry)
475                         return -ENOMEM;
476                 ether_addr_copy(new_entry->addr, addr);
477                 new_entry->iface_mac = true;
478                 list_add_tail(&new_entry->list, &adapter->mac_hlist);
479 set_hash:
480                 ret = cxgb4_set_addr_hash(pi);
481         } else if (ret >= 0) {
482                 *tcam_idx = ret;
483                 ret = 0;
484         }
485
486         return ret;
487 }
488
489 /*
490  *      link_start - enable a port
491  *      @dev: the port to enable
492  *
493  *      Performs the MAC and PHY actions needed to enable a port.
494  */
495 static int link_start(struct net_device *dev)
496 {
497         int ret;
498         struct port_info *pi = netdev_priv(dev);
499         unsigned int mb = pi->adapter->pf;
500
501         /*
502          * We do not set address filters and promiscuity here, the stack does
503          * that step explicitly.
504          */
505         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
506                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
507         if (ret == 0)
508                 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt,
509                                        dev->dev_addr, true, &pi->smt_idx);
510         if (ret == 0)
511                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
512                                     &pi->link_cfg);
513         if (ret == 0) {
514                 local_bh_disable();
515                 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
516                                           true, CXGB4_DCB_ENABLED);
517                 local_bh_enable();
518         }
519
520         return ret;
521 }
522
523 #ifdef CONFIG_CHELSIO_T4_DCB
524 /* Handle a Data Center Bridging update message from the firmware. */
525 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
526 {
527         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
528         struct net_device *dev = adap->port[adap->chan_map[port]];
529         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
530         int new_dcb_enabled;
531
532         cxgb4_dcb_handle_fw_update(adap, pcmd);
533         new_dcb_enabled = cxgb4_dcb_enabled(dev);
534
535         /* If the DCB has become enabled or disabled on the port then we're
536          * going to need to set up/tear down DCB Priority parameters for the
537          * TX Queues associated with the port.
538          */
539         if (new_dcb_enabled != old_dcb_enabled)
540                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
541 }
542 #endif /* CONFIG_CHELSIO_T4_DCB */
543
544 /* Response queue handler for the FW event queue.
545  */
546 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
547                           const struct pkt_gl *gl)
548 {
549         u8 opcode = ((const struct rss_header *)rsp)->opcode;
550
551         rsp++;                                          /* skip RSS header */
552
553         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
554          */
555         if (unlikely(opcode == CPL_FW4_MSG &&
556            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
557                 rsp++;
558                 opcode = ((const struct rss_header *)rsp)->opcode;
559                 rsp++;
560                 if (opcode != CPL_SGE_EGR_UPDATE) {
561                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
562                                 , opcode);
563                         goto out;
564                 }
565         }
566
567         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
568                 const struct cpl_sge_egr_update *p = (void *)rsp;
569                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
570                 struct sge_txq *txq;
571
572                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
573                 txq->restarts++;
574                 if (txq->q_type == CXGB4_TXQ_ETH) {
575                         struct sge_eth_txq *eq;
576
577                         eq = container_of(txq, struct sge_eth_txq, q);
578                         t4_sge_eth_txq_egress_update(q->adap, eq, -1);
579                 } else {
580                         struct sge_uld_txq *oq;
581
582                         oq = container_of(txq, struct sge_uld_txq, q);
583                         tasklet_schedule(&oq->qresume_tsk);
584                 }
585         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
586                 const struct cpl_fw6_msg *p = (void *)rsp;
587
588 #ifdef CONFIG_CHELSIO_T4_DCB
589                 const struct fw_port_cmd *pcmd = (const void *)p->data;
590                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
591                 unsigned int action =
592                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
593
594                 if (cmd == FW_PORT_CMD &&
595                     (action == FW_PORT_ACTION_GET_PORT_INFO ||
596                      action == FW_PORT_ACTION_GET_PORT_INFO32)) {
597                         int port = FW_PORT_CMD_PORTID_G(
598                                         be32_to_cpu(pcmd->op_to_portid));
599                         struct net_device *dev;
600                         int dcbxdis, state_input;
601
602                         dev = q->adap->port[q->adap->chan_map[port]];
603                         dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
604                           ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
605                           : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
606                                & FW_PORT_CMD_DCBXDIS32_F));
607                         state_input = (dcbxdis
608                                        ? CXGB4_DCB_INPUT_FW_DISABLED
609                                        : CXGB4_DCB_INPUT_FW_ENABLED);
610
611                         cxgb4_dcb_state_fsm(dev, state_input);
612                 }
613
614                 if (cmd == FW_PORT_CMD &&
615                     action == FW_PORT_ACTION_L2_DCB_CFG)
616                         dcb_rpl(q->adap, pcmd);
617                 else
618 #endif
619                         if (p->type == 0)
620                                 t4_handle_fw_rpl(q->adap, p->data);
621         } else if (opcode == CPL_L2T_WRITE_RPL) {
622                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
623
624                 do_l2t_write_rpl(q->adap, p);
625         } else if (opcode == CPL_SMT_WRITE_RPL) {
626                 const struct cpl_smt_write_rpl *p = (void *)rsp;
627
628                 do_smt_write_rpl(q->adap, p);
629         } else if (opcode == CPL_SET_TCB_RPL) {
630                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
631
632                 filter_rpl(q->adap, p);
633         } else if (opcode == CPL_ACT_OPEN_RPL) {
634                 const struct cpl_act_open_rpl *p = (void *)rsp;
635
636                 hash_filter_rpl(q->adap, p);
637         } else if (opcode == CPL_ABORT_RPL_RSS) {
638                 const struct cpl_abort_rpl_rss *p = (void *)rsp;
639
640                 hash_del_filter_rpl(q->adap, p);
641         } else if (opcode == CPL_SRQ_TABLE_RPL) {
642                 const struct cpl_srq_table_rpl *p = (void *)rsp;
643
644                 do_srq_table_rpl(q->adap, p);
645         } else
646                 dev_err(q->adap->pdev_dev,
647                         "unexpected CPL %#x on FW event queue\n", opcode);
648 out:
649         return 0;
650 }
651
652 static void disable_msi(struct adapter *adapter)
653 {
654         if (adapter->flags & CXGB4_USING_MSIX) {
655                 pci_disable_msix(adapter->pdev);
656                 adapter->flags &= ~CXGB4_USING_MSIX;
657         } else if (adapter->flags & CXGB4_USING_MSI) {
658                 pci_disable_msi(adapter->pdev);
659                 adapter->flags &= ~CXGB4_USING_MSI;
660         }
661 }
662
663 /*
664  * Interrupt handler for non-data events used with MSI-X.
665  */
666 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
667 {
668         struct adapter *adap = cookie;
669         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
670
671         if (v & PFSW_F) {
672                 adap->swintr = 1;
673                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
674         }
675         if (adap->flags & CXGB4_MASTER_PF)
676                 t4_slow_intr_handler(adap);
677         return IRQ_HANDLED;
678 }
679
680 /*
681  * Name the MSI-X interrupts.
682  */
683 static void name_msix_vecs(struct adapter *adap)
684 {
685         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
686
687         /* non-data interrupts */
688         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
689
690         /* FW events */
691         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
692                  adap->port[0]->name);
693
694         /* Ethernet queues */
695         for_each_port(adap, j) {
696                 struct net_device *d = adap->port[j];
697                 const struct port_info *pi = netdev_priv(d);
698
699                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
700                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
701                                  d->name, i);
702         }
703 }
704
705 static int request_msix_queue_irqs(struct adapter *adap)
706 {
707         struct sge *s = &adap->sge;
708         int err, ethqidx;
709         int msi_index = 2;
710
711         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
712                           adap->msix_info[1].desc, &s->fw_evtq);
713         if (err)
714                 return err;
715
716         for_each_ethrxq(s, ethqidx) {
717                 err = request_irq(adap->msix_info[msi_index].vec,
718                                   t4_sge_intr_msix, 0,
719                                   adap->msix_info[msi_index].desc,
720                                   &s->ethrxq[ethqidx].rspq);
721                 if (err)
722                         goto unwind;
723                 msi_index++;
724         }
725         return 0;
726
727 unwind:
728         while (--ethqidx >= 0)
729                 free_irq(adap->msix_info[--msi_index].vec,
730                          &s->ethrxq[ethqidx].rspq);
731         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
732         return err;
733 }
734
735 static void free_msix_queue_irqs(struct adapter *adap)
736 {
737         int i, msi_index = 2;
738         struct sge *s = &adap->sge;
739
740         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
741         for_each_ethrxq(s, i)
742                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
743 }
744
745 /**
746  *      cxgb4_write_rss - write the RSS table for a given port
747  *      @pi: the port
748  *      @queues: array of queue indices for RSS
749  *
750  *      Sets up the portion of the HW RSS table for the port's VI to distribute
751  *      packets to the Rx queues in @queues.
752  *      Should never be called before setting up sge eth rx queues
753  */
754 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
755 {
756         u16 *rss;
757         int i, err;
758         struct adapter *adapter = pi->adapter;
759         const struct sge_eth_rxq *rxq;
760
761         rxq = &adapter->sge.ethrxq[pi->first_qset];
762         rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
763         if (!rss)
764                 return -ENOMEM;
765
766         /* map the queue indices to queue ids */
767         for (i = 0; i < pi->rss_size; i++, queues++)
768                 rss[i] = rxq[*queues].rspq.abs_id;
769
770         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
771                                   pi->rss_size, rss, pi->rss_size);
772         /* If Tunnel All Lookup isn't specified in the global RSS
773          * Configuration, then we need to specify a default Ingress
774          * Queue for any ingress packets which aren't hashed.  We'll
775          * use our first ingress queue ...
776          */
777         if (!err)
778                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
779                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
780                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
781                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
782                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
783                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
784                                        rss[0]);
785         kfree(rss);
786         return err;
787 }
788
789 /**
790  *      setup_rss - configure RSS
791  *      @adap: the adapter
792  *
793  *      Sets up RSS for each port.
794  */
795 static int setup_rss(struct adapter *adap)
796 {
797         int i, j, err;
798
799         for_each_port(adap, i) {
800                 const struct port_info *pi = adap2pinfo(adap, i);
801
802                 /* Fill default values with equal distribution */
803                 for (j = 0; j < pi->rss_size; j++)
804                         pi->rss[j] = j % pi->nqsets;
805
806                 err = cxgb4_write_rss(pi, pi->rss);
807                 if (err)
808                         return err;
809         }
810         return 0;
811 }
812
813 /*
814  * Return the channel of the ingress queue with the given qid.
815  */
816 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
817 {
818         qid -= p->ingr_start;
819         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
820 }
821
822 /*
823  * Wait until all NAPI handlers are descheduled.
824  */
825 static void quiesce_rx(struct adapter *adap)
826 {
827         int i;
828
829         for (i = 0; i < adap->sge.ingr_sz; i++) {
830                 struct sge_rspq *q = adap->sge.ingr_map[i];
831
832                 if (q && q->handler)
833                         napi_disable(&q->napi);
834         }
835 }
836
837 /* Disable interrupt and napi handler */
838 static void disable_interrupts(struct adapter *adap)
839 {
840         if (adap->flags & CXGB4_FULL_INIT_DONE) {
841                 t4_intr_disable(adap);
842                 if (adap->flags & CXGB4_USING_MSIX) {
843                         free_msix_queue_irqs(adap);
844                         free_irq(adap->msix_info[0].vec, adap);
845                 } else {
846                         free_irq(adap->pdev->irq, adap);
847                 }
848                 quiesce_rx(adap);
849         }
850 }
851
852 /*
853  * Enable NAPI scheduling and interrupt generation for all Rx queues.
854  */
855 static void enable_rx(struct adapter *adap)
856 {
857         int i;
858
859         for (i = 0; i < adap->sge.ingr_sz; i++) {
860                 struct sge_rspq *q = adap->sge.ingr_map[i];
861
862                 if (!q)
863                         continue;
864                 if (q->handler)
865                         napi_enable(&q->napi);
866
867                 /* 0-increment GTS to start the timer and enable interrupts */
868                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
869                              SEINTARM_V(q->intr_params) |
870                              INGRESSQID_V(q->cntxt_id));
871         }
872 }
873
874
875 static int setup_fw_sge_queues(struct adapter *adap)
876 {
877         struct sge *s = &adap->sge;
878         int err = 0;
879
880         bitmap_zero(s->starving_fl, s->egr_sz);
881         bitmap_zero(s->txq_maperr, s->egr_sz);
882
883         if (adap->flags & CXGB4_USING_MSIX)
884                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
885         else {
886                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
887                                        NULL, NULL, NULL, -1);
888                 if (err)
889                         return err;
890                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
891         }
892
893         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
894                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
895         return err;
896 }
897
898 /**
899  *      setup_sge_queues - configure SGE Tx/Rx/response queues
900  *      @adap: the adapter
901  *
902  *      Determines how many sets of SGE queues to use and initializes them.
903  *      We support multiple queue sets per port if we have MSI-X, otherwise
904  *      just one queue set per port.
905  */
906 static int setup_sge_queues(struct adapter *adap)
907 {
908         int err, i, j;
909         struct sge *s = &adap->sge;
910         struct sge_uld_rxq_info *rxq_info = NULL;
911         unsigned int cmplqid = 0;
912
913         if (is_uld(adap))
914                 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
915
916         for_each_port(adap, i) {
917                 struct net_device *dev = adap->port[i];
918                 struct port_info *pi = netdev_priv(dev);
919                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
920                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
921
922                 for (j = 0; j < pi->nqsets; j++, q++) {
923                         if (adap->msi_idx > 0)
924                                 adap->msi_idx++;
925                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
926                                                adap->msi_idx, &q->fl,
927                                                t4_ethrx_handler,
928                                                NULL,
929                                                t4_get_tp_ch_map(adap,
930                                                                 pi->tx_chan));
931                         if (err)
932                                 goto freeout;
933                         q->rspq.idx = j;
934                         memset(&q->stats, 0, sizeof(q->stats));
935                 }
936
937                 q = &s->ethrxq[pi->first_qset];
938                 for (j = 0; j < pi->nqsets; j++, t++, q++) {
939                         err = t4_sge_alloc_eth_txq(adap, t, dev,
940                                         netdev_get_tx_queue(dev, j),
941                                         q->rspq.cntxt_id,
942                                         !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
943                         if (err)
944                                 goto freeout;
945                 }
946         }
947
948         for_each_port(adap, i) {
949                 /* Note that cmplqid below is 0 if we don't
950                  * have RDMA queues, and that's the right value.
951                  */
952                 if (rxq_info)
953                         cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
954
955                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
956                                             s->fw_evtq.cntxt_id, cmplqid);
957                 if (err)
958                         goto freeout;
959         }
960
961         if (!is_t4(adap->params.chip)) {
962                 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
963                                            netdev_get_tx_queue(adap->port[0], 0)
964                                            , s->fw_evtq.cntxt_id, false);
965                 if (err)
966                         goto freeout;
967         }
968
969         t4_write_reg(adap, is_t4(adap->params.chip) ?
970                                 MPS_TRC_RSS_CONTROL_A :
971                                 MPS_T5_TRC_RSS_CONTROL_A,
972                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
973                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
974         return 0;
975 freeout:
976         dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
977         t4_free_sge_resources(adap);
978         return err;
979 }
980
981 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
982                              struct net_device *sb_dev,
983                              select_queue_fallback_t fallback)
984 {
985         int txq;
986
987 #ifdef CONFIG_CHELSIO_T4_DCB
988         /* If a Data Center Bridging has been successfully negotiated on this
989          * link then we'll use the skb's priority to map it to a TX Queue.
990          * The skb's priority is determined via the VLAN Tag Priority Code
991          * Point field.
992          */
993         if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
994                 u16 vlan_tci;
995                 int err;
996
997                 err = vlan_get_tag(skb, &vlan_tci);
998                 if (unlikely(err)) {
999                         if (net_ratelimit())
1000                                 netdev_warn(dev,
1001                                             "TX Packet without VLAN Tag on DCB Link\n");
1002                         txq = 0;
1003                 } else {
1004                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1005 #ifdef CONFIG_CHELSIO_T4_FCOE
1006                         if (skb->protocol == htons(ETH_P_FCOE))
1007                                 txq = skb->priority & 0x7;
1008 #endif /* CONFIG_CHELSIO_T4_FCOE */
1009                 }
1010                 return txq;
1011         }
1012 #endif /* CONFIG_CHELSIO_T4_DCB */
1013
1014         if (select_queue) {
1015                 txq = (skb_rx_queue_recorded(skb)
1016                         ? skb_get_rx_queue(skb)
1017                         : smp_processor_id());
1018
1019                 while (unlikely(txq >= dev->real_num_tx_queues))
1020                         txq -= dev->real_num_tx_queues;
1021
1022                 return txq;
1023         }
1024
1025         return fallback(dev, skb, NULL) % dev->real_num_tx_queues;
1026 }
1027
1028 static int closest_timer(const struct sge *s, int time)
1029 {
1030         int i, delta, match = 0, min_delta = INT_MAX;
1031
1032         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1033                 delta = time - s->timer_val[i];
1034                 if (delta < 0)
1035                         delta = -delta;
1036                 if (delta < min_delta) {
1037                         min_delta = delta;
1038                         match = i;
1039                 }
1040         }
1041         return match;
1042 }
1043
1044 static int closest_thres(const struct sge *s, int thres)
1045 {
1046         int i, delta, match = 0, min_delta = INT_MAX;
1047
1048         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1049                 delta = thres - s->counter_val[i];
1050                 if (delta < 0)
1051                         delta = -delta;
1052                 if (delta < min_delta) {
1053                         min_delta = delta;
1054                         match = i;
1055                 }
1056         }
1057         return match;
1058 }
1059
1060 /**
1061  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1062  *      @q: the Rx queue
1063  *      @us: the hold-off time in us, or 0 to disable timer
1064  *      @cnt: the hold-off packet count, or 0 to disable counter
1065  *
1066  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1067  *      one of the two needs to be enabled for the queue to generate interrupts.
1068  */
1069 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1070                                unsigned int us, unsigned int cnt)
1071 {
1072         struct adapter *adap = q->adap;
1073
1074         if ((us | cnt) == 0)
1075                 cnt = 1;
1076
1077         if (cnt) {
1078                 int err;
1079                 u32 v, new_idx;
1080
1081                 new_idx = closest_thres(&adap->sge, cnt);
1082                 if (q->desc && q->pktcnt_idx != new_idx) {
1083                         /* the queue has already been created, update it */
1084                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1085                             FW_PARAMS_PARAM_X_V(
1086                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1087                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1088                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1089                                             &v, &new_idx);
1090                         if (err)
1091                                 return err;
1092                 }
1093                 q->pktcnt_idx = new_idx;
1094         }
1095
1096         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1097         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1098         return 0;
1099 }
1100
1101 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1102 {
1103         const struct port_info *pi = netdev_priv(dev);
1104         netdev_features_t changed = dev->features ^ features;
1105         int err;
1106
1107         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1108                 return 0;
1109
1110         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1111                             -1, -1, -1,
1112                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1113         if (unlikely(err))
1114                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1115         return err;
1116 }
1117
1118 static int setup_debugfs(struct adapter *adap)
1119 {
1120         if (IS_ERR_OR_NULL(adap->debugfs_root))
1121                 return -1;
1122
1123 #ifdef CONFIG_DEBUG_FS
1124         t4_setup_debugfs(adap);
1125 #endif
1126         return 0;
1127 }
1128
1129 /*
1130  * upper-layer driver support
1131  */
1132
1133 /*
1134  * Allocate an active-open TID and set it to the supplied value.
1135  */
1136 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1137 {
1138         int atid = -1;
1139
1140         spin_lock_bh(&t->atid_lock);
1141         if (t->afree) {
1142                 union aopen_entry *p = t->afree;
1143
1144                 atid = (p - t->atid_tab) + t->atid_base;
1145                 t->afree = p->next;
1146                 p->data = data;
1147                 t->atids_in_use++;
1148         }
1149         spin_unlock_bh(&t->atid_lock);
1150         return atid;
1151 }
1152 EXPORT_SYMBOL(cxgb4_alloc_atid);
1153
1154 /*
1155  * Release an active-open TID.
1156  */
1157 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1158 {
1159         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1160
1161         spin_lock_bh(&t->atid_lock);
1162         p->next = t->afree;
1163         t->afree = p;
1164         t->atids_in_use--;
1165         spin_unlock_bh(&t->atid_lock);
1166 }
1167 EXPORT_SYMBOL(cxgb4_free_atid);
1168
1169 /*
1170  * Allocate a server TID and set it to the supplied value.
1171  */
1172 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1173 {
1174         int stid;
1175
1176         spin_lock_bh(&t->stid_lock);
1177         if (family == PF_INET) {
1178                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1179                 if (stid < t->nstids)
1180                         __set_bit(stid, t->stid_bmap);
1181                 else
1182                         stid = -1;
1183         } else {
1184                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1185                 if (stid < 0)
1186                         stid = -1;
1187         }
1188         if (stid >= 0) {
1189                 t->stid_tab[stid].data = data;
1190                 stid += t->stid_base;
1191                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1192                  * This is equivalent to 4 TIDs. With CLIP enabled it
1193                  * needs 2 TIDs.
1194                  */
1195                 if (family == PF_INET6) {
1196                         t->stids_in_use += 2;
1197                         t->v6_stids_in_use += 2;
1198                 } else {
1199                         t->stids_in_use++;
1200                 }
1201         }
1202         spin_unlock_bh(&t->stid_lock);
1203         return stid;
1204 }
1205 EXPORT_SYMBOL(cxgb4_alloc_stid);
1206
1207 /* Allocate a server filter TID and set it to the supplied value.
1208  */
1209 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1210 {
1211         int stid;
1212
1213         spin_lock_bh(&t->stid_lock);
1214         if (family == PF_INET) {
1215                 stid = find_next_zero_bit(t->stid_bmap,
1216                                 t->nstids + t->nsftids, t->nstids);
1217                 if (stid < (t->nstids + t->nsftids))
1218                         __set_bit(stid, t->stid_bmap);
1219                 else
1220                         stid = -1;
1221         } else {
1222                 stid = -1;
1223         }
1224         if (stid >= 0) {
1225                 t->stid_tab[stid].data = data;
1226                 stid -= t->nstids;
1227                 stid += t->sftid_base;
1228                 t->sftids_in_use++;
1229         }
1230         spin_unlock_bh(&t->stid_lock);
1231         return stid;
1232 }
1233 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1234
1235 /* Release a server TID.
1236  */
1237 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1238 {
1239         /* Is it a server filter TID? */
1240         if (t->nsftids && (stid >= t->sftid_base)) {
1241                 stid -= t->sftid_base;
1242                 stid += t->nstids;
1243         } else {
1244                 stid -= t->stid_base;
1245         }
1246
1247         spin_lock_bh(&t->stid_lock);
1248         if (family == PF_INET)
1249                 __clear_bit(stid, t->stid_bmap);
1250         else
1251                 bitmap_release_region(t->stid_bmap, stid, 1);
1252         t->stid_tab[stid].data = NULL;
1253         if (stid < t->nstids) {
1254                 if (family == PF_INET6) {
1255                         t->stids_in_use -= 2;
1256                         t->v6_stids_in_use -= 2;
1257                 } else {
1258                         t->stids_in_use--;
1259                 }
1260         } else {
1261                 t->sftids_in_use--;
1262         }
1263
1264         spin_unlock_bh(&t->stid_lock);
1265 }
1266 EXPORT_SYMBOL(cxgb4_free_stid);
1267
1268 /*
1269  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1270  */
1271 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1272                            unsigned int tid)
1273 {
1274         struct cpl_tid_release *req;
1275
1276         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1277         req = __skb_put(skb, sizeof(*req));
1278         INIT_TP_WR(req, tid);
1279         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1280 }
1281
1282 /*
1283  * Queue a TID release request and if necessary schedule a work queue to
1284  * process it.
1285  */
1286 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1287                                     unsigned int tid)
1288 {
1289         void **p = &t->tid_tab[tid];
1290         struct adapter *adap = container_of(t, struct adapter, tids);
1291
1292         spin_lock_bh(&adap->tid_release_lock);
1293         *p = adap->tid_release_head;
1294         /* Low 2 bits encode the Tx channel number */
1295         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1296         if (!adap->tid_release_task_busy) {
1297                 adap->tid_release_task_busy = true;
1298                 queue_work(adap->workq, &adap->tid_release_task);
1299         }
1300         spin_unlock_bh(&adap->tid_release_lock);
1301 }
1302
1303 /*
1304  * Process the list of pending TID release requests.
1305  */
1306 static void process_tid_release_list(struct work_struct *work)
1307 {
1308         struct sk_buff *skb;
1309         struct adapter *adap;
1310
1311         adap = container_of(work, struct adapter, tid_release_task);
1312
1313         spin_lock_bh(&adap->tid_release_lock);
1314         while (adap->tid_release_head) {
1315                 void **p = adap->tid_release_head;
1316                 unsigned int chan = (uintptr_t)p & 3;
1317                 p = (void *)p - chan;
1318
1319                 adap->tid_release_head = *p;
1320                 *p = NULL;
1321                 spin_unlock_bh(&adap->tid_release_lock);
1322
1323                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1324                                          GFP_KERNEL)))
1325                         schedule_timeout_uninterruptible(1);
1326
1327                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1328                 t4_ofld_send(adap, skb);
1329                 spin_lock_bh(&adap->tid_release_lock);
1330         }
1331         adap->tid_release_task_busy = false;
1332         spin_unlock_bh(&adap->tid_release_lock);
1333 }
1334
1335 /*
1336  * Release a TID and inform HW.  If we are unable to allocate the release
1337  * message we defer to a work queue.
1338  */
1339 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1340                       unsigned short family)
1341 {
1342         struct sk_buff *skb;
1343         struct adapter *adap = container_of(t, struct adapter, tids);
1344
1345         WARN_ON(tid >= t->ntids);
1346
1347         if (t->tid_tab[tid]) {
1348                 t->tid_tab[tid] = NULL;
1349                 atomic_dec(&t->conns_in_use);
1350                 if (t->hash_base && (tid >= t->hash_base)) {
1351                         if (family == AF_INET6)
1352                                 atomic_sub(2, &t->hash_tids_in_use);
1353                         else
1354                                 atomic_dec(&t->hash_tids_in_use);
1355                 } else {
1356                         if (family == AF_INET6)
1357                                 atomic_sub(2, &t->tids_in_use);
1358                         else
1359                                 atomic_dec(&t->tids_in_use);
1360                 }
1361         }
1362
1363         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1364         if (likely(skb)) {
1365                 mk_tid_release(skb, chan, tid);
1366                 t4_ofld_send(adap, skb);
1367         } else
1368                 cxgb4_queue_tid_release(t, chan, tid);
1369 }
1370 EXPORT_SYMBOL(cxgb4_remove_tid);
1371
1372 /*
1373  * Allocate and initialize the TID tables.  Returns 0 on success.
1374  */
1375 static int tid_init(struct tid_info *t)
1376 {
1377         struct adapter *adap = container_of(t, struct adapter, tids);
1378         unsigned int max_ftids = t->nftids + t->nsftids;
1379         unsigned int natids = t->natids;
1380         unsigned int stid_bmap_size;
1381         unsigned int ftid_bmap_size;
1382         size_t size;
1383
1384         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1385         ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1386         size = t->ntids * sizeof(*t->tid_tab) +
1387                natids * sizeof(*t->atid_tab) +
1388                t->nstids * sizeof(*t->stid_tab) +
1389                t->nsftids * sizeof(*t->stid_tab) +
1390                stid_bmap_size * sizeof(long) +
1391                max_ftids * sizeof(*t->ftid_tab) +
1392                ftid_bmap_size * sizeof(long);
1393
1394         t->tid_tab = kvzalloc(size, GFP_KERNEL);
1395         if (!t->tid_tab)
1396                 return -ENOMEM;
1397
1398         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1399         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1400         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1401         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1402         t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1403         spin_lock_init(&t->stid_lock);
1404         spin_lock_init(&t->atid_lock);
1405         spin_lock_init(&t->ftid_lock);
1406
1407         t->stids_in_use = 0;
1408         t->v6_stids_in_use = 0;
1409         t->sftids_in_use = 0;
1410         t->afree = NULL;
1411         t->atids_in_use = 0;
1412         atomic_set(&t->tids_in_use, 0);
1413         atomic_set(&t->conns_in_use, 0);
1414         atomic_set(&t->hash_tids_in_use, 0);
1415
1416         /* Setup the free list for atid_tab and clear the stid bitmap. */
1417         if (natids) {
1418                 while (--natids)
1419                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1420                 t->afree = t->atid_tab;
1421         }
1422
1423         if (is_offload(adap)) {
1424                 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1425                 /* Reserve stid 0 for T4/T5 adapters */
1426                 if (!t->stid_base &&
1427                     CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1428                         __set_bit(0, t->stid_bmap);
1429         }
1430
1431         bitmap_zero(t->ftid_bmap, t->nftids);
1432         return 0;
1433 }
1434
1435 /**
1436  *      cxgb4_create_server - create an IP server
1437  *      @dev: the device
1438  *      @stid: the server TID
1439  *      @sip: local IP address to bind server to
1440  *      @sport: the server's TCP port
1441  *      @queue: queue to direct messages from this server to
1442  *
1443  *      Create an IP server for the given port and address.
1444  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1445  */
1446 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1447                         __be32 sip, __be16 sport, __be16 vlan,
1448                         unsigned int queue)
1449 {
1450         unsigned int chan;
1451         struct sk_buff *skb;
1452         struct adapter *adap;
1453         struct cpl_pass_open_req *req;
1454         int ret;
1455
1456         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1457         if (!skb)
1458                 return -ENOMEM;
1459
1460         adap = netdev2adap(dev);
1461         req = __skb_put(skb, sizeof(*req));
1462         INIT_TP_WR(req, 0);
1463         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1464         req->local_port = sport;
1465         req->peer_port = htons(0);
1466         req->local_ip = sip;
1467         req->peer_ip = htonl(0);
1468         chan = rxq_to_chan(&adap->sge, queue);
1469         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1470         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1471                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1472         ret = t4_mgmt_tx(adap, skb);
1473         return net_xmit_eval(ret);
1474 }
1475 EXPORT_SYMBOL(cxgb4_create_server);
1476
1477 /*      cxgb4_create_server6 - create an IPv6 server
1478  *      @dev: the device
1479  *      @stid: the server TID
1480  *      @sip: local IPv6 address to bind server to
1481  *      @sport: the server's TCP port
1482  *      @queue: queue to direct messages from this server to
1483  *
1484  *      Create an IPv6 server for the given port and address.
1485  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1486  */
1487 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1488                          const struct in6_addr *sip, __be16 sport,
1489                          unsigned int queue)
1490 {
1491         unsigned int chan;
1492         struct sk_buff *skb;
1493         struct adapter *adap;
1494         struct cpl_pass_open_req6 *req;
1495         int ret;
1496
1497         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1498         if (!skb)
1499                 return -ENOMEM;
1500
1501         adap = netdev2adap(dev);
1502         req = __skb_put(skb, sizeof(*req));
1503         INIT_TP_WR(req, 0);
1504         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1505         req->local_port = sport;
1506         req->peer_port = htons(0);
1507         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1508         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1509         req->peer_ip_hi = cpu_to_be64(0);
1510         req->peer_ip_lo = cpu_to_be64(0);
1511         chan = rxq_to_chan(&adap->sge, queue);
1512         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1513         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1514                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1515         ret = t4_mgmt_tx(adap, skb);
1516         return net_xmit_eval(ret);
1517 }
1518 EXPORT_SYMBOL(cxgb4_create_server6);
1519
1520 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1521                         unsigned int queue, bool ipv6)
1522 {
1523         struct sk_buff *skb;
1524         struct adapter *adap;
1525         struct cpl_close_listsvr_req *req;
1526         int ret;
1527
1528         adap = netdev2adap(dev);
1529
1530         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1531         if (!skb)
1532                 return -ENOMEM;
1533
1534         req = __skb_put(skb, sizeof(*req));
1535         INIT_TP_WR(req, 0);
1536         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1537         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1538                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1539         ret = t4_mgmt_tx(adap, skb);
1540         return net_xmit_eval(ret);
1541 }
1542 EXPORT_SYMBOL(cxgb4_remove_server);
1543
1544 /**
1545  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1546  *      @mtus: the HW MTU table
1547  *      @mtu: the target MTU
1548  *      @idx: index of selected entry in the MTU table
1549  *
1550  *      Returns the index and the value in the HW MTU table that is closest to
1551  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1552  *      table, in which case that smallest available value is selected.
1553  */
1554 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1555                             unsigned int *idx)
1556 {
1557         unsigned int i = 0;
1558
1559         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1560                 ++i;
1561         if (idx)
1562                 *idx = i;
1563         return mtus[i];
1564 }
1565 EXPORT_SYMBOL(cxgb4_best_mtu);
1566
1567 /**
1568  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1569  *     @mtus: the HW MTU table
1570  *     @header_size: Header Size
1571  *     @data_size_max: maximum Data Segment Size
1572  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1573  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1574  *
1575  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1576  *     MTU Table based solely on a Maximum MTU parameter, we break that
1577  *     parameter up into a Header Size and Maximum Data Segment Size, and
1578  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1579  *     the Hardware MTU Table which will result in a Data Segment Size with
1580  *     the requested alignment _and_ that MTU isn't "too far" from the
1581  *     closest MTU, then we'll return that rather than the closest MTU.
1582  */
1583 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1584                                     unsigned short header_size,
1585                                     unsigned short data_size_max,
1586                                     unsigned short data_size_align,
1587                                     unsigned int *mtu_idxp)
1588 {
1589         unsigned short max_mtu = header_size + data_size_max;
1590         unsigned short data_size_align_mask = data_size_align - 1;
1591         int mtu_idx, aligned_mtu_idx;
1592
1593         /* Scan the MTU Table till we find an MTU which is larger than our
1594          * Maximum MTU or we reach the end of the table.  Along the way,
1595          * record the last MTU found, if any, which will result in a Data
1596          * Segment Length matching the requested alignment.
1597          */
1598         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1599                 unsigned short data_size = mtus[mtu_idx] - header_size;
1600
1601                 /* If this MTU minus the Header Size would result in a
1602                  * Data Segment Size of the desired alignment, remember it.
1603                  */
1604                 if ((data_size & data_size_align_mask) == 0)
1605                         aligned_mtu_idx = mtu_idx;
1606
1607                 /* If we're not at the end of the Hardware MTU Table and the
1608                  * next element is larger than our Maximum MTU, drop out of
1609                  * the loop.
1610                  */
1611                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1612                         break;
1613         }
1614
1615         /* If we fell out of the loop because we ran to the end of the table,
1616          * then we just have to use the last [largest] entry.
1617          */
1618         if (mtu_idx == NMTUS)
1619                 mtu_idx--;
1620
1621         /* If we found an MTU which resulted in the requested Data Segment
1622          * Length alignment and that's "not far" from the largest MTU which is
1623          * less than or equal to the maximum MTU, then use that.
1624          */
1625         if (aligned_mtu_idx >= 0 &&
1626             mtu_idx - aligned_mtu_idx <= 1)
1627                 mtu_idx = aligned_mtu_idx;
1628
1629         /* If the caller has passed in an MTU Index pointer, pass the
1630          * MTU Index back.  Return the MTU value.
1631          */
1632         if (mtu_idxp)
1633                 *mtu_idxp = mtu_idx;
1634         return mtus[mtu_idx];
1635 }
1636 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1637
1638 /**
1639  *      cxgb4_port_chan - get the HW channel of a port
1640  *      @dev: the net device for the port
1641  *
1642  *      Return the HW Tx channel of the given port.
1643  */
1644 unsigned int cxgb4_port_chan(const struct net_device *dev)
1645 {
1646         return netdev2pinfo(dev)->tx_chan;
1647 }
1648 EXPORT_SYMBOL(cxgb4_port_chan);
1649
1650 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1651 {
1652         struct adapter *adap = netdev2adap(dev);
1653         u32 v1, v2, lp_count, hp_count;
1654
1655         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1656         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1657         if (is_t4(adap->params.chip)) {
1658                 lp_count = LP_COUNT_G(v1);
1659                 hp_count = HP_COUNT_G(v1);
1660         } else {
1661                 lp_count = LP_COUNT_T5_G(v1);
1662                 hp_count = HP_COUNT_T5_G(v2);
1663         }
1664         return lpfifo ? lp_count : hp_count;
1665 }
1666 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1667
1668 /**
1669  *      cxgb4_port_viid - get the VI id of a port
1670  *      @dev: the net device for the port
1671  *
1672  *      Return the VI id of the given port.
1673  */
1674 unsigned int cxgb4_port_viid(const struct net_device *dev)
1675 {
1676         return netdev2pinfo(dev)->viid;
1677 }
1678 EXPORT_SYMBOL(cxgb4_port_viid);
1679
1680 /**
1681  *      cxgb4_port_idx - get the index of a port
1682  *      @dev: the net device for the port
1683  *
1684  *      Return the index of the given port.
1685  */
1686 unsigned int cxgb4_port_idx(const struct net_device *dev)
1687 {
1688         return netdev2pinfo(dev)->port_id;
1689 }
1690 EXPORT_SYMBOL(cxgb4_port_idx);
1691
1692 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1693                          struct tp_tcp_stats *v6)
1694 {
1695         struct adapter *adap = pci_get_drvdata(pdev);
1696
1697         spin_lock(&adap->stats_lock);
1698         t4_tp_get_tcp_stats(adap, v4, v6, false);
1699         spin_unlock(&adap->stats_lock);
1700 }
1701 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1702
1703 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1704                       const unsigned int *pgsz_order)
1705 {
1706         struct adapter *adap = netdev2adap(dev);
1707
1708         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1709         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1710                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1711                      HPZ3_V(pgsz_order[3]));
1712 }
1713 EXPORT_SYMBOL(cxgb4_iscsi_init);
1714
1715 int cxgb4_flush_eq_cache(struct net_device *dev)
1716 {
1717         struct adapter *adap = netdev2adap(dev);
1718
1719         return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1720 }
1721 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1722
1723 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1724 {
1725         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1726         __be64 indices;
1727         int ret;
1728
1729         spin_lock(&adap->win0_lock);
1730         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1731                            sizeof(indices), (__be32 *)&indices,
1732                            T4_MEMORY_READ);
1733         spin_unlock(&adap->win0_lock);
1734         if (!ret) {
1735                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1736                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1737         }
1738         return ret;
1739 }
1740
1741 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1742                         u16 size)
1743 {
1744         struct adapter *adap = netdev2adap(dev);
1745         u16 hw_pidx, hw_cidx;
1746         int ret;
1747
1748         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1749         if (ret)
1750                 goto out;
1751
1752         if (pidx != hw_pidx) {
1753                 u16 delta;
1754                 u32 val;
1755
1756                 if (pidx >= hw_pidx)
1757                         delta = pidx - hw_pidx;
1758                 else
1759                         delta = size - hw_pidx + pidx;
1760
1761                 if (is_t4(adap->params.chip))
1762                         val = PIDX_V(delta);
1763                 else
1764                         val = PIDX_T5_V(delta);
1765                 wmb();
1766                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1767                              QID_V(qid) | val);
1768         }
1769 out:
1770         return ret;
1771 }
1772 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1773
1774 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1775 {
1776         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1777         u32 edc0_end, edc1_end, mc0_end, mc1_end;
1778         u32 offset, memtype, memaddr;
1779         struct adapter *adap;
1780         u32 hma_size = 0;
1781         int ret;
1782
1783         adap = netdev2adap(dev);
1784
1785         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1786
1787         /* Figure out where the offset lands in the Memory Type/Address scheme.
1788          * This code assumes that the memory is laid out starting at offset 0
1789          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1790          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1791          * MC0, and some have both MC0 and MC1.
1792          */
1793         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1794         edc0_size = EDRAM0_SIZE_G(size) << 20;
1795         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1796         edc1_size = EDRAM1_SIZE_G(size) << 20;
1797         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1798         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1799
1800         if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1801                 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1802                 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1803         }
1804         edc0_end = edc0_size;
1805         edc1_end = edc0_end + edc1_size;
1806         mc0_end = edc1_end + mc0_size;
1807
1808         if (offset < edc0_end) {
1809                 memtype = MEM_EDC0;
1810                 memaddr = offset;
1811         } else if (offset < edc1_end) {
1812                 memtype = MEM_EDC1;
1813                 memaddr = offset - edc0_end;
1814         } else {
1815                 if (hma_size && (offset < (edc1_end + hma_size))) {
1816                         memtype = MEM_HMA;
1817                         memaddr = offset - edc1_end;
1818                 } else if (offset < mc0_end) {
1819                         memtype = MEM_MC0;
1820                         memaddr = offset - edc1_end;
1821                 } else if (is_t5(adap->params.chip)) {
1822                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1823                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1824                         mc1_end = mc0_end + mc1_size;
1825                         if (offset < mc1_end) {
1826                                 memtype = MEM_MC1;
1827                                 memaddr = offset - mc0_end;
1828                         } else {
1829                                 /* offset beyond the end of any memory */
1830                                 goto err;
1831                         }
1832                 } else {
1833                         /* T4/T6 only has a single memory channel */
1834                         goto err;
1835                 }
1836         }
1837
1838         spin_lock(&adap->win0_lock);
1839         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1840         spin_unlock(&adap->win0_lock);
1841         return ret;
1842
1843 err:
1844         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1845                 stag, offset);
1846         return -EINVAL;
1847 }
1848 EXPORT_SYMBOL(cxgb4_read_tpte);
1849
1850 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1851 {
1852         u32 hi, lo;
1853         struct adapter *adap;
1854
1855         adap = netdev2adap(dev);
1856         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1857         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1858
1859         return ((u64)hi << 32) | (u64)lo;
1860 }
1861 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1862
1863 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1864                          unsigned int qid,
1865                          enum cxgb4_bar2_qtype qtype,
1866                          int user,
1867                          u64 *pbar2_qoffset,
1868                          unsigned int *pbar2_qid)
1869 {
1870         return t4_bar2_sge_qregs(netdev2adap(dev),
1871                                  qid,
1872                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
1873                                   ? T4_BAR2_QTYPE_EGRESS
1874                                   : T4_BAR2_QTYPE_INGRESS),
1875                                  user,
1876                                  pbar2_qoffset,
1877                                  pbar2_qid);
1878 }
1879 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1880
1881 static struct pci_driver cxgb4_driver;
1882
1883 static void check_neigh_update(struct neighbour *neigh)
1884 {
1885         const struct device *parent;
1886         const struct net_device *netdev = neigh->dev;
1887
1888         if (is_vlan_dev(netdev))
1889                 netdev = vlan_dev_real_dev(netdev);
1890         parent = netdev->dev.parent;
1891         if (parent && parent->driver == &cxgb4_driver.driver)
1892                 t4_l2t_update(dev_get_drvdata(parent), neigh);
1893 }
1894
1895 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1896                        void *data)
1897 {
1898         switch (event) {
1899         case NETEVENT_NEIGH_UPDATE:
1900                 check_neigh_update(data);
1901                 break;
1902         case NETEVENT_REDIRECT:
1903         default:
1904                 break;
1905         }
1906         return 0;
1907 }
1908
1909 static bool netevent_registered;
1910 static struct notifier_block cxgb4_netevent_nb = {
1911         .notifier_call = netevent_cb
1912 };
1913
1914 static void drain_db_fifo(struct adapter *adap, int usecs)
1915 {
1916         u32 v1, v2, lp_count, hp_count;
1917
1918         do {
1919                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1920                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1921                 if (is_t4(adap->params.chip)) {
1922                         lp_count = LP_COUNT_G(v1);
1923                         hp_count = HP_COUNT_G(v1);
1924                 } else {
1925                         lp_count = LP_COUNT_T5_G(v1);
1926                         hp_count = HP_COUNT_T5_G(v2);
1927                 }
1928
1929                 if (lp_count == 0 && hp_count == 0)
1930                         break;
1931                 set_current_state(TASK_UNINTERRUPTIBLE);
1932                 schedule_timeout(usecs_to_jiffies(usecs));
1933         } while (1);
1934 }
1935
1936 static void disable_txq_db(struct sge_txq *q)
1937 {
1938         unsigned long flags;
1939
1940         spin_lock_irqsave(&q->db_lock, flags);
1941         q->db_disabled = 1;
1942         spin_unlock_irqrestore(&q->db_lock, flags);
1943 }
1944
1945 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1946 {
1947         spin_lock_irq(&q->db_lock);
1948         if (q->db_pidx_inc) {
1949                 /* Make sure that all writes to the TX descriptors
1950                  * are committed before we tell HW about them.
1951                  */
1952                 wmb();
1953                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1954                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1955                 q->db_pidx_inc = 0;
1956         }
1957         q->db_disabled = 0;
1958         spin_unlock_irq(&q->db_lock);
1959 }
1960
1961 static void disable_dbs(struct adapter *adap)
1962 {
1963         int i;
1964
1965         for_each_ethrxq(&adap->sge, i)
1966                 disable_txq_db(&adap->sge.ethtxq[i].q);
1967         if (is_offload(adap)) {
1968                 struct sge_uld_txq_info *txq_info =
1969                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1970
1971                 if (txq_info) {
1972                         for_each_ofldtxq(&adap->sge, i) {
1973                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1974
1975                                 disable_txq_db(&txq->q);
1976                         }
1977                 }
1978         }
1979         for_each_port(adap, i)
1980                 disable_txq_db(&adap->sge.ctrlq[i].q);
1981 }
1982
1983 static void enable_dbs(struct adapter *adap)
1984 {
1985         int i;
1986
1987         for_each_ethrxq(&adap->sge, i)
1988                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1989         if (is_offload(adap)) {
1990                 struct sge_uld_txq_info *txq_info =
1991                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1992
1993                 if (txq_info) {
1994                         for_each_ofldtxq(&adap->sge, i) {
1995                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1996
1997                                 enable_txq_db(adap, &txq->q);
1998                         }
1999                 }
2000         }
2001         for_each_port(adap, i)
2002                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2003 }
2004
2005 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2006 {
2007         enum cxgb4_uld type = CXGB4_ULD_RDMA;
2008
2009         if (adap->uld && adap->uld[type].handle)
2010                 adap->uld[type].control(adap->uld[type].handle, cmd);
2011 }
2012
2013 static void process_db_full(struct work_struct *work)
2014 {
2015         struct adapter *adap;
2016
2017         adap = container_of(work, struct adapter, db_full_task);
2018
2019         drain_db_fifo(adap, dbfifo_drain_delay);
2020         enable_dbs(adap);
2021         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2022         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2023                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2024                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2025                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2026         else
2027                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2028                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2029 }
2030
2031 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2032 {
2033         u16 hw_pidx, hw_cidx;
2034         int ret;
2035
2036         spin_lock_irq(&q->db_lock);
2037         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2038         if (ret)
2039                 goto out;
2040         if (q->db_pidx != hw_pidx) {
2041                 u16 delta;
2042                 u32 val;
2043
2044                 if (q->db_pidx >= hw_pidx)
2045                         delta = q->db_pidx - hw_pidx;
2046                 else
2047                         delta = q->size - hw_pidx + q->db_pidx;
2048
2049                 if (is_t4(adap->params.chip))
2050                         val = PIDX_V(delta);
2051                 else
2052                         val = PIDX_T5_V(delta);
2053                 wmb();
2054                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2055                              QID_V(q->cntxt_id) | val);
2056         }
2057 out:
2058         q->db_disabled = 0;
2059         q->db_pidx_inc = 0;
2060         spin_unlock_irq(&q->db_lock);
2061         if (ret)
2062                 CH_WARN(adap, "DB drop recovery failed.\n");
2063 }
2064
2065 static void recover_all_queues(struct adapter *adap)
2066 {
2067         int i;
2068
2069         for_each_ethrxq(&adap->sge, i)
2070                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2071         if (is_offload(adap)) {
2072                 struct sge_uld_txq_info *txq_info =
2073                         adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2074                 if (txq_info) {
2075                         for_each_ofldtxq(&adap->sge, i) {
2076                                 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2077
2078                                 sync_txq_pidx(adap, &txq->q);
2079                         }
2080                 }
2081         }
2082         for_each_port(adap, i)
2083                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2084 }
2085
2086 static void process_db_drop(struct work_struct *work)
2087 {
2088         struct adapter *adap;
2089
2090         adap = container_of(work, struct adapter, db_drop_task);
2091
2092         if (is_t4(adap->params.chip)) {
2093                 drain_db_fifo(adap, dbfifo_drain_delay);
2094                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2095                 drain_db_fifo(adap, dbfifo_drain_delay);
2096                 recover_all_queues(adap);
2097                 drain_db_fifo(adap, dbfifo_drain_delay);
2098                 enable_dbs(adap);
2099                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2100         } else if (is_t5(adap->params.chip)) {
2101                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2102                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2103                 u16 pidx_inc = dropped_db & 0x1fff;
2104                 u64 bar2_qoffset;
2105                 unsigned int bar2_qid;
2106                 int ret;
2107
2108                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2109                                         0, &bar2_qoffset, &bar2_qid);
2110                 if (ret)
2111                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2112                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2113                 else
2114                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2115                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2116
2117                 /* Re-enable BAR2 WC */
2118                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2119         }
2120
2121         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2122                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2123 }
2124
2125 void t4_db_full(struct adapter *adap)
2126 {
2127         if (is_t4(adap->params.chip)) {
2128                 disable_dbs(adap);
2129                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2130                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2131                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2132                 queue_work(adap->workq, &adap->db_full_task);
2133         }
2134 }
2135
2136 void t4_db_dropped(struct adapter *adap)
2137 {
2138         if (is_t4(adap->params.chip)) {
2139                 disable_dbs(adap);
2140                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2141         }
2142         queue_work(adap->workq, &adap->db_drop_task);
2143 }
2144
2145 void t4_register_netevent_notifier(void)
2146 {
2147         if (!netevent_registered) {
2148                 register_netevent_notifier(&cxgb4_netevent_nb);
2149                 netevent_registered = true;
2150         }
2151 }
2152
2153 static void detach_ulds(struct adapter *adap)
2154 {
2155         unsigned int i;
2156
2157         mutex_lock(&uld_mutex);
2158         list_del(&adap->list_node);
2159
2160         for (i = 0; i < CXGB4_ULD_MAX; i++)
2161                 if (adap->uld && adap->uld[i].handle)
2162                         adap->uld[i].state_change(adap->uld[i].handle,
2163                                              CXGB4_STATE_DETACH);
2164
2165         if (netevent_registered && list_empty(&adapter_list)) {
2166                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2167                 netevent_registered = false;
2168         }
2169         mutex_unlock(&uld_mutex);
2170 }
2171
2172 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2173 {
2174         unsigned int i;
2175
2176         mutex_lock(&uld_mutex);
2177         for (i = 0; i < CXGB4_ULD_MAX; i++)
2178                 if (adap->uld && adap->uld[i].handle)
2179                         adap->uld[i].state_change(adap->uld[i].handle,
2180                                                   new_state);
2181         mutex_unlock(&uld_mutex);
2182 }
2183
2184 #if IS_ENABLED(CONFIG_IPV6)
2185 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2186                                    unsigned long event, void *data)
2187 {
2188         struct inet6_ifaddr *ifa = data;
2189         struct net_device *event_dev = ifa->idev->dev;
2190         const struct device *parent = NULL;
2191 #if IS_ENABLED(CONFIG_BONDING)
2192         struct adapter *adap;
2193 #endif
2194         if (is_vlan_dev(event_dev))
2195                 event_dev = vlan_dev_real_dev(event_dev);
2196 #if IS_ENABLED(CONFIG_BONDING)
2197         if (event_dev->flags & IFF_MASTER) {
2198                 list_for_each_entry(adap, &adapter_list, list_node) {
2199                         switch (event) {
2200                         case NETDEV_UP:
2201                                 cxgb4_clip_get(adap->port[0],
2202                                                (const u32 *)ifa, 1);
2203                                 break;
2204                         case NETDEV_DOWN:
2205                                 cxgb4_clip_release(adap->port[0],
2206                                                    (const u32 *)ifa, 1);
2207                                 break;
2208                         default:
2209                                 break;
2210                         }
2211                 }
2212                 return NOTIFY_OK;
2213         }
2214 #endif
2215
2216         if (event_dev)
2217                 parent = event_dev->dev.parent;
2218
2219         if (parent && parent->driver == &cxgb4_driver.driver) {
2220                 switch (event) {
2221                 case NETDEV_UP:
2222                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2223                         break;
2224                 case NETDEV_DOWN:
2225                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2226                         break;
2227                 default:
2228                         break;
2229                 }
2230         }
2231         return NOTIFY_OK;
2232 }
2233
2234 static bool inet6addr_registered;
2235 static struct notifier_block cxgb4_inet6addr_notifier = {
2236         .notifier_call = cxgb4_inet6addr_handler
2237 };
2238
2239 static void update_clip(const struct adapter *adap)
2240 {
2241         int i;
2242         struct net_device *dev;
2243         int ret;
2244
2245         rcu_read_lock();
2246
2247         for (i = 0; i < MAX_NPORTS; i++) {
2248                 dev = adap->port[i];
2249                 ret = 0;
2250
2251                 if (dev)
2252                         ret = cxgb4_update_root_dev_clip(dev);
2253
2254                 if (ret < 0)
2255                         break;
2256         }
2257         rcu_read_unlock();
2258 }
2259 #endif /* IS_ENABLED(CONFIG_IPV6) */
2260
2261 /**
2262  *      cxgb_up - enable the adapter
2263  *      @adap: adapter being enabled
2264  *
2265  *      Called when the first port is enabled, this function performs the
2266  *      actions necessary to make an adapter operational, such as completing
2267  *      the initialization of HW modules, and enabling interrupts.
2268  *
2269  *      Must be called with the rtnl lock held.
2270  */
2271 static int cxgb_up(struct adapter *adap)
2272 {
2273         int err;
2274
2275         mutex_lock(&uld_mutex);
2276         err = setup_sge_queues(adap);
2277         if (err)
2278                 goto rel_lock;
2279         err = setup_rss(adap);
2280         if (err)
2281                 goto freeq;
2282
2283         if (adap->flags & CXGB4_USING_MSIX) {
2284                 name_msix_vecs(adap);
2285                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2286                                   adap->msix_info[0].desc, adap);
2287                 if (err)
2288                         goto irq_err;
2289                 err = request_msix_queue_irqs(adap);
2290                 if (err) {
2291                         free_irq(adap->msix_info[0].vec, adap);
2292                         goto irq_err;
2293                 }
2294         } else {
2295                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2296                                   (adap->flags & CXGB4_USING_MSI) ? 0
2297                                                                   : IRQF_SHARED,
2298                                   adap->port[0]->name, adap);
2299                 if (err)
2300                         goto irq_err;
2301         }
2302
2303         enable_rx(adap);
2304         t4_sge_start(adap);
2305         t4_intr_enable(adap);
2306         adap->flags |= CXGB4_FULL_INIT_DONE;
2307         mutex_unlock(&uld_mutex);
2308
2309         notify_ulds(adap, CXGB4_STATE_UP);
2310 #if IS_ENABLED(CONFIG_IPV6)
2311         update_clip(adap);
2312 #endif
2313         return err;
2314
2315  irq_err:
2316         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2317  freeq:
2318         t4_free_sge_resources(adap);
2319  rel_lock:
2320         mutex_unlock(&uld_mutex);
2321         return err;
2322 }
2323
2324 static void cxgb_down(struct adapter *adapter)
2325 {
2326         cancel_work_sync(&adapter->tid_release_task);
2327         cancel_work_sync(&adapter->db_full_task);
2328         cancel_work_sync(&adapter->db_drop_task);
2329         adapter->tid_release_task_busy = false;
2330         adapter->tid_release_head = NULL;
2331
2332         t4_sge_stop(adapter);
2333         t4_free_sge_resources(adapter);
2334
2335         adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2336 }
2337
2338 /*
2339  * net_device operations
2340  */
2341 static int cxgb_open(struct net_device *dev)
2342 {
2343         int err;
2344         struct port_info *pi = netdev_priv(dev);
2345         struct adapter *adapter = pi->adapter;
2346
2347         netif_carrier_off(dev);
2348
2349         if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2350                 err = cxgb_up(adapter);
2351                 if (err < 0)
2352                         return err;
2353         }
2354
2355         /* It's possible that the basic port information could have
2356          * changed since we first read it.
2357          */
2358         err = t4_update_port_info(pi);
2359         if (err < 0)
2360                 return err;
2361
2362         err = link_start(dev);
2363         if (!err)
2364                 netif_tx_start_all_queues(dev);
2365         return err;
2366 }
2367
2368 static int cxgb_close(struct net_device *dev)
2369 {
2370         struct port_info *pi = netdev_priv(dev);
2371         struct adapter *adapter = pi->adapter;
2372         int ret;
2373
2374         netif_tx_stop_all_queues(dev);
2375         netif_carrier_off(dev);
2376         ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2377                                   false, false, false);
2378 #ifdef CONFIG_CHELSIO_T4_DCB
2379         cxgb4_dcb_reset(dev);
2380         dcb_tx_queue_prio_enable(dev, false);
2381 #endif
2382         return ret;
2383 }
2384
2385 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2386                 __be32 sip, __be16 sport, __be16 vlan,
2387                 unsigned int queue, unsigned char port, unsigned char mask)
2388 {
2389         int ret;
2390         struct filter_entry *f;
2391         struct adapter *adap;
2392         int i;
2393         u8 *val;
2394
2395         adap = netdev2adap(dev);
2396
2397         /* Adjust stid to correct filter index */
2398         stid -= adap->tids.sftid_base;
2399         stid += adap->tids.nftids;
2400
2401         /* Check to make sure the filter requested is writable ...
2402          */
2403         f = &adap->tids.ftid_tab[stid];
2404         ret = writable_filter(f);
2405         if (ret)
2406                 return ret;
2407
2408         /* Clear out any old resources being used by the filter before
2409          * we start constructing the new filter.
2410          */
2411         if (f->valid)
2412                 clear_filter(adap, f);
2413
2414         /* Clear out filter specifications */
2415         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2416         f->fs.val.lport = cpu_to_be16(sport);
2417         f->fs.mask.lport  = ~0;
2418         val = (u8 *)&sip;
2419         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2420                 for (i = 0; i < 4; i++) {
2421                         f->fs.val.lip[i] = val[i];
2422                         f->fs.mask.lip[i] = ~0;
2423                 }
2424                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2425                         f->fs.val.iport = port;
2426                         f->fs.mask.iport = mask;
2427                 }
2428         }
2429
2430         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2431                 f->fs.val.proto = IPPROTO_TCP;
2432                 f->fs.mask.proto = ~0;
2433         }
2434
2435         f->fs.dirsteer = 1;
2436         f->fs.iq = queue;
2437         /* Mark filter as locked */
2438         f->locked = 1;
2439         f->fs.rpttid = 1;
2440
2441         /* Save the actual tid. We need this to get the corresponding
2442          * filter entry structure in filter_rpl.
2443          */
2444         f->tid = stid + adap->tids.ftid_base;
2445         ret = set_filter_wr(adap, stid);
2446         if (ret) {
2447                 clear_filter(adap, f);
2448                 return ret;
2449         }
2450
2451         return 0;
2452 }
2453 EXPORT_SYMBOL(cxgb4_create_server_filter);
2454
2455 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2456                 unsigned int queue, bool ipv6)
2457 {
2458         struct filter_entry *f;
2459         struct adapter *adap;
2460
2461         adap = netdev2adap(dev);
2462
2463         /* Adjust stid to correct filter index */
2464         stid -= adap->tids.sftid_base;
2465         stid += adap->tids.nftids;
2466
2467         f = &adap->tids.ftid_tab[stid];
2468         /* Unlock the filter */
2469         f->locked = 0;
2470
2471         return delete_filter(adap, stid);
2472 }
2473 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2474
2475 static void cxgb_get_stats(struct net_device *dev,
2476                            struct rtnl_link_stats64 *ns)
2477 {
2478         struct port_stats stats;
2479         struct port_info *p = netdev_priv(dev);
2480         struct adapter *adapter = p->adapter;
2481
2482         /* Block retrieving statistics during EEH error
2483          * recovery. Otherwise, the recovery might fail
2484          * and the PCI device will be removed permanently
2485          */
2486         spin_lock(&adapter->stats_lock);
2487         if (!netif_device_present(dev)) {
2488                 spin_unlock(&adapter->stats_lock);
2489                 return;
2490         }
2491         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2492                                  &p->stats_base);
2493         spin_unlock(&adapter->stats_lock);
2494
2495         ns->tx_bytes   = stats.tx_octets;
2496         ns->tx_packets = stats.tx_frames;
2497         ns->rx_bytes   = stats.rx_octets;
2498         ns->rx_packets = stats.rx_frames;
2499         ns->multicast  = stats.rx_mcast_frames;
2500
2501         /* detailed rx_errors */
2502         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2503                                stats.rx_runt;
2504         ns->rx_over_errors   = 0;
2505         ns->rx_crc_errors    = stats.rx_fcs_err;
2506         ns->rx_frame_errors  = stats.rx_symbol_err;
2507         ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2508                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2509                                stats.rx_trunc0 + stats.rx_trunc1 +
2510                                stats.rx_trunc2 + stats.rx_trunc3;
2511         ns->rx_missed_errors = 0;
2512
2513         /* detailed tx_errors */
2514         ns->tx_aborted_errors   = 0;
2515         ns->tx_carrier_errors   = 0;
2516         ns->tx_fifo_errors      = 0;
2517         ns->tx_heartbeat_errors = 0;
2518         ns->tx_window_errors    = 0;
2519
2520         ns->tx_errors = stats.tx_error_frames;
2521         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2522                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2523 }
2524
2525 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2526 {
2527         unsigned int mbox;
2528         int ret = 0, prtad, devad;
2529         struct port_info *pi = netdev_priv(dev);
2530         struct adapter *adapter = pi->adapter;
2531         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2532
2533         switch (cmd) {
2534         case SIOCGMIIPHY:
2535                 if (pi->mdio_addr < 0)
2536                         return -EOPNOTSUPP;
2537                 data->phy_id = pi->mdio_addr;
2538                 break;
2539         case SIOCGMIIREG:
2540         case SIOCSMIIREG:
2541                 if (mdio_phy_id_is_c45(data->phy_id)) {
2542                         prtad = mdio_phy_id_prtad(data->phy_id);
2543                         devad = mdio_phy_id_devad(data->phy_id);
2544                 } else if (data->phy_id < 32) {
2545                         prtad = data->phy_id;
2546                         devad = 0;
2547                         data->reg_num &= 0x1f;
2548                 } else
2549                         return -EINVAL;
2550
2551                 mbox = pi->adapter->pf;
2552                 if (cmd == SIOCGMIIREG)
2553                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2554                                          data->reg_num, &data->val_out);
2555                 else
2556                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2557                                          data->reg_num, data->val_in);
2558                 break;
2559         case SIOCGHWTSTAMP:
2560                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2561                                     sizeof(pi->tstamp_config)) ?
2562                         -EFAULT : 0;
2563         case SIOCSHWTSTAMP:
2564                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2565                                    sizeof(pi->tstamp_config)))
2566                         return -EFAULT;
2567
2568                 if (!is_t4(adapter->params.chip)) {
2569                         switch (pi->tstamp_config.tx_type) {
2570                         case HWTSTAMP_TX_OFF:
2571                         case HWTSTAMP_TX_ON:
2572                                 break;
2573                         default:
2574                                 return -ERANGE;
2575                         }
2576
2577                         switch (pi->tstamp_config.rx_filter) {
2578                         case HWTSTAMP_FILTER_NONE:
2579                                 pi->rxtstamp = false;
2580                                 break;
2581                         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2582                         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2583                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2584                                                          PTP_TS_L4);
2585                                 break;
2586                         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2587                                 cxgb4_ptprx_timestamping(pi, pi->port_id,
2588                                                          PTP_TS_L2_L4);
2589                                 break;
2590                         case HWTSTAMP_FILTER_ALL:
2591                         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2592                         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2593                         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2594                         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2595                                 pi->rxtstamp = true;
2596                                 break;
2597                         default:
2598                                 pi->tstamp_config.rx_filter =
2599                                         HWTSTAMP_FILTER_NONE;
2600                                 return -ERANGE;
2601                         }
2602
2603                         if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2604                             (pi->tstamp_config.rx_filter ==
2605                                 HWTSTAMP_FILTER_NONE)) {
2606                                 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2607                                         pi->ptp_enable = false;
2608                         }
2609
2610                         if (pi->tstamp_config.rx_filter !=
2611                                 HWTSTAMP_FILTER_NONE) {
2612                                 if (cxgb4_ptp_redirect_rx_packet(adapter,
2613                                                                  pi) >= 0)
2614                                         pi->ptp_enable = true;
2615                         }
2616                 } else {
2617                         /* For T4 Adapters */
2618                         switch (pi->tstamp_config.rx_filter) {
2619                         case HWTSTAMP_FILTER_NONE:
2620                         pi->rxtstamp = false;
2621                         break;
2622                         case HWTSTAMP_FILTER_ALL:
2623                         pi->rxtstamp = true;
2624                         break;
2625                         default:
2626                         pi->tstamp_config.rx_filter =
2627                         HWTSTAMP_FILTER_NONE;
2628                         return -ERANGE;
2629                         }
2630                 }
2631                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2632                                     sizeof(pi->tstamp_config)) ?
2633                         -EFAULT : 0;
2634         default:
2635                 return -EOPNOTSUPP;
2636         }
2637         return ret;
2638 }
2639
2640 static void cxgb_set_rxmode(struct net_device *dev)
2641 {
2642         /* unfortunately we can't return errors to the stack */
2643         set_rxmode(dev, -1, false);
2644 }
2645
2646 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2647 {
2648         int ret;
2649         struct port_info *pi = netdev_priv(dev);
2650
2651         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2652                             -1, -1, -1, true);
2653         if (!ret)
2654                 dev->mtu = new_mtu;
2655         return ret;
2656 }
2657
2658 #ifdef CONFIG_PCI_IOV
2659 static int cxgb4_mgmt_open(struct net_device *dev)
2660 {
2661         /* Turn carrier off since we don't have to transmit anything on this
2662          * interface.
2663          */
2664         netif_carrier_off(dev);
2665         return 0;
2666 }
2667
2668 /* Fill MAC address that will be assigned by the FW */
2669 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2670 {
2671         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2672         unsigned int i, vf, nvfs;
2673         u16 a, b;
2674         int err;
2675         u8 *na;
2676
2677         adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2678                                                             PCI_CAP_ID_VPD);
2679         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2680         if (err)
2681                 return;
2682
2683         na = adap->params.vpd.na;
2684         for (i = 0; i < ETH_ALEN; i++)
2685                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2686                               hex2val(na[2 * i + 1]));
2687
2688         a = (hw_addr[0] << 8) | hw_addr[1];
2689         b = (hw_addr[1] << 8) | hw_addr[2];
2690         a ^= b;
2691         a |= 0x0200;    /* locally assigned Ethernet MAC address */
2692         a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2693         macaddr[0] = a >> 8;
2694         macaddr[1] = a & 0xff;
2695
2696         for (i = 2; i < 5; i++)
2697                 macaddr[i] = hw_addr[i + 1];
2698
2699         for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2700                 vf < nvfs; vf++) {
2701                 macaddr[5] = adap->pf * nvfs + vf;
2702                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2703         }
2704 }
2705
2706 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2707 {
2708         struct port_info *pi = netdev_priv(dev);
2709         struct adapter *adap = pi->adapter;
2710         int ret;
2711
2712         /* verify MAC addr is valid */
2713         if (!is_valid_ether_addr(mac)) {
2714                 dev_err(pi->adapter->pdev_dev,
2715                         "Invalid Ethernet address %pM for VF %d\n",
2716                         mac, vf);
2717                 return -EINVAL;
2718         }
2719
2720         dev_info(pi->adapter->pdev_dev,
2721                  "Setting MAC %pM on VF %d\n", mac, vf);
2722         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2723         if (!ret)
2724                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2725         return ret;
2726 }
2727
2728 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2729                                     int vf, struct ifla_vf_info *ivi)
2730 {
2731         struct port_info *pi = netdev_priv(dev);
2732         struct adapter *adap = pi->adapter;
2733         struct vf_info *vfinfo;
2734
2735         if (vf >= adap->num_vfs)
2736                 return -EINVAL;
2737         vfinfo = &adap->vfinfo[vf];
2738
2739         ivi->vf = vf;
2740         ivi->max_tx_rate = vfinfo->tx_rate;
2741         ivi->min_tx_rate = 0;
2742         ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2743         ivi->vlan = vfinfo->vlan;
2744         ivi->linkstate = vfinfo->link_state;
2745         return 0;
2746 }
2747
2748 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2749                                        struct netdev_phys_item_id *ppid)
2750 {
2751         struct port_info *pi = netdev_priv(dev);
2752         unsigned int phy_port_id;
2753
2754         phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2755         ppid->id_len = sizeof(phy_port_id);
2756         memcpy(ppid->id, &phy_port_id, ppid->id_len);
2757         return 0;
2758 }
2759
2760 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2761                                   int min_tx_rate, int max_tx_rate)
2762 {
2763         struct port_info *pi = netdev_priv(dev);
2764         struct adapter *adap = pi->adapter;
2765         unsigned int link_ok, speed, mtu;
2766         u32 fw_pfvf, fw_class;
2767         int class_id = vf;
2768         int ret;
2769         u16 pktsize;
2770
2771         if (vf >= adap->num_vfs)
2772                 return -EINVAL;
2773
2774         if (min_tx_rate) {
2775                 dev_err(adap->pdev_dev,
2776                         "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2777                         min_tx_rate, vf);
2778                 return -EINVAL;
2779         }
2780
2781         if (max_tx_rate == 0) {
2782                 /* unbind VF to to any Traffic Class */
2783                 fw_pfvf =
2784                     (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2785                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2786                 fw_class = 0xffffffff;
2787                 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2788                                     &fw_pfvf, &fw_class);
2789                 if (ret) {
2790                         dev_err(adap->pdev_dev,
2791                                 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2792                                 ret, adap->pf, vf);
2793                         return -EINVAL;
2794                 }
2795                 dev_info(adap->pdev_dev,
2796                          "PF %d VF %d is unbound from TX Rate Limiting\n",
2797                          adap->pf, vf);
2798                 adap->vfinfo[vf].tx_rate = 0;
2799                 return 0;
2800         }
2801
2802         ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2803         if (ret != FW_SUCCESS) {
2804                 dev_err(adap->pdev_dev,
2805                         "Failed to get link information for VF %d\n", vf);
2806                 return -EINVAL;
2807         }
2808
2809         if (!link_ok) {
2810                 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2811                 return -EINVAL;
2812         }
2813
2814         if (max_tx_rate > speed) {
2815                 dev_err(adap->pdev_dev,
2816                         "Max tx rate %d for VF %d can't be > link-speed %u",
2817                         max_tx_rate, vf, speed);
2818                 return -EINVAL;
2819         }
2820
2821         pktsize = mtu;
2822         /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2823         pktsize = pktsize - sizeof(struct ethhdr) - 4;
2824         /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2825         pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2826         /* configure Traffic Class for rate-limiting */
2827         ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2828                               SCHED_CLASS_LEVEL_CL_RL,
2829                               SCHED_CLASS_MODE_CLASS,
2830                               SCHED_CLASS_RATEUNIT_BITS,
2831                               SCHED_CLASS_RATEMODE_ABS,
2832                               pi->tx_chan, class_id, 0,
2833                               max_tx_rate * 1000, 0, pktsize);
2834         if (ret) {
2835                 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2836                         ret);
2837                 return -EINVAL;
2838         }
2839         dev_info(adap->pdev_dev,
2840                  "Class %d with MSS %u configured with rate %u\n",
2841                  class_id, pktsize, max_tx_rate);
2842
2843         /* bind VF to configured Traffic Class */
2844         fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2845                    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2846         fw_class = class_id;
2847         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2848                             &fw_class);
2849         if (ret) {
2850                 dev_err(adap->pdev_dev,
2851                         "Err %d in binding PF %d VF %d to Traffic Class %d\n",
2852                         ret, adap->pf, vf, class_id);
2853                 return -EINVAL;
2854         }
2855         dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2856                  adap->pf, vf, class_id);
2857         adap->vfinfo[vf].tx_rate = max_tx_rate;
2858         return 0;
2859 }
2860
2861 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2862                                   u16 vlan, u8 qos, __be16 vlan_proto)
2863 {
2864         struct port_info *pi = netdev_priv(dev);
2865         struct adapter *adap = pi->adapter;
2866         int ret;
2867
2868         if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2869                 return -EINVAL;
2870
2871         if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2872                 return -EPROTONOSUPPORT;
2873
2874         ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2875         if (!ret) {
2876                 adap->vfinfo[vf].vlan = vlan;
2877                 return 0;
2878         }
2879
2880         dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2881                 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2882         return ret;
2883 }
2884
2885 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
2886                                         int link)
2887 {
2888         struct port_info *pi = netdev_priv(dev);
2889         struct adapter *adap = pi->adapter;
2890         u32 param, val;
2891         int ret = 0;
2892
2893         if (vf >= adap->num_vfs)
2894                 return -EINVAL;
2895
2896         switch (link) {
2897         case IFLA_VF_LINK_STATE_AUTO:
2898                 val = FW_VF_LINK_STATE_AUTO;
2899                 break;
2900
2901         case IFLA_VF_LINK_STATE_ENABLE:
2902                 val = FW_VF_LINK_STATE_ENABLE;
2903                 break;
2904
2905         case IFLA_VF_LINK_STATE_DISABLE:
2906                 val = FW_VF_LINK_STATE_DISABLE;
2907                 break;
2908
2909         default:
2910                 return -EINVAL;
2911         }
2912
2913         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2914                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
2915         ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2916                             &param, &val);
2917         if (ret) {
2918                 dev_err(adap->pdev_dev,
2919                         "Error %d in setting PF %d VF %d link state\n",
2920                         ret, adap->pf, vf);
2921                 return -EINVAL;
2922         }
2923
2924         adap->vfinfo[vf].link_state = link;
2925         return ret;
2926 }
2927 #endif /* CONFIG_PCI_IOV */
2928
2929 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2930 {
2931         int ret;
2932         struct sockaddr *addr = p;
2933         struct port_info *pi = netdev_priv(dev);
2934
2935         if (!is_valid_ether_addr(addr->sa_data))
2936                 return -EADDRNOTAVAIL;
2937
2938         ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt,
2939                                addr->sa_data, true, &pi->smt_idx);
2940         if (ret < 0)
2941                 return ret;
2942
2943         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2944         pi->xact_addr_filt = ret;
2945         return 0;
2946 }
2947
2948 #ifdef CONFIG_NET_POLL_CONTROLLER
2949 static void cxgb_netpoll(struct net_device *dev)
2950 {
2951         struct port_info *pi = netdev_priv(dev);
2952         struct adapter *adap = pi->adapter;
2953
2954         if (adap->flags & CXGB4_USING_MSIX) {
2955                 int i;
2956                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2957
2958                 for (i = pi->nqsets; i; i--, rx++)
2959                         t4_sge_intr_msix(0, &rx->rspq);
2960         } else
2961                 t4_intr_handler(adap)(0, adap);
2962 }
2963 #endif
2964
2965 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2966 {
2967         struct port_info *pi = netdev_priv(dev);
2968         struct adapter *adap = pi->adapter;
2969         struct sched_class *e;
2970         struct ch_sched_params p;
2971         struct ch_sched_queue qe;
2972         u32 req_rate;
2973         int err = 0;
2974
2975         if (!can_sched(dev))
2976                 return -ENOTSUPP;
2977
2978         if (index < 0 || index > pi->nqsets - 1)
2979                 return -EINVAL;
2980
2981         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
2982                 dev_err(adap->pdev_dev,
2983                         "Failed to rate limit on queue %d. Link Down?\n",
2984                         index);
2985                 return -EINVAL;
2986         }
2987
2988         /* Convert from Mbps to Kbps */
2989         req_rate = rate * 1000;
2990
2991         /* Max rate is 100 Gbps */
2992         if (req_rate > SCHED_MAX_RATE_KBPS) {
2993                 dev_err(adap->pdev_dev,
2994                         "Invalid rate %u Mbps, Max rate is %u Mbps\n",
2995                         rate, SCHED_MAX_RATE_KBPS / 1000);
2996                 return -ERANGE;
2997         }
2998
2999         /* First unbind the queue from any existing class */
3000         memset(&qe, 0, sizeof(qe));
3001         qe.queue = index;
3002         qe.class = SCHED_CLS_NONE;
3003
3004         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3005         if (err) {
3006                 dev_err(adap->pdev_dev,
3007                         "Unbinding Queue %d on port %d fail. Err: %d\n",
3008                         index, pi->port_id, err);
3009                 return err;
3010         }
3011
3012         /* Queue already unbound */
3013         if (!req_rate)
3014                 return 0;
3015
3016         /* Fetch any available unused or matching scheduling class */
3017         memset(&p, 0, sizeof(p));
3018         p.type = SCHED_CLASS_TYPE_PACKET;
3019         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3020         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3021         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3022         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3023         p.u.params.channel  = pi->tx_chan;
3024         p.u.params.class    = SCHED_CLS_NONE;
3025         p.u.params.minrate  = 0;
3026         p.u.params.maxrate  = req_rate;
3027         p.u.params.weight   = 0;
3028         p.u.params.pktsize  = dev->mtu;
3029
3030         e = cxgb4_sched_class_alloc(dev, &p);
3031         if (!e)
3032                 return -ENOMEM;
3033
3034         /* Bind the queue to a scheduling class */
3035         memset(&qe, 0, sizeof(qe));
3036         qe.queue = index;
3037         qe.class = e->idx;
3038
3039         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3040         if (err)
3041                 dev_err(adap->pdev_dev,
3042                         "Queue rate limiting failed. Err: %d\n", err);
3043         return err;
3044 }
3045
3046 static int cxgb_setup_tc_flower(struct net_device *dev,
3047                                 struct tc_cls_flower_offload *cls_flower)
3048 {
3049         switch (cls_flower->command) {
3050         case TC_CLSFLOWER_REPLACE:
3051                 return cxgb4_tc_flower_replace(dev, cls_flower);
3052         case TC_CLSFLOWER_DESTROY:
3053                 return cxgb4_tc_flower_destroy(dev, cls_flower);
3054         case TC_CLSFLOWER_STATS:
3055                 return cxgb4_tc_flower_stats(dev, cls_flower);
3056         default:
3057                 return -EOPNOTSUPP;
3058         }
3059 }
3060
3061 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3062                                  struct tc_cls_u32_offload *cls_u32)
3063 {
3064         switch (cls_u32->command) {
3065         case TC_CLSU32_NEW_KNODE:
3066         case TC_CLSU32_REPLACE_KNODE:
3067                 return cxgb4_config_knode(dev, cls_u32);
3068         case TC_CLSU32_DELETE_KNODE:
3069                 return cxgb4_delete_knode(dev, cls_u32);
3070         default:
3071                 return -EOPNOTSUPP;
3072         }
3073 }
3074
3075 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3076                                   void *cb_priv)
3077 {
3078         struct net_device *dev = cb_priv;
3079         struct port_info *pi = netdev2pinfo(dev);
3080         struct adapter *adap = netdev2adap(dev);
3081
3082         if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3083                 dev_err(adap->pdev_dev,
3084                         "Failed to setup tc on port %d. Link Down?\n",
3085                         pi->port_id);
3086                 return -EINVAL;
3087         }
3088
3089         if (!tc_cls_can_offload_and_chain0(dev, type_data))
3090                 return -EOPNOTSUPP;
3091
3092         switch (type) {
3093         case TC_SETUP_CLSU32:
3094                 return cxgb_setup_tc_cls_u32(dev, type_data);
3095         case TC_SETUP_CLSFLOWER:
3096                 return cxgb_setup_tc_flower(dev, type_data);
3097         default:
3098                 return -EOPNOTSUPP;
3099         }
3100 }
3101
3102 static int cxgb_setup_tc_block(struct net_device *dev,
3103                                struct tc_block_offload *f)
3104 {
3105         struct port_info *pi = netdev2pinfo(dev);
3106
3107         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3108                 return -EOPNOTSUPP;
3109
3110         switch (f->command) {
3111         case TC_BLOCK_BIND:
3112                 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3113                                              pi, dev, f->extack);
3114         case TC_BLOCK_UNBIND:
3115                 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3116                 return 0;
3117         default:
3118                 return -EOPNOTSUPP;
3119         }
3120 }
3121
3122 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3123                          void *type_data)
3124 {
3125         switch (type) {
3126         case TC_SETUP_BLOCK:
3127                 return cxgb_setup_tc_block(dev, type_data);
3128         default:
3129                 return -EOPNOTSUPP;
3130         }
3131 }
3132
3133 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3134                                 struct udp_tunnel_info *ti)
3135 {
3136         struct port_info *pi = netdev_priv(netdev);
3137         struct adapter *adapter = pi->adapter;
3138         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3139         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3140         int ret = 0, i;
3141
3142         if (chip_ver < CHELSIO_T6)
3143                 return;
3144
3145         switch (ti->type) {
3146         case UDP_TUNNEL_TYPE_VXLAN:
3147                 if (!adapter->vxlan_port_cnt ||
3148                     adapter->vxlan_port != ti->port)
3149                         return; /* Invalid VxLAN destination port */
3150
3151                 adapter->vxlan_port_cnt--;
3152                 if (adapter->vxlan_port_cnt)
3153                         return;
3154
3155                 adapter->vxlan_port = 0;
3156                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3157                 break;
3158         case UDP_TUNNEL_TYPE_GENEVE:
3159                 if (!adapter->geneve_port_cnt ||
3160                     adapter->geneve_port != ti->port)
3161                         return; /* Invalid GENEVE destination port */
3162
3163                 adapter->geneve_port_cnt--;
3164                 if (adapter->geneve_port_cnt)
3165                         return;
3166
3167                 adapter->geneve_port = 0;
3168                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3169                 break;
3170         default:
3171                 return;
3172         }
3173
3174         /* Matchall mac entries can be deleted only after all tunnel ports
3175          * are brought down or removed.
3176          */
3177         if (!adapter->rawf_cnt)
3178                 return;
3179         for_each_port(adapter, i) {
3180                 pi = adap2pinfo(adapter, i);
3181                 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3182                                            match_all_mac, match_all_mac,
3183                                            adapter->rawf_start +
3184                                             pi->port_id,
3185                                            1, pi->port_id, false);
3186                 if (ret < 0) {
3187                         netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3188                                     i);
3189                         return;
3190                 }
3191                 atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3192                            pi->port_id].refcnt);
3193         }
3194 }
3195
3196 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3197                                 struct udp_tunnel_info *ti)
3198 {
3199         struct port_info *pi = netdev_priv(netdev);
3200         struct adapter *adapter = pi->adapter;
3201         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3202         u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3203         int i, ret;
3204
3205         if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3206                 return;
3207
3208         switch (ti->type) {
3209         case UDP_TUNNEL_TYPE_VXLAN:
3210                 /* Callback for adding vxlan port can be called with the same
3211                  * port for both IPv4 and IPv6. We should not disable the
3212                  * offloading when the same port for both protocols is added
3213                  * and later one of them is removed.
3214                  */
3215                 if (adapter->vxlan_port_cnt &&
3216                     adapter->vxlan_port == ti->port) {
3217                         adapter->vxlan_port_cnt++;
3218                         return;
3219                 }
3220
3221                 /* We will support only one VxLAN port */
3222                 if (adapter->vxlan_port_cnt) {
3223                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3224                                     be16_to_cpu(adapter->vxlan_port),
3225                                     be16_to_cpu(ti->port));
3226                         return;
3227                 }
3228
3229                 adapter->vxlan_port = ti->port;
3230                 adapter->vxlan_port_cnt = 1;
3231
3232                 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3233                              VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3234                 break;
3235         case UDP_TUNNEL_TYPE_GENEVE:
3236                 if (adapter->geneve_port_cnt &&
3237                     adapter->geneve_port == ti->port) {
3238                         adapter->geneve_port_cnt++;
3239                         return;
3240                 }
3241
3242                 /* We will support only one GENEVE port */
3243                 if (adapter->geneve_port_cnt) {
3244                         netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3245                                     be16_to_cpu(adapter->geneve_port),
3246                                     be16_to_cpu(ti->port));
3247                         return;
3248                 }
3249
3250                 adapter->geneve_port = ti->port;
3251                 adapter->geneve_port_cnt = 1;
3252
3253                 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3254                              GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3255                 break;
3256         default:
3257                 return;
3258         }
3259
3260         /* Create a 'match all' mac filter entry for inner mac,
3261          * if raw mac interface is supported. Once the linux kernel provides
3262          * driver entry points for adding/deleting the inner mac addresses,
3263          * we will remove this 'match all' entry and fallback to adding
3264          * exact match filters.
3265          */
3266         for_each_port(adapter, i) {
3267                 pi = adap2pinfo(adapter, i);
3268
3269                 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3270                                             match_all_mac,
3271                                             match_all_mac,
3272                                             adapter->rawf_start +
3273                                             pi->port_id,
3274                                             1, pi->port_id, false);
3275                 if (ret < 0) {
3276                         netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3277                                     be16_to_cpu(ti->port));
3278                         cxgb_del_udp_tunnel(netdev, ti);
3279                         return;
3280                 }
3281                 atomic_inc(&adapter->mps_encap[ret].refcnt);
3282         }
3283 }
3284
3285 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3286                                              struct net_device *dev,
3287                                              netdev_features_t features)
3288 {
3289         struct port_info *pi = netdev_priv(dev);
3290         struct adapter *adapter = pi->adapter;
3291
3292         if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3293                 return features;
3294
3295         /* Check if hw supports offload for this packet */
3296         if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3297                 return features;
3298
3299         /* Offload is not supported for this encapsulated packet */
3300         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3301 }
3302
3303 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3304                                            netdev_features_t features)
3305 {
3306         /* Disable GRO, if RX_CSUM is disabled */
3307         if (!(features & NETIF_F_RXCSUM))
3308                 features &= ~NETIF_F_GRO;
3309
3310         return features;
3311 }
3312
3313 static const struct net_device_ops cxgb4_netdev_ops = {
3314         .ndo_open             = cxgb_open,
3315         .ndo_stop             = cxgb_close,
3316         .ndo_start_xmit       = t4_start_xmit,
3317         .ndo_select_queue     = cxgb_select_queue,
3318         .ndo_get_stats64      = cxgb_get_stats,
3319         .ndo_set_rx_mode      = cxgb_set_rxmode,
3320         .ndo_set_mac_address  = cxgb_set_mac_addr,
3321         .ndo_set_features     = cxgb_set_features,
3322         .ndo_validate_addr    = eth_validate_addr,
3323         .ndo_do_ioctl         = cxgb_ioctl,
3324         .ndo_change_mtu       = cxgb_change_mtu,
3325 #ifdef CONFIG_NET_POLL_CONTROLLER
3326         .ndo_poll_controller  = cxgb_netpoll,
3327 #endif
3328 #ifdef CONFIG_CHELSIO_T4_FCOE
3329         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3330         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3331 #endif /* CONFIG_CHELSIO_T4_FCOE */
3332         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3333         .ndo_setup_tc         = cxgb_setup_tc,
3334         .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3335         .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3336         .ndo_features_check   = cxgb_features_check,
3337         .ndo_fix_features     = cxgb_fix_features,
3338 };
3339
3340 #ifdef CONFIG_PCI_IOV
3341 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3342         .ndo_open               = cxgb4_mgmt_open,
3343         .ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3344         .ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3345         .ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3346         .ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3347         .ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3348         .ndo_set_vf_link_state  = cxgb4_mgmt_set_vf_link_state,
3349 };
3350 #endif
3351
3352 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3353                                    struct ethtool_drvinfo *info)
3354 {
3355         struct adapter *adapter = netdev2adap(dev);
3356
3357         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3358         strlcpy(info->version, cxgb4_driver_version,
3359                 sizeof(info->version));
3360         strlcpy(info->bus_info, pci_name(adapter->pdev),
3361                 sizeof(info->bus_info));
3362 }
3363
3364 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3365         .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3366 };
3367
3368 static void notify_fatal_err(struct work_struct *work)
3369 {
3370         struct adapter *adap;
3371
3372         adap = container_of(work, struct adapter, fatal_err_notify_task);
3373         notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3374 }
3375
3376 void t4_fatal_err(struct adapter *adap)
3377 {
3378         int port;
3379
3380         if (pci_channel_offline(adap->pdev))
3381                 return;
3382
3383         /* Disable the SGE since ULDs are going to free resources that
3384          * could be exposed to the adapter.  RDMA MWs for example...
3385          */
3386         t4_shutdown_adapter(adap);
3387         for_each_port(adap, port) {
3388                 struct net_device *dev = adap->port[port];
3389
3390                 /* If we get here in very early initialization the network
3391                  * devices may not have been set up yet.
3392                  */
3393                 if (!dev)
3394                         continue;
3395
3396                 netif_tx_stop_all_queues(dev);
3397                 netif_carrier_off(dev);
3398         }
3399         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3400         queue_work(adap->workq, &adap->fatal_err_notify_task);
3401 }
3402
3403 static void setup_memwin(struct adapter *adap)
3404 {
3405         u32 nic_win_base = t4_get_util_window(adap);
3406
3407         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3408 }
3409
3410 static void setup_memwin_rdma(struct adapter *adap)
3411 {
3412         if (adap->vres.ocq.size) {
3413                 u32 start;
3414                 unsigned int sz_kb;
3415
3416                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3417                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3418                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3419                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3420                 t4_write_reg(adap,
3421                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3422                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3423                 t4_write_reg(adap,
3424                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3425                              adap->vres.ocq.start);
3426                 t4_read_reg(adap,
3427                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3428         }
3429 }
3430
3431 /* HMA Definitions */
3432
3433 /* The maximum number of address that can be send in a single FW cmd */
3434 #define HMA_MAX_ADDR_IN_CMD     5
3435
3436 #define HMA_PAGE_SIZE           PAGE_SIZE
3437
3438 #define HMA_MAX_NO_FW_ADDRESS   (16 << 10)  /* FW supports 16K addresses */
3439
3440 #define HMA_PAGE_ORDER                                  \
3441         ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?      \
3442         ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3443
3444 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3445  * configuration(in units of MB).
3446  */
3447 #define HMA_MIN_TOTAL_SIZE      1
3448 #define HMA_MAX_TOTAL_SIZE                              \
3449         (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *           \
3450           HMA_MAX_NO_FW_ADDRESS) >> 20)
3451
3452 static void adap_free_hma_mem(struct adapter *adapter)
3453 {
3454         struct scatterlist *iter;
3455         struct page *page;
3456         int i;
3457
3458         if (!adapter->hma.sgt)
3459                 return;
3460
3461         if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3462                 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3463                              adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3464                 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3465         }
3466
3467         for_each_sg(adapter->hma.sgt->sgl, iter,
3468                     adapter->hma.sgt->orig_nents, i) {
3469                 page = sg_page(iter);
3470                 if (page)
3471                         __free_pages(page, HMA_PAGE_ORDER);
3472         }
3473
3474         kfree(adapter->hma.phy_addr);
3475         sg_free_table(adapter->hma.sgt);
3476         kfree(adapter->hma.sgt);
3477         adapter->hma.sgt = NULL;
3478 }
3479
3480 static int adap_config_hma(struct adapter *adapter)
3481 {
3482         struct scatterlist *sgl, *iter;
3483         struct sg_table *sgt;
3484         struct page *newpage;
3485         unsigned int i, j, k;
3486         u32 param, hma_size;
3487         unsigned int ncmds;
3488         size_t page_size;
3489         u32 page_order;
3490         int node, ret;
3491
3492         /* HMA is supported only for T6+ cards.
3493          * Avoid initializing HMA in kdump kernels.
3494          */
3495         if (is_kdump_kernel() ||
3496             CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3497                 return 0;
3498
3499         /* Get the HMA region size required by fw */
3500         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3501                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3502         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3503                               1, &param, &hma_size);
3504         /* An error means card has its own memory or HMA is not supported by
3505          * the firmware. Return without any errors.
3506          */
3507         if (ret || !hma_size)
3508                 return 0;
3509
3510         if (hma_size < HMA_MIN_TOTAL_SIZE ||
3511             hma_size > HMA_MAX_TOTAL_SIZE) {
3512                 dev_err(adapter->pdev_dev,
3513                         "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3514                         hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3515                 return -EINVAL;
3516         }
3517
3518         page_size = HMA_PAGE_SIZE;
3519         page_order = HMA_PAGE_ORDER;
3520         adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3521         if (unlikely(!adapter->hma.sgt)) {
3522                 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3523                 return -ENOMEM;
3524         }
3525         sgt = adapter->hma.sgt;
3526         /* FW returned value will be in MB's
3527          */
3528         sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3529         if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3530                 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3531                 kfree(adapter->hma.sgt);
3532                 adapter->hma.sgt = NULL;
3533                 return -ENOMEM;
3534         }
3535
3536         sgl = adapter->hma.sgt->sgl;
3537         node = dev_to_node(adapter->pdev_dev);
3538         for_each_sg(sgl, iter, sgt->orig_nents, i) {
3539                 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3540                                            __GFP_ZERO, page_order);
3541                 if (!newpage) {
3542                         dev_err(adapter->pdev_dev,
3543                                 "Not enough memory for HMA page allocation\n");
3544                         ret = -ENOMEM;
3545                         goto free_hma;
3546                 }
3547                 sg_set_page(iter, newpage, page_size << page_order, 0);
3548         }
3549
3550         sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3551                                 DMA_BIDIRECTIONAL);
3552         if (!sgt->nents) {
3553                 dev_err(adapter->pdev_dev,
3554                         "Not enough memory for HMA DMA mapping");
3555                 ret = -ENOMEM;
3556                 goto free_hma;
3557         }
3558         adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3559
3560         adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3561                                         GFP_KERNEL);
3562         if (unlikely(!adapter->hma.phy_addr))
3563                 goto free_hma;
3564
3565         for_each_sg(sgl, iter, sgt->nents, i) {
3566                 newpage = sg_page(iter);
3567                 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3568         }
3569
3570         ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3571         /* Pass on the addresses to firmware */
3572         for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3573                 struct fw_hma_cmd hma_cmd;
3574                 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3575                 u8 soc = 0, eoc = 0;
3576                 u8 hma_mode = 1; /* Presently we support only Page table mode */
3577
3578                 soc = (i == 0) ? 1 : 0;
3579                 eoc = (i == ncmds - 1) ? 1 : 0;
3580
3581                 /* For last cmd, set naddr corresponding to remaining
3582                  * addresses
3583                  */
3584                 if (i == ncmds - 1) {
3585                         naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3586                         naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3587                 }
3588                 memset(&hma_cmd, 0, sizeof(hma_cmd));
3589                 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3590                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3591                 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3592
3593                 hma_cmd.mode_to_pcie_params =
3594                         htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3595                               FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3596
3597                 /* HMA cmd size specified in MB's */
3598                 hma_cmd.naddr_size =
3599                         htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3600                               FW_HMA_CMD_NADDR_V(naddr));
3601
3602                 /* Total Page size specified in units of 4K */
3603                 hma_cmd.addr_size_pkd =
3604                         htonl(FW_HMA_CMD_ADDR_SIZE_V
3605                                 ((page_size << page_order) >> 12));
3606
3607                 /* Fill the 5 addresses */
3608                 for (j = 0; j < naddr; j++) {
3609                         hma_cmd.phy_address[j] =
3610                                 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3611                 }
3612                 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3613                                  sizeof(hma_cmd), &hma_cmd);
3614                 if (ret) {
3615                         dev_err(adapter->pdev_dev,
3616                                 "HMA FW command failed with err %d\n", ret);
3617                         goto free_hma;
3618                 }
3619         }
3620
3621         if (!ret)
3622                 dev_info(adapter->pdev_dev,
3623                          "Reserved %uMB host memory for HMA\n", hma_size);
3624         return ret;
3625
3626 free_hma:
3627         adap_free_hma_mem(adapter);
3628         return ret;
3629 }
3630
3631 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3632 {
3633         u32 v;
3634         int ret;
3635
3636         /* Now that we've successfully configured and initialized the adapter
3637          * can ask the Firmware what resources it has provisioned for us.
3638          */
3639         ret = t4_get_pfres(adap);
3640         if (ret) {
3641                 dev_err(adap->pdev_dev,
3642                         "Unable to retrieve resource provisioning information\n");
3643                 return ret;
3644         }
3645
3646         /* get device capabilities */
3647         memset(c, 0, sizeof(*c));
3648         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3649                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3650         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3651         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3652         if (ret < 0)
3653                 return ret;
3654
3655         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3656                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3657         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3658         if (ret < 0)
3659                 return ret;
3660
3661         ret = t4_config_glbl_rss(adap, adap->pf,
3662                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3663                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3664                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3665         if (ret < 0)
3666                 return ret;
3667
3668         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3669                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3670                           FW_CMD_CAP_PF);
3671         if (ret < 0)
3672                 return ret;
3673
3674         t4_sge_init(adap);
3675
3676         /* tweak some settings */
3677         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3678         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3679         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3680         v = t4_read_reg(adap, TP_PIO_DATA_A);
3681         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3682
3683         /* first 4 Tx modulation queues point to consecutive Tx channels */
3684         adap->params.tp.tx_modq_map = 0xE4;
3685         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3686                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3687
3688         /* associate each Tx modulation queue with consecutive Tx channels */
3689         v = 0x84218421;
3690         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3691                           &v, 1, TP_TX_SCHED_HDR_A);
3692         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3693                           &v, 1, TP_TX_SCHED_FIFO_A);
3694         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3695                           &v, 1, TP_TX_SCHED_PCMD_A);
3696
3697 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3698         if (is_offload(adap)) {
3699                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3700                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3701                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3702                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3703                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3704                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3705                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3706                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3707                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3708                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3709         }
3710
3711         /* get basic stuff going */
3712         return t4_early_init(adap, adap->pf);
3713 }
3714
3715 /*
3716  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3717  */
3718 #define MAX_ATIDS 8192U
3719
3720 /*
3721  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3722  *
3723  * If the firmware we're dealing with has Configuration File support, then
3724  * we use that to perform all configuration
3725  */
3726
3727 /*
3728  * Tweak configuration based on module parameters, etc.  Most of these have
3729  * defaults assigned to them by Firmware Configuration Files (if we're using
3730  * them) but need to be explicitly set if we're using hard-coded
3731  * initialization.  But even in the case of using Firmware Configuration
3732  * Files, we'd like to expose the ability to change these via module
3733  * parameters so these are essentially common tweaks/settings for
3734  * Configuration Files and hard-coded initialization ...
3735  */
3736 static int adap_init0_tweaks(struct adapter *adapter)
3737 {
3738         /*
3739          * Fix up various Host-Dependent Parameters like Page Size, Cache
3740          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3741          * 64B Cache Line Size ...
3742          */
3743         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3744
3745         /*
3746          * Process module parameters which affect early initialization.
3747          */
3748         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3749                 dev_err(&adapter->pdev->dev,
3750                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3751                         rx_dma_offset);
3752                 rx_dma_offset = 2;
3753         }
3754         t4_set_reg_field(adapter, SGE_CONTROL_A,
3755                          PKTSHIFT_V(PKTSHIFT_M),
3756                          PKTSHIFT_V(rx_dma_offset));
3757
3758         /*
3759          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3760          * adds the pseudo header itself.
3761          */
3762         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3763                                CSUM_HAS_PSEUDO_HDR_F, 0);
3764
3765         return 0;
3766 }
3767
3768 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3769  * unto themselves and they contain their own firmware to perform their
3770  * tasks ...
3771  */
3772 static int phy_aq1202_version(const u8 *phy_fw_data,
3773                               size_t phy_fw_size)
3774 {
3775         int offset;
3776
3777         /* At offset 0x8 you're looking for the primary image's
3778          * starting offset which is 3 Bytes wide
3779          *
3780          * At offset 0xa of the primary image, you look for the offset
3781          * of the DRAM segment which is 3 Bytes wide.
3782          *
3783          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3784          * wide
3785          */
3786         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3787         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3788         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3789
3790         offset = le24(phy_fw_data + 0x8) << 12;
3791         offset = le24(phy_fw_data + offset + 0xa);
3792         return be16(phy_fw_data + offset + 0x27e);
3793
3794         #undef be16
3795         #undef le16
3796         #undef le24
3797 }
3798
3799 static struct info_10gbt_phy_fw {
3800         unsigned int phy_fw_id;         /* PCI Device ID */
3801         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3802         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3803         int phy_flash;                  /* Has FLASH for PHY Firmware */
3804 } phy_info_array[] = {
3805         {
3806                 PHY_AQ1202_DEVICEID,
3807                 PHY_AQ1202_FIRMWARE,
3808                 phy_aq1202_version,
3809                 1,
3810         },
3811         {
3812                 PHY_BCM84834_DEVICEID,
3813                 PHY_BCM84834_FIRMWARE,
3814                 NULL,
3815                 0,
3816         },
3817         { 0, NULL, NULL },
3818 };
3819
3820 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3821 {
3822         int i;
3823
3824         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3825                 if (phy_info_array[i].phy_fw_id == devid)
3826                         return &phy_info_array[i];
3827         }
3828         return NULL;
3829 }
3830
3831 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3832  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3833  * we return a negative error number.  If we transfer new firmware we return 1
3834  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3835  */
3836 static int adap_init0_phy(struct adapter *adap)
3837 {
3838         const struct firmware *phyf;
3839         int ret;
3840         struct info_10gbt_phy_fw *phy_info;
3841
3842         /* Use the device ID to determine which PHY file to flash.
3843          */
3844         phy_info = find_phy_info(adap->pdev->device);
3845         if (!phy_info) {
3846                 dev_warn(adap->pdev_dev,
3847                          "No PHY Firmware file found for this PHY\n");
3848                 return -EOPNOTSUPP;
3849         }
3850
3851         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3852          * use that. The adapter firmware provides us with a memory buffer
3853          * where we can load a PHY firmware file from the host if we want to
3854          * override the PHY firmware File in flash.
3855          */
3856         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3857                                       adap->pdev_dev);
3858         if (ret < 0) {
3859                 /* For adapters without FLASH attached to PHY for their
3860                  * firmware, it's obviously a fatal error if we can't get the
3861                  * firmware to the adapter.  For adapters with PHY firmware
3862                  * FLASH storage, it's worth a warning if we can't find the
3863                  * PHY Firmware but we'll neuter the error ...
3864                  */
3865                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3866                         "/lib/firmware/%s, error %d\n",
3867                         phy_info->phy_fw_file, -ret);
3868                 if (phy_info->phy_flash) {
3869                         int cur_phy_fw_ver = 0;
3870
3871                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3872                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3873                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3874                         ret = 0;
3875                 }
3876
3877                 return ret;
3878         }
3879
3880         /* Load PHY Firmware onto adapter.
3881          */
3882         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3883                              phy_info->phy_fw_version,
3884                              (u8 *)phyf->data, phyf->size);
3885         if (ret < 0)
3886                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3887                         -ret);
3888         else if (ret > 0) {
3889                 int new_phy_fw_ver = 0;
3890
3891                 if (phy_info->phy_fw_version)
3892                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3893                                                                   phyf->size);
3894                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3895                          "Firmware /lib/firmware/%s, version %#x\n",
3896                          phy_info->phy_fw_file, new_phy_fw_ver);
3897         }
3898
3899         release_firmware(phyf);
3900
3901         return ret;
3902 }
3903
3904 /*
3905  * Attempt to initialize the adapter via a Firmware Configuration File.
3906  */
3907 static int adap_init0_config(struct adapter *adapter, int reset)
3908 {
3909         struct fw_caps_config_cmd caps_cmd;
3910         const struct firmware *cf;
3911         unsigned long mtype = 0, maddr = 0;
3912         u32 finiver, finicsum, cfcsum;
3913         int ret;
3914         int config_issued = 0;
3915         char *fw_config_file, fw_config_file_path[256];
3916         char *config_name = NULL;
3917
3918         /*
3919          * Reset device if necessary.
3920          */
3921         if (reset) {
3922                 ret = t4_fw_reset(adapter, adapter->mbox,
3923                                   PIORSTMODE_F | PIORST_F);
3924                 if (ret < 0)
3925                         goto bye;
3926         }
3927
3928         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3929          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3930          * to be performed after any global adapter RESET above since some
3931          * PHYs only have local RAM copies of the PHY firmware.
3932          */
3933         if (is_10gbt_device(adapter->pdev->device)) {
3934                 ret = adap_init0_phy(adapter);
3935                 if (ret < 0)
3936                         goto bye;
3937         }
3938         /*
3939          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3940          * then use that.  Otherwise, use the configuration file stored
3941          * in the adapter flash ...
3942          */
3943         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3944         case CHELSIO_T4:
3945                 fw_config_file = FW4_CFNAME;
3946                 break;
3947         case CHELSIO_T5:
3948                 fw_config_file = FW5_CFNAME;
3949                 break;
3950         case CHELSIO_T6:
3951                 fw_config_file = FW6_CFNAME;
3952                 break;
3953         default:
3954                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3955                        adapter->pdev->device);
3956                 ret = -EINVAL;
3957                 goto bye;
3958         }
3959
3960         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3961         if (ret < 0) {
3962                 config_name = "On FLASH";
3963                 mtype = FW_MEMTYPE_CF_FLASH;
3964                 maddr = t4_flash_cfg_addr(adapter);
3965         } else {
3966                 u32 params[7], val[7];
3967
3968                 sprintf(fw_config_file_path,
3969                         "/lib/firmware/%s", fw_config_file);
3970                 config_name = fw_config_file_path;
3971
3972                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3973                         ret = -ENOMEM;
3974                 else {
3975                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3976                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3977                         ret = t4_query_params(adapter, adapter->mbox,
3978                                               adapter->pf, 0, 1, params, val);
3979                         if (ret == 0) {
3980                                 /*
3981                                  * For t4_memory_rw() below addresses and
3982                                  * sizes have to be in terms of multiples of 4
3983                                  * bytes.  So, if the Configuration File isn't
3984                                  * a multiple of 4 bytes in length we'll have
3985                                  * to write that out separately since we can't
3986                                  * guarantee that the bytes following the
3987                                  * residual byte in the buffer returned by
3988                                  * request_firmware() are zeroed out ...
3989                                  */
3990                                 size_t resid = cf->size & 0x3;
3991                                 size_t size = cf->size & ~0x3;
3992                                 __be32 *data = (__be32 *)cf->data;
3993
3994                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3995                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3996
3997                                 spin_lock(&adapter->win0_lock);
3998                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3999                                                    size, data, T4_MEMORY_WRITE);
4000                                 if (ret == 0 && resid != 0) {
4001                                         union {
4002                                                 __be32 word;
4003                                                 char buf[4];
4004                                         } last;
4005                                         int i;
4006
4007                                         last.word = data[size >> 2];
4008                                         for (i = resid; i < 4; i++)
4009                                                 last.buf[i] = 0;
4010                                         ret = t4_memory_rw(adapter, 0, mtype,
4011                                                            maddr + size,
4012                                                            4, &last.word,
4013                                                            T4_MEMORY_WRITE);
4014                                 }
4015                                 spin_unlock(&adapter->win0_lock);
4016                         }
4017                 }
4018
4019                 release_firmware(cf);
4020                 if (ret)
4021                         goto bye;
4022         }
4023
4024         /*
4025          * Issue a Capability Configuration command to the firmware to get it
4026          * to parse the Configuration File.  We don't use t4_fw_config_file()
4027          * because we want the ability to modify various features after we've
4028          * processed the configuration file ...
4029          */
4030         memset(&caps_cmd, 0, sizeof(caps_cmd));
4031         caps_cmd.op_to_write =
4032                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4033                       FW_CMD_REQUEST_F |
4034                       FW_CMD_READ_F);
4035         caps_cmd.cfvalid_to_len16 =
4036                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4037                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4038                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4039                       FW_LEN16(caps_cmd));
4040         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4041                          &caps_cmd);
4042
4043         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4044          * Configuration File in FLASH), our last gasp effort is to use the
4045          * Firmware Configuration File which is embedded in the firmware.  A
4046          * very few early versions of the firmware didn't have one embedded
4047          * but we can ignore those.
4048          */
4049         if (ret == -ENOENT) {
4050                 memset(&caps_cmd, 0, sizeof(caps_cmd));
4051                 caps_cmd.op_to_write =
4052                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4053                                         FW_CMD_REQUEST_F |
4054                                         FW_CMD_READ_F);
4055                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4056                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4057                                 sizeof(caps_cmd), &caps_cmd);
4058                 config_name = "Firmware Default";
4059         }
4060
4061         config_issued = 1;
4062         if (ret < 0)
4063                 goto bye;
4064
4065         finiver = ntohl(caps_cmd.finiver);
4066         finicsum = ntohl(caps_cmd.finicsum);
4067         cfcsum = ntohl(caps_cmd.cfcsum);
4068         if (finicsum != cfcsum)
4069                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4070                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4071                          finicsum, cfcsum);
4072
4073         /*
4074          * And now tell the firmware to use the configuration we just loaded.
4075          */
4076         caps_cmd.op_to_write =
4077                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4078                       FW_CMD_REQUEST_F |
4079                       FW_CMD_WRITE_F);
4080         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4081         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4082                          NULL);
4083         if (ret < 0)
4084                 goto bye;
4085
4086         /*
4087          * Tweak configuration based on system architecture, module
4088          * parameters, etc.
4089          */
4090         ret = adap_init0_tweaks(adapter);
4091         if (ret < 0)
4092                 goto bye;
4093
4094         /* We will proceed even if HMA init fails. */
4095         ret = adap_config_hma(adapter);
4096         if (ret)
4097                 dev_err(adapter->pdev_dev,
4098                         "HMA configuration failed with error %d\n", ret);
4099
4100         /*
4101          * And finally tell the firmware to initialize itself using the
4102          * parameters from the Configuration File.
4103          */
4104         ret = t4_fw_initialize(adapter, adapter->mbox);
4105         if (ret < 0)
4106                 goto bye;
4107
4108         /* Emit Firmware Configuration File information and return
4109          * successfully.
4110          */
4111         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4112                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4113                  config_name, finiver, cfcsum);
4114         return 0;
4115
4116         /*
4117          * Something bad happened.  Return the error ...  (If the "error"
4118          * is that there's no Configuration File on the adapter we don't
4119          * want to issue a warning since this is fairly common.)
4120          */
4121 bye:
4122         if (config_issued && ret != -ENOENT)
4123                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4124                          config_name, -ret);
4125         return ret;
4126 }
4127
4128 static struct fw_info fw_info_array[] = {
4129         {
4130                 .chip = CHELSIO_T4,
4131                 .fs_name = FW4_CFNAME,
4132                 .fw_mod_name = FW4_FNAME,
4133                 .fw_hdr = {
4134                         .chip = FW_HDR_CHIP_T4,
4135                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4136                         .intfver_nic = FW_INTFVER(T4, NIC),
4137                         .intfver_vnic = FW_INTFVER(T4, VNIC),
4138                         .intfver_ri = FW_INTFVER(T4, RI),
4139                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4140                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
4141                 },
4142         }, {
4143                 .chip = CHELSIO_T5,
4144                 .fs_name = FW5_CFNAME,
4145                 .fw_mod_name = FW5_FNAME,
4146                 .fw_hdr = {
4147                         .chip = FW_HDR_CHIP_T5,
4148                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4149                         .intfver_nic = FW_INTFVER(T5, NIC),
4150                         .intfver_vnic = FW_INTFVER(T5, VNIC),
4151                         .intfver_ri = FW_INTFVER(T5, RI),
4152                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4153                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
4154                 },
4155         }, {
4156                 .chip = CHELSIO_T6,
4157                 .fs_name = FW6_CFNAME,
4158                 .fw_mod_name = FW6_FNAME,
4159                 .fw_hdr = {
4160                         .chip = FW_HDR_CHIP_T6,
4161                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4162                         .intfver_nic = FW_INTFVER(T6, NIC),
4163                         .intfver_vnic = FW_INTFVER(T6, VNIC),
4164                         .intfver_ofld = FW_INTFVER(T6, OFLD),
4165                         .intfver_ri = FW_INTFVER(T6, RI),
4166                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4167                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4168                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4169                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
4170                 },
4171         }
4172
4173 };
4174
4175 static struct fw_info *find_fw_info(int chip)
4176 {
4177         int i;
4178
4179         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4180                 if (fw_info_array[i].chip == chip)
4181                         return &fw_info_array[i];
4182         }
4183         return NULL;
4184 }
4185
4186 /*
4187  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4188  */
4189 static int adap_init0(struct adapter *adap)
4190 {
4191         int ret;
4192         u32 v, port_vec;
4193         enum dev_state state;
4194         u32 params[7], val[7];
4195         struct fw_caps_config_cmd caps_cmd;
4196         int reset = 1;
4197
4198         /* Grab Firmware Device Log parameters as early as possible so we have
4199          * access to it for debugging, etc.
4200          */
4201         ret = t4_init_devlog_params(adap);
4202         if (ret < 0)
4203                 return ret;
4204
4205         /* Contact FW, advertising Master capability */
4206         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4207                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4208         if (ret < 0) {
4209                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4210                         ret);
4211                 return ret;
4212         }
4213         if (ret == adap->mbox)
4214                 adap->flags |= CXGB4_MASTER_PF;
4215
4216         /*
4217          * If we're the Master PF Driver and the device is uninitialized,
4218          * then let's consider upgrading the firmware ...  (We always want
4219          * to check the firmware version number in order to A. get it for
4220          * later reporting and B. to warn if the currently loaded firmware
4221          * is excessively mismatched relative to the driver.)
4222          */
4223
4224         t4_get_version_info(adap);
4225         ret = t4_check_fw_version(adap);
4226         /* If firmware is too old (not supported by driver) force an update. */
4227         if (ret)
4228                 state = DEV_STATE_UNINIT;
4229         if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4230                 struct fw_info *fw_info;
4231                 struct fw_hdr *card_fw;
4232                 const struct firmware *fw;
4233                 const u8 *fw_data = NULL;
4234                 unsigned int fw_size = 0;
4235
4236                 /* This is the firmware whose headers the driver was compiled
4237                  * against
4238                  */
4239                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4240                 if (fw_info == NULL) {
4241                         dev_err(adap->pdev_dev,
4242                                 "unable to get firmware info for chip %d.\n",
4243                                 CHELSIO_CHIP_VERSION(adap->params.chip));
4244                         return -EINVAL;
4245                 }
4246
4247                 /* allocate memory to read the header of the firmware on the
4248                  * card
4249                  */
4250                 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4251                 if (!card_fw) {
4252                         ret = -ENOMEM;
4253                         goto bye;
4254                 }
4255
4256                 /* Get FW from from /lib/firmware/ */
4257                 ret = request_firmware(&fw, fw_info->fw_mod_name,
4258                                        adap->pdev_dev);
4259                 if (ret < 0) {
4260                         dev_err(adap->pdev_dev,
4261                                 "unable to load firmware image %s, error %d\n",
4262                                 fw_info->fw_mod_name, ret);
4263                 } else {
4264                         fw_data = fw->data;
4265                         fw_size = fw->size;
4266                 }
4267
4268                 /* upgrade FW logic */
4269                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4270                                  state, &reset);
4271
4272                 /* Cleaning up */
4273                 release_firmware(fw);
4274                 kvfree(card_fw);
4275
4276                 if (ret < 0)
4277                         goto bye;
4278         }
4279
4280         /* If the firmware is initialized already, emit a simply note to that
4281          * effect. Otherwise, it's time to try initializing the adapter.
4282          */
4283         if (state == DEV_STATE_INIT) {
4284                 ret = adap_config_hma(adap);
4285                 if (ret)
4286                         dev_err(adap->pdev_dev,
4287                                 "HMA configuration failed with error %d\n",
4288                                 ret);
4289                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4290                          "Adapter already initialized\n",
4291                          adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4292         } else {
4293                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4294                          "Initializing adapter\n");
4295
4296                 /* Find out whether we're dealing with a version of the
4297                  * firmware which has configuration file support.
4298                  */
4299                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4300                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4301                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4302                                       params, val);
4303
4304                 /* If the firmware doesn't support Configuration Files,
4305                  * return an error.
4306                  */
4307                 if (ret < 0) {
4308                         dev_err(adap->pdev_dev, "firmware doesn't support "
4309                                 "Firmware Configuration Files\n");
4310                         goto bye;
4311                 }
4312
4313                 /* The firmware provides us with a memory buffer where we can
4314                  * load a Configuration File from the host if we want to
4315                  * override the Configuration File in flash.
4316                  */
4317                 ret = adap_init0_config(adap, reset);
4318                 if (ret == -ENOENT) {
4319                         dev_err(adap->pdev_dev, "no Configuration File "
4320                                 "present on adapter.\n");
4321                         goto bye;
4322                 }
4323                 if (ret < 0) {
4324                         dev_err(adap->pdev_dev, "could not initialize "
4325                                 "adapter, error %d\n", -ret);
4326                         goto bye;
4327                 }
4328         }
4329
4330         /* Now that we've successfully configured and initialized the adapter
4331          * (or found it already initialized), we can ask the Firmware what
4332          * resources it has provisioned for us.
4333          */
4334         ret = t4_get_pfres(adap);
4335         if (ret) {
4336                 dev_err(adap->pdev_dev,
4337                         "Unable to retrieve resource provisioning information\n");
4338                 goto bye;
4339         }
4340
4341         /* Grab VPD parameters.  This should be done after we establish a
4342          * connection to the firmware since some of the VPD parameters
4343          * (notably the Core Clock frequency) are retrieved via requests to
4344          * the firmware.  On the other hand, we need these fairly early on
4345          * so we do this right after getting ahold of the firmware.
4346          *
4347          * We need to do this after initializing the adapter because someone
4348          * could have FLASHed a new VPD which won't be read by the firmware
4349          * until we do the RESET ...
4350          */
4351         ret = t4_get_vpd_params(adap, &adap->params.vpd);
4352         if (ret < 0)
4353                 goto bye;
4354
4355         /* Find out what ports are available to us.  Note that we need to do
4356          * this before calling adap_init0_no_config() since it needs nports
4357          * and portvec ...
4358          */
4359         v =
4360             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4361             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4362         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4363         if (ret < 0)
4364                 goto bye;
4365
4366         adap->params.nports = hweight32(port_vec);
4367         adap->params.portvec = port_vec;
4368
4369         /* Give the SGE code a chance to pull in anything that it needs ...
4370          * Note that this must be called after we retrieve our VPD parameters
4371          * in order to know how to convert core ticks to seconds, etc.
4372          */
4373         ret = t4_sge_init(adap);
4374         if (ret < 0)
4375                 goto bye;
4376
4377         /* Grab the SGE Doorbell Queue Timer values.  If successful, that
4378          * indicates that the Firmware and Hardware support this.
4379          */
4380         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4381                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4382         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4383                               1, params, val);
4384
4385         if (!ret) {
4386                 adap->sge.dbqtimer_tick = val[0];
4387                 ret = t4_read_sge_dbqtimers(adap,
4388                                             ARRAY_SIZE(adap->sge.dbqtimer_val),
4389                                             adap->sge.dbqtimer_val);
4390         }
4391
4392         if (!ret)
4393                 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4394
4395         if (is_bypass_device(adap->pdev->device))
4396                 adap->params.bypass = 1;
4397
4398         /*
4399          * Grab some of our basic fundamental operating parameters.
4400          */
4401 #define FW_PARAM_DEV(param) \
4402         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4403         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4404
4405 #define FW_PARAM_PFVF(param) \
4406         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4407         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4408         FW_PARAMS_PARAM_Y_V(0) | \
4409         FW_PARAMS_PARAM_Z_V(0)
4410
4411         params[0] = FW_PARAM_PFVF(EQ_START);
4412         params[1] = FW_PARAM_PFVF(L2T_START);
4413         params[2] = FW_PARAM_PFVF(L2T_END);
4414         params[3] = FW_PARAM_PFVF(FILTER_START);
4415         params[4] = FW_PARAM_PFVF(FILTER_END);
4416         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4417         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4418         if (ret < 0)
4419                 goto bye;
4420         adap->sge.egr_start = val[0];
4421         adap->l2t_start = val[1];
4422         adap->l2t_end = val[2];
4423         adap->tids.ftid_base = val[3];
4424         adap->tids.nftids = val[4] - val[3] + 1;
4425         adap->sge.ingr_start = val[5];
4426
4427         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4428                 /* Read the raw mps entries. In T6, the last 2 tcam entries
4429                  * are reserved for raw mac addresses (rawf = 2, one per port).
4430                  */
4431                 params[0] = FW_PARAM_PFVF(RAWF_START);
4432                 params[1] = FW_PARAM_PFVF(RAWF_END);
4433                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4434                                       params, val);
4435                 if (ret == 0) {
4436                         adap->rawf_start = val[0];
4437                         adap->rawf_cnt = val[1] - val[0] + 1;
4438                 }
4439         }
4440
4441         /* qids (ingress/egress) returned from firmware can be anywhere
4442          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4443          * Hence driver needs to allocate memory for this range to
4444          * store the queue info. Get the highest IQFLINT/EQ index returned
4445          * in FW_EQ_*_CMD.alloc command.
4446          */
4447         params[0] = FW_PARAM_PFVF(EQ_END);
4448         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4449         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4450         if (ret < 0)
4451                 goto bye;
4452         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4453         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4454
4455         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4456                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4457         if (!adap->sge.egr_map) {
4458                 ret = -ENOMEM;
4459                 goto bye;
4460         }
4461
4462         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4463                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4464         if (!adap->sge.ingr_map) {
4465                 ret = -ENOMEM;
4466                 goto bye;
4467         }
4468
4469         /* Allocate the memory for the vaious egress queue bitmaps
4470          * ie starving_fl, txq_maperr and blocked_fl.
4471          */
4472         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4473                                         sizeof(long), GFP_KERNEL);
4474         if (!adap->sge.starving_fl) {
4475                 ret = -ENOMEM;
4476                 goto bye;
4477         }
4478
4479         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4480                                        sizeof(long), GFP_KERNEL);
4481         if (!adap->sge.txq_maperr) {
4482                 ret = -ENOMEM;
4483                 goto bye;
4484         }
4485
4486 #ifdef CONFIG_DEBUG_FS
4487         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4488                                        sizeof(long), GFP_KERNEL);
4489         if (!adap->sge.blocked_fl) {
4490                 ret = -ENOMEM;
4491                 goto bye;
4492         }
4493 #endif
4494
4495         params[0] = FW_PARAM_PFVF(CLIP_START);
4496         params[1] = FW_PARAM_PFVF(CLIP_END);
4497         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4498         if (ret < 0)
4499                 goto bye;
4500         adap->clipt_start = val[0];
4501         adap->clipt_end = val[1];
4502
4503         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4504          * Classes supported by the hardware/firmware so we hard code it here
4505          * for now.
4506          */
4507         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4508
4509         /* query params related to active filter region */
4510         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4511         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4512         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4513         /* If Active filter size is set we enable establishing
4514          * offload connection through firmware work request
4515          */
4516         if ((val[0] != val[1]) && (ret >= 0)) {
4517                 adap->flags |= CXGB4_FW_OFLD_CONN;
4518                 adap->tids.aftid_base = val[0];
4519                 adap->tids.aftid_end = val[1];
4520         }
4521
4522         /* If we're running on newer firmware, let it know that we're
4523          * prepared to deal with encapsulated CPL messages.  Older
4524          * firmware won't understand this and we'll just get
4525          * unencapsulated messages ...
4526          */
4527         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4528         val[0] = 1;
4529         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4530
4531         /*
4532          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4533          * capability.  Earlier versions of the firmware didn't have the
4534          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4535          * permission to use ULPTX MEMWRITE DSGL.
4536          */
4537         if (is_t4(adap->params.chip)) {
4538                 adap->params.ulptx_memwrite_dsgl = false;
4539         } else {
4540                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4541                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4542                                       1, params, val);
4543                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4544         }
4545
4546         /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4547         params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4548         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4549                               1, params, val);
4550         adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4551
4552         /* See if FW supports FW_FILTER2 work request */
4553         if (is_t4(adap->params.chip)) {
4554                 adap->params.filter2_wr_support = 0;
4555         } else {
4556                 params[0] = FW_PARAM_DEV(FILTER2_WR);
4557                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4558                                       1, params, val);
4559                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4560         }
4561
4562         /* Check if FW supports returning vin and smt index.
4563          * If this is not supported, driver will interpret
4564          * these values from viid.
4565          */
4566         params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4567         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4568                               1, params, val);
4569         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4570
4571         /*
4572          * Get device capabilities so we can determine what resources we need
4573          * to manage.
4574          */
4575         memset(&caps_cmd, 0, sizeof(caps_cmd));
4576         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4577                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4578         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4579         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4580                          &caps_cmd);
4581         if (ret < 0)
4582                 goto bye;
4583
4584         if (caps_cmd.ofldcaps ||
4585             (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4586                 /* query offload-related parameters */
4587                 params[0] = FW_PARAM_DEV(NTID);
4588                 params[1] = FW_PARAM_PFVF(SERVER_START);
4589                 params[2] = FW_PARAM_PFVF(SERVER_END);
4590                 params[3] = FW_PARAM_PFVF(TDDP_START);
4591                 params[4] = FW_PARAM_PFVF(TDDP_END);
4592                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4593                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4594                                       params, val);
4595                 if (ret < 0)
4596                         goto bye;
4597                 adap->tids.ntids = val[0];
4598                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4599                 adap->tids.stid_base = val[1];
4600                 adap->tids.nstids = val[2] - val[1] + 1;
4601                 /*
4602                  * Setup server filter region. Divide the available filter
4603                  * region into two parts. Regular filters get 1/3rd and server
4604                  * filters get 2/3rd part. This is only enabled if workarond
4605                  * path is enabled.
4606                  * 1. For regular filters.
4607                  * 2. Server filter: This are special filters which are used
4608                  * to redirect SYN packets to offload queue.
4609                  */
4610                 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4611                         adap->tids.sftid_base = adap->tids.ftid_base +
4612                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4613                         adap->tids.nsftids = adap->tids.nftids -
4614                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4615                         adap->tids.nftids = adap->tids.sftid_base -
4616                                                 adap->tids.ftid_base;
4617                 }
4618                 adap->vres.ddp.start = val[3];
4619                 adap->vres.ddp.size = val[4] - val[3] + 1;
4620                 adap->params.ofldq_wr_cred = val[5];
4621
4622                 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4623                         ret = init_hash_filter(adap);
4624                         if (ret < 0)
4625                                 goto bye;
4626                 } else {
4627                         adap->params.offload = 1;
4628                         adap->num_ofld_uld += 1;
4629                 }
4630         }
4631         if (caps_cmd.rdmacaps) {
4632                 params[0] = FW_PARAM_PFVF(STAG_START);
4633                 params[1] = FW_PARAM_PFVF(STAG_END);
4634                 params[2] = FW_PARAM_PFVF(RQ_START);
4635                 params[3] = FW_PARAM_PFVF(RQ_END);
4636                 params[4] = FW_PARAM_PFVF(PBL_START);
4637                 params[5] = FW_PARAM_PFVF(PBL_END);
4638                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4639                                       params, val);
4640                 if (ret < 0)
4641                         goto bye;
4642                 adap->vres.stag.start = val[0];
4643                 adap->vres.stag.size = val[1] - val[0] + 1;
4644                 adap->vres.rq.start = val[2];
4645                 adap->vres.rq.size = val[3] - val[2] + 1;
4646                 adap->vres.pbl.start = val[4];
4647                 adap->vres.pbl.size = val[5] - val[4] + 1;
4648
4649                 params[0] = FW_PARAM_PFVF(SRQ_START);
4650                 params[1] = FW_PARAM_PFVF(SRQ_END);
4651                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4652                                       params, val);
4653                 if (!ret) {
4654                         adap->vres.srq.start = val[0];
4655                         adap->vres.srq.size = val[1] - val[0] + 1;
4656                 }
4657                 if (adap->vres.srq.size) {
4658                         adap->srq = t4_init_srq(adap->vres.srq.size);
4659                         if (!adap->srq)
4660                                 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4661                 }
4662
4663                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4664                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4665                 params[2] = FW_PARAM_PFVF(CQ_START);
4666                 params[3] = FW_PARAM_PFVF(CQ_END);
4667                 params[4] = FW_PARAM_PFVF(OCQ_START);
4668                 params[5] = FW_PARAM_PFVF(OCQ_END);
4669                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4670                                       val);
4671                 if (ret < 0)
4672                         goto bye;
4673                 adap->vres.qp.start = val[0];
4674                 adap->vres.qp.size = val[1] - val[0] + 1;
4675                 adap->vres.cq.start = val[2];
4676                 adap->vres.cq.size = val[3] - val[2] + 1;
4677                 adap->vres.ocq.start = val[4];
4678                 adap->vres.ocq.size = val[5] - val[4] + 1;
4679
4680                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4681                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4682                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4683                                       val);
4684                 if (ret < 0) {
4685                         adap->params.max_ordird_qp = 8;
4686                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4687                         ret = 0;
4688                 } else {
4689                         adap->params.max_ordird_qp = val[0];
4690                         adap->params.max_ird_adapter = val[1];
4691                 }
4692                 dev_info(adap->pdev_dev,
4693                          "max_ordird_qp %d max_ird_adapter %d\n",
4694                          adap->params.max_ordird_qp,
4695                          adap->params.max_ird_adapter);
4696
4697                 /* Enable write_with_immediate if FW supports it */
4698                 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4699                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4700                                       val);
4701                 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4702
4703                 /* Enable write_cmpl if FW supports it */
4704                 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4705                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4706                                       val);
4707                 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4708                 adap->num_ofld_uld += 2;
4709         }
4710         if (caps_cmd.iscsicaps) {
4711                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4712                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4713                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4714                                       params, val);
4715                 if (ret < 0)
4716                         goto bye;
4717                 adap->vres.iscsi.start = val[0];
4718                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4719                 /* LIO target and cxgb4i initiaitor */
4720                 adap->num_ofld_uld += 2;
4721         }
4722         if (caps_cmd.cryptocaps) {
4723                 if (ntohs(caps_cmd.cryptocaps) &
4724                     FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4725                         params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4726                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4727                                               2, params, val);
4728                         if (ret < 0) {
4729                                 if (ret != -EINVAL)
4730                                         goto bye;
4731                         } else {
4732                                 adap->vres.ncrypto_fc = val[0];
4733                         }
4734                         adap->num_ofld_uld += 1;
4735                 }
4736                 if (ntohs(caps_cmd.cryptocaps) &
4737                     FW_CAPS_CONFIG_TLS_INLINE) {
4738                         params[0] = FW_PARAM_PFVF(TLS_START);
4739                         params[1] = FW_PARAM_PFVF(TLS_END);
4740                         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4741                                               2, params, val);
4742                         if (ret < 0)
4743                                 goto bye;
4744                         adap->vres.key.start = val[0];
4745                         adap->vres.key.size = val[1] - val[0] + 1;
4746                         adap->num_uld += 1;
4747                 }
4748                 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4749         }
4750 #undef FW_PARAM_PFVF
4751 #undef FW_PARAM_DEV
4752
4753         /* The MTU/MSS Table is initialized by now, so load their values.  If
4754          * we're initializing the adapter, then we'll make any modifications
4755          * we want to the MTU/MSS Table and also initialize the congestion
4756          * parameters.
4757          */
4758         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4759         if (state != DEV_STATE_INIT) {
4760                 int i;
4761
4762                 /* The default MTU Table contains values 1492 and 1500.
4763                  * However, for TCP, it's better to have two values which are
4764                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4765                  * This allows us to have a TCP Data Payload which is a
4766                  * multiple of 8 regardless of what combination of TCP Options
4767                  * are in use (always a multiple of 4 bytes) which is
4768                  * important for performance reasons.  For instance, if no
4769                  * options are in use, then we have a 20-byte IP header and a
4770                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4771                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4772                  * which is not a multiple of 8.  So using an MSS of 1488 in
4773                  * this case results in a TCP Data Payload of 1448 bytes which
4774                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4775                  * Stamps have been negotiated, then an MTU of 1500 bytes
4776                  * results in a TCP Data Payload of 1448 bytes which, as
4777                  * above, is a multiple of 8 bytes ...
4778                  */
4779                 for (i = 0; i < NMTUS; i++)
4780                         if (adap->params.mtus[i] == 1492) {
4781                                 adap->params.mtus[i] = 1488;
4782                                 break;
4783                         }
4784
4785                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4786                              adap->params.b_wnd);
4787         }
4788         t4_init_sge_params(adap);
4789         adap->flags |= CXGB4_FW_OK;
4790         t4_init_tp_params(adap, true);
4791         return 0;
4792
4793         /*
4794          * Something bad happened.  If a command timed out or failed with EIO
4795          * FW does not operate within its spec or something catastrophic
4796          * happened to HW/FW, stop issuing commands.
4797          */
4798 bye:
4799         adap_free_hma_mem(adap);
4800         kfree(adap->sge.egr_map);
4801         kfree(adap->sge.ingr_map);
4802         kfree(adap->sge.starving_fl);
4803         kfree(adap->sge.txq_maperr);
4804 #ifdef CONFIG_DEBUG_FS
4805         kfree(adap->sge.blocked_fl);
4806 #endif
4807         if (ret != -ETIMEDOUT && ret != -EIO)
4808                 t4_fw_bye(adap, adap->mbox);
4809         return ret;
4810 }
4811
4812 /* EEH callbacks */
4813
4814 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4815                                          pci_channel_state_t state)
4816 {
4817         int i;
4818         struct adapter *adap = pci_get_drvdata(pdev);
4819
4820         if (!adap)
4821                 goto out;
4822
4823         rtnl_lock();
4824         adap->flags &= ~CXGB4_FW_OK;
4825         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4826         spin_lock(&adap->stats_lock);
4827         for_each_port(adap, i) {
4828                 struct net_device *dev = adap->port[i];
4829                 if (dev) {
4830                         netif_device_detach(dev);
4831                         netif_carrier_off(dev);
4832                 }
4833         }
4834         spin_unlock(&adap->stats_lock);
4835         disable_interrupts(adap);
4836         if (adap->flags & CXGB4_FULL_INIT_DONE)
4837                 cxgb_down(adap);
4838         rtnl_unlock();
4839         if ((adap->flags & CXGB4_DEV_ENABLED)) {
4840                 pci_disable_device(pdev);
4841                 adap->flags &= ~CXGB4_DEV_ENABLED;
4842         }
4843 out:    return state == pci_channel_io_perm_failure ?
4844                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4845 }
4846
4847 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4848 {
4849         int i, ret;
4850         struct fw_caps_config_cmd c;
4851         struct adapter *adap = pci_get_drvdata(pdev);
4852
4853         if (!adap) {
4854                 pci_restore_state(pdev);
4855                 pci_save_state(pdev);
4856                 return PCI_ERS_RESULT_RECOVERED;
4857         }
4858
4859         if (!(adap->flags & CXGB4_DEV_ENABLED)) {
4860                 if (pci_enable_device(pdev)) {
4861                         dev_err(&pdev->dev, "Cannot reenable PCI "
4862                                             "device after reset\n");
4863                         return PCI_ERS_RESULT_DISCONNECT;
4864                 }
4865                 adap->flags |= CXGB4_DEV_ENABLED;
4866         }
4867
4868         pci_set_master(pdev);
4869         pci_restore_state(pdev);
4870         pci_save_state(pdev);
4871
4872         if (t4_wait_dev_ready(adap->regs) < 0)
4873                 return PCI_ERS_RESULT_DISCONNECT;
4874         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4875                 return PCI_ERS_RESULT_DISCONNECT;
4876         adap->flags |= CXGB4_FW_OK;
4877         if (adap_init1(adap, &c))
4878                 return PCI_ERS_RESULT_DISCONNECT;
4879
4880         for_each_port(adap, i) {
4881                 struct port_info *pi = adap2pinfo(adap, i);
4882                 u8 vivld = 0, vin = 0;
4883
4884                 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
4885                                   NULL, NULL, &vivld, &vin);
4886                 if (ret < 0)
4887                         return PCI_ERS_RESULT_DISCONNECT;
4888                 pi->viid = ret;
4889                 pi->xact_addr_filt = -1;
4890                 /* If fw supports returning the VIN as part of FW_VI_CMD,
4891                  * save the returned values.
4892                  */
4893                 if (adap->params.viid_smt_extn_support) {
4894                         pi->vivld = vivld;
4895                         pi->vin = vin;
4896                 } else {
4897                         /* Retrieve the values from VIID */
4898                         pi->vivld = FW_VIID_VIVLD_G(pi->viid);
4899                         pi->vin = FW_VIID_VIN_G(pi->viid);
4900                 }
4901         }
4902
4903         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4904                      adap->params.b_wnd);
4905         setup_memwin(adap);
4906         if (cxgb_up(adap))
4907                 return PCI_ERS_RESULT_DISCONNECT;
4908         return PCI_ERS_RESULT_RECOVERED;
4909 }
4910
4911 static void eeh_resume(struct pci_dev *pdev)
4912 {
4913         int i;
4914         struct adapter *adap = pci_get_drvdata(pdev);
4915
4916         if (!adap)
4917                 return;
4918
4919         rtnl_lock();
4920         for_each_port(adap, i) {
4921                 struct net_device *dev = adap->port[i];
4922                 if (dev) {
4923                         if (netif_running(dev)) {
4924                                 link_start(dev);
4925                                 cxgb_set_rxmode(dev);
4926                         }
4927                         netif_device_attach(dev);
4928                 }
4929         }
4930         rtnl_unlock();
4931 }
4932
4933 static const struct pci_error_handlers cxgb4_eeh = {
4934         .error_detected = eeh_err_detected,
4935         .slot_reset     = eeh_slot_reset,
4936         .resume         = eeh_resume,
4937 };
4938
4939 /* Return true if the Link Configuration supports "High Speeds" (those greater
4940  * than 1Gb/s).
4941  */
4942 static inline bool is_x_10g_port(const struct link_config *lc)
4943 {
4944         unsigned int speeds, high_speeds;
4945
4946         speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4947         high_speeds = speeds &
4948                         ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4949
4950         return high_speeds != 0;
4951 }
4952
4953 /*
4954  * Perform default configuration of DMA queues depending on the number and type
4955  * of ports we found and the number of available CPUs.  Most settings can be
4956  * modified by the admin prior to actual use.
4957  */
4958 static int cfg_queues(struct adapter *adap)
4959 {
4960         struct sge *s = &adap->sge;
4961         int i, n10g = 0, qidx = 0;
4962         int niqflint, neq, avail_eth_qsets;
4963         int max_eth_qsets = 32;
4964 #ifndef CONFIG_CHELSIO_T4_DCB
4965         int q10g = 0;
4966 #endif
4967
4968         /* Reduce memory usage in kdump environment, disable all offload.
4969          */
4970         if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4971                 adap->params.offload = 0;
4972                 adap->params.crypto = 0;
4973         }
4974
4975         /* Calculate the number of Ethernet Queue Sets available based on
4976          * resources provisioned for us.  We always have an Asynchronous
4977          * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
4978          * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
4979          * Ingress Queue.  Meanwhile, we need two Egress Queues for each
4980          * Queue Set: one for the Free List and one for the Ethernet TX Queue.
4981          *
4982          * Note that we should also take into account all of the various
4983          * Offload Queues.  But, in any situation where we're operating in
4984          * a Resource Constrained Provisioning environment, doing any Offload
4985          * at all is problematic ...
4986          */
4987         niqflint = adap->params.pfres.niqflint - 1;
4988         if (!(adap->flags & CXGB4_USING_MSIX))
4989                 niqflint--;
4990         neq = adap->params.pfres.neq / 2;
4991         avail_eth_qsets = min(niqflint, neq);
4992
4993         if (avail_eth_qsets > max_eth_qsets)
4994                 avail_eth_qsets = max_eth_qsets;
4995
4996         if (avail_eth_qsets < adap->params.nports) {
4997                 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
4998                         avail_eth_qsets, adap->params.nports);
4999                 return -ENOMEM;
5000         }
5001
5002         /* Count the number of 10Gb/s or better ports */
5003         for_each_port(adap, i)
5004                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5005
5006 #ifdef CONFIG_CHELSIO_T4_DCB
5007         /* For Data Center Bridging support we need to be able to support up
5008          * to 8 Traffic Priorities; each of which will be assigned to its
5009          * own TX Queue in order to prevent Head-Of-Line Blocking.
5010          */
5011         if (adap->params.nports * 8 > avail_eth_qsets) {
5012                 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5013                         avail_eth_qsets, adap->params.nports * 8);
5014                 return -ENOMEM;
5015         }
5016
5017         for_each_port(adap, i) {
5018                 struct port_info *pi = adap2pinfo(adap, i);
5019
5020                 pi->first_qset = qidx;
5021                 pi->nqsets = is_kdump_kernel() ? 1 : 8;
5022                 qidx += pi->nqsets;
5023         }
5024 #else /* !CONFIG_CHELSIO_T4_DCB */
5025         /*
5026          * We default to 1 queue per non-10G port and up to # of cores queues
5027          * per 10G port.
5028          */
5029         if (n10g)
5030                 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5031         if (q10g > netif_get_num_default_rss_queues())
5032                 q10g = netif_get_num_default_rss_queues();
5033
5034         if (is_kdump_kernel())
5035                 q10g = 1;
5036
5037         for_each_port(adap, i) {
5038                 struct port_info *pi = adap2pinfo(adap, i);
5039
5040                 pi->first_qset = qidx;
5041                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5042                 qidx += pi->nqsets;
5043         }
5044 #endif /* !CONFIG_CHELSIO_T4_DCB */
5045
5046         s->ethqsets = qidx;
5047         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5048
5049         if (is_uld(adap)) {
5050                 /*
5051                  * For offload we use 1 queue/channel if all ports are up to 1G,
5052                  * otherwise we divide all available queues amongst the channels
5053                  * capped by the number of available cores.
5054                  */
5055                 if (n10g) {
5056                         i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
5057                         s->ofldqsets = roundup(i, adap->params.nports);
5058                 } else {
5059                         s->ofldqsets = adap->params.nports;
5060                 }
5061         }
5062
5063         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5064                 struct sge_eth_rxq *r = &s->ethrxq[i];
5065
5066                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5067                 r->fl.size = 72;
5068         }
5069
5070         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5071                 s->ethtxq[i].q.size = 1024;
5072
5073         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5074                 s->ctrlq[i].q.size = 512;
5075
5076         if (!is_t4(adap->params.chip))
5077                 s->ptptxq.q.size = 8;
5078
5079         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5080         init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5081
5082         return 0;
5083 }
5084
5085 /*
5086  * Reduce the number of Ethernet queues across all ports to at most n.
5087  * n provides at least one queue per port.
5088  */
5089 static void reduce_ethqs(struct adapter *adap, int n)
5090 {
5091         int i;
5092         struct port_info *pi;
5093
5094         while (n < adap->sge.ethqsets)
5095                 for_each_port(adap, i) {
5096                         pi = adap2pinfo(adap, i);
5097                         if (pi->nqsets > 1) {
5098                                 pi->nqsets--;
5099                                 adap->sge.ethqsets--;
5100                                 if (adap->sge.ethqsets <= n)
5101                                         break;
5102                         }
5103                 }
5104
5105         n = 0;
5106         for_each_port(adap, i) {
5107                 pi = adap2pinfo(adap, i);
5108                 pi->first_qset = n;
5109                 n += pi->nqsets;
5110         }
5111 }
5112
5113 static int get_msix_info(struct adapter *adap)
5114 {
5115         struct uld_msix_info *msix_info;
5116         unsigned int max_ingq = 0;
5117
5118         if (is_offload(adap))
5119                 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5120         if (is_pci_uld(adap))
5121                 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5122
5123         if (!max_ingq)
5124                 goto out;
5125
5126         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5127         if (!msix_info)
5128                 return -ENOMEM;
5129
5130         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5131                                                  sizeof(long), GFP_KERNEL);
5132         if (!adap->msix_bmap_ulds.msix_bmap) {
5133                 kfree(msix_info);
5134                 return -ENOMEM;
5135         }
5136         spin_lock_init(&adap->msix_bmap_ulds.lock);
5137         adap->msix_info_ulds = msix_info;
5138 out:
5139         return 0;
5140 }
5141
5142 static void free_msix_info(struct adapter *adap)
5143 {
5144         if (!(adap->num_uld && adap->num_ofld_uld))
5145                 return;
5146
5147         kfree(adap->msix_info_ulds);
5148         kfree(adap->msix_bmap_ulds.msix_bmap);
5149 }
5150
5151 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5152 #define EXTRA_VECS 2
5153
5154 static int enable_msix(struct adapter *adap)
5155 {
5156         int ofld_need = 0, uld_need = 0;
5157         int i, j, want, need, allocated;
5158         struct sge *s = &adap->sge;
5159         unsigned int nchan = adap->params.nports;
5160         struct msix_entry *entries;
5161         int max_ingq = MAX_INGQ;
5162
5163         if (is_pci_uld(adap))
5164                 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5165         if (is_offload(adap))
5166                 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5167         entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5168                                 GFP_KERNEL);
5169         if (!entries)
5170                 return -ENOMEM;
5171
5172         /* map for msix */
5173         if (get_msix_info(adap)) {
5174                 adap->params.offload = 0;
5175                 adap->params.crypto = 0;
5176         }
5177
5178         for (i = 0; i < max_ingq + 1; ++i)
5179                 entries[i].entry = i;
5180
5181         want = s->max_ethqsets + EXTRA_VECS;
5182         if (is_offload(adap)) {
5183                 want += adap->num_ofld_uld * s->ofldqsets;
5184                 ofld_need = adap->num_ofld_uld * nchan;
5185         }
5186         if (is_pci_uld(adap)) {
5187                 want += adap->num_uld * s->ofldqsets;
5188                 uld_need = adap->num_uld * nchan;
5189         }
5190 #ifdef CONFIG_CHELSIO_T4_DCB
5191         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5192          * each port.
5193          */
5194         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5195 #else
5196         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5197 #endif
5198         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5199         if (allocated < 0) {
5200                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5201                          " not using MSI-X\n");
5202                 kfree(entries);
5203                 return allocated;
5204         }
5205
5206         /* Distribute available vectors to the various queue groups.
5207          * Every group gets its minimum requirement and NIC gets top
5208          * priority for leftovers.
5209          */
5210         i = allocated - EXTRA_VECS - ofld_need - uld_need;
5211         if (i < s->max_ethqsets) {
5212                 s->max_ethqsets = i;
5213                 if (i < s->ethqsets)
5214                         reduce_ethqs(adap, i);
5215         }
5216         if (is_uld(adap)) {
5217                 if (allocated < want)
5218                         s->nqs_per_uld = nchan;
5219                 else
5220                         s->nqs_per_uld = s->ofldqsets;
5221         }
5222
5223         for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5224                 adap->msix_info[i].vec = entries[i].vector;
5225         if (is_uld(adap)) {
5226                 for (j = 0 ; i < allocated; ++i, j++) {
5227                         adap->msix_info_ulds[j].vec = entries[i].vector;
5228                         adap->msix_info_ulds[j].idx = i;
5229                 }
5230                 adap->msix_bmap_ulds.mapsize = j;
5231         }
5232         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5233                  "nic %d per uld %d\n",
5234                  allocated, s->max_ethqsets, s->nqs_per_uld);
5235
5236         kfree(entries);
5237         return 0;
5238 }
5239
5240 #undef EXTRA_VECS
5241
5242 static int init_rss(struct adapter *adap)
5243 {
5244         unsigned int i;
5245         int err;
5246
5247         err = t4_init_rss_mode(adap, adap->mbox);
5248         if (err)
5249                 return err;
5250
5251         for_each_port(adap, i) {
5252                 struct port_info *pi = adap2pinfo(adap, i);
5253
5254                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5255                 if (!pi->rss)
5256                         return -ENOMEM;
5257         }
5258         return 0;
5259 }
5260
5261 /* Dump basic information about the adapter */
5262 static void print_adapter_info(struct adapter *adapter)
5263 {
5264         /* Hardware/Firmware/etc. Version/Revision IDs */
5265         t4_dump_version_info(adapter);
5266
5267         /* Software/Hardware configuration */
5268         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5269                  is_offload(adapter) ? "R" : "",
5270                  ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5271                   (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5272                  is_offload(adapter) ? "Offload" : "non-Offload");
5273 }
5274
5275 static void print_port_info(const struct net_device *dev)
5276 {
5277         char buf[80];
5278         char *bufp = buf;
5279         const struct port_info *pi = netdev_priv(dev);
5280         const struct adapter *adap = pi->adapter;
5281
5282         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5283                 bufp += sprintf(bufp, "100M/");
5284         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5285                 bufp += sprintf(bufp, "1G/");
5286         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5287                 bufp += sprintf(bufp, "10G/");
5288         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5289                 bufp += sprintf(bufp, "25G/");
5290         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5291                 bufp += sprintf(bufp, "40G/");
5292         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5293                 bufp += sprintf(bufp, "50G/");
5294         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5295                 bufp += sprintf(bufp, "100G/");
5296         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5297                 bufp += sprintf(bufp, "200G/");
5298         if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5299                 bufp += sprintf(bufp, "400G/");
5300         if (bufp != buf)
5301                 --bufp;
5302         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5303
5304         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5305                     dev->name, adap->params.vpd.id, adap->name, buf);
5306 }
5307
5308 /*
5309  * Free the following resources:
5310  * - memory used for tables
5311  * - MSI/MSI-X
5312  * - net devices
5313  * - resources FW is holding for us
5314  */
5315 static void free_some_resources(struct adapter *adapter)
5316 {
5317         unsigned int i;
5318
5319         kvfree(adapter->mps_encap);
5320         kvfree(adapter->smt);
5321         kvfree(adapter->l2t);
5322         kvfree(adapter->srq);
5323         t4_cleanup_sched(adapter);
5324         kvfree(adapter->tids.tid_tab);
5325         cxgb4_cleanup_tc_flower(adapter);
5326         cxgb4_cleanup_tc_u32(adapter);
5327         kfree(adapter->sge.egr_map);
5328         kfree(adapter->sge.ingr_map);
5329         kfree(adapter->sge.starving_fl);
5330         kfree(adapter->sge.txq_maperr);
5331 #ifdef CONFIG_DEBUG_FS
5332         kfree(adapter->sge.blocked_fl);
5333 #endif
5334         disable_msi(adapter);
5335
5336         for_each_port(adapter, i)
5337                 if (adapter->port[i]) {
5338                         struct port_info *pi = adap2pinfo(adapter, i);
5339
5340                         if (pi->viid != 0)
5341                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5342                                            0, pi->viid);
5343                         kfree(adap2pinfo(adapter, i)->rss);
5344                         free_netdev(adapter->port[i]);
5345                 }
5346         if (adapter->flags & CXGB4_FW_OK)
5347                 t4_fw_bye(adapter, adapter->pf);
5348 }
5349
5350 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5351 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5352                    NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5353 #define SEGMENT_SIZE 128
5354
5355 static int t4_get_chip_type(struct adapter *adap, int ver)
5356 {
5357         u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5358
5359         switch (ver) {
5360         case CHELSIO_T4:
5361                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5362         case CHELSIO_T5:
5363                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5364         case CHELSIO_T6:
5365                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5366         default:
5367                 break;
5368         }
5369         return -EINVAL;
5370 }
5371
5372 #ifdef CONFIG_PCI_IOV
5373 static void cxgb4_mgmt_setup(struct net_device *dev)
5374 {
5375         dev->type = ARPHRD_NONE;
5376         dev->mtu = 0;
5377         dev->hard_header_len = 0;
5378         dev->addr_len = 0;
5379         dev->tx_queue_len = 0;
5380         dev->flags |= IFF_NOARP;
5381         dev->priv_flags |= IFF_NO_QUEUE;
5382
5383         /* Initialize the device structure. */
5384         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5385         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5386 }
5387
5388 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5389 {
5390         struct adapter *adap = pci_get_drvdata(pdev);
5391         int err = 0;
5392         int current_vfs = pci_num_vf(pdev);
5393         u32 pcie_fw;
5394
5395         pcie_fw = readl(adap->regs + PCIE_FW_A);
5396         /* Check if fw is initialized */
5397         if (!(pcie_fw & PCIE_FW_INIT_F)) {
5398                 dev_warn(&pdev->dev, "Device not initialized\n");
5399                 return -EOPNOTSUPP;
5400         }
5401
5402         /* If any of the VF's is already assigned to Guest OS, then
5403          * SRIOV for the same cannot be modified
5404          */
5405         if (current_vfs && pci_vfs_assigned(pdev)) {
5406                 dev_err(&pdev->dev,
5407                         "Cannot modify SR-IOV while VFs are assigned\n");
5408                 return current_vfs;
5409         }
5410         /* Note that the upper-level code ensures that we're never called with
5411          * a non-zero "num_vfs" when we already have VFs instantiated.  But
5412          * it never hurts to code defensively.
5413          */
5414         if (num_vfs != 0 && current_vfs != 0)
5415                 return -EBUSY;
5416
5417         /* Nothing to do for no change. */
5418         if (num_vfs == current_vfs)
5419                 return num_vfs;
5420
5421         /* Disable SRIOV when zero is passed. */
5422         if (!num_vfs) {
5423                 pci_disable_sriov(pdev);
5424                 /* free VF Management Interface */
5425                 unregister_netdev(adap->port[0]);
5426                 free_netdev(adap->port[0]);
5427                 adap->port[0] = NULL;
5428
5429                 /* free VF resources */
5430                 adap->num_vfs = 0;
5431                 kfree(adap->vfinfo);
5432                 adap->vfinfo = NULL;
5433                 return 0;
5434         }
5435
5436         if (!current_vfs) {
5437                 struct fw_pfvf_cmd port_cmd, port_rpl;
5438                 struct net_device *netdev;
5439                 unsigned int pmask, port;
5440                 struct pci_dev *pbridge;
5441                 struct port_info *pi;
5442                 char name[IFNAMSIZ];
5443                 u32 devcap2;
5444                 u16 flags;
5445                 int pos;
5446
5447                 /* If we want to instantiate Virtual Functions, then our
5448                  * parent bridge's PCI-E needs to support Alternative Routing
5449                  * ID (ARI) because our VFs will show up at function offset 8
5450                  * and above.
5451                  */
5452                 pbridge = pdev->bus->self;
5453                 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5454                 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5455                 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5456
5457                 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5458                     !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5459                         /* Our parent bridge does not support ARI so issue a
5460                          * warning and skip instantiating the VFs.  They
5461                          * won't be reachable.
5462                          */
5463                         dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5464                                  pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5465                                  PCI_FUNC(pbridge->devfn));
5466                         return -ENOTSUPP;
5467                 }
5468                 memset(&port_cmd, 0, sizeof(port_cmd));
5469                 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5470                                                  FW_CMD_REQUEST_F |
5471                                                  FW_CMD_READ_F |
5472                                                  FW_PFVF_CMD_PFN_V(adap->pf) |
5473                                                  FW_PFVF_CMD_VFN_V(0));
5474                 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5475                 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5476                                  &port_rpl);
5477                 if (err)
5478                         return err;
5479                 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5480                 port = ffs(pmask) - 1;
5481                 /* Allocate VF Management Interface. */
5482                 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5483                          adap->pf);
5484                 netdev = alloc_netdev(sizeof(struct port_info),
5485                                       name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5486                 if (!netdev)
5487                         return -ENOMEM;
5488
5489                 pi = netdev_priv(netdev);
5490                 pi->adapter = adap;
5491                 pi->lport = port;
5492                 pi->tx_chan = port;
5493                 SET_NETDEV_DEV(netdev, &pdev->dev);
5494
5495                 adap->port[0] = netdev;
5496                 pi->port_id = 0;
5497
5498                 err = register_netdev(adap->port[0]);
5499                 if (err) {
5500                         pr_info("Unable to register VF mgmt netdev %s\n", name);
5501                         free_netdev(adap->port[0]);
5502                         adap->port[0] = NULL;
5503                         return err;
5504                 }
5505                 /* Allocate and set up VF Information. */
5506                 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5507                                        sizeof(struct vf_info), GFP_KERNEL);
5508                 if (!adap->vfinfo) {
5509                         unregister_netdev(adap->port[0]);
5510                         free_netdev(adap->port[0]);
5511                         adap->port[0] = NULL;
5512                         return -ENOMEM;
5513                 }
5514                 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5515         }
5516         /* Instantiate the requested number of VFs. */
5517         err = pci_enable_sriov(pdev, num_vfs);
5518         if (err) {
5519                 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5520                 if (!current_vfs) {
5521                         unregister_netdev(adap->port[0]);
5522                         free_netdev(adap->port[0]);
5523                         adap->port[0] = NULL;
5524                         kfree(adap->vfinfo);
5525                         adap->vfinfo = NULL;
5526                 }
5527                 return err;
5528         }
5529
5530         adap->num_vfs = num_vfs;
5531         return num_vfs;
5532 }
5533 #endif /* CONFIG_PCI_IOV */
5534
5535 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5536 {
5537         struct net_device *netdev;
5538         struct adapter *adapter;
5539         static int adap_idx = 1;
5540         int s_qpp, qpp, num_seg;
5541         struct port_info *pi;
5542         bool highdma = false;
5543         enum chip_type chip;
5544         void __iomem *regs;
5545         int func, chip_ver;
5546         u16 device_id;
5547         int i, err;
5548         u32 whoami;
5549
5550         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5551
5552         err = pci_request_regions(pdev, KBUILD_MODNAME);
5553         if (err) {
5554                 /* Just info, some other driver may have claimed the device. */
5555                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5556                 return err;
5557         }
5558
5559         err = pci_enable_device(pdev);
5560         if (err) {
5561                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5562                 goto out_release_regions;
5563         }
5564
5565         regs = pci_ioremap_bar(pdev, 0);
5566         if (!regs) {
5567                 dev_err(&pdev->dev, "cannot map device registers\n");
5568                 err = -ENOMEM;
5569                 goto out_disable_device;
5570         }
5571
5572         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5573         if (!adapter) {
5574                 err = -ENOMEM;
5575                 goto out_unmap_bar0;
5576         }
5577
5578         adapter->regs = regs;
5579         err = t4_wait_dev_ready(regs);
5580         if (err < 0)
5581                 goto out_free_adapter;
5582
5583         /* We control everything through one PF */
5584         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5585         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5586         chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5587         if (chip < 0) {
5588                 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5589                 err = chip;
5590                 goto out_free_adapter;
5591         }
5592         chip_ver = CHELSIO_CHIP_VERSION(chip);
5593         func = chip_ver <= CHELSIO_T5 ?
5594                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5595
5596         adapter->pdev = pdev;
5597         adapter->pdev_dev = &pdev->dev;
5598         adapter->name = pci_name(pdev);
5599         adapter->mbox = func;
5600         adapter->pf = func;
5601         adapter->params.chip = chip;
5602         adapter->adap_idx = adap_idx;
5603         adapter->msg_enable = DFLT_MSG_ENABLE;
5604         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5605                                     (sizeof(struct mbox_cmd) *
5606                                      T4_OS_LOG_MBOX_CMDS),
5607                                     GFP_KERNEL);
5608         if (!adapter->mbox_log) {
5609                 err = -ENOMEM;
5610                 goto out_free_adapter;
5611         }
5612         spin_lock_init(&adapter->mbox_lock);
5613         INIT_LIST_HEAD(&adapter->mlist.list);
5614         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5615         pci_set_drvdata(pdev, adapter);
5616
5617         if (func != ent->driver_data) {
5618                 pci_disable_device(pdev);
5619                 pci_save_state(pdev);        /* to restore SR-IOV later */
5620                 return 0;
5621         }
5622
5623         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5624                 highdma = true;
5625                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5626                 if (err) {
5627                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5628                                 "coherent allocations\n");
5629                         goto out_free_adapter;
5630                 }
5631         } else {
5632                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5633                 if (err) {
5634                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5635                         goto out_free_adapter;
5636                 }
5637         }
5638
5639         pci_enable_pcie_error_reporting(pdev);
5640         pci_set_master(pdev);
5641         pci_save_state(pdev);
5642         adap_idx++;
5643         adapter->workq = create_singlethread_workqueue("cxgb4");
5644         if (!adapter->workq) {
5645                 err = -ENOMEM;
5646                 goto out_free_adapter;
5647         }
5648
5649         /* PCI device has been enabled */
5650         adapter->flags |= CXGB4_DEV_ENABLED;
5651         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5652
5653         /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5654          * Ingress Packet Data to Free List Buffers in order to allow for
5655          * chipset performance optimizations between the Root Complex and
5656          * Memory Controllers.  (Messages to the associated Ingress Queue
5657          * notifying new Packet Placement in the Free Lists Buffers will be
5658          * send without the Relaxed Ordering Attribute thus guaranteeing that
5659          * all preceding PCIe Transaction Layer Packets will be processed
5660          * first.)  But some Root Complexes have various issues with Upstream
5661          * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5662          * The PCIe devices which under the Root Complexes will be cleared the
5663          * Relaxed Ordering bit in the configuration space, So we check our
5664          * PCIe configuration space to see if it's flagged with advice against
5665          * using Relaxed Ordering.
5666          */
5667         if (!pcie_relaxed_ordering_enabled(pdev))
5668                 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
5669
5670         spin_lock_init(&adapter->stats_lock);
5671         spin_lock_init(&adapter->tid_release_lock);
5672         spin_lock_init(&adapter->win0_lock);
5673
5674         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5675         INIT_WORK(&adapter->db_full_task, process_db_full);
5676         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5677         INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5678
5679         err = t4_prep_adapter(adapter);
5680         if (err)
5681                 goto out_free_adapter;
5682
5683         if (is_kdump_kernel()) {
5684                 /* Collect hardware state and append to /proc/vmcore */
5685                 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5686                 if (err) {
5687                         dev_warn(adapter->pdev_dev,
5688                                  "Fail collecting vmcore device dump, err: %d. Continuing\n",
5689                                  err);
5690                         err = 0;
5691                 }
5692         }
5693
5694         if (!is_t4(adapter->params.chip)) {
5695                 s_qpp = (QUEUESPERPAGEPF0_S +
5696                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5697                         adapter->pf);
5698                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5699                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5700                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5701
5702                 /* Each segment size is 128B. Write coalescing is enabled only
5703                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5704                  * queue is less no of segments that can be accommodated in
5705                  * a page size.
5706                  */
5707                 if (qpp > num_seg) {
5708                         dev_err(&pdev->dev,
5709                                 "Incorrect number of egress queues per page\n");
5710                         err = -EINVAL;
5711                         goto out_free_adapter;
5712                 }
5713                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5714                 pci_resource_len(pdev, 2));
5715                 if (!adapter->bar2) {
5716                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5717                         err = -ENOMEM;
5718                         goto out_free_adapter;
5719                 }
5720         }
5721
5722         setup_memwin(adapter);
5723         err = adap_init0(adapter);
5724 #ifdef CONFIG_DEBUG_FS
5725         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5726 #endif
5727         setup_memwin_rdma(adapter);
5728         if (err)
5729                 goto out_unmap_bar;
5730
5731         /* configure SGE_STAT_CFG_A to read WC stats */
5732         if (!is_t4(adapter->params.chip))
5733                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5734                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5735                               T6_STATMODE_V(0)));
5736
5737         /* Initialize hash mac addr list */
5738         INIT_LIST_HEAD(&adapter->mac_hlist);
5739
5740         for_each_port(adapter, i) {
5741                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5742                                            MAX_ETH_QSETS);
5743                 if (!netdev) {
5744                         err = -ENOMEM;
5745                         goto out_free_dev;
5746                 }
5747
5748                 SET_NETDEV_DEV(netdev, &pdev->dev);
5749
5750                 adapter->port[i] = netdev;
5751                 pi = netdev_priv(netdev);
5752                 pi->adapter = adapter;
5753                 pi->xact_addr_filt = -1;
5754                 pi->port_id = i;
5755                 netdev->irq = pdev->irq;
5756
5757                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5758                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5759                         NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
5760                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5761                         NETIF_F_HW_TC;
5762
5763                 if (chip_ver > CHELSIO_T5) {
5764                         netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5765                                                    NETIF_F_IPV6_CSUM |
5766                                                    NETIF_F_RXCSUM |
5767                                                    NETIF_F_GSO_UDP_TUNNEL |
5768                                                    NETIF_F_GSO_UDP_TUNNEL_CSUM |
5769                                                    NETIF_F_TSO | NETIF_F_TSO6;
5770
5771                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
5772                                                NETIF_F_GSO_UDP_TUNNEL_CSUM |
5773                                                NETIF_F_HW_TLS_RECORD;
5774                 }
5775
5776                 if (highdma)
5777                         netdev->hw_features |= NETIF_F_HIGHDMA;
5778                 netdev->features |= netdev->hw_features;
5779                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5780
5781                 netdev->priv_flags |= IFF_UNICAST_FLT;
5782
5783                 /* MTU range: 81 - 9600 */
5784                 netdev->min_mtu = 81;              /* accommodate SACK */
5785                 netdev->max_mtu = MAX_MTU;
5786
5787                 netdev->netdev_ops = &cxgb4_netdev_ops;
5788 #ifdef CONFIG_CHELSIO_T4_DCB
5789                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5790                 cxgb4_dcb_state_init(netdev);
5791                 cxgb4_dcb_version_init(netdev);
5792 #endif
5793                 cxgb4_set_ethtool_ops(netdev);
5794         }
5795
5796         cxgb4_init_ethtool_dump(adapter);
5797
5798         pci_set_drvdata(pdev, adapter);
5799
5800         if (adapter->flags & CXGB4_FW_OK) {
5801                 err = t4_port_init(adapter, func, func, 0);
5802                 if (err)
5803                         goto out_free_dev;
5804         } else if (adapter->params.nports == 1) {
5805                 /* If we don't have a connection to the firmware -- possibly
5806                  * because of an error -- grab the raw VPD parameters so we
5807                  * can set the proper MAC Address on the debug network
5808                  * interface that we've created.
5809                  */
5810                 u8 hw_addr[ETH_ALEN];
5811                 u8 *na = adapter->params.vpd.na;
5812
5813                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5814                 if (!err) {
5815                         for (i = 0; i < ETH_ALEN; i++)
5816                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5817                                               hex2val(na[2 * i + 1]));
5818                         t4_set_hw_addr(adapter, 0, hw_addr);
5819                 }
5820         }
5821
5822         if (!(adapter->flags & CXGB4_FW_OK))
5823                 goto fw_attach_fail;
5824
5825         /* Configure queues and allocate tables now, they can be needed as
5826          * soon as the first register_netdev completes.
5827          */
5828         err = cfg_queues(adapter);
5829         if (err)
5830                 goto out_free_dev;
5831
5832         adapter->smt = t4_init_smt();
5833         if (!adapter->smt) {
5834                 /* We tolerate a lack of SMT, giving up some functionality */
5835                 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5836         }
5837
5838         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5839         if (!adapter->l2t) {
5840                 /* We tolerate a lack of L2T, giving up some functionality */
5841                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5842                 adapter->params.offload = 0;
5843         }
5844
5845         adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5846                                       sizeof(struct mps_encap_entry),
5847                                       GFP_KERNEL);
5848         if (!adapter->mps_encap)
5849                 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5850
5851 #if IS_ENABLED(CONFIG_IPV6)
5852         if (chip_ver <= CHELSIO_T5 &&
5853             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5854                 /* CLIP functionality is not present in hardware,
5855                  * hence disable all offload features
5856                  */
5857                 dev_warn(&pdev->dev,
5858                          "CLIP not enabled in hardware, continuing\n");
5859                 adapter->params.offload = 0;
5860         } else {
5861                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5862                                                   adapter->clipt_end);
5863                 if (!adapter->clipt) {
5864                         /* We tolerate a lack of clip_table, giving up
5865                          * some functionality
5866                          */
5867                         dev_warn(&pdev->dev,
5868                                  "could not allocate Clip table, continuing\n");
5869                         adapter->params.offload = 0;
5870                 }
5871         }
5872 #endif
5873
5874         for_each_port(adapter, i) {
5875                 pi = adap2pinfo(adapter, i);
5876                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5877                 if (!pi->sched_tbl)
5878                         dev_warn(&pdev->dev,
5879                                  "could not activate scheduling on port %d\n",
5880                                  i);
5881         }
5882
5883         if (tid_init(&adapter->tids) < 0) {
5884                 dev_warn(&pdev->dev, "could not allocate TID table, "
5885                          "continuing\n");
5886                 adapter->params.offload = 0;
5887         } else {
5888                 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5889                 if (!adapter->tc_u32)
5890                         dev_warn(&pdev->dev,
5891                                  "could not offload tc u32, continuing\n");
5892
5893                 if (cxgb4_init_tc_flower(adapter))
5894                         dev_warn(&pdev->dev,
5895                                  "could not offload tc flower, continuing\n");
5896         }
5897
5898         if (is_offload(adapter) || is_hashfilter(adapter)) {
5899                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5900                         u32 hash_base, hash_reg;
5901
5902                         if (chip_ver <= CHELSIO_T5) {
5903                                 hash_reg = LE_DB_TID_HASHBASE_A;
5904                                 hash_base = t4_read_reg(adapter, hash_reg);
5905                                 adapter->tids.hash_base = hash_base / 4;
5906                         } else {
5907                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5908                                 hash_base = t4_read_reg(adapter, hash_reg);
5909                                 adapter->tids.hash_base = hash_base;
5910                         }
5911                 }
5912         }
5913
5914         /* See what interrupts we'll be using */
5915         if (msi > 1 && enable_msix(adapter) == 0)
5916                 adapter->flags |= CXGB4_USING_MSIX;
5917         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5918                 adapter->flags |= CXGB4_USING_MSI;
5919                 if (msi > 1)
5920                         free_msix_info(adapter);
5921         }
5922
5923         /* check for PCI Express bandwidth capabiltites */
5924         pcie_print_link_status(pdev);
5925
5926         err = init_rss(adapter);
5927         if (err)
5928                 goto out_free_dev;
5929
5930         err = setup_fw_sge_queues(adapter);
5931         if (err) {
5932                 dev_err(adapter->pdev_dev,
5933                         "FW sge queue allocation failed, err %d", err);
5934                 goto out_free_dev;
5935         }
5936
5937 fw_attach_fail:
5938         /*
5939          * The card is now ready to go.  If any errors occur during device
5940          * registration we do not fail the whole card but rather proceed only
5941          * with the ports we manage to register successfully.  However we must
5942          * register at least one net device.
5943          */
5944         for_each_port(adapter, i) {
5945                 pi = adap2pinfo(adapter, i);
5946                 adapter->port[i]->dev_port = pi->lport;
5947                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5948                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5949
5950                 netif_carrier_off(adapter->port[i]);
5951
5952                 err = register_netdev(adapter->port[i]);
5953                 if (err)
5954                         break;
5955                 adapter->chan_map[pi->tx_chan] = i;
5956                 print_port_info(adapter->port[i]);
5957         }
5958         if (i == 0) {
5959                 dev_err(&pdev->dev, "could not register any net devices\n");
5960                 goto out_free_dev;
5961         }
5962         if (err) {
5963                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5964                 err = 0;
5965         }
5966
5967         if (cxgb4_debugfs_root) {
5968                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5969                                                            cxgb4_debugfs_root);
5970                 setup_debugfs(adapter);
5971         }
5972
5973         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5974         pdev->needs_freset = 1;
5975
5976         if (is_uld(adapter)) {
5977                 mutex_lock(&uld_mutex);
5978                 list_add_tail(&adapter->list_node, &adapter_list);
5979                 mutex_unlock(&uld_mutex);
5980         }
5981
5982         if (!is_t4(adapter->params.chip))
5983                 cxgb4_ptp_init(adapter);
5984
5985         if (IS_REACHABLE(CONFIG_THERMAL) &&
5986             !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
5987                 cxgb4_thermal_init(adapter);
5988
5989         print_adapter_info(adapter);
5990         return 0;
5991
5992  out_free_dev:
5993         t4_free_sge_resources(adapter);
5994         free_some_resources(adapter);
5995         if (adapter->flags & CXGB4_USING_MSIX)
5996                 free_msix_info(adapter);
5997         if (adapter->num_uld || adapter->num_ofld_uld)
5998                 t4_uld_mem_free(adapter);
5999  out_unmap_bar:
6000         if (!is_t4(adapter->params.chip))
6001                 iounmap(adapter->bar2);
6002  out_free_adapter:
6003         if (adapter->workq)
6004                 destroy_workqueue(adapter->workq);
6005
6006         kfree(adapter->mbox_log);
6007         kfree(adapter);
6008  out_unmap_bar0:
6009         iounmap(regs);
6010  out_disable_device:
6011         pci_disable_pcie_error_reporting(pdev);
6012         pci_disable_device(pdev);
6013  out_release_regions:
6014         pci_release_regions(pdev);
6015         return err;
6016 }
6017
6018 static void remove_one(struct pci_dev *pdev)
6019 {
6020         struct adapter *adapter = pci_get_drvdata(pdev);
6021         struct hash_mac_addr *entry, *tmp;
6022
6023         if (!adapter) {
6024                 pci_release_regions(pdev);
6025                 return;
6026         }
6027
6028         adapter->flags |= CXGB4_SHUTTING_DOWN;
6029
6030         if (adapter->pf == 4) {
6031                 int i;
6032
6033                 /* Tear down per-adapter Work Queue first since it can contain
6034                  * references to our adapter data structure.
6035                  */
6036                 destroy_workqueue(adapter->workq);
6037
6038                 if (is_uld(adapter)) {
6039                         detach_ulds(adapter);
6040                         t4_uld_clean_up(adapter);
6041                 }
6042
6043                 adap_free_hma_mem(adapter);
6044
6045                 disable_interrupts(adapter);
6046
6047                 for_each_port(adapter, i)
6048                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6049                                 unregister_netdev(adapter->port[i]);
6050
6051                 debugfs_remove_recursive(adapter->debugfs_root);
6052
6053                 if (!is_t4(adapter->params.chip))
6054                         cxgb4_ptp_stop(adapter);
6055                 if (IS_REACHABLE(CONFIG_THERMAL))
6056                         cxgb4_thermal_remove(adapter);
6057
6058                 /* If we allocated filters, free up state associated with any
6059                  * valid filters ...
6060                  */
6061                 clear_all_filters(adapter);
6062
6063                 if (adapter->flags & CXGB4_FULL_INIT_DONE)
6064                         cxgb_down(adapter);
6065
6066                 if (adapter->flags & CXGB4_USING_MSIX)
6067                         free_msix_info(adapter);
6068                 if (adapter->num_uld || adapter->num_ofld_uld)
6069                         t4_uld_mem_free(adapter);
6070                 free_some_resources(adapter);
6071                 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6072                                          list) {
6073                         list_del(&entry->list);
6074                         kfree(entry);
6075                 }
6076
6077 #if IS_ENABLED(CONFIG_IPV6)
6078                 t4_cleanup_clip_tbl(adapter);
6079 #endif
6080                 if (!is_t4(adapter->params.chip))
6081                         iounmap(adapter->bar2);
6082         }
6083 #ifdef CONFIG_PCI_IOV
6084         else {
6085                 cxgb4_iov_configure(adapter->pdev, 0);
6086         }
6087 #endif
6088         iounmap(adapter->regs);
6089         pci_disable_pcie_error_reporting(pdev);
6090         if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6091                 pci_disable_device(pdev);
6092                 adapter->flags &= ~CXGB4_DEV_ENABLED;
6093         }
6094         pci_release_regions(pdev);
6095         kfree(adapter->mbox_log);
6096         synchronize_rcu();
6097         kfree(adapter);
6098 }
6099
6100 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6101  * delivery.  This is essentially a stripped down version of the PCI remove()
6102  * function where we do the minimal amount of work necessary to shutdown any
6103  * further activity.
6104  */
6105 static void shutdown_one(struct pci_dev *pdev)
6106 {
6107         struct adapter *adapter = pci_get_drvdata(pdev);
6108
6109         /* As with remove_one() above (see extended comment), we only want do
6110          * do cleanup on PCI Devices which went all the way through init_one()
6111          * ...
6112          */
6113         if (!adapter) {
6114                 pci_release_regions(pdev);
6115                 return;
6116         }
6117
6118         adapter->flags |= CXGB4_SHUTTING_DOWN;
6119
6120         if (adapter->pf == 4) {
6121                 int i;
6122
6123                 for_each_port(adapter, i)
6124                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6125                                 cxgb_close(adapter->port[i]);
6126
6127                 if (is_uld(adapter)) {
6128                         detach_ulds(adapter);
6129                         t4_uld_clean_up(adapter);
6130                 }
6131
6132                 disable_interrupts(adapter);
6133                 disable_msi(adapter);
6134
6135                 t4_sge_stop(adapter);
6136                 if (adapter->flags & CXGB4_FW_OK)
6137                         t4_fw_bye(adapter, adapter->mbox);
6138         }
6139 }
6140
6141 static struct pci_driver cxgb4_driver = {
6142         .name     = KBUILD_MODNAME,
6143         .id_table = cxgb4_pci_tbl,
6144         .probe    = init_one,
6145         .remove   = remove_one,
6146         .shutdown = shutdown_one,
6147 #ifdef CONFIG_PCI_IOV
6148         .sriov_configure = cxgb4_iov_configure,
6149 #endif
6150         .err_handler = &cxgb4_eeh,
6151 };
6152
6153 static int __init cxgb4_init_module(void)
6154 {
6155         int ret;
6156
6157         /* Debugfs support is optional, just warn if this fails */
6158         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6159         if (!cxgb4_debugfs_root)
6160                 pr_warn("could not create debugfs entry, continuing\n");
6161
6162         ret = pci_register_driver(&cxgb4_driver);
6163         if (ret < 0)
6164                 debugfs_remove(cxgb4_debugfs_root);
6165
6166 #if IS_ENABLED(CONFIG_IPV6)
6167         if (!inet6addr_registered) {
6168                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6169                 inet6addr_registered = true;
6170         }
6171 #endif
6172
6173         return ret;
6174 }
6175
6176 static void __exit cxgb4_cleanup_module(void)
6177 {
6178 #if IS_ENABLED(CONFIG_IPV6)
6179         if (inet6addr_registered) {
6180                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6181                 inet6addr_registered = false;
6182         }
6183 #endif
6184         pci_unregister_driver(&cxgb4_driver);
6185         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6186 }
6187
6188 module_init(cxgb4_init_module);
6189 module_exit(cxgb4_cleanup_module);