Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
69 {
70         /* MIPS chips strapped for BE will automagically configure the
71          * peripheral registers for CPU-native byte order.
72          */
73         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
74                 __raw_writel(value, offset);
75         else
76                 writel_relaxed(value, offset);
77 }
78
79 static inline u32 bcmgenet_readl(void __iomem *offset)
80 {
81         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
82                 return __raw_readl(offset);
83         else
84                 return readl_relaxed(offset);
85 }
86
87 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
88                                              void __iomem *d, u32 value)
89 {
90         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
91 }
92
93 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
94                                     void __iomem *d,
95                                     dma_addr_t addr)
96 {
97         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
98
99         /* Register writes to GISB bus can take couple hundred nanoseconds
100          * and are done for each packet, save these expensive writes unless
101          * the platform is explicitly configured for 64-bits/LPAE.
102          */
103 #ifdef CONFIG_PHYS_ADDR_T_64BIT
104         if (priv->hw_params->flags & GENET_HAS_40BITS)
105                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
106 #endif
107 }
108
109 /* Combined address + length/status setter */
110 static inline void dmadesc_set(struct bcmgenet_priv *priv,
111                                void __iomem *d, dma_addr_t addr, u32 val)
112 {
113         dmadesc_set_addr(priv, d, addr);
114         dmadesc_set_length_status(priv, d, val);
115 }
116
117 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
118                                           void __iomem *d)
119 {
120         dma_addr_t addr;
121
122         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
123
124         /* Register writes to GISB bus can take couple hundred nanoseconds
125          * and are done for each packet, save these expensive writes unless
126          * the platform is explicitly configured for 64-bits/LPAE.
127          */
128 #ifdef CONFIG_PHYS_ADDR_T_64BIT
129         if (priv->hw_params->flags & GENET_HAS_40BITS)
130                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
131 #endif
132         return addr;
133 }
134
135 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
136
137 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
138                                 NETIF_MSG_LINK)
139
140 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
141 {
142         if (GENET_IS_V1(priv))
143                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
144         else
145                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
146 }
147
148 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
149 {
150         if (GENET_IS_V1(priv))
151                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
152         else
153                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
154 }
155
156 /* These macros are defined to deal with register map change
157  * between GENET1.1 and GENET2. Only those currently being used
158  * by driver are defined.
159  */
160 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
161 {
162         if (GENET_IS_V1(priv))
163                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
164         else
165                 return bcmgenet_readl(priv->base +
166                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
167 }
168
169 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
170 {
171         if (GENET_IS_V1(priv))
172                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
173         else
174                 bcmgenet_writel(val, priv->base +
175                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
176 }
177
178 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
179 {
180         if (GENET_IS_V1(priv))
181                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
182         else
183                 return bcmgenet_readl(priv->base +
184                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
185 }
186
187 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
188 {
189         if (GENET_IS_V1(priv))
190                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
191         else
192                 bcmgenet_writel(val, priv->base +
193                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
194 }
195
196 /* RX/TX DMA register accessors */
197 enum dma_reg {
198         DMA_RING_CFG = 0,
199         DMA_CTRL,
200         DMA_STATUS,
201         DMA_SCB_BURST_SIZE,
202         DMA_ARB_CTRL,
203         DMA_PRIORITY_0,
204         DMA_PRIORITY_1,
205         DMA_PRIORITY_2,
206         DMA_INDEX2RING_0,
207         DMA_INDEX2RING_1,
208         DMA_INDEX2RING_2,
209         DMA_INDEX2RING_3,
210         DMA_INDEX2RING_4,
211         DMA_INDEX2RING_5,
212         DMA_INDEX2RING_6,
213         DMA_INDEX2RING_7,
214         DMA_RING0_TIMEOUT,
215         DMA_RING1_TIMEOUT,
216         DMA_RING2_TIMEOUT,
217         DMA_RING3_TIMEOUT,
218         DMA_RING4_TIMEOUT,
219         DMA_RING5_TIMEOUT,
220         DMA_RING6_TIMEOUT,
221         DMA_RING7_TIMEOUT,
222         DMA_RING8_TIMEOUT,
223         DMA_RING9_TIMEOUT,
224         DMA_RING10_TIMEOUT,
225         DMA_RING11_TIMEOUT,
226         DMA_RING12_TIMEOUT,
227         DMA_RING13_TIMEOUT,
228         DMA_RING14_TIMEOUT,
229         DMA_RING15_TIMEOUT,
230         DMA_RING16_TIMEOUT,
231 };
232
233 static const u8 bcmgenet_dma_regs_v3plus[] = {
234         [DMA_RING_CFG]          = 0x00,
235         [DMA_CTRL]              = 0x04,
236         [DMA_STATUS]            = 0x08,
237         [DMA_SCB_BURST_SIZE]    = 0x0C,
238         [DMA_ARB_CTRL]          = 0x2C,
239         [DMA_PRIORITY_0]        = 0x30,
240         [DMA_PRIORITY_1]        = 0x34,
241         [DMA_PRIORITY_2]        = 0x38,
242         [DMA_RING0_TIMEOUT]     = 0x2C,
243         [DMA_RING1_TIMEOUT]     = 0x30,
244         [DMA_RING2_TIMEOUT]     = 0x34,
245         [DMA_RING3_TIMEOUT]     = 0x38,
246         [DMA_RING4_TIMEOUT]     = 0x3c,
247         [DMA_RING5_TIMEOUT]     = 0x40,
248         [DMA_RING6_TIMEOUT]     = 0x44,
249         [DMA_RING7_TIMEOUT]     = 0x48,
250         [DMA_RING8_TIMEOUT]     = 0x4c,
251         [DMA_RING9_TIMEOUT]     = 0x50,
252         [DMA_RING10_TIMEOUT]    = 0x54,
253         [DMA_RING11_TIMEOUT]    = 0x58,
254         [DMA_RING12_TIMEOUT]    = 0x5c,
255         [DMA_RING13_TIMEOUT]    = 0x60,
256         [DMA_RING14_TIMEOUT]    = 0x64,
257         [DMA_RING15_TIMEOUT]    = 0x68,
258         [DMA_RING16_TIMEOUT]    = 0x6C,
259         [DMA_INDEX2RING_0]      = 0x70,
260         [DMA_INDEX2RING_1]      = 0x74,
261         [DMA_INDEX2RING_2]      = 0x78,
262         [DMA_INDEX2RING_3]      = 0x7C,
263         [DMA_INDEX2RING_4]      = 0x80,
264         [DMA_INDEX2RING_5]      = 0x84,
265         [DMA_INDEX2RING_6]      = 0x88,
266         [DMA_INDEX2RING_7]      = 0x8C,
267 };
268
269 static const u8 bcmgenet_dma_regs_v2[] = {
270         [DMA_RING_CFG]          = 0x00,
271         [DMA_CTRL]              = 0x04,
272         [DMA_STATUS]            = 0x08,
273         [DMA_SCB_BURST_SIZE]    = 0x0C,
274         [DMA_ARB_CTRL]          = 0x30,
275         [DMA_PRIORITY_0]        = 0x34,
276         [DMA_PRIORITY_1]        = 0x38,
277         [DMA_PRIORITY_2]        = 0x3C,
278         [DMA_RING0_TIMEOUT]     = 0x2C,
279         [DMA_RING1_TIMEOUT]     = 0x30,
280         [DMA_RING2_TIMEOUT]     = 0x34,
281         [DMA_RING3_TIMEOUT]     = 0x38,
282         [DMA_RING4_TIMEOUT]     = 0x3c,
283         [DMA_RING5_TIMEOUT]     = 0x40,
284         [DMA_RING6_TIMEOUT]     = 0x44,
285         [DMA_RING7_TIMEOUT]     = 0x48,
286         [DMA_RING8_TIMEOUT]     = 0x4c,
287         [DMA_RING9_TIMEOUT]     = 0x50,
288         [DMA_RING10_TIMEOUT]    = 0x54,
289         [DMA_RING11_TIMEOUT]    = 0x58,
290         [DMA_RING12_TIMEOUT]    = 0x5c,
291         [DMA_RING13_TIMEOUT]    = 0x60,
292         [DMA_RING14_TIMEOUT]    = 0x64,
293         [DMA_RING15_TIMEOUT]    = 0x68,
294         [DMA_RING16_TIMEOUT]    = 0x6C,
295 };
296
297 static const u8 bcmgenet_dma_regs_v1[] = {
298         [DMA_CTRL]              = 0x00,
299         [DMA_STATUS]            = 0x04,
300         [DMA_SCB_BURST_SIZE]    = 0x0C,
301         [DMA_ARB_CTRL]          = 0x30,
302         [DMA_PRIORITY_0]        = 0x34,
303         [DMA_PRIORITY_1]        = 0x38,
304         [DMA_PRIORITY_2]        = 0x3C,
305         [DMA_RING0_TIMEOUT]     = 0x2C,
306         [DMA_RING1_TIMEOUT]     = 0x30,
307         [DMA_RING2_TIMEOUT]     = 0x34,
308         [DMA_RING3_TIMEOUT]     = 0x38,
309         [DMA_RING4_TIMEOUT]     = 0x3c,
310         [DMA_RING5_TIMEOUT]     = 0x40,
311         [DMA_RING6_TIMEOUT]     = 0x44,
312         [DMA_RING7_TIMEOUT]     = 0x48,
313         [DMA_RING8_TIMEOUT]     = 0x4c,
314         [DMA_RING9_TIMEOUT]     = 0x50,
315         [DMA_RING10_TIMEOUT]    = 0x54,
316         [DMA_RING11_TIMEOUT]    = 0x58,
317         [DMA_RING12_TIMEOUT]    = 0x5c,
318         [DMA_RING13_TIMEOUT]    = 0x60,
319         [DMA_RING14_TIMEOUT]    = 0x64,
320         [DMA_RING15_TIMEOUT]    = 0x68,
321         [DMA_RING16_TIMEOUT]    = 0x6C,
322 };
323
324 /* Set at runtime once bcmgenet version is known */
325 static const u8 *bcmgenet_dma_regs;
326
327 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
328 {
329         return netdev_priv(dev_get_drvdata(dev));
330 }
331
332 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
333                                       enum dma_reg r)
334 {
335         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
336                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
337 }
338
339 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
340                                         u32 val, enum dma_reg r)
341 {
342         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
343                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
344 }
345
346 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
347                                       enum dma_reg r)
348 {
349         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
350                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
351 }
352
353 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
354                                         u32 val, enum dma_reg r)
355 {
356         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
357                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
358 }
359
360 /* RDMA/TDMA ring registers and accessors
361  * we merge the common fields and just prefix with T/D the registers
362  * having different meaning depending on the direction
363  */
364 enum dma_ring_reg {
365         TDMA_READ_PTR = 0,
366         RDMA_WRITE_PTR = TDMA_READ_PTR,
367         TDMA_READ_PTR_HI,
368         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
369         TDMA_CONS_INDEX,
370         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
371         TDMA_PROD_INDEX,
372         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
373         DMA_RING_BUF_SIZE,
374         DMA_START_ADDR,
375         DMA_START_ADDR_HI,
376         DMA_END_ADDR,
377         DMA_END_ADDR_HI,
378         DMA_MBUF_DONE_THRESH,
379         TDMA_FLOW_PERIOD,
380         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
381         TDMA_WRITE_PTR,
382         RDMA_READ_PTR = TDMA_WRITE_PTR,
383         TDMA_WRITE_PTR_HI,
384         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
385 };
386
387 /* GENET v4 supports 40-bits pointer addressing
388  * for obvious reasons the LO and HI word parts
389  * are contiguous, but this offsets the other
390  * registers.
391  */
392 static const u8 genet_dma_ring_regs_v4[] = {
393         [TDMA_READ_PTR]                 = 0x00,
394         [TDMA_READ_PTR_HI]              = 0x04,
395         [TDMA_CONS_INDEX]               = 0x08,
396         [TDMA_PROD_INDEX]               = 0x0C,
397         [DMA_RING_BUF_SIZE]             = 0x10,
398         [DMA_START_ADDR]                = 0x14,
399         [DMA_START_ADDR_HI]             = 0x18,
400         [DMA_END_ADDR]                  = 0x1C,
401         [DMA_END_ADDR_HI]               = 0x20,
402         [DMA_MBUF_DONE_THRESH]          = 0x24,
403         [TDMA_FLOW_PERIOD]              = 0x28,
404         [TDMA_WRITE_PTR]                = 0x2C,
405         [TDMA_WRITE_PTR_HI]             = 0x30,
406 };
407
408 static const u8 genet_dma_ring_regs_v123[] = {
409         [TDMA_READ_PTR]                 = 0x00,
410         [TDMA_CONS_INDEX]               = 0x04,
411         [TDMA_PROD_INDEX]               = 0x08,
412         [DMA_RING_BUF_SIZE]             = 0x0C,
413         [DMA_START_ADDR]                = 0x10,
414         [DMA_END_ADDR]                  = 0x14,
415         [DMA_MBUF_DONE_THRESH]          = 0x18,
416         [TDMA_FLOW_PERIOD]              = 0x1C,
417         [TDMA_WRITE_PTR]                = 0x20,
418 };
419
420 /* Set at runtime once GENET version is known */
421 static const u8 *genet_dma_ring_regs;
422
423 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
424                                            unsigned int ring,
425                                            enum dma_ring_reg r)
426 {
427         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
428                               (DMA_RING_SIZE * ring) +
429                               genet_dma_ring_regs[r]);
430 }
431
432 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
433                                              unsigned int ring, u32 val,
434                                              enum dma_ring_reg r)
435 {
436         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
437                         (DMA_RING_SIZE * ring) +
438                         genet_dma_ring_regs[r]);
439 }
440
441 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
442                                            unsigned int ring,
443                                            enum dma_ring_reg r)
444 {
445         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
446                               (DMA_RING_SIZE * ring) +
447                               genet_dma_ring_regs[r]);
448 }
449
450 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
451                                              unsigned int ring, u32 val,
452                                              enum dma_ring_reg r)
453 {
454         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
455                         (DMA_RING_SIZE * ring) +
456                         genet_dma_ring_regs[r]);
457 }
458
459 static int bcmgenet_begin(struct net_device *dev)
460 {
461         struct bcmgenet_priv *priv = netdev_priv(dev);
462
463         /* Turn on the clock */
464         return clk_prepare_enable(priv->clk);
465 }
466
467 static void bcmgenet_complete(struct net_device *dev)
468 {
469         struct bcmgenet_priv *priv = netdev_priv(dev);
470
471         /* Turn off the clock */
472         clk_disable_unprepare(priv->clk);
473 }
474
475 static int bcmgenet_get_link_ksettings(struct net_device *dev,
476                                        struct ethtool_link_ksettings *cmd)
477 {
478         if (!netif_running(dev))
479                 return -EINVAL;
480
481         if (!dev->phydev)
482                 return -ENODEV;
483
484         phy_ethtool_ksettings_get(dev->phydev, cmd);
485
486         return 0;
487 }
488
489 static int bcmgenet_set_link_ksettings(struct net_device *dev,
490                                        const struct ethtool_link_ksettings *cmd)
491 {
492         if (!netif_running(dev))
493                 return -EINVAL;
494
495         if (!dev->phydev)
496                 return -ENODEV;
497
498         return phy_ethtool_ksettings_set(dev->phydev, cmd);
499 }
500
501 static int bcmgenet_set_features(struct net_device *dev,
502                                  netdev_features_t features)
503 {
504         struct bcmgenet_priv *priv = netdev_priv(dev);
505         u32 reg;
506         int ret;
507
508         ret = clk_prepare_enable(priv->clk);
509         if (ret)
510                 return ret;
511
512         /* Make sure we reflect the value of CRC_CMD_FWD */
513         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
514         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
515
516         clk_disable_unprepare(priv->clk);
517
518         return ret;
519 }
520
521 static u32 bcmgenet_get_msglevel(struct net_device *dev)
522 {
523         struct bcmgenet_priv *priv = netdev_priv(dev);
524
525         return priv->msg_enable;
526 }
527
528 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
529 {
530         struct bcmgenet_priv *priv = netdev_priv(dev);
531
532         priv->msg_enable = level;
533 }
534
535 static int bcmgenet_get_coalesce(struct net_device *dev,
536                                  struct ethtool_coalesce *ec)
537 {
538         struct bcmgenet_priv *priv = netdev_priv(dev);
539         struct bcmgenet_rx_ring *ring;
540         unsigned int i;
541
542         ec->tx_max_coalesced_frames =
543                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
544                                          DMA_MBUF_DONE_THRESH);
545         ec->rx_max_coalesced_frames =
546                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
547                                          DMA_MBUF_DONE_THRESH);
548         ec->rx_coalesce_usecs =
549                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
550
551         for (i = 0; i < priv->hw_params->rx_queues; i++) {
552                 ring = &priv->rx_rings[i];
553                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
554         }
555         ring = &priv->rx_rings[DESC_INDEX];
556         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
557
558         return 0;
559 }
560
561 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
562                                      u32 usecs, u32 pkts)
563 {
564         struct bcmgenet_priv *priv = ring->priv;
565         unsigned int i = ring->index;
566         u32 reg;
567
568         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
569
570         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
571         reg &= ~DMA_TIMEOUT_MASK;
572         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
573         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
574 }
575
576 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
577                                           struct ethtool_coalesce *ec)
578 {
579         struct dim_cq_moder moder;
580         u32 usecs, pkts;
581
582         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
583         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
584         usecs = ring->rx_coalesce_usecs;
585         pkts = ring->rx_max_coalesced_frames;
586
587         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
588                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
589                 usecs = moder.usec;
590                 pkts = moder.pkts;
591         }
592
593         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
594         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
595 }
596
597 static int bcmgenet_set_coalesce(struct net_device *dev,
598                                  struct ethtool_coalesce *ec)
599 {
600         struct bcmgenet_priv *priv = netdev_priv(dev);
601         unsigned int i;
602
603         /* Base system clock is 125Mhz, DMA timeout is this reference clock
604          * divided by 1024, which yields roughly 8.192us, our maximum value
605          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
606          */
607         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
608             ec->tx_max_coalesced_frames == 0 ||
609             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
610             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
611                 return -EINVAL;
612
613         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
614                 return -EINVAL;
615
616         /* GENET TDMA hardware does not support a configurable timeout, but will
617          * always generate an interrupt either after MBDONE packets have been
618          * transmitted, or when the ring is empty.
619          */
620
621         /* Program all TX queues with the same values, as there is no
622          * ethtool knob to do coalescing on a per-queue basis
623          */
624         for (i = 0; i < priv->hw_params->tx_queues; i++)
625                 bcmgenet_tdma_ring_writel(priv, i,
626                                           ec->tx_max_coalesced_frames,
627                                           DMA_MBUF_DONE_THRESH);
628         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
629                                   ec->tx_max_coalesced_frames,
630                                   DMA_MBUF_DONE_THRESH);
631
632         for (i = 0; i < priv->hw_params->rx_queues; i++)
633                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
634         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
635
636         return 0;
637 }
638
639 /* standard ethtool support functions. */
640 enum bcmgenet_stat_type {
641         BCMGENET_STAT_NETDEV = -1,
642         BCMGENET_STAT_MIB_RX,
643         BCMGENET_STAT_MIB_TX,
644         BCMGENET_STAT_RUNT,
645         BCMGENET_STAT_MISC,
646         BCMGENET_STAT_SOFT,
647 };
648
649 struct bcmgenet_stats {
650         char stat_string[ETH_GSTRING_LEN];
651         int stat_sizeof;
652         int stat_offset;
653         enum bcmgenet_stat_type type;
654         /* reg offset from UMAC base for misc counters */
655         u16 reg_offset;
656 };
657
658 #define STAT_NETDEV(m) { \
659         .stat_string = __stringify(m), \
660         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
661         .stat_offset = offsetof(struct net_device_stats, m), \
662         .type = BCMGENET_STAT_NETDEV, \
663 }
664
665 #define STAT_GENET_MIB(str, m, _type) { \
666         .stat_string = str, \
667         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
668         .stat_offset = offsetof(struct bcmgenet_priv, m), \
669         .type = _type, \
670 }
671
672 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
673 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
674 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
675 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
676
677 #define STAT_GENET_MISC(str, m, offset) { \
678         .stat_string = str, \
679         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
680         .stat_offset = offsetof(struct bcmgenet_priv, m), \
681         .type = BCMGENET_STAT_MISC, \
682         .reg_offset = offset, \
683 }
684
685 #define STAT_GENET_Q(num) \
686         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
687                         tx_rings[num].packets), \
688         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
689                         tx_rings[num].bytes), \
690         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
691                         rx_rings[num].bytes),    \
692         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
693                         rx_rings[num].packets), \
694         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
695                         rx_rings[num].errors), \
696         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
697                         rx_rings[num].dropped)
698
699 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
700  * between the end of TX stats and the beginning of the RX RUNT
701  */
702 #define BCMGENET_STAT_OFFSET    0xc
703
704 /* Hardware counters must be kept in sync because the order/offset
705  * is important here (order in structure declaration = order in hardware)
706  */
707 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
708         /* general stats */
709         STAT_NETDEV(rx_packets),
710         STAT_NETDEV(tx_packets),
711         STAT_NETDEV(rx_bytes),
712         STAT_NETDEV(tx_bytes),
713         STAT_NETDEV(rx_errors),
714         STAT_NETDEV(tx_errors),
715         STAT_NETDEV(rx_dropped),
716         STAT_NETDEV(tx_dropped),
717         STAT_NETDEV(multicast),
718         /* UniMAC RSV counters */
719         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
720         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
721         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
722         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
723         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
724         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
725         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
726         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
727         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
728         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
729         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
730         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
731         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
732         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
733         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
734         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
735         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
736         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
737         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
738         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
739         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
740         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
741         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
742         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
743         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
744         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
745         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
746         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
747         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
748         /* UniMAC TSV counters */
749         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
750         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
751         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
752         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
753         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
754         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
755         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
756         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
757         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
758         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
759         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
760         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
761         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
762         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
763         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
764         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
765         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
766         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
767         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
768         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
769         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
770         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
771         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
772         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
773         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
774         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
775         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
776         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
777         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
778         /* UniMAC RUNT counters */
779         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
780         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
781         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
782         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
783         /* Misc UniMAC counters */
784         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
785                         UMAC_RBUF_OVFL_CNT_V1),
786         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
787                         UMAC_RBUF_ERR_CNT_V1),
788         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
789         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
790         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
791         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
792         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
793         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
794                             mib.tx_realloc_tsb_failed),
795         /* Per TX queues */
796         STAT_GENET_Q(0),
797         STAT_GENET_Q(1),
798         STAT_GENET_Q(2),
799         STAT_GENET_Q(3),
800         STAT_GENET_Q(16),
801 };
802
803 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
804
805 static void bcmgenet_get_drvinfo(struct net_device *dev,
806                                  struct ethtool_drvinfo *info)
807 {
808         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
809 }
810
811 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
812 {
813         switch (string_set) {
814         case ETH_SS_STATS:
815                 return BCMGENET_STATS_LEN;
816         default:
817                 return -EOPNOTSUPP;
818         }
819 }
820
821 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
822                                  u8 *data)
823 {
824         int i;
825
826         switch (stringset) {
827         case ETH_SS_STATS:
828                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829                         memcpy(data + i * ETH_GSTRING_LEN,
830                                bcmgenet_gstrings_stats[i].stat_string,
831                                ETH_GSTRING_LEN);
832                 }
833                 break;
834         }
835 }
836
837 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
838 {
839         u16 new_offset;
840         u32 val;
841
842         switch (offset) {
843         case UMAC_RBUF_OVFL_CNT_V1:
844                 if (GENET_IS_V2(priv))
845                         new_offset = RBUF_OVFL_CNT_V2;
846                 else
847                         new_offset = RBUF_OVFL_CNT_V3PLUS;
848
849                 val = bcmgenet_rbuf_readl(priv, new_offset);
850                 /* clear if overflowed */
851                 if (val == ~0)
852                         bcmgenet_rbuf_writel(priv, 0, new_offset);
853                 break;
854         case UMAC_RBUF_ERR_CNT_V1:
855                 if (GENET_IS_V2(priv))
856                         new_offset = RBUF_ERR_CNT_V2;
857                 else
858                         new_offset = RBUF_ERR_CNT_V3PLUS;
859
860                 val = bcmgenet_rbuf_readl(priv, new_offset);
861                 /* clear if overflowed */
862                 if (val == ~0)
863                         bcmgenet_rbuf_writel(priv, 0, new_offset);
864                 break;
865         default:
866                 val = bcmgenet_umac_readl(priv, offset);
867                 /* clear if overflowed */
868                 if (val == ~0)
869                         bcmgenet_umac_writel(priv, 0, offset);
870                 break;
871         }
872
873         return val;
874 }
875
876 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
877 {
878         int i, j = 0;
879
880         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
881                 const struct bcmgenet_stats *s;
882                 u8 offset = 0;
883                 u32 val = 0;
884                 char *p;
885
886                 s = &bcmgenet_gstrings_stats[i];
887                 switch (s->type) {
888                 case BCMGENET_STAT_NETDEV:
889                 case BCMGENET_STAT_SOFT:
890                         continue;
891                 case BCMGENET_STAT_RUNT:
892                         offset += BCMGENET_STAT_OFFSET;
893                         /* fall through */
894                 case BCMGENET_STAT_MIB_TX:
895                         offset += BCMGENET_STAT_OFFSET;
896                         /* fall through */
897                 case BCMGENET_STAT_MIB_RX:
898                         val = bcmgenet_umac_readl(priv,
899                                                   UMAC_MIB_START + j + offset);
900                         offset = 0;     /* Reset Offset */
901                         break;
902                 case BCMGENET_STAT_MISC:
903                         if (GENET_IS_V1(priv)) {
904                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
905                                 /* clear if overflowed */
906                                 if (val == ~0)
907                                         bcmgenet_umac_writel(priv, 0,
908                                                              s->reg_offset);
909                         } else {
910                                 val = bcmgenet_update_stat_misc(priv,
911                                                                 s->reg_offset);
912                         }
913                         break;
914                 }
915
916                 j += s->stat_sizeof;
917                 p = (char *)priv + s->stat_offset;
918                 *(u32 *)p = val;
919         }
920 }
921
922 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
923                                        struct ethtool_stats *stats,
924                                        u64 *data)
925 {
926         struct bcmgenet_priv *priv = netdev_priv(dev);
927         int i;
928
929         if (netif_running(dev))
930                 bcmgenet_update_mib_counters(priv);
931
932         dev->netdev_ops->ndo_get_stats(dev);
933
934         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
935                 const struct bcmgenet_stats *s;
936                 char *p;
937
938                 s = &bcmgenet_gstrings_stats[i];
939                 if (s->type == BCMGENET_STAT_NETDEV)
940                         p = (char *)&dev->stats;
941                 else
942                         p = (char *)priv;
943                 p += s->stat_offset;
944                 if (sizeof(unsigned long) != sizeof(u32) &&
945                     s->stat_sizeof == sizeof(unsigned long))
946                         data[i] = *(unsigned long *)p;
947                 else
948                         data[i] = *(u32 *)p;
949         }
950 }
951
952 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
953 {
954         struct bcmgenet_priv *priv = netdev_priv(dev);
955         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
956         u32 reg;
957
958         if (enable && !priv->clk_eee_enabled) {
959                 clk_prepare_enable(priv->clk_eee);
960                 priv->clk_eee_enabled = true;
961         }
962
963         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
964         if (enable)
965                 reg |= EEE_EN;
966         else
967                 reg &= ~EEE_EN;
968         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
969
970         /* Enable EEE and switch to a 27Mhz clock automatically */
971         reg = bcmgenet_readl(priv->base + off);
972         if (enable)
973                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
974         else
975                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
976         bcmgenet_writel(reg, priv->base + off);
977
978         /* Do the same for thing for RBUF */
979         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
980         if (enable)
981                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
982         else
983                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
984         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
985
986         if (!enable && priv->clk_eee_enabled) {
987                 clk_disable_unprepare(priv->clk_eee);
988                 priv->clk_eee_enabled = false;
989         }
990
991         priv->eee.eee_enabled = enable;
992         priv->eee.eee_active = enable;
993 }
994
995 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
996 {
997         struct bcmgenet_priv *priv = netdev_priv(dev);
998         struct ethtool_eee *p = &priv->eee;
999
1000         if (GENET_IS_V1(priv))
1001                 return -EOPNOTSUPP;
1002
1003         if (!dev->phydev)
1004                 return -ENODEV;
1005
1006         e->eee_enabled = p->eee_enabled;
1007         e->eee_active = p->eee_active;
1008         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1009
1010         return phy_ethtool_get_eee(dev->phydev, e);
1011 }
1012
1013 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1014 {
1015         struct bcmgenet_priv *priv = netdev_priv(dev);
1016         struct ethtool_eee *p = &priv->eee;
1017         int ret = 0;
1018
1019         if (GENET_IS_V1(priv))
1020                 return -EOPNOTSUPP;
1021
1022         if (!dev->phydev)
1023                 return -ENODEV;
1024
1025         p->eee_enabled = e->eee_enabled;
1026
1027         if (!p->eee_enabled) {
1028                 bcmgenet_eee_enable_set(dev, false);
1029         } else {
1030                 ret = phy_init_eee(dev->phydev, 0);
1031                 if (ret) {
1032                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1033                         return ret;
1034                 }
1035
1036                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1037                 bcmgenet_eee_enable_set(dev, true);
1038         }
1039
1040         return phy_ethtool_set_eee(dev->phydev, e);
1041 }
1042
1043 /* standard ethtool support functions. */
1044 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1045         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1046                                      ETHTOOL_COALESCE_MAX_FRAMES |
1047                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1048         .begin                  = bcmgenet_begin,
1049         .complete               = bcmgenet_complete,
1050         .get_strings            = bcmgenet_get_strings,
1051         .get_sset_count         = bcmgenet_get_sset_count,
1052         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1053         .get_drvinfo            = bcmgenet_get_drvinfo,
1054         .get_link               = ethtool_op_get_link,
1055         .get_msglevel           = bcmgenet_get_msglevel,
1056         .set_msglevel           = bcmgenet_set_msglevel,
1057         .get_wol                = bcmgenet_get_wol,
1058         .set_wol                = bcmgenet_set_wol,
1059         .get_eee                = bcmgenet_get_eee,
1060         .set_eee                = bcmgenet_set_eee,
1061         .nway_reset             = phy_ethtool_nway_reset,
1062         .get_coalesce           = bcmgenet_get_coalesce,
1063         .set_coalesce           = bcmgenet_set_coalesce,
1064         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1065         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1066         .get_ts_info            = ethtool_op_get_ts_info,
1067 };
1068
1069 /* Power down the unimac, based on mode. */
1070 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1071                                 enum bcmgenet_power_mode mode)
1072 {
1073         int ret = 0;
1074         u32 reg;
1075
1076         switch (mode) {
1077         case GENET_POWER_CABLE_SENSE:
1078                 phy_detach(priv->dev->phydev);
1079                 break;
1080
1081         case GENET_POWER_WOL_MAGIC:
1082                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1083                 break;
1084
1085         case GENET_POWER_PASSIVE:
1086                 /* Power down LED */
1087                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1088                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1089                         if (GENET_IS_V5(priv))
1090                                 reg |= EXT_PWR_DOWN_PHY_EN |
1091                                        EXT_PWR_DOWN_PHY_RD |
1092                                        EXT_PWR_DOWN_PHY_SD |
1093                                        EXT_PWR_DOWN_PHY_RX |
1094                                        EXT_PWR_DOWN_PHY_TX |
1095                                        EXT_IDDQ_GLBL_PWR;
1096                         else
1097                                 reg |= EXT_PWR_DOWN_PHY;
1098
1099                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1100                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1101
1102                         bcmgenet_phy_power_set(priv->dev, false);
1103                 }
1104                 break;
1105         default:
1106                 break;
1107         }
1108
1109         return ret;
1110 }
1111
1112 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1113                               enum bcmgenet_power_mode mode)
1114 {
1115         u32 reg;
1116
1117         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1118                 return;
1119
1120         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1121
1122         switch (mode) {
1123         case GENET_POWER_PASSIVE:
1124                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1125                 if (GENET_IS_V5(priv)) {
1126                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1127                                  EXT_PWR_DOWN_PHY_RD |
1128                                  EXT_PWR_DOWN_PHY_SD |
1129                                  EXT_PWR_DOWN_PHY_RX |
1130                                  EXT_PWR_DOWN_PHY_TX |
1131                                  EXT_IDDQ_GLBL_PWR);
1132                         reg |=   EXT_PHY_RESET;
1133                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1134                         mdelay(1);
1135
1136                         reg &=  ~EXT_PHY_RESET;
1137                 } else {
1138                         reg &= ~EXT_PWR_DOWN_PHY;
1139                         reg |= EXT_PWR_DN_EN_LD;
1140                 }
1141                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1142                 bcmgenet_phy_power_set(priv->dev, true);
1143                 break;
1144
1145         case GENET_POWER_CABLE_SENSE:
1146                 /* enable APD */
1147                 if (!GENET_IS_V5(priv)) {
1148                         reg |= EXT_PWR_DN_EN_LD;
1149                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1150                 }
1151                 break;
1152         case GENET_POWER_WOL_MAGIC:
1153                 bcmgenet_wol_power_up_cfg(priv, mode);
1154                 return;
1155         default:
1156                 break;
1157         }
1158 }
1159
1160 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1161                                          struct bcmgenet_tx_ring *ring)
1162 {
1163         struct enet_cb *tx_cb_ptr;
1164
1165         tx_cb_ptr = ring->cbs;
1166         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1167
1168         /* Advancing local write pointer */
1169         if (ring->write_ptr == ring->end_ptr)
1170                 ring->write_ptr = ring->cb_ptr;
1171         else
1172                 ring->write_ptr++;
1173
1174         return tx_cb_ptr;
1175 }
1176
1177 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1178                                          struct bcmgenet_tx_ring *ring)
1179 {
1180         struct enet_cb *tx_cb_ptr;
1181
1182         tx_cb_ptr = ring->cbs;
1183         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1184
1185         /* Rewinding local write pointer */
1186         if (ring->write_ptr == ring->cb_ptr)
1187                 ring->write_ptr = ring->end_ptr;
1188         else
1189                 ring->write_ptr--;
1190
1191         return tx_cb_ptr;
1192 }
1193
1194 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1195 {
1196         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1197                                  INTRL2_CPU_MASK_SET);
1198 }
1199
1200 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1201 {
1202         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1203                                  INTRL2_CPU_MASK_CLEAR);
1204 }
1205
1206 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1207 {
1208         bcmgenet_intrl2_1_writel(ring->priv,
1209                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1210                                  INTRL2_CPU_MASK_SET);
1211 }
1212
1213 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1214 {
1215         bcmgenet_intrl2_1_writel(ring->priv,
1216                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1217                                  INTRL2_CPU_MASK_CLEAR);
1218 }
1219
1220 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1221 {
1222         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1223                                  INTRL2_CPU_MASK_SET);
1224 }
1225
1226 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1227 {
1228         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1229                                  INTRL2_CPU_MASK_CLEAR);
1230 }
1231
1232 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1233 {
1234         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1235                                  INTRL2_CPU_MASK_CLEAR);
1236 }
1237
1238 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1239 {
1240         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1241                                  INTRL2_CPU_MASK_SET);
1242 }
1243
1244 /* Simple helper to free a transmit control block's resources
1245  * Returns an skb when the last transmit control block associated with the
1246  * skb is freed.  The skb should be freed by the caller if necessary.
1247  */
1248 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1249                                            struct enet_cb *cb)
1250 {
1251         struct sk_buff *skb;
1252
1253         skb = cb->skb;
1254
1255         if (skb) {
1256                 cb->skb = NULL;
1257                 if (cb == GENET_CB(skb)->first_cb)
1258                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1259                                          dma_unmap_len(cb, dma_len),
1260                                          DMA_TO_DEVICE);
1261                 else
1262                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1263                                        dma_unmap_len(cb, dma_len),
1264                                        DMA_TO_DEVICE);
1265                 dma_unmap_addr_set(cb, dma_addr, 0);
1266
1267                 if (cb == GENET_CB(skb)->last_cb)
1268                         return skb;
1269
1270         } else if (dma_unmap_addr(cb, dma_addr)) {
1271                 dma_unmap_page(dev,
1272                                dma_unmap_addr(cb, dma_addr),
1273                                dma_unmap_len(cb, dma_len),
1274                                DMA_TO_DEVICE);
1275                 dma_unmap_addr_set(cb, dma_addr, 0);
1276         }
1277
1278         return NULL;
1279 }
1280
1281 /* Simple helper to free a receive control block's resources */
1282 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1283                                            struct enet_cb *cb)
1284 {
1285         struct sk_buff *skb;
1286
1287         skb = cb->skb;
1288         cb->skb = NULL;
1289
1290         if (dma_unmap_addr(cb, dma_addr)) {
1291                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1292                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1293                 dma_unmap_addr_set(cb, dma_addr, 0);
1294         }
1295
1296         return skb;
1297 }
1298
1299 /* Unlocked version of the reclaim routine */
1300 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1301                                           struct bcmgenet_tx_ring *ring)
1302 {
1303         struct bcmgenet_priv *priv = netdev_priv(dev);
1304         unsigned int txbds_processed = 0;
1305         unsigned int bytes_compl = 0;
1306         unsigned int pkts_compl = 0;
1307         unsigned int txbds_ready;
1308         unsigned int c_index;
1309         struct sk_buff *skb;
1310
1311         /* Clear status before servicing to reduce spurious interrupts */
1312         if (ring->index == DESC_INDEX)
1313                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1314                                          INTRL2_CPU_CLEAR);
1315         else
1316                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1317                                          INTRL2_CPU_CLEAR);
1318
1319         /* Compute how many buffers are transmitted since last xmit call */
1320         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1321                 & DMA_C_INDEX_MASK;
1322         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1323
1324         netif_dbg(priv, tx_done, dev,
1325                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1326                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1327
1328         /* Reclaim transmitted buffers */
1329         while (txbds_processed < txbds_ready) {
1330                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1331                                           &priv->tx_cbs[ring->clean_ptr]);
1332                 if (skb) {
1333                         pkts_compl++;
1334                         bytes_compl += GENET_CB(skb)->bytes_sent;
1335                         dev_consume_skb_any(skb);
1336                 }
1337
1338                 txbds_processed++;
1339                 if (likely(ring->clean_ptr < ring->end_ptr))
1340                         ring->clean_ptr++;
1341                 else
1342                         ring->clean_ptr = ring->cb_ptr;
1343         }
1344
1345         ring->free_bds += txbds_processed;
1346         ring->c_index = c_index;
1347
1348         ring->packets += pkts_compl;
1349         ring->bytes += bytes_compl;
1350
1351         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1352                                   pkts_compl, bytes_compl);
1353
1354         return txbds_processed;
1355 }
1356
1357 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1358                                 struct bcmgenet_tx_ring *ring)
1359 {
1360         unsigned int released;
1361
1362         spin_lock_bh(&ring->lock);
1363         released = __bcmgenet_tx_reclaim(dev, ring);
1364         spin_unlock_bh(&ring->lock);
1365
1366         return released;
1367 }
1368
1369 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1370 {
1371         struct bcmgenet_tx_ring *ring =
1372                 container_of(napi, struct bcmgenet_tx_ring, napi);
1373         unsigned int work_done = 0;
1374         struct netdev_queue *txq;
1375
1376         spin_lock(&ring->lock);
1377         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1378         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1379                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1380                 netif_tx_wake_queue(txq);
1381         }
1382         spin_unlock(&ring->lock);
1383
1384         if (work_done == 0) {
1385                 napi_complete(napi);
1386                 ring->int_enable(ring);
1387
1388                 return 0;
1389         }
1390
1391         return budget;
1392 }
1393
1394 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1395 {
1396         struct bcmgenet_priv *priv = netdev_priv(dev);
1397         int i;
1398
1399         if (netif_is_multiqueue(dev)) {
1400                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1401                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1402         }
1403
1404         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1405 }
1406
1407 /* Reallocate the SKB to put enough headroom in front of it and insert
1408  * the transmit checksum offsets in the descriptors
1409  */
1410 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1411                                         struct sk_buff *skb)
1412 {
1413         struct bcmgenet_priv *priv = netdev_priv(dev);
1414         struct status_64 *status = NULL;
1415         struct sk_buff *new_skb;
1416         u16 offset;
1417         u8 ip_proto;
1418         __be16 ip_ver;
1419         u32 tx_csum_info;
1420
1421         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1422                 /* If 64 byte status block enabled, must make sure skb has
1423                  * enough headroom for us to insert 64B status block.
1424                  */
1425                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1426                 if (!new_skb) {
1427                         dev_kfree_skb_any(skb);
1428                         priv->mib.tx_realloc_tsb_failed++;
1429                         dev->stats.tx_dropped++;
1430                         return NULL;
1431                 }
1432                 dev_consume_skb_any(skb);
1433                 skb = new_skb;
1434                 priv->mib.tx_realloc_tsb++;
1435         }
1436
1437         skb_push(skb, sizeof(*status));
1438         status = (struct status_64 *)skb->data;
1439
1440         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1441                 ip_ver = skb->protocol;
1442                 switch (ip_ver) {
1443                 case htons(ETH_P_IP):
1444                         ip_proto = ip_hdr(skb)->protocol;
1445                         break;
1446                 case htons(ETH_P_IPV6):
1447                         ip_proto = ipv6_hdr(skb)->nexthdr;
1448                         break;
1449                 default:
1450                         /* don't use UDP flag */
1451                         ip_proto = 0;
1452                         break;
1453                 }
1454
1455                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1456                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1457                                 (offset + skb->csum_offset) |
1458                                 STATUS_TX_CSUM_LV;
1459
1460                 /* Set the special UDP flag for UDP */
1461                 if (ip_proto == IPPROTO_UDP)
1462                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1463
1464                 status->tx_csum_info = tx_csum_info;
1465         }
1466
1467         return skb;
1468 }
1469
1470 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1471 {
1472         struct bcmgenet_priv *priv = netdev_priv(dev);
1473         struct device *kdev = &priv->pdev->dev;
1474         struct bcmgenet_tx_ring *ring = NULL;
1475         struct enet_cb *tx_cb_ptr;
1476         struct netdev_queue *txq;
1477         int nr_frags, index;
1478         dma_addr_t mapping;
1479         unsigned int size;
1480         skb_frag_t *frag;
1481         u32 len_stat;
1482         int ret;
1483         int i;
1484
1485         index = skb_get_queue_mapping(skb);
1486         /* Mapping strategy:
1487          * queue_mapping = 0, unclassified, packet xmited through ring16
1488          * queue_mapping = 1, goes to ring 0. (highest priority queue
1489          * queue_mapping = 2, goes to ring 1.
1490          * queue_mapping = 3, goes to ring 2.
1491          * queue_mapping = 4, goes to ring 3.
1492          */
1493         if (index == 0)
1494                 index = DESC_INDEX;
1495         else
1496                 index -= 1;
1497
1498         ring = &priv->tx_rings[index];
1499         txq = netdev_get_tx_queue(dev, ring->queue);
1500
1501         nr_frags = skb_shinfo(skb)->nr_frags;
1502
1503         spin_lock(&ring->lock);
1504         if (ring->free_bds <= (nr_frags + 1)) {
1505                 if (!netif_tx_queue_stopped(txq)) {
1506                         netif_tx_stop_queue(txq);
1507                         netdev_err(dev,
1508                                    "%s: tx ring %d full when queue %d awake\n",
1509                                    __func__, index, ring->queue);
1510                 }
1511                 ret = NETDEV_TX_BUSY;
1512                 goto out;
1513         }
1514
1515         if (skb_padto(skb, ETH_ZLEN)) {
1516                 ret = NETDEV_TX_OK;
1517                 goto out;
1518         }
1519
1520         /* Retain how many bytes will be sent on the wire, without TSB inserted
1521          * by transmit checksum offload
1522          */
1523         GENET_CB(skb)->bytes_sent = skb->len;
1524
1525         /* add the Transmit Status Block */
1526         skb = bcmgenet_add_tsb(dev, skb);
1527         if (!skb) {
1528                 ret = NETDEV_TX_OK;
1529                 goto out;
1530         }
1531
1532         for (i = 0; i <= nr_frags; i++) {
1533                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1534
1535                 BUG_ON(!tx_cb_ptr);
1536
1537                 if (!i) {
1538                         /* Transmit single SKB or head of fragment list */
1539                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1540                         size = skb_headlen(skb);
1541                         mapping = dma_map_single(kdev, skb->data, size,
1542                                                  DMA_TO_DEVICE);
1543                 } else {
1544                         /* xmit fragment */
1545                         frag = &skb_shinfo(skb)->frags[i - 1];
1546                         size = skb_frag_size(frag);
1547                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1548                                                    DMA_TO_DEVICE);
1549                 }
1550
1551                 ret = dma_mapping_error(kdev, mapping);
1552                 if (ret) {
1553                         priv->mib.tx_dma_failed++;
1554                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1555                         ret = NETDEV_TX_OK;
1556                         goto out_unmap_frags;
1557                 }
1558                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1559                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1560
1561                 tx_cb_ptr->skb = skb;
1562
1563                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1564                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1565
1566                 if (!i) {
1567                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1568                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1569                                 len_stat |= DMA_TX_DO_CSUM;
1570                 }
1571                 if (i == nr_frags)
1572                         len_stat |= DMA_EOP;
1573
1574                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1575         }
1576
1577         GENET_CB(skb)->last_cb = tx_cb_ptr;
1578         skb_tx_timestamp(skb);
1579
1580         /* Decrement total BD count and advance our write pointer */
1581         ring->free_bds -= nr_frags + 1;
1582         ring->prod_index += nr_frags + 1;
1583         ring->prod_index &= DMA_P_INDEX_MASK;
1584
1585         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1586
1587         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1588                 netif_tx_stop_queue(txq);
1589
1590         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1591                 /* Packets are ready, update producer index */
1592                 bcmgenet_tdma_ring_writel(priv, ring->index,
1593                                           ring->prod_index, TDMA_PROD_INDEX);
1594 out:
1595         spin_unlock(&ring->lock);
1596
1597         return ret;
1598
1599 out_unmap_frags:
1600         /* Back up for failed control block mapping */
1601         bcmgenet_put_txcb(priv, ring);
1602
1603         /* Unmap successfully mapped control blocks */
1604         while (i-- > 0) {
1605                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1606                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1607         }
1608
1609         dev_kfree_skb(skb);
1610         goto out;
1611 }
1612
1613 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1614                                           struct enet_cb *cb)
1615 {
1616         struct device *kdev = &priv->pdev->dev;
1617         struct sk_buff *skb;
1618         struct sk_buff *rx_skb;
1619         dma_addr_t mapping;
1620
1621         /* Allocate a new Rx skb */
1622         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
1623                                  GFP_ATOMIC | __GFP_NOWARN);
1624         if (!skb) {
1625                 priv->mib.alloc_rx_buff_failed++;
1626                 netif_err(priv, rx_err, priv->dev,
1627                           "%s: Rx skb allocation failed\n", __func__);
1628                 return NULL;
1629         }
1630
1631         /* DMA-map the new Rx skb */
1632         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1633                                  DMA_FROM_DEVICE);
1634         if (dma_mapping_error(kdev, mapping)) {
1635                 priv->mib.rx_dma_failed++;
1636                 dev_kfree_skb_any(skb);
1637                 netif_err(priv, rx_err, priv->dev,
1638                           "%s: Rx skb DMA mapping failed\n", __func__);
1639                 return NULL;
1640         }
1641
1642         /* Grab the current Rx skb from the ring and DMA-unmap it */
1643         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1644
1645         /* Put the new Rx skb on the ring */
1646         cb->skb = skb;
1647         dma_unmap_addr_set(cb, dma_addr, mapping);
1648         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1649         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1650
1651         /* Return the current Rx skb to caller */
1652         return rx_skb;
1653 }
1654
1655 /* bcmgenet_desc_rx - descriptor based rx process.
1656  * this could be called from bottom half, or from NAPI polling method.
1657  */
1658 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1659                                      unsigned int budget)
1660 {
1661         struct bcmgenet_priv *priv = ring->priv;
1662         struct net_device *dev = priv->dev;
1663         struct enet_cb *cb;
1664         struct sk_buff *skb;
1665         u32 dma_length_status;
1666         unsigned long dma_flag;
1667         int len;
1668         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1669         unsigned int bytes_processed = 0;
1670         unsigned int p_index, mask;
1671         unsigned int discards;
1672
1673         /* Clear status before servicing to reduce spurious interrupts */
1674         if (ring->index == DESC_INDEX) {
1675                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1676                                          INTRL2_CPU_CLEAR);
1677         } else {
1678                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1679                 bcmgenet_intrl2_1_writel(priv,
1680                                          mask,
1681                                          INTRL2_CPU_CLEAR);
1682         }
1683
1684         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1685
1686         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1687                    DMA_P_INDEX_DISCARD_CNT_MASK;
1688         if (discards > ring->old_discards) {
1689                 discards = discards - ring->old_discards;
1690                 ring->errors += discards;
1691                 ring->old_discards += discards;
1692
1693                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1694                 if (ring->old_discards >= 0xC000) {
1695                         ring->old_discards = 0;
1696                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1697                                                   RDMA_PROD_INDEX);
1698                 }
1699         }
1700
1701         p_index &= DMA_P_INDEX_MASK;
1702         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1703
1704         netif_dbg(priv, rx_status, dev,
1705                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1706
1707         while ((rxpktprocessed < rxpkttoprocess) &&
1708                (rxpktprocessed < budget)) {
1709                 struct status_64 *status;
1710                 __be16 rx_csum;
1711
1712                 cb = &priv->rx_cbs[ring->read_ptr];
1713                 skb = bcmgenet_rx_refill(priv, cb);
1714
1715                 if (unlikely(!skb)) {
1716                         ring->dropped++;
1717                         goto next;
1718                 }
1719
1720                 status = (struct status_64 *)skb->data;
1721                 dma_length_status = status->length_status;
1722                 if (dev->features & NETIF_F_RXCSUM) {
1723                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1724                         skb->csum = (__force __wsum)ntohs(rx_csum);
1725                         skb->ip_summed = CHECKSUM_COMPLETE;
1726                 }
1727
1728                 /* DMA flags and length are still valid no matter how
1729                  * we got the Receive Status Vector (64B RSB or register)
1730                  */
1731                 dma_flag = dma_length_status & 0xffff;
1732                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1733
1734                 netif_dbg(priv, rx_status, dev,
1735                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1736                           __func__, p_index, ring->c_index,
1737                           ring->read_ptr, dma_length_status);
1738
1739                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1740                         netif_err(priv, rx_status, dev,
1741                                   "dropping fragmented packet!\n");
1742                         ring->errors++;
1743                         dev_kfree_skb_any(skb);
1744                         goto next;
1745                 }
1746
1747                 /* report errors */
1748                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1749                                                 DMA_RX_OV |
1750                                                 DMA_RX_NO |
1751                                                 DMA_RX_LG |
1752                                                 DMA_RX_RXER))) {
1753                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1754                                   (unsigned int)dma_flag);
1755                         if (dma_flag & DMA_RX_CRC_ERROR)
1756                                 dev->stats.rx_crc_errors++;
1757                         if (dma_flag & DMA_RX_OV)
1758                                 dev->stats.rx_over_errors++;
1759                         if (dma_flag & DMA_RX_NO)
1760                                 dev->stats.rx_frame_errors++;
1761                         if (dma_flag & DMA_RX_LG)
1762                                 dev->stats.rx_length_errors++;
1763                         dev->stats.rx_errors++;
1764                         dev_kfree_skb_any(skb);
1765                         goto next;
1766                 } /* error packet */
1767
1768                 skb_put(skb, len);
1769
1770                 /* remove RSB and hardware 2bytes added for IP alignment */
1771                 skb_pull(skb, 66);
1772                 len -= 66;
1773
1774                 if (priv->crc_fwd_en) {
1775                         skb_trim(skb, len - ETH_FCS_LEN);
1776                         len -= ETH_FCS_LEN;
1777                 }
1778
1779                 bytes_processed += len;
1780
1781                 /*Finish setting up the received SKB and send it to the kernel*/
1782                 skb->protocol = eth_type_trans(skb, priv->dev);
1783                 ring->packets++;
1784                 ring->bytes += len;
1785                 if (dma_flag & DMA_RX_MULT)
1786                         dev->stats.multicast++;
1787
1788                 /* Notify kernel */
1789                 napi_gro_receive(&ring->napi, skb);
1790                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1791
1792 next:
1793                 rxpktprocessed++;
1794                 if (likely(ring->read_ptr < ring->end_ptr))
1795                         ring->read_ptr++;
1796                 else
1797                         ring->read_ptr = ring->cb_ptr;
1798
1799                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1800                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1801         }
1802
1803         ring->dim.bytes = bytes_processed;
1804         ring->dim.packets = rxpktprocessed;
1805
1806         return rxpktprocessed;
1807 }
1808
1809 /* Rx NAPI polling method */
1810 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1811 {
1812         struct bcmgenet_rx_ring *ring = container_of(napi,
1813                         struct bcmgenet_rx_ring, napi);
1814         struct dim_sample dim_sample = {};
1815         unsigned int work_done;
1816
1817         work_done = bcmgenet_desc_rx(ring, budget);
1818
1819         if (work_done < budget) {
1820                 napi_complete_done(napi, work_done);
1821                 ring->int_enable(ring);
1822         }
1823
1824         if (ring->dim.use_dim) {
1825                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1826                                   ring->dim.bytes, &dim_sample);
1827                 net_dim(&ring->dim.dim, dim_sample);
1828         }
1829
1830         return work_done;
1831 }
1832
1833 static void bcmgenet_dim_work(struct work_struct *work)
1834 {
1835         struct dim *dim = container_of(work, struct dim, work);
1836         struct bcmgenet_net_dim *ndim =
1837                         container_of(dim, struct bcmgenet_net_dim, dim);
1838         struct bcmgenet_rx_ring *ring =
1839                         container_of(ndim, struct bcmgenet_rx_ring, dim);
1840         struct dim_cq_moder cur_profile =
1841                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1842
1843         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1844         dim->state = DIM_START_MEASURE;
1845 }
1846
1847 /* Assign skb to RX DMA descriptor. */
1848 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1849                                      struct bcmgenet_rx_ring *ring)
1850 {
1851         struct enet_cb *cb;
1852         struct sk_buff *skb;
1853         int i;
1854
1855         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1856
1857         /* loop here for each buffer needing assign */
1858         for (i = 0; i < ring->size; i++) {
1859                 cb = ring->cbs + i;
1860                 skb = bcmgenet_rx_refill(priv, cb);
1861                 if (skb)
1862                         dev_consume_skb_any(skb);
1863                 if (!cb->skb)
1864                         return -ENOMEM;
1865         }
1866
1867         return 0;
1868 }
1869
1870 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1871 {
1872         struct sk_buff *skb;
1873         struct enet_cb *cb;
1874         int i;
1875
1876         for (i = 0; i < priv->num_rx_bds; i++) {
1877                 cb = &priv->rx_cbs[i];
1878
1879                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1880                 if (skb)
1881                         dev_consume_skb_any(skb);
1882         }
1883 }
1884
1885 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1886 {
1887         u32 reg;
1888
1889         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1890         if (reg & CMD_SW_RESET)
1891                 return;
1892         if (enable)
1893                 reg |= mask;
1894         else
1895                 reg &= ~mask;
1896         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1897
1898         /* UniMAC stops on a packet boundary, wait for a full-size packet
1899          * to be processed
1900          */
1901         if (enable == 0)
1902                 usleep_range(1000, 2000);
1903 }
1904
1905 static void reset_umac(struct bcmgenet_priv *priv)
1906 {
1907         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1908         bcmgenet_rbuf_ctrl_set(priv, 0);
1909         udelay(10);
1910
1911         /* issue soft reset and disable MAC while updating its registers */
1912         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1913         udelay(2);
1914 }
1915
1916 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1917 {
1918         /* Mask all interrupts.*/
1919         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1920         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1921         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1922         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1923 }
1924
1925 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1926 {
1927         u32 int0_enable = 0;
1928
1929         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1930          * and MoCA PHY
1931          */
1932         if (priv->internal_phy) {
1933                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1934                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
1935                         int0_enable |= UMAC_IRQ_PHY_DET_R;
1936         } else if (priv->ext_phy) {
1937                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1938         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1939                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1940                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1941         }
1942         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1943 }
1944
1945 static void init_umac(struct bcmgenet_priv *priv)
1946 {
1947         struct device *kdev = &priv->pdev->dev;
1948         u32 reg;
1949         u32 int0_enable = 0;
1950
1951         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1952
1953         reset_umac(priv);
1954
1955         /* clear tx/rx counter */
1956         bcmgenet_umac_writel(priv,
1957                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1958                              UMAC_MIB_CTRL);
1959         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1960
1961         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1962
1963         /* init tx registers, enable TSB */
1964         reg = bcmgenet_tbuf_ctrl_get(priv);
1965         reg |= TBUF_64B_EN;
1966         bcmgenet_tbuf_ctrl_set(priv, reg);
1967
1968         /* init rx registers, enable ip header optimization and RSB */
1969         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1970         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
1971         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1972
1973         /* enable rx checksumming */
1974         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
1975         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
1976         /* If UniMAC forwards CRC, we need to skip over it to get
1977          * a valid CHK bit to be set in the per-packet status word
1978          */
1979         if (priv->crc_fwd_en)
1980                 reg |= RBUF_SKIP_FCS;
1981         else
1982                 reg &= ~RBUF_SKIP_FCS;
1983         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
1984
1985         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1986                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1987
1988         bcmgenet_intr_disable(priv);
1989
1990         /* Configure backpressure vectors for MoCA */
1991         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1992                 reg = bcmgenet_bp_mc_get(priv);
1993                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1994
1995                 /* bp_mask: back pressure mask */
1996                 if (netif_is_multiqueue(priv->dev))
1997                         reg |= priv->hw_params->bp_in_mask;
1998                 else
1999                         reg &= ~priv->hw_params->bp_in_mask;
2000                 bcmgenet_bp_mc_set(priv, reg);
2001         }
2002
2003         /* Enable MDIO interrupts on GENET v3+ */
2004         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2005                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2006
2007         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2008
2009         dev_dbg(kdev, "done init umac\n");
2010 }
2011
2012 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2013                               void (*cb)(struct work_struct *work))
2014 {
2015         struct bcmgenet_net_dim *dim = &ring->dim;
2016
2017         INIT_WORK(&dim->dim.work, cb);
2018         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2019         dim->event_ctr = 0;
2020         dim->packets = 0;
2021         dim->bytes = 0;
2022 }
2023
2024 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2025 {
2026         struct bcmgenet_net_dim *dim = &ring->dim;
2027         struct dim_cq_moder moder;
2028         u32 usecs, pkts;
2029
2030         usecs = ring->rx_coalesce_usecs;
2031         pkts = ring->rx_max_coalesced_frames;
2032
2033         /* If DIM was enabled, re-apply default parameters */
2034         if (dim->use_dim) {
2035                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2036                 usecs = moder.usec;
2037                 pkts = moder.pkts;
2038         }
2039
2040         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2041 }
2042
2043 /* Initialize a Tx ring along with corresponding hardware registers */
2044 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2045                                   unsigned int index, unsigned int size,
2046                                   unsigned int start_ptr, unsigned int end_ptr)
2047 {
2048         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2049         u32 words_per_bd = WORDS_PER_BD(priv);
2050         u32 flow_period_val = 0;
2051
2052         spin_lock_init(&ring->lock);
2053         ring->priv = priv;
2054         ring->index = index;
2055         if (index == DESC_INDEX) {
2056                 ring->queue = 0;
2057                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2058                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2059         } else {
2060                 ring->queue = index + 1;
2061                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2062                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2063         }
2064         ring->cbs = priv->tx_cbs + start_ptr;
2065         ring->size = size;
2066         ring->clean_ptr = start_ptr;
2067         ring->c_index = 0;
2068         ring->free_bds = size;
2069         ring->write_ptr = start_ptr;
2070         ring->cb_ptr = start_ptr;
2071         ring->end_ptr = end_ptr - 1;
2072         ring->prod_index = 0;
2073
2074         /* Set flow period for ring != 16 */
2075         if (index != DESC_INDEX)
2076                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2077
2078         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2079         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2080         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2081         /* Disable rate control for now */
2082         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2083                                   TDMA_FLOW_PERIOD);
2084         bcmgenet_tdma_ring_writel(priv, index,
2085                                   ((size << DMA_RING_SIZE_SHIFT) |
2086                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2087
2088         /* Set start and end address, read and write pointers */
2089         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2090                                   DMA_START_ADDR);
2091         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2092                                   TDMA_READ_PTR);
2093         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2094                                   TDMA_WRITE_PTR);
2095         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2096                                   DMA_END_ADDR);
2097
2098         /* Initialize Tx NAPI */
2099         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2100                           NAPI_POLL_WEIGHT);
2101 }
2102
2103 /* Initialize a RDMA ring */
2104 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2105                                  unsigned int index, unsigned int size,
2106                                  unsigned int start_ptr, unsigned int end_ptr)
2107 {
2108         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2109         u32 words_per_bd = WORDS_PER_BD(priv);
2110         int ret;
2111
2112         ring->priv = priv;
2113         ring->index = index;
2114         if (index == DESC_INDEX) {
2115                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2116                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2117         } else {
2118                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2119                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2120         }
2121         ring->cbs = priv->rx_cbs + start_ptr;
2122         ring->size = size;
2123         ring->c_index = 0;
2124         ring->read_ptr = start_ptr;
2125         ring->cb_ptr = start_ptr;
2126         ring->end_ptr = end_ptr - 1;
2127
2128         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2129         if (ret)
2130                 return ret;
2131
2132         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2133         bcmgenet_init_rx_coalesce(ring);
2134
2135         /* Initialize Rx NAPI */
2136         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2137                        NAPI_POLL_WEIGHT);
2138
2139         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2140         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2141         bcmgenet_rdma_ring_writel(priv, index,
2142                                   ((size << DMA_RING_SIZE_SHIFT) |
2143                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2144         bcmgenet_rdma_ring_writel(priv, index,
2145                                   (DMA_FC_THRESH_LO <<
2146                                    DMA_XOFF_THRESHOLD_SHIFT) |
2147                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2148
2149         /* Set start and end address, read and write pointers */
2150         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2151                                   DMA_START_ADDR);
2152         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153                                   RDMA_READ_PTR);
2154         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155                                   RDMA_WRITE_PTR);
2156         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2157                                   DMA_END_ADDR);
2158
2159         return ret;
2160 }
2161
2162 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2163 {
2164         unsigned int i;
2165         struct bcmgenet_tx_ring *ring;
2166
2167         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2168                 ring = &priv->tx_rings[i];
2169                 napi_enable(&ring->napi);
2170                 ring->int_enable(ring);
2171         }
2172
2173         ring = &priv->tx_rings[DESC_INDEX];
2174         napi_enable(&ring->napi);
2175         ring->int_enable(ring);
2176 }
2177
2178 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2179 {
2180         unsigned int i;
2181         struct bcmgenet_tx_ring *ring;
2182
2183         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2184                 ring = &priv->tx_rings[i];
2185                 napi_disable(&ring->napi);
2186         }
2187
2188         ring = &priv->tx_rings[DESC_INDEX];
2189         napi_disable(&ring->napi);
2190 }
2191
2192 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2193 {
2194         unsigned int i;
2195         struct bcmgenet_tx_ring *ring;
2196
2197         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2198                 ring = &priv->tx_rings[i];
2199                 netif_napi_del(&ring->napi);
2200         }
2201
2202         ring = &priv->tx_rings[DESC_INDEX];
2203         netif_napi_del(&ring->napi);
2204 }
2205
2206 /* Initialize Tx queues
2207  *
2208  * Queues 0-3 are priority-based, each one has 32 descriptors,
2209  * with queue 0 being the highest priority queue.
2210  *
2211  * Queue 16 is the default Tx queue with
2212  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2213  *
2214  * The transmit control block pool is then partitioned as follows:
2215  * - Tx queue 0 uses tx_cbs[0..31]
2216  * - Tx queue 1 uses tx_cbs[32..63]
2217  * - Tx queue 2 uses tx_cbs[64..95]
2218  * - Tx queue 3 uses tx_cbs[96..127]
2219  * - Tx queue 16 uses tx_cbs[128..255]
2220  */
2221 static void bcmgenet_init_tx_queues(struct net_device *dev)
2222 {
2223         struct bcmgenet_priv *priv = netdev_priv(dev);
2224         u32 i, dma_enable;
2225         u32 dma_ctrl, ring_cfg;
2226         u32 dma_priority[3] = {0, 0, 0};
2227
2228         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2229         dma_enable = dma_ctrl & DMA_EN;
2230         dma_ctrl &= ~DMA_EN;
2231         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2232
2233         dma_ctrl = 0;
2234         ring_cfg = 0;
2235
2236         /* Enable strict priority arbiter mode */
2237         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2238
2239         /* Initialize Tx priority queues */
2240         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2241                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2242                                       i * priv->hw_params->tx_bds_per_q,
2243                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2244                 ring_cfg |= (1 << i);
2245                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2246                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2247                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2248         }
2249
2250         /* Initialize Tx default queue 16 */
2251         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2252                               priv->hw_params->tx_queues *
2253                               priv->hw_params->tx_bds_per_q,
2254                               TOTAL_DESC);
2255         ring_cfg |= (1 << DESC_INDEX);
2256         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2257         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2258                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2259                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2260
2261         /* Set Tx queue priorities */
2262         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2263         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2264         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2265
2266         /* Enable Tx queues */
2267         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2268
2269         /* Enable Tx DMA */
2270         if (dma_enable)
2271                 dma_ctrl |= DMA_EN;
2272         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2273 }
2274
2275 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2276 {
2277         unsigned int i;
2278         struct bcmgenet_rx_ring *ring;
2279
2280         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2281                 ring = &priv->rx_rings[i];
2282                 napi_enable(&ring->napi);
2283                 ring->int_enable(ring);
2284         }
2285
2286         ring = &priv->rx_rings[DESC_INDEX];
2287         napi_enable(&ring->napi);
2288         ring->int_enable(ring);
2289 }
2290
2291 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2292 {
2293         unsigned int i;
2294         struct bcmgenet_rx_ring *ring;
2295
2296         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2297                 ring = &priv->rx_rings[i];
2298                 napi_disable(&ring->napi);
2299                 cancel_work_sync(&ring->dim.dim.work);
2300         }
2301
2302         ring = &priv->rx_rings[DESC_INDEX];
2303         napi_disable(&ring->napi);
2304         cancel_work_sync(&ring->dim.dim.work);
2305 }
2306
2307 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2308 {
2309         unsigned int i;
2310         struct bcmgenet_rx_ring *ring;
2311
2312         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2313                 ring = &priv->rx_rings[i];
2314                 netif_napi_del(&ring->napi);
2315         }
2316
2317         ring = &priv->rx_rings[DESC_INDEX];
2318         netif_napi_del(&ring->napi);
2319 }
2320
2321 /* Initialize Rx queues
2322  *
2323  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2324  * used to direct traffic to these queues.
2325  *
2326  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2327  */
2328 static int bcmgenet_init_rx_queues(struct net_device *dev)
2329 {
2330         struct bcmgenet_priv *priv = netdev_priv(dev);
2331         u32 i;
2332         u32 dma_enable;
2333         u32 dma_ctrl;
2334         u32 ring_cfg;
2335         int ret;
2336
2337         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2338         dma_enable = dma_ctrl & DMA_EN;
2339         dma_ctrl &= ~DMA_EN;
2340         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2341
2342         dma_ctrl = 0;
2343         ring_cfg = 0;
2344
2345         /* Initialize Rx priority queues */
2346         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2347                 ret = bcmgenet_init_rx_ring(priv, i,
2348                                             priv->hw_params->rx_bds_per_q,
2349                                             i * priv->hw_params->rx_bds_per_q,
2350                                             (i + 1) *
2351                                             priv->hw_params->rx_bds_per_q);
2352                 if (ret)
2353                         return ret;
2354
2355                 ring_cfg |= (1 << i);
2356                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2357         }
2358
2359         /* Initialize Rx default queue 16 */
2360         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2361                                     priv->hw_params->rx_queues *
2362                                     priv->hw_params->rx_bds_per_q,
2363                                     TOTAL_DESC);
2364         if (ret)
2365                 return ret;
2366
2367         ring_cfg |= (1 << DESC_INDEX);
2368         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2369
2370         /* Enable rings */
2371         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2372
2373         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2374         if (dma_enable)
2375                 dma_ctrl |= DMA_EN;
2376         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2377
2378         return 0;
2379 }
2380
2381 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2382 {
2383         int ret = 0;
2384         int timeout = 0;
2385         u32 reg;
2386         u32 dma_ctrl;
2387         int i;
2388
2389         /* Disable TDMA to stop add more frames in TX DMA */
2390         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2391         reg &= ~DMA_EN;
2392         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2393
2394         /* Check TDMA status register to confirm TDMA is disabled */
2395         while (timeout++ < DMA_TIMEOUT_VAL) {
2396                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2397                 if (reg & DMA_DISABLED)
2398                         break;
2399
2400                 udelay(1);
2401         }
2402
2403         if (timeout == DMA_TIMEOUT_VAL) {
2404                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2405                 ret = -ETIMEDOUT;
2406         }
2407
2408         /* Wait 10ms for packet drain in both tx and rx dma */
2409         usleep_range(10000, 20000);
2410
2411         /* Disable RDMA */
2412         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2413         reg &= ~DMA_EN;
2414         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2415
2416         timeout = 0;
2417         /* Check RDMA status register to confirm RDMA is disabled */
2418         while (timeout++ < DMA_TIMEOUT_VAL) {
2419                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2420                 if (reg & DMA_DISABLED)
2421                         break;
2422
2423                 udelay(1);
2424         }
2425
2426         if (timeout == DMA_TIMEOUT_VAL) {
2427                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2428                 ret = -ETIMEDOUT;
2429         }
2430
2431         dma_ctrl = 0;
2432         for (i = 0; i < priv->hw_params->rx_queues; i++)
2433                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2434         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2435         reg &= ~dma_ctrl;
2436         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2437
2438         dma_ctrl = 0;
2439         for (i = 0; i < priv->hw_params->tx_queues; i++)
2440                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2441         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2442         reg &= ~dma_ctrl;
2443         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2444
2445         return ret;
2446 }
2447
2448 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2449 {
2450         struct netdev_queue *txq;
2451         int i;
2452
2453         bcmgenet_fini_rx_napi(priv);
2454         bcmgenet_fini_tx_napi(priv);
2455
2456         for (i = 0; i < priv->num_tx_bds; i++)
2457                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2458                                                   priv->tx_cbs + i));
2459
2460         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2461                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2462                 netdev_tx_reset_queue(txq);
2463         }
2464
2465         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2466         netdev_tx_reset_queue(txq);
2467
2468         bcmgenet_free_rx_buffers(priv);
2469         kfree(priv->rx_cbs);
2470         kfree(priv->tx_cbs);
2471 }
2472
2473 /* init_edma: Initialize DMA control register */
2474 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2475 {
2476         int ret;
2477         unsigned int i;
2478         struct enet_cb *cb;
2479
2480         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2481
2482         /* Initialize common Rx ring structures */
2483         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2484         priv->num_rx_bds = TOTAL_DESC;
2485         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2486                                GFP_KERNEL);
2487         if (!priv->rx_cbs)
2488                 return -ENOMEM;
2489
2490         for (i = 0; i < priv->num_rx_bds; i++) {
2491                 cb = priv->rx_cbs + i;
2492                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2493         }
2494
2495         /* Initialize common TX ring structures */
2496         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2497         priv->num_tx_bds = TOTAL_DESC;
2498         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2499                                GFP_KERNEL);
2500         if (!priv->tx_cbs) {
2501                 kfree(priv->rx_cbs);
2502                 return -ENOMEM;
2503         }
2504
2505         for (i = 0; i < priv->num_tx_bds; i++) {
2506                 cb = priv->tx_cbs + i;
2507                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2508         }
2509
2510         /* Init rDma */
2511         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2512                              DMA_SCB_BURST_SIZE);
2513
2514         /* Initialize Rx queues */
2515         ret = bcmgenet_init_rx_queues(priv->dev);
2516         if (ret) {
2517                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2518                 bcmgenet_free_rx_buffers(priv);
2519                 kfree(priv->rx_cbs);
2520                 kfree(priv->tx_cbs);
2521                 return ret;
2522         }
2523
2524         /* Init tDma */
2525         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2526                              DMA_SCB_BURST_SIZE);
2527
2528         /* Initialize Tx queues */
2529         bcmgenet_init_tx_queues(priv->dev);
2530
2531         return 0;
2532 }
2533
2534 /* Interrupt bottom half */
2535 static void bcmgenet_irq_task(struct work_struct *work)
2536 {
2537         unsigned int status;
2538         struct bcmgenet_priv *priv = container_of(
2539                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2540
2541         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2542
2543         spin_lock_irq(&priv->lock);
2544         status = priv->irq0_stat;
2545         priv->irq0_stat = 0;
2546         spin_unlock_irq(&priv->lock);
2547
2548         if (status & UMAC_IRQ_PHY_DET_R &&
2549             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2550                 phy_init_hw(priv->dev->phydev);
2551                 genphy_config_aneg(priv->dev->phydev);
2552         }
2553
2554         /* Link UP/DOWN event */
2555         if (status & UMAC_IRQ_LINK_EVENT)
2556                 phy_mac_interrupt(priv->dev->phydev);
2557
2558 }
2559
2560 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2561 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2562 {
2563         struct bcmgenet_priv *priv = dev_id;
2564         struct bcmgenet_rx_ring *rx_ring;
2565         struct bcmgenet_tx_ring *tx_ring;
2566         unsigned int index, status;
2567
2568         /* Read irq status */
2569         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2570                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2571
2572         /* clear interrupts */
2573         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2574
2575         netif_dbg(priv, intr, priv->dev,
2576                   "%s: IRQ=0x%x\n", __func__, status);
2577
2578         /* Check Rx priority queue interrupts */
2579         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2580                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2581                         continue;
2582
2583                 rx_ring = &priv->rx_rings[index];
2584                 rx_ring->dim.event_ctr++;
2585
2586                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2587                         rx_ring->int_disable(rx_ring);
2588                         __napi_schedule_irqoff(&rx_ring->napi);
2589                 }
2590         }
2591
2592         /* Check Tx priority queue interrupts */
2593         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2594                 if (!(status & BIT(index)))
2595                         continue;
2596
2597                 tx_ring = &priv->tx_rings[index];
2598
2599                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2600                         tx_ring->int_disable(tx_ring);
2601                         __napi_schedule_irqoff(&tx_ring->napi);
2602                 }
2603         }
2604
2605         return IRQ_HANDLED;
2606 }
2607
2608 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2609 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2610 {
2611         struct bcmgenet_priv *priv = dev_id;
2612         struct bcmgenet_rx_ring *rx_ring;
2613         struct bcmgenet_tx_ring *tx_ring;
2614         unsigned int status;
2615         unsigned long flags;
2616
2617         /* Read irq status */
2618         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2619                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2620
2621         /* clear interrupts */
2622         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2623
2624         netif_dbg(priv, intr, priv->dev,
2625                   "IRQ=0x%x\n", status);
2626
2627         if (status & UMAC_IRQ_RXDMA_DONE) {
2628                 rx_ring = &priv->rx_rings[DESC_INDEX];
2629                 rx_ring->dim.event_ctr++;
2630
2631                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2632                         rx_ring->int_disable(rx_ring);
2633                         __napi_schedule_irqoff(&rx_ring->napi);
2634                 }
2635         }
2636
2637         if (status & UMAC_IRQ_TXDMA_DONE) {
2638                 tx_ring = &priv->tx_rings[DESC_INDEX];
2639
2640                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2641                         tx_ring->int_disable(tx_ring);
2642                         __napi_schedule_irqoff(&tx_ring->napi);
2643                 }
2644         }
2645
2646         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2647                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2648                 wake_up(&priv->wq);
2649         }
2650
2651         /* all other interested interrupts handled in bottom half */
2652         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2653         if (status) {
2654                 /* Save irq status for bottom-half processing. */
2655                 spin_lock_irqsave(&priv->lock, flags);
2656                 priv->irq0_stat |= status;
2657                 spin_unlock_irqrestore(&priv->lock, flags);
2658
2659                 schedule_work(&priv->bcmgenet_irq_work);
2660         }
2661
2662         return IRQ_HANDLED;
2663 }
2664
2665 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2666 {
2667         struct bcmgenet_priv *priv = dev_id;
2668
2669         pm_wakeup_event(&priv->pdev->dev, 0);
2670
2671         return IRQ_HANDLED;
2672 }
2673
2674 #ifdef CONFIG_NET_POLL_CONTROLLER
2675 static void bcmgenet_poll_controller(struct net_device *dev)
2676 {
2677         struct bcmgenet_priv *priv = netdev_priv(dev);
2678
2679         /* Invoke the main RX/TX interrupt handler */
2680         disable_irq(priv->irq0);
2681         bcmgenet_isr0(priv->irq0, priv);
2682         enable_irq(priv->irq0);
2683
2684         /* And the interrupt handler for RX/TX priority queues */
2685         disable_irq(priv->irq1);
2686         bcmgenet_isr1(priv->irq1, priv);
2687         enable_irq(priv->irq1);
2688 }
2689 #endif
2690
2691 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2692 {
2693         u32 reg;
2694
2695         reg = bcmgenet_rbuf_ctrl_get(priv);
2696         reg |= BIT(1);
2697         bcmgenet_rbuf_ctrl_set(priv, reg);
2698         udelay(10);
2699
2700         reg &= ~BIT(1);
2701         bcmgenet_rbuf_ctrl_set(priv, reg);
2702         udelay(10);
2703 }
2704
2705 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2706                                  unsigned char *addr)
2707 {
2708         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
2709         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
2710 }
2711
2712 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2713                                  unsigned char *addr)
2714 {
2715         u32 addr_tmp;
2716
2717         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2718         put_unaligned_be32(addr_tmp, &addr[0]);
2719         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2720         put_unaligned_be16(addr_tmp, &addr[4]);
2721 }
2722
2723 /* Returns a reusable dma control register value */
2724 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2725 {
2726         u32 reg;
2727         u32 dma_ctrl;
2728
2729         /* disable DMA */
2730         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2731         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2732         reg &= ~dma_ctrl;
2733         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2734
2735         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2736         reg &= ~dma_ctrl;
2737         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2738
2739         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2740         udelay(10);
2741         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2742
2743         return dma_ctrl;
2744 }
2745
2746 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2747 {
2748         u32 reg;
2749
2750         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2751         reg |= dma_ctrl;
2752         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2753
2754         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2755         reg |= dma_ctrl;
2756         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2757 }
2758
2759 /* bcmgenet_hfb_clear
2760  *
2761  * Clear Hardware Filter Block and disable all filtering.
2762  */
2763 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2764 {
2765         u32 i;
2766
2767         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2768         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2769         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2770
2771         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2772                 bcmgenet_rdma_writel(priv, 0x0, i);
2773
2774         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2775                 bcmgenet_hfb_reg_writel(priv, 0x0,
2776                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2777
2778         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2779                         priv->hw_params->hfb_filter_size; i++)
2780                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2781 }
2782
2783 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2784 {
2785         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2786                 return;
2787
2788         bcmgenet_hfb_clear(priv);
2789 }
2790
2791 static void bcmgenet_netif_start(struct net_device *dev)
2792 {
2793         struct bcmgenet_priv *priv = netdev_priv(dev);
2794
2795         /* Start the network engine */
2796         bcmgenet_enable_rx_napi(priv);
2797
2798         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2799
2800         bcmgenet_enable_tx_napi(priv);
2801
2802         /* Monitor link interrupts now */
2803         bcmgenet_link_intr_enable(priv);
2804
2805         phy_start(dev->phydev);
2806 }
2807
2808 static int bcmgenet_open(struct net_device *dev)
2809 {
2810         struct bcmgenet_priv *priv = netdev_priv(dev);
2811         unsigned long dma_ctrl;
2812         u32 reg;
2813         int ret;
2814
2815         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2816
2817         /* Turn on the clock */
2818         clk_prepare_enable(priv->clk);
2819
2820         /* If this is an internal GPHY, power it back on now, before UniMAC is
2821          * brought out of reset as absolutely no UniMAC activity is allowed
2822          */
2823         if (priv->internal_phy)
2824                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2825
2826         /* take MAC out of reset */
2827         bcmgenet_umac_reset(priv);
2828
2829         init_umac(priv);
2830
2831         /* Apply features again in case we changed them while interface was
2832          * down
2833          */
2834         bcmgenet_set_features(dev, dev->features);
2835
2836         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2837
2838         if (priv->internal_phy) {
2839                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2840                 reg |= EXT_ENERGY_DET_MASK;
2841                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2842         }
2843
2844         /* Disable RX/TX DMA and flush TX queues */
2845         dma_ctrl = bcmgenet_dma_disable(priv);
2846
2847         /* Reinitialize TDMA and RDMA and SW housekeeping */
2848         ret = bcmgenet_init_dma(priv);
2849         if (ret) {
2850                 netdev_err(dev, "failed to initialize DMA\n");
2851                 goto err_clk_disable;
2852         }
2853
2854         /* Always enable ring 16 - descriptor ring */
2855         bcmgenet_enable_dma(priv, dma_ctrl);
2856
2857         /* HFB init */
2858         bcmgenet_hfb_init(priv);
2859
2860         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2861                           dev->name, priv);
2862         if (ret < 0) {
2863                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2864                 goto err_fini_dma;
2865         }
2866
2867         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2868                           dev->name, priv);
2869         if (ret < 0) {
2870                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2871                 goto err_irq0;
2872         }
2873
2874         ret = bcmgenet_mii_probe(dev);
2875         if (ret) {
2876                 netdev_err(dev, "failed to connect to PHY\n");
2877                 goto err_irq1;
2878         }
2879
2880         bcmgenet_netif_start(dev);
2881
2882         netif_tx_start_all_queues(dev);
2883
2884         return 0;
2885
2886 err_irq1:
2887         free_irq(priv->irq1, priv);
2888 err_irq0:
2889         free_irq(priv->irq0, priv);
2890 err_fini_dma:
2891         bcmgenet_dma_teardown(priv);
2892         bcmgenet_fini_dma(priv);
2893 err_clk_disable:
2894         if (priv->internal_phy)
2895                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2896         clk_disable_unprepare(priv->clk);
2897         return ret;
2898 }
2899
2900 static void bcmgenet_netif_stop(struct net_device *dev)
2901 {
2902         struct bcmgenet_priv *priv = netdev_priv(dev);
2903
2904         bcmgenet_disable_tx_napi(priv);
2905         netif_tx_disable(dev);
2906
2907         /* Disable MAC receive */
2908         umac_enable_set(priv, CMD_RX_EN, false);
2909
2910         bcmgenet_dma_teardown(priv);
2911
2912         /* Disable MAC transmit. TX DMA disabled must be done before this */
2913         umac_enable_set(priv, CMD_TX_EN, false);
2914
2915         phy_stop(dev->phydev);
2916         bcmgenet_disable_rx_napi(priv);
2917         bcmgenet_intr_disable(priv);
2918
2919         /* Wait for pending work items to complete. Since interrupts are
2920          * disabled no new work will be scheduled.
2921          */
2922         cancel_work_sync(&priv->bcmgenet_irq_work);
2923
2924         priv->old_link = -1;
2925         priv->old_speed = -1;
2926         priv->old_duplex = -1;
2927         priv->old_pause = -1;
2928
2929         /* tx reclaim */
2930         bcmgenet_tx_reclaim_all(dev);
2931         bcmgenet_fini_dma(priv);
2932 }
2933
2934 static int bcmgenet_close(struct net_device *dev)
2935 {
2936         struct bcmgenet_priv *priv = netdev_priv(dev);
2937         int ret = 0;
2938
2939         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2940
2941         bcmgenet_netif_stop(dev);
2942
2943         /* Really kill the PHY state machine and disconnect from it */
2944         phy_disconnect(dev->phydev);
2945
2946         free_irq(priv->irq0, priv);
2947         free_irq(priv->irq1, priv);
2948
2949         if (priv->internal_phy)
2950                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2951
2952         clk_disable_unprepare(priv->clk);
2953
2954         return ret;
2955 }
2956
2957 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2958 {
2959         struct bcmgenet_priv *priv = ring->priv;
2960         u32 p_index, c_index, intsts, intmsk;
2961         struct netdev_queue *txq;
2962         unsigned int free_bds;
2963         bool txq_stopped;
2964
2965         if (!netif_msg_tx_err(priv))
2966                 return;
2967
2968         txq = netdev_get_tx_queue(priv->dev, ring->queue);
2969
2970         spin_lock(&ring->lock);
2971         if (ring->index == DESC_INDEX) {
2972                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2973                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2974         } else {
2975                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2976                 intmsk = 1 << ring->index;
2977         }
2978         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2979         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2980         txq_stopped = netif_tx_queue_stopped(txq);
2981         free_bds = ring->free_bds;
2982         spin_unlock(&ring->lock);
2983
2984         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2985                   "TX queue status: %s, interrupts: %s\n"
2986                   "(sw)free_bds: %d (sw)size: %d\n"
2987                   "(sw)p_index: %d (hw)p_index: %d\n"
2988                   "(sw)c_index: %d (hw)c_index: %d\n"
2989                   "(sw)clean_p: %d (sw)write_p: %d\n"
2990                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2991                   ring->index, ring->queue,
2992                   txq_stopped ? "stopped" : "active",
2993                   intsts & intmsk ? "enabled" : "disabled",
2994                   free_bds, ring->size,
2995                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
2996                   ring->c_index, c_index & DMA_C_INDEX_MASK,
2997                   ring->clean_ptr, ring->write_ptr,
2998                   ring->cb_ptr, ring->end_ptr);
2999 }
3000
3001 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3002 {
3003         struct bcmgenet_priv *priv = netdev_priv(dev);
3004         u32 int0_enable = 0;
3005         u32 int1_enable = 0;
3006         unsigned int q;
3007
3008         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3009
3010         for (q = 0; q < priv->hw_params->tx_queues; q++)
3011                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3012         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3013
3014         bcmgenet_tx_reclaim_all(dev);
3015
3016         for (q = 0; q < priv->hw_params->tx_queues; q++)
3017                 int1_enable |= (1 << q);
3018
3019         int0_enable = UMAC_IRQ_TXDMA_DONE;
3020
3021         /* Re-enable TX interrupts if disabled */
3022         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3023         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3024
3025         netif_trans_update(dev);
3026
3027         dev->stats.tx_errors++;
3028
3029         netif_tx_wake_all_queues(dev);
3030 }
3031
3032 #define MAX_MDF_FILTER  17
3033
3034 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3035                                          unsigned char *addr,
3036                                          int *i)
3037 {
3038         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3039                              UMAC_MDF_ADDR + (*i * 4));
3040         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3041                              addr[4] << 8 | addr[5],
3042                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3043         *i += 2;
3044 }
3045
3046 static void bcmgenet_set_rx_mode(struct net_device *dev)
3047 {
3048         struct bcmgenet_priv *priv = netdev_priv(dev);
3049         struct netdev_hw_addr *ha;
3050         int i, nfilter;
3051         u32 reg;
3052
3053         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3054
3055         /* Number of filters needed */
3056         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3057
3058         /*
3059          * Turn on promicuous mode for three scenarios
3060          * 1. IFF_PROMISC flag is set
3061          * 2. IFF_ALLMULTI flag is set
3062          * 3. The number of filters needed exceeds the number filters
3063          *    supported by the hardware.
3064         */
3065         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3066         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3067             (nfilter > MAX_MDF_FILTER)) {
3068                 reg |= CMD_PROMISC;
3069                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3070                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3071                 return;
3072         } else {
3073                 reg &= ~CMD_PROMISC;
3074                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3075         }
3076
3077         /* update MDF filter */
3078         i = 0;
3079         /* Broadcast */
3080         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3081         /* my own address.*/
3082         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3083
3084         /* Unicast */
3085         netdev_for_each_uc_addr(ha, dev)
3086                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3087
3088         /* Multicast */
3089         netdev_for_each_mc_addr(ha, dev)
3090                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3091
3092         /* Enable filters */
3093         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3094         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3095 }
3096
3097 /* Set the hardware MAC address. */
3098 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3099 {
3100         struct sockaddr *addr = p;
3101
3102         /* Setting the MAC address at the hardware level is not possible
3103          * without disabling the UniMAC RX/TX enable bits.
3104          */
3105         if (netif_running(dev))
3106                 return -EBUSY;
3107
3108         ether_addr_copy(dev->dev_addr, addr->sa_data);
3109
3110         return 0;
3111 }
3112
3113 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3114 {
3115         struct bcmgenet_priv *priv = netdev_priv(dev);
3116         unsigned long tx_bytes = 0, tx_packets = 0;
3117         unsigned long rx_bytes = 0, rx_packets = 0;
3118         unsigned long rx_errors = 0, rx_dropped = 0;
3119         struct bcmgenet_tx_ring *tx_ring;
3120         struct bcmgenet_rx_ring *rx_ring;
3121         unsigned int q;
3122
3123         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3124                 tx_ring = &priv->tx_rings[q];
3125                 tx_bytes += tx_ring->bytes;
3126                 tx_packets += tx_ring->packets;
3127         }
3128         tx_ring = &priv->tx_rings[DESC_INDEX];
3129         tx_bytes += tx_ring->bytes;
3130         tx_packets += tx_ring->packets;
3131
3132         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3133                 rx_ring = &priv->rx_rings[q];
3134
3135                 rx_bytes += rx_ring->bytes;
3136                 rx_packets += rx_ring->packets;
3137                 rx_errors += rx_ring->errors;
3138                 rx_dropped += rx_ring->dropped;
3139         }
3140         rx_ring = &priv->rx_rings[DESC_INDEX];
3141         rx_bytes += rx_ring->bytes;
3142         rx_packets += rx_ring->packets;
3143         rx_errors += rx_ring->errors;
3144         rx_dropped += rx_ring->dropped;
3145
3146         dev->stats.tx_bytes = tx_bytes;
3147         dev->stats.tx_packets = tx_packets;
3148         dev->stats.rx_bytes = rx_bytes;
3149         dev->stats.rx_packets = rx_packets;
3150         dev->stats.rx_errors = rx_errors;
3151         dev->stats.rx_missed_errors = rx_errors;
3152         dev->stats.rx_dropped = rx_dropped;
3153         return &dev->stats;
3154 }
3155
3156 static const struct net_device_ops bcmgenet_netdev_ops = {
3157         .ndo_open               = bcmgenet_open,
3158         .ndo_stop               = bcmgenet_close,
3159         .ndo_start_xmit         = bcmgenet_xmit,
3160         .ndo_tx_timeout         = bcmgenet_timeout,
3161         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3162         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3163         .ndo_do_ioctl           = phy_do_ioctl_running,
3164         .ndo_set_features       = bcmgenet_set_features,
3165 #ifdef CONFIG_NET_POLL_CONTROLLER
3166         .ndo_poll_controller    = bcmgenet_poll_controller,
3167 #endif
3168         .ndo_get_stats          = bcmgenet_get_stats,
3169 };
3170
3171 /* Array of GENET hardware parameters/characteristics */
3172 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3173         [GENET_V1] = {
3174                 .tx_queues = 0,
3175                 .tx_bds_per_q = 0,
3176                 .rx_queues = 0,
3177                 .rx_bds_per_q = 0,
3178                 .bp_in_en_shift = 16,
3179                 .bp_in_mask = 0xffff,
3180                 .hfb_filter_cnt = 16,
3181                 .qtag_mask = 0x1F,
3182                 .hfb_offset = 0x1000,
3183                 .rdma_offset = 0x2000,
3184                 .tdma_offset = 0x3000,
3185                 .words_per_bd = 2,
3186         },
3187         [GENET_V2] = {
3188                 .tx_queues = 4,
3189                 .tx_bds_per_q = 32,
3190                 .rx_queues = 0,
3191                 .rx_bds_per_q = 0,
3192                 .bp_in_en_shift = 16,
3193                 .bp_in_mask = 0xffff,
3194                 .hfb_filter_cnt = 16,
3195                 .qtag_mask = 0x1F,
3196                 .tbuf_offset = 0x0600,
3197                 .hfb_offset = 0x1000,
3198                 .hfb_reg_offset = 0x2000,
3199                 .rdma_offset = 0x3000,
3200                 .tdma_offset = 0x4000,
3201                 .words_per_bd = 2,
3202                 .flags = GENET_HAS_EXT,
3203         },
3204         [GENET_V3] = {
3205                 .tx_queues = 4,
3206                 .tx_bds_per_q = 32,
3207                 .rx_queues = 0,
3208                 .rx_bds_per_q = 0,
3209                 .bp_in_en_shift = 17,
3210                 .bp_in_mask = 0x1ffff,
3211                 .hfb_filter_cnt = 48,
3212                 .hfb_filter_size = 128,
3213                 .qtag_mask = 0x3F,
3214                 .tbuf_offset = 0x0600,
3215                 .hfb_offset = 0x8000,
3216                 .hfb_reg_offset = 0xfc00,
3217                 .rdma_offset = 0x10000,
3218                 .tdma_offset = 0x11000,
3219                 .words_per_bd = 2,
3220                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3221                          GENET_HAS_MOCA_LINK_DET,
3222         },
3223         [GENET_V4] = {
3224                 .tx_queues = 4,
3225                 .tx_bds_per_q = 32,
3226                 .rx_queues = 0,
3227                 .rx_bds_per_q = 0,
3228                 .bp_in_en_shift = 17,
3229                 .bp_in_mask = 0x1ffff,
3230                 .hfb_filter_cnt = 48,
3231                 .hfb_filter_size = 128,
3232                 .qtag_mask = 0x3F,
3233                 .tbuf_offset = 0x0600,
3234                 .hfb_offset = 0x8000,
3235                 .hfb_reg_offset = 0xfc00,
3236                 .rdma_offset = 0x2000,
3237                 .tdma_offset = 0x4000,
3238                 .words_per_bd = 3,
3239                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3240                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3241         },
3242         [GENET_V5] = {
3243                 .tx_queues = 4,
3244                 .tx_bds_per_q = 32,
3245                 .rx_queues = 0,
3246                 .rx_bds_per_q = 0,
3247                 .bp_in_en_shift = 17,
3248                 .bp_in_mask = 0x1ffff,
3249                 .hfb_filter_cnt = 48,
3250                 .hfb_filter_size = 128,
3251                 .qtag_mask = 0x3F,
3252                 .tbuf_offset = 0x0600,
3253                 .hfb_offset = 0x8000,
3254                 .hfb_reg_offset = 0xfc00,
3255                 .rdma_offset = 0x2000,
3256                 .tdma_offset = 0x4000,
3257                 .words_per_bd = 3,
3258                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3259                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3260         },
3261 };
3262
3263 /* Infer hardware parameters from the detected GENET version */
3264 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3265 {
3266         struct bcmgenet_hw_params *params;
3267         u32 reg;
3268         u8 major;
3269         u16 gphy_rev;
3270
3271         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3272                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3273                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3274         } else if (GENET_IS_V3(priv)) {
3275                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3276                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3277         } else if (GENET_IS_V2(priv)) {
3278                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3279                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3280         } else if (GENET_IS_V1(priv)) {
3281                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3282                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3283         }
3284
3285         /* enum genet_version starts at 1 */
3286         priv->hw_params = &bcmgenet_hw_params[priv->version];
3287         params = priv->hw_params;
3288
3289         /* Read GENET HW version */
3290         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3291         major = (reg >> 24 & 0x0f);
3292         if (major == 6)
3293                 major = 5;
3294         else if (major == 5)
3295                 major = 4;
3296         else if (major == 0)
3297                 major = 1;
3298         if (major != priv->version) {
3299                 dev_err(&priv->pdev->dev,
3300                         "GENET version mismatch, got: %d, configured for: %d\n",
3301                         major, priv->version);
3302         }
3303
3304         /* Print the GENET core version */
3305         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3306                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3307
3308         /* Store the integrated PHY revision for the MDIO probing function
3309          * to pass this information to the PHY driver. The PHY driver expects
3310          * to find the PHY major revision in bits 15:8 while the GENET register
3311          * stores that information in bits 7:0, account for that.
3312          *
3313          * On newer chips, starting with PHY revision G0, a new scheme is
3314          * deployed similar to the Starfighter 2 switch with GPHY major
3315          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3316          * is reserved as well as special value 0x01ff, we have a small
3317          * heuristic to check for the new GPHY revision and re-arrange things
3318          * so the GPHY driver is happy.
3319          */
3320         gphy_rev = reg & 0xffff;
3321
3322         if (GENET_IS_V5(priv)) {
3323                 /* The EPHY revision should come from the MDIO registers of
3324                  * the PHY not from GENET.
3325                  */
3326                 if (gphy_rev != 0) {
3327                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3328                                 gphy_rev);
3329                 }
3330         /* This is reserved so should require special treatment */
3331         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3332                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3333                 return;
3334         /* This is the good old scheme, just GPHY major, no minor nor patch */
3335         } else if ((gphy_rev & 0xf0) != 0) {
3336                 priv->gphy_rev = gphy_rev << 8;
3337         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3338         } else if ((gphy_rev & 0xff00) != 0) {
3339                 priv->gphy_rev = gphy_rev;
3340         }
3341
3342 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3343         if (!(params->flags & GENET_HAS_40BITS))
3344                 pr_warn("GENET does not support 40-bits PA\n");
3345 #endif
3346
3347         pr_debug("Configuration for version: %d\n"
3348                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3349                 "BP << en: %2d, BP msk: 0x%05x\n"
3350                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3351                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3352                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3353                 "Words/BD: %d\n",
3354                 priv->version,
3355                 params->tx_queues, params->tx_bds_per_q,
3356                 params->rx_queues, params->rx_bds_per_q,
3357                 params->bp_in_en_shift, params->bp_in_mask,
3358                 params->hfb_filter_cnt, params->qtag_mask,
3359                 params->tbuf_offset, params->hfb_offset,
3360                 params->hfb_reg_offset,
3361                 params->rdma_offset, params->tdma_offset,
3362                 params->words_per_bd);
3363 }
3364
3365 struct bcmgenet_plat_data {
3366         enum bcmgenet_version version;
3367         u32 dma_max_burst_length;
3368 };
3369
3370 static const struct bcmgenet_plat_data v1_plat_data = {
3371         .version = GENET_V1,
3372         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3373 };
3374
3375 static const struct bcmgenet_plat_data v2_plat_data = {
3376         .version = GENET_V2,
3377         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3378 };
3379
3380 static const struct bcmgenet_plat_data v3_plat_data = {
3381         .version = GENET_V3,
3382         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3383 };
3384
3385 static const struct bcmgenet_plat_data v4_plat_data = {
3386         .version = GENET_V4,
3387         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3388 };
3389
3390 static const struct bcmgenet_plat_data v5_plat_data = {
3391         .version = GENET_V5,
3392         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3393 };
3394
3395 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3396         .version = GENET_V5,
3397         .dma_max_burst_length = 0x08,
3398 };
3399
3400 static const struct of_device_id bcmgenet_match[] = {
3401         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3402         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3403         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3404         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3405         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3406         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3407         { },
3408 };
3409 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3410
3411 static int bcmgenet_probe(struct platform_device *pdev)
3412 {
3413         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3414         const struct bcmgenet_plat_data *pdata;
3415         struct bcmgenet_priv *priv;
3416         struct net_device *dev;
3417         unsigned int i;
3418         int err = -EIO;
3419
3420         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3421         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3422                                  GENET_MAX_MQ_CNT + 1);
3423         if (!dev) {
3424                 dev_err(&pdev->dev, "can't allocate net device\n");
3425                 return -ENOMEM;
3426         }
3427
3428         priv = netdev_priv(dev);
3429         priv->irq0 = platform_get_irq(pdev, 0);
3430         if (priv->irq0 < 0) {
3431                 err = priv->irq0;
3432                 goto err;
3433         }
3434         priv->irq1 = platform_get_irq(pdev, 1);
3435         if (priv->irq1 < 0) {
3436                 err = priv->irq1;
3437                 goto err;
3438         }
3439         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3440
3441         priv->base = devm_platform_ioremap_resource(pdev, 0);
3442         if (IS_ERR(priv->base)) {
3443                 err = PTR_ERR(priv->base);
3444                 goto err;
3445         }
3446
3447         spin_lock_init(&priv->lock);
3448
3449         SET_NETDEV_DEV(dev, &pdev->dev);
3450         dev_set_drvdata(&pdev->dev, dev);
3451         dev->watchdog_timeo = 2 * HZ;
3452         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3453         dev->netdev_ops = &bcmgenet_netdev_ops;
3454
3455         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3456
3457         /* Set default features */
3458         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3459                          NETIF_F_RXCSUM;
3460         dev->hw_features |= dev->features;
3461         dev->vlan_features |= dev->features;
3462
3463         /* Request the WOL interrupt and advertise suspend if available */
3464         priv->wol_irq_disabled = true;
3465         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3466                                dev->name, priv);
3467         if (!err)
3468                 device_set_wakeup_capable(&pdev->dev, 1);
3469
3470         /* Set the needed headroom to account for any possible
3471          * features enabling/disabling at runtime
3472          */
3473         dev->needed_headroom += 64;
3474
3475         netdev_boot_setup_check(dev);
3476
3477         priv->dev = dev;
3478         priv->pdev = pdev;
3479
3480         pdata = device_get_match_data(&pdev->dev);
3481         if (pdata) {
3482                 priv->version = pdata->version;
3483                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3484         } else {
3485                 priv->version = pd->genet_version;
3486                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3487         }
3488
3489         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3490         if (IS_ERR(priv->clk)) {
3491                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3492                 err = PTR_ERR(priv->clk);
3493                 goto err;
3494         }
3495
3496         err = clk_prepare_enable(priv->clk);
3497         if (err)
3498                 goto err;
3499
3500         bcmgenet_set_hw_params(priv);
3501
3502         err = -EIO;
3503         if (priv->hw_params->flags & GENET_HAS_40BITS)
3504                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3505         if (err)
3506                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3507         if (err)
3508                 goto err;
3509
3510         /* Mii wait queue */
3511         init_waitqueue_head(&priv->wq);
3512         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3513         priv->rx_buf_len = RX_BUF_LENGTH;
3514         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3515
3516         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
3517         if (IS_ERR(priv->clk_wol)) {
3518                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3519                 err = PTR_ERR(priv->clk_wol);
3520                 goto err;
3521         }
3522
3523         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
3524         if (IS_ERR(priv->clk_eee)) {
3525                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3526                 err = PTR_ERR(priv->clk_eee);
3527                 goto err;
3528         }
3529
3530         /* If this is an internal GPHY, power it on now, before UniMAC is
3531          * brought out of reset as absolutely no UniMAC activity is allowed
3532          */
3533         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3534                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3535
3536         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
3537                 ether_addr_copy(dev->dev_addr, pd->mac_address);
3538         else
3539                 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3540                         if (has_acpi_companion(&pdev->dev))
3541                                 bcmgenet_get_hw_addr(priv, dev->dev_addr);
3542
3543         if (!is_valid_ether_addr(dev->dev_addr)) {
3544                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3545                 eth_hw_addr_random(dev);
3546         }
3547
3548         reset_umac(priv);
3549
3550         err = bcmgenet_mii_init(dev);
3551         if (err)
3552                 goto err_clk_disable;
3553
3554         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3555          * just the ring 16 descriptor based TX
3556          */
3557         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3558         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3559
3560         /* Set default coalescing parameters */
3561         for (i = 0; i < priv->hw_params->rx_queues; i++)
3562                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3563         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3564
3565         /* libphy will determine the link state */
3566         netif_carrier_off(dev);
3567
3568         /* Turn off the main clock, WOL clock is handled separately */
3569         clk_disable_unprepare(priv->clk);
3570
3571         err = register_netdev(dev);
3572         if (err)
3573                 goto err;
3574
3575         return err;
3576
3577 err_clk_disable:
3578         clk_disable_unprepare(priv->clk);
3579 err:
3580         free_netdev(dev);
3581         return err;
3582 }
3583
3584 static int bcmgenet_remove(struct platform_device *pdev)
3585 {
3586         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3587
3588         dev_set_drvdata(&pdev->dev, NULL);
3589         unregister_netdev(priv->dev);
3590         bcmgenet_mii_exit(priv->dev);
3591         free_netdev(priv->dev);
3592
3593         return 0;
3594 }
3595
3596 static void bcmgenet_shutdown(struct platform_device *pdev)
3597 {
3598         bcmgenet_remove(pdev);
3599 }
3600
3601 #ifdef CONFIG_PM_SLEEP
3602 static int bcmgenet_resume(struct device *d)
3603 {
3604         struct net_device *dev = dev_get_drvdata(d);
3605         struct bcmgenet_priv *priv = netdev_priv(dev);
3606         unsigned long dma_ctrl;
3607         int ret;
3608         u32 reg;
3609
3610         if (!netif_running(dev))
3611                 return 0;
3612
3613         /* Turn on the clock */
3614         ret = clk_prepare_enable(priv->clk);
3615         if (ret)
3616                 return ret;
3617
3618         /* If this is an internal GPHY, power it back on now, before UniMAC is
3619          * brought out of reset as absolutely no UniMAC activity is allowed
3620          */
3621         if (priv->internal_phy)
3622                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3623
3624         bcmgenet_umac_reset(priv);
3625
3626         init_umac(priv);
3627
3628         /* From WOL-enabled suspend, switch to regular clock */
3629         if (priv->wolopts)
3630                 clk_disable_unprepare(priv->clk_wol);
3631
3632         phy_init_hw(dev->phydev);
3633
3634         /* Speed settings must be restored */
3635         genphy_config_aneg(dev->phydev);
3636         bcmgenet_mii_config(priv->dev, false);
3637
3638         /* Restore enabled features */
3639         bcmgenet_set_features(dev, dev->features);
3640
3641         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3642
3643         if (priv->internal_phy) {
3644                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3645                 reg |= EXT_ENERGY_DET_MASK;
3646                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3647         }
3648
3649         if (priv->wolopts)
3650                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3651
3652         /* Disable RX/TX DMA and flush TX queues */
3653         dma_ctrl = bcmgenet_dma_disable(priv);
3654
3655         /* Reinitialize TDMA and RDMA and SW housekeeping */
3656         ret = bcmgenet_init_dma(priv);
3657         if (ret) {
3658                 netdev_err(dev, "failed to initialize DMA\n");
3659                 goto out_clk_disable;
3660         }
3661
3662         /* Always enable ring 16 - descriptor ring */
3663         bcmgenet_enable_dma(priv, dma_ctrl);
3664
3665         if (!device_may_wakeup(d))
3666                 phy_resume(dev->phydev);
3667
3668         if (priv->eee.eee_enabled)
3669                 bcmgenet_eee_enable_set(dev, true);
3670
3671         bcmgenet_netif_start(dev);
3672
3673         netif_device_attach(dev);
3674
3675         return 0;
3676
3677 out_clk_disable:
3678         if (priv->internal_phy)
3679                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3680         clk_disable_unprepare(priv->clk);
3681         return ret;
3682 }
3683
3684 static int bcmgenet_suspend(struct device *d)
3685 {
3686         struct net_device *dev = dev_get_drvdata(d);
3687         struct bcmgenet_priv *priv = netdev_priv(dev);
3688         int ret = 0;
3689
3690         if (!netif_running(dev))
3691                 return 0;
3692
3693         netif_device_detach(dev);
3694
3695         bcmgenet_netif_stop(dev);
3696
3697         if (!device_may_wakeup(d))
3698                 phy_suspend(dev->phydev);
3699
3700         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3701         if (device_may_wakeup(d) && priv->wolopts) {
3702                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3703                 clk_prepare_enable(priv->clk_wol);
3704         } else if (priv->internal_phy) {
3705                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3706         }
3707
3708         /* Turn off the clocks */
3709         clk_disable_unprepare(priv->clk);
3710
3711         if (ret)
3712                 bcmgenet_resume(d);
3713
3714         return ret;
3715 }
3716 #endif /* CONFIG_PM_SLEEP */
3717
3718 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3719
3720 static const struct acpi_device_id genet_acpi_match[] = {
3721         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3722         { },
3723 };
3724 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3725
3726 static struct platform_driver bcmgenet_driver = {
3727         .probe  = bcmgenet_probe,
3728         .remove = bcmgenet_remove,
3729         .shutdown = bcmgenet_shutdown,
3730         .driver = {
3731                 .name   = "bcmgenet",
3732                 .of_match_table = bcmgenet_match,
3733                 .pm     = &bcmgenet_pm_ops,
3734                 .acpi_match_table = genet_acpi_match,
3735         },
3736 };
3737 module_platform_driver(bcmgenet_driver);
3738
3739 MODULE_AUTHOR("Broadcom Corporation");
3740 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3741 MODULE_ALIAS("platform:bcmgenet");
3742 MODULE_LICENSE("GPL");