Merge branch 'ib/5.17-cros-ec-keyb' into next
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121                                           void __iomem *d)
122 {
123         dma_addr_t addr;
124
125         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127         /* Register writes to GISB bus can take couple hundred nanoseconds
128          * and are done for each packet, save these expensive writes unless
129          * the platform is explicitly configured for 64-bits/LPAE.
130          */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132         if (priv->hw_params->flags & GENET_HAS_40BITS)
133                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135         return addr;
136 }
137
138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141                                 NETIF_MSG_LINK)
142
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145         if (GENET_IS_V1(priv))
146                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147         else
148                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153         if (GENET_IS_V1(priv))
154                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155         else
156                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183         if (GENET_IS_V1(priv))
184                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185         else
186                 return bcmgenet_readl(priv->base +
187                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192         if (GENET_IS_V1(priv))
193                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194         else
195                 bcmgenet_writel(val, priv->base +
196                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201         DMA_RING_CFG = 0,
202         DMA_CTRL,
203         DMA_STATUS,
204         DMA_SCB_BURST_SIZE,
205         DMA_ARB_CTRL,
206         DMA_PRIORITY_0,
207         DMA_PRIORITY_1,
208         DMA_PRIORITY_2,
209         DMA_INDEX2RING_0,
210         DMA_INDEX2RING_1,
211         DMA_INDEX2RING_2,
212         DMA_INDEX2RING_3,
213         DMA_INDEX2RING_4,
214         DMA_INDEX2RING_5,
215         DMA_INDEX2RING_6,
216         DMA_INDEX2RING_7,
217         DMA_RING0_TIMEOUT,
218         DMA_RING1_TIMEOUT,
219         DMA_RING2_TIMEOUT,
220         DMA_RING3_TIMEOUT,
221         DMA_RING4_TIMEOUT,
222         DMA_RING5_TIMEOUT,
223         DMA_RING6_TIMEOUT,
224         DMA_RING7_TIMEOUT,
225         DMA_RING8_TIMEOUT,
226         DMA_RING9_TIMEOUT,
227         DMA_RING10_TIMEOUT,
228         DMA_RING11_TIMEOUT,
229         DMA_RING12_TIMEOUT,
230         DMA_RING13_TIMEOUT,
231         DMA_RING14_TIMEOUT,
232         DMA_RING15_TIMEOUT,
233         DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237         [DMA_RING_CFG]          = 0x00,
238         [DMA_CTRL]              = 0x04,
239         [DMA_STATUS]            = 0x08,
240         [DMA_SCB_BURST_SIZE]    = 0x0C,
241         [DMA_ARB_CTRL]          = 0x2C,
242         [DMA_PRIORITY_0]        = 0x30,
243         [DMA_PRIORITY_1]        = 0x34,
244         [DMA_PRIORITY_2]        = 0x38,
245         [DMA_RING0_TIMEOUT]     = 0x2C,
246         [DMA_RING1_TIMEOUT]     = 0x30,
247         [DMA_RING2_TIMEOUT]     = 0x34,
248         [DMA_RING3_TIMEOUT]     = 0x38,
249         [DMA_RING4_TIMEOUT]     = 0x3c,
250         [DMA_RING5_TIMEOUT]     = 0x40,
251         [DMA_RING6_TIMEOUT]     = 0x44,
252         [DMA_RING7_TIMEOUT]     = 0x48,
253         [DMA_RING8_TIMEOUT]     = 0x4c,
254         [DMA_RING9_TIMEOUT]     = 0x50,
255         [DMA_RING10_TIMEOUT]    = 0x54,
256         [DMA_RING11_TIMEOUT]    = 0x58,
257         [DMA_RING12_TIMEOUT]    = 0x5c,
258         [DMA_RING13_TIMEOUT]    = 0x60,
259         [DMA_RING14_TIMEOUT]    = 0x64,
260         [DMA_RING15_TIMEOUT]    = 0x68,
261         [DMA_RING16_TIMEOUT]    = 0x6C,
262         [DMA_INDEX2RING_0]      = 0x70,
263         [DMA_INDEX2RING_1]      = 0x74,
264         [DMA_INDEX2RING_2]      = 0x78,
265         [DMA_INDEX2RING_3]      = 0x7C,
266         [DMA_INDEX2RING_4]      = 0x80,
267         [DMA_INDEX2RING_5]      = 0x84,
268         [DMA_INDEX2RING_6]      = 0x88,
269         [DMA_INDEX2RING_7]      = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273         [DMA_RING_CFG]          = 0x00,
274         [DMA_CTRL]              = 0x04,
275         [DMA_STATUS]            = 0x08,
276         [DMA_SCB_BURST_SIZE]    = 0x0C,
277         [DMA_ARB_CTRL]          = 0x30,
278         [DMA_PRIORITY_0]        = 0x34,
279         [DMA_PRIORITY_1]        = 0x38,
280         [DMA_PRIORITY_2]        = 0x3C,
281         [DMA_RING0_TIMEOUT]     = 0x2C,
282         [DMA_RING1_TIMEOUT]     = 0x30,
283         [DMA_RING2_TIMEOUT]     = 0x34,
284         [DMA_RING3_TIMEOUT]     = 0x38,
285         [DMA_RING4_TIMEOUT]     = 0x3c,
286         [DMA_RING5_TIMEOUT]     = 0x40,
287         [DMA_RING6_TIMEOUT]     = 0x44,
288         [DMA_RING7_TIMEOUT]     = 0x48,
289         [DMA_RING8_TIMEOUT]     = 0x4c,
290         [DMA_RING9_TIMEOUT]     = 0x50,
291         [DMA_RING10_TIMEOUT]    = 0x54,
292         [DMA_RING11_TIMEOUT]    = 0x58,
293         [DMA_RING12_TIMEOUT]    = 0x5c,
294         [DMA_RING13_TIMEOUT]    = 0x60,
295         [DMA_RING14_TIMEOUT]    = 0x64,
296         [DMA_RING15_TIMEOUT]    = 0x68,
297         [DMA_RING16_TIMEOUT]    = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301         [DMA_CTRL]              = 0x00,
302         [DMA_STATUS]            = 0x04,
303         [DMA_SCB_BURST_SIZE]    = 0x0C,
304         [DMA_ARB_CTRL]          = 0x30,
305         [DMA_PRIORITY_0]        = 0x34,
306         [DMA_PRIORITY_1]        = 0x38,
307         [DMA_PRIORITY_2]        = 0x3C,
308         [DMA_RING0_TIMEOUT]     = 0x2C,
309         [DMA_RING1_TIMEOUT]     = 0x30,
310         [DMA_RING2_TIMEOUT]     = 0x34,
311         [DMA_RING3_TIMEOUT]     = 0x38,
312         [DMA_RING4_TIMEOUT]     = 0x3c,
313         [DMA_RING5_TIMEOUT]     = 0x40,
314         [DMA_RING6_TIMEOUT]     = 0x44,
315         [DMA_RING7_TIMEOUT]     = 0x48,
316         [DMA_RING8_TIMEOUT]     = 0x4c,
317         [DMA_RING9_TIMEOUT]     = 0x50,
318         [DMA_RING10_TIMEOUT]    = 0x54,
319         [DMA_RING11_TIMEOUT]    = 0x58,
320         [DMA_RING12_TIMEOUT]    = 0x5c,
321         [DMA_RING13_TIMEOUT]    = 0x60,
322         [DMA_RING14_TIMEOUT]    = 0x64,
323         [DMA_RING15_TIMEOUT]    = 0x68,
324         [DMA_RING16_TIMEOUT]    = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332         return netdev_priv(dev_get_drvdata(dev));
333 }
334
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336                                       enum dma_reg r)
337 {
338         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343                                         u32 val, enum dma_reg r)
344 {
345         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350                                       enum dma_reg r)
351 {
352         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357                                         u32 val, enum dma_reg r)
358 {
359         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368         TDMA_READ_PTR = 0,
369         RDMA_WRITE_PTR = TDMA_READ_PTR,
370         TDMA_READ_PTR_HI,
371         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372         TDMA_CONS_INDEX,
373         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374         TDMA_PROD_INDEX,
375         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376         DMA_RING_BUF_SIZE,
377         DMA_START_ADDR,
378         DMA_START_ADDR_HI,
379         DMA_END_ADDR,
380         DMA_END_ADDR_HI,
381         DMA_MBUF_DONE_THRESH,
382         TDMA_FLOW_PERIOD,
383         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384         TDMA_WRITE_PTR,
385         RDMA_READ_PTR = TDMA_WRITE_PTR,
386         TDMA_WRITE_PTR_HI,
387         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396         [TDMA_READ_PTR]                 = 0x00,
397         [TDMA_READ_PTR_HI]              = 0x04,
398         [TDMA_CONS_INDEX]               = 0x08,
399         [TDMA_PROD_INDEX]               = 0x0C,
400         [DMA_RING_BUF_SIZE]             = 0x10,
401         [DMA_START_ADDR]                = 0x14,
402         [DMA_START_ADDR_HI]             = 0x18,
403         [DMA_END_ADDR]                  = 0x1C,
404         [DMA_END_ADDR_HI]               = 0x20,
405         [DMA_MBUF_DONE_THRESH]          = 0x24,
406         [TDMA_FLOW_PERIOD]              = 0x28,
407         [TDMA_WRITE_PTR]                = 0x2C,
408         [TDMA_WRITE_PTR_HI]             = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412         [TDMA_READ_PTR]                 = 0x00,
413         [TDMA_CONS_INDEX]               = 0x04,
414         [TDMA_PROD_INDEX]               = 0x08,
415         [DMA_RING_BUF_SIZE]             = 0x0C,
416         [DMA_START_ADDR]                = 0x10,
417         [DMA_END_ADDR]                  = 0x14,
418         [DMA_MBUF_DONE_THRESH]          = 0x18,
419         [TDMA_FLOW_PERIOD]              = 0x1C,
420         [TDMA_WRITE_PTR]                = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445                                            unsigned int ring,
446                                            enum dma_ring_reg r)
447 {
448         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449                               (DMA_RING_SIZE * ring) +
450                               genet_dma_ring_regs[r]);
451 }
452
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454                                              unsigned int ring, u32 val,
455                                              enum dma_ring_reg r)
456 {
457         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458                         (DMA_RING_SIZE * ring) +
459                         genet_dma_ring_regs[r]);
460 }
461
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464         u32 offset;
465         u32 reg;
466
467         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468         reg = bcmgenet_hfb_reg_readl(priv, offset);
469         reg |= (1 << (f_index % 32));
470         bcmgenet_hfb_reg_writel(priv, reg, offset);
471         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472         reg |= RBUF_HFB_EN;
473         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478         u32 offset, reg, reg1;
479
480         offset = HFB_FLT_ENABLE_V3PLUS;
481         reg = bcmgenet_hfb_reg_readl(priv, offset);
482         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483         if  (f_index < 32) {
484                 reg1 &= ~(1 << (f_index % 32));
485                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486         } else {
487                 reg &= ~(1 << (f_index % 32));
488                 bcmgenet_hfb_reg_writel(priv, reg, offset);
489         }
490         if (!reg && !reg1) {
491                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492                 reg &= ~RBUF_HFB_EN;
493                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494         }
495 }
496
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498                                                      u32 f_index, u32 rx_queue)
499 {
500         u32 offset;
501         u32 reg;
502
503         offset = f_index / 8;
504         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505         reg &= ~(0xF << (4 * (f_index % 8)));
506         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511                                            u32 f_index, u32 f_length)
512 {
513         u32 offset;
514         u32 reg;
515
516         offset = HFB_FLT_LEN_V3PLUS +
517                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518                  sizeof(u32);
519         reg = bcmgenet_hfb_reg_readl(priv, offset);
520         reg &= ~(0xFF << (8 * (f_index % 4)));
521         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522         bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527         while (size) {
528                 switch (*(unsigned char *)mask++) {
529                 case 0x00:
530                 case 0x0f:
531                 case 0xf0:
532                 case 0xff:
533                         size--;
534                         continue;
535                 default:
536                         return -EINVAL;
537                 }
538         }
539
540         return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547                                     u32 offset, void *val, void *mask,
548                                     size_t size)
549 {
550         u32 index, tmp;
551
552         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555         while (size--) {
556                 if (offset++ & 1) {
557                         tmp &= ~0x300FF;
558                         tmp |= (*(unsigned char *)val++);
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0x30000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x20000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x10000;
568                                 break;
569                         }
570                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571                         if (size)
572                                 tmp = bcmgenet_hfb_readl(priv,
573                                                          index * sizeof(u32));
574                 } else {
575                         tmp &= ~0xCFF00;
576                         tmp |= (*(unsigned char *)val++) << 8;
577                         switch ((*(unsigned char *)mask++)) {
578                         case 0xFF:
579                                 tmp |= 0xC0000;
580                                 break;
581                         case 0xF0:
582                                 tmp |= 0x80000;
583                                 break;
584                         case 0x0F:
585                                 tmp |= 0x40000;
586                                 break;
587                         }
588                         if (!size)
589                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590                 }
591         }
592
593         return 0;
594 }
595
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597                                              struct bcmgenet_rxnfc_rule *rule)
598 {
599         struct ethtool_rx_flow_spec *fs = &rule->fs;
600         u32 offset = 0, f_length = 0, f;
601         u8 val_8, mask_8;
602         __be16 val_16;
603         u16 mask_16;
604         size_t size;
605
606         f = fs->location;
607         if (fs->flow_type & FLOW_MAC_EXT) {
608                 bcmgenet_hfb_insert_data(priv, f, 0,
609                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610                                          sizeof(fs->h_ext.h_dest));
611         }
612
613         if (fs->flow_type & FLOW_EXT) {
614                 if (fs->m_ext.vlan_etype ||
615                     fs->m_ext.vlan_tci) {
616                         bcmgenet_hfb_insert_data(priv, f, 12,
617                                                  &fs->h_ext.vlan_etype,
618                                                  &fs->m_ext.vlan_etype,
619                                                  sizeof(fs->h_ext.vlan_etype));
620                         bcmgenet_hfb_insert_data(priv, f, 14,
621                                                  &fs->h_ext.vlan_tci,
622                                                  &fs->m_ext.vlan_tci,
623                                                  sizeof(fs->h_ext.vlan_tci));
624                         offset += VLAN_HLEN;
625                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626                 }
627         }
628
629         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630         case ETHER_FLOW:
631                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632                 bcmgenet_hfb_insert_data(priv, f, 0,
633                                          &fs->h_u.ether_spec.h_dest,
634                                          &fs->m_u.ether_spec.h_dest,
635                                          sizeof(fs->h_u.ether_spec.h_dest));
636                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637                                          &fs->h_u.ether_spec.h_source,
638                                          &fs->m_u.ether_spec.h_source,
639                                          sizeof(fs->h_u.ether_spec.h_source));
640                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641                                          &fs->h_u.ether_spec.h_proto,
642                                          &fs->m_u.ether_spec.h_proto,
643                                          sizeof(fs->h_u.ether_spec.h_proto));
644                 break;
645         case IP_USER_FLOW:
646                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647                 /* Specify IP Ether Type */
648                 val_16 = htons(ETH_P_IP);
649                 mask_16 = 0xFFFF;
650                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651                                          &val_16, &mask_16, sizeof(val_16));
652                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653                                          &fs->h_u.usr_ip4_spec.tos,
654                                          &fs->m_u.usr_ip4_spec.tos,
655                                          sizeof(fs->h_u.usr_ip4_spec.tos));
656                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657                                          &fs->h_u.usr_ip4_spec.proto,
658                                          &fs->m_u.usr_ip4_spec.proto,
659                                          sizeof(fs->h_u.usr_ip4_spec.proto));
660                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661                                          &fs->h_u.usr_ip4_spec.ip4src,
662                                          &fs->m_u.usr_ip4_spec.ip4src,
663                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
664                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665                                          &fs->h_u.usr_ip4_spec.ip4dst,
666                                          &fs->m_u.usr_ip4_spec.ip4dst,
667                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669                         break;
670
671                 /* Only supports 20 byte IPv4 header */
672                 val_8 = 0x45;
673                 mask_8 = 0xFF;
674                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675                                          &val_8, &mask_8,
676                                          sizeof(val_8));
677                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678                 bcmgenet_hfb_insert_data(priv, f,
679                                          ETH_HLEN + 20 + offset,
680                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
681                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
682                                          size);
683                 f_length += DIV_ROUND_UP(size, 2);
684                 break;
685         }
686
687         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689                 /* Ring 0 flows can be handled by the default Descriptor Ring
690                  * We'll map them to ring 0, but don't enable the filter
691                  */
692                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694         } else {
695                 /* Other Rx rings are direct mapped here */
696                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697                                                          fs->ring_cookie);
698                 bcmgenet_hfb_enable_filter(priv, f);
699                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700         }
701 }
702
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709         u32 base, i;
710
711         base = f_index * priv->hw_params->hfb_filter_size;
712         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718         u32 i;
719
720         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721                 return;
722
723         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728                 bcmgenet_rdma_writel(priv, 0x0, i);
729
730         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731                 bcmgenet_hfb_reg_writel(priv, 0x0,
732                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735                 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740         int i;
741
742         INIT_LIST_HEAD(&priv->rxnfc_list);
743         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744                 return;
745
746         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749         }
750
751         bcmgenet_hfb_clear(priv);
752 }
753
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756         struct bcmgenet_priv *priv = netdev_priv(dev);
757
758         /* Turn on the clock */
759         return clk_prepare_enable(priv->clk);
760 }
761
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764         struct bcmgenet_priv *priv = netdev_priv(dev);
765
766         /* Turn off the clock */
767         clk_disable_unprepare(priv->clk);
768 }
769
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771                                        struct ethtool_link_ksettings *cmd)
772 {
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         if (!dev->phydev)
777                 return -ENODEV;
778
779         phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781         return 0;
782 }
783
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785                                        const struct ethtool_link_ksettings *cmd)
786 {
787         if (!netif_running(dev))
788                 return -EINVAL;
789
790         if (!dev->phydev)
791                 return -ENODEV;
792
793         return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
796 static int bcmgenet_set_features(struct net_device *dev,
797                                  netdev_features_t features)
798 {
799         struct bcmgenet_priv *priv = netdev_priv(dev);
800         u32 reg;
801         int ret;
802
803         ret = clk_prepare_enable(priv->clk);
804         if (ret)
805                 return ret;
806
807         /* Make sure we reflect the value of CRC_CMD_FWD */
808         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811         clk_disable_unprepare(priv->clk);
812
813         return ret;
814 }
815
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818         struct bcmgenet_priv *priv = netdev_priv(dev);
819
820         return priv->msg_enable;
821 }
822
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825         struct bcmgenet_priv *priv = netdev_priv(dev);
826
827         priv->msg_enable = level;
828 }
829
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831                                  struct ethtool_coalesce *ec,
832                                  struct kernel_ethtool_coalesce *kernel_coal,
833                                  struct netlink_ext_ack *extack)
834 {
835         struct bcmgenet_priv *priv = netdev_priv(dev);
836         struct bcmgenet_rx_ring *ring;
837         unsigned int i;
838
839         ec->tx_max_coalesced_frames =
840                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
841                                          DMA_MBUF_DONE_THRESH);
842         ec->rx_max_coalesced_frames =
843                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
844                                          DMA_MBUF_DONE_THRESH);
845         ec->rx_coalesce_usecs =
846                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
847
848         for (i = 0; i < priv->hw_params->rx_queues; i++) {
849                 ring = &priv->rx_rings[i];
850                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
851         }
852         ring = &priv->rx_rings[DESC_INDEX];
853         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
854
855         return 0;
856 }
857
858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
859                                      u32 usecs, u32 pkts)
860 {
861         struct bcmgenet_priv *priv = ring->priv;
862         unsigned int i = ring->index;
863         u32 reg;
864
865         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
866
867         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
868         reg &= ~DMA_TIMEOUT_MASK;
869         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
870         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 }
872
873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
874                                           struct ethtool_coalesce *ec)
875 {
876         struct dim_cq_moder moder;
877         u32 usecs, pkts;
878
879         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
880         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
881         usecs = ring->rx_coalesce_usecs;
882         pkts = ring->rx_max_coalesced_frames;
883
884         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
885                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
886                 usecs = moder.usec;
887                 pkts = moder.pkts;
888         }
889
890         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
891         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 }
893
894 static int bcmgenet_set_coalesce(struct net_device *dev,
895                                  struct ethtool_coalesce *ec,
896                                  struct kernel_ethtool_coalesce *kernel_coal,
897                                  struct netlink_ext_ack *extack)
898 {
899         struct bcmgenet_priv *priv = netdev_priv(dev);
900         unsigned int i;
901
902         /* Base system clock is 125Mhz, DMA timeout is this reference clock
903          * divided by 1024, which yields roughly 8.192us, our maximum value
904          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
905          */
906         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
907             ec->tx_max_coalesced_frames == 0 ||
908             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
909             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
910                 return -EINVAL;
911
912         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
913                 return -EINVAL;
914
915         /* GENET TDMA hardware does not support a configurable timeout, but will
916          * always generate an interrupt either after MBDONE packets have been
917          * transmitted, or when the ring is empty.
918          */
919
920         /* Program all TX queues with the same values, as there is no
921          * ethtool knob to do coalescing on a per-queue basis
922          */
923         for (i = 0; i < priv->hw_params->tx_queues; i++)
924                 bcmgenet_tdma_ring_writel(priv, i,
925                                           ec->tx_max_coalesced_frames,
926                                           DMA_MBUF_DONE_THRESH);
927         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
928                                   ec->tx_max_coalesced_frames,
929                                   DMA_MBUF_DONE_THRESH);
930
931         for (i = 0; i < priv->hw_params->rx_queues; i++)
932                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
933         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
934
935         return 0;
936 }
937
938 static void bcmgenet_get_pauseparam(struct net_device *dev,
939                                     struct ethtool_pauseparam *epause)
940 {
941         struct bcmgenet_priv *priv;
942         u32 umac_cmd;
943
944         priv = netdev_priv(dev);
945
946         epause->autoneg = priv->autoneg_pause;
947
948         if (netif_carrier_ok(dev)) {
949                 /* report active state when link is up */
950                 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
951                 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
952                 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
953         } else {
954                 /* otherwise report stored settings */
955                 epause->tx_pause = priv->tx_pause;
956                 epause->rx_pause = priv->rx_pause;
957         }
958 }
959
960 static int bcmgenet_set_pauseparam(struct net_device *dev,
961                                    struct ethtool_pauseparam *epause)
962 {
963         struct bcmgenet_priv *priv = netdev_priv(dev);
964
965         if (!dev->phydev)
966                 return -ENODEV;
967
968         if (!phy_validate_pause(dev->phydev, epause))
969                 return -EINVAL;
970
971         priv->autoneg_pause = !!epause->autoneg;
972         priv->tx_pause = !!epause->tx_pause;
973         priv->rx_pause = !!epause->rx_pause;
974
975         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
976
977         return 0;
978 }
979
980 /* standard ethtool support functions. */
981 enum bcmgenet_stat_type {
982         BCMGENET_STAT_NETDEV = -1,
983         BCMGENET_STAT_MIB_RX,
984         BCMGENET_STAT_MIB_TX,
985         BCMGENET_STAT_RUNT,
986         BCMGENET_STAT_MISC,
987         BCMGENET_STAT_SOFT,
988 };
989
990 struct bcmgenet_stats {
991         char stat_string[ETH_GSTRING_LEN];
992         int stat_sizeof;
993         int stat_offset;
994         enum bcmgenet_stat_type type;
995         /* reg offset from UMAC base for misc counters */
996         u16 reg_offset;
997 };
998
999 #define STAT_NETDEV(m) { \
1000         .stat_string = __stringify(m), \
1001         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
1002         .stat_offset = offsetof(struct net_device_stats, m), \
1003         .type = BCMGENET_STAT_NETDEV, \
1004 }
1005
1006 #define STAT_GENET_MIB(str, m, _type) { \
1007         .stat_string = str, \
1008         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1009         .stat_offset = offsetof(struct bcmgenet_priv, m), \
1010         .type = _type, \
1011 }
1012
1013 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
1014 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
1015 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
1016 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
1017
1018 #define STAT_GENET_MISC(str, m, offset) { \
1019         .stat_string = str, \
1020         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1021         .stat_offset = offsetof(struct bcmgenet_priv, m), \
1022         .type = BCMGENET_STAT_MISC, \
1023         .reg_offset = offset, \
1024 }
1025
1026 #define STAT_GENET_Q(num) \
1027         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1028                         tx_rings[num].packets), \
1029         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1030                         tx_rings[num].bytes), \
1031         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1032                         rx_rings[num].bytes),    \
1033         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1034                         rx_rings[num].packets), \
1035         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1036                         rx_rings[num].errors), \
1037         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1038                         rx_rings[num].dropped)
1039
1040 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1041  * between the end of TX stats and the beginning of the RX RUNT
1042  */
1043 #define BCMGENET_STAT_OFFSET    0xc
1044
1045 /* Hardware counters must be kept in sync because the order/offset
1046  * is important here (order in structure declaration = order in hardware)
1047  */
1048 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1049         /* general stats */
1050         STAT_NETDEV(rx_packets),
1051         STAT_NETDEV(tx_packets),
1052         STAT_NETDEV(rx_bytes),
1053         STAT_NETDEV(tx_bytes),
1054         STAT_NETDEV(rx_errors),
1055         STAT_NETDEV(tx_errors),
1056         STAT_NETDEV(rx_dropped),
1057         STAT_NETDEV(tx_dropped),
1058         STAT_NETDEV(multicast),
1059         /* UniMAC RSV counters */
1060         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1061         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1062         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1063         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1064         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1065         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1066         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1067         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1068         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1069         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1070         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1071         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1072         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1073         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1074         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1075         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1076         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1077         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1078         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1079         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1080         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1081         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1082         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1083         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1084         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1085         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1086         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1087         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1088         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1089         /* UniMAC TSV counters */
1090         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1091         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1092         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1093         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1094         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1095         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1096         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1097         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1098         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1099         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1100         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1101         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1102         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1103         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1104         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1105         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1106         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1107         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1108         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1109         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1110         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1111         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1112         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1113         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1114         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1115         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1116         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1117         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1118         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1119         /* UniMAC RUNT counters */
1120         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1121         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1122         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1123         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1124         /* Misc UniMAC counters */
1125         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1126                         UMAC_RBUF_OVFL_CNT_V1),
1127         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1128                         UMAC_RBUF_ERR_CNT_V1),
1129         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1130         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1131         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1132         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1133         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1134         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1135                             mib.tx_realloc_tsb_failed),
1136         /* Per TX queues */
1137         STAT_GENET_Q(0),
1138         STAT_GENET_Q(1),
1139         STAT_GENET_Q(2),
1140         STAT_GENET_Q(3),
1141         STAT_GENET_Q(16),
1142 };
1143
1144 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1145
1146 static void bcmgenet_get_drvinfo(struct net_device *dev,
1147                                  struct ethtool_drvinfo *info)
1148 {
1149         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1150 }
1151
1152 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1153 {
1154         switch (string_set) {
1155         case ETH_SS_STATS:
1156                 return BCMGENET_STATS_LEN;
1157         default:
1158                 return -EOPNOTSUPP;
1159         }
1160 }
1161
1162 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1163                                  u8 *data)
1164 {
1165         int i;
1166
1167         switch (stringset) {
1168         case ETH_SS_STATS:
1169                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1170                         memcpy(data + i * ETH_GSTRING_LEN,
1171                                bcmgenet_gstrings_stats[i].stat_string,
1172                                ETH_GSTRING_LEN);
1173                 }
1174                 break;
1175         }
1176 }
1177
1178 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1179 {
1180         u16 new_offset;
1181         u32 val;
1182
1183         switch (offset) {
1184         case UMAC_RBUF_OVFL_CNT_V1:
1185                 if (GENET_IS_V2(priv))
1186                         new_offset = RBUF_OVFL_CNT_V2;
1187                 else
1188                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1189
1190                 val = bcmgenet_rbuf_readl(priv, new_offset);
1191                 /* clear if overflowed */
1192                 if (val == ~0)
1193                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1194                 break;
1195         case UMAC_RBUF_ERR_CNT_V1:
1196                 if (GENET_IS_V2(priv))
1197                         new_offset = RBUF_ERR_CNT_V2;
1198                 else
1199                         new_offset = RBUF_ERR_CNT_V3PLUS;
1200
1201                 val = bcmgenet_rbuf_readl(priv, new_offset);
1202                 /* clear if overflowed */
1203                 if (val == ~0)
1204                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1205                 break;
1206         default:
1207                 val = bcmgenet_umac_readl(priv, offset);
1208                 /* clear if overflowed */
1209                 if (val == ~0)
1210                         bcmgenet_umac_writel(priv, 0, offset);
1211                 break;
1212         }
1213
1214         return val;
1215 }
1216
1217 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1218 {
1219         int i, j = 0;
1220
1221         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1222                 const struct bcmgenet_stats *s;
1223                 u8 offset = 0;
1224                 u32 val = 0;
1225                 char *p;
1226
1227                 s = &bcmgenet_gstrings_stats[i];
1228                 switch (s->type) {
1229                 case BCMGENET_STAT_NETDEV:
1230                 case BCMGENET_STAT_SOFT:
1231                         continue;
1232                 case BCMGENET_STAT_RUNT:
1233                         offset += BCMGENET_STAT_OFFSET;
1234                         fallthrough;
1235                 case BCMGENET_STAT_MIB_TX:
1236                         offset += BCMGENET_STAT_OFFSET;
1237                         fallthrough;
1238                 case BCMGENET_STAT_MIB_RX:
1239                         val = bcmgenet_umac_readl(priv,
1240                                                   UMAC_MIB_START + j + offset);
1241                         offset = 0;     /* Reset Offset */
1242                         break;
1243                 case BCMGENET_STAT_MISC:
1244                         if (GENET_IS_V1(priv)) {
1245                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1246                                 /* clear if overflowed */
1247                                 if (val == ~0)
1248                                         bcmgenet_umac_writel(priv, 0,
1249                                                              s->reg_offset);
1250                         } else {
1251                                 val = bcmgenet_update_stat_misc(priv,
1252                                                                 s->reg_offset);
1253                         }
1254                         break;
1255                 }
1256
1257                 j += s->stat_sizeof;
1258                 p = (char *)priv + s->stat_offset;
1259                 *(u32 *)p = val;
1260         }
1261 }
1262
1263 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1264                                        struct ethtool_stats *stats,
1265                                        u64 *data)
1266 {
1267         struct bcmgenet_priv *priv = netdev_priv(dev);
1268         int i;
1269
1270         if (netif_running(dev))
1271                 bcmgenet_update_mib_counters(priv);
1272
1273         dev->netdev_ops->ndo_get_stats(dev);
1274
1275         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1276                 const struct bcmgenet_stats *s;
1277                 char *p;
1278
1279                 s = &bcmgenet_gstrings_stats[i];
1280                 if (s->type == BCMGENET_STAT_NETDEV)
1281                         p = (char *)&dev->stats;
1282                 else
1283                         p = (char *)priv;
1284                 p += s->stat_offset;
1285                 if (sizeof(unsigned long) != sizeof(u32) &&
1286                     s->stat_sizeof == sizeof(unsigned long))
1287                         data[i] = *(unsigned long *)p;
1288                 else
1289                         data[i] = *(u32 *)p;
1290         }
1291 }
1292
1293 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1294 {
1295         struct bcmgenet_priv *priv = netdev_priv(dev);
1296         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1297         u32 reg;
1298
1299         if (enable && !priv->clk_eee_enabled) {
1300                 clk_prepare_enable(priv->clk_eee);
1301                 priv->clk_eee_enabled = true;
1302         }
1303
1304         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1305         if (enable)
1306                 reg |= EEE_EN;
1307         else
1308                 reg &= ~EEE_EN;
1309         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1310
1311         /* Enable EEE and switch to a 27Mhz clock automatically */
1312         reg = bcmgenet_readl(priv->base + off);
1313         if (enable)
1314                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1315         else
1316                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1317         bcmgenet_writel(reg, priv->base + off);
1318
1319         /* Do the same for thing for RBUF */
1320         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1321         if (enable)
1322                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1323         else
1324                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1325         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1326
1327         if (!enable && priv->clk_eee_enabled) {
1328                 clk_disable_unprepare(priv->clk_eee);
1329                 priv->clk_eee_enabled = false;
1330         }
1331
1332         priv->eee.eee_enabled = enable;
1333         priv->eee.eee_active = enable;
1334 }
1335
1336 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1337 {
1338         struct bcmgenet_priv *priv = netdev_priv(dev);
1339         struct ethtool_eee *p = &priv->eee;
1340
1341         if (GENET_IS_V1(priv))
1342                 return -EOPNOTSUPP;
1343
1344         if (!dev->phydev)
1345                 return -ENODEV;
1346
1347         e->eee_enabled = p->eee_enabled;
1348         e->eee_active = p->eee_active;
1349         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1350
1351         return phy_ethtool_get_eee(dev->phydev, e);
1352 }
1353
1354 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1355 {
1356         struct bcmgenet_priv *priv = netdev_priv(dev);
1357         struct ethtool_eee *p = &priv->eee;
1358         int ret = 0;
1359
1360         if (GENET_IS_V1(priv))
1361                 return -EOPNOTSUPP;
1362
1363         if (!dev->phydev)
1364                 return -ENODEV;
1365
1366         p->eee_enabled = e->eee_enabled;
1367
1368         if (!p->eee_enabled) {
1369                 bcmgenet_eee_enable_set(dev, false);
1370         } else {
1371                 ret = phy_init_eee(dev->phydev, 0);
1372                 if (ret) {
1373                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1374                         return ret;
1375                 }
1376
1377                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1378                 bcmgenet_eee_enable_set(dev, true);
1379         }
1380
1381         return phy_ethtool_set_eee(dev->phydev, e);
1382 }
1383
1384 static int bcmgenet_validate_flow(struct net_device *dev,
1385                                   struct ethtool_rxnfc *cmd)
1386 {
1387         struct ethtool_usrip4_spec *l4_mask;
1388         struct ethhdr *eth_mask;
1389
1390         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1391                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1392                            cmd->fs.location);
1393                 return -EINVAL;
1394         }
1395
1396         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1397         case IP_USER_FLOW:
1398                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1399                 /* don't allow mask which isn't valid */
1400                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1401                     VALIDATE_MASK(l4_mask->ip4dst) ||
1402                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1403                     VALIDATE_MASK(l4_mask->proto) ||
1404                     VALIDATE_MASK(l4_mask->ip_ver) ||
1405                     VALIDATE_MASK(l4_mask->tos)) {
1406                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1407                         return -EINVAL;
1408                 }
1409                 break;
1410         case ETHER_FLOW:
1411                 eth_mask = &cmd->fs.m_u.ether_spec;
1412                 /* don't allow mask which isn't valid */
1413                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1414                     VALIDATE_MASK(eth_mask->h_source) ||
1415                     VALIDATE_MASK(eth_mask->h_proto)) {
1416                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1417                         return -EINVAL;
1418                 }
1419                 break;
1420         default:
1421                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1422                            cmd->fs.flow_type);
1423                 return -EINVAL;
1424         }
1425
1426         if ((cmd->fs.flow_type & FLOW_EXT)) {
1427                 /* don't allow mask which isn't valid */
1428                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1429                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1430                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1431                         return -EINVAL;
1432                 }
1433                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1434                         netdev_err(dev, "rxnfc: user-def not supported\n");
1435                         return -EINVAL;
1436                 }
1437         }
1438
1439         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1440                 /* don't allow mask which isn't valid */
1441                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1442                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1443                         return -EINVAL;
1444                 }
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int bcmgenet_insert_flow(struct net_device *dev,
1451                                 struct ethtool_rxnfc *cmd)
1452 {
1453         struct bcmgenet_priv *priv = netdev_priv(dev);
1454         struct bcmgenet_rxnfc_rule *loc_rule;
1455         int err;
1456
1457         if (priv->hw_params->hfb_filter_size < 128) {
1458                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1459                 return -EINVAL;
1460         }
1461
1462         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1463             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1464                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1465                            cmd->fs.ring_cookie);
1466                 return -EINVAL;
1467         }
1468
1469         err = bcmgenet_validate_flow(dev, cmd);
1470         if (err)
1471                 return err;
1472
1473         loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1474         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1476         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1477                 list_del(&loc_rule->list);
1478                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1479         }
1480         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1481         memcpy(&loc_rule->fs, &cmd->fs,
1482                sizeof(struct ethtool_rx_flow_spec));
1483
1484         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1485
1486         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1487
1488         return 0;
1489 }
1490
1491 static int bcmgenet_delete_flow(struct net_device *dev,
1492                                 struct ethtool_rxnfc *cmd)
1493 {
1494         struct bcmgenet_priv *priv = netdev_priv(dev);
1495         struct bcmgenet_rxnfc_rule *rule;
1496         int err = 0;
1497
1498         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1499                 return -EINVAL;
1500
1501         rule = &priv->rxnfc_rules[cmd->fs.location];
1502         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1503                 err =  -ENOENT;
1504                 goto out;
1505         }
1506
1507         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1508                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1509         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1510                 list_del(&rule->list);
1511                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1512         }
1513         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1514         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1515
1516 out:
1517         return err;
1518 }
1519
1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1521 {
1522         struct bcmgenet_priv *priv = netdev_priv(dev);
1523         int err = 0;
1524
1525         switch (cmd->cmd) {
1526         case ETHTOOL_SRXCLSRLINS:
1527                 err = bcmgenet_insert_flow(dev, cmd);
1528                 break;
1529         case ETHTOOL_SRXCLSRLDEL:
1530                 err = bcmgenet_delete_flow(dev, cmd);
1531                 break;
1532         default:
1533                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1534                             cmd->cmd);
1535                 return -EINVAL;
1536         }
1537
1538         return err;
1539 }
1540
1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1542                              int loc)
1543 {
1544         struct bcmgenet_priv *priv = netdev_priv(dev);
1545         struct bcmgenet_rxnfc_rule *rule;
1546         int err = 0;
1547
1548         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1549                 return -EINVAL;
1550
1551         rule = &priv->rxnfc_rules[loc];
1552         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1553                 err = -ENOENT;
1554         else
1555                 memcpy(&cmd->fs, &rule->fs,
1556                        sizeof(struct ethtool_rx_flow_spec));
1557
1558         return err;
1559 }
1560
1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1562 {
1563         struct list_head *pos;
1564         int res = 0;
1565
1566         list_for_each(pos, &priv->rxnfc_list)
1567                 res++;
1568
1569         return res;
1570 }
1571
1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1573                               u32 *rule_locs)
1574 {
1575         struct bcmgenet_priv *priv = netdev_priv(dev);
1576         struct bcmgenet_rxnfc_rule *rule;
1577         int err = 0;
1578         int i = 0;
1579
1580         switch (cmd->cmd) {
1581         case ETHTOOL_GRXRINGS:
1582                 cmd->data = priv->hw_params->rx_queues ?: 1;
1583                 break;
1584         case ETHTOOL_GRXCLSRLCNT:
1585                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1586                 cmd->data = MAX_NUM_OF_FS_RULES;
1587                 break;
1588         case ETHTOOL_GRXCLSRULE:
1589                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1590                 break;
1591         case ETHTOOL_GRXCLSRLALL:
1592                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1593                         if (i < cmd->rule_cnt)
1594                                 rule_locs[i++] = rule->fs.location;
1595                 cmd->rule_cnt = i;
1596                 cmd->data = MAX_NUM_OF_FS_RULES;
1597                 break;
1598         default:
1599                 err = -EOPNOTSUPP;
1600                 break;
1601         }
1602
1603         return err;
1604 }
1605
1606 /* standard ethtool support functions. */
1607 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1608         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1609                                      ETHTOOL_COALESCE_MAX_FRAMES |
1610                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1611         .begin                  = bcmgenet_begin,
1612         .complete               = bcmgenet_complete,
1613         .get_strings            = bcmgenet_get_strings,
1614         .get_sset_count         = bcmgenet_get_sset_count,
1615         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1616         .get_drvinfo            = bcmgenet_get_drvinfo,
1617         .get_link               = ethtool_op_get_link,
1618         .get_msglevel           = bcmgenet_get_msglevel,
1619         .set_msglevel           = bcmgenet_set_msglevel,
1620         .get_wol                = bcmgenet_get_wol,
1621         .set_wol                = bcmgenet_set_wol,
1622         .get_eee                = bcmgenet_get_eee,
1623         .set_eee                = bcmgenet_set_eee,
1624         .nway_reset             = phy_ethtool_nway_reset,
1625         .get_coalesce           = bcmgenet_get_coalesce,
1626         .set_coalesce           = bcmgenet_set_coalesce,
1627         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1628         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1629         .get_ts_info            = ethtool_op_get_ts_info,
1630         .get_rxnfc              = bcmgenet_get_rxnfc,
1631         .set_rxnfc              = bcmgenet_set_rxnfc,
1632         .get_pauseparam         = bcmgenet_get_pauseparam,
1633         .set_pauseparam         = bcmgenet_set_pauseparam,
1634 };
1635
1636 /* Power down the unimac, based on mode. */
1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1638                                 enum bcmgenet_power_mode mode)
1639 {
1640         int ret = 0;
1641         u32 reg;
1642
1643         switch (mode) {
1644         case GENET_POWER_CABLE_SENSE:
1645                 phy_detach(priv->dev->phydev);
1646                 break;
1647
1648         case GENET_POWER_WOL_MAGIC:
1649                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1650                 break;
1651
1652         case GENET_POWER_PASSIVE:
1653                 /* Power down LED */
1654                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1655                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1656                         if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1657                                 reg |= EXT_PWR_DOWN_PHY_EN |
1658                                        EXT_PWR_DOWN_PHY_RD |
1659                                        EXT_PWR_DOWN_PHY_SD |
1660                                        EXT_PWR_DOWN_PHY_RX |
1661                                        EXT_PWR_DOWN_PHY_TX |
1662                                        EXT_IDDQ_GLBL_PWR;
1663                         else
1664                                 reg |= EXT_PWR_DOWN_PHY;
1665
1666                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1667                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1668
1669                         bcmgenet_phy_power_set(priv->dev, false);
1670                 }
1671                 break;
1672         default:
1673                 break;
1674         }
1675
1676         return ret;
1677 }
1678
1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1680                               enum bcmgenet_power_mode mode)
1681 {
1682         u32 reg;
1683
1684         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1685                 return;
1686
1687         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1688
1689         switch (mode) {
1690         case GENET_POWER_PASSIVE:
1691                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1692                          EXT_ENERGY_DET_MASK);
1693                 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1694                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1695                                  EXT_PWR_DOWN_PHY_RD |
1696                                  EXT_PWR_DOWN_PHY_SD |
1697                                  EXT_PWR_DOWN_PHY_RX |
1698                                  EXT_PWR_DOWN_PHY_TX |
1699                                  EXT_IDDQ_GLBL_PWR);
1700                         reg |=   EXT_PHY_RESET;
1701                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1702                         mdelay(1);
1703
1704                         reg &=  ~EXT_PHY_RESET;
1705                 } else {
1706                         reg &= ~EXT_PWR_DOWN_PHY;
1707                         reg |= EXT_PWR_DN_EN_LD;
1708                 }
1709                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1710                 bcmgenet_phy_power_set(priv->dev, true);
1711                 break;
1712
1713         case GENET_POWER_CABLE_SENSE:
1714                 /* enable APD */
1715                 if (!GENET_IS_V5(priv)) {
1716                         reg |= EXT_PWR_DN_EN_LD;
1717                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1718                 }
1719                 break;
1720         case GENET_POWER_WOL_MAGIC:
1721                 bcmgenet_wol_power_up_cfg(priv, mode);
1722                 return;
1723         default:
1724                 break;
1725         }
1726 }
1727
1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1729                                          struct bcmgenet_tx_ring *ring)
1730 {
1731         struct enet_cb *tx_cb_ptr;
1732
1733         tx_cb_ptr = ring->cbs;
1734         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1735
1736         /* Advancing local write pointer */
1737         if (ring->write_ptr == ring->end_ptr)
1738                 ring->write_ptr = ring->cb_ptr;
1739         else
1740                 ring->write_ptr++;
1741
1742         return tx_cb_ptr;
1743 }
1744
1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1746                                          struct bcmgenet_tx_ring *ring)
1747 {
1748         struct enet_cb *tx_cb_ptr;
1749
1750         tx_cb_ptr = ring->cbs;
1751         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1752
1753         /* Rewinding local write pointer */
1754         if (ring->write_ptr == ring->cb_ptr)
1755                 ring->write_ptr = ring->end_ptr;
1756         else
1757                 ring->write_ptr--;
1758
1759         return tx_cb_ptr;
1760 }
1761
1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1763 {
1764         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1765                                  INTRL2_CPU_MASK_SET);
1766 }
1767
1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1769 {
1770         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1771                                  INTRL2_CPU_MASK_CLEAR);
1772 }
1773
1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1775 {
1776         bcmgenet_intrl2_1_writel(ring->priv,
1777                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1778                                  INTRL2_CPU_MASK_SET);
1779 }
1780
1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1782 {
1783         bcmgenet_intrl2_1_writel(ring->priv,
1784                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1785                                  INTRL2_CPU_MASK_CLEAR);
1786 }
1787
1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1789 {
1790         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1791                                  INTRL2_CPU_MASK_SET);
1792 }
1793
1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1795 {
1796         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1797                                  INTRL2_CPU_MASK_CLEAR);
1798 }
1799
1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1801 {
1802         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1803                                  INTRL2_CPU_MASK_CLEAR);
1804 }
1805
1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1807 {
1808         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1809                                  INTRL2_CPU_MASK_SET);
1810 }
1811
1812 /* Simple helper to free a transmit control block's resources
1813  * Returns an skb when the last transmit control block associated with the
1814  * skb is freed.  The skb should be freed by the caller if necessary.
1815  */
1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1817                                            struct enet_cb *cb)
1818 {
1819         struct sk_buff *skb;
1820
1821         skb = cb->skb;
1822
1823         if (skb) {
1824                 cb->skb = NULL;
1825                 if (cb == GENET_CB(skb)->first_cb)
1826                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1827                                          dma_unmap_len(cb, dma_len),
1828                                          DMA_TO_DEVICE);
1829                 else
1830                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1831                                        dma_unmap_len(cb, dma_len),
1832                                        DMA_TO_DEVICE);
1833                 dma_unmap_addr_set(cb, dma_addr, 0);
1834
1835                 if (cb == GENET_CB(skb)->last_cb)
1836                         return skb;
1837
1838         } else if (dma_unmap_addr(cb, dma_addr)) {
1839                 dma_unmap_page(dev,
1840                                dma_unmap_addr(cb, dma_addr),
1841                                dma_unmap_len(cb, dma_len),
1842                                DMA_TO_DEVICE);
1843                 dma_unmap_addr_set(cb, dma_addr, 0);
1844         }
1845
1846         return NULL;
1847 }
1848
1849 /* Simple helper to free a receive control block's resources */
1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1851                                            struct enet_cb *cb)
1852 {
1853         struct sk_buff *skb;
1854
1855         skb = cb->skb;
1856         cb->skb = NULL;
1857
1858         if (dma_unmap_addr(cb, dma_addr)) {
1859                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1860                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1861                 dma_unmap_addr_set(cb, dma_addr, 0);
1862         }
1863
1864         return skb;
1865 }
1866
1867 /* Unlocked version of the reclaim routine */
1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1869                                           struct bcmgenet_tx_ring *ring)
1870 {
1871         struct bcmgenet_priv *priv = netdev_priv(dev);
1872         unsigned int txbds_processed = 0;
1873         unsigned int bytes_compl = 0;
1874         unsigned int pkts_compl = 0;
1875         unsigned int txbds_ready;
1876         unsigned int c_index;
1877         struct sk_buff *skb;
1878
1879         /* Clear status before servicing to reduce spurious interrupts */
1880         if (ring->index == DESC_INDEX)
1881                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1882                                          INTRL2_CPU_CLEAR);
1883         else
1884                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1885                                          INTRL2_CPU_CLEAR);
1886
1887         /* Compute how many buffers are transmitted since last xmit call */
1888         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1889                 & DMA_C_INDEX_MASK;
1890         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1891
1892         netif_dbg(priv, tx_done, dev,
1893                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1894                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1895
1896         /* Reclaim transmitted buffers */
1897         while (txbds_processed < txbds_ready) {
1898                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1899                                           &priv->tx_cbs[ring->clean_ptr]);
1900                 if (skb) {
1901                         pkts_compl++;
1902                         bytes_compl += GENET_CB(skb)->bytes_sent;
1903                         dev_consume_skb_any(skb);
1904                 }
1905
1906                 txbds_processed++;
1907                 if (likely(ring->clean_ptr < ring->end_ptr))
1908                         ring->clean_ptr++;
1909                 else
1910                         ring->clean_ptr = ring->cb_ptr;
1911         }
1912
1913         ring->free_bds += txbds_processed;
1914         ring->c_index = c_index;
1915
1916         ring->packets += pkts_compl;
1917         ring->bytes += bytes_compl;
1918
1919         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1920                                   pkts_compl, bytes_compl);
1921
1922         return txbds_processed;
1923 }
1924
1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1926                                 struct bcmgenet_tx_ring *ring)
1927 {
1928         unsigned int released;
1929
1930         spin_lock_bh(&ring->lock);
1931         released = __bcmgenet_tx_reclaim(dev, ring);
1932         spin_unlock_bh(&ring->lock);
1933
1934         return released;
1935 }
1936
1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1938 {
1939         struct bcmgenet_tx_ring *ring =
1940                 container_of(napi, struct bcmgenet_tx_ring, napi);
1941         unsigned int work_done = 0;
1942         struct netdev_queue *txq;
1943
1944         spin_lock(&ring->lock);
1945         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1946         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1947                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1948                 netif_tx_wake_queue(txq);
1949         }
1950         spin_unlock(&ring->lock);
1951
1952         if (work_done == 0) {
1953                 napi_complete(napi);
1954                 ring->int_enable(ring);
1955
1956                 return 0;
1957         }
1958
1959         return budget;
1960 }
1961
1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1963 {
1964         struct bcmgenet_priv *priv = netdev_priv(dev);
1965         int i;
1966
1967         if (netif_is_multiqueue(dev)) {
1968                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1969                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1970         }
1971
1972         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1973 }
1974
1975 /* Reallocate the SKB to put enough headroom in front of it and insert
1976  * the transmit checksum offsets in the descriptors
1977  */
1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1979                                         struct sk_buff *skb)
1980 {
1981         struct bcmgenet_priv *priv = netdev_priv(dev);
1982         struct status_64 *status = NULL;
1983         struct sk_buff *new_skb;
1984         u16 offset;
1985         u8 ip_proto;
1986         __be16 ip_ver;
1987         u32 tx_csum_info;
1988
1989         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1990                 /* If 64 byte status block enabled, must make sure skb has
1991                  * enough headroom for us to insert 64B status block.
1992                  */
1993                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1994                 if (!new_skb) {
1995                         dev_kfree_skb_any(skb);
1996                         priv->mib.tx_realloc_tsb_failed++;
1997                         dev->stats.tx_dropped++;
1998                         return NULL;
1999                 }
2000                 dev_consume_skb_any(skb);
2001                 skb = new_skb;
2002                 priv->mib.tx_realloc_tsb++;
2003         }
2004
2005         skb_push(skb, sizeof(*status));
2006         status = (struct status_64 *)skb->data;
2007
2008         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2009                 ip_ver = skb->protocol;
2010                 switch (ip_ver) {
2011                 case htons(ETH_P_IP):
2012                         ip_proto = ip_hdr(skb)->protocol;
2013                         break;
2014                 case htons(ETH_P_IPV6):
2015                         ip_proto = ipv6_hdr(skb)->nexthdr;
2016                         break;
2017                 default:
2018                         /* don't use UDP flag */
2019                         ip_proto = 0;
2020                         break;
2021                 }
2022
2023                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2024                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2025                                 (offset + skb->csum_offset) |
2026                                 STATUS_TX_CSUM_LV;
2027
2028                 /* Set the special UDP flag for UDP */
2029                 if (ip_proto == IPPROTO_UDP)
2030                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2031
2032                 status->tx_csum_info = tx_csum_info;
2033         }
2034
2035         return skb;
2036 }
2037
2038 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2039 {
2040         struct bcmgenet_priv *priv = netdev_priv(dev);
2041         struct device *kdev = &priv->pdev->dev;
2042         struct bcmgenet_tx_ring *ring = NULL;
2043         struct enet_cb *tx_cb_ptr;
2044         struct netdev_queue *txq;
2045         int nr_frags, index;
2046         dma_addr_t mapping;
2047         unsigned int size;
2048         skb_frag_t *frag;
2049         u32 len_stat;
2050         int ret;
2051         int i;
2052
2053         index = skb_get_queue_mapping(skb);
2054         /* Mapping strategy:
2055          * queue_mapping = 0, unclassified, packet xmited through ring16
2056          * queue_mapping = 1, goes to ring 0. (highest priority queue
2057          * queue_mapping = 2, goes to ring 1.
2058          * queue_mapping = 3, goes to ring 2.
2059          * queue_mapping = 4, goes to ring 3.
2060          */
2061         if (index == 0)
2062                 index = DESC_INDEX;
2063         else
2064                 index -= 1;
2065
2066         ring = &priv->tx_rings[index];
2067         txq = netdev_get_tx_queue(dev, ring->queue);
2068
2069         nr_frags = skb_shinfo(skb)->nr_frags;
2070
2071         spin_lock(&ring->lock);
2072         if (ring->free_bds <= (nr_frags + 1)) {
2073                 if (!netif_tx_queue_stopped(txq)) {
2074                         netif_tx_stop_queue(txq);
2075                         netdev_err(dev,
2076                                    "%s: tx ring %d full when queue %d awake\n",
2077                                    __func__, index, ring->queue);
2078                 }
2079                 ret = NETDEV_TX_BUSY;
2080                 goto out;
2081         }
2082
2083         /* Retain how many bytes will be sent on the wire, without TSB inserted
2084          * by transmit checksum offload
2085          */
2086         GENET_CB(skb)->bytes_sent = skb->len;
2087
2088         /* add the Transmit Status Block */
2089         skb = bcmgenet_add_tsb(dev, skb);
2090         if (!skb) {
2091                 ret = NETDEV_TX_OK;
2092                 goto out;
2093         }
2094
2095         for (i = 0; i <= nr_frags; i++) {
2096                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2097
2098                 BUG_ON(!tx_cb_ptr);
2099
2100                 if (!i) {
2101                         /* Transmit single SKB or head of fragment list */
2102                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2103                         size = skb_headlen(skb);
2104                         mapping = dma_map_single(kdev, skb->data, size,
2105                                                  DMA_TO_DEVICE);
2106                 } else {
2107                         /* xmit fragment */
2108                         frag = &skb_shinfo(skb)->frags[i - 1];
2109                         size = skb_frag_size(frag);
2110                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2111                                                    DMA_TO_DEVICE);
2112                 }
2113
2114                 ret = dma_mapping_error(kdev, mapping);
2115                 if (ret) {
2116                         priv->mib.tx_dma_failed++;
2117                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2118                         ret = NETDEV_TX_OK;
2119                         goto out_unmap_frags;
2120                 }
2121                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2122                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2123
2124                 tx_cb_ptr->skb = skb;
2125
2126                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2127                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2128
2129                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2130                  * will need to restore software padding of "runt" packets
2131                  */
2132                 if (!i) {
2133                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2134                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2135                                 len_stat |= DMA_TX_DO_CSUM;
2136                 }
2137                 if (i == nr_frags)
2138                         len_stat |= DMA_EOP;
2139
2140                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2141         }
2142
2143         GENET_CB(skb)->last_cb = tx_cb_ptr;
2144         skb_tx_timestamp(skb);
2145
2146         /* Decrement total BD count and advance our write pointer */
2147         ring->free_bds -= nr_frags + 1;
2148         ring->prod_index += nr_frags + 1;
2149         ring->prod_index &= DMA_P_INDEX_MASK;
2150
2151         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2152
2153         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2154                 netif_tx_stop_queue(txq);
2155
2156         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2157                 /* Packets are ready, update producer index */
2158                 bcmgenet_tdma_ring_writel(priv, ring->index,
2159                                           ring->prod_index, TDMA_PROD_INDEX);
2160 out:
2161         spin_unlock(&ring->lock);
2162
2163         return ret;
2164
2165 out_unmap_frags:
2166         /* Back up for failed control block mapping */
2167         bcmgenet_put_txcb(priv, ring);
2168
2169         /* Unmap successfully mapped control blocks */
2170         while (i-- > 0) {
2171                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2172                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2173         }
2174
2175         dev_kfree_skb(skb);
2176         goto out;
2177 }
2178
2179 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2180                                           struct enet_cb *cb)
2181 {
2182         struct device *kdev = &priv->pdev->dev;
2183         struct sk_buff *skb;
2184         struct sk_buff *rx_skb;
2185         dma_addr_t mapping;
2186
2187         /* Allocate a new Rx skb */
2188         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2189                                  GFP_ATOMIC | __GFP_NOWARN);
2190         if (!skb) {
2191                 priv->mib.alloc_rx_buff_failed++;
2192                 netif_err(priv, rx_err, priv->dev,
2193                           "%s: Rx skb allocation failed\n", __func__);
2194                 return NULL;
2195         }
2196
2197         /* DMA-map the new Rx skb */
2198         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2199                                  DMA_FROM_DEVICE);
2200         if (dma_mapping_error(kdev, mapping)) {
2201                 priv->mib.rx_dma_failed++;
2202                 dev_kfree_skb_any(skb);
2203                 netif_err(priv, rx_err, priv->dev,
2204                           "%s: Rx skb DMA mapping failed\n", __func__);
2205                 return NULL;
2206         }
2207
2208         /* Grab the current Rx skb from the ring and DMA-unmap it */
2209         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2210
2211         /* Put the new Rx skb on the ring */
2212         cb->skb = skb;
2213         dma_unmap_addr_set(cb, dma_addr, mapping);
2214         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2215         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2216
2217         /* Return the current Rx skb to caller */
2218         return rx_skb;
2219 }
2220
2221 /* bcmgenet_desc_rx - descriptor based rx process.
2222  * this could be called from bottom half, or from NAPI polling method.
2223  */
2224 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2225                                      unsigned int budget)
2226 {
2227         struct bcmgenet_priv *priv = ring->priv;
2228         struct net_device *dev = priv->dev;
2229         struct enet_cb *cb;
2230         struct sk_buff *skb;
2231         u32 dma_length_status;
2232         unsigned long dma_flag;
2233         int len;
2234         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2235         unsigned int bytes_processed = 0;
2236         unsigned int p_index, mask;
2237         unsigned int discards;
2238
2239         /* Clear status before servicing to reduce spurious interrupts */
2240         if (ring->index == DESC_INDEX) {
2241                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2242                                          INTRL2_CPU_CLEAR);
2243         } else {
2244                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2245                 bcmgenet_intrl2_1_writel(priv,
2246                                          mask,
2247                                          INTRL2_CPU_CLEAR);
2248         }
2249
2250         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2251
2252         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2253                    DMA_P_INDEX_DISCARD_CNT_MASK;
2254         if (discards > ring->old_discards) {
2255                 discards = discards - ring->old_discards;
2256                 ring->errors += discards;
2257                 ring->old_discards += discards;
2258
2259                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2260                 if (ring->old_discards >= 0xC000) {
2261                         ring->old_discards = 0;
2262                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2263                                                   RDMA_PROD_INDEX);
2264                 }
2265         }
2266
2267         p_index &= DMA_P_INDEX_MASK;
2268         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2269
2270         netif_dbg(priv, rx_status, dev,
2271                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2272
2273         while ((rxpktprocessed < rxpkttoprocess) &&
2274                (rxpktprocessed < budget)) {
2275                 struct status_64 *status;
2276                 __be16 rx_csum;
2277
2278                 cb = &priv->rx_cbs[ring->read_ptr];
2279                 skb = bcmgenet_rx_refill(priv, cb);
2280
2281                 if (unlikely(!skb)) {
2282                         ring->dropped++;
2283                         goto next;
2284                 }
2285
2286                 status = (struct status_64 *)skb->data;
2287                 dma_length_status = status->length_status;
2288                 if (dev->features & NETIF_F_RXCSUM) {
2289                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2290                         if (rx_csum) {
2291                                 skb->csum = (__force __wsum)ntohs(rx_csum);
2292                                 skb->ip_summed = CHECKSUM_COMPLETE;
2293                         }
2294                 }
2295
2296                 /* DMA flags and length are still valid no matter how
2297                  * we got the Receive Status Vector (64B RSB or register)
2298                  */
2299                 dma_flag = dma_length_status & 0xffff;
2300                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2301
2302                 netif_dbg(priv, rx_status, dev,
2303                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2304                           __func__, p_index, ring->c_index,
2305                           ring->read_ptr, dma_length_status);
2306
2307                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2308                         netif_err(priv, rx_status, dev,
2309                                   "dropping fragmented packet!\n");
2310                         ring->errors++;
2311                         dev_kfree_skb_any(skb);
2312                         goto next;
2313                 }
2314
2315                 /* report errors */
2316                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2317                                                 DMA_RX_OV |
2318                                                 DMA_RX_NO |
2319                                                 DMA_RX_LG |
2320                                                 DMA_RX_RXER))) {
2321                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2322                                   (unsigned int)dma_flag);
2323                         if (dma_flag & DMA_RX_CRC_ERROR)
2324                                 dev->stats.rx_crc_errors++;
2325                         if (dma_flag & DMA_RX_OV)
2326                                 dev->stats.rx_over_errors++;
2327                         if (dma_flag & DMA_RX_NO)
2328                                 dev->stats.rx_frame_errors++;
2329                         if (dma_flag & DMA_RX_LG)
2330                                 dev->stats.rx_length_errors++;
2331                         dev->stats.rx_errors++;
2332                         dev_kfree_skb_any(skb);
2333                         goto next;
2334                 } /* error packet */
2335
2336                 skb_put(skb, len);
2337
2338                 /* remove RSB and hardware 2bytes added for IP alignment */
2339                 skb_pull(skb, 66);
2340                 len -= 66;
2341
2342                 if (priv->crc_fwd_en) {
2343                         skb_trim(skb, len - ETH_FCS_LEN);
2344                         len -= ETH_FCS_LEN;
2345                 }
2346
2347                 bytes_processed += len;
2348
2349                 /*Finish setting up the received SKB and send it to the kernel*/
2350                 skb->protocol = eth_type_trans(skb, priv->dev);
2351                 ring->packets++;
2352                 ring->bytes += len;
2353                 if (dma_flag & DMA_RX_MULT)
2354                         dev->stats.multicast++;
2355
2356                 /* Notify kernel */
2357                 napi_gro_receive(&ring->napi, skb);
2358                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2359
2360 next:
2361                 rxpktprocessed++;
2362                 if (likely(ring->read_ptr < ring->end_ptr))
2363                         ring->read_ptr++;
2364                 else
2365                         ring->read_ptr = ring->cb_ptr;
2366
2367                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2368                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2369         }
2370
2371         ring->dim.bytes = bytes_processed;
2372         ring->dim.packets = rxpktprocessed;
2373
2374         return rxpktprocessed;
2375 }
2376
2377 /* Rx NAPI polling method */
2378 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2379 {
2380         struct bcmgenet_rx_ring *ring = container_of(napi,
2381                         struct bcmgenet_rx_ring, napi);
2382         struct dim_sample dim_sample = {};
2383         unsigned int work_done;
2384
2385         work_done = bcmgenet_desc_rx(ring, budget);
2386
2387         if (work_done < budget) {
2388                 napi_complete_done(napi, work_done);
2389                 ring->int_enable(ring);
2390         }
2391
2392         if (ring->dim.use_dim) {
2393                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2394                                   ring->dim.bytes, &dim_sample);
2395                 net_dim(&ring->dim.dim, dim_sample);
2396         }
2397
2398         return work_done;
2399 }
2400
2401 static void bcmgenet_dim_work(struct work_struct *work)
2402 {
2403         struct dim *dim = container_of(work, struct dim, work);
2404         struct bcmgenet_net_dim *ndim =
2405                         container_of(dim, struct bcmgenet_net_dim, dim);
2406         struct bcmgenet_rx_ring *ring =
2407                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2408         struct dim_cq_moder cur_profile =
2409                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2410
2411         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2412         dim->state = DIM_START_MEASURE;
2413 }
2414
2415 /* Assign skb to RX DMA descriptor. */
2416 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2417                                      struct bcmgenet_rx_ring *ring)
2418 {
2419         struct enet_cb *cb;
2420         struct sk_buff *skb;
2421         int i;
2422
2423         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2424
2425         /* loop here for each buffer needing assign */
2426         for (i = 0; i < ring->size; i++) {
2427                 cb = ring->cbs + i;
2428                 skb = bcmgenet_rx_refill(priv, cb);
2429                 if (skb)
2430                         dev_consume_skb_any(skb);
2431                 if (!cb->skb)
2432                         return -ENOMEM;
2433         }
2434
2435         return 0;
2436 }
2437
2438 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2439 {
2440         struct sk_buff *skb;
2441         struct enet_cb *cb;
2442         int i;
2443
2444         for (i = 0; i < priv->num_rx_bds; i++) {
2445                 cb = &priv->rx_cbs[i];
2446
2447                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2448                 if (skb)
2449                         dev_consume_skb_any(skb);
2450         }
2451 }
2452
2453 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2454 {
2455         u32 reg;
2456
2457         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2458         if (reg & CMD_SW_RESET)
2459                 return;
2460         if (enable)
2461                 reg |= mask;
2462         else
2463                 reg &= ~mask;
2464         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2465
2466         /* UniMAC stops on a packet boundary, wait for a full-size packet
2467          * to be processed
2468          */
2469         if (enable == 0)
2470                 usleep_range(1000, 2000);
2471 }
2472
2473 static void reset_umac(struct bcmgenet_priv *priv)
2474 {
2475         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2476         bcmgenet_rbuf_ctrl_set(priv, 0);
2477         udelay(10);
2478
2479         /* issue soft reset and disable MAC while updating its registers */
2480         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2481         udelay(2);
2482 }
2483
2484 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2485 {
2486         /* Mask all interrupts.*/
2487         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2488         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2489         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2490         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2491 }
2492
2493 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2494 {
2495         u32 int0_enable = 0;
2496
2497         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2498          * and MoCA PHY
2499          */
2500         if (priv->internal_phy) {
2501                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2502                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2503                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2504         } else if (priv->ext_phy) {
2505                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2506         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2507                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2508                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2509         }
2510         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2511 }
2512
2513 static void init_umac(struct bcmgenet_priv *priv)
2514 {
2515         struct device *kdev = &priv->pdev->dev;
2516         u32 reg;
2517         u32 int0_enable = 0;
2518
2519         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2520
2521         reset_umac(priv);
2522
2523         /* clear tx/rx counter */
2524         bcmgenet_umac_writel(priv,
2525                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2526                              UMAC_MIB_CTRL);
2527         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2528
2529         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2530
2531         /* init tx registers, enable TSB */
2532         reg = bcmgenet_tbuf_ctrl_get(priv);
2533         reg |= TBUF_64B_EN;
2534         bcmgenet_tbuf_ctrl_set(priv, reg);
2535
2536         /* init rx registers, enable ip header optimization and RSB */
2537         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2538         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2539         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2540
2541         /* enable rx checksumming */
2542         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2543         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2544         /* If UniMAC forwards CRC, we need to skip over it to get
2545          * a valid CHK bit to be set in the per-packet status word
2546          */
2547         if (priv->crc_fwd_en)
2548                 reg |= RBUF_SKIP_FCS;
2549         else
2550                 reg &= ~RBUF_SKIP_FCS;
2551         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2552
2553         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2554                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2555
2556         bcmgenet_intr_disable(priv);
2557
2558         /* Configure backpressure vectors for MoCA */
2559         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2560                 reg = bcmgenet_bp_mc_get(priv);
2561                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2562
2563                 /* bp_mask: back pressure mask */
2564                 if (netif_is_multiqueue(priv->dev))
2565                         reg |= priv->hw_params->bp_in_mask;
2566                 else
2567                         reg &= ~priv->hw_params->bp_in_mask;
2568                 bcmgenet_bp_mc_set(priv, reg);
2569         }
2570
2571         /* Enable MDIO interrupts on GENET v3+ */
2572         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2573                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2574
2575         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2576
2577         dev_dbg(kdev, "done init umac\n");
2578 }
2579
2580 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2581                               void (*cb)(struct work_struct *work))
2582 {
2583         struct bcmgenet_net_dim *dim = &ring->dim;
2584
2585         INIT_WORK(&dim->dim.work, cb);
2586         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2587         dim->event_ctr = 0;
2588         dim->packets = 0;
2589         dim->bytes = 0;
2590 }
2591
2592 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2593 {
2594         struct bcmgenet_net_dim *dim = &ring->dim;
2595         struct dim_cq_moder moder;
2596         u32 usecs, pkts;
2597
2598         usecs = ring->rx_coalesce_usecs;
2599         pkts = ring->rx_max_coalesced_frames;
2600
2601         /* If DIM was enabled, re-apply default parameters */
2602         if (dim->use_dim) {
2603                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2604                 usecs = moder.usec;
2605                 pkts = moder.pkts;
2606         }
2607
2608         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2609 }
2610
2611 /* Initialize a Tx ring along with corresponding hardware registers */
2612 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2613                                   unsigned int index, unsigned int size,
2614                                   unsigned int start_ptr, unsigned int end_ptr)
2615 {
2616         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2617         u32 words_per_bd = WORDS_PER_BD(priv);
2618         u32 flow_period_val = 0;
2619
2620         spin_lock_init(&ring->lock);
2621         ring->priv = priv;
2622         ring->index = index;
2623         if (index == DESC_INDEX) {
2624                 ring->queue = 0;
2625                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2626                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2627         } else {
2628                 ring->queue = index + 1;
2629                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2630                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2631         }
2632         ring->cbs = priv->tx_cbs + start_ptr;
2633         ring->size = size;
2634         ring->clean_ptr = start_ptr;
2635         ring->c_index = 0;
2636         ring->free_bds = size;
2637         ring->write_ptr = start_ptr;
2638         ring->cb_ptr = start_ptr;
2639         ring->end_ptr = end_ptr - 1;
2640         ring->prod_index = 0;
2641
2642         /* Set flow period for ring != 16 */
2643         if (index != DESC_INDEX)
2644                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2645
2646         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2647         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2648         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2649         /* Disable rate control for now */
2650         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2651                                   TDMA_FLOW_PERIOD);
2652         bcmgenet_tdma_ring_writel(priv, index,
2653                                   ((size << DMA_RING_SIZE_SHIFT) |
2654                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2655
2656         /* Set start and end address, read and write pointers */
2657         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2658                                   DMA_START_ADDR);
2659         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2660                                   TDMA_READ_PTR);
2661         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2662                                   TDMA_WRITE_PTR);
2663         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2664                                   DMA_END_ADDR);
2665
2666         /* Initialize Tx NAPI */
2667         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2668                           NAPI_POLL_WEIGHT);
2669 }
2670
2671 /* Initialize a RDMA ring */
2672 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2673                                  unsigned int index, unsigned int size,
2674                                  unsigned int start_ptr, unsigned int end_ptr)
2675 {
2676         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2677         u32 words_per_bd = WORDS_PER_BD(priv);
2678         int ret;
2679
2680         ring->priv = priv;
2681         ring->index = index;
2682         if (index == DESC_INDEX) {
2683                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2684                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2685         } else {
2686                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2687                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2688         }
2689         ring->cbs = priv->rx_cbs + start_ptr;
2690         ring->size = size;
2691         ring->c_index = 0;
2692         ring->read_ptr = start_ptr;
2693         ring->cb_ptr = start_ptr;
2694         ring->end_ptr = end_ptr - 1;
2695
2696         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2697         if (ret)
2698                 return ret;
2699
2700         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2701         bcmgenet_init_rx_coalesce(ring);
2702
2703         /* Initialize Rx NAPI */
2704         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2705                        NAPI_POLL_WEIGHT);
2706
2707         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2708         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2709         bcmgenet_rdma_ring_writel(priv, index,
2710                                   ((size << DMA_RING_SIZE_SHIFT) |
2711                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2712         bcmgenet_rdma_ring_writel(priv, index,
2713                                   (DMA_FC_THRESH_LO <<
2714                                    DMA_XOFF_THRESHOLD_SHIFT) |
2715                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2716
2717         /* Set start and end address, read and write pointers */
2718         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2719                                   DMA_START_ADDR);
2720         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2721                                   RDMA_READ_PTR);
2722         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2723                                   RDMA_WRITE_PTR);
2724         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2725                                   DMA_END_ADDR);
2726
2727         return ret;
2728 }
2729
2730 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2731 {
2732         unsigned int i;
2733         struct bcmgenet_tx_ring *ring;
2734
2735         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2736                 ring = &priv->tx_rings[i];
2737                 napi_enable(&ring->napi);
2738                 ring->int_enable(ring);
2739         }
2740
2741         ring = &priv->tx_rings[DESC_INDEX];
2742         napi_enable(&ring->napi);
2743         ring->int_enable(ring);
2744 }
2745
2746 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2747 {
2748         unsigned int i;
2749         struct bcmgenet_tx_ring *ring;
2750
2751         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2752                 ring = &priv->tx_rings[i];
2753                 napi_disable(&ring->napi);
2754         }
2755
2756         ring = &priv->tx_rings[DESC_INDEX];
2757         napi_disable(&ring->napi);
2758 }
2759
2760 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2761 {
2762         unsigned int i;
2763         struct bcmgenet_tx_ring *ring;
2764
2765         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2766                 ring = &priv->tx_rings[i];
2767                 netif_napi_del(&ring->napi);
2768         }
2769
2770         ring = &priv->tx_rings[DESC_INDEX];
2771         netif_napi_del(&ring->napi);
2772 }
2773
2774 /* Initialize Tx queues
2775  *
2776  * Queues 0-3 are priority-based, each one has 32 descriptors,
2777  * with queue 0 being the highest priority queue.
2778  *
2779  * Queue 16 is the default Tx queue with
2780  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2781  *
2782  * The transmit control block pool is then partitioned as follows:
2783  * - Tx queue 0 uses tx_cbs[0..31]
2784  * - Tx queue 1 uses tx_cbs[32..63]
2785  * - Tx queue 2 uses tx_cbs[64..95]
2786  * - Tx queue 3 uses tx_cbs[96..127]
2787  * - Tx queue 16 uses tx_cbs[128..255]
2788  */
2789 static void bcmgenet_init_tx_queues(struct net_device *dev)
2790 {
2791         struct bcmgenet_priv *priv = netdev_priv(dev);
2792         u32 i, dma_enable;
2793         u32 dma_ctrl, ring_cfg;
2794         u32 dma_priority[3] = {0, 0, 0};
2795
2796         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2797         dma_enable = dma_ctrl & DMA_EN;
2798         dma_ctrl &= ~DMA_EN;
2799         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2800
2801         dma_ctrl = 0;
2802         ring_cfg = 0;
2803
2804         /* Enable strict priority arbiter mode */
2805         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2806
2807         /* Initialize Tx priority queues */
2808         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2809                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2810                                       i * priv->hw_params->tx_bds_per_q,
2811                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2812                 ring_cfg |= (1 << i);
2813                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2814                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2815                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2816         }
2817
2818         /* Initialize Tx default queue 16 */
2819         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2820                               priv->hw_params->tx_queues *
2821                               priv->hw_params->tx_bds_per_q,
2822                               TOTAL_DESC);
2823         ring_cfg |= (1 << DESC_INDEX);
2824         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2825         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2826                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2827                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2828
2829         /* Set Tx queue priorities */
2830         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2831         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2832         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2833
2834         /* Enable Tx queues */
2835         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2836
2837         /* Enable Tx DMA */
2838         if (dma_enable)
2839                 dma_ctrl |= DMA_EN;
2840         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2841 }
2842
2843 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2844 {
2845         unsigned int i;
2846         struct bcmgenet_rx_ring *ring;
2847
2848         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2849                 ring = &priv->rx_rings[i];
2850                 napi_enable(&ring->napi);
2851                 ring->int_enable(ring);
2852         }
2853
2854         ring = &priv->rx_rings[DESC_INDEX];
2855         napi_enable(&ring->napi);
2856         ring->int_enable(ring);
2857 }
2858
2859 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2860 {
2861         unsigned int i;
2862         struct bcmgenet_rx_ring *ring;
2863
2864         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2865                 ring = &priv->rx_rings[i];
2866                 napi_disable(&ring->napi);
2867                 cancel_work_sync(&ring->dim.dim.work);
2868         }
2869
2870         ring = &priv->rx_rings[DESC_INDEX];
2871         napi_disable(&ring->napi);
2872         cancel_work_sync(&ring->dim.dim.work);
2873 }
2874
2875 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2876 {
2877         unsigned int i;
2878         struct bcmgenet_rx_ring *ring;
2879
2880         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2881                 ring = &priv->rx_rings[i];
2882                 netif_napi_del(&ring->napi);
2883         }
2884
2885         ring = &priv->rx_rings[DESC_INDEX];
2886         netif_napi_del(&ring->napi);
2887 }
2888
2889 /* Initialize Rx queues
2890  *
2891  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2892  * used to direct traffic to these queues.
2893  *
2894  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2895  */
2896 static int bcmgenet_init_rx_queues(struct net_device *dev)
2897 {
2898         struct bcmgenet_priv *priv = netdev_priv(dev);
2899         u32 i;
2900         u32 dma_enable;
2901         u32 dma_ctrl;
2902         u32 ring_cfg;
2903         int ret;
2904
2905         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2906         dma_enable = dma_ctrl & DMA_EN;
2907         dma_ctrl &= ~DMA_EN;
2908         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2909
2910         dma_ctrl = 0;
2911         ring_cfg = 0;
2912
2913         /* Initialize Rx priority queues */
2914         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2915                 ret = bcmgenet_init_rx_ring(priv, i,
2916                                             priv->hw_params->rx_bds_per_q,
2917                                             i * priv->hw_params->rx_bds_per_q,
2918                                             (i + 1) *
2919                                             priv->hw_params->rx_bds_per_q);
2920                 if (ret)
2921                         return ret;
2922
2923                 ring_cfg |= (1 << i);
2924                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2925         }
2926
2927         /* Initialize Rx default queue 16 */
2928         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2929                                     priv->hw_params->rx_queues *
2930                                     priv->hw_params->rx_bds_per_q,
2931                                     TOTAL_DESC);
2932         if (ret)
2933                 return ret;
2934
2935         ring_cfg |= (1 << DESC_INDEX);
2936         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2937
2938         /* Enable rings */
2939         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2940
2941         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2942         if (dma_enable)
2943                 dma_ctrl |= DMA_EN;
2944         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2945
2946         return 0;
2947 }
2948
2949 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2950 {
2951         int ret = 0;
2952         int timeout = 0;
2953         u32 reg;
2954         u32 dma_ctrl;
2955         int i;
2956
2957         /* Disable TDMA to stop add more frames in TX DMA */
2958         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2959         reg &= ~DMA_EN;
2960         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2961
2962         /* Check TDMA status register to confirm TDMA is disabled */
2963         while (timeout++ < DMA_TIMEOUT_VAL) {
2964                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2965                 if (reg & DMA_DISABLED)
2966                         break;
2967
2968                 udelay(1);
2969         }
2970
2971         if (timeout == DMA_TIMEOUT_VAL) {
2972                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2973                 ret = -ETIMEDOUT;
2974         }
2975
2976         /* Wait 10ms for packet drain in both tx and rx dma */
2977         usleep_range(10000, 20000);
2978
2979         /* Disable RDMA */
2980         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2981         reg &= ~DMA_EN;
2982         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2983
2984         timeout = 0;
2985         /* Check RDMA status register to confirm RDMA is disabled */
2986         while (timeout++ < DMA_TIMEOUT_VAL) {
2987                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2988                 if (reg & DMA_DISABLED)
2989                         break;
2990
2991                 udelay(1);
2992         }
2993
2994         if (timeout == DMA_TIMEOUT_VAL) {
2995                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2996                 ret = -ETIMEDOUT;
2997         }
2998
2999         dma_ctrl = 0;
3000         for (i = 0; i < priv->hw_params->rx_queues; i++)
3001                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3002         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3003         reg &= ~dma_ctrl;
3004         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3005
3006         dma_ctrl = 0;
3007         for (i = 0; i < priv->hw_params->tx_queues; i++)
3008                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3009         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3010         reg &= ~dma_ctrl;
3011         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3012
3013         return ret;
3014 }
3015
3016 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3017 {
3018         struct netdev_queue *txq;
3019         int i;
3020
3021         bcmgenet_fini_rx_napi(priv);
3022         bcmgenet_fini_tx_napi(priv);
3023
3024         for (i = 0; i < priv->num_tx_bds; i++)
3025                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3026                                                   priv->tx_cbs + i));
3027
3028         for (i = 0; i < priv->hw_params->tx_queues; i++) {
3029                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3030                 netdev_tx_reset_queue(txq);
3031         }
3032
3033         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3034         netdev_tx_reset_queue(txq);
3035
3036         bcmgenet_free_rx_buffers(priv);
3037         kfree(priv->rx_cbs);
3038         kfree(priv->tx_cbs);
3039 }
3040
3041 /* init_edma: Initialize DMA control register */
3042 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3043 {
3044         int ret;
3045         unsigned int i;
3046         struct enet_cb *cb;
3047
3048         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3049
3050         /* Initialize common Rx ring structures */
3051         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3052         priv->num_rx_bds = TOTAL_DESC;
3053         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3054                                GFP_KERNEL);
3055         if (!priv->rx_cbs)
3056                 return -ENOMEM;
3057
3058         for (i = 0; i < priv->num_rx_bds; i++) {
3059                 cb = priv->rx_cbs + i;
3060                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3061         }
3062
3063         /* Initialize common TX ring structures */
3064         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3065         priv->num_tx_bds = TOTAL_DESC;
3066         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3067                                GFP_KERNEL);
3068         if (!priv->tx_cbs) {
3069                 kfree(priv->rx_cbs);
3070                 return -ENOMEM;
3071         }
3072
3073         for (i = 0; i < priv->num_tx_bds; i++) {
3074                 cb = priv->tx_cbs + i;
3075                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3076         }
3077
3078         /* Init rDma */
3079         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3080                              DMA_SCB_BURST_SIZE);
3081
3082         /* Initialize Rx queues */
3083         ret = bcmgenet_init_rx_queues(priv->dev);
3084         if (ret) {
3085                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3086                 bcmgenet_free_rx_buffers(priv);
3087                 kfree(priv->rx_cbs);
3088                 kfree(priv->tx_cbs);
3089                 return ret;
3090         }
3091
3092         /* Init tDma */
3093         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3094                              DMA_SCB_BURST_SIZE);
3095
3096         /* Initialize Tx queues */
3097         bcmgenet_init_tx_queues(priv->dev);
3098
3099         return 0;
3100 }
3101
3102 /* Interrupt bottom half */
3103 static void bcmgenet_irq_task(struct work_struct *work)
3104 {
3105         unsigned int status;
3106         struct bcmgenet_priv *priv = container_of(
3107                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3108
3109         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3110
3111         spin_lock_irq(&priv->lock);
3112         status = priv->irq0_stat;
3113         priv->irq0_stat = 0;
3114         spin_unlock_irq(&priv->lock);
3115
3116         if (status & UMAC_IRQ_PHY_DET_R &&
3117             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3118                 phy_init_hw(priv->dev->phydev);
3119                 genphy_config_aneg(priv->dev->phydev);
3120         }
3121
3122         /* Link UP/DOWN event */
3123         if (status & UMAC_IRQ_LINK_EVENT)
3124                 phy_mac_interrupt(priv->dev->phydev);
3125
3126 }
3127
3128 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3129 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3130 {
3131         struct bcmgenet_priv *priv = dev_id;
3132         struct bcmgenet_rx_ring *rx_ring;
3133         struct bcmgenet_tx_ring *tx_ring;
3134         unsigned int index, status;
3135
3136         /* Read irq status */
3137         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3138                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3139
3140         /* clear interrupts */
3141         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3142
3143         netif_dbg(priv, intr, priv->dev,
3144                   "%s: IRQ=0x%x\n", __func__, status);
3145
3146         /* Check Rx priority queue interrupts */
3147         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3148                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3149                         continue;
3150
3151                 rx_ring = &priv->rx_rings[index];
3152                 rx_ring->dim.event_ctr++;
3153
3154                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3155                         rx_ring->int_disable(rx_ring);
3156                         __napi_schedule_irqoff(&rx_ring->napi);
3157                 }
3158         }
3159
3160         /* Check Tx priority queue interrupts */
3161         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3162                 if (!(status & BIT(index)))
3163                         continue;
3164
3165                 tx_ring = &priv->tx_rings[index];
3166
3167                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3168                         tx_ring->int_disable(tx_ring);
3169                         __napi_schedule_irqoff(&tx_ring->napi);
3170                 }
3171         }
3172
3173         return IRQ_HANDLED;
3174 }
3175
3176 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3177 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3178 {
3179         struct bcmgenet_priv *priv = dev_id;
3180         struct bcmgenet_rx_ring *rx_ring;
3181         struct bcmgenet_tx_ring *tx_ring;
3182         unsigned int status;
3183         unsigned long flags;
3184
3185         /* Read irq status */
3186         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3187                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3188
3189         /* clear interrupts */
3190         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3191
3192         netif_dbg(priv, intr, priv->dev,
3193                   "IRQ=0x%x\n", status);
3194
3195         if (status & UMAC_IRQ_RXDMA_DONE) {
3196                 rx_ring = &priv->rx_rings[DESC_INDEX];
3197                 rx_ring->dim.event_ctr++;
3198
3199                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3200                         rx_ring->int_disable(rx_ring);
3201                         __napi_schedule_irqoff(&rx_ring->napi);
3202                 }
3203         }
3204
3205         if (status & UMAC_IRQ_TXDMA_DONE) {
3206                 tx_ring = &priv->tx_rings[DESC_INDEX];
3207
3208                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3209                         tx_ring->int_disable(tx_ring);
3210                         __napi_schedule_irqoff(&tx_ring->napi);
3211                 }
3212         }
3213
3214         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3215                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3216                 wake_up(&priv->wq);
3217         }
3218
3219         /* all other interested interrupts handled in bottom half */
3220         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3221         if (status) {
3222                 /* Save irq status for bottom-half processing. */
3223                 spin_lock_irqsave(&priv->lock, flags);
3224                 priv->irq0_stat |= status;
3225                 spin_unlock_irqrestore(&priv->lock, flags);
3226
3227                 schedule_work(&priv->bcmgenet_irq_work);
3228         }
3229
3230         return IRQ_HANDLED;
3231 }
3232
3233 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3234 {
3235         /* Acknowledge the interrupt */
3236         return IRQ_HANDLED;
3237 }
3238
3239 #ifdef CONFIG_NET_POLL_CONTROLLER
3240 static void bcmgenet_poll_controller(struct net_device *dev)
3241 {
3242         struct bcmgenet_priv *priv = netdev_priv(dev);
3243
3244         /* Invoke the main RX/TX interrupt handler */
3245         disable_irq(priv->irq0);
3246         bcmgenet_isr0(priv->irq0, priv);
3247         enable_irq(priv->irq0);
3248
3249         /* And the interrupt handler for RX/TX priority queues */
3250         disable_irq(priv->irq1);
3251         bcmgenet_isr1(priv->irq1, priv);
3252         enable_irq(priv->irq1);
3253 }
3254 #endif
3255
3256 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3257 {
3258         u32 reg;
3259
3260         reg = bcmgenet_rbuf_ctrl_get(priv);
3261         reg |= BIT(1);
3262         bcmgenet_rbuf_ctrl_set(priv, reg);
3263         udelay(10);
3264
3265         reg &= ~BIT(1);
3266         bcmgenet_rbuf_ctrl_set(priv, reg);
3267         udelay(10);
3268 }
3269
3270 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3271                                  const unsigned char *addr)
3272 {
3273         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3274         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3275 }
3276
3277 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3278                                  unsigned char *addr)
3279 {
3280         u32 addr_tmp;
3281
3282         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3283         put_unaligned_be32(addr_tmp, &addr[0]);
3284         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3285         put_unaligned_be16(addr_tmp, &addr[4]);
3286 }
3287
3288 /* Returns a reusable dma control register value */
3289 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3290 {
3291         unsigned int i;
3292         u32 reg;
3293         u32 dma_ctrl;
3294
3295         /* disable DMA */
3296         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3297         for (i = 0; i < priv->hw_params->tx_queues; i++)
3298                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3299         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3300         reg &= ~dma_ctrl;
3301         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3302
3303         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3304         for (i = 0; i < priv->hw_params->rx_queues; i++)
3305                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3306         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3307         reg &= ~dma_ctrl;
3308         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3309
3310         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3311         udelay(10);
3312         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3313
3314         return dma_ctrl;
3315 }
3316
3317 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3318 {
3319         u32 reg;
3320
3321         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3322         reg |= dma_ctrl;
3323         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3324
3325         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3326         reg |= dma_ctrl;
3327         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3328 }
3329
3330 static void bcmgenet_netif_start(struct net_device *dev)
3331 {
3332         struct bcmgenet_priv *priv = netdev_priv(dev);
3333
3334         /* Start the network engine */
3335         bcmgenet_set_rx_mode(dev);
3336         bcmgenet_enable_rx_napi(priv);
3337
3338         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3339
3340         bcmgenet_enable_tx_napi(priv);
3341
3342         /* Monitor link interrupts now */
3343         bcmgenet_link_intr_enable(priv);
3344
3345         phy_start(dev->phydev);
3346 }
3347
3348 static int bcmgenet_open(struct net_device *dev)
3349 {
3350         struct bcmgenet_priv *priv = netdev_priv(dev);
3351         unsigned long dma_ctrl;
3352         int ret;
3353
3354         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3355
3356         /* Turn on the clock */
3357         clk_prepare_enable(priv->clk);
3358
3359         /* If this is an internal GPHY, power it back on now, before UniMAC is
3360          * brought out of reset as absolutely no UniMAC activity is allowed
3361          */
3362         if (priv->internal_phy)
3363                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3364
3365         /* take MAC out of reset */
3366         bcmgenet_umac_reset(priv);
3367
3368         init_umac(priv);
3369
3370         /* Apply features again in case we changed them while interface was
3371          * down
3372          */
3373         bcmgenet_set_features(dev, dev->features);
3374
3375         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3376
3377         /* Disable RX/TX DMA and flush TX queues */
3378         dma_ctrl = bcmgenet_dma_disable(priv);
3379
3380         /* Reinitialize TDMA and RDMA and SW housekeeping */
3381         ret = bcmgenet_init_dma(priv);
3382         if (ret) {
3383                 netdev_err(dev, "failed to initialize DMA\n");
3384                 goto err_clk_disable;
3385         }
3386
3387         /* Always enable ring 16 - descriptor ring */
3388         bcmgenet_enable_dma(priv, dma_ctrl);
3389
3390         /* HFB init */
3391         bcmgenet_hfb_init(priv);
3392
3393         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3394                           dev->name, priv);
3395         if (ret < 0) {
3396                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3397                 goto err_fini_dma;
3398         }
3399
3400         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3401                           dev->name, priv);
3402         if (ret < 0) {
3403                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3404                 goto err_irq0;
3405         }
3406
3407         ret = bcmgenet_mii_probe(dev);
3408         if (ret) {
3409                 netdev_err(dev, "failed to connect to PHY\n");
3410                 goto err_irq1;
3411         }
3412
3413         bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3414
3415         bcmgenet_netif_start(dev);
3416
3417         netif_tx_start_all_queues(dev);
3418
3419         return 0;
3420
3421 err_irq1:
3422         free_irq(priv->irq1, priv);
3423 err_irq0:
3424         free_irq(priv->irq0, priv);
3425 err_fini_dma:
3426         bcmgenet_dma_teardown(priv);
3427         bcmgenet_fini_dma(priv);
3428 err_clk_disable:
3429         if (priv->internal_phy)
3430                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3431         clk_disable_unprepare(priv->clk);
3432         return ret;
3433 }
3434
3435 static void bcmgenet_netif_stop(struct net_device *dev)
3436 {
3437         struct bcmgenet_priv *priv = netdev_priv(dev);
3438
3439         bcmgenet_disable_tx_napi(priv);
3440         netif_tx_disable(dev);
3441
3442         /* Disable MAC receive */
3443         umac_enable_set(priv, CMD_RX_EN, false);
3444
3445         bcmgenet_dma_teardown(priv);
3446
3447         /* Disable MAC transmit. TX DMA disabled must be done before this */
3448         umac_enable_set(priv, CMD_TX_EN, false);
3449
3450         phy_stop(dev->phydev);
3451         bcmgenet_disable_rx_napi(priv);
3452         bcmgenet_intr_disable(priv);
3453
3454         /* Wait for pending work items to complete. Since interrupts are
3455          * disabled no new work will be scheduled.
3456          */
3457         cancel_work_sync(&priv->bcmgenet_irq_work);
3458
3459         /* tx reclaim */
3460         bcmgenet_tx_reclaim_all(dev);
3461         bcmgenet_fini_dma(priv);
3462 }
3463
3464 static int bcmgenet_close(struct net_device *dev)
3465 {
3466         struct bcmgenet_priv *priv = netdev_priv(dev);
3467         int ret = 0;
3468
3469         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3470
3471         bcmgenet_netif_stop(dev);
3472
3473         /* Really kill the PHY state machine and disconnect from it */
3474         phy_disconnect(dev->phydev);
3475
3476         free_irq(priv->irq0, priv);
3477         free_irq(priv->irq1, priv);
3478
3479         if (priv->internal_phy)
3480                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3481
3482         clk_disable_unprepare(priv->clk);
3483
3484         return ret;
3485 }
3486
3487 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3488 {
3489         struct bcmgenet_priv *priv = ring->priv;
3490         u32 p_index, c_index, intsts, intmsk;
3491         struct netdev_queue *txq;
3492         unsigned int free_bds;
3493         bool txq_stopped;
3494
3495         if (!netif_msg_tx_err(priv))
3496                 return;
3497
3498         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3499
3500         spin_lock(&ring->lock);
3501         if (ring->index == DESC_INDEX) {
3502                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3503                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3504         } else {
3505                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3506                 intmsk = 1 << ring->index;
3507         }
3508         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3509         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3510         txq_stopped = netif_tx_queue_stopped(txq);
3511         free_bds = ring->free_bds;
3512         spin_unlock(&ring->lock);
3513
3514         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3515                   "TX queue status: %s, interrupts: %s\n"
3516                   "(sw)free_bds: %d (sw)size: %d\n"
3517                   "(sw)p_index: %d (hw)p_index: %d\n"
3518                   "(sw)c_index: %d (hw)c_index: %d\n"
3519                   "(sw)clean_p: %d (sw)write_p: %d\n"
3520                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3521                   ring->index, ring->queue,
3522                   txq_stopped ? "stopped" : "active",
3523                   intsts & intmsk ? "enabled" : "disabled",
3524                   free_bds, ring->size,
3525                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3526                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3527                   ring->clean_ptr, ring->write_ptr,
3528                   ring->cb_ptr, ring->end_ptr);
3529 }
3530
3531 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3532 {
3533         struct bcmgenet_priv *priv = netdev_priv(dev);
3534         u32 int0_enable = 0;
3535         u32 int1_enable = 0;
3536         unsigned int q;
3537
3538         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3539
3540         for (q = 0; q < priv->hw_params->tx_queues; q++)
3541                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3542         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3543
3544         bcmgenet_tx_reclaim_all(dev);
3545
3546         for (q = 0; q < priv->hw_params->tx_queues; q++)
3547                 int1_enable |= (1 << q);
3548
3549         int0_enable = UMAC_IRQ_TXDMA_DONE;
3550
3551         /* Re-enable TX interrupts if disabled */
3552         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3553         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3554
3555         netif_trans_update(dev);
3556
3557         dev->stats.tx_errors++;
3558
3559         netif_tx_wake_all_queues(dev);
3560 }
3561
3562 #define MAX_MDF_FILTER  17
3563
3564 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3565                                          const unsigned char *addr,
3566                                          int *i)
3567 {
3568         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3569                              UMAC_MDF_ADDR + (*i * 4));
3570         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3571                              addr[4] << 8 | addr[5],
3572                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3573         *i += 2;
3574 }
3575
3576 static void bcmgenet_set_rx_mode(struct net_device *dev)
3577 {
3578         struct bcmgenet_priv *priv = netdev_priv(dev);
3579         struct netdev_hw_addr *ha;
3580         int i, nfilter;
3581         u32 reg;
3582
3583         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3584
3585         /* Number of filters needed */
3586         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3587
3588         /*
3589          * Turn on promicuous mode for three scenarios
3590          * 1. IFF_PROMISC flag is set
3591          * 2. IFF_ALLMULTI flag is set
3592          * 3. The number of filters needed exceeds the number filters
3593          *    supported by the hardware.
3594         */
3595         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3596         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3597             (nfilter > MAX_MDF_FILTER)) {
3598                 reg |= CMD_PROMISC;
3599                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3600                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3601                 return;
3602         } else {
3603                 reg &= ~CMD_PROMISC;
3604                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3605         }
3606
3607         /* update MDF filter */
3608         i = 0;
3609         /* Broadcast */
3610         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3611         /* my own address.*/
3612         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3613
3614         /* Unicast */
3615         netdev_for_each_uc_addr(ha, dev)
3616                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3617
3618         /* Multicast */
3619         netdev_for_each_mc_addr(ha, dev)
3620                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3621
3622         /* Enable filters */
3623         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3624         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3625 }
3626
3627 /* Set the hardware MAC address. */
3628 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3629 {
3630         struct sockaddr *addr = p;
3631
3632         /* Setting the MAC address at the hardware level is not possible
3633          * without disabling the UniMAC RX/TX enable bits.
3634          */
3635         if (netif_running(dev))
3636                 return -EBUSY;
3637
3638         eth_hw_addr_set(dev, addr->sa_data);
3639
3640         return 0;
3641 }
3642
3643 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3644 {
3645         struct bcmgenet_priv *priv = netdev_priv(dev);
3646         unsigned long tx_bytes = 0, tx_packets = 0;
3647         unsigned long rx_bytes = 0, rx_packets = 0;
3648         unsigned long rx_errors = 0, rx_dropped = 0;
3649         struct bcmgenet_tx_ring *tx_ring;
3650         struct bcmgenet_rx_ring *rx_ring;
3651         unsigned int q;
3652
3653         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3654                 tx_ring = &priv->tx_rings[q];
3655                 tx_bytes += tx_ring->bytes;
3656                 tx_packets += tx_ring->packets;
3657         }
3658         tx_ring = &priv->tx_rings[DESC_INDEX];
3659         tx_bytes += tx_ring->bytes;
3660         tx_packets += tx_ring->packets;
3661
3662         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3663                 rx_ring = &priv->rx_rings[q];
3664
3665                 rx_bytes += rx_ring->bytes;
3666                 rx_packets += rx_ring->packets;
3667                 rx_errors += rx_ring->errors;
3668                 rx_dropped += rx_ring->dropped;
3669         }
3670         rx_ring = &priv->rx_rings[DESC_INDEX];
3671         rx_bytes += rx_ring->bytes;
3672         rx_packets += rx_ring->packets;
3673         rx_errors += rx_ring->errors;
3674         rx_dropped += rx_ring->dropped;
3675
3676         dev->stats.tx_bytes = tx_bytes;
3677         dev->stats.tx_packets = tx_packets;
3678         dev->stats.rx_bytes = rx_bytes;
3679         dev->stats.rx_packets = rx_packets;
3680         dev->stats.rx_errors = rx_errors;
3681         dev->stats.rx_missed_errors = rx_errors;
3682         dev->stats.rx_dropped = rx_dropped;
3683         return &dev->stats;
3684 }
3685
3686 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3687 {
3688         struct bcmgenet_priv *priv = netdev_priv(dev);
3689
3690         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3691             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3692                 return -EOPNOTSUPP;
3693
3694         if (new_carrier)
3695                 netif_carrier_on(dev);
3696         else
3697                 netif_carrier_off(dev);
3698
3699         return 0;
3700 }
3701
3702 static const struct net_device_ops bcmgenet_netdev_ops = {
3703         .ndo_open               = bcmgenet_open,
3704         .ndo_stop               = bcmgenet_close,
3705         .ndo_start_xmit         = bcmgenet_xmit,
3706         .ndo_tx_timeout         = bcmgenet_timeout,
3707         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3708         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3709         .ndo_eth_ioctl          = phy_do_ioctl_running,
3710         .ndo_set_features       = bcmgenet_set_features,
3711 #ifdef CONFIG_NET_POLL_CONTROLLER
3712         .ndo_poll_controller    = bcmgenet_poll_controller,
3713 #endif
3714         .ndo_get_stats          = bcmgenet_get_stats,
3715         .ndo_change_carrier     = bcmgenet_change_carrier,
3716 };
3717
3718 /* Array of GENET hardware parameters/characteristics */
3719 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3720         [GENET_V1] = {
3721                 .tx_queues = 0,
3722                 .tx_bds_per_q = 0,
3723                 .rx_queues = 0,
3724                 .rx_bds_per_q = 0,
3725                 .bp_in_en_shift = 16,
3726                 .bp_in_mask = 0xffff,
3727                 .hfb_filter_cnt = 16,
3728                 .qtag_mask = 0x1F,
3729                 .hfb_offset = 0x1000,
3730                 .rdma_offset = 0x2000,
3731                 .tdma_offset = 0x3000,
3732                 .words_per_bd = 2,
3733         },
3734         [GENET_V2] = {
3735                 .tx_queues = 4,
3736                 .tx_bds_per_q = 32,
3737                 .rx_queues = 0,
3738                 .rx_bds_per_q = 0,
3739                 .bp_in_en_shift = 16,
3740                 .bp_in_mask = 0xffff,
3741                 .hfb_filter_cnt = 16,
3742                 .qtag_mask = 0x1F,
3743                 .tbuf_offset = 0x0600,
3744                 .hfb_offset = 0x1000,
3745                 .hfb_reg_offset = 0x2000,
3746                 .rdma_offset = 0x3000,
3747                 .tdma_offset = 0x4000,
3748                 .words_per_bd = 2,
3749                 .flags = GENET_HAS_EXT,
3750         },
3751         [GENET_V3] = {
3752                 .tx_queues = 4,
3753                 .tx_bds_per_q = 32,
3754                 .rx_queues = 0,
3755                 .rx_bds_per_q = 0,
3756                 .bp_in_en_shift = 17,
3757                 .bp_in_mask = 0x1ffff,
3758                 .hfb_filter_cnt = 48,
3759                 .hfb_filter_size = 128,
3760                 .qtag_mask = 0x3F,
3761                 .tbuf_offset = 0x0600,
3762                 .hfb_offset = 0x8000,
3763                 .hfb_reg_offset = 0xfc00,
3764                 .rdma_offset = 0x10000,
3765                 .tdma_offset = 0x11000,
3766                 .words_per_bd = 2,
3767                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3768                          GENET_HAS_MOCA_LINK_DET,
3769         },
3770         [GENET_V4] = {
3771                 .tx_queues = 4,
3772                 .tx_bds_per_q = 32,
3773                 .rx_queues = 0,
3774                 .rx_bds_per_q = 0,
3775                 .bp_in_en_shift = 17,
3776                 .bp_in_mask = 0x1ffff,
3777                 .hfb_filter_cnt = 48,
3778                 .hfb_filter_size = 128,
3779                 .qtag_mask = 0x3F,
3780                 .tbuf_offset = 0x0600,
3781                 .hfb_offset = 0x8000,
3782                 .hfb_reg_offset = 0xfc00,
3783                 .rdma_offset = 0x2000,
3784                 .tdma_offset = 0x4000,
3785                 .words_per_bd = 3,
3786                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3787                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3788         },
3789         [GENET_V5] = {
3790                 .tx_queues = 4,
3791                 .tx_bds_per_q = 32,
3792                 .rx_queues = 0,
3793                 .rx_bds_per_q = 0,
3794                 .bp_in_en_shift = 17,
3795                 .bp_in_mask = 0x1ffff,
3796                 .hfb_filter_cnt = 48,
3797                 .hfb_filter_size = 128,
3798                 .qtag_mask = 0x3F,
3799                 .tbuf_offset = 0x0600,
3800                 .hfb_offset = 0x8000,
3801                 .hfb_reg_offset = 0xfc00,
3802                 .rdma_offset = 0x2000,
3803                 .tdma_offset = 0x4000,
3804                 .words_per_bd = 3,
3805                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3806                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3807         },
3808 };
3809
3810 /* Infer hardware parameters from the detected GENET version */
3811 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3812 {
3813         struct bcmgenet_hw_params *params;
3814         u32 reg;
3815         u8 major;
3816         u16 gphy_rev;
3817
3818         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3819                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3820                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3821         } else if (GENET_IS_V3(priv)) {
3822                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3823                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3824         } else if (GENET_IS_V2(priv)) {
3825                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3826                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3827         } else if (GENET_IS_V1(priv)) {
3828                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3829                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3830         }
3831
3832         /* enum genet_version starts at 1 */
3833         priv->hw_params = &bcmgenet_hw_params[priv->version];
3834         params = priv->hw_params;
3835
3836         /* Read GENET HW version */
3837         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3838         major = (reg >> 24 & 0x0f);
3839         if (major == 6)
3840                 major = 5;
3841         else if (major == 5)
3842                 major = 4;
3843         else if (major == 0)
3844                 major = 1;
3845         if (major != priv->version) {
3846                 dev_err(&priv->pdev->dev,
3847                         "GENET version mismatch, got: %d, configured for: %d\n",
3848                         major, priv->version);
3849         }
3850
3851         /* Print the GENET core version */
3852         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3853                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3854
3855         /* Store the integrated PHY revision for the MDIO probing function
3856          * to pass this information to the PHY driver. The PHY driver expects
3857          * to find the PHY major revision in bits 15:8 while the GENET register
3858          * stores that information in bits 7:0, account for that.
3859          *
3860          * On newer chips, starting with PHY revision G0, a new scheme is
3861          * deployed similar to the Starfighter 2 switch with GPHY major
3862          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3863          * is reserved as well as special value 0x01ff, we have a small
3864          * heuristic to check for the new GPHY revision and re-arrange things
3865          * so the GPHY driver is happy.
3866          */
3867         gphy_rev = reg & 0xffff;
3868
3869         if (GENET_IS_V5(priv)) {
3870                 /* The EPHY revision should come from the MDIO registers of
3871                  * the PHY not from GENET.
3872                  */
3873                 if (gphy_rev != 0) {
3874                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3875                                 gphy_rev);
3876                 }
3877         /* This is reserved so should require special treatment */
3878         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3879                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3880                 return;
3881         /* This is the good old scheme, just GPHY major, no minor nor patch */
3882         } else if ((gphy_rev & 0xf0) != 0) {
3883                 priv->gphy_rev = gphy_rev << 8;
3884         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3885         } else if ((gphy_rev & 0xff00) != 0) {
3886                 priv->gphy_rev = gphy_rev;
3887         }
3888
3889 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3890         if (!(params->flags & GENET_HAS_40BITS))
3891                 pr_warn("GENET does not support 40-bits PA\n");
3892 #endif
3893
3894         pr_debug("Configuration for version: %d\n"
3895                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3896                 "BP << en: %2d, BP msk: 0x%05x\n"
3897                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3898                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3899                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3900                 "Words/BD: %d\n",
3901                 priv->version,
3902                 params->tx_queues, params->tx_bds_per_q,
3903                 params->rx_queues, params->rx_bds_per_q,
3904                 params->bp_in_en_shift, params->bp_in_mask,
3905                 params->hfb_filter_cnt, params->qtag_mask,
3906                 params->tbuf_offset, params->hfb_offset,
3907                 params->hfb_reg_offset,
3908                 params->rdma_offset, params->tdma_offset,
3909                 params->words_per_bd);
3910 }
3911
3912 struct bcmgenet_plat_data {
3913         enum bcmgenet_version version;
3914         u32 dma_max_burst_length;
3915         bool ephy_16nm;
3916 };
3917
3918 static const struct bcmgenet_plat_data v1_plat_data = {
3919         .version = GENET_V1,
3920         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3921 };
3922
3923 static const struct bcmgenet_plat_data v2_plat_data = {
3924         .version = GENET_V2,
3925         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3926 };
3927
3928 static const struct bcmgenet_plat_data v3_plat_data = {
3929         .version = GENET_V3,
3930         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3931 };
3932
3933 static const struct bcmgenet_plat_data v4_plat_data = {
3934         .version = GENET_V4,
3935         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3936 };
3937
3938 static const struct bcmgenet_plat_data v5_plat_data = {
3939         .version = GENET_V5,
3940         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3941 };
3942
3943 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3944         .version = GENET_V5,
3945         .dma_max_burst_length = 0x08,
3946 };
3947
3948 static const struct bcmgenet_plat_data bcm7712_plat_data = {
3949         .version = GENET_V5,
3950         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3951         .ephy_16nm = true,
3952 };
3953
3954 static const struct of_device_id bcmgenet_match[] = {
3955         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3956         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3957         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3958         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3959         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3960         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3961         { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3962         { },
3963 };
3964 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3965
3966 static int bcmgenet_probe(struct platform_device *pdev)
3967 {
3968         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3969         const struct bcmgenet_plat_data *pdata;
3970         struct bcmgenet_priv *priv;
3971         struct net_device *dev;
3972         unsigned int i;
3973         int err = -EIO;
3974
3975         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3976         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3977                                  GENET_MAX_MQ_CNT + 1);
3978         if (!dev) {
3979                 dev_err(&pdev->dev, "can't allocate net device\n");
3980                 return -ENOMEM;
3981         }
3982
3983         priv = netdev_priv(dev);
3984         priv->irq0 = platform_get_irq(pdev, 0);
3985         if (priv->irq0 < 0) {
3986                 err = priv->irq0;
3987                 goto err;
3988         }
3989         priv->irq1 = platform_get_irq(pdev, 1);
3990         if (priv->irq1 < 0) {
3991                 err = priv->irq1;
3992                 goto err;
3993         }
3994         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3995
3996         priv->base = devm_platform_ioremap_resource(pdev, 0);
3997         if (IS_ERR(priv->base)) {
3998                 err = PTR_ERR(priv->base);
3999                 goto err;
4000         }
4001
4002         spin_lock_init(&priv->lock);
4003
4004         /* Set default pause parameters */
4005         priv->autoneg_pause = 1;
4006         priv->tx_pause = 1;
4007         priv->rx_pause = 1;
4008
4009         SET_NETDEV_DEV(dev, &pdev->dev);
4010         dev_set_drvdata(&pdev->dev, dev);
4011         dev->watchdog_timeo = 2 * HZ;
4012         dev->ethtool_ops = &bcmgenet_ethtool_ops;
4013         dev->netdev_ops = &bcmgenet_netdev_ops;
4014
4015         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4016
4017         /* Set default features */
4018         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4019                          NETIF_F_RXCSUM;
4020         dev->hw_features |= dev->features;
4021         dev->vlan_features |= dev->features;
4022
4023         /* Request the WOL interrupt and advertise suspend if available */
4024         priv->wol_irq_disabled = true;
4025         if (priv->wol_irq > 0) {
4026                 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4027                                        bcmgenet_wol_isr, 0, dev->name, priv);
4028                 if (!err)
4029                         device_set_wakeup_capable(&pdev->dev, 1);
4030         }
4031
4032         /* Set the needed headroom to account for any possible
4033          * features enabling/disabling at runtime
4034          */
4035         dev->needed_headroom += 64;
4036
4037         priv->dev = dev;
4038         priv->pdev = pdev;
4039
4040         pdata = device_get_match_data(&pdev->dev);
4041         if (pdata) {
4042                 priv->version = pdata->version;
4043                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4044                 priv->ephy_16nm = pdata->ephy_16nm;
4045         } else {
4046                 priv->version = pd->genet_version;
4047                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4048         }
4049
4050         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4051         if (IS_ERR(priv->clk)) {
4052                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4053                 err = PTR_ERR(priv->clk);
4054                 goto err;
4055         }
4056
4057         err = clk_prepare_enable(priv->clk);
4058         if (err)
4059                 goto err;
4060
4061         bcmgenet_set_hw_params(priv);
4062
4063         err = -EIO;
4064         if (priv->hw_params->flags & GENET_HAS_40BITS)
4065                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4066         if (err)
4067                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4068         if (err)
4069                 goto err_clk_disable;
4070
4071         /* Mii wait queue */
4072         init_waitqueue_head(&priv->wq);
4073         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4074         priv->rx_buf_len = RX_BUF_LENGTH;
4075         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4076
4077         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4078         if (IS_ERR(priv->clk_wol)) {
4079                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4080                 err = PTR_ERR(priv->clk_wol);
4081                 goto err_clk_disable;
4082         }
4083
4084         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4085         if (IS_ERR(priv->clk_eee)) {
4086                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4087                 err = PTR_ERR(priv->clk_eee);
4088                 goto err_clk_disable;
4089         }
4090
4091         /* If this is an internal GPHY, power it on now, before UniMAC is
4092          * brought out of reset as absolutely no UniMAC activity is allowed
4093          */
4094         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4095                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4096
4097         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4098                 eth_hw_addr_set(dev, pd->mac_address);
4099         else
4100                 if (device_get_ethdev_address(&pdev->dev, dev))
4101                         if (has_acpi_companion(&pdev->dev)) {
4102                                 u8 addr[ETH_ALEN];
4103
4104                                 bcmgenet_get_hw_addr(priv, addr);
4105                                 eth_hw_addr_set(dev, addr);
4106                         }
4107
4108         if (!is_valid_ether_addr(dev->dev_addr)) {
4109                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4110                 eth_hw_addr_random(dev);
4111         }
4112
4113         reset_umac(priv);
4114
4115         err = bcmgenet_mii_init(dev);
4116         if (err)
4117                 goto err_clk_disable;
4118
4119         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4120          * just the ring 16 descriptor based TX
4121          */
4122         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4123         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4124
4125         /* Set default coalescing parameters */
4126         for (i = 0; i < priv->hw_params->rx_queues; i++)
4127                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4128         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4129
4130         /* libphy will determine the link state */
4131         netif_carrier_off(dev);
4132
4133         /* Turn off the main clock, WOL clock is handled separately */
4134         clk_disable_unprepare(priv->clk);
4135
4136         err = register_netdev(dev);
4137         if (err) {
4138                 bcmgenet_mii_exit(dev);
4139                 goto err;
4140         }
4141
4142         return err;
4143
4144 err_clk_disable:
4145         clk_disable_unprepare(priv->clk);
4146 err:
4147         free_netdev(dev);
4148         return err;
4149 }
4150
4151 static int bcmgenet_remove(struct platform_device *pdev)
4152 {
4153         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4154
4155         dev_set_drvdata(&pdev->dev, NULL);
4156         unregister_netdev(priv->dev);
4157         bcmgenet_mii_exit(priv->dev);
4158         free_netdev(priv->dev);
4159
4160         return 0;
4161 }
4162
4163 static void bcmgenet_shutdown(struct platform_device *pdev)
4164 {
4165         bcmgenet_remove(pdev);
4166 }
4167
4168 #ifdef CONFIG_PM_SLEEP
4169 static int bcmgenet_resume_noirq(struct device *d)
4170 {
4171         struct net_device *dev = dev_get_drvdata(d);
4172         struct bcmgenet_priv *priv = netdev_priv(dev);
4173         int ret;
4174         u32 reg;
4175
4176         if (!netif_running(dev))
4177                 return 0;
4178
4179         /* Turn on the clock */
4180         ret = clk_prepare_enable(priv->clk);
4181         if (ret)
4182                 return ret;
4183
4184         if (device_may_wakeup(d) && priv->wolopts) {
4185                 /* Account for Wake-on-LAN events and clear those events
4186                  * (Some devices need more time between enabling the clocks
4187                  *  and the interrupt register reflecting the wake event so
4188                  *  read the register twice)
4189                  */
4190                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4191                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4192                 if (reg & UMAC_IRQ_WAKE_EVENT)
4193                         pm_wakeup_event(&priv->pdev->dev, 0);
4194         }
4195
4196         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4197
4198         return 0;
4199 }
4200
4201 static int bcmgenet_resume(struct device *d)
4202 {
4203         struct net_device *dev = dev_get_drvdata(d);
4204         struct bcmgenet_priv *priv = netdev_priv(dev);
4205         struct bcmgenet_rxnfc_rule *rule;
4206         unsigned long dma_ctrl;
4207         int ret;
4208
4209         if (!netif_running(dev))
4210                 return 0;
4211
4212         /* From WOL-enabled suspend, switch to regular clock */
4213         if (device_may_wakeup(d) && priv->wolopts)
4214                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4215
4216         /* If this is an internal GPHY, power it back on now, before UniMAC is
4217          * brought out of reset as absolutely no UniMAC activity is allowed
4218          */
4219         if (priv->internal_phy)
4220                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4221
4222         bcmgenet_umac_reset(priv);
4223
4224         init_umac(priv);
4225
4226         phy_init_hw(dev->phydev);
4227
4228         /* Speed settings must be restored */
4229         genphy_config_aneg(dev->phydev);
4230         bcmgenet_mii_config(priv->dev, false);
4231
4232         /* Restore enabled features */
4233         bcmgenet_set_features(dev, dev->features);
4234
4235         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4236
4237         /* Restore hardware filters */
4238         bcmgenet_hfb_clear(priv);
4239         list_for_each_entry(rule, &priv->rxnfc_list, list)
4240                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4241                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4242
4243         /* Disable RX/TX DMA and flush TX queues */
4244         dma_ctrl = bcmgenet_dma_disable(priv);
4245
4246         /* Reinitialize TDMA and RDMA and SW housekeeping */
4247         ret = bcmgenet_init_dma(priv);
4248         if (ret) {
4249                 netdev_err(dev, "failed to initialize DMA\n");
4250                 goto out_clk_disable;
4251         }
4252
4253         /* Always enable ring 16 - descriptor ring */
4254         bcmgenet_enable_dma(priv, dma_ctrl);
4255
4256         if (!device_may_wakeup(d))
4257                 phy_resume(dev->phydev);
4258
4259         if (priv->eee.eee_enabled)
4260                 bcmgenet_eee_enable_set(dev, true);
4261
4262         bcmgenet_netif_start(dev);
4263
4264         netif_device_attach(dev);
4265
4266         return 0;
4267
4268 out_clk_disable:
4269         if (priv->internal_phy)
4270                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4271         clk_disable_unprepare(priv->clk);
4272         return ret;
4273 }
4274
4275 static int bcmgenet_suspend(struct device *d)
4276 {
4277         struct net_device *dev = dev_get_drvdata(d);
4278         struct bcmgenet_priv *priv = netdev_priv(dev);
4279
4280         if (!netif_running(dev))
4281                 return 0;
4282
4283         netif_device_detach(dev);
4284
4285         bcmgenet_netif_stop(dev);
4286
4287         if (!device_may_wakeup(d))
4288                 phy_suspend(dev->phydev);
4289
4290         /* Disable filtering */
4291         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4292
4293         return 0;
4294 }
4295
4296 static int bcmgenet_suspend_noirq(struct device *d)
4297 {
4298         struct net_device *dev = dev_get_drvdata(d);
4299         struct bcmgenet_priv *priv = netdev_priv(dev);
4300         int ret = 0;
4301
4302         if (!netif_running(dev))
4303                 return 0;
4304
4305         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4306         if (device_may_wakeup(d) && priv->wolopts)
4307                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4308         else if (priv->internal_phy)
4309                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4310
4311         /* Let the framework handle resumption and leave the clocks on */
4312         if (ret)
4313                 return ret;
4314
4315         /* Turn off the clocks */
4316         clk_disable_unprepare(priv->clk);
4317
4318         return 0;
4319 }
4320 #else
4321 #define bcmgenet_suspend        NULL
4322 #define bcmgenet_suspend_noirq  NULL
4323 #define bcmgenet_resume         NULL
4324 #define bcmgenet_resume_noirq   NULL
4325 #endif /* CONFIG_PM_SLEEP */
4326
4327 static const struct dev_pm_ops bcmgenet_pm_ops = {
4328         .suspend        = bcmgenet_suspend,
4329         .suspend_noirq  = bcmgenet_suspend_noirq,
4330         .resume         = bcmgenet_resume,
4331         .resume_noirq   = bcmgenet_resume_noirq,
4332 };
4333
4334 static const struct acpi_device_id genet_acpi_match[] = {
4335         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4336         { },
4337 };
4338 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4339
4340 static struct platform_driver bcmgenet_driver = {
4341         .probe  = bcmgenet_probe,
4342         .remove = bcmgenet_remove,
4343         .shutdown = bcmgenet_shutdown,
4344         .driver = {
4345                 .name   = "bcmgenet",
4346                 .of_match_table = bcmgenet_match,
4347                 .pm     = &bcmgenet_pm_ops,
4348                 .acpi_match_table = genet_acpi_match,
4349         },
4350 };
4351 module_platform_driver(bcmgenet_driver);
4352
4353 MODULE_AUTHOR("Broadcom Corporation");
4354 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4355 MODULE_ALIAS("platform:bcmgenet");
4356 MODULE_LICENSE("GPL");
4357 MODULE_SOFTDEP("pre: mdio-bcm-unimac");