Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/ptp_clock_kernel.h>
53 #include <linux/timecounter.h>
54 #include <linux/cpu_rmap.h>
55 #include <linux/cpumask.h>
56 #include <net/pkt_cls.h>
57 #include <linux/hwmon.h>
58 #include <linux/hwmon-sysfs.h>
59 #include <net/page_pool.h>
60
61 #include "bnxt_hsi.h"
62 #include "bnxt.h"
63 #include "bnxt_hwrm.h"
64 #include "bnxt_ulp.h"
65 #include "bnxt_sriov.h"
66 #include "bnxt_ethtool.h"
67 #include "bnxt_dcb.h"
68 #include "bnxt_xdp.h"
69 #include "bnxt_ptp.h"
70 #include "bnxt_vfr.h"
71 #include "bnxt_tc.h"
72 #include "bnxt_devlink.h"
73 #include "bnxt_debugfs.h"
74
75 #define BNXT_TX_TIMEOUT         (5 * HZ)
76 #define BNXT_DEF_MSG_ENABLE     (NETIF_MSG_DRV | NETIF_MSG_HW | \
77                                  NETIF_MSG_TX_ERR)
78
79 MODULE_LICENSE("GPL");
80 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
81
82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
84 #define BNXT_RX_COPY_THRESH 256
85
86 #define BNXT_TX_PUSH_THRESH 164
87
88 enum board_idx {
89         BCM57301,
90         BCM57302,
91         BCM57304,
92         BCM57417_NPAR,
93         BCM58700,
94         BCM57311,
95         BCM57312,
96         BCM57402,
97         BCM57404,
98         BCM57406,
99         BCM57402_NPAR,
100         BCM57407,
101         BCM57412,
102         BCM57414,
103         BCM57416,
104         BCM57417,
105         BCM57412_NPAR,
106         BCM57314,
107         BCM57417_SFP,
108         BCM57416_SFP,
109         BCM57404_NPAR,
110         BCM57406_NPAR,
111         BCM57407_SFP,
112         BCM57407_NPAR,
113         BCM57414_NPAR,
114         BCM57416_NPAR,
115         BCM57452,
116         BCM57454,
117         BCM5745x_NPAR,
118         BCM57508,
119         BCM57504,
120         BCM57502,
121         BCM57508_NPAR,
122         BCM57504_NPAR,
123         BCM57502_NPAR,
124         BCM58802,
125         BCM58804,
126         BCM58808,
127         NETXTREME_E_VF,
128         NETXTREME_C_VF,
129         NETXTREME_S_VF,
130         NETXTREME_C_VF_HV,
131         NETXTREME_E_VF_HV,
132         NETXTREME_E_P5_VF,
133         NETXTREME_E_P5_VF_HV,
134 };
135
136 /* indexed by enum above */
137 static const struct {
138         char *name;
139 } board_info[] = {
140         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
141         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
142         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
143         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
144         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
145         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
146         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
147         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
148         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
149         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
150         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
151         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
152         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
153         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
154         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
155         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
156         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
157         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
158         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
159         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
160         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
161         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
162         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
163         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
164         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
165         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
166         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
167         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
168         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
169         [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
170         [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
171         [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
172         [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
173         [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
174         [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
175         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
176         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
177         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
178         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
179         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
180         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
181         [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
182         [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
183         [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
184         [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
185 };
186
187 static const struct pci_device_id bnxt_pci_tbl[] = {
188         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
189         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
190         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
191         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
192         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
193         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
194         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
195         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
196         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
197         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
198         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
199         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
200         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
201         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
202         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
203         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
204         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
205         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
206         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
207         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
208         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
209         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
210         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
211         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
212         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
213         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
214         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
215         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
216         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
217         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
218         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
219         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
220         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
221         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
222         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
223         { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
224         { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
225         { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
226         { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
227         { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
228         { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
229         { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
230         { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
231         { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
232         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
233         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
234 #ifdef CONFIG_BNXT_SRIOV
235         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
236         { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
237         { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
238         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
239         { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
240         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
241         { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
242         { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
243         { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
244         { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
245         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
246         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
247         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
248         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
249         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
250         { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
251         { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
252         { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
253         { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
254         { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
255         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
256 #endif
257         { 0 }
258 };
259
260 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
261
262 static const u16 bnxt_vf_req_snif[] = {
263         HWRM_FUNC_CFG,
264         HWRM_FUNC_VF_CFG,
265         HWRM_PORT_PHY_QCFG,
266         HWRM_CFA_L2_FILTER_ALLOC,
267 };
268
269 static const u16 bnxt_async_events_arr[] = {
270         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
271         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
272         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
273         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
274         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
275         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
276         ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
277         ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
278         ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
279         ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
280         ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
281         ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
282         ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
283         ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
284         ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
285 };
286
287 static struct workqueue_struct *bnxt_pf_wq;
288
289 static bool bnxt_vf_pciid(enum board_idx idx)
290 {
291         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
292                 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
293                 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
294                 idx == NETXTREME_E_P5_VF_HV);
295 }
296
297 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
298 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
299 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
300
301 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
302                 writel(DB_CP_IRQ_DIS_FLAGS, db)
303
304 #define BNXT_DB_CQ(db, idx)                                             \
305         writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
306
307 #define BNXT_DB_NQ_P5(db, idx)                                          \
308         bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),   \
309                     (db)->doorbell)
310
311 #define BNXT_DB_CQ_ARM(db, idx)                                         \
312         writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
313
314 #define BNXT_DB_NQ_ARM_P5(db, idx)                                      \
315         bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
316                     (db)->doorbell)
317
318 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
319 {
320         if (bp->flags & BNXT_FLAG_CHIP_P5)
321                 BNXT_DB_NQ_P5(db, idx);
322         else
323                 BNXT_DB_CQ(db, idx);
324 }
325
326 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
327 {
328         if (bp->flags & BNXT_FLAG_CHIP_P5)
329                 BNXT_DB_NQ_ARM_P5(db, idx);
330         else
331                 BNXT_DB_CQ_ARM(db, idx);
332 }
333
334 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
335 {
336         if (bp->flags & BNXT_FLAG_CHIP_P5)
337                 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
338                             RING_CMP(idx), db->doorbell);
339         else
340                 BNXT_DB_CQ(db, idx);
341 }
342
343 const u16 bnxt_lhint_arr[] = {
344         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
345         TX_BD_FLAGS_LHINT_512_TO_1023,
346         TX_BD_FLAGS_LHINT_1024_TO_2047,
347         TX_BD_FLAGS_LHINT_1024_TO_2047,
348         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
349         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
350         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
351         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
352         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
353         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
354         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
355         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
356         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
357         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
358         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
359         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
360         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
361         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
362         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
363 };
364
365 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
366 {
367         struct metadata_dst *md_dst = skb_metadata_dst(skb);
368
369         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
370                 return 0;
371
372         return md_dst->u.port_info.port_id;
373 }
374
375 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
376                              u16 prod)
377 {
378         bnxt_db_write(bp, &txr->tx_db, prod);
379         txr->kick_pending = 0;
380 }
381
382 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
383                                           struct bnxt_tx_ring_info *txr,
384                                           struct netdev_queue *txq)
385 {
386         netif_tx_stop_queue(txq);
387
388         /* netif_tx_stop_queue() must be done before checking
389          * tx index in bnxt_tx_avail() below, because in
390          * bnxt_tx_int(), we update tx index before checking for
391          * netif_tx_queue_stopped().
392          */
393         smp_mb();
394         if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
395                 netif_tx_wake_queue(txq);
396                 return false;
397         }
398
399         return true;
400 }
401
402 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
403 {
404         struct bnxt *bp = netdev_priv(dev);
405         struct tx_bd *txbd;
406         struct tx_bd_ext *txbd1;
407         struct netdev_queue *txq;
408         int i;
409         dma_addr_t mapping;
410         unsigned int length, pad = 0;
411         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
412         u16 prod, last_frag;
413         struct pci_dev *pdev = bp->pdev;
414         struct bnxt_tx_ring_info *txr;
415         struct bnxt_sw_tx_bd *tx_buf;
416         __le32 lflags = 0;
417
418         i = skb_get_queue_mapping(skb);
419         if (unlikely(i >= bp->tx_nr_rings)) {
420                 dev_kfree_skb_any(skb);
421                 atomic_long_inc(&dev->tx_dropped);
422                 return NETDEV_TX_OK;
423         }
424
425         txq = netdev_get_tx_queue(dev, i);
426         txr = &bp->tx_ring[bp->tx_ring_map[i]];
427         prod = txr->tx_prod;
428
429         free_size = bnxt_tx_avail(bp, txr);
430         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
431                 /* We must have raced with NAPI cleanup */
432                 if (net_ratelimit() && txr->kick_pending)
433                         netif_warn(bp, tx_err, dev,
434                                    "bnxt: ring busy w/ flush pending!\n");
435                 if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
436                         return NETDEV_TX_BUSY;
437         }
438
439         length = skb->len;
440         len = skb_headlen(skb);
441         last_frag = skb_shinfo(skb)->nr_frags;
442
443         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
444
445         txbd->tx_bd_opaque = prod;
446
447         tx_buf = &txr->tx_buf_ring[prod];
448         tx_buf->skb = skb;
449         tx_buf->nr_frags = last_frag;
450
451         vlan_tag_flags = 0;
452         cfa_action = bnxt_xmit_get_cfa_action(skb);
453         if (skb_vlan_tag_present(skb)) {
454                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
455                                  skb_vlan_tag_get(skb);
456                 /* Currently supports 8021Q, 8021AD vlan offloads
457                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
458                  */
459                 if (skb->vlan_proto == htons(ETH_P_8021Q))
460                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
461         }
462
463         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
464                 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
465
466                 if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
467                     atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
468                         if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
469                                             &ptp->tx_hdr_off)) {
470                                 if (vlan_tag_flags)
471                                         ptp->tx_hdr_off += VLAN_HLEN;
472                                 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
473                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
474                         } else {
475                                 atomic_inc(&bp->ptp_cfg->tx_avail);
476                         }
477                 }
478         }
479
480         if (unlikely(skb->no_fcs))
481                 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
482
483         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
484             !lflags) {
485                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
486                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
487                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
488                 void __iomem *db = txr->tx_db.doorbell;
489                 void *pdata = tx_push_buf->data;
490                 u64 *end;
491                 int j, push_len;
492
493                 /* Set COAL_NOW to be ready quickly for the next push */
494                 tx_push->tx_bd_len_flags_type =
495                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
496                                         TX_BD_TYPE_LONG_TX_BD |
497                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
498                                         TX_BD_FLAGS_COAL_NOW |
499                                         TX_BD_FLAGS_PACKET_END |
500                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
501
502                 if (skb->ip_summed == CHECKSUM_PARTIAL)
503                         tx_push1->tx_bd_hsize_lflags =
504                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
505                 else
506                         tx_push1->tx_bd_hsize_lflags = 0;
507
508                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
509                 tx_push1->tx_bd_cfa_action =
510                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
511
512                 end = pdata + length;
513                 end = PTR_ALIGN(end, 8) - 1;
514                 *end = 0;
515
516                 skb_copy_from_linear_data(skb, pdata, len);
517                 pdata += len;
518                 for (j = 0; j < last_frag; j++) {
519                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
520                         void *fptr;
521
522                         fptr = skb_frag_address_safe(frag);
523                         if (!fptr)
524                                 goto normal_tx;
525
526                         memcpy(pdata, fptr, skb_frag_size(frag));
527                         pdata += skb_frag_size(frag);
528                 }
529
530                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
531                 txbd->tx_bd_haddr = txr->data_mapping;
532                 prod = NEXT_TX(prod);
533                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
534                 memcpy(txbd, tx_push1, sizeof(*txbd));
535                 prod = NEXT_TX(prod);
536                 tx_push->doorbell =
537                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
538                 txr->tx_prod = prod;
539
540                 tx_buf->is_push = 1;
541                 netdev_tx_sent_queue(txq, skb->len);
542                 wmb();  /* Sync is_push and byte queue before pushing data */
543
544                 push_len = (length + sizeof(*tx_push) + 7) / 8;
545                 if (push_len > 16) {
546                         __iowrite64_copy(db, tx_push_buf, 16);
547                         __iowrite32_copy(db + 4, tx_push_buf + 1,
548                                          (push_len - 16) << 1);
549                 } else {
550                         __iowrite64_copy(db, tx_push_buf, push_len);
551                 }
552
553                 goto tx_done;
554         }
555
556 normal_tx:
557         if (length < BNXT_MIN_PKT_SIZE) {
558                 pad = BNXT_MIN_PKT_SIZE - length;
559                 if (skb_pad(skb, pad))
560                         /* SKB already freed. */
561                         goto tx_kick_pending;
562                 length = BNXT_MIN_PKT_SIZE;
563         }
564
565         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
566
567         if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
568                 goto tx_free;
569
570         dma_unmap_addr_set(tx_buf, mapping, mapping);
571         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
572                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
573
574         txbd->tx_bd_haddr = cpu_to_le64(mapping);
575
576         prod = NEXT_TX(prod);
577         txbd1 = (struct tx_bd_ext *)
578                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
579
580         txbd1->tx_bd_hsize_lflags = lflags;
581         if (skb_is_gso(skb)) {
582                 u32 hdr_len;
583
584                 if (skb->encapsulation)
585                         hdr_len = skb_inner_network_offset(skb) +
586                                 skb_inner_network_header_len(skb) +
587                                 inner_tcp_hdrlen(skb);
588                 else
589                         hdr_len = skb_transport_offset(skb) +
590                                 tcp_hdrlen(skb);
591
592                 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
593                                         TX_BD_FLAGS_T_IPID |
594                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
595                 length = skb_shinfo(skb)->gso_size;
596                 txbd1->tx_bd_mss = cpu_to_le32(length);
597                 length += hdr_len;
598         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
599                 txbd1->tx_bd_hsize_lflags |=
600                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
601                 txbd1->tx_bd_mss = 0;
602         }
603
604         length >>= 9;
605         if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
606                 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
607                                      skb->len);
608                 i = 0;
609                 goto tx_dma_error;
610         }
611         flags |= bnxt_lhint_arr[length];
612         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
613
614         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
615         txbd1->tx_bd_cfa_action =
616                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
617         for (i = 0; i < last_frag; i++) {
618                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619
620                 prod = NEXT_TX(prod);
621                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
622
623                 len = skb_frag_size(frag);
624                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
625                                            DMA_TO_DEVICE);
626
627                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
628                         goto tx_dma_error;
629
630                 tx_buf = &txr->tx_buf_ring[prod];
631                 dma_unmap_addr_set(tx_buf, mapping, mapping);
632
633                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
634
635                 flags = len << TX_BD_LEN_SHIFT;
636                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
637         }
638
639         flags &= ~TX_BD_LEN;
640         txbd->tx_bd_len_flags_type =
641                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
642                             TX_BD_FLAGS_PACKET_END);
643
644         netdev_tx_sent_queue(txq, skb->len);
645
646         skb_tx_timestamp(skb);
647
648         /* Sync BD data before updating doorbell */
649         wmb();
650
651         prod = NEXT_TX(prod);
652         txr->tx_prod = prod;
653
654         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
655                 bnxt_txr_db_kick(bp, txr, prod);
656         else
657                 txr->kick_pending = 1;
658
659 tx_done:
660
661         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
662                 if (netdev_xmit_more() && !tx_buf->is_push)
663                         bnxt_txr_db_kick(bp, txr, prod);
664
665                 bnxt_txr_netif_try_stop_queue(bp, txr, txq);
666         }
667         return NETDEV_TX_OK;
668
669 tx_dma_error:
670         if (BNXT_TX_PTP_IS_SET(lflags))
671                 atomic_inc(&bp->ptp_cfg->tx_avail);
672
673         last_frag = i;
674
675         /* start back at beginning and unmap skb */
676         prod = txr->tx_prod;
677         tx_buf = &txr->tx_buf_ring[prod];
678         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
679                          skb_headlen(skb), DMA_TO_DEVICE);
680         prod = NEXT_TX(prod);
681
682         /* unmap remaining mapped pages */
683         for (i = 0; i < last_frag; i++) {
684                 prod = NEXT_TX(prod);
685                 tx_buf = &txr->tx_buf_ring[prod];
686                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
687                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
688                                DMA_TO_DEVICE);
689         }
690
691 tx_free:
692         dev_kfree_skb_any(skb);
693 tx_kick_pending:
694         if (txr->kick_pending)
695                 bnxt_txr_db_kick(bp, txr, txr->tx_prod);
696         txr->tx_buf_ring[txr->tx_prod].skb = NULL;
697         atomic_long_inc(&dev->tx_dropped);
698         return NETDEV_TX_OK;
699 }
700
701 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
702 {
703         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
704         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
705         u16 cons = txr->tx_cons;
706         struct pci_dev *pdev = bp->pdev;
707         int i;
708         unsigned int tx_bytes = 0;
709
710         for (i = 0; i < nr_pkts; i++) {
711                 struct bnxt_sw_tx_bd *tx_buf;
712                 bool compl_deferred = false;
713                 struct sk_buff *skb;
714                 int j, last;
715
716                 tx_buf = &txr->tx_buf_ring[cons];
717                 cons = NEXT_TX(cons);
718                 skb = tx_buf->skb;
719                 tx_buf->skb = NULL;
720
721                 if (tx_buf->is_push) {
722                         tx_buf->is_push = 0;
723                         goto next_tx_int;
724                 }
725
726                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
727                                  skb_headlen(skb), DMA_TO_DEVICE);
728                 last = tx_buf->nr_frags;
729
730                 for (j = 0; j < last; j++) {
731                         cons = NEXT_TX(cons);
732                         tx_buf = &txr->tx_buf_ring[cons];
733                         dma_unmap_page(
734                                 &pdev->dev,
735                                 dma_unmap_addr(tx_buf, mapping),
736                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
737                                 DMA_TO_DEVICE);
738                 }
739                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
740                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
741                                 if (!bnxt_get_tx_ts_p5(bp, skb))
742                                         compl_deferred = true;
743                                 else
744                                         atomic_inc(&bp->ptp_cfg->tx_avail);
745                         }
746                 }
747
748 next_tx_int:
749                 cons = NEXT_TX(cons);
750
751                 tx_bytes += skb->len;
752                 if (!compl_deferred)
753                         dev_kfree_skb_any(skb);
754         }
755
756         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
757         txr->tx_cons = cons;
758
759         /* Need to make the tx_cons update visible to bnxt_start_xmit()
760          * before checking for netif_tx_queue_stopped().  Without the
761          * memory barrier, there is a small possibility that bnxt_start_xmit()
762          * will miss it and cause the queue to be stopped forever.
763          */
764         smp_mb();
765
766         if (unlikely(netif_tx_queue_stopped(txq)) &&
767             bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
768             READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
769                 netif_tx_wake_queue(txq);
770 }
771
772 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
773                                          struct bnxt_rx_ring_info *rxr,
774                                          gfp_t gfp)
775 {
776         struct device *dev = &bp->pdev->dev;
777         struct page *page;
778
779         page = page_pool_dev_alloc_pages(rxr->page_pool);
780         if (!page)
781                 return NULL;
782
783         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
784                                       DMA_ATTR_WEAK_ORDERING);
785         if (dma_mapping_error(dev, *mapping)) {
786                 page_pool_recycle_direct(rxr->page_pool, page);
787                 return NULL;
788         }
789         *mapping += bp->rx_dma_offset;
790         return page;
791 }
792
793 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
794                                        gfp_t gfp)
795 {
796         u8 *data;
797         struct pci_dev *pdev = bp->pdev;
798
799         data = kmalloc(bp->rx_buf_size, gfp);
800         if (!data)
801                 return NULL;
802
803         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
804                                         bp->rx_buf_use_size, bp->rx_dir,
805                                         DMA_ATTR_WEAK_ORDERING);
806
807         if (dma_mapping_error(&pdev->dev, *mapping)) {
808                 kfree(data);
809                 data = NULL;
810         }
811         return data;
812 }
813
814 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
815                        u16 prod, gfp_t gfp)
816 {
817         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
818         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
819         dma_addr_t mapping;
820
821         if (BNXT_RX_PAGE_MODE(bp)) {
822                 struct page *page =
823                         __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
824
825                 if (!page)
826                         return -ENOMEM;
827
828                 rx_buf->data = page;
829                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
830         } else {
831                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
832
833                 if (!data)
834                         return -ENOMEM;
835
836                 rx_buf->data = data;
837                 rx_buf->data_ptr = data + bp->rx_offset;
838         }
839         rx_buf->mapping = mapping;
840
841         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
842         return 0;
843 }
844
845 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
846 {
847         u16 prod = rxr->rx_prod;
848         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
849         struct rx_bd *cons_bd, *prod_bd;
850
851         prod_rx_buf = &rxr->rx_buf_ring[prod];
852         cons_rx_buf = &rxr->rx_buf_ring[cons];
853
854         prod_rx_buf->data = data;
855         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
856
857         prod_rx_buf->mapping = cons_rx_buf->mapping;
858
859         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
860         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
861
862         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
863 }
864
865 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
866 {
867         u16 next, max = rxr->rx_agg_bmap_size;
868
869         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
870         if (next >= max)
871                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
872         return next;
873 }
874
875 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
876                                      struct bnxt_rx_ring_info *rxr,
877                                      u16 prod, gfp_t gfp)
878 {
879         struct rx_bd *rxbd =
880                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
881         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
882         struct pci_dev *pdev = bp->pdev;
883         struct page *page;
884         dma_addr_t mapping;
885         u16 sw_prod = rxr->rx_sw_agg_prod;
886         unsigned int offset = 0;
887
888         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
889                 page = rxr->rx_page;
890                 if (!page) {
891                         page = alloc_page(gfp);
892                         if (!page)
893                                 return -ENOMEM;
894                         rxr->rx_page = page;
895                         rxr->rx_page_offset = 0;
896                 }
897                 offset = rxr->rx_page_offset;
898                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
899                 if (rxr->rx_page_offset == PAGE_SIZE)
900                         rxr->rx_page = NULL;
901                 else
902                         get_page(page);
903         } else {
904                 page = alloc_page(gfp);
905                 if (!page)
906                         return -ENOMEM;
907         }
908
909         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
910                                      BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
911                                      DMA_ATTR_WEAK_ORDERING);
912         if (dma_mapping_error(&pdev->dev, mapping)) {
913                 __free_page(page);
914                 return -EIO;
915         }
916
917         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
918                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
919
920         __set_bit(sw_prod, rxr->rx_agg_bmap);
921         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
922         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
923
924         rx_agg_buf->page = page;
925         rx_agg_buf->offset = offset;
926         rx_agg_buf->mapping = mapping;
927         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
928         rxbd->rx_bd_opaque = sw_prod;
929         return 0;
930 }
931
932 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
933                                        struct bnxt_cp_ring_info *cpr,
934                                        u16 cp_cons, u16 curr)
935 {
936         struct rx_agg_cmp *agg;
937
938         cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
939         agg = (struct rx_agg_cmp *)
940                 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
941         return agg;
942 }
943
944 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
945                                               struct bnxt_rx_ring_info *rxr,
946                                               u16 agg_id, u16 curr)
947 {
948         struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
949
950         return &tpa_info->agg_arr[curr];
951 }
952
953 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
954                                    u16 start, u32 agg_bufs, bool tpa)
955 {
956         struct bnxt_napi *bnapi = cpr->bnapi;
957         struct bnxt *bp = bnapi->bp;
958         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
959         u16 prod = rxr->rx_agg_prod;
960         u16 sw_prod = rxr->rx_sw_agg_prod;
961         bool p5_tpa = false;
962         u32 i;
963
964         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
965                 p5_tpa = true;
966
967         for (i = 0; i < agg_bufs; i++) {
968                 u16 cons;
969                 struct rx_agg_cmp *agg;
970                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
971                 struct rx_bd *prod_bd;
972                 struct page *page;
973
974                 if (p5_tpa)
975                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
976                 else
977                         agg = bnxt_get_agg(bp, cpr, idx, start + i);
978                 cons = agg->rx_agg_cmp_opaque;
979                 __clear_bit(cons, rxr->rx_agg_bmap);
980
981                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
982                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
983
984                 __set_bit(sw_prod, rxr->rx_agg_bmap);
985                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
986                 cons_rx_buf = &rxr->rx_agg_ring[cons];
987
988                 /* It is possible for sw_prod to be equal to cons, so
989                  * set cons_rx_buf->page to NULL first.
990                  */
991                 page = cons_rx_buf->page;
992                 cons_rx_buf->page = NULL;
993                 prod_rx_buf->page = page;
994                 prod_rx_buf->offset = cons_rx_buf->offset;
995
996                 prod_rx_buf->mapping = cons_rx_buf->mapping;
997
998                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
999
1000                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
1001                 prod_bd->rx_bd_opaque = sw_prod;
1002
1003                 prod = NEXT_RX_AGG(prod);
1004                 sw_prod = NEXT_RX_AGG(sw_prod);
1005         }
1006         rxr->rx_agg_prod = prod;
1007         rxr->rx_sw_agg_prod = sw_prod;
1008 }
1009
1010 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
1011                                         struct bnxt_rx_ring_info *rxr,
1012                                         u16 cons, void *data, u8 *data_ptr,
1013                                         dma_addr_t dma_addr,
1014                                         unsigned int offset_and_len)
1015 {
1016         unsigned int payload = offset_and_len >> 16;
1017         unsigned int len = offset_and_len & 0xffff;
1018         skb_frag_t *frag;
1019         struct page *page = data;
1020         u16 prod = rxr->rx_prod;
1021         struct sk_buff *skb;
1022         int off, err;
1023
1024         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1025         if (unlikely(err)) {
1026                 bnxt_reuse_rx_data(rxr, cons, data);
1027                 return NULL;
1028         }
1029         dma_addr -= bp->rx_dma_offset;
1030         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
1031                              DMA_ATTR_WEAK_ORDERING);
1032         page_pool_release_page(rxr->page_pool, page);
1033
1034         if (unlikely(!payload))
1035                 payload = eth_get_headlen(bp->dev, data_ptr, len);
1036
1037         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
1038         if (!skb) {
1039                 __free_page(page);
1040                 return NULL;
1041         }
1042
1043         off = (void *)data_ptr - page_address(page);
1044         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
1045         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1046                payload + NET_IP_ALIGN);
1047
1048         frag = &skb_shinfo(skb)->frags[0];
1049         skb_frag_size_sub(frag, payload);
1050         skb_frag_off_add(frag, payload);
1051         skb->data_len -= payload;
1052         skb->tail += payload;
1053
1054         return skb;
1055 }
1056
1057 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1058                                    struct bnxt_rx_ring_info *rxr, u16 cons,
1059                                    void *data, u8 *data_ptr,
1060                                    dma_addr_t dma_addr,
1061                                    unsigned int offset_and_len)
1062 {
1063         u16 prod = rxr->rx_prod;
1064         struct sk_buff *skb;
1065         int err;
1066
1067         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1068         if (unlikely(err)) {
1069                 bnxt_reuse_rx_data(rxr, cons, data);
1070                 return NULL;
1071         }
1072
1073         skb = build_skb(data, 0);
1074         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1075                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1076         if (!skb) {
1077                 kfree(data);
1078                 return NULL;
1079         }
1080
1081         skb_reserve(skb, bp->rx_offset);
1082         skb_put(skb, offset_and_len & 0xffff);
1083         return skb;
1084 }
1085
1086 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1087                                      struct bnxt_cp_ring_info *cpr,
1088                                      struct sk_buff *skb, u16 idx,
1089                                      u32 agg_bufs, bool tpa)
1090 {
1091         struct bnxt_napi *bnapi = cpr->bnapi;
1092         struct pci_dev *pdev = bp->pdev;
1093         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1094         u16 prod = rxr->rx_agg_prod;
1095         bool p5_tpa = false;
1096         u32 i;
1097
1098         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1099                 p5_tpa = true;
1100
1101         for (i = 0; i < agg_bufs; i++) {
1102                 u16 cons, frag_len;
1103                 struct rx_agg_cmp *agg;
1104                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1105                 struct page *page;
1106                 dma_addr_t mapping;
1107
1108                 if (p5_tpa)
1109                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1110                 else
1111                         agg = bnxt_get_agg(bp, cpr, idx, i);
1112                 cons = agg->rx_agg_cmp_opaque;
1113                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1114                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1115
1116                 cons_rx_buf = &rxr->rx_agg_ring[cons];
1117                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
1118                                    cons_rx_buf->offset, frag_len);
1119                 __clear_bit(cons, rxr->rx_agg_bmap);
1120
1121                 /* It is possible for bnxt_alloc_rx_page() to allocate
1122                  * a sw_prod index that equals the cons index, so we
1123                  * need to clear the cons entry now.
1124                  */
1125                 mapping = cons_rx_buf->mapping;
1126                 page = cons_rx_buf->page;
1127                 cons_rx_buf->page = NULL;
1128
1129                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1130                         struct skb_shared_info *shinfo;
1131                         unsigned int nr_frags;
1132
1133                         shinfo = skb_shinfo(skb);
1134                         nr_frags = --shinfo->nr_frags;
1135                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1136
1137                         dev_kfree_skb(skb);
1138
1139                         cons_rx_buf->page = page;
1140
1141                         /* Update prod since possibly some pages have been
1142                          * allocated already.
1143                          */
1144                         rxr->rx_agg_prod = prod;
1145                         bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1146                         return NULL;
1147                 }
1148
1149                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1150                                      DMA_FROM_DEVICE,
1151                                      DMA_ATTR_WEAK_ORDERING);
1152
1153                 skb->data_len += frag_len;
1154                 skb->len += frag_len;
1155                 skb->truesize += PAGE_SIZE;
1156
1157                 prod = NEXT_RX_AGG(prod);
1158         }
1159         rxr->rx_agg_prod = prod;
1160         return skb;
1161 }
1162
1163 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1164                                u8 agg_bufs, u32 *raw_cons)
1165 {
1166         u16 last;
1167         struct rx_agg_cmp *agg;
1168
1169         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1170         last = RING_CMP(*raw_cons);
1171         agg = (struct rx_agg_cmp *)
1172                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1173         return RX_AGG_CMP_VALID(agg, *raw_cons);
1174 }
1175
1176 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1177                                             unsigned int len,
1178                                             dma_addr_t mapping)
1179 {
1180         struct bnxt *bp = bnapi->bp;
1181         struct pci_dev *pdev = bp->pdev;
1182         struct sk_buff *skb;
1183
1184         skb = napi_alloc_skb(&bnapi->napi, len);
1185         if (!skb)
1186                 return NULL;
1187
1188         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1189                                 bp->rx_dir);
1190
1191         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1192                len + NET_IP_ALIGN);
1193
1194         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1195                                    bp->rx_dir);
1196
1197         skb_put(skb, len);
1198         return skb;
1199 }
1200
1201 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1202                            u32 *raw_cons, void *cmp)
1203 {
1204         struct rx_cmp *rxcmp = cmp;
1205         u32 tmp_raw_cons = *raw_cons;
1206         u8 cmp_type, agg_bufs = 0;
1207
1208         cmp_type = RX_CMP_TYPE(rxcmp);
1209
1210         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1211                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1212                             RX_CMP_AGG_BUFS) >>
1213                            RX_CMP_AGG_BUFS_SHIFT;
1214         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1215                 struct rx_tpa_end_cmp *tpa_end = cmp;
1216
1217                 if (bp->flags & BNXT_FLAG_CHIP_P5)
1218                         return 0;
1219
1220                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1221         }
1222
1223         if (agg_bufs) {
1224                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1225                         return -EBUSY;
1226         }
1227         *raw_cons = tmp_raw_cons;
1228         return 0;
1229 }
1230
1231 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1232 {
1233         if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1234                 return;
1235
1236         if (BNXT_PF(bp))
1237                 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1238         else
1239                 schedule_delayed_work(&bp->fw_reset_task, delay);
1240 }
1241
1242 static void bnxt_queue_sp_work(struct bnxt *bp)
1243 {
1244         if (BNXT_PF(bp))
1245                 queue_work(bnxt_pf_wq, &bp->sp_task);
1246         else
1247                 schedule_work(&bp->sp_task);
1248 }
1249
1250 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1251 {
1252         if (!rxr->bnapi->in_reset) {
1253                 rxr->bnapi->in_reset = true;
1254                 if (bp->flags & BNXT_FLAG_CHIP_P5)
1255                         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1256                 else
1257                         set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1258                 bnxt_queue_sp_work(bp);
1259         }
1260         rxr->rx_next_cons = 0xffff;
1261 }
1262
1263 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1264 {
1265         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1266         u16 idx = agg_id & MAX_TPA_P5_MASK;
1267
1268         if (test_bit(idx, map->agg_idx_bmap))
1269                 idx = find_first_zero_bit(map->agg_idx_bmap,
1270                                           BNXT_AGG_IDX_BMAP_SIZE);
1271         __set_bit(idx, map->agg_idx_bmap);
1272         map->agg_id_tbl[agg_id] = idx;
1273         return idx;
1274 }
1275
1276 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1277 {
1278         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1279
1280         __clear_bit(idx, map->agg_idx_bmap);
1281 }
1282
1283 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1284 {
1285         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1286
1287         return map->agg_id_tbl[agg_id];
1288 }
1289
1290 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1291                            struct rx_tpa_start_cmp *tpa_start,
1292                            struct rx_tpa_start_cmp_ext *tpa_start1)
1293 {
1294         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1295         struct bnxt_tpa_info *tpa_info;
1296         u16 cons, prod, agg_id;
1297         struct rx_bd *prod_bd;
1298         dma_addr_t mapping;
1299
1300         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1301                 agg_id = TPA_START_AGG_ID_P5(tpa_start);
1302                 agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1303         } else {
1304                 agg_id = TPA_START_AGG_ID(tpa_start);
1305         }
1306         cons = tpa_start->rx_tpa_start_cmp_opaque;
1307         prod = rxr->rx_prod;
1308         cons_rx_buf = &rxr->rx_buf_ring[cons];
1309         prod_rx_buf = &rxr->rx_buf_ring[prod];
1310         tpa_info = &rxr->rx_tpa[agg_id];
1311
1312         if (unlikely(cons != rxr->rx_next_cons ||
1313                      TPA_START_ERROR(tpa_start))) {
1314                 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1315                             cons, rxr->rx_next_cons,
1316                             TPA_START_ERROR_CODE(tpa_start1));
1317                 bnxt_sched_reset(bp, rxr);
1318                 return;
1319         }
1320         /* Store cfa_code in tpa_info to use in tpa_end
1321          * completion processing.
1322          */
1323         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1324         prod_rx_buf->data = tpa_info->data;
1325         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1326
1327         mapping = tpa_info->mapping;
1328         prod_rx_buf->mapping = mapping;
1329
1330         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1331
1332         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1333
1334         tpa_info->data = cons_rx_buf->data;
1335         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1336         cons_rx_buf->data = NULL;
1337         tpa_info->mapping = cons_rx_buf->mapping;
1338
1339         tpa_info->len =
1340                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1341                                 RX_TPA_START_CMP_LEN_SHIFT;
1342         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1343                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1344
1345                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1346                 tpa_info->gso_type = SKB_GSO_TCPV4;
1347                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1348                 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1349                         tpa_info->gso_type = SKB_GSO_TCPV6;
1350                 tpa_info->rss_hash =
1351                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1352         } else {
1353                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1354                 tpa_info->gso_type = 0;
1355                 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1356         }
1357         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1358         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1359         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1360         tpa_info->agg_count = 0;
1361
1362         rxr->rx_prod = NEXT_RX(prod);
1363         cons = NEXT_RX(cons);
1364         rxr->rx_next_cons = NEXT_RX(cons);
1365         cons_rx_buf = &rxr->rx_buf_ring[cons];
1366
1367         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1368         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1369         cons_rx_buf->data = NULL;
1370 }
1371
1372 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1373 {
1374         if (agg_bufs)
1375                 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1376 }
1377
1378 #ifdef CONFIG_INET
1379 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1380 {
1381         struct udphdr *uh = NULL;
1382
1383         if (ip_proto == htons(ETH_P_IP)) {
1384                 struct iphdr *iph = (struct iphdr *)skb->data;
1385
1386                 if (iph->protocol == IPPROTO_UDP)
1387                         uh = (struct udphdr *)(iph + 1);
1388         } else {
1389                 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1390
1391                 if (iph->nexthdr == IPPROTO_UDP)
1392                         uh = (struct udphdr *)(iph + 1);
1393         }
1394         if (uh) {
1395                 if (uh->check)
1396                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1397                 else
1398                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1399         }
1400 }
1401 #endif
1402
1403 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1404                                            int payload_off, int tcp_ts,
1405                                            struct sk_buff *skb)
1406 {
1407 #ifdef CONFIG_INET
1408         struct tcphdr *th;
1409         int len, nw_off;
1410         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1411         u32 hdr_info = tpa_info->hdr_info;
1412         bool loopback = false;
1413
1414         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1415         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1416         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1417
1418         /* If the packet is an internal loopback packet, the offsets will
1419          * have an extra 4 bytes.
1420          */
1421         if (inner_mac_off == 4) {
1422                 loopback = true;
1423         } else if (inner_mac_off > 4) {
1424                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1425                                             ETH_HLEN - 2));
1426
1427                 /* We only support inner iPv4/ipv6.  If we don't see the
1428                  * correct protocol ID, it must be a loopback packet where
1429                  * the offsets are off by 4.
1430                  */
1431                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1432                         loopback = true;
1433         }
1434         if (loopback) {
1435                 /* internal loopback packet, subtract all offsets by 4 */
1436                 inner_ip_off -= 4;
1437                 inner_mac_off -= 4;
1438                 outer_ip_off -= 4;
1439         }
1440
1441         nw_off = inner_ip_off - ETH_HLEN;
1442         skb_set_network_header(skb, nw_off);
1443         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1444                 struct ipv6hdr *iph = ipv6_hdr(skb);
1445
1446                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1447                 len = skb->len - skb_transport_offset(skb);
1448                 th = tcp_hdr(skb);
1449                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1450         } else {
1451                 struct iphdr *iph = ip_hdr(skb);
1452
1453                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1454                 len = skb->len - skb_transport_offset(skb);
1455                 th = tcp_hdr(skb);
1456                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1457         }
1458
1459         if (inner_mac_off) { /* tunnel */
1460                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1461                                             ETH_HLEN - 2));
1462
1463                 bnxt_gro_tunnel(skb, proto);
1464         }
1465 #endif
1466         return skb;
1467 }
1468
1469 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1470                                            int payload_off, int tcp_ts,
1471                                            struct sk_buff *skb)
1472 {
1473 #ifdef CONFIG_INET
1474         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1475         u32 hdr_info = tpa_info->hdr_info;
1476         int iphdr_len, nw_off;
1477
1478         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1479         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1480         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1481
1482         nw_off = inner_ip_off - ETH_HLEN;
1483         skb_set_network_header(skb, nw_off);
1484         iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1485                      sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1486         skb_set_transport_header(skb, nw_off + iphdr_len);
1487
1488         if (inner_mac_off) { /* tunnel */
1489                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1490                                             ETH_HLEN - 2));
1491
1492                 bnxt_gro_tunnel(skb, proto);
1493         }
1494 #endif
1495         return skb;
1496 }
1497
1498 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1499 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1500
1501 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1502                                            int payload_off, int tcp_ts,
1503                                            struct sk_buff *skb)
1504 {
1505 #ifdef CONFIG_INET
1506         struct tcphdr *th;
1507         int len, nw_off, tcp_opt_len = 0;
1508
1509         if (tcp_ts)
1510                 tcp_opt_len = 12;
1511
1512         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1513                 struct iphdr *iph;
1514
1515                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1516                          ETH_HLEN;
1517                 skb_set_network_header(skb, nw_off);
1518                 iph = ip_hdr(skb);
1519                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1520                 len = skb->len - skb_transport_offset(skb);
1521                 th = tcp_hdr(skb);
1522                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1523         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1524                 struct ipv6hdr *iph;
1525
1526                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1527                          ETH_HLEN;
1528                 skb_set_network_header(skb, nw_off);
1529                 iph = ipv6_hdr(skb);
1530                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1531                 len = skb->len - skb_transport_offset(skb);
1532                 th = tcp_hdr(skb);
1533                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1534         } else {
1535                 dev_kfree_skb_any(skb);
1536                 return NULL;
1537         }
1538
1539         if (nw_off) /* tunnel */
1540                 bnxt_gro_tunnel(skb, skb->protocol);
1541 #endif
1542         return skb;
1543 }
1544
1545 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1546                                            struct bnxt_tpa_info *tpa_info,
1547                                            struct rx_tpa_end_cmp *tpa_end,
1548                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1549                                            struct sk_buff *skb)
1550 {
1551 #ifdef CONFIG_INET
1552         int payload_off;
1553         u16 segs;
1554
1555         segs = TPA_END_TPA_SEGS(tpa_end);
1556         if (segs == 1)
1557                 return skb;
1558
1559         NAPI_GRO_CB(skb)->count = segs;
1560         skb_shinfo(skb)->gso_size =
1561                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1562         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1563         if (bp->flags & BNXT_FLAG_CHIP_P5)
1564                 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1565         else
1566                 payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1567         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1568         if (likely(skb))
1569                 tcp_gro_complete(skb);
1570 #endif
1571         return skb;
1572 }
1573
1574 /* Given the cfa_code of a received packet determine which
1575  * netdev (vf-rep or PF) the packet is destined to.
1576  */
1577 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1578 {
1579         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1580
1581         /* if vf-rep dev is NULL, the must belongs to the PF */
1582         return dev ? dev : bp->dev;
1583 }
1584
1585 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1586                                            struct bnxt_cp_ring_info *cpr,
1587                                            u32 *raw_cons,
1588                                            struct rx_tpa_end_cmp *tpa_end,
1589                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1590                                            u8 *event)
1591 {
1592         struct bnxt_napi *bnapi = cpr->bnapi;
1593         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1594         u8 *data_ptr, agg_bufs;
1595         unsigned int len;
1596         struct bnxt_tpa_info *tpa_info;
1597         dma_addr_t mapping;
1598         struct sk_buff *skb;
1599         u16 idx = 0, agg_id;
1600         void *data;
1601         bool gro;
1602
1603         if (unlikely(bnapi->in_reset)) {
1604                 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1605
1606                 if (rc < 0)
1607                         return ERR_PTR(-EBUSY);
1608                 return NULL;
1609         }
1610
1611         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1612                 agg_id = TPA_END_AGG_ID_P5(tpa_end);
1613                 agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1614                 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1615                 tpa_info = &rxr->rx_tpa[agg_id];
1616                 if (unlikely(agg_bufs != tpa_info->agg_count)) {
1617                         netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1618                                     agg_bufs, tpa_info->agg_count);
1619                         agg_bufs = tpa_info->agg_count;
1620                 }
1621                 tpa_info->agg_count = 0;
1622                 *event |= BNXT_AGG_EVENT;
1623                 bnxt_free_agg_idx(rxr, agg_id);
1624                 idx = agg_id;
1625                 gro = !!(bp->flags & BNXT_FLAG_GRO);
1626         } else {
1627                 agg_id = TPA_END_AGG_ID(tpa_end);
1628                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1629                 tpa_info = &rxr->rx_tpa[agg_id];
1630                 idx = RING_CMP(*raw_cons);
1631                 if (agg_bufs) {
1632                         if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1633                                 return ERR_PTR(-EBUSY);
1634
1635                         *event |= BNXT_AGG_EVENT;
1636                         idx = NEXT_CMP(idx);
1637                 }
1638                 gro = !!TPA_END_GRO(tpa_end);
1639         }
1640         data = tpa_info->data;
1641         data_ptr = tpa_info->data_ptr;
1642         prefetch(data_ptr);
1643         len = tpa_info->len;
1644         mapping = tpa_info->mapping;
1645
1646         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1647                 bnxt_abort_tpa(cpr, idx, agg_bufs);
1648                 if (agg_bufs > MAX_SKB_FRAGS)
1649                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1650                                     agg_bufs, (int)MAX_SKB_FRAGS);
1651                 return NULL;
1652         }
1653
1654         if (len <= bp->rx_copy_thresh) {
1655                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1656                 if (!skb) {
1657                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1658                         cpr->sw_stats.rx.rx_oom_discards += 1;
1659                         return NULL;
1660                 }
1661         } else {
1662                 u8 *new_data;
1663                 dma_addr_t new_mapping;
1664
1665                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1666                 if (!new_data) {
1667                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1668                         cpr->sw_stats.rx.rx_oom_discards += 1;
1669                         return NULL;
1670                 }
1671
1672                 tpa_info->data = new_data;
1673                 tpa_info->data_ptr = new_data + bp->rx_offset;
1674                 tpa_info->mapping = new_mapping;
1675
1676                 skb = build_skb(data, 0);
1677                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1678                                        bp->rx_buf_use_size, bp->rx_dir,
1679                                        DMA_ATTR_WEAK_ORDERING);
1680
1681                 if (!skb) {
1682                         kfree(data);
1683                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1684                         cpr->sw_stats.rx.rx_oom_discards += 1;
1685                         return NULL;
1686                 }
1687                 skb_reserve(skb, bp->rx_offset);
1688                 skb_put(skb, len);
1689         }
1690
1691         if (agg_bufs) {
1692                 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1693                 if (!skb) {
1694                         /* Page reuse already handled by bnxt_rx_pages(). */
1695                         cpr->sw_stats.rx.rx_oom_discards += 1;
1696                         return NULL;
1697                 }
1698         }
1699
1700         skb->protocol =
1701                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1702
1703         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1704                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1705
1706         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1707             (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1708                 __be16 vlan_proto = htons(tpa_info->metadata >>
1709                                           RX_CMP_FLAGS2_METADATA_TPID_SFT);
1710                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1711
1712                 if (eth_type_vlan(vlan_proto)) {
1713                         __vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1714                 } else {
1715                         dev_kfree_skb(skb);
1716                         return NULL;
1717                 }
1718         }
1719
1720         skb_checksum_none_assert(skb);
1721         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1722                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1723                 skb->csum_level =
1724                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1725         }
1726
1727         if (gro)
1728                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1729
1730         return skb;
1731 }
1732
1733 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1734                          struct rx_agg_cmp *rx_agg)
1735 {
1736         u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1737         struct bnxt_tpa_info *tpa_info;
1738
1739         agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1740         tpa_info = &rxr->rx_tpa[agg_id];
1741         BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1742         tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1743 }
1744
1745 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1746                              struct sk_buff *skb)
1747 {
1748         if (skb->dev != bp->dev) {
1749                 /* this packet belongs to a vf-rep */
1750                 bnxt_vf_rep_rx(bp, skb);
1751                 return;
1752         }
1753         skb_record_rx_queue(skb, bnapi->index);
1754         napi_gro_receive(&bnapi->napi, skb);
1755 }
1756
1757 /* returns the following:
1758  * 1       - 1 packet successfully received
1759  * 0       - successful TPA_START, packet not completed yet
1760  * -EBUSY  - completion ring does not have all the agg buffers yet
1761  * -ENOMEM - packet aborted due to out of memory
1762  * -EIO    - packet aborted due to hw error indicated in BD
1763  */
1764 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1765                        u32 *raw_cons, u8 *event)
1766 {
1767         struct bnxt_napi *bnapi = cpr->bnapi;
1768         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1769         struct net_device *dev = bp->dev;
1770         struct rx_cmp *rxcmp;
1771         struct rx_cmp_ext *rxcmp1;
1772         u32 tmp_raw_cons = *raw_cons;
1773         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1774         struct bnxt_sw_rx_bd *rx_buf;
1775         unsigned int len;
1776         u8 *data_ptr, agg_bufs, cmp_type;
1777         dma_addr_t dma_addr;
1778         struct sk_buff *skb;
1779         u32 flags, misc;
1780         void *data;
1781         int rc = 0;
1782
1783         rxcmp = (struct rx_cmp *)
1784                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1785
1786         cmp_type = RX_CMP_TYPE(rxcmp);
1787
1788         if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1789                 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1790                 goto next_rx_no_prod_no_len;
1791         }
1792
1793         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1794         cp_cons = RING_CMP(tmp_raw_cons);
1795         rxcmp1 = (struct rx_cmp_ext *)
1796                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1797
1798         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1799                 return -EBUSY;
1800
1801         /* The valid test of the entry must be done first before
1802          * reading any further.
1803          */
1804         dma_rmb();
1805         prod = rxr->rx_prod;
1806
1807         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1808                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1809                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1810
1811                 *event |= BNXT_RX_EVENT;
1812                 goto next_rx_no_prod_no_len;
1813
1814         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1815                 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1816                                    (struct rx_tpa_end_cmp *)rxcmp,
1817                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1818
1819                 if (IS_ERR(skb))
1820                         return -EBUSY;
1821
1822                 rc = -ENOMEM;
1823                 if (likely(skb)) {
1824                         bnxt_deliver_skb(bp, bnapi, skb);
1825                         rc = 1;
1826                 }
1827                 *event |= BNXT_RX_EVENT;
1828                 goto next_rx_no_prod_no_len;
1829         }
1830
1831         cons = rxcmp->rx_cmp_opaque;
1832         if (unlikely(cons != rxr->rx_next_cons)) {
1833                 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1834
1835                 /* 0xffff is forced error, don't print it */
1836                 if (rxr->rx_next_cons != 0xffff)
1837                         netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1838                                     cons, rxr->rx_next_cons);
1839                 bnxt_sched_reset(bp, rxr);
1840                 if (rc1)
1841                         return rc1;
1842                 goto next_rx_no_prod_no_len;
1843         }
1844         rx_buf = &rxr->rx_buf_ring[cons];
1845         data = rx_buf->data;
1846         data_ptr = rx_buf->data_ptr;
1847         prefetch(data_ptr);
1848
1849         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1850         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1851
1852         if (agg_bufs) {
1853                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1854                         return -EBUSY;
1855
1856                 cp_cons = NEXT_CMP(cp_cons);
1857                 *event |= BNXT_AGG_EVENT;
1858         }
1859         *event |= BNXT_RX_EVENT;
1860
1861         rx_buf->data = NULL;
1862         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1863                 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1864
1865                 bnxt_reuse_rx_data(rxr, cons, data);
1866                 if (agg_bufs)
1867                         bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1868                                                false);
1869
1870                 rc = -EIO;
1871                 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1872                         bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1873                         if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1874                             !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1875                                 netdev_warn_once(bp->dev, "RX buffer error %x\n",
1876                                                  rx_err);
1877                                 bnxt_sched_reset(bp, rxr);
1878                         }
1879                 }
1880                 goto next_rx_no_len;
1881         }
1882
1883         flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1884         len = flags >> RX_CMP_LEN_SHIFT;
1885         dma_addr = rx_buf->mapping;
1886
1887         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1888                 rc = 1;
1889                 goto next_rx;
1890         }
1891
1892         if (len <= bp->rx_copy_thresh) {
1893                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1894                 bnxt_reuse_rx_data(rxr, cons, data);
1895                 if (!skb) {
1896                         if (agg_bufs)
1897                                 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1898                                                        agg_bufs, false);
1899                         cpr->sw_stats.rx.rx_oom_discards += 1;
1900                         rc = -ENOMEM;
1901                         goto next_rx;
1902                 }
1903         } else {
1904                 u32 payload;
1905
1906                 if (rx_buf->data_ptr == data_ptr)
1907                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1908                 else
1909                         payload = 0;
1910                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1911                                       payload | len);
1912                 if (!skb) {
1913                         cpr->sw_stats.rx.rx_oom_discards += 1;
1914                         rc = -ENOMEM;
1915                         goto next_rx;
1916                 }
1917         }
1918
1919         if (agg_bufs) {
1920                 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1921                 if (!skb) {
1922                         cpr->sw_stats.rx.rx_oom_discards += 1;
1923                         rc = -ENOMEM;
1924                         goto next_rx;
1925                 }
1926         }
1927
1928         if (RX_CMP_HASH_VALID(rxcmp)) {
1929                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1930                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1931
1932                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1933                 if (hash_type != 1 && hash_type != 3)
1934                         type = PKT_HASH_TYPE_L3;
1935                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1936         }
1937
1938         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1939         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1940
1941         if ((rxcmp1->rx_cmp_flags2 &
1942              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1943             (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1944                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1945                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1946                 __be16 vlan_proto = htons(meta_data >>
1947                                           RX_CMP_FLAGS2_METADATA_TPID_SFT);
1948
1949                 if (eth_type_vlan(vlan_proto)) {
1950                         __vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1951                 } else {
1952                         dev_kfree_skb(skb);
1953                         goto next_rx;
1954                 }
1955         }
1956
1957         skb_checksum_none_assert(skb);
1958         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1959                 if (dev->features & NETIF_F_RXCSUM) {
1960                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1961                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1962                 }
1963         } else {
1964                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1965                         if (dev->features & NETIF_F_RXCSUM)
1966                                 bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1967                 }
1968         }
1969
1970         if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
1971                      RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
1972                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
1973                         u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1974                         u64 ns, ts;
1975
1976                         if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
1977                                 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1978
1979                                 spin_lock_bh(&ptp->ptp_lock);
1980                                 ns = timecounter_cyc2time(&ptp->tc, ts);
1981                                 spin_unlock_bh(&ptp->ptp_lock);
1982                                 memset(skb_hwtstamps(skb), 0,
1983                                        sizeof(*skb_hwtstamps(skb)));
1984                                 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
1985                         }
1986                 }
1987         }
1988         bnxt_deliver_skb(bp, bnapi, skb);
1989         rc = 1;
1990
1991 next_rx:
1992         cpr->rx_packets += 1;
1993         cpr->rx_bytes += len;
1994
1995 next_rx_no_len:
1996         rxr->rx_prod = NEXT_RX(prod);
1997         rxr->rx_next_cons = NEXT_RX(cons);
1998
1999 next_rx_no_prod_no_len:
2000         *raw_cons = tmp_raw_cons;
2001
2002         return rc;
2003 }
2004
2005 /* In netpoll mode, if we are using a combined completion ring, we need to
2006  * discard the rx packets and recycle the buffers.
2007  */
2008 static int bnxt_force_rx_discard(struct bnxt *bp,
2009                                  struct bnxt_cp_ring_info *cpr,
2010                                  u32 *raw_cons, u8 *event)
2011 {
2012         u32 tmp_raw_cons = *raw_cons;
2013         struct rx_cmp_ext *rxcmp1;
2014         struct rx_cmp *rxcmp;
2015         u16 cp_cons;
2016         u8 cmp_type;
2017         int rc;
2018
2019         cp_cons = RING_CMP(tmp_raw_cons);
2020         rxcmp = (struct rx_cmp *)
2021                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2022
2023         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
2024         cp_cons = RING_CMP(tmp_raw_cons);
2025         rxcmp1 = (struct rx_cmp_ext *)
2026                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2027
2028         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2029                 return -EBUSY;
2030
2031         /* The valid test of the entry must be done first before
2032          * reading any further.
2033          */
2034         dma_rmb();
2035         cmp_type = RX_CMP_TYPE(rxcmp);
2036         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
2037                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2038                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2039         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
2040                 struct rx_tpa_end_cmp_ext *tpa_end1;
2041
2042                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
2043                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
2044                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
2045         }
2046         rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2047         if (rc && rc != -EBUSY)
2048                 cpr->sw_stats.rx.rx_netpoll_discards += 1;
2049         return rc;
2050 }
2051
2052 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2053 {
2054         struct bnxt_fw_health *fw_health = bp->fw_health;
2055         u32 reg = fw_health->regs[reg_idx];
2056         u32 reg_type, reg_off, val = 0;
2057
2058         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2059         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2060         switch (reg_type) {
2061         case BNXT_FW_HEALTH_REG_TYPE_CFG:
2062                 pci_read_config_dword(bp->pdev, reg_off, &val);
2063                 break;
2064         case BNXT_FW_HEALTH_REG_TYPE_GRC:
2065                 reg_off = fw_health->mapped_regs[reg_idx];
2066                 fallthrough;
2067         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2068                 val = readl(bp->bar0 + reg_off);
2069                 break;
2070         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2071                 val = readl(bp->bar1 + reg_off);
2072                 break;
2073         }
2074         if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2075                 val &= fw_health->fw_reset_inprog_reg_mask;
2076         return val;
2077 }
2078
2079 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2080 {
2081         int i;
2082
2083         for (i = 0; i < bp->rx_nr_rings; i++) {
2084                 u16 grp_idx = bp->rx_ring[i].bnapi->index;
2085                 struct bnxt_ring_grp_info *grp_info;
2086
2087                 grp_info = &bp->grp_info[grp_idx];
2088                 if (grp_info->agg_fw_ring_id == ring_id)
2089                         return grp_idx;
2090         }
2091         return INVALID_HW_RING_ID;
2092 }
2093
2094 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2095 {
2096         switch (BNXT_EVENT_ERROR_REPORT_TYPE(data1)) {
2097         case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2098                 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2099                            BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2100                 break;
2101         default:
2102                 netdev_err(bp->dev, "FW reported unknown error type\n");
2103                 break;
2104         }
2105 }
2106
2107 #define BNXT_GET_EVENT_PORT(data)       \
2108         ((data) &                       \
2109          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2110
2111 #define BNXT_EVENT_RING_TYPE(data2)     \
2112         ((data2) &                      \
2113          ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2114
2115 #define BNXT_EVENT_RING_TYPE_RX(data2)  \
2116         (BNXT_EVENT_RING_TYPE(data2) == \
2117          ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2118
2119 static int bnxt_async_event_process(struct bnxt *bp,
2120                                     struct hwrm_async_event_cmpl *cmpl)
2121 {
2122         u16 event_id = le16_to_cpu(cmpl->event_id);
2123         u32 data1 = le32_to_cpu(cmpl->event_data1);
2124         u32 data2 = le32_to_cpu(cmpl->event_data2);
2125
2126         /* TODO CHIMP_FW: Define event id's for link change, error etc */
2127         switch (event_id) {
2128         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2129                 struct bnxt_link_info *link_info = &bp->link_info;
2130
2131                 if (BNXT_VF(bp))
2132                         goto async_event_process_exit;
2133
2134                 /* print unsupported speed warning in forced speed mode only */
2135                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2136                     (data1 & 0x20000)) {
2137                         u16 fw_speed = link_info->force_link_speed;
2138                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2139
2140                         if (speed != SPEED_UNKNOWN)
2141                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2142                                             speed);
2143                 }
2144                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2145         }
2146                 fallthrough;
2147         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2148         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2149                 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2150                 fallthrough;
2151         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2152                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2153                 break;
2154         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2155                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2156                 break;
2157         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2158                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
2159
2160                 if (BNXT_VF(bp))
2161                         break;
2162
2163                 if (bp->pf.port_id != port_id)
2164                         break;
2165
2166                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2167                 break;
2168         }
2169         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2170                 if (BNXT_PF(bp))
2171                         goto async_event_process_exit;
2172                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2173                 break;
2174         case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2175                 char *fatal_str = "non-fatal";
2176
2177                 if (!bp->fw_health)
2178                         goto async_event_process_exit;
2179
2180                 bp->fw_reset_timestamp = jiffies;
2181                 bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2182                 if (!bp->fw_reset_min_dsecs)
2183                         bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2184                 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2185                 if (!bp->fw_reset_max_dsecs)
2186                         bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2187                 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2188                         fatal_str = "fatal";
2189                         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2190                 }
2191                 netif_warn(bp, hw, bp->dev,
2192                            "Firmware %s reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2193                            fatal_str, data1, data2,
2194                            bp->fw_reset_min_dsecs * 100,
2195                            bp->fw_reset_max_dsecs * 100);
2196                 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2197                 break;
2198         }
2199         case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2200                 struct bnxt_fw_health *fw_health = bp->fw_health;
2201
2202                 if (!fw_health)
2203                         goto async_event_process_exit;
2204
2205                 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2206                         fw_health->enabled = false;
2207                         netif_info(bp, drv, bp->dev,
2208                                    "Error recovery info: error recovery[0]\n");
2209                         break;
2210                 }
2211                 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2212                 fw_health->tmr_multiplier =
2213                         DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2214                                      bp->current_interval * 10);
2215                 fw_health->tmr_counter = fw_health->tmr_multiplier;
2216                 if (!fw_health->enabled)
2217                         fw_health->last_fw_heartbeat =
2218                                 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2219                 fw_health->last_fw_reset_cnt =
2220                         bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2221                 netif_info(bp, drv, bp->dev,
2222                            "Error recovery info: error recovery[1], master[%d], reset count[%u], health status: 0x%x\n",
2223                            fw_health->master, fw_health->last_fw_reset_cnt,
2224                            bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG));
2225                 if (!fw_health->enabled) {
2226                         /* Make sure tmr_counter is set and visible to
2227                          * bnxt_health_check() before setting enabled to true.
2228                          */
2229                         smp_wmb();
2230                         fw_health->enabled = true;
2231                 }
2232                 goto async_event_process_exit;
2233         }
2234         case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2235                 netif_notice(bp, hw, bp->dev,
2236                              "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2237                              data1, data2);
2238                 goto async_event_process_exit;
2239         case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2240                 struct bnxt_rx_ring_info *rxr;
2241                 u16 grp_idx;
2242
2243                 if (bp->flags & BNXT_FLAG_CHIP_P5)
2244                         goto async_event_process_exit;
2245
2246                 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2247                             BNXT_EVENT_RING_TYPE(data2), data1);
2248                 if (!BNXT_EVENT_RING_TYPE_RX(data2))
2249                         goto async_event_process_exit;
2250
2251                 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2252                 if (grp_idx == INVALID_HW_RING_ID) {
2253                         netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2254                                     data1);
2255                         goto async_event_process_exit;
2256                 }
2257                 rxr = bp->bnapi[grp_idx]->rx_ring;
2258                 bnxt_sched_reset(bp, rxr);
2259                 goto async_event_process_exit;
2260         }
2261         case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2262                 struct bnxt_fw_health *fw_health = bp->fw_health;
2263
2264                 netif_notice(bp, hw, bp->dev,
2265                              "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2266                              data1, data2);
2267                 if (fw_health) {
2268                         fw_health->echo_req_data1 = data1;
2269                         fw_health->echo_req_data2 = data2;
2270                         set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2271                         break;
2272                 }
2273                 goto async_event_process_exit;
2274         }
2275         case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2276                 bnxt_ptp_pps_event(bp, data1, data2);
2277                 goto async_event_process_exit;
2278         }
2279         case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2280                 bnxt_event_error_report(bp, data1, data2);
2281                 goto async_event_process_exit;
2282         }
2283         case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2284                 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2285
2286                 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2287                 goto async_event_process_exit;
2288         }
2289         default:
2290                 goto async_event_process_exit;
2291         }
2292         bnxt_queue_sp_work(bp);
2293 async_event_process_exit:
2294         bnxt_ulp_async_events(bp, cmpl);
2295         return 0;
2296 }
2297
2298 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2299 {
2300         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2301         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2302         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2303                                 (struct hwrm_fwd_req_cmpl *)txcmp;
2304
2305         switch (cmpl_type) {
2306         case CMPL_BASE_TYPE_HWRM_DONE:
2307                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
2308                 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2309                 break;
2310
2311         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2312                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2313
2314                 if ((vf_id < bp->pf.first_vf_id) ||
2315                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2316                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2317                                    vf_id);
2318                         return -EINVAL;
2319                 }
2320
2321                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2322                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2323                 bnxt_queue_sp_work(bp);
2324                 break;
2325
2326         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2327                 bnxt_async_event_process(bp,
2328                                          (struct hwrm_async_event_cmpl *)txcmp);
2329                 break;
2330
2331         default:
2332                 break;
2333         }
2334
2335         return 0;
2336 }
2337
2338 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2339 {
2340         struct bnxt_napi *bnapi = dev_instance;
2341         struct bnxt *bp = bnapi->bp;
2342         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2343         u32 cons = RING_CMP(cpr->cp_raw_cons);
2344
2345         cpr->event_ctr++;
2346         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2347         napi_schedule(&bnapi->napi);
2348         return IRQ_HANDLED;
2349 }
2350
2351 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2352 {
2353         u32 raw_cons = cpr->cp_raw_cons;
2354         u16 cons = RING_CMP(raw_cons);
2355         struct tx_cmp *txcmp;
2356
2357         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2358
2359         return TX_CMP_VALID(txcmp, raw_cons);
2360 }
2361
2362 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2363 {
2364         struct bnxt_napi *bnapi = dev_instance;
2365         struct bnxt *bp = bnapi->bp;
2366         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2367         u32 cons = RING_CMP(cpr->cp_raw_cons);
2368         u32 int_status;
2369
2370         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2371
2372         if (!bnxt_has_work(bp, cpr)) {
2373                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2374                 /* return if erroneous interrupt */
2375                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2376                         return IRQ_NONE;
2377         }
2378
2379         /* disable ring IRQ */
2380         BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2381
2382         /* Return here if interrupt is shared and is disabled. */
2383         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2384                 return IRQ_HANDLED;
2385
2386         napi_schedule(&bnapi->napi);
2387         return IRQ_HANDLED;
2388 }
2389
2390 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2391                             int budget)
2392 {
2393         struct bnxt_napi *bnapi = cpr->bnapi;
2394         u32 raw_cons = cpr->cp_raw_cons;
2395         u32 cons;
2396         int tx_pkts = 0;
2397         int rx_pkts = 0;
2398         u8 event = 0;
2399         struct tx_cmp *txcmp;
2400
2401         cpr->has_more_work = 0;
2402         cpr->had_work_done = 1;
2403         while (1) {
2404                 int rc;
2405
2406                 cons = RING_CMP(raw_cons);
2407                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2408
2409                 if (!TX_CMP_VALID(txcmp, raw_cons))
2410                         break;
2411
2412                 /* The valid test of the entry must be done first before
2413                  * reading any further.
2414                  */
2415                 dma_rmb();
2416                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2417                         tx_pkts++;
2418                         /* return full budget so NAPI will complete. */
2419                         if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2420                                 rx_pkts = budget;
2421                                 raw_cons = NEXT_RAW_CMP(raw_cons);
2422                                 if (budget)
2423                                         cpr->has_more_work = 1;
2424                                 break;
2425                         }
2426                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2427                         if (likely(budget))
2428                                 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2429                         else
2430                                 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2431                                                            &event);
2432                         if (likely(rc >= 0))
2433                                 rx_pkts += rc;
2434                         /* Increment rx_pkts when rc is -ENOMEM to count towards
2435                          * the NAPI budget.  Otherwise, we may potentially loop
2436                          * here forever if we consistently cannot allocate
2437                          * buffers.
2438                          */
2439                         else if (rc == -ENOMEM && budget)
2440                                 rx_pkts++;
2441                         else if (rc == -EBUSY)  /* partial completion */
2442                                 break;
2443                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
2444                                      CMPL_BASE_TYPE_HWRM_DONE) ||
2445                                     (TX_CMP_TYPE(txcmp) ==
2446                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2447                                     (TX_CMP_TYPE(txcmp) ==
2448                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2449                         bnxt_hwrm_handler(bp, txcmp);
2450                 }
2451                 raw_cons = NEXT_RAW_CMP(raw_cons);
2452
2453                 if (rx_pkts && rx_pkts == budget) {
2454                         cpr->has_more_work = 1;
2455                         break;
2456                 }
2457         }
2458
2459         if (event & BNXT_REDIRECT_EVENT)
2460                 xdp_do_flush_map();
2461
2462         if (event & BNXT_TX_EVENT) {
2463                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2464                 u16 prod = txr->tx_prod;
2465
2466                 /* Sync BD data before updating doorbell */
2467                 wmb();
2468
2469                 bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2470         }
2471
2472         cpr->cp_raw_cons = raw_cons;
2473         bnapi->tx_pkts += tx_pkts;
2474         bnapi->events |= event;
2475         return rx_pkts;
2476 }
2477
2478 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2479 {
2480         if (bnapi->tx_pkts) {
2481                 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2482                 bnapi->tx_pkts = 0;
2483         }
2484
2485         if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2486                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2487
2488                 if (bnapi->events & BNXT_AGG_EVENT)
2489                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2490                 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2491         }
2492         bnapi->events = 0;
2493 }
2494
2495 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2496                           int budget)
2497 {
2498         struct bnxt_napi *bnapi = cpr->bnapi;
2499         int rx_pkts;
2500
2501         rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2502
2503         /* ACK completion ring before freeing tx ring and producing new
2504          * buffers in rx/agg rings to prevent overflowing the completion
2505          * ring.
2506          */
2507         bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2508
2509         __bnxt_poll_work_done(bp, bnapi);
2510         return rx_pkts;
2511 }
2512
2513 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2514 {
2515         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2516         struct bnxt *bp = bnapi->bp;
2517         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2518         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2519         struct tx_cmp *txcmp;
2520         struct rx_cmp_ext *rxcmp1;
2521         u32 cp_cons, tmp_raw_cons;
2522         u32 raw_cons = cpr->cp_raw_cons;
2523         u32 rx_pkts = 0;
2524         u8 event = 0;
2525
2526         while (1) {
2527                 int rc;
2528
2529                 cp_cons = RING_CMP(raw_cons);
2530                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2531
2532                 if (!TX_CMP_VALID(txcmp, raw_cons))
2533                         break;
2534
2535                 /* The valid test of the entry must be done first before
2536                  * reading any further.
2537                  */
2538                 dma_rmb();
2539                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2540                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2541                         cp_cons = RING_CMP(tmp_raw_cons);
2542                         rxcmp1 = (struct rx_cmp_ext *)
2543                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2544
2545                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2546                                 break;
2547
2548                         /* force an error to recycle the buffer */
2549                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2550                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2551
2552                         rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2553                         if (likely(rc == -EIO) && budget)
2554                                 rx_pkts++;
2555                         else if (rc == -EBUSY)  /* partial completion */
2556                                 break;
2557                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
2558                                     CMPL_BASE_TYPE_HWRM_DONE)) {
2559                         bnxt_hwrm_handler(bp, txcmp);
2560                 } else {
2561                         netdev_err(bp->dev,
2562                                    "Invalid completion received on special ring\n");
2563                 }
2564                 raw_cons = NEXT_RAW_CMP(raw_cons);
2565
2566                 if (rx_pkts == budget)
2567                         break;
2568         }
2569
2570         cpr->cp_raw_cons = raw_cons;
2571         BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2572         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2573
2574         if (event & BNXT_AGG_EVENT)
2575                 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2576
2577         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2578                 napi_complete_done(napi, rx_pkts);
2579                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2580         }
2581         return rx_pkts;
2582 }
2583
2584 static int bnxt_poll(struct napi_struct *napi, int budget)
2585 {
2586         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2587         struct bnxt *bp = bnapi->bp;
2588         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2589         int work_done = 0;
2590
2591         if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2592                 napi_complete(napi);
2593                 return 0;
2594         }
2595         while (1) {
2596                 work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2597
2598                 if (work_done >= budget) {
2599                         if (!budget)
2600                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2601                         break;
2602                 }
2603
2604                 if (!bnxt_has_work(bp, cpr)) {
2605                         if (napi_complete_done(napi, work_done))
2606                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2607                         break;
2608                 }
2609         }
2610         if (bp->flags & BNXT_FLAG_DIM) {
2611                 struct dim_sample dim_sample = {};
2612
2613                 dim_update_sample(cpr->event_ctr,
2614                                   cpr->rx_packets,
2615                                   cpr->rx_bytes,
2616                                   &dim_sample);
2617                 net_dim(&cpr->dim, dim_sample);
2618         }
2619         return work_done;
2620 }
2621
2622 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2623 {
2624         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2625         int i, work_done = 0;
2626
2627         for (i = 0; i < 2; i++) {
2628                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2629
2630                 if (cpr2) {
2631                         work_done += __bnxt_poll_work(bp, cpr2,
2632                                                       budget - work_done);
2633                         cpr->has_more_work |= cpr2->has_more_work;
2634                 }
2635         }
2636         return work_done;
2637 }
2638
2639 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2640                                  u64 dbr_type)
2641 {
2642         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2643         int i;
2644
2645         for (i = 0; i < 2; i++) {
2646                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2647                 struct bnxt_db_info *db;
2648
2649                 if (cpr2 && cpr2->had_work_done) {
2650                         db = &cpr2->cp_db;
2651                         bnxt_writeq(bp, db->db_key64 | dbr_type |
2652                                     RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2653                         cpr2->had_work_done = 0;
2654                 }
2655         }
2656         __bnxt_poll_work_done(bp, bnapi);
2657 }
2658
2659 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2660 {
2661         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2662         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2663         u32 raw_cons = cpr->cp_raw_cons;
2664         struct bnxt *bp = bnapi->bp;
2665         struct nqe_cn *nqcmp;
2666         int work_done = 0;
2667         u32 cons;
2668
2669         if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2670                 napi_complete(napi);
2671                 return 0;
2672         }
2673         if (cpr->has_more_work) {
2674                 cpr->has_more_work = 0;
2675                 work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2676         }
2677         while (1) {
2678                 cons = RING_CMP(raw_cons);
2679                 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2680
2681                 if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2682                         if (cpr->has_more_work)
2683                                 break;
2684
2685                         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2686                         cpr->cp_raw_cons = raw_cons;
2687                         if (napi_complete_done(napi, work_done))
2688                                 BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2689                                                   cpr->cp_raw_cons);
2690                         return work_done;
2691                 }
2692
2693                 /* The valid test of the entry must be done first before
2694                  * reading any further.
2695                  */
2696                 dma_rmb();
2697
2698                 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2699                         u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2700                         struct bnxt_cp_ring_info *cpr2;
2701
2702                         cpr2 = cpr->cp_ring_arr[idx];
2703                         work_done += __bnxt_poll_work(bp, cpr2,
2704                                                       budget - work_done);
2705                         cpr->has_more_work |= cpr2->has_more_work;
2706                 } else {
2707                         bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2708                 }
2709                 raw_cons = NEXT_RAW_CMP(raw_cons);
2710         }
2711         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2712         if (raw_cons != cpr->cp_raw_cons) {
2713                 cpr->cp_raw_cons = raw_cons;
2714                 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2715         }
2716         return work_done;
2717 }
2718
2719 static void bnxt_free_tx_skbs(struct bnxt *bp)
2720 {
2721         int i, max_idx;
2722         struct pci_dev *pdev = bp->pdev;
2723
2724         if (!bp->tx_ring)
2725                 return;
2726
2727         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2728         for (i = 0; i < bp->tx_nr_rings; i++) {
2729                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2730                 int j;
2731
2732                 if (!txr->tx_buf_ring)
2733                         continue;
2734
2735                 for (j = 0; j < max_idx;) {
2736                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2737                         struct sk_buff *skb;
2738                         int k, last;
2739
2740                         if (i < bp->tx_nr_rings_xdp &&
2741                             tx_buf->action == XDP_REDIRECT) {
2742                                 dma_unmap_single(&pdev->dev,
2743                                         dma_unmap_addr(tx_buf, mapping),
2744                                         dma_unmap_len(tx_buf, len),
2745                                         DMA_TO_DEVICE);
2746                                 xdp_return_frame(tx_buf->xdpf);
2747                                 tx_buf->action = 0;
2748                                 tx_buf->xdpf = NULL;
2749                                 j++;
2750                                 continue;
2751                         }
2752
2753                         skb = tx_buf->skb;
2754                         if (!skb) {
2755                                 j++;
2756                                 continue;
2757                         }
2758
2759                         tx_buf->skb = NULL;
2760
2761                         if (tx_buf->is_push) {
2762                                 dev_kfree_skb(skb);
2763                                 j += 2;
2764                                 continue;
2765                         }
2766
2767                         dma_unmap_single(&pdev->dev,
2768                                          dma_unmap_addr(tx_buf, mapping),
2769                                          skb_headlen(skb),
2770                                          DMA_TO_DEVICE);
2771
2772                         last = tx_buf->nr_frags;
2773                         j += 2;
2774                         for (k = 0; k < last; k++, j++) {
2775                                 int ring_idx = j & bp->tx_ring_mask;
2776                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2777
2778                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2779                                 dma_unmap_page(
2780                                         &pdev->dev,
2781                                         dma_unmap_addr(tx_buf, mapping),
2782                                         skb_frag_size(frag), DMA_TO_DEVICE);
2783                         }
2784                         dev_kfree_skb(skb);
2785                 }
2786                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2787         }
2788 }
2789
2790 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2791 {
2792         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2793         struct pci_dev *pdev = bp->pdev;
2794         struct bnxt_tpa_idx_map *map;
2795         int i, max_idx, max_agg_idx;
2796
2797         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2798         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2799         if (!rxr->rx_tpa)
2800                 goto skip_rx_tpa_free;
2801
2802         for (i = 0; i < bp->max_tpa; i++) {
2803                 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2804                 u8 *data = tpa_info->data;
2805
2806                 if (!data)
2807                         continue;
2808
2809                 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2810                                        bp->rx_buf_use_size, bp->rx_dir,
2811                                        DMA_ATTR_WEAK_ORDERING);
2812
2813                 tpa_info->data = NULL;
2814
2815                 kfree(data);
2816         }
2817
2818 skip_rx_tpa_free:
2819         if (!rxr->rx_buf_ring)
2820                 goto skip_rx_buf_free;
2821
2822         for (i = 0; i < max_idx; i++) {
2823                 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2824                 dma_addr_t mapping = rx_buf->mapping;
2825                 void *data = rx_buf->data;
2826
2827                 if (!data)
2828                         continue;
2829
2830                 rx_buf->data = NULL;
2831                 if (BNXT_RX_PAGE_MODE(bp)) {
2832                         mapping -= bp->rx_dma_offset;
2833                         dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2834                                              bp->rx_dir,
2835                                              DMA_ATTR_WEAK_ORDERING);
2836                         page_pool_recycle_direct(rxr->page_pool, data);
2837                 } else {
2838                         dma_unmap_single_attrs(&pdev->dev, mapping,
2839                                                bp->rx_buf_use_size, bp->rx_dir,
2840                                                DMA_ATTR_WEAK_ORDERING);
2841                         kfree(data);
2842                 }
2843         }
2844
2845 skip_rx_buf_free:
2846         if (!rxr->rx_agg_ring)
2847                 goto skip_rx_agg_free;
2848
2849         for (i = 0; i < max_agg_idx; i++) {
2850                 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2851                 struct page *page = rx_agg_buf->page;
2852
2853                 if (!page)
2854                         continue;
2855
2856                 dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2857                                      BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2858                                      DMA_ATTR_WEAK_ORDERING);
2859
2860                 rx_agg_buf->page = NULL;
2861                 __clear_bit(i, rxr->rx_agg_bmap);
2862
2863                 __free_page(page);
2864         }
2865
2866 skip_rx_agg_free:
2867         if (rxr->rx_page) {
2868                 __free_page(rxr->rx_page);
2869                 rxr->rx_page = NULL;
2870         }
2871         map = rxr->rx_tpa_idx_map;
2872         if (map)
2873                 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2874 }
2875
2876 static void bnxt_free_rx_skbs(struct bnxt *bp)
2877 {
2878         int i;
2879
2880         if (!bp->rx_ring)
2881                 return;
2882
2883         for (i = 0; i < bp->rx_nr_rings; i++)
2884                 bnxt_free_one_rx_ring_skbs(bp, i);
2885 }
2886
2887 static void bnxt_free_skbs(struct bnxt *bp)
2888 {
2889         bnxt_free_tx_skbs(bp);
2890         bnxt_free_rx_skbs(bp);
2891 }
2892
2893 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2894 {
2895         u8 init_val = mem_init->init_val;
2896         u16 offset = mem_init->offset;
2897         u8 *p2 = p;
2898         int i;
2899
2900         if (!init_val)
2901                 return;
2902         if (offset == BNXT_MEM_INVALID_OFFSET) {
2903                 memset(p, init_val, len);
2904                 return;
2905         }
2906         for (i = 0; i < len; i += mem_init->size)
2907                 *(p2 + i + offset) = init_val;
2908 }
2909
2910 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2911 {
2912         struct pci_dev *pdev = bp->pdev;
2913         int i;
2914
2915         if (!rmem->pg_arr)
2916                 goto skip_pages;
2917
2918         for (i = 0; i < rmem->nr_pages; i++) {
2919                 if (!rmem->pg_arr[i])
2920                         continue;
2921
2922                 dma_free_coherent(&pdev->dev, rmem->page_size,
2923                                   rmem->pg_arr[i], rmem->dma_arr[i]);
2924
2925                 rmem->pg_arr[i] = NULL;
2926         }
2927 skip_pages:
2928         if (rmem->pg_tbl) {
2929                 size_t pg_tbl_size = rmem->nr_pages * 8;
2930
2931                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2932                         pg_tbl_size = rmem->page_size;
2933                 dma_free_coherent(&pdev->dev, pg_tbl_size,
2934                                   rmem->pg_tbl, rmem->pg_tbl_map);
2935                 rmem->pg_tbl = NULL;
2936         }
2937         if (rmem->vmem_size && *rmem->vmem) {
2938                 vfree(*rmem->vmem);
2939                 *rmem->vmem = NULL;
2940         }
2941 }
2942
2943 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2944 {
2945         struct pci_dev *pdev = bp->pdev;
2946         u64 valid_bit = 0;
2947         int i;
2948
2949         if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2950                 valid_bit = PTU_PTE_VALID;
2951         if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2952                 size_t pg_tbl_size = rmem->nr_pages * 8;
2953
2954                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2955                         pg_tbl_size = rmem->page_size;
2956                 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2957                                                   &rmem->pg_tbl_map,
2958                                                   GFP_KERNEL);
2959                 if (!rmem->pg_tbl)
2960                         return -ENOMEM;
2961         }
2962
2963         for (i = 0; i < rmem->nr_pages; i++) {
2964                 u64 extra_bits = valid_bit;
2965
2966                 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2967                                                      rmem->page_size,
2968                                                      &rmem->dma_arr[i],
2969                                                      GFP_KERNEL);
2970                 if (!rmem->pg_arr[i])
2971                         return -ENOMEM;
2972
2973                 if (rmem->mem_init)
2974                         bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2975                                           rmem->page_size);
2976                 if (rmem->nr_pages > 1 || rmem->depth > 0) {
2977                         if (i == rmem->nr_pages - 2 &&
2978                             (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2979                                 extra_bits |= PTU_PTE_NEXT_TO_LAST;
2980                         else if (i == rmem->nr_pages - 1 &&
2981                                  (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2982                                 extra_bits |= PTU_PTE_LAST;
2983                         rmem->pg_tbl[i] =
2984                                 cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2985                 }
2986         }
2987
2988         if (rmem->vmem_size) {
2989                 *rmem->vmem = vzalloc(rmem->vmem_size);
2990                 if (!(*rmem->vmem))
2991                         return -ENOMEM;
2992         }
2993         return 0;
2994 }
2995
2996 static void bnxt_free_tpa_info(struct bnxt *bp)
2997 {
2998         int i;
2999
3000         for (i = 0; i < bp->rx_nr_rings; i++) {
3001                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3002
3003                 kfree(rxr->rx_tpa_idx_map);
3004                 rxr->rx_tpa_idx_map = NULL;
3005                 if (rxr->rx_tpa) {
3006                         kfree(rxr->rx_tpa[0].agg_arr);
3007                         rxr->rx_tpa[0].agg_arr = NULL;
3008                 }
3009                 kfree(rxr->rx_tpa);
3010                 rxr->rx_tpa = NULL;
3011         }
3012 }
3013
3014 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3015 {
3016         int i, j, total_aggs = 0;
3017
3018         bp->max_tpa = MAX_TPA;
3019         if (bp->flags & BNXT_FLAG_CHIP_P5) {
3020                 if (!bp->max_tpa_v2)
3021                         return 0;
3022                 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3023                 total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3024         }
3025
3026         for (i = 0; i < bp->rx_nr_rings; i++) {
3027                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3028                 struct rx_agg_cmp *agg;
3029
3030                 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3031                                       GFP_KERNEL);
3032                 if (!rxr->rx_tpa)
3033                         return -ENOMEM;
3034
3035                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3036                         continue;
3037                 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3038                 rxr->rx_tpa[0].agg_arr = agg;
3039                 if (!agg)
3040                         return -ENOMEM;
3041                 for (j = 1; j < bp->max_tpa; j++)
3042                         rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3043                 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3044                                               GFP_KERNEL);
3045                 if (!rxr->rx_tpa_idx_map)
3046                         return -ENOMEM;
3047         }
3048         return 0;
3049 }
3050
3051 static void bnxt_free_rx_rings(struct bnxt *bp)
3052 {
3053         int i;
3054
3055         if (!bp->rx_ring)
3056                 return;
3057
3058         bnxt_free_tpa_info(bp);
3059         for (i = 0; i < bp->rx_nr_rings; i++) {
3060                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3061                 struct bnxt_ring_struct *ring;
3062
3063                 if (rxr->xdp_prog)
3064                         bpf_prog_put(rxr->xdp_prog);
3065
3066                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3067                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
3068
3069                 page_pool_destroy(rxr->page_pool);
3070                 rxr->page_pool = NULL;
3071
3072                 kfree(rxr->rx_agg_bmap);
3073                 rxr->rx_agg_bmap = NULL;
3074
3075                 ring = &rxr->rx_ring_struct;
3076                 bnxt_free_ring(bp, &ring->ring_mem);
3077
3078                 ring = &rxr->rx_agg_ring_struct;
3079                 bnxt_free_ring(bp, &ring->ring_mem);
3080         }
3081 }
3082
3083 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3084                                    struct bnxt_rx_ring_info *rxr)
3085 {
3086         struct page_pool_params pp = { 0 };
3087
3088         pp.pool_size = bp->rx_ring_size;
3089         pp.nid = dev_to_node(&bp->pdev->dev);
3090         pp.dev = &bp->pdev->dev;
3091         pp.dma_dir = DMA_BIDIRECTIONAL;
3092
3093         rxr->page_pool = page_pool_create(&pp);
3094         if (IS_ERR(rxr->page_pool)) {
3095                 int err = PTR_ERR(rxr->page_pool);
3096
3097                 rxr->page_pool = NULL;
3098                 return err;
3099         }
3100         return 0;
3101 }
3102
3103 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3104 {
3105         int i, rc = 0, agg_rings = 0;
3106
3107         if (!bp->rx_ring)
3108                 return -ENOMEM;
3109
3110         if (bp->flags & BNXT_FLAG_AGG_RINGS)
3111                 agg_rings = 1;
3112
3113         for (i = 0; i < bp->rx_nr_rings; i++) {
3114                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3115                 struct bnxt_ring_struct *ring;
3116
3117                 ring = &rxr->rx_ring_struct;
3118
3119                 rc = bnxt_alloc_rx_page_pool(bp, rxr);
3120                 if (rc)
3121                         return rc;
3122
3123                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3124                 if (rc < 0)
3125                         return rc;
3126
3127                 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3128                                                 MEM_TYPE_PAGE_POOL,
3129                                                 rxr->page_pool);
3130                 if (rc) {
3131                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
3132                         return rc;
3133                 }
3134
3135                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3136                 if (rc)
3137                         return rc;
3138
3139                 ring->grp_idx = i;
3140                 if (agg_rings) {
3141                         u16 mem_size;
3142
3143                         ring = &rxr->rx_agg_ring_struct;
3144                         rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3145                         if (rc)
3146                                 return rc;
3147
3148                         ring->grp_idx = i;
3149                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3150                         mem_size = rxr->rx_agg_bmap_size / 8;
3151                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3152                         if (!rxr->rx_agg_bmap)
3153                                 return -ENOMEM;
3154                 }
3155         }
3156         if (bp->flags & BNXT_FLAG_TPA)
3157                 rc = bnxt_alloc_tpa_info(bp);
3158         return rc;
3159 }
3160
3161 static void bnxt_free_tx_rings(struct bnxt *bp)
3162 {
3163         int i;
3164         struct pci_dev *pdev = bp->pdev;
3165
3166         if (!bp->tx_ring)
3167                 return;
3168
3169         for (i = 0; i < bp->tx_nr_rings; i++) {
3170                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3171                 struct bnxt_ring_struct *ring;
3172
3173                 if (txr->tx_push) {
3174                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
3175                                           txr->tx_push, txr->tx_push_mapping);
3176                         txr->tx_push = NULL;
3177                 }
3178
3179                 ring = &txr->tx_ring_struct;
3180
3181                 bnxt_free_ring(bp, &ring->ring_mem);
3182         }
3183 }
3184
3185 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3186 {
3187         int i, j, rc;
3188         struct pci_dev *pdev = bp->pdev;
3189
3190         bp->tx_push_size = 0;
3191         if (bp->tx_push_thresh) {
3192                 int push_size;
3193
3194                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3195                                         bp->tx_push_thresh);
3196
3197                 if (push_size > 256) {
3198                         push_size = 0;
3199                         bp->tx_push_thresh = 0;
3200                 }
3201
3202                 bp->tx_push_size = push_size;
3203         }
3204
3205         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3206                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3207                 struct bnxt_ring_struct *ring;
3208                 u8 qidx;
3209
3210                 ring = &txr->tx_ring_struct;
3211
3212                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3213                 if (rc)
3214                         return rc;
3215
3216                 ring->grp_idx = txr->bnapi->index;
3217                 if (bp->tx_push_size) {
3218                         dma_addr_t mapping;
3219
3220                         /* One pre-allocated DMA buffer to backup
3221                          * TX push operation
3222                          */
3223                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
3224                                                 bp->tx_push_size,
3225                                                 &txr->tx_push_mapping,
3226                                                 GFP_KERNEL);
3227
3228                         if (!txr->tx_push)
3229                                 return -ENOMEM;
3230
3231                         mapping = txr->tx_push_mapping +
3232                                 sizeof(struct tx_push_bd);
3233                         txr->data_mapping = cpu_to_le64(mapping);
3234                 }
3235                 qidx = bp->tc_to_qidx[j];
3236                 ring->queue_id = bp->q_info[qidx].queue_id;
3237                 if (i < bp->tx_nr_rings_xdp)
3238                         continue;
3239                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3240                         j++;
3241         }
3242         return 0;
3243 }
3244
3245 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3246 {
3247         struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3248
3249         kfree(cpr->cp_desc_ring);
3250         cpr->cp_desc_ring = NULL;
3251         ring->ring_mem.pg_arr = NULL;
3252         kfree(cpr->cp_desc_mapping);
3253         cpr->cp_desc_mapping = NULL;
3254         ring->ring_mem.dma_arr = NULL;
3255 }
3256
3257 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3258 {
3259         cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3260         if (!cpr->cp_desc_ring)
3261                 return -ENOMEM;
3262         cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3263                                        GFP_KERNEL);
3264         if (!cpr->cp_desc_mapping)
3265                 return -ENOMEM;
3266         return 0;
3267 }
3268
3269 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3270 {
3271         int i;
3272
3273         if (!bp->bnapi)
3274                 return;
3275         for (i = 0; i < bp->cp_nr_rings; i++) {
3276                 struct bnxt_napi *bnapi = bp->bnapi[i];
3277
3278                 if (!bnapi)
3279                         continue;
3280                 bnxt_free_cp_arrays(&bnapi->cp_ring);
3281         }
3282 }
3283
3284 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3285 {
3286         int i, n = bp->cp_nr_pages;
3287
3288         for (i = 0; i < bp->cp_nr_rings; i++) {
3289                 struct bnxt_napi *bnapi = bp->bnapi[i];
3290                 int rc;
3291
3292                 if (!bnapi)
3293                         continue;
3294                 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3295                 if (rc)
3296                         return rc;
3297         }
3298         return 0;
3299 }
3300
3301 static void bnxt_free_cp_rings(struct bnxt *bp)
3302 {
3303         int i;
3304
3305         if (!bp->bnapi)
3306                 return;
3307
3308         for (i = 0; i < bp->cp_nr_rings; i++) {
3309                 struct bnxt_napi *bnapi = bp->bnapi[i];
3310                 struct bnxt_cp_ring_info *cpr;
3311                 struct bnxt_ring_struct *ring;
3312                 int j;
3313
3314                 if (!bnapi)
3315                         continue;
3316
3317                 cpr = &bnapi->cp_ring;
3318                 ring = &cpr->cp_ring_struct;
3319
3320                 bnxt_free_ring(bp, &ring->ring_mem);
3321
3322                 for (j = 0; j < 2; j++) {
3323                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3324
3325                         if (cpr2) {
3326                                 ring = &cpr2->cp_ring_struct;
3327                                 bnxt_free_ring(bp, &ring->ring_mem);
3328                                 bnxt_free_cp_arrays(cpr2);
3329                                 kfree(cpr2);
3330                                 cpr->cp_ring_arr[j] = NULL;
3331                         }
3332                 }
3333         }
3334 }
3335
3336 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3337 {
3338         struct bnxt_ring_mem_info *rmem;
3339         struct bnxt_ring_struct *ring;
3340         struct bnxt_cp_ring_info *cpr;
3341         int rc;
3342
3343         cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3344         if (!cpr)
3345                 return NULL;
3346
3347         rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3348         if (rc) {
3349                 bnxt_free_cp_arrays(cpr);
3350                 kfree(cpr);
3351                 return NULL;
3352         }
3353         ring = &cpr->cp_ring_struct;
3354         rmem = &ring->ring_mem;
3355         rmem->nr_pages = bp->cp_nr_pages;
3356         rmem->page_size = HW_CMPD_RING_SIZE;
3357         rmem->pg_arr = (void **)cpr->cp_desc_ring;
3358         rmem->dma_arr = cpr->cp_desc_mapping;
3359         rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3360         rc = bnxt_alloc_ring(bp, rmem);
3361         if (rc) {
3362                 bnxt_free_ring(bp, rmem);
3363                 bnxt_free_cp_arrays(cpr);
3364                 kfree(cpr);
3365                 cpr = NULL;
3366         }
3367         return cpr;
3368 }
3369
3370 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3371 {
3372         bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3373         int i, rc, ulp_base_vec, ulp_msix;
3374
3375         ulp_msix = bnxt_get_ulp_msix_num(bp);
3376         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3377         for (i = 0; i < bp->cp_nr_rings; i++) {
3378                 struct bnxt_napi *bnapi = bp->bnapi[i];
3379                 struct bnxt_cp_ring_info *cpr;
3380                 struct bnxt_ring_struct *ring;
3381
3382                 if (!bnapi)
3383                         continue;
3384
3385                 cpr = &bnapi->cp_ring;
3386                 cpr->bnapi = bnapi;
3387                 ring = &cpr->cp_ring_struct;
3388
3389                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3390                 if (rc)
3391                         return rc;
3392
3393                 if (ulp_msix && i >= ulp_base_vec)
3394                         ring->map_idx = i + ulp_msix;
3395                 else
3396                         ring->map_idx = i;
3397
3398                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3399                         continue;
3400
3401                 if (i < bp->rx_nr_rings) {
3402                         struct bnxt_cp_ring_info *cpr2 =
3403                                 bnxt_alloc_cp_sub_ring(bp);
3404
3405                         cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3406                         if (!cpr2)
3407                                 return -ENOMEM;
3408                         cpr2->bnapi = bnapi;
3409                 }
3410                 if ((sh && i < bp->tx_nr_rings) ||
3411                     (!sh && i >= bp->rx_nr_rings)) {
3412                         struct bnxt_cp_ring_info *cpr2 =
3413                                 bnxt_alloc_cp_sub_ring(bp);
3414
3415                         cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3416                         if (!cpr2)
3417                                 return -ENOMEM;
3418                         cpr2->bnapi = bnapi;
3419                 }
3420         }
3421         return 0;
3422 }
3423
3424 static void bnxt_init_ring_struct(struct bnxt *bp)
3425 {
3426         int i;
3427
3428         for (i = 0; i < bp->cp_nr_rings; i++) {
3429                 struct bnxt_napi *bnapi = bp->bnapi[i];
3430                 struct bnxt_ring_mem_info *rmem;
3431                 struct bnxt_cp_ring_info *cpr;
3432                 struct bnxt_rx_ring_info *rxr;
3433                 struct bnxt_tx_ring_info *txr;
3434                 struct bnxt_ring_struct *ring;
3435
3436                 if (!bnapi)
3437                         continue;
3438
3439                 cpr = &bnapi->cp_ring;
3440                 ring = &cpr->cp_ring_struct;
3441                 rmem = &ring->ring_mem;
3442                 rmem->nr_pages = bp->cp_nr_pages;
3443                 rmem->page_size = HW_CMPD_RING_SIZE;
3444                 rmem->pg_arr = (void **)cpr->cp_desc_ring;
3445                 rmem->dma_arr = cpr->cp_desc_mapping;
3446                 rmem->vmem_size = 0;
3447
3448                 rxr = bnapi->rx_ring;
3449                 if (!rxr)
3450                         goto skip_rx;
3451
3452                 ring = &rxr->rx_ring_struct;
3453                 rmem = &ring->ring_mem;
3454                 rmem->nr_pages = bp->rx_nr_pages;
3455                 rmem->page_size = HW_RXBD_RING_SIZE;
3456                 rmem->pg_arr = (void **)rxr->rx_desc_ring;
3457                 rmem->dma_arr = rxr->rx_desc_mapping;
3458                 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3459                 rmem->vmem = (void **)&rxr->rx_buf_ring;
3460
3461                 ring = &rxr->rx_agg_ring_struct;
3462                 rmem = &ring->ring_mem;
3463                 rmem->nr_pages = bp->rx_agg_nr_pages;
3464                 rmem->page_size = HW_RXBD_RING_SIZE;
3465                 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3466                 rmem->dma_arr = rxr->rx_agg_desc_mapping;
3467                 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3468                 rmem->vmem = (void **)&rxr->rx_agg_ring;
3469
3470 skip_rx:
3471                 txr = bnapi->tx_ring;
3472                 if (!txr)
3473                         continue;
3474
3475                 ring = &txr->tx_ring_struct;
3476                 rmem = &ring->ring_mem;
3477                 rmem->nr_pages = bp->tx_nr_pages;
3478                 rmem->page_size = HW_RXBD_RING_SIZE;
3479                 rmem->pg_arr = (void **)txr->tx_desc_ring;
3480                 rmem->dma_arr = txr->tx_desc_mapping;
3481                 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3482                 rmem->vmem = (void **)&txr->tx_buf_ring;
3483         }
3484 }
3485
3486 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3487 {
3488         int i;
3489         u32 prod;
3490         struct rx_bd **rx_buf_ring;
3491
3492         rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3493         for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3494                 int j;
3495                 struct rx_bd *rxbd;
3496
3497                 rxbd = rx_buf_ring[i];
3498                 if (!rxbd)
3499                         continue;
3500
3501                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3502                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3503                         rxbd->rx_bd_opaque = prod;
3504                 }
3505         }
3506 }
3507
3508 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3509 {
3510         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3511         struct net_device *dev = bp->dev;
3512         u32 prod;
3513         int i;
3514
3515         prod = rxr->rx_prod;
3516         for (i = 0; i < bp->rx_ring_size; i++) {
3517                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3518                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3519                                     ring_nr, i, bp->rx_ring_size);
3520                         break;
3521                 }
3522                 prod = NEXT_RX(prod);
3523         }
3524         rxr->rx_prod = prod;
3525
3526         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3527                 return 0;
3528
3529         prod = rxr->rx_agg_prod;
3530         for (i = 0; i < bp->rx_agg_ring_size; i++) {
3531                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3532                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3533                                     ring_nr, i, bp->rx_ring_size);
3534                         break;
3535                 }
3536                 prod = NEXT_RX_AGG(prod);
3537         }
3538         rxr->rx_agg_prod = prod;
3539
3540         if (rxr->rx_tpa) {
3541                 dma_addr_t mapping;
3542                 u8 *data;
3543
3544                 for (i = 0; i < bp->max_tpa; i++) {
3545                         data = __bnxt_alloc_rx_data(bp, &mapping, GFP_KERNEL);
3546                         if (!data)
3547                                 return -ENOMEM;
3548
3549                         rxr->rx_tpa[i].data = data;
3550                         rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3551                         rxr->rx_tpa[i].mapping = mapping;
3552                 }
3553         }
3554         return 0;
3555 }
3556
3557 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3558 {
3559         struct bnxt_rx_ring_info *rxr;
3560         struct bnxt_ring_struct *ring;
3561         u32 type;
3562
3563         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3564                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3565
3566         if (NET_IP_ALIGN == 2)
3567                 type |= RX_BD_FLAGS_SOP;
3568
3569         rxr = &bp->rx_ring[ring_nr];
3570         ring = &rxr->rx_ring_struct;
3571         bnxt_init_rxbd_pages(ring, type);
3572
3573         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3574                 bpf_prog_add(bp->xdp_prog, 1);
3575                 rxr->xdp_prog = bp->xdp_prog;
3576         }
3577         ring->fw_ring_id = INVALID_HW_RING_ID;
3578
3579         ring = &rxr->rx_agg_ring_struct;
3580         ring->fw_ring_id = INVALID_HW_RING_ID;
3581
3582         if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3583                 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3584                         RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3585
3586                 bnxt_init_rxbd_pages(ring, type);
3587         }
3588
3589         return bnxt_alloc_one_rx_ring(bp, ring_nr);
3590 }
3591
3592 static void bnxt_init_cp_rings(struct bnxt *bp)
3593 {
3594         int i, j;
3595
3596         for (i = 0; i < bp->cp_nr_rings; i++) {
3597                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3598                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3599
3600                 ring->fw_ring_id = INVALID_HW_RING_ID;
3601                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3602                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3603                 for (j = 0; j < 2; j++) {
3604                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3605
3606                         if (!cpr2)
3607                                 continue;
3608
3609                         ring = &cpr2->cp_ring_struct;
3610                         ring->fw_ring_id = INVALID_HW_RING_ID;
3611                         cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3612                         cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3613                 }
3614         }
3615 }
3616
3617 static int bnxt_init_rx_rings(struct bnxt *bp)
3618 {
3619         int i, rc = 0;
3620
3621         if (BNXT_RX_PAGE_MODE(bp)) {
3622                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3623                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3624         } else {
3625                 bp->rx_offset = BNXT_RX_OFFSET;
3626                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3627         }
3628
3629         for (i = 0; i < bp->rx_nr_rings; i++) {
3630                 rc = bnxt_init_one_rx_ring(bp, i);
3631                 if (rc)
3632                         break;
3633         }
3634
3635         return rc;
3636 }
3637
3638 static int bnxt_init_tx_rings(struct bnxt *bp)
3639 {
3640         u16 i;
3641
3642         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3643                                    BNXT_MIN_TX_DESC_CNT);
3644
3645         for (i = 0; i < bp->tx_nr_rings; i++) {
3646                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3647                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3648
3649                 ring->fw_ring_id = INVALID_HW_RING_ID;
3650         }
3651
3652         return 0;
3653 }
3654
3655 static void bnxt_free_ring_grps(struct bnxt *bp)
3656 {
3657         kfree(bp->grp_info);
3658         bp->grp_info = NULL;
3659 }
3660
3661 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3662 {
3663         int i;
3664
3665         if (irq_re_init) {
3666                 bp->grp_info = kcalloc(bp->cp_nr_rings,
3667                                        sizeof(struct bnxt_ring_grp_info),
3668                                        GFP_KERNEL);
3669                 if (!bp->grp_info)
3670                         return -ENOMEM;
3671         }
3672         for (i = 0; i < bp->cp_nr_rings; i++) {
3673                 if (irq_re_init)
3674                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3675                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3676                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3677                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3678                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3679         }
3680         return 0;
3681 }
3682
3683 static void bnxt_free_vnics(struct bnxt *bp)
3684 {
3685         kfree(bp->vnic_info);
3686         bp->vnic_info = NULL;
3687         bp->nr_vnics = 0;
3688 }
3689
3690 static int bnxt_alloc_vnics(struct bnxt *bp)
3691 {
3692         int num_vnics = 1;
3693
3694 #ifdef CONFIG_RFS_ACCEL
3695         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3696                 num_vnics += bp->rx_nr_rings;
3697 #endif
3698
3699         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3700                 num_vnics++;
3701
3702         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3703                                 GFP_KERNEL);
3704         if (!bp->vnic_info)
3705                 return -ENOMEM;
3706
3707         bp->nr_vnics = num_vnics;
3708         return 0;
3709 }
3710
3711 static void bnxt_init_vnics(struct bnxt *bp)
3712 {
3713         int i;
3714
3715         for (i = 0; i < bp->nr_vnics; i++) {
3716                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3717                 int j;
3718
3719                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
3720                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3721                         vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3722
3723                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3724
3725                 if (bp->vnic_info[i].rss_hash_key) {
3726                         if (i == 0)
3727                                 prandom_bytes(vnic->rss_hash_key,
3728                                               HW_HASH_KEY_SIZE);
3729                         else
3730                                 memcpy(vnic->rss_hash_key,
3731                                        bp->vnic_info[0].rss_hash_key,
3732                                        HW_HASH_KEY_SIZE);
3733                 }
3734         }
3735 }
3736
3737 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3738 {
3739         int pages;
3740
3741         pages = ring_size / desc_per_pg;
3742
3743         if (!pages)
3744                 return 1;
3745
3746         pages++;
3747
3748         while (pages & (pages - 1))
3749                 pages++;
3750
3751         return pages;
3752 }
3753
3754 void bnxt_set_tpa_flags(struct bnxt *bp)
3755 {
3756         bp->flags &= ~BNXT_FLAG_TPA;
3757         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3758                 return;
3759         if (bp->dev->features & NETIF_F_LRO)
3760                 bp->flags |= BNXT_FLAG_LRO;
3761         else if (bp->dev->features & NETIF_F_GRO_HW)
3762                 bp->flags |= BNXT_FLAG_GRO;
3763 }
3764
3765 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3766  * be set on entry.
3767  */
3768 void bnxt_set_ring_params(struct bnxt *bp)
3769 {
3770         u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3771         u32 agg_factor = 0, agg_ring_size = 0;
3772
3773         /* 8 for CRC and VLAN */
3774         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3775
3776         rx_space = rx_size + NET_SKB_PAD +
3777                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3778
3779         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3780         ring_size = bp->rx_ring_size;
3781         bp->rx_agg_ring_size = 0;
3782         bp->rx_agg_nr_pages = 0;
3783
3784         if (bp->flags & BNXT_FLAG_TPA)
3785                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3786
3787         bp->flags &= ~BNXT_FLAG_JUMBO;
3788         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3789                 u32 jumbo_factor;
3790
3791                 bp->flags |= BNXT_FLAG_JUMBO;
3792                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3793                 if (jumbo_factor > agg_factor)
3794                         agg_factor = jumbo_factor;
3795         }
3796         if (agg_factor) {
3797                 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3798                         ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3799                         netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3800                                     bp->rx_ring_size, ring_size);
3801                         bp->rx_ring_size = ring_size;
3802                 }
3803                 agg_ring_size = ring_size * agg_factor;
3804
3805                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3806                                                         RX_DESC_CNT);
3807                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3808                         u32 tmp = agg_ring_size;
3809
3810                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3811                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3812                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3813                                     tmp, agg_ring_size);
3814                 }
3815                 bp->rx_agg_ring_size = agg_ring_size;
3816                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3817                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3818                 rx_space = rx_size + NET_SKB_PAD +
3819                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3820         }
3821
3822         bp->rx_buf_use_size = rx_size;
3823         bp->rx_buf_size = rx_space;
3824
3825         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3826         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3827
3828         ring_size = bp->tx_ring_size;
3829         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3830         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3831
3832         max_rx_cmpl = bp->rx_ring_size;
3833         /* MAX TPA needs to be added because TPA_START completions are
3834          * immediately recycled, so the TPA completions are not bound by
3835          * the RX ring size.
3836          */
3837         if (bp->flags & BNXT_FLAG_TPA)
3838                 max_rx_cmpl += bp->max_tpa;
3839         /* RX and TPA completions are 32-byte, all others are 16-byte */
3840         ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3841         bp->cp_ring_size = ring_size;
3842
3843         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3844         if (bp->cp_nr_pages > MAX_CP_PAGES) {
3845                 bp->cp_nr_pages = MAX_CP_PAGES;
3846                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3847                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3848                             ring_size, bp->cp_ring_size);
3849         }
3850         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3851         bp->cp_ring_mask = bp->cp_bit - 1;
3852 }
3853
3854 /* Changing allocation mode of RX rings.
3855  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3856  */
3857 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3858 {
3859         if (page_mode) {
3860                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3861                         return -EOPNOTSUPP;
3862                 bp->dev->max_mtu =
3863                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3864                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3865                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3866                 bp->rx_dir = DMA_BIDIRECTIONAL;
3867                 bp->rx_skb_func = bnxt_rx_page_skb;
3868                 /* Disable LRO or GRO_HW */
3869                 netdev_update_features(bp->dev);
3870         } else {
3871                 bp->dev->max_mtu = bp->max_mtu;
3872                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3873                 bp->rx_dir = DMA_FROM_DEVICE;
3874                 bp->rx_skb_func = bnxt_rx_skb;
3875         }
3876         return 0;
3877 }
3878
3879 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3880 {
3881         int i;
3882         struct bnxt_vnic_info *vnic;
3883         struct pci_dev *pdev = bp->pdev;
3884
3885         if (!bp->vnic_info)
3886                 return;
3887
3888         for (i = 0; i < bp->nr_vnics; i++) {
3889                 vnic = &bp->vnic_info[i];
3890
3891                 kfree(vnic->fw_grp_ids);
3892                 vnic->fw_grp_ids = NULL;
3893
3894                 kfree(vnic->uc_list);
3895                 vnic->uc_list = NULL;
3896
3897                 if (vnic->mc_list) {
3898                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3899                                           vnic->mc_list, vnic->mc_list_mapping);
3900                         vnic->mc_list = NULL;
3901                 }
3902
3903                 if (vnic->rss_table) {
3904                         dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3905                                           vnic->rss_table,
3906                                           vnic->rss_table_dma_addr);
3907                         vnic->rss_table = NULL;
3908                 }
3909
3910                 vnic->rss_hash_key = NULL;
3911                 vnic->flags = 0;
3912         }
3913 }
3914
3915 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3916 {
3917         int i, rc = 0, size;
3918         struct bnxt_vnic_info *vnic;
3919         struct pci_dev *pdev = bp->pdev;
3920         int max_rings;
3921
3922         for (i = 0; i < bp->nr_vnics; i++) {
3923                 vnic = &bp->vnic_info[i];
3924
3925                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3926                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3927
3928                         if (mem_size > 0) {
3929                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3930                                 if (!vnic->uc_list) {
3931                                         rc = -ENOMEM;
3932                                         goto out;
3933                                 }
3934                         }
3935                 }
3936
3937                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3938                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3939                         vnic->mc_list =
3940                                 dma_alloc_coherent(&pdev->dev,
3941                                                    vnic->mc_list_size,
3942                                                    &vnic->mc_list_mapping,
3943                                                    GFP_KERNEL);
3944                         if (!vnic->mc_list) {
3945                                 rc = -ENOMEM;
3946                                 goto out;
3947                         }
3948                 }
3949
3950                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3951                         goto vnic_skip_grps;
3952
3953                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3954                         max_rings = bp->rx_nr_rings;
3955                 else
3956                         max_rings = 1;
3957
3958                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3959                 if (!vnic->fw_grp_ids) {
3960                         rc = -ENOMEM;
3961                         goto out;
3962                 }
3963 vnic_skip_grps:
3964                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3965                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3966                         continue;
3967
3968                 /* Allocate rss table and hash key */
3969                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3970                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3971                         size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3972
3973                 vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3974                 vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3975                                                      vnic->rss_table_size,
3976                                                      &vnic->rss_table_dma_addr,
3977                                                      GFP_KERNEL);
3978                 if (!vnic->rss_table) {
3979                         rc = -ENOMEM;
3980                         goto out;
3981                 }
3982
3983                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3984                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3985         }
3986         return 0;
3987
3988 out:
3989         return rc;
3990 }
3991
3992 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3993 {
3994         struct bnxt_hwrm_wait_token *token;
3995
3996         dma_pool_destroy(bp->hwrm_dma_pool);
3997         bp->hwrm_dma_pool = NULL;
3998
3999         rcu_read_lock();
4000         hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
4001                 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
4002         rcu_read_unlock();
4003 }
4004
4005 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
4006 {
4007         bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
4008                                             BNXT_HWRM_DMA_SIZE,
4009                                             BNXT_HWRM_DMA_ALIGN, 0);
4010         if (!bp->hwrm_dma_pool)
4011                 return -ENOMEM;
4012
4013         INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4014
4015         return 0;
4016 }
4017
4018 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4019 {
4020         kfree(stats->hw_masks);
4021         stats->hw_masks = NULL;
4022         kfree(stats->sw_stats);
4023         stats->sw_stats = NULL;
4024         if (stats->hw_stats) {
4025                 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4026                                   stats->hw_stats_map);
4027                 stats->hw_stats = NULL;
4028         }
4029 }
4030
4031 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4032                                 bool alloc_masks)
4033 {
4034         stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4035                                              &stats->hw_stats_map, GFP_KERNEL);
4036         if (!stats->hw_stats)
4037                 return -ENOMEM;
4038
4039         stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4040         if (!stats->sw_stats)
4041                 goto stats_mem_err;
4042
4043         if (alloc_masks) {
4044                 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4045                 if (!stats->hw_masks)
4046                         goto stats_mem_err;
4047         }
4048         return 0;
4049
4050 stats_mem_err:
4051         bnxt_free_stats_mem(bp, stats);
4052         return -ENOMEM;
4053 }
4054
4055 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4056 {
4057         int i;
4058
4059         for (i = 0; i < count; i++)
4060                 mask_arr[i] = mask;
4061 }
4062
4063 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4064 {
4065         int i;
4066
4067         for (i = 0; i < count; i++)
4068                 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4069 }
4070
4071 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4072                                     struct bnxt_stats_mem *stats)
4073 {
4074         struct hwrm_func_qstats_ext_output *resp;
4075         struct hwrm_func_qstats_ext_input *req;
4076         __le64 *hw_masks;
4077         int rc;
4078
4079         if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4080             !(bp->flags & BNXT_FLAG_CHIP_P5))
4081                 return -EOPNOTSUPP;
4082
4083         rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4084         if (rc)
4085                 return rc;
4086
4087         req->fid = cpu_to_le16(0xffff);
4088         req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4089
4090         resp = hwrm_req_hold(bp, req);
4091         rc = hwrm_req_send(bp, req);
4092         if (!rc) {
4093                 hw_masks = &resp->rx_ucast_pkts;
4094                 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4095         }
4096         hwrm_req_drop(bp, req);
4097         return rc;
4098 }
4099
4100 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4101 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4102
4103 static void bnxt_init_stats(struct bnxt *bp)
4104 {
4105         struct bnxt_napi *bnapi = bp->bnapi[0];
4106         struct bnxt_cp_ring_info *cpr;
4107         struct bnxt_stats_mem *stats;
4108         __le64 *rx_stats, *tx_stats;
4109         int rc, rx_count, tx_count;
4110         u64 *rx_masks, *tx_masks;
4111         u64 mask;
4112         u8 flags;
4113
4114         cpr = &bnapi->cp_ring;
4115         stats = &cpr->stats;
4116         rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4117         if (rc) {
4118                 if (bp->flags & BNXT_FLAG_CHIP_P5)
4119                         mask = (1ULL << 48) - 1;
4120                 else
4121                         mask = -1ULL;
4122                 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4123         }
4124         if (bp->flags & BNXT_FLAG_PORT_STATS) {
4125                 stats = &bp->port_stats;
4126                 rx_stats = stats->hw_stats;
4127                 rx_masks = stats->hw_masks;
4128                 rx_count = sizeof(struct rx_port_stats) / 8;
4129                 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4130                 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4131                 tx_count = sizeof(struct tx_port_stats) / 8;
4132
4133                 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4134                 rc = bnxt_hwrm_port_qstats(bp, flags);
4135                 if (rc) {
4136                         mask = (1ULL << 40) - 1;
4137
4138                         bnxt_fill_masks(rx_masks, mask, rx_count);
4139                         bnxt_fill_masks(tx_masks, mask, tx_count);
4140                 } else {
4141                         bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4142                         bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4143                         bnxt_hwrm_port_qstats(bp, 0);
4144                 }
4145         }
4146         if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4147                 stats = &bp->rx_port_stats_ext;
4148                 rx_stats = stats->hw_stats;
4149                 rx_masks = stats->hw_masks;
4150                 rx_count = sizeof(struct rx_port_stats_ext) / 8;
4151                 stats = &bp->tx_port_stats_ext;
4152                 tx_stats = stats->hw_stats;
4153                 tx_masks = stats->hw_masks;
4154                 tx_count = sizeof(struct tx_port_stats_ext) / 8;
4155
4156                 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4157                 rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4158                 if (rc) {
4159                         mask = (1ULL << 40) - 1;
4160
4161                         bnxt_fill_masks(rx_masks, mask, rx_count);
4162                         if (tx_stats)
4163                                 bnxt_fill_masks(tx_masks, mask, tx_count);
4164                 } else {
4165                         bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4166                         if (tx_stats)
4167                                 bnxt_copy_hw_masks(tx_masks, tx_stats,
4168                                                    tx_count);
4169                         bnxt_hwrm_port_qstats_ext(bp, 0);
4170                 }
4171         }
4172 }
4173
4174 static void bnxt_free_port_stats(struct bnxt *bp)
4175 {
4176         bp->flags &= ~BNXT_FLAG_PORT_STATS;
4177         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4178
4179         bnxt_free_stats_mem(bp, &bp->port_stats);
4180         bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4181         bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4182 }
4183
4184 static void bnxt_free_ring_stats(struct bnxt *bp)
4185 {
4186         int i;
4187
4188         if (!bp->bnapi)
4189                 return;
4190
4191         for (i = 0; i < bp->cp_nr_rings; i++) {
4192                 struct bnxt_napi *bnapi = bp->bnapi[i];
4193                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4194
4195                 bnxt_free_stats_mem(bp, &cpr->stats);
4196         }
4197 }
4198
4199 static int bnxt_alloc_stats(struct bnxt *bp)
4200 {
4201         u32 size, i;
4202         int rc;
4203
4204         size = bp->hw_ring_stats_size;
4205
4206         for (i = 0; i < bp->cp_nr_rings; i++) {
4207                 struct bnxt_napi *bnapi = bp->bnapi[i];
4208                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4209
4210                 cpr->stats.len = size;
4211                 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4212                 if (rc)
4213                         return rc;
4214
4215                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4216         }
4217
4218         if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4219                 return 0;
4220
4221         if (bp->port_stats.hw_stats)
4222                 goto alloc_ext_stats;
4223
4224         bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4225         rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4226         if (rc)
4227                 return rc;
4228
4229         bp->flags |= BNXT_FLAG_PORT_STATS;
4230
4231 alloc_ext_stats:
4232         /* Display extended statistics only if FW supports it */
4233         if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4234                 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4235                         return 0;
4236
4237         if (bp->rx_port_stats_ext.hw_stats)
4238                 goto alloc_tx_ext_stats;
4239
4240         bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4241         rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4242         /* Extended stats are optional */
4243         if (rc)
4244                 return 0;
4245
4246 alloc_tx_ext_stats:
4247         if (bp->tx_port_stats_ext.hw_stats)
4248                 return 0;
4249
4250         if (bp->hwrm_spec_code >= 0x10902 ||
4251             (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4252                 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4253                 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4254                 /* Extended stats are optional */
4255                 if (rc)
4256                         return 0;
4257         }
4258         bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4259         return 0;
4260 }
4261
4262 static void bnxt_clear_ring_indices(struct bnxt *bp)
4263 {
4264         int i;
4265
4266         if (!bp->bnapi)
4267                 return;
4268
4269         for (i = 0; i < bp->cp_nr_rings; i++) {
4270                 struct bnxt_napi *bnapi = bp->bnapi[i];
4271                 struct bnxt_cp_ring_info *cpr;
4272                 struct bnxt_rx_ring_info *rxr;
4273                 struct bnxt_tx_ring_info *txr;
4274
4275                 if (!bnapi)
4276                         continue;
4277
4278                 cpr = &bnapi->cp_ring;
4279                 cpr->cp_raw_cons = 0;
4280
4281                 txr = bnapi->tx_ring;
4282                 if (txr) {
4283                         txr->tx_prod = 0;
4284                         txr->tx_cons = 0;
4285                 }
4286
4287                 rxr = bnapi->rx_ring;
4288                 if (rxr) {
4289                         rxr->rx_prod = 0;
4290                         rxr->rx_agg_prod = 0;
4291                         rxr->rx_sw_agg_prod = 0;
4292                         rxr->rx_next_cons = 0;
4293                 }
4294         }
4295 }
4296
4297 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4298 {
4299 #ifdef CONFIG_RFS_ACCEL
4300         int i;
4301
4302         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
4303          * safe to delete the hash table.
4304          */
4305         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4306                 struct hlist_head *head;
4307                 struct hlist_node *tmp;
4308                 struct bnxt_ntuple_filter *fltr;
4309
4310                 head = &bp->ntp_fltr_hash_tbl[i];
4311                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4312                         hlist_del(&fltr->hash);
4313                         kfree(fltr);
4314                 }
4315         }
4316         if (irq_reinit) {
4317                 kfree(bp->ntp_fltr_bmap);
4318                 bp->ntp_fltr_bmap = NULL;
4319         }
4320         bp->ntp_fltr_count = 0;
4321 #endif
4322 }
4323
4324 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4325 {
4326 #ifdef CONFIG_RFS_ACCEL
4327         int i, rc = 0;
4328
4329         if (!(bp->flags & BNXT_FLAG_RFS))
4330                 return 0;
4331
4332         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4333                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4334
4335         bp->ntp_fltr_count = 0;
4336         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4337                                     sizeof(long),
4338                                     GFP_KERNEL);
4339
4340         if (!bp->ntp_fltr_bmap)
4341                 rc = -ENOMEM;
4342
4343         return rc;
4344 #else
4345         return 0;
4346 #endif
4347 }
4348
4349 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4350 {
4351         bnxt_free_vnic_attributes(bp);
4352         bnxt_free_tx_rings(bp);
4353         bnxt_free_rx_rings(bp);
4354         bnxt_free_cp_rings(bp);
4355         bnxt_free_all_cp_arrays(bp);
4356         bnxt_free_ntp_fltrs(bp, irq_re_init);
4357         if (irq_re_init) {
4358                 bnxt_free_ring_stats(bp);
4359                 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4360                     test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4361                         bnxt_free_port_stats(bp);
4362                 bnxt_free_ring_grps(bp);
4363                 bnxt_free_vnics(bp);
4364                 kfree(bp->tx_ring_map);
4365                 bp->tx_ring_map = NULL;
4366                 kfree(bp->tx_ring);
4367                 bp->tx_ring = NULL;
4368                 kfree(bp->rx_ring);
4369                 bp->rx_ring = NULL;
4370                 kfree(bp->bnapi);
4371                 bp->bnapi = NULL;
4372         } else {
4373                 bnxt_clear_ring_indices(bp);
4374         }
4375 }
4376
4377 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4378 {
4379         int i, j, rc, size, arr_size;
4380         void *bnapi;
4381
4382         if (irq_re_init) {
4383                 /* Allocate bnapi mem pointer array and mem block for
4384                  * all queues
4385                  */
4386                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4387                                 bp->cp_nr_rings);
4388                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4389                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4390                 if (!bnapi)
4391                         return -ENOMEM;
4392
4393                 bp->bnapi = bnapi;
4394                 bnapi += arr_size;
4395                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4396                         bp->bnapi[i] = bnapi;
4397                         bp->bnapi[i]->index = i;
4398                         bp->bnapi[i]->bp = bp;
4399                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4400                                 struct bnxt_cp_ring_info *cpr =
4401                                         &bp->bnapi[i]->cp_ring;
4402
4403                                 cpr->cp_ring_struct.ring_mem.flags =
4404                                         BNXT_RMEM_RING_PTE_FLAG;
4405                         }
4406                 }
4407
4408                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
4409                                       sizeof(struct bnxt_rx_ring_info),
4410                                       GFP_KERNEL);
4411                 if (!bp->rx_ring)
4412                         return -ENOMEM;
4413
4414                 for (i = 0; i < bp->rx_nr_rings; i++) {
4415                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4416
4417                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4418                                 rxr->rx_ring_struct.ring_mem.flags =
4419                                         BNXT_RMEM_RING_PTE_FLAG;
4420                                 rxr->rx_agg_ring_struct.ring_mem.flags =
4421                                         BNXT_RMEM_RING_PTE_FLAG;
4422                         }
4423                         rxr->bnapi = bp->bnapi[i];
4424                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4425                 }
4426
4427                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
4428                                       sizeof(struct bnxt_tx_ring_info),
4429                                       GFP_KERNEL);
4430                 if (!bp->tx_ring)
4431                         return -ENOMEM;
4432
4433                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4434                                           GFP_KERNEL);
4435
4436                 if (!bp->tx_ring_map)
4437                         return -ENOMEM;
4438
4439                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4440                         j = 0;
4441                 else
4442                         j = bp->rx_nr_rings;
4443
4444                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4445                         struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4446
4447                         if (bp->flags & BNXT_FLAG_CHIP_P5)
4448                                 txr->tx_ring_struct.ring_mem.flags =
4449                                         BNXT_RMEM_RING_PTE_FLAG;
4450                         txr->bnapi = bp->bnapi[j];
4451                         bp->bnapi[j]->tx_ring = txr;
4452                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4453                         if (i >= bp->tx_nr_rings_xdp) {
4454                                 txr->txq_index = i - bp->tx_nr_rings_xdp;
4455                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
4456                         } else {
4457                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4458                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4459                         }
4460                 }
4461
4462                 rc = bnxt_alloc_stats(bp);
4463                 if (rc)
4464                         goto alloc_mem_err;
4465                 bnxt_init_stats(bp);
4466
4467                 rc = bnxt_alloc_ntp_fltrs(bp);
4468                 if (rc)
4469                         goto alloc_mem_err;
4470
4471                 rc = bnxt_alloc_vnics(bp);
4472                 if (rc)
4473                         goto alloc_mem_err;
4474         }
4475
4476         rc = bnxt_alloc_all_cp_arrays(bp);
4477         if (rc)
4478                 goto alloc_mem_err;
4479
4480         bnxt_init_ring_struct(bp);
4481
4482         rc = bnxt_alloc_rx_rings(bp);
4483         if (rc)
4484                 goto alloc_mem_err;
4485
4486         rc = bnxt_alloc_tx_rings(bp);
4487         if (rc)
4488                 goto alloc_mem_err;
4489
4490         rc = bnxt_alloc_cp_rings(bp);
4491         if (rc)
4492                 goto alloc_mem_err;
4493
4494         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4495                                   BNXT_VNIC_UCAST_FLAG;
4496         rc = bnxt_alloc_vnic_attributes(bp);
4497         if (rc)
4498                 goto alloc_mem_err;
4499         return 0;
4500
4501 alloc_mem_err:
4502         bnxt_free_mem(bp, true);
4503         return rc;
4504 }
4505
4506 static void bnxt_disable_int(struct bnxt *bp)
4507 {
4508         int i;
4509
4510         if (!bp->bnapi)
4511                 return;
4512
4513         for (i = 0; i < bp->cp_nr_rings; i++) {
4514                 struct bnxt_napi *bnapi = bp->bnapi[i];
4515                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4516                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4517
4518                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
4519                         bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4520         }
4521 }
4522
4523 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4524 {
4525         struct bnxt_napi *bnapi = bp->bnapi[n];
4526         struct bnxt_cp_ring_info *cpr;
4527
4528         cpr = &bnapi->cp_ring;
4529         return cpr->cp_ring_struct.map_idx;
4530 }
4531
4532 static void bnxt_disable_int_sync(struct bnxt *bp)
4533 {
4534         int i;
4535
4536         if (!bp->irq_tbl)
4537                 return;
4538
4539         atomic_inc(&bp->intr_sem);
4540
4541         bnxt_disable_int(bp);
4542         for (i = 0; i < bp->cp_nr_rings; i++) {
4543                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4544
4545                 synchronize_irq(bp->irq_tbl[map_idx].vector);
4546         }
4547 }
4548
4549 static void bnxt_enable_int(struct bnxt *bp)
4550 {
4551         int i;
4552
4553         atomic_set(&bp->intr_sem, 0);
4554         for (i = 0; i < bp->cp_nr_rings; i++) {
4555                 struct bnxt_napi *bnapi = bp->bnapi[i];
4556                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4557
4558                 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4559         }
4560 }
4561
4562 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4563                             bool async_only)
4564 {
4565         DECLARE_BITMAP(async_events_bmap, 256);
4566         u32 *events = (u32 *)async_events_bmap;
4567         struct hwrm_func_drv_rgtr_output *resp;
4568         struct hwrm_func_drv_rgtr_input *req;
4569         u32 flags;
4570         int rc, i;
4571
4572         rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4573         if (rc)
4574                 return rc;
4575
4576         req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4577                                    FUNC_DRV_RGTR_REQ_ENABLES_VER |
4578                                    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4579
4580         req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4581         flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4582         if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4583                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4584         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4585                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4586                          FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4587         req->flags = cpu_to_le32(flags);
4588         req->ver_maj_8b = DRV_VER_MAJ;
4589         req->ver_min_8b = DRV_VER_MIN;
4590         req->ver_upd_8b = DRV_VER_UPD;
4591         req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4592         req->ver_min = cpu_to_le16(DRV_VER_MIN);
4593         req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4594
4595         if (BNXT_PF(bp)) {
4596                 u32 data[8];
4597                 int i;
4598
4599                 memset(data, 0, sizeof(data));
4600                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4601                         u16 cmd = bnxt_vf_req_snif[i];
4602                         unsigned int bit, idx;
4603
4604                         idx = cmd / 32;
4605                         bit = cmd % 32;
4606                         data[idx] |= 1 << bit;
4607                 }
4608
4609                 for (i = 0; i < 8; i++)
4610                         req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4611
4612                 req->enables |=
4613                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4614         }
4615
4616         if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4617                 req->flags |= cpu_to_le32(
4618                         FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4619
4620         memset(async_events_bmap, 0, sizeof(async_events_bmap));
4621         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4622                 u16 event_id = bnxt_async_events_arr[i];
4623
4624                 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4625                     !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4626                         continue;
4627                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
4628         }
4629         if (bmap && bmap_size) {
4630                 for (i = 0; i < bmap_size; i++) {
4631                         if (test_bit(i, bmap))
4632                                 __set_bit(i, async_events_bmap);
4633                 }
4634         }
4635         for (i = 0; i < 8; i++)
4636                 req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4637
4638         if (async_only)
4639                 req->enables =
4640                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4641
4642         resp = hwrm_req_hold(bp, req);
4643         rc = hwrm_req_send(bp, req);
4644         if (!rc) {
4645                 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4646                 if (resp->flags &
4647                     cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4648                         bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4649         }
4650         hwrm_req_drop(bp, req);
4651         return rc;
4652 }
4653
4654 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4655 {
4656         struct hwrm_func_drv_unrgtr_input *req;
4657         int rc;
4658
4659         if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4660                 return 0;
4661
4662         rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4663         if (rc)
4664                 return rc;
4665         return hwrm_req_send(bp, req);
4666 }
4667
4668 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4669 {
4670         struct hwrm_tunnel_dst_port_free_input *req;
4671         int rc;
4672
4673         if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4674             bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4675                 return 0;
4676         if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4677             bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4678                 return 0;
4679
4680         rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4681         if (rc)
4682                 return rc;
4683
4684         req->tunnel_type = tunnel_type;
4685
4686         switch (tunnel_type) {
4687         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4688                 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4689                 bp->vxlan_port = 0;
4690                 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4691                 break;
4692         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4693                 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4694                 bp->nge_port = 0;
4695                 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4696                 break;
4697         default:
4698                 break;
4699         }
4700
4701         rc = hwrm_req_send(bp, req);
4702         if (rc)
4703                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4704                            rc);
4705         return rc;
4706 }
4707
4708 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4709                                            u8 tunnel_type)
4710 {
4711         struct hwrm_tunnel_dst_port_alloc_output *resp;
4712         struct hwrm_tunnel_dst_port_alloc_input *req;
4713         int rc;
4714
4715         rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4716         if (rc)
4717                 return rc;
4718
4719         req->tunnel_type = tunnel_type;
4720         req->tunnel_dst_port_val = port;
4721
4722         resp = hwrm_req_hold(bp, req);
4723         rc = hwrm_req_send(bp, req);
4724         if (rc) {
4725                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4726                            rc);
4727                 goto err_out;
4728         }
4729
4730         switch (tunnel_type) {
4731         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4732                 bp->vxlan_port = port;
4733                 bp->vxlan_fw_dst_port_id =
4734                         le16_to_cpu(resp->tunnel_dst_port_id);
4735                 break;
4736         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4737                 bp->nge_port = port;
4738                 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4739                 break;
4740         default:
4741                 break;
4742         }
4743
4744 err_out:
4745         hwrm_req_drop(bp, req);
4746         return rc;
4747 }
4748
4749 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4750 {
4751         struct hwrm_cfa_l2_set_rx_mask_input *req;
4752         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4753         int rc;
4754
4755         rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4756         if (rc)
4757                 return rc;
4758
4759         req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4760         req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4761         req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4762         req->mask = cpu_to_le32(vnic->rx_mask);
4763         return hwrm_req_send_silent(bp, req);
4764 }
4765
4766 #ifdef CONFIG_RFS_ACCEL
4767 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4768                                             struct bnxt_ntuple_filter *fltr)
4769 {
4770         struct hwrm_cfa_ntuple_filter_free_input *req;
4771         int rc;
4772
4773         rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4774         if (rc)
4775                 return rc;
4776
4777         req->ntuple_filter_id = fltr->filter_id;
4778         return hwrm_req_send(bp, req);
4779 }
4780
4781 #define BNXT_NTP_FLTR_FLAGS                                     \
4782         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
4783          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
4784          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
4785          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
4786          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
4787          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
4788          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
4789          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
4790          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
4791          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
4792          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
4793          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
4794          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
4795          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4796
4797 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
4798                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4799
4800 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4801                                              struct bnxt_ntuple_filter *fltr)
4802 {
4803         struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4804         struct hwrm_cfa_ntuple_filter_alloc_input *req;
4805         struct flow_keys *keys = &fltr->fkeys;
4806         struct bnxt_vnic_info *vnic;
4807         u32 flags = 0;
4808         int rc;
4809
4810         rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4811         if (rc)
4812                 return rc;
4813
4814         req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4815
4816         if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4817                 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4818                 req->dst_id = cpu_to_le16(fltr->rxq);
4819         } else {
4820                 vnic = &bp->vnic_info[fltr->rxq + 1];
4821                 req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4822         }
4823         req->flags = cpu_to_le32(flags);
4824         req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4825
4826         req->ethertype = htons(ETH_P_IP);
4827         memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4828         req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4829         req->ip_protocol = keys->basic.ip_proto;
4830
4831         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4832                 int i;
4833
4834                 req->ethertype = htons(ETH_P_IPV6);
4835                 req->ip_addr_type =
4836                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4837                 *(struct in6_addr *)&req->src_ipaddr[0] =
4838                         keys->addrs.v6addrs.src;
4839                 *(struct in6_addr *)&req->dst_ipaddr[0] =
4840                         keys->addrs.v6addrs.dst;
4841                 for (i = 0; i < 4; i++) {
4842                         req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4843                         req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4844                 }
4845         } else {
4846                 req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4847                 req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4848                 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4849                 req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4850         }
4851         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4852                 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4853                 req->tunnel_type =
4854                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4855         }
4856
4857         req->src_port = keys->ports.src;
4858         req->src_port_mask = cpu_to_be16(0xffff);
4859         req->dst_port = keys->ports.dst;
4860         req->dst_port_mask = cpu_to_be16(0xffff);
4861
4862         resp = hwrm_req_hold(bp, req);
4863         rc = hwrm_req_send(bp, req);
4864         if (!rc)
4865                 fltr->filter_id = resp->ntuple_filter_id;
4866         hwrm_req_drop(bp, req);
4867         return rc;
4868 }
4869 #endif
4870
4871 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4872                                      u8 *mac_addr)
4873 {
4874         struct hwrm_cfa_l2_filter_alloc_output *resp;
4875         struct hwrm_cfa_l2_filter_alloc_input *req;
4876         int rc;
4877
4878         rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
4879         if (rc)
4880                 return rc;
4881
4882         req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4883         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4884                 req->flags |=
4885                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4886         req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4887         req->enables =
4888                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4889                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4890                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4891         memcpy(req->l2_addr, mac_addr, ETH_ALEN);
4892         req->l2_addr_mask[0] = 0xff;
4893         req->l2_addr_mask[1] = 0xff;
4894         req->l2_addr_mask[2] = 0xff;
4895         req->l2_addr_mask[3] = 0xff;
4896         req->l2_addr_mask[4] = 0xff;
4897         req->l2_addr_mask[5] = 0xff;
4898
4899         resp = hwrm_req_hold(bp, req);
4900         rc = hwrm_req_send(bp, req);
4901         if (!rc)
4902                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4903                                                         resp->l2_filter_id;
4904         hwrm_req_drop(bp, req);
4905         return rc;
4906 }
4907
4908 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4909 {
4910         struct hwrm_cfa_l2_filter_free_input *req;
4911         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4912         int rc;
4913
4914         /* Any associated ntuple filters will also be cleared by firmware. */
4915         rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
4916         if (rc)
4917                 return rc;
4918         hwrm_req_hold(bp, req);
4919         for (i = 0; i < num_of_vnics; i++) {
4920                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4921
4922                 for (j = 0; j < vnic->uc_filter_count; j++) {
4923                         req->l2_filter_id = vnic->fw_l2_filter_id[j];
4924
4925                         rc = hwrm_req_send(bp, req);
4926                 }
4927                 vnic->uc_filter_count = 0;
4928         }
4929         hwrm_req_drop(bp, req);
4930         return rc;
4931 }
4932
4933 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4934 {
4935         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4936         u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4937         struct hwrm_vnic_tpa_cfg_input *req;
4938         int rc;
4939
4940         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4941                 return 0;
4942
4943         rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
4944         if (rc)
4945                 return rc;
4946
4947         if (tpa_flags) {
4948                 u16 mss = bp->dev->mtu - 40;
4949                 u32 nsegs, n, segs = 0, flags;
4950
4951                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4952                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4953                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4954                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4955                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4956                 if (tpa_flags & BNXT_FLAG_GRO)
4957                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4958
4959                 req->flags = cpu_to_le32(flags);
4960
4961                 req->enables =
4962                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4963                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4964                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4965
4966                 /* Number of segs are log2 units, and first packet is not
4967                  * included as part of this units.
4968                  */
4969                 if (mss <= BNXT_RX_PAGE_SIZE) {
4970                         n = BNXT_RX_PAGE_SIZE / mss;
4971                         nsegs = (MAX_SKB_FRAGS - 1) * n;
4972                 } else {
4973                         n = mss / BNXT_RX_PAGE_SIZE;
4974                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
4975                                 n++;
4976                         nsegs = (MAX_SKB_FRAGS - n) / n;
4977                 }
4978
4979                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4980                         segs = MAX_TPA_SEGS_P5;
4981                         max_aggs = bp->max_tpa;
4982                 } else {
4983                         segs = ilog2(nsegs);
4984                 }
4985                 req->max_agg_segs = cpu_to_le16(segs);
4986                 req->max_aggs = cpu_to_le16(max_aggs);
4987
4988                 req->min_agg_len = cpu_to_le32(512);
4989         }
4990         req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4991
4992         return hwrm_req_send(bp, req);
4993 }
4994
4995 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4996 {
4997         struct bnxt_ring_grp_info *grp_info;
4998
4999         grp_info = &bp->grp_info[ring->grp_idx];
5000         return grp_info->cp_fw_ring_id;
5001 }
5002
5003 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
5004 {
5005         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5006                 struct bnxt_napi *bnapi = rxr->bnapi;
5007                 struct bnxt_cp_ring_info *cpr;
5008
5009                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5010                 return cpr->cp_ring_struct.fw_ring_id;
5011         } else {
5012                 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5013         }
5014 }
5015
5016 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5017 {
5018         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5019                 struct bnxt_napi *bnapi = txr->bnapi;
5020                 struct bnxt_cp_ring_info *cpr;
5021
5022                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5023                 return cpr->cp_ring_struct.fw_ring_id;
5024         } else {
5025                 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5026         }
5027 }
5028
5029 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5030 {
5031         int entries;
5032
5033         if (bp->flags & BNXT_FLAG_CHIP_P5)
5034                 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5035         else
5036                 entries = HW_HASH_INDEX_SIZE;
5037
5038         bp->rss_indir_tbl_entries = entries;
5039         bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5040                                           GFP_KERNEL);
5041         if (!bp->rss_indir_tbl)
5042                 return -ENOMEM;
5043         return 0;
5044 }
5045
5046 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5047 {
5048         u16 max_rings, max_entries, pad, i;
5049
5050         if (!bp->rx_nr_rings)
5051                 return;
5052
5053         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5054                 max_rings = bp->rx_nr_rings - 1;
5055         else
5056                 max_rings = bp->rx_nr_rings;
5057
5058         max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5059
5060         for (i = 0; i < max_entries; i++)
5061                 bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5062
5063         pad = bp->rss_indir_tbl_entries - max_entries;
5064         if (pad)
5065                 memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5066 }
5067
5068 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5069 {
5070         u16 i, tbl_size, max_ring = 0;
5071
5072         if (!bp->rss_indir_tbl)
5073                 return 0;
5074
5075         tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5076         for (i = 0; i < tbl_size; i++)
5077                 max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5078         return max_ring;
5079 }
5080
5081 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5082 {
5083         if (bp->flags & BNXT_FLAG_CHIP_P5)
5084                 return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5085         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5086                 return 2;
5087         return 1;
5088 }
5089
5090 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5091 {
5092         bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5093         u16 i, j;
5094
5095         /* Fill the RSS indirection table with ring group ids */
5096         for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5097                 if (!no_rss)
5098                         j = bp->rss_indir_tbl[i];
5099                 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5100         }
5101 }
5102
5103 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5104                                       struct bnxt_vnic_info *vnic)
5105 {
5106         __le16 *ring_tbl = vnic->rss_table;
5107         struct bnxt_rx_ring_info *rxr;
5108         u16 tbl_size, i;
5109
5110         tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5111
5112         for (i = 0; i < tbl_size; i++) {
5113                 u16 ring_id, j;
5114
5115                 j = bp->rss_indir_tbl[i];
5116                 rxr = &bp->rx_ring[j];
5117
5118                 ring_id = rxr->rx_ring_struct.fw_ring_id;
5119                 *ring_tbl++ = cpu_to_le16(ring_id);
5120                 ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5121                 *ring_tbl++ = cpu_to_le16(ring_id);
5122         }
5123 }
5124
5125 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5126 {
5127         if (bp->flags & BNXT_FLAG_CHIP_P5)
5128                 __bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5129         else
5130                 __bnxt_fill_hw_rss_tbl(bp, vnic);
5131 }
5132
5133 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5134 {
5135         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5136         struct hwrm_vnic_rss_cfg_input *req;
5137         int rc;
5138
5139         if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5140             vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5141                 return 0;
5142
5143         rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5144         if (rc)
5145                 return rc;
5146
5147         if (set_rss) {
5148                 bnxt_fill_hw_rss_tbl(bp, vnic);
5149                 req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5150                 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5151                 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5152                 req->hash_key_tbl_addr =
5153                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
5154         }
5155         req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5156         return hwrm_req_send(bp, req);
5157 }
5158
5159 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5160 {
5161         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5162         struct hwrm_vnic_rss_cfg_input *req;
5163         dma_addr_t ring_tbl_map;
5164         u32 i, nr_ctxs;
5165         int rc;
5166
5167         rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5168         if (rc)
5169                 return rc;
5170
5171         req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5172         if (!set_rss)
5173                 return hwrm_req_send(bp, req);
5174
5175         bnxt_fill_hw_rss_tbl(bp, vnic);
5176         req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5177         req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5178         req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5179         ring_tbl_map = vnic->rss_table_dma_addr;
5180         nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5181
5182         hwrm_req_hold(bp, req);
5183         for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5184                 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5185                 req->ring_table_pair_index = i;
5186                 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5187                 rc = hwrm_req_send(bp, req);
5188                 if (rc)
5189                         goto exit;
5190         }
5191
5192 exit:
5193         hwrm_req_drop(bp, req);
5194         return rc;
5195 }
5196
5197 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5198 {
5199         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5200         struct hwrm_vnic_plcmodes_cfg_input *req;
5201         int rc;
5202
5203         rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5204         if (rc)
5205                 return rc;
5206
5207         req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5208                                  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5209                                  VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5210         req->enables =
5211                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5212                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5213         /* thresholds not implemented in firmware yet */
5214         req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5215         req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5216         req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5217         return hwrm_req_send(bp, req);
5218 }
5219
5220 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5221                                         u16 ctx_idx)
5222 {
5223         struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5224
5225         if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5226                 return;
5227
5228         req->rss_cos_lb_ctx_id =
5229                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5230
5231         hwrm_req_send(bp, req);
5232         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5233 }
5234
5235 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5236 {
5237         int i, j;
5238
5239         for (i = 0; i < bp->nr_vnics; i++) {
5240                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5241
5242                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5243                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5244                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5245                 }
5246         }
5247         bp->rsscos_nr_ctxs = 0;
5248 }
5249
5250 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5251 {
5252         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5253         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5254         int rc;
5255
5256         rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5257         if (rc)
5258                 return rc;
5259
5260         resp = hwrm_req_hold(bp, req);
5261         rc = hwrm_req_send(bp, req);
5262         if (!rc)
5263                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5264                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
5265         hwrm_req_drop(bp, req);
5266
5267         return rc;
5268 }
5269
5270 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5271 {
5272         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5273                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5274         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5275 }
5276
5277 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5278 {
5279         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5280         struct hwrm_vnic_cfg_input *req;
5281         unsigned int ring = 0, grp_idx;
5282         u16 def_vlan = 0;
5283         int rc;
5284
5285         rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5286         if (rc)
5287                 return rc;
5288
5289         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5290                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5291
5292                 req->default_rx_ring_id =
5293                         cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5294                 req->default_cmpl_ring_id =
5295                         cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5296                 req->enables =
5297                         cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5298                                     VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5299                 goto vnic_mru;
5300         }
5301         req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5302         /* Only RSS support for now TBD: COS & LB */
5303         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5304                 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5305                 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5306                                            VNIC_CFG_REQ_ENABLES_MRU);
5307         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5308                 req->rss_rule =
5309                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5310                 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5311                                            VNIC_CFG_REQ_ENABLES_MRU);
5312                 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5313         } else {
5314                 req->rss_rule = cpu_to_le16(0xffff);
5315         }
5316
5317         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5318             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5319                 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5320                 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5321         } else {
5322                 req->cos_rule = cpu_to_le16(0xffff);
5323         }
5324
5325         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5326                 ring = 0;
5327         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5328                 ring = vnic_id - 1;
5329         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5330                 ring = bp->rx_nr_rings - 1;
5331
5332         grp_idx = bp->rx_ring[ring].bnapi->index;
5333         req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5334         req->lb_rule = cpu_to_le16(0xffff);
5335 vnic_mru:
5336         req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5337
5338         req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5339 #ifdef CONFIG_BNXT_SRIOV
5340         if (BNXT_VF(bp))
5341                 def_vlan = bp->vf.vlan;
5342 #endif
5343         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5344                 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5345         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5346                 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5347
5348         return hwrm_req_send(bp, req);
5349 }
5350
5351 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5352 {
5353         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5354                 struct hwrm_vnic_free_input *req;
5355
5356                 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5357                         return;
5358
5359                 req->vnic_id =
5360                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5361
5362                 hwrm_req_send(bp, req);
5363                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5364         }
5365 }
5366
5367 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5368 {
5369         u16 i;
5370
5371         for (i = 0; i < bp->nr_vnics; i++)
5372                 bnxt_hwrm_vnic_free_one(bp, i);
5373 }
5374
5375 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5376                                 unsigned int start_rx_ring_idx,
5377                                 unsigned int nr_rings)
5378 {
5379         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5380         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5381         struct hwrm_vnic_alloc_output *resp;
5382         struct hwrm_vnic_alloc_input *req;
5383         int rc;
5384
5385         rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5386         if (rc)
5387                 return rc;
5388
5389         if (bp->flags & BNXT_FLAG_CHIP_P5)
5390                 goto vnic_no_ring_grps;
5391
5392         /* map ring groups to this vnic */
5393         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5394                 grp_idx = bp->rx_ring[i].bnapi->index;
5395                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5396                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5397                                    j, nr_rings);
5398                         break;
5399                 }
5400                 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5401         }
5402
5403 vnic_no_ring_grps:
5404         for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5405                 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5406         if (vnic_id == 0)
5407                 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5408
5409         resp = hwrm_req_hold(bp, req);
5410         rc = hwrm_req_send(bp, req);
5411         if (!rc)
5412                 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5413         hwrm_req_drop(bp, req);
5414         return rc;
5415 }
5416
5417 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5418 {
5419         struct hwrm_vnic_qcaps_output *resp;
5420         struct hwrm_vnic_qcaps_input *req;
5421         int rc;
5422
5423         bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5424         bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5425         if (bp->hwrm_spec_code < 0x10600)
5426                 return 0;
5427
5428         rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5429         if (rc)
5430                 return rc;
5431
5432         resp = hwrm_req_hold(bp, req);
5433         rc = hwrm_req_send(bp, req);
5434         if (!rc) {
5435                 u32 flags = le32_to_cpu(resp->flags);
5436
5437                 if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5438                     (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5439                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5440                 if (flags &
5441                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5442                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5443
5444                 /* Older P5 fw before EXT_HW_STATS support did not set
5445                  * VLAN_STRIP_CAP properly.
5446                  */
5447                 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5448                     (BNXT_CHIP_P5_THOR(bp) &&
5449                      !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5450                         bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5451                 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5452                 if (bp->max_tpa_v2) {
5453                         if (BNXT_CHIP_P5_THOR(bp))
5454                                 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5455                         else
5456                                 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5457                 }
5458         }
5459         hwrm_req_drop(bp, req);
5460         return rc;
5461 }
5462
5463 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5464 {
5465         struct hwrm_ring_grp_alloc_output *resp;
5466         struct hwrm_ring_grp_alloc_input *req;
5467         int rc;
5468         u16 i;
5469
5470         if (bp->flags & BNXT_FLAG_CHIP_P5)
5471                 return 0;
5472
5473         rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5474         if (rc)
5475                 return rc;
5476
5477         resp = hwrm_req_hold(bp, req);
5478         for (i = 0; i < bp->rx_nr_rings; i++) {
5479                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5480
5481                 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5482                 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5483                 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5484                 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5485
5486                 rc = hwrm_req_send(bp, req);
5487
5488                 if (rc)
5489                         break;
5490
5491                 bp->grp_info[grp_idx].fw_grp_id =
5492                         le32_to_cpu(resp->ring_group_id);
5493         }
5494         hwrm_req_drop(bp, req);
5495         return rc;
5496 }
5497
5498 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5499 {
5500         struct hwrm_ring_grp_free_input *req;
5501         u16 i;
5502
5503         if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5504                 return;
5505
5506         if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5507                 return;
5508
5509         hwrm_req_hold(bp, req);
5510         for (i = 0; i < bp->cp_nr_rings; i++) {
5511                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5512                         continue;
5513                 req->ring_group_id =
5514                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
5515
5516                 hwrm_req_send(bp, req);
5517                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5518         }
5519         hwrm_req_drop(bp, req);
5520 }
5521
5522 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5523                                     struct bnxt_ring_struct *ring,
5524                                     u32 ring_type, u32 map_index)
5525 {
5526         struct hwrm_ring_alloc_output *resp;
5527         struct hwrm_ring_alloc_input *req;
5528         struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5529         struct bnxt_ring_grp_info *grp_info;
5530         int rc, err = 0;
5531         u16 ring_id;
5532
5533         rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5534         if (rc)
5535                 goto exit;
5536
5537         req->enables = 0;
5538         if (rmem->nr_pages > 1) {
5539                 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5540                 /* Page size is in log2 units */
5541                 req->page_size = BNXT_PAGE_SHIFT;
5542                 req->page_tbl_depth = 1;
5543         } else {
5544                 req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5545         }
5546         req->fbo = 0;
5547         /* Association of ring index with doorbell index and MSIX number */
5548         req->logical_id = cpu_to_le16(map_index);
5549
5550         switch (ring_type) {
5551         case HWRM_RING_ALLOC_TX: {
5552                 struct bnxt_tx_ring_info *txr;
5553
5554                 txr = container_of(ring, struct bnxt_tx_ring_info,
5555                                    tx_ring_struct);
5556                 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5557                 /* Association of transmit ring with completion ring */
5558                 grp_info = &bp->grp_info[ring->grp_idx];
5559                 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5560                 req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5561                 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5562                 req->queue_id = cpu_to_le16(ring->queue_id);
5563                 break;
5564         }
5565         case HWRM_RING_ALLOC_RX:
5566                 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5567                 req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5568                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5569                         u16 flags = 0;
5570
5571                         /* Association of rx ring with stats context */
5572                         grp_info = &bp->grp_info[ring->grp_idx];
5573                         req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5574                         req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5575                         req->enables |= cpu_to_le32(
5576                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5577                         if (NET_IP_ALIGN == 2)
5578                                 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5579                         req->flags = cpu_to_le16(flags);
5580                 }
5581                 break;
5582         case HWRM_RING_ALLOC_AGG:
5583                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5584                         req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5585                         /* Association of agg ring with rx ring */
5586                         grp_info = &bp->grp_info[ring->grp_idx];
5587                         req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5588                         req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5589                         req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5590                         req->enables |= cpu_to_le32(
5591                                 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5592                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5593                 } else {
5594                         req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5595                 }
5596                 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5597                 break;
5598         case HWRM_RING_ALLOC_CMPL:
5599                 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5600                 req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5601                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5602                         /* Association of cp ring with nq */
5603                         grp_info = &bp->grp_info[map_index];
5604                         req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5605                         req->cq_handle = cpu_to_le64(ring->handle);
5606                         req->enables |= cpu_to_le32(
5607                                 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5608                 } else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5609                         req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5610                 }
5611                 break;
5612         case HWRM_RING_ALLOC_NQ:
5613                 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5614                 req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5615                 if (bp->flags & BNXT_FLAG_USING_MSIX)
5616                         req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5617                 break;
5618         default:
5619                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5620                            ring_type);
5621                 return -1;
5622         }
5623
5624         resp = hwrm_req_hold(bp, req);
5625         rc = hwrm_req_send(bp, req);
5626         err = le16_to_cpu(resp->error_code);
5627         ring_id = le16_to_cpu(resp->ring_id);
5628         hwrm_req_drop(bp, req);
5629
5630 exit:
5631         if (rc || err) {
5632                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5633                            ring_type, rc, err);
5634                 return -EIO;
5635         }
5636         ring->fw_ring_id = ring_id;
5637         return rc;
5638 }
5639
5640 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5641 {
5642         int rc;
5643
5644         if (BNXT_PF(bp)) {
5645                 struct hwrm_func_cfg_input *req;
5646
5647                 rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5648                 if (rc)
5649                         return rc;
5650
5651                 req->fid = cpu_to_le16(0xffff);
5652                 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5653                 req->async_event_cr = cpu_to_le16(idx);
5654                 return hwrm_req_send(bp, req);
5655         } else {
5656                 struct hwrm_func_vf_cfg_input *req;
5657
5658                 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5659                 if (rc)
5660                         return rc;
5661
5662                 req->enables =
5663                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5664                 req->async_event_cr = cpu_to_le16(idx);
5665                 return hwrm_req_send(bp, req);
5666         }
5667 }
5668
5669 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5670                         u32 map_idx, u32 xid)
5671 {
5672         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5673                 if (BNXT_PF(bp))
5674                         db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5675                 else
5676                         db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5677                 switch (ring_type) {
5678                 case HWRM_RING_ALLOC_TX:
5679                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5680                         break;
5681                 case HWRM_RING_ALLOC_RX:
5682                 case HWRM_RING_ALLOC_AGG:
5683                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5684                         break;
5685                 case HWRM_RING_ALLOC_CMPL:
5686                         db->db_key64 = DBR_PATH_L2;
5687                         break;
5688                 case HWRM_RING_ALLOC_NQ:
5689                         db->db_key64 = DBR_PATH_L2;
5690                         break;
5691                 }
5692                 db->db_key64 |= (u64)xid << DBR_XID_SFT;
5693         } else {
5694                 db->doorbell = bp->bar1 + map_idx * 0x80;
5695                 switch (ring_type) {
5696                 case HWRM_RING_ALLOC_TX:
5697                         db->db_key32 = DB_KEY_TX;
5698                         break;
5699                 case HWRM_RING_ALLOC_RX:
5700                 case HWRM_RING_ALLOC_AGG:
5701                         db->db_key32 = DB_KEY_RX;
5702                         break;
5703                 case HWRM_RING_ALLOC_CMPL:
5704                         db->db_key32 = DB_KEY_CP;
5705                         break;
5706                 }
5707         }
5708 }
5709
5710 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5711 {
5712         bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5713         int i, rc = 0;
5714         u32 type;
5715
5716         if (bp->flags & BNXT_FLAG_CHIP_P5)
5717                 type = HWRM_RING_ALLOC_NQ;
5718         else
5719                 type = HWRM_RING_ALLOC_CMPL;
5720         for (i = 0; i < bp->cp_nr_rings; i++) {
5721                 struct bnxt_napi *bnapi = bp->bnapi[i];
5722                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5723                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5724                 u32 map_idx = ring->map_idx;
5725                 unsigned int vector;
5726
5727                 vector = bp->irq_tbl[map_idx].vector;
5728                 disable_irq_nosync(vector);
5729                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5730                 if (rc) {
5731                         enable_irq(vector);
5732                         goto err_out;
5733                 }
5734                 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5735                 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5736                 enable_irq(vector);
5737                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5738
5739                 if (!i) {
5740                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5741                         if (rc)
5742                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5743                 }
5744         }
5745
5746         type = HWRM_RING_ALLOC_TX;
5747         for (i = 0; i < bp->tx_nr_rings; i++) {
5748                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5749                 struct bnxt_ring_struct *ring;
5750                 u32 map_idx;
5751
5752                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5753                         struct bnxt_napi *bnapi = txr->bnapi;
5754                         struct bnxt_cp_ring_info *cpr, *cpr2;
5755                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5756
5757                         cpr = &bnapi->cp_ring;
5758                         cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5759                         ring = &cpr2->cp_ring_struct;
5760                         ring->handle = BNXT_TX_HDL;
5761                         map_idx = bnapi->index;
5762                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5763                         if (rc)
5764                                 goto err_out;
5765                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5766                                     ring->fw_ring_id);
5767                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5768                 }
5769                 ring = &txr->tx_ring_struct;
5770                 map_idx = i;
5771                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5772                 if (rc)
5773                         goto err_out;
5774                 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5775         }
5776
5777         type = HWRM_RING_ALLOC_RX;
5778         for (i = 0; i < bp->rx_nr_rings; i++) {
5779                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5780                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5781                 struct bnxt_napi *bnapi = rxr->bnapi;
5782                 u32 map_idx = bnapi->index;
5783
5784                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5785                 if (rc)
5786                         goto err_out;
5787                 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5788                 /* If we have agg rings, post agg buffers first. */
5789                 if (!agg_rings)
5790                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5791                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5792                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5793                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5794                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5795                         struct bnxt_cp_ring_info *cpr2;
5796
5797                         cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5798                         ring = &cpr2->cp_ring_struct;
5799                         ring->handle = BNXT_RX_HDL;
5800                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5801                         if (rc)
5802                                 goto err_out;
5803                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5804                                     ring->fw_ring_id);
5805                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5806                 }
5807         }
5808
5809         if (agg_rings) {
5810                 type = HWRM_RING_ALLOC_AGG;
5811                 for (i = 0; i < bp->rx_nr_rings; i++) {
5812                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5813                         struct bnxt_ring_struct *ring =
5814                                                 &rxr->rx_agg_ring_struct;
5815                         u32 grp_idx = ring->grp_idx;
5816                         u32 map_idx = grp_idx + bp->rx_nr_rings;
5817
5818                         rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5819                         if (rc)
5820                                 goto err_out;
5821
5822                         bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5823                                     ring->fw_ring_id);
5824                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5825                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5826                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5827                 }
5828         }
5829 err_out:
5830         return rc;
5831 }
5832
5833 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5834                                    struct bnxt_ring_struct *ring,
5835                                    u32 ring_type, int cmpl_ring_id)
5836 {
5837         struct hwrm_ring_free_output *resp;
5838         struct hwrm_ring_free_input *req;
5839         u16 error_code = 0;
5840         int rc;
5841
5842         if (BNXT_NO_FW_ACCESS(bp))
5843                 return 0;
5844
5845         rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
5846         if (rc)
5847                 goto exit;
5848
5849         req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
5850         req->ring_type = ring_type;
5851         req->ring_id = cpu_to_le16(ring->fw_ring_id);
5852
5853         resp = hwrm_req_hold(bp, req);
5854         rc = hwrm_req_send(bp, req);
5855         error_code = le16_to_cpu(resp->error_code);
5856         hwrm_req_drop(bp, req);
5857 exit:
5858         if (rc || error_code) {
5859                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5860                            ring_type, rc, error_code);
5861                 return -EIO;
5862         }
5863         return 0;
5864 }
5865
5866 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5867 {
5868         u32 type;
5869         int i;
5870
5871         if (!bp->bnapi)
5872                 return;
5873
5874         for (i = 0; i < bp->tx_nr_rings; i++) {
5875                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5876                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5877
5878                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5879                         u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5880
5881                         hwrm_ring_free_send_msg(bp, ring,
5882                                                 RING_FREE_REQ_RING_TYPE_TX,
5883                                                 close_path ? cmpl_ring_id :
5884                                                 INVALID_HW_RING_ID);
5885                         ring->fw_ring_id = INVALID_HW_RING_ID;
5886                 }
5887         }
5888
5889         for (i = 0; i < bp->rx_nr_rings; i++) {
5890                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5891                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5892                 u32 grp_idx = rxr->bnapi->index;
5893
5894                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5895                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5896
5897                         hwrm_ring_free_send_msg(bp, ring,
5898                                                 RING_FREE_REQ_RING_TYPE_RX,
5899                                                 close_path ? cmpl_ring_id :
5900                                                 INVALID_HW_RING_ID);
5901                         ring->fw_ring_id = INVALID_HW_RING_ID;
5902                         bp->grp_info[grp_idx].rx_fw_ring_id =
5903                                 INVALID_HW_RING_ID;
5904                 }
5905         }
5906
5907         if (bp->flags & BNXT_FLAG_CHIP_P5)
5908                 type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5909         else
5910                 type = RING_FREE_REQ_RING_TYPE_RX;
5911         for (i = 0; i < bp->rx_nr_rings; i++) {
5912                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5913                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5914                 u32 grp_idx = rxr->bnapi->index;
5915
5916                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5917                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5918
5919                         hwrm_ring_free_send_msg(bp, ring, type,
5920                                                 close_path ? cmpl_ring_id :
5921                                                 INVALID_HW_RING_ID);
5922                         ring->fw_ring_id = INVALID_HW_RING_ID;
5923                         bp->grp_info[grp_idx].agg_fw_ring_id =
5924                                 INVALID_HW_RING_ID;
5925                 }
5926         }
5927
5928         /* The completion rings are about to be freed.  After that the
5929          * IRQ doorbell will not work anymore.  So we need to disable
5930          * IRQ here.
5931          */
5932         bnxt_disable_int_sync(bp);
5933
5934         if (bp->flags & BNXT_FLAG_CHIP_P5)
5935                 type = RING_FREE_REQ_RING_TYPE_NQ;
5936         else
5937                 type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5938         for (i = 0; i < bp->cp_nr_rings; i++) {
5939                 struct bnxt_napi *bnapi = bp->bnapi[i];
5940                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5941                 struct bnxt_ring_struct *ring;
5942                 int j;
5943
5944                 for (j = 0; j < 2; j++) {
5945                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5946
5947                         if (cpr2) {
5948                                 ring = &cpr2->cp_ring_struct;
5949                                 if (ring->fw_ring_id == INVALID_HW_RING_ID)
5950                                         continue;
5951                                 hwrm_ring_free_send_msg(bp, ring,
5952                                         RING_FREE_REQ_RING_TYPE_L2_CMPL,
5953                                         INVALID_HW_RING_ID);
5954                                 ring->fw_ring_id = INVALID_HW_RING_ID;
5955                         }
5956                 }
5957                 ring = &cpr->cp_ring_struct;
5958                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5959                         hwrm_ring_free_send_msg(bp, ring, type,
5960                                                 INVALID_HW_RING_ID);
5961                         ring->fw_ring_id = INVALID_HW_RING_ID;
5962                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5963                 }
5964         }
5965 }
5966
5967 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5968                            bool shared);
5969
5970 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5971 {
5972         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5973         struct hwrm_func_qcfg_output *resp;
5974         struct hwrm_func_qcfg_input *req;
5975         int rc;
5976
5977         if (bp->hwrm_spec_code < 0x10601)
5978                 return 0;
5979
5980         rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
5981         if (rc)
5982                 return rc;
5983
5984         req->fid = cpu_to_le16(0xffff);
5985         resp = hwrm_req_hold(bp, req);
5986         rc = hwrm_req_send(bp, req);
5987         if (rc) {
5988                 hwrm_req_drop(bp, req);
5989                 return rc;
5990         }
5991
5992         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5993         if (BNXT_NEW_RM(bp)) {
5994                 u16 cp, stats;
5995
5996                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5997                 hw_resc->resv_hw_ring_grps =
5998                         le32_to_cpu(resp->alloc_hw_ring_grps);
5999                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
6000                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
6001                 stats = le16_to_cpu(resp->alloc_stat_ctx);
6002                 hw_resc->resv_irqs = cp;
6003                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6004                         int rx = hw_resc->resv_rx_rings;
6005                         int tx = hw_resc->resv_tx_rings;
6006
6007                         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6008                                 rx >>= 1;
6009                         if (cp < (rx + tx)) {
6010                                 bnxt_trim_rings(bp, &rx, &tx, cp, false);
6011                                 if (bp->flags & BNXT_FLAG_AGG_RINGS)
6012                                         rx <<= 1;
6013                                 hw_resc->resv_rx_rings = rx;
6014                                 hw_resc->resv_tx_rings = tx;
6015                         }
6016                         hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6017                         hw_resc->resv_hw_ring_grps = rx;
6018                 }
6019                 hw_resc->resv_cp_rings = cp;
6020                 hw_resc->resv_stat_ctxs = stats;
6021         }
6022         hwrm_req_drop(bp, req);
6023         return 0;
6024 }
6025
6026 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6027 {
6028         struct hwrm_func_qcfg_output *resp;
6029         struct hwrm_func_qcfg_input *req;
6030         int rc;
6031
6032         if (bp->hwrm_spec_code < 0x10601)
6033                 return 0;
6034
6035         rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6036         if (rc)
6037                 return rc;
6038
6039         req->fid = cpu_to_le16(fid);
6040         resp = hwrm_req_hold(bp, req);
6041         rc = hwrm_req_send(bp, req);
6042         if (!rc)
6043                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6044
6045         hwrm_req_drop(bp, req);
6046         return rc;
6047 }
6048
6049 static bool bnxt_rfs_supported(struct bnxt *bp);
6050
6051 static struct hwrm_func_cfg_input *
6052 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6053                              int ring_grps, int cp_rings, int stats, int vnics)
6054 {
6055         struct hwrm_func_cfg_input *req;
6056         u32 enables = 0;
6057
6058         if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6059                 return NULL;
6060
6061         req->fid = cpu_to_le16(0xffff);
6062         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6063         req->num_tx_rings = cpu_to_le16(tx_rings);
6064         if (BNXT_NEW_RM(bp)) {
6065                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6066                 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6067                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6068                         enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6069                         enables |= tx_rings + ring_grps ?
6070                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6071                         enables |= rx_rings ?
6072                                 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6073                 } else {
6074                         enables |= cp_rings ?
6075                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6076                         enables |= ring_grps ?
6077                                    FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6078                                    FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6079                 }
6080                 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6081
6082                 req->num_rx_rings = cpu_to_le16(rx_rings);
6083                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
6084                         req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6085                         req->num_msix = cpu_to_le16(cp_rings);
6086                         req->num_rsscos_ctxs =
6087                                 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6088                 } else {
6089                         req->num_cmpl_rings = cpu_to_le16(cp_rings);
6090                         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6091                         req->num_rsscos_ctxs = cpu_to_le16(1);
6092                         if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6093                             bnxt_rfs_supported(bp))
6094                                 req->num_rsscos_ctxs =
6095                                         cpu_to_le16(ring_grps + 1);
6096                 }
6097                 req->num_stat_ctxs = cpu_to_le16(stats);
6098                 req->num_vnics = cpu_to_le16(vnics);
6099         }
6100         req->enables = cpu_to_le32(enables);
6101         return req;
6102 }
6103
6104 static struct hwrm_func_vf_cfg_input *
6105 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6106                              int ring_grps, int cp_rings, int stats, int vnics)
6107 {
6108         struct hwrm_func_vf_cfg_input *req;
6109         u32 enables = 0;
6110
6111         if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6112                 return NULL;
6113
6114         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6115         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6116                               FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6117         enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6118         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6119                 enables |= tx_rings + ring_grps ?
6120                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6121         } else {
6122                 enables |= cp_rings ?
6123                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6124                 enables |= ring_grps ?
6125                            FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6126         }
6127         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6128         enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6129
6130         req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6131         req->num_tx_rings = cpu_to_le16(tx_rings);
6132         req->num_rx_rings = cpu_to_le16(rx_rings);
6133         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6134                 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6135                 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6136         } else {
6137                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
6138                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6139                 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6140         }
6141         req->num_stat_ctxs = cpu_to_le16(stats);
6142         req->num_vnics = cpu_to_le16(vnics);
6143
6144         req->enables = cpu_to_le32(enables);
6145         return req;
6146 }
6147
6148 static int
6149 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6150                            int ring_grps, int cp_rings, int stats, int vnics)
6151 {
6152         struct hwrm_func_cfg_input *req;
6153         int rc;
6154
6155         req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6156                                            cp_rings, stats, vnics);
6157         if (!req)
6158                 return -ENOMEM;
6159
6160         if (!req->enables) {
6161                 hwrm_req_drop(bp, req);
6162                 return 0;
6163         }
6164
6165         rc = hwrm_req_send(bp, req);
6166         if (rc)
6167                 return rc;
6168
6169         if (bp->hwrm_spec_code < 0x10601)
6170                 bp->hw_resc.resv_tx_rings = tx_rings;
6171
6172         return bnxt_hwrm_get_rings(bp);
6173 }
6174
6175 static int
6176 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6177                            int ring_grps, int cp_rings, int stats, int vnics)
6178 {
6179         struct hwrm_func_vf_cfg_input *req;
6180         int rc;
6181
6182         if (!BNXT_NEW_RM(bp)) {
6183                 bp->hw_resc.resv_tx_rings = tx_rings;
6184                 return 0;
6185         }
6186
6187         req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6188                                            cp_rings, stats, vnics);
6189         if (!req)
6190                 return -ENOMEM;
6191
6192         rc = hwrm_req_send(bp, req);
6193         if (rc)
6194                 return rc;
6195
6196         return bnxt_hwrm_get_rings(bp);
6197 }
6198
6199 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6200                                    int cp, int stat, int vnic)
6201 {
6202         if (BNXT_PF(bp))
6203                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6204                                                   vnic);
6205         else
6206                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6207                                                   vnic);
6208 }
6209
6210 int bnxt_nq_rings_in_use(struct bnxt *bp)
6211 {
6212         int cp = bp->cp_nr_rings;
6213         int ulp_msix, ulp_base;
6214
6215         ulp_msix = bnxt_get_ulp_msix_num(bp);
6216         if (ulp_msix) {
6217                 ulp_base = bnxt_get_ulp_msix_base(bp);
6218                 cp += ulp_msix;
6219                 if ((ulp_base + ulp_msix) > cp)
6220                         cp = ulp_base + ulp_msix;
6221         }
6222         return cp;
6223 }
6224
6225 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6226 {
6227         int cp;
6228
6229         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6230                 return bnxt_nq_rings_in_use(bp);
6231
6232         cp = bp->tx_nr_rings + bp->rx_nr_rings;
6233         return cp;
6234 }
6235
6236 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6237 {
6238         int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6239         int cp = bp->cp_nr_rings;
6240
6241         if (!ulp_stat)
6242                 return cp;
6243
6244         if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6245                 return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6246
6247         return cp + ulp_stat;
6248 }
6249
6250 /* Check if a default RSS map needs to be setup.  This function is only
6251  * used on older firmware that does not require reserving RX rings.
6252  */
6253 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6254 {
6255         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6256
6257         /* The RSS map is valid for RX rings set to resv_rx_rings */
6258         if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6259                 hw_resc->resv_rx_rings = bp->rx_nr_rings;
6260                 if (!netif_is_rxfh_configured(bp->dev))
6261                         bnxt_set_dflt_rss_indir_tbl(bp);
6262         }
6263 }
6264
6265 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6266 {
6267         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6268         int cp = bnxt_cp_rings_in_use(bp);
6269         int nq = bnxt_nq_rings_in_use(bp);
6270         int rx = bp->rx_nr_rings, stat;
6271         int vnic = 1, grp = rx;
6272
6273         if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6274             bp->hwrm_spec_code >= 0x10601)
6275                 return true;
6276
6277         /* Old firmware does not need RX ring reservations but we still
6278          * need to setup a default RSS map when needed.  With new firmware
6279          * we go through RX ring reservations first and then set up the
6280          * RSS map for the successfully reserved RX rings when needed.
6281          */
6282         if (!BNXT_NEW_RM(bp)) {
6283                 bnxt_check_rss_tbl_no_rmgr(bp);
6284                 return false;
6285         }
6286         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6287                 vnic = rx + 1;
6288         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6289                 rx <<= 1;
6290         stat = bnxt_get_func_stat_ctxs(bp);
6291         if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6292             hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6293             (hw_resc->resv_hw_ring_grps != grp &&
6294              !(bp->flags & BNXT_FLAG_CHIP_P5)))
6295                 return true;
6296         if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6297             hw_resc->resv_irqs != nq)
6298                 return true;
6299         return false;
6300 }
6301
6302 static int __bnxt_reserve_rings(struct bnxt *bp)
6303 {
6304         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6305         int cp = bnxt_nq_rings_in_use(bp);
6306         int tx = bp->tx_nr_rings;
6307         int rx = bp->rx_nr_rings;
6308         int grp, rx_rings, rc;
6309         int vnic = 1, stat;
6310         bool sh = false;
6311
6312         if (!bnxt_need_reserve_rings(bp))
6313                 return 0;
6314
6315         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6316                 sh = true;
6317         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6318                 vnic = rx + 1;
6319         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6320                 rx <<= 1;
6321         grp = bp->rx_nr_rings;
6322         stat = bnxt_get_func_stat_ctxs(bp);
6323
6324         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6325         if (rc)
6326                 return rc;
6327
6328         tx = hw_resc->resv_tx_rings;
6329         if (BNXT_NEW_RM(bp)) {
6330                 rx = hw_resc->resv_rx_rings;
6331                 cp = hw_resc->resv_irqs;
6332                 grp = hw_resc->resv_hw_ring_grps;
6333                 vnic = hw_resc->resv_vnics;
6334                 stat = hw_resc->resv_stat_ctxs;
6335         }
6336
6337         rx_rings = rx;
6338         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6339                 if (rx >= 2) {
6340                         rx_rings = rx >> 1;
6341                 } else {
6342                         if (netif_running(bp->dev))
6343                                 return -ENOMEM;
6344
6345                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6346                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6347                         bp->dev->hw_features &= ~NETIF_F_LRO;
6348                         bp->dev->features &= ~NETIF_F_LRO;
6349                         bnxt_set_ring_params(bp);
6350                 }
6351         }
6352         rx_rings = min_t(int, rx_rings, grp);
6353         cp = min_t(int, cp, bp->cp_nr_rings);
6354         if (stat > bnxt_get_ulp_stat_ctxs(bp))
6355                 stat -= bnxt_get_ulp_stat_ctxs(bp);
6356         cp = min_t(int, cp, stat);
6357         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6358         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6359                 rx = rx_rings << 1;
6360         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6361         bp->tx_nr_rings = tx;
6362
6363         /* If we cannot reserve all the RX rings, reset the RSS map only
6364          * if absolutely necessary
6365          */
6366         if (rx_rings != bp->rx_nr_rings) {
6367                 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6368                             rx_rings, bp->rx_nr_rings);
6369                 if ((bp->dev->priv_flags & IFF_RXFH_CONFIGURED) &&
6370                     (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6371                      bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6372                      bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6373                         netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6374                         bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6375                 }
6376         }
6377         bp->rx_nr_rings = rx_rings;
6378         bp->cp_nr_rings = cp;
6379
6380         if (!tx || !rx || !cp || !grp || !vnic || !stat)
6381                 return -ENOMEM;
6382
6383         if (!netif_is_rxfh_configured(bp->dev))
6384                 bnxt_set_dflt_rss_indir_tbl(bp);
6385
6386         return rc;
6387 }
6388
6389 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6390                                     int ring_grps, int cp_rings, int stats,
6391                                     int vnics)
6392 {
6393         struct hwrm_func_vf_cfg_input *req;
6394         u32 flags;
6395
6396         if (!BNXT_NEW_RM(bp))
6397                 return 0;
6398
6399         req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6400                                            cp_rings, stats, vnics);
6401         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6402                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6403                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6404                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6405                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6406                 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6407         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6408                 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6409
6410         req->flags = cpu_to_le32(flags);
6411         return hwrm_req_send_silent(bp, req);
6412 }
6413
6414 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6415                                     int ring_grps, int cp_rings, int stats,
6416                                     int vnics)
6417 {
6418         struct hwrm_func_cfg_input *req;
6419         u32 flags;
6420
6421         req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6422                                            cp_rings, stats, vnics);
6423         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6424         if (BNXT_NEW_RM(bp)) {
6425                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6426                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6427                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6428                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6429                 if (bp->flags & BNXT_FLAG_CHIP_P5)
6430                         flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6431                                  FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6432                 else
6433                         flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6434         }
6435
6436         req->flags = cpu_to_le32(flags);
6437         return hwrm_req_send_silent(bp, req);
6438 }
6439
6440 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6441                                  int ring_grps, int cp_rings, int stats,
6442                                  int vnics)
6443 {
6444         if (bp->hwrm_spec_code < 0x10801)
6445                 return 0;
6446
6447         if (BNXT_PF(bp))
6448                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6449                                                 ring_grps, cp_rings, stats,
6450                                                 vnics);
6451
6452         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6453                                         cp_rings, stats, vnics);
6454 }
6455
6456 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6457 {
6458         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6459         struct hwrm_ring_aggint_qcaps_output *resp;
6460         struct hwrm_ring_aggint_qcaps_input *req;
6461         int rc;
6462
6463         coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6464         coal_cap->num_cmpl_dma_aggr_max = 63;
6465         coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6466         coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6467         coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6468         coal_cap->int_lat_tmr_min_max = 65535;
6469         coal_cap->int_lat_tmr_max_max = 65535;
6470         coal_cap->num_cmpl_aggr_int_max = 65535;
6471         coal_cap->timer_units = 80;
6472
6473         if (bp->hwrm_spec_code < 0x10902)
6474                 return;
6475
6476         if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6477                 return;
6478
6479         resp = hwrm_req_hold(bp, req);
6480         rc = hwrm_req_send_silent(bp, req);
6481         if (!rc) {
6482                 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6483                 coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6484                 coal_cap->num_cmpl_dma_aggr_max =
6485                         le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6486                 coal_cap->num_cmpl_dma_aggr_during_int_max =
6487                         le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6488                 coal_cap->cmpl_aggr_dma_tmr_max =
6489                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6490                 coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6491                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6492                 coal_cap->int_lat_tmr_min_max =
6493                         le16_to_cpu(resp->int_lat_tmr_min_max);
6494                 coal_cap->int_lat_tmr_max_max =
6495                         le16_to_cpu(resp->int_lat_tmr_max_max);
6496                 coal_cap->num_cmpl_aggr_int_max =
6497                         le16_to_cpu(resp->num_cmpl_aggr_int_max);
6498                 coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6499         }
6500         hwrm_req_drop(bp, req);
6501 }
6502
6503 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6504 {
6505         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6506
6507         return usec * 1000 / coal_cap->timer_units;
6508 }
6509
6510 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6511         struct bnxt_coal *hw_coal,
6512         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6513 {
6514         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6515         u32 cmpl_params = coal_cap->cmpl_params;
6516         u16 val, tmr, max, flags = 0;
6517
6518         max = hw_coal->bufs_per_record * 128;
6519         if (hw_coal->budget)
6520                 max = hw_coal->bufs_per_record * hw_coal->budget;
6521         max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6522
6523         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6524         req->num_cmpl_aggr_int = cpu_to_le16(val);
6525
6526         val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6527         req->num_cmpl_dma_aggr = cpu_to_le16(val);
6528
6529         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6530                       coal_cap->num_cmpl_dma_aggr_during_int_max);
6531         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6532
6533         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6534         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6535         req->int_lat_tmr_max = cpu_to_le16(tmr);
6536
6537         /* min timer set to 1/2 of interrupt timer */
6538         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6539                 val = tmr / 2;
6540                 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6541                 req->int_lat_tmr_min = cpu_to_le16(val);
6542                 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6543         }
6544
6545         /* buf timer set to 1/4 of interrupt timer */
6546         val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6547         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6548
6549         if (cmpl_params &
6550             RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6551                 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6552                 val = clamp_t(u16, tmr, 1,
6553                               coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6554                 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6555                 req->enables |=
6556                         cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6557         }
6558
6559         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6560                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6561         if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6562             hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6563                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6564         req->flags = cpu_to_le16(flags);
6565         req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6566 }
6567
6568 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6569                                    struct bnxt_coal *hw_coal)
6570 {
6571         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6572         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6573         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6574         u32 nq_params = coal_cap->nq_params;
6575         u16 tmr;
6576         int rc;
6577
6578         if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6579                 return 0;
6580
6581         rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6582         if (rc)
6583                 return rc;
6584
6585         req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6586         req->flags =
6587                 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6588
6589         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6590         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6591         req->int_lat_tmr_min = cpu_to_le16(tmr);
6592         req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6593         return hwrm_req_send(bp, req);
6594 }
6595
6596 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6597 {
6598         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6599         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6600         struct bnxt_coal coal;
6601         int rc;
6602
6603         /* Tick values in micro seconds.
6604          * 1 coal_buf x bufs_per_record = 1 completion record.
6605          */
6606         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6607
6608         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6609         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6610
6611         if (!bnapi->rx_ring)
6612                 return -ENODEV;
6613
6614         rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6615         if (rc)
6616                 return rc;
6617
6618         bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6619
6620         req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6621
6622         return hwrm_req_send(bp, req_rx);
6623 }
6624
6625 int bnxt_hwrm_set_coal(struct bnxt *bp)
6626 {
6627         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6628                                                            *req;
6629         int i, rc;
6630
6631         rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6632         if (rc)
6633                 return rc;
6634
6635         rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6636         if (rc) {
6637                 hwrm_req_drop(bp, req_rx);
6638                 return rc;
6639         }
6640
6641         bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6642         bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6643
6644         hwrm_req_hold(bp, req_rx);
6645         hwrm_req_hold(bp, req_tx);
6646         for (i = 0; i < bp->cp_nr_rings; i++) {
6647                 struct bnxt_napi *bnapi = bp->bnapi[i];
6648                 struct bnxt_coal *hw_coal;
6649                 u16 ring_id;
6650
6651                 req = req_rx;
6652                 if (!bnapi->rx_ring) {
6653                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6654                         req = req_tx;
6655                 } else {
6656                         ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6657                 }
6658                 req->ring_id = cpu_to_le16(ring_id);
6659
6660                 rc = hwrm_req_send(bp, req);
6661                 if (rc)
6662                         break;
6663
6664                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6665                         continue;
6666
6667                 if (bnapi->rx_ring && bnapi->tx_ring) {
6668                         req = req_tx;
6669                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6670                         req->ring_id = cpu_to_le16(ring_id);
6671                         rc = hwrm_req_send(bp, req);
6672                         if (rc)
6673                                 break;
6674                 }
6675                 if (bnapi->rx_ring)
6676                         hw_coal = &bp->rx_coal;
6677                 else
6678                         hw_coal = &bp->tx_coal;
6679                 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6680         }
6681         hwrm_req_drop(bp, req_rx);
6682         hwrm_req_drop(bp, req_tx);
6683         return rc;
6684 }
6685
6686 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6687 {
6688         struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6689         struct hwrm_stat_ctx_free_input *req;
6690         int i;
6691
6692         if (!bp->bnapi)
6693                 return;
6694
6695         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6696                 return;
6697
6698         if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6699                 return;
6700         if (BNXT_FW_MAJ(bp) <= 20) {
6701                 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6702                         hwrm_req_drop(bp, req);
6703                         return;
6704                 }
6705                 hwrm_req_hold(bp, req0);
6706         }
6707         hwrm_req_hold(bp, req);
6708         for (i = 0; i < bp->cp_nr_rings; i++) {
6709                 struct bnxt_napi *bnapi = bp->bnapi[i];
6710                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6711
6712                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6713                         req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6714                         if (req0) {
6715                                 req0->stat_ctx_id = req->stat_ctx_id;
6716                                 hwrm_req_send(bp, req0);
6717                         }
6718                         hwrm_req_send(bp, req);
6719
6720                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6721                 }
6722         }
6723         hwrm_req_drop(bp, req);
6724         if (req0)
6725                 hwrm_req_drop(bp, req0);
6726 }
6727
6728 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6729 {
6730         struct hwrm_stat_ctx_alloc_output *resp;
6731         struct hwrm_stat_ctx_alloc_input *req;
6732         int rc, i;
6733
6734         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6735                 return 0;
6736
6737         rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6738         if (rc)
6739                 return rc;
6740
6741         req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6742         req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6743
6744         resp = hwrm_req_hold(bp, req);
6745         for (i = 0; i < bp->cp_nr_rings; i++) {
6746                 struct bnxt_napi *bnapi = bp->bnapi[i];
6747                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6748
6749                 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6750
6751                 rc = hwrm_req_send(bp, req);
6752                 if (rc)
6753                         break;
6754
6755                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6756
6757                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6758         }
6759         hwrm_req_drop(bp, req);
6760         return rc;
6761 }
6762
6763 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6764 {
6765         struct hwrm_func_qcfg_output *resp;
6766         struct hwrm_func_qcfg_input *req;
6767         u32 min_db_offset = 0;
6768         u16 flags;
6769         int rc;
6770
6771         rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6772         if (rc)
6773                 return rc;
6774
6775         req->fid = cpu_to_le16(0xffff);
6776         resp = hwrm_req_hold(bp, req);
6777         rc = hwrm_req_send(bp, req);
6778         if (rc)
6779                 goto func_qcfg_exit;
6780
6781 #ifdef CONFIG_BNXT_SRIOV
6782         if (BNXT_VF(bp)) {
6783                 struct bnxt_vf_info *vf = &bp->vf;
6784
6785                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6786         } else {
6787                 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6788         }
6789 #endif
6790         flags = le16_to_cpu(resp->flags);
6791         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6792                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6793                 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6794                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6795                         bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6796         }
6797         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6798                 bp->flags |= BNXT_FLAG_MULTI_HOST;
6799         if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6800                 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6801
6802         switch (resp->port_partition_type) {
6803         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6804         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6805         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6806                 bp->port_partition_type = resp->port_partition_type;
6807                 break;
6808         }
6809         if (bp->hwrm_spec_code < 0x10707 ||
6810             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6811                 bp->br_mode = BRIDGE_MODE_VEB;
6812         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6813                 bp->br_mode = BRIDGE_MODE_VEPA;
6814         else
6815                 bp->br_mode = BRIDGE_MODE_UNDEF;
6816
6817         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6818         if (!bp->max_mtu)
6819                 bp->max_mtu = BNXT_MAX_MTU;
6820
6821         if (bp->db_size)
6822                 goto func_qcfg_exit;
6823
6824         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6825                 if (BNXT_PF(bp))
6826                         min_db_offset = DB_PF_OFFSET_P5;
6827                 else
6828                         min_db_offset = DB_VF_OFFSET_P5;
6829         }
6830         bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6831                                  1024);
6832         if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6833             bp->db_size <= min_db_offset)
6834                 bp->db_size = pci_resource_len(bp->pdev, 2);
6835
6836 func_qcfg_exit:
6837         hwrm_req_drop(bp, req);
6838         return rc;
6839 }
6840
6841 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6842                         struct hwrm_func_backing_store_qcaps_output *resp)
6843 {
6844         struct bnxt_mem_init *mem_init;
6845         u16 init_mask;
6846         u8 init_val;
6847         u8 *offset;
6848         int i;
6849
6850         init_val = resp->ctx_kind_initializer;
6851         init_mask = le16_to_cpu(resp->ctx_init_mask);
6852         offset = &resp->qp_init_offset;
6853         mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6854         for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6855                 mem_init->init_val = init_val;
6856                 mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6857                 if (!init_mask)
6858                         continue;
6859                 if (i == BNXT_CTX_MEM_INIT_STAT)
6860                         offset = &resp->stat_init_offset;
6861                 if (init_mask & (1 << i))
6862                         mem_init->offset = *offset * 4;
6863                 else
6864                         mem_init->init_val = 0;
6865         }
6866         ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6867         ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6868         ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6869         ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6870         ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6871         ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6872 }
6873
6874 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6875 {
6876         struct hwrm_func_backing_store_qcaps_output *resp;
6877         struct hwrm_func_backing_store_qcaps_input *req;
6878         int rc;
6879
6880         if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6881                 return 0;
6882
6883         rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
6884         if (rc)
6885                 return rc;
6886
6887         resp = hwrm_req_hold(bp, req);
6888         rc = hwrm_req_send_silent(bp, req);
6889         if (!rc) {
6890                 struct bnxt_ctx_pg_info *ctx_pg;
6891                 struct bnxt_ctx_mem_info *ctx;
6892                 int i, tqm_rings;
6893
6894                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6895                 if (!ctx) {
6896                         rc = -ENOMEM;
6897                         goto ctx_err;
6898                 }
6899                 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6900                 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6901                 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6902                 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6903                 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6904                 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6905                 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6906                 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6907                 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6908                 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6909                 ctx->vnic_max_vnic_entries =
6910                         le16_to_cpu(resp->vnic_max_vnic_entries);
6911                 ctx->vnic_max_ring_table_entries =
6912                         le16_to_cpu(resp->vnic_max_ring_table_entries);
6913                 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6914                 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6915                 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6916                 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6917                 ctx->tqm_min_entries_per_ring =
6918                         le32_to_cpu(resp->tqm_min_entries_per_ring);
6919                 ctx->tqm_max_entries_per_ring =
6920                         le32_to_cpu(resp->tqm_max_entries_per_ring);
6921                 ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6922                 if (!ctx->tqm_entries_multiple)
6923                         ctx->tqm_entries_multiple = 1;
6924                 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6925                 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6926                 ctx->mrav_num_entries_units =
6927                         le16_to_cpu(resp->mrav_num_entries_units);
6928                 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6929                 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6930
6931                 bnxt_init_ctx_initializer(ctx, resp);
6932
6933                 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6934                 if (!ctx->tqm_fp_rings_count)
6935                         ctx->tqm_fp_rings_count = bp->max_q;
6936                 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6937                         ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6938
6939                 tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6940                 ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6941                 if (!ctx_pg) {
6942                         kfree(ctx);
6943                         rc = -ENOMEM;
6944                         goto ctx_err;
6945                 }
6946                 for (i = 0; i < tqm_rings; i++, ctx_pg++)
6947                         ctx->tqm_mem[i] = ctx_pg;
6948                 bp->ctx = ctx;
6949         } else {
6950                 rc = 0;
6951         }
6952 ctx_err:
6953         hwrm_req_drop(bp, req);
6954         return rc;
6955 }
6956
6957 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6958                                   __le64 *pg_dir)
6959 {
6960         if (!rmem->nr_pages)
6961                 return;
6962
6963         BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6964         if (rmem->depth >= 1) {
6965                 if (rmem->depth == 2)
6966                         *pg_attr |= 2;
6967                 else
6968                         *pg_attr |= 1;
6969                 *pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6970         } else {
6971                 *pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6972         }
6973 }
6974
6975 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES                 \
6976         (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |                \
6977          FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |               \
6978          FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |                \
6979          FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |              \
6980          FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6981
6982 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6983 {
6984         struct hwrm_func_backing_store_cfg_input *req;
6985         struct bnxt_ctx_mem_info *ctx = bp->ctx;
6986         struct bnxt_ctx_pg_info *ctx_pg;
6987         void **__req = (void **)&req;
6988         u32 req_len = sizeof(*req);
6989         __le32 *num_entries;
6990         __le64 *pg_dir;
6991         u32 flags = 0;
6992         u8 *pg_attr;
6993         u32 ena;
6994         int rc;
6995         int i;
6996
6997         if (!ctx)
6998                 return 0;
6999
7000         if (req_len > bp->hwrm_max_ext_req_len)
7001                 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
7002         rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
7003         if (rc)
7004                 return rc;
7005
7006         req->enables = cpu_to_le32(enables);
7007         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
7008                 ctx_pg = &ctx->qp_mem;
7009                 req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
7010                 req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
7011                 req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7012                 req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7013                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7014                                       &req->qpc_pg_size_qpc_lvl,
7015                                       &req->qpc_page_dir);
7016         }
7017         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7018                 ctx_pg = &ctx->srq_mem;
7019                 req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7020                 req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7021                 req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7022                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7023                                       &req->srq_pg_size_srq_lvl,
7024                                       &req->srq_page_dir);
7025         }
7026         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7027                 ctx_pg = &ctx->cq_mem;
7028                 req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7029                 req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7030                 req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7031                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7032                                       &req->cq_pg_size_cq_lvl,
7033                                       &req->cq_page_dir);
7034         }
7035         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7036                 ctx_pg = &ctx->vnic_mem;
7037                 req->vnic_num_vnic_entries =
7038                         cpu_to_le16(ctx->vnic_max_vnic_entries);
7039                 req->vnic_num_ring_table_entries =
7040                         cpu_to_le16(ctx->vnic_max_ring_table_entries);
7041                 req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7042                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7043                                       &req->vnic_pg_size_vnic_lvl,
7044                                       &req->vnic_page_dir);
7045         }
7046         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7047                 ctx_pg = &ctx->stat_mem;
7048                 req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7049                 req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7050                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7051                                       &req->stat_pg_size_stat_lvl,
7052                                       &req->stat_page_dir);
7053         }
7054         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7055                 ctx_pg = &ctx->mrav_mem;
7056                 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7057                 if (ctx->mrav_num_entries_units)
7058                         flags |=
7059                         FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7060                 req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7061                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7062                                       &req->mrav_pg_size_mrav_lvl,
7063                                       &req->mrav_page_dir);
7064         }
7065         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7066                 ctx_pg = &ctx->tim_mem;
7067                 req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7068                 req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7069                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7070                                       &req->tim_pg_size_tim_lvl,
7071                                       &req->tim_page_dir);
7072         }
7073         for (i = 0, num_entries = &req->tqm_sp_num_entries,
7074              pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7075              pg_dir = &req->tqm_sp_page_dir,
7076              ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7077              i < BNXT_MAX_TQM_RINGS;
7078              i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7079                 if (!(enables & ena))
7080                         continue;
7081
7082                 req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7083                 ctx_pg = ctx->tqm_mem[i];
7084                 *num_entries = cpu_to_le32(ctx_pg->entries);
7085                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7086         }
7087         req->flags = cpu_to_le32(flags);
7088         return hwrm_req_send(bp, req);
7089 }
7090
7091 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7092                                   struct bnxt_ctx_pg_info *ctx_pg)
7093 {
7094         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7095
7096         rmem->page_size = BNXT_PAGE_SIZE;
7097         rmem->pg_arr = ctx_pg->ctx_pg_arr;
7098         rmem->dma_arr = ctx_pg->ctx_dma_arr;
7099         rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7100         if (rmem->depth >= 1)
7101                 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7102         return bnxt_alloc_ring(bp, rmem);
7103 }
7104
7105 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7106                                   struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7107                                   u8 depth, struct bnxt_mem_init *mem_init)
7108 {
7109         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7110         int rc;
7111
7112         if (!mem_size)
7113                 return -EINVAL;
7114
7115         ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7116         if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7117                 ctx_pg->nr_pages = 0;
7118                 return -EINVAL;
7119         }
7120         if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7121                 int nr_tbls, i;
7122
7123                 rmem->depth = 2;
7124                 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7125                                              GFP_KERNEL);
7126                 if (!ctx_pg->ctx_pg_tbl)
7127                         return -ENOMEM;
7128                 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7129                 rmem->nr_pages = nr_tbls;
7130                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7131                 if (rc)
7132                         return rc;
7133                 for (i = 0; i < nr_tbls; i++) {
7134                         struct bnxt_ctx_pg_info *pg_tbl;
7135
7136                         pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7137                         if (!pg_tbl)
7138                                 return -ENOMEM;
7139                         ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7140                         rmem = &pg_tbl->ring_mem;
7141                         rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7142                         rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7143                         rmem->depth = 1;
7144                         rmem->nr_pages = MAX_CTX_PAGES;
7145                         rmem->mem_init = mem_init;
7146                         if (i == (nr_tbls - 1)) {
7147                                 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7148
7149                                 if (rem)
7150                                         rmem->nr_pages = rem;
7151                         }
7152                         rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7153                         if (rc)
7154                                 break;
7155                 }
7156         } else {
7157                 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7158                 if (rmem->nr_pages > 1 || depth)
7159                         rmem->depth = 1;
7160                 rmem->mem_init = mem_init;
7161                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7162         }
7163         return rc;
7164 }
7165
7166 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7167                                   struct bnxt_ctx_pg_info *ctx_pg)
7168 {
7169         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7170
7171         if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7172             ctx_pg->ctx_pg_tbl) {
7173                 int i, nr_tbls = rmem->nr_pages;
7174
7175                 for (i = 0; i < nr_tbls; i++) {
7176                         struct bnxt_ctx_pg_info *pg_tbl;
7177                         struct bnxt_ring_mem_info *rmem2;
7178
7179                         pg_tbl = ctx_pg->ctx_pg_tbl[i];
7180                         if (!pg_tbl)
7181                                 continue;
7182                         rmem2 = &pg_tbl->ring_mem;
7183                         bnxt_free_ring(bp, rmem2);
7184                         ctx_pg->ctx_pg_arr[i] = NULL;
7185                         kfree(pg_tbl);
7186                         ctx_pg->ctx_pg_tbl[i] = NULL;
7187                 }
7188                 kfree(ctx_pg->ctx_pg_tbl);
7189                 ctx_pg->ctx_pg_tbl = NULL;
7190         }
7191         bnxt_free_ring(bp, rmem);
7192         ctx_pg->nr_pages = 0;
7193 }
7194
7195 static void bnxt_free_ctx_mem(struct bnxt *bp)
7196 {
7197         struct bnxt_ctx_mem_info *ctx = bp->ctx;
7198         int i;
7199
7200         if (!ctx)
7201                 return;
7202
7203         if (ctx->tqm_mem[0]) {
7204                 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7205                         bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7206                 kfree(ctx->tqm_mem[0]);
7207                 ctx->tqm_mem[0] = NULL;
7208         }
7209
7210         bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7211         bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7212         bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7213         bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7214         bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7215         bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7216         bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7217         ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7218 }
7219
7220 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7221 {
7222         struct bnxt_ctx_pg_info *ctx_pg;
7223         struct bnxt_ctx_mem_info *ctx;
7224         struct bnxt_mem_init *init;
7225         u32 mem_size, ena, entries;
7226         u32 entries_sp, min;
7227         u32 num_mr, num_ah;
7228         u32 extra_srqs = 0;
7229         u32 extra_qps = 0;
7230         u8 pg_lvl = 1;
7231         int i, rc;
7232
7233         rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7234         if (rc) {
7235                 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7236                            rc);
7237                 return rc;
7238         }
7239         ctx = bp->ctx;
7240         if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7241                 return 0;
7242
7243         if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7244                 pg_lvl = 2;
7245                 extra_qps = 65536;
7246                 extra_srqs = 8192;
7247         }
7248
7249         ctx_pg = &ctx->qp_mem;
7250         ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7251                           extra_qps;
7252         if (ctx->qp_entry_size) {
7253                 mem_size = ctx->qp_entry_size * ctx_pg->entries;
7254                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7255                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7256                 if (rc)
7257                         return rc;
7258         }
7259
7260         ctx_pg = &ctx->srq_mem;
7261         ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7262         if (ctx->srq_entry_size) {
7263                 mem_size = ctx->srq_entry_size * ctx_pg->entries;
7264                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7265                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7266                 if (rc)
7267                         return rc;
7268         }
7269
7270         ctx_pg = &ctx->cq_mem;
7271         ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7272         if (ctx->cq_entry_size) {
7273                 mem_size = ctx->cq_entry_size * ctx_pg->entries;
7274                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7275                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7276                 if (rc)
7277                         return rc;
7278         }
7279
7280         ctx_pg = &ctx->vnic_mem;
7281         ctx_pg->entries = ctx->vnic_max_vnic_entries +
7282                           ctx->vnic_max_ring_table_entries;
7283         if (ctx->vnic_entry_size) {
7284                 mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7285                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7286                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7287                 if (rc)
7288                         return rc;
7289         }
7290
7291         ctx_pg = &ctx->stat_mem;
7292         ctx_pg->entries = ctx->stat_max_entries;
7293         if (ctx->stat_entry_size) {
7294                 mem_size = ctx->stat_entry_size * ctx_pg->entries;
7295                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7296                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7297                 if (rc)
7298                         return rc;
7299         }
7300
7301         ena = 0;
7302         if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7303                 goto skip_rdma;
7304
7305         ctx_pg = &ctx->mrav_mem;
7306         /* 128K extra is needed to accommodate static AH context
7307          * allocation by f/w.
7308          */
7309         num_mr = 1024 * 256;
7310         num_ah = 1024 * 128;
7311         ctx_pg->entries = num_mr + num_ah;
7312         if (ctx->mrav_entry_size) {
7313                 mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7314                 init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7315                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7316                 if (rc)
7317                         return rc;
7318         }
7319         ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7320         if (ctx->mrav_num_entries_units)
7321                 ctx_pg->entries =
7322                         ((num_mr / ctx->mrav_num_entries_units) << 16) |
7323                          (num_ah / ctx->mrav_num_entries_units);
7324
7325         ctx_pg = &ctx->tim_mem;
7326         ctx_pg->entries = ctx->qp_mem.entries;
7327         if (ctx->tim_entry_size) {
7328                 mem_size = ctx->tim_entry_size * ctx_pg->entries;
7329                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7330                 if (rc)
7331                         return rc;
7332         }
7333         ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7334
7335 skip_rdma:
7336         min = ctx->tqm_min_entries_per_ring;
7337         entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7338                      2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7339         entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7340         entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7341         entries = roundup(entries, ctx->tqm_entries_multiple);
7342         entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7343         for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7344                 ctx_pg = ctx->tqm_mem[i];
7345                 ctx_pg->entries = i ? entries : entries_sp;
7346                 if (ctx->tqm_entry_size) {
7347                         mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7348                         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7349                                                     NULL);
7350                         if (rc)
7351                                 return rc;
7352                 }
7353                 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7354         }
7355         ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7356         rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7357         if (rc) {
7358                 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7359                            rc);
7360                 return rc;
7361         }
7362         ctx->flags |= BNXT_CTX_FLAG_INITED;
7363         return 0;
7364 }
7365
7366 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7367 {
7368         struct hwrm_func_resource_qcaps_output *resp;
7369         struct hwrm_func_resource_qcaps_input *req;
7370         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7371         int rc;
7372
7373         rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7374         if (rc)
7375                 return rc;
7376
7377         req->fid = cpu_to_le16(0xffff);
7378         resp = hwrm_req_hold(bp, req);
7379         rc = hwrm_req_send_silent(bp, req);
7380         if (rc)
7381                 goto hwrm_func_resc_qcaps_exit;
7382
7383         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7384         if (!all)
7385                 goto hwrm_func_resc_qcaps_exit;
7386
7387         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7388         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7389         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7390         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7391         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7392         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7393         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7394         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7395         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7396         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7397         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7398         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7399         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7400         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7401         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7402         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7403
7404         if (bp->flags & BNXT_FLAG_CHIP_P5) {
7405                 u16 max_msix = le16_to_cpu(resp->max_msix);
7406
7407                 hw_resc->max_nqs = max_msix;
7408                 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7409         }
7410
7411         if (BNXT_PF(bp)) {
7412                 struct bnxt_pf_info *pf = &bp->pf;
7413
7414                 pf->vf_resv_strategy =
7415                         le16_to_cpu(resp->vf_reservation_strategy);
7416                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7417                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7418         }
7419 hwrm_func_resc_qcaps_exit:
7420         hwrm_req_drop(bp, req);
7421         return rc;
7422 }
7423
7424 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7425 {
7426         struct hwrm_port_mac_ptp_qcfg_output *resp;
7427         struct hwrm_port_mac_ptp_qcfg_input *req;
7428         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7429         u8 flags;
7430         int rc;
7431
7432         if (bp->hwrm_spec_code < 0x10801) {
7433                 rc = -ENODEV;
7434                 goto no_ptp;
7435         }
7436
7437         rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7438         if (rc)
7439                 goto no_ptp;
7440
7441         req->port_id = cpu_to_le16(bp->pf.port_id);
7442         resp = hwrm_req_hold(bp, req);
7443         rc = hwrm_req_send(bp, req);
7444         if (rc)
7445                 goto exit;
7446
7447         flags = resp->flags;
7448         if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7449                 rc = -ENODEV;
7450                 goto exit;
7451         }
7452         if (!ptp) {
7453                 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7454                 if (!ptp) {
7455                         rc = -ENOMEM;
7456                         goto exit;
7457                 }
7458                 ptp->bp = bp;
7459                 bp->ptp_cfg = ptp;
7460         }
7461         if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7462                 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7463                 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7464         } else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7465                 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7466                 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7467         } else {
7468                 rc = -ENODEV;
7469                 goto exit;
7470         }
7471         rc = bnxt_ptp_init(bp);
7472         if (rc)
7473                 netdev_warn(bp->dev, "PTP initialization failed.\n");
7474 exit:
7475         hwrm_req_drop(bp, req);
7476         if (!rc)
7477                 return 0;
7478
7479 no_ptp:
7480         bnxt_ptp_clear(bp);
7481         kfree(ptp);
7482         bp->ptp_cfg = NULL;
7483         return rc;
7484 }
7485
7486 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7487 {
7488         struct hwrm_func_qcaps_output *resp;
7489         struct hwrm_func_qcaps_input *req;
7490         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7491         u32 flags, flags_ext;
7492         int rc;
7493
7494         rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7495         if (rc)
7496                 return rc;
7497
7498         req->fid = cpu_to_le16(0xffff);
7499         resp = hwrm_req_hold(bp, req);
7500         rc = hwrm_req_send(bp, req);
7501         if (rc)
7502                 goto hwrm_func_qcaps_exit;
7503
7504         flags = le32_to_cpu(resp->flags);
7505         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7506                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7507         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7508                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7509         if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7510                 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7511         if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7512                 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7513         if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7514                 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7515         if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7516                 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7517         if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7518                 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7519         if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7520                 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7521
7522         flags_ext = le32_to_cpu(resp->flags_ext);
7523         if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7524                 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7525         if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7526                 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7527
7528         bp->tx_push_thresh = 0;
7529         if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7530             BNXT_FW_MAJ(bp) > 217)
7531                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7532
7533         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7534         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7535         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7536         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7537         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7538         if (!hw_resc->max_hw_ring_grps)
7539                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7540         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7541         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7542         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7543
7544         if (BNXT_PF(bp)) {
7545                 struct bnxt_pf_info *pf = &bp->pf;
7546
7547                 pf->fw_fid = le16_to_cpu(resp->fid);
7548                 pf->port_id = le16_to_cpu(resp->port_id);
7549                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7550                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7551                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
7552                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7553                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7554                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7555                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7556                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7557                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7558                 bp->flags &= ~BNXT_FLAG_WOL_CAP;
7559                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7560                         bp->flags |= BNXT_FLAG_WOL_CAP;
7561                 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7562                         __bnxt_hwrm_ptp_qcfg(bp);
7563                 } else {
7564                         bnxt_ptp_clear(bp);
7565                         kfree(bp->ptp_cfg);
7566                         bp->ptp_cfg = NULL;
7567                 }
7568         } else {
7569 #ifdef CONFIG_BNXT_SRIOV
7570                 struct bnxt_vf_info *vf = &bp->vf;
7571
7572                 vf->fw_fid = le16_to_cpu(resp->fid);
7573                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7574 #endif
7575         }
7576
7577 hwrm_func_qcaps_exit:
7578         hwrm_req_drop(bp, req);
7579         return rc;
7580 }
7581
7582 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7583
7584 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7585 {
7586         int rc;
7587
7588         rc = __bnxt_hwrm_func_qcaps(bp);
7589         if (rc)
7590                 return rc;
7591         rc = bnxt_hwrm_queue_qportcfg(bp);
7592         if (rc) {
7593                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7594                 return rc;
7595         }
7596         if (bp->hwrm_spec_code >= 0x10803) {
7597                 rc = bnxt_alloc_ctx_mem(bp);
7598                 if (rc)
7599                         return rc;
7600                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7601                 if (!rc)
7602                         bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7603         }
7604         return 0;
7605 }
7606
7607 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7608 {
7609         struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7610         struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7611         u32 flags;
7612         int rc;
7613
7614         if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7615                 return 0;
7616
7617         rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7618         if (rc)
7619                 return rc;
7620
7621         resp = hwrm_req_hold(bp, req);
7622         rc = hwrm_req_send(bp, req);
7623         if (rc)
7624                 goto hwrm_cfa_adv_qcaps_exit;
7625
7626         flags = le32_to_cpu(resp->flags);
7627         if (flags &
7628             CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7629                 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7630
7631 hwrm_cfa_adv_qcaps_exit:
7632         hwrm_req_drop(bp, req);
7633         return rc;
7634 }
7635
7636 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7637 {
7638         if (bp->fw_health)
7639                 return 0;
7640
7641         bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7642         if (!bp->fw_health)
7643                 return -ENOMEM;
7644
7645         return 0;
7646 }
7647
7648 static int bnxt_alloc_fw_health(struct bnxt *bp)
7649 {
7650         int rc;
7651
7652         if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7653             !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7654                 return 0;
7655
7656         rc = __bnxt_alloc_fw_health(bp);
7657         if (rc) {
7658                 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7659                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7660                 return rc;
7661         }
7662
7663         return 0;
7664 }
7665
7666 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7667 {
7668         writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7669                                          BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7670                                          BNXT_FW_HEALTH_WIN_MAP_OFF);
7671 }
7672
7673 bool bnxt_is_fw_healthy(struct bnxt *bp)
7674 {
7675         if (bp->fw_health && bp->fw_health->status_reliable) {
7676                 u32 fw_status;
7677
7678                 fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
7679                 if (fw_status && !BNXT_FW_IS_HEALTHY(fw_status))
7680                         return false;
7681         }
7682
7683         return true;
7684 }
7685
7686 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7687 {
7688         struct bnxt_fw_health *fw_health = bp->fw_health;
7689         u32 reg_type;
7690
7691         if (!fw_health || !fw_health->status_reliable)
7692                 return;
7693
7694         reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7695         if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7696                 fw_health->status_reliable = false;
7697 }
7698
7699 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7700 {
7701         void __iomem *hs;
7702         u32 status_loc;
7703         u32 reg_type;
7704         u32 sig;
7705
7706         if (bp->fw_health)
7707                 bp->fw_health->status_reliable = false;
7708
7709         __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7710         hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7711
7712         sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7713         if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7714                 if (!bp->chip_num) {
7715                         __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7716                         bp->chip_num = readl(bp->bar0 +
7717                                              BNXT_FW_HEALTH_WIN_BASE +
7718                                              BNXT_GRC_REG_CHIP_NUM);
7719                 }
7720                 if (!BNXT_CHIP_P5(bp))
7721                         return;
7722
7723                 status_loc = BNXT_GRC_REG_STATUS_P5 |
7724                              BNXT_FW_HEALTH_REG_TYPE_BAR0;
7725         } else {
7726                 status_loc = readl(hs + offsetof(struct hcomm_status,
7727                                                  fw_status_loc));
7728         }
7729
7730         if (__bnxt_alloc_fw_health(bp)) {
7731                 netdev_warn(bp->dev, "no memory for firmware status checks\n");
7732                 return;
7733         }
7734
7735         bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7736         reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7737         if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7738                 __bnxt_map_fw_health_reg(bp, status_loc);
7739                 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7740                         BNXT_FW_HEALTH_WIN_OFF(status_loc);
7741         }
7742
7743         bp->fw_health->status_reliable = true;
7744 }
7745
7746 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7747 {
7748         struct bnxt_fw_health *fw_health = bp->fw_health;
7749         u32 reg_base = 0xffffffff;
7750         int i;
7751
7752         bp->fw_health->status_reliable = false;
7753         /* Only pre-map the monitoring GRC registers using window 3 */
7754         for (i = 0; i < 4; i++) {
7755                 u32 reg = fw_health->regs[i];
7756
7757                 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7758                         continue;
7759                 if (reg_base == 0xffffffff)
7760                         reg_base = reg & BNXT_GRC_BASE_MASK;
7761                 if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7762                         return -ERANGE;
7763                 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7764         }
7765         bp->fw_health->status_reliable = true;
7766         if (reg_base == 0xffffffff)
7767                 return 0;
7768
7769         __bnxt_map_fw_health_reg(bp, reg_base);
7770         return 0;
7771 }
7772
7773 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7774 {
7775         struct bnxt_fw_health *fw_health = bp->fw_health;
7776         struct hwrm_error_recovery_qcfg_output *resp;
7777         struct hwrm_error_recovery_qcfg_input *req;
7778         int rc, i;
7779
7780         if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7781                 return 0;
7782
7783         rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7784         if (rc)
7785                 return rc;
7786
7787         resp = hwrm_req_hold(bp, req);
7788         rc = hwrm_req_send(bp, req);
7789         if (rc)
7790                 goto err_recovery_out;
7791         fw_health->flags = le32_to_cpu(resp->flags);
7792         if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7793             !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7794                 rc = -EINVAL;
7795                 goto err_recovery_out;
7796         }
7797         fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7798         fw_health->master_func_wait_dsecs =
7799                 le32_to_cpu(resp->master_func_wait_period);
7800         fw_health->normal_func_wait_dsecs =
7801                 le32_to_cpu(resp->normal_func_wait_period);
7802         fw_health->post_reset_wait_dsecs =
7803                 le32_to_cpu(resp->master_func_wait_period_after_reset);
7804         fw_health->post_reset_max_wait_dsecs =
7805                 le32_to_cpu(resp->max_bailout_time_after_reset);
7806         fw_health->regs[BNXT_FW_HEALTH_REG] =
7807                 le32_to_cpu(resp->fw_health_status_reg);
7808         fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7809                 le32_to_cpu(resp->fw_heartbeat_reg);
7810         fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7811                 le32_to_cpu(resp->fw_reset_cnt_reg);
7812         fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7813                 le32_to_cpu(resp->reset_inprogress_reg);
7814         fw_health->fw_reset_inprog_reg_mask =
7815                 le32_to_cpu(resp->reset_inprogress_reg_mask);
7816         fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7817         if (fw_health->fw_reset_seq_cnt >= 16) {
7818                 rc = -EINVAL;
7819                 goto err_recovery_out;
7820         }
7821         for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7822                 fw_health->fw_reset_seq_regs[i] =
7823                         le32_to_cpu(resp->reset_reg[i]);
7824                 fw_health->fw_reset_seq_vals[i] =
7825                         le32_to_cpu(resp->reset_reg_val[i]);
7826                 fw_health->fw_reset_seq_delay_msec[i] =
7827                         resp->delay_after_reset[i];
7828         }
7829 err_recovery_out:
7830         hwrm_req_drop(bp, req);
7831         if (!rc)
7832                 rc = bnxt_map_fw_health_regs(bp);
7833         if (rc)
7834                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7835         return rc;
7836 }
7837
7838 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7839 {
7840         struct hwrm_func_reset_input *req;
7841         int rc;
7842
7843         rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
7844         if (rc)
7845                 return rc;
7846
7847         req->enables = 0;
7848         hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
7849         return hwrm_req_send(bp, req);
7850 }
7851
7852 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7853 {
7854         struct hwrm_nvm_get_dev_info_output nvm_info;
7855
7856         if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7857                 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7858                          nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7859                          nvm_info.nvm_cfg_ver_upd);
7860 }
7861
7862 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7863 {
7864         struct hwrm_queue_qportcfg_output *resp;
7865         struct hwrm_queue_qportcfg_input *req;
7866         u8 i, j, *qptr;
7867         bool no_rdma;
7868         int rc = 0;
7869
7870         rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
7871         if (rc)
7872                 return rc;
7873
7874         resp = hwrm_req_hold(bp, req);
7875         rc = hwrm_req_send(bp, req);
7876         if (rc)
7877                 goto qportcfg_exit;
7878
7879         if (!resp->max_configurable_queues) {
7880                 rc = -EINVAL;
7881                 goto qportcfg_exit;
7882         }
7883         bp->max_tc = resp->max_configurable_queues;
7884         bp->max_lltc = resp->max_configurable_lossless_queues;
7885         if (bp->max_tc > BNXT_MAX_QUEUE)
7886                 bp->max_tc = BNXT_MAX_QUEUE;
7887
7888         no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7889         qptr = &resp->queue_id0;
7890         for (i = 0, j = 0; i < bp->max_tc; i++) {
7891                 bp->q_info[j].queue_id = *qptr;
7892                 bp->q_ids[i] = *qptr++;
7893                 bp->q_info[j].queue_profile = *qptr++;
7894                 bp->tc_to_qidx[j] = j;
7895                 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7896                     (no_rdma && BNXT_PF(bp)))
7897                         j++;
7898         }
7899         bp->max_q = bp->max_tc;
7900         bp->max_tc = max_t(u8, j, 1);
7901
7902         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7903                 bp->max_tc = 1;
7904
7905         if (bp->max_lltc > bp->max_tc)
7906                 bp->max_lltc = bp->max_tc;
7907
7908 qportcfg_exit:
7909         hwrm_req_drop(bp, req);
7910         return rc;
7911 }
7912
7913 static int bnxt_hwrm_poll(struct bnxt *bp)
7914 {
7915         struct hwrm_ver_get_input *req;
7916         int rc;
7917
7918         rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7919         if (rc)
7920                 return rc;
7921
7922         req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7923         req->hwrm_intf_min = HWRM_VERSION_MINOR;
7924         req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7925
7926         hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
7927         rc = hwrm_req_send(bp, req);
7928         return rc;
7929 }
7930
7931 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7932 {
7933         struct hwrm_ver_get_output *resp;
7934         struct hwrm_ver_get_input *req;
7935         u16 fw_maj, fw_min, fw_bld, fw_rsv;
7936         u32 dev_caps_cfg, hwrm_ver;
7937         int rc, len;
7938
7939         rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7940         if (rc)
7941                 return rc;
7942
7943         hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
7944         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7945         req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7946         req->hwrm_intf_min = HWRM_VERSION_MINOR;
7947         req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7948
7949         resp = hwrm_req_hold(bp, req);
7950         rc = hwrm_req_send(bp, req);
7951         if (rc)
7952                 goto hwrm_ver_get_exit;
7953
7954         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7955
7956         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7957                              resp->hwrm_intf_min_8b << 8 |
7958                              resp->hwrm_intf_upd_8b;
7959         if (resp->hwrm_intf_maj_8b < 1) {
7960                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7961                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7962                             resp->hwrm_intf_upd_8b);
7963                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7964         }
7965
7966         hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7967                         HWRM_VERSION_UPDATE;
7968
7969         if (bp->hwrm_spec_code > hwrm_ver)
7970                 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7971                          HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7972                          HWRM_VERSION_UPDATE);
7973         else
7974                 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7975                          resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7976                          resp->hwrm_intf_upd_8b);
7977
7978         fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7979         if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7980                 fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7981                 fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7982                 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
7983                 len = FW_VER_STR_LEN;
7984         } else {
7985                 fw_maj = resp->hwrm_fw_maj_8b;
7986                 fw_min = resp->hwrm_fw_min_8b;
7987                 fw_bld = resp->hwrm_fw_bld_8b;
7988                 fw_rsv = resp->hwrm_fw_rsvd_8b;
7989                 len = BC_HWRM_STR_LEN;
7990         }
7991         bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
7992         snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
7993                  fw_rsv);
7994
7995         if (strlen(resp->active_pkg_name)) {
7996                 int fw_ver_len = strlen(bp->fw_ver_str);
7997
7998                 snprintf(bp->fw_ver_str + fw_ver_len,
7999                          FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8000                          resp->active_pkg_name);
8001                 bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8002         }
8003
8004         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8005         if (!bp->hwrm_cmd_timeout)
8006                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8007
8008         if (resp->hwrm_intf_maj_8b >= 1) {
8009                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8010                 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8011         }
8012         if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8013                 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8014
8015         bp->chip_num = le16_to_cpu(resp->chip_num);
8016         bp->chip_rev = resp->chip_rev;
8017         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8018             !resp->chip_metal)
8019                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8020
8021         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8022         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8023             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8024                 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8025
8026         if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8027                 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8028
8029         if (dev_caps_cfg &
8030             VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8031                 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8032
8033         if (dev_caps_cfg &
8034             VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8035                 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8036
8037         if (dev_caps_cfg &
8038             VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8039                 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8040
8041 hwrm_ver_get_exit:
8042         hwrm_req_drop(bp, req);
8043         return rc;
8044 }
8045
8046 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8047 {
8048         struct hwrm_fw_set_time_input *req;
8049         struct tm tm;
8050         time64_t now = ktime_get_real_seconds();
8051         int rc;
8052
8053         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8054             bp->hwrm_spec_code < 0x10400)
8055                 return -EOPNOTSUPP;
8056
8057         time64_to_tm(now, 0, &tm);
8058         rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8059         if (rc)
8060                 return rc;
8061
8062         req->year = cpu_to_le16(1900 + tm.tm_year);
8063         req->month = 1 + tm.tm_mon;
8064         req->day = tm.tm_mday;
8065         req->hour = tm.tm_hour;
8066         req->minute = tm.tm_min;
8067         req->second = tm.tm_sec;
8068         return hwrm_req_send(bp, req);
8069 }
8070
8071 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8072 {
8073         u64 sw_tmp;
8074
8075         hw &= mask;
8076         sw_tmp = (*sw & ~mask) | hw;
8077         if (hw < (*sw & mask))
8078                 sw_tmp += mask + 1;
8079         WRITE_ONCE(*sw, sw_tmp);
8080 }
8081
8082 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8083                                     int count, bool ignore_zero)
8084 {
8085         int i;
8086
8087         for (i = 0; i < count; i++) {
8088                 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8089
8090                 if (ignore_zero && !hw)
8091                         continue;
8092
8093                 if (masks[i] == -1ULL)
8094                         sw_stats[i] = hw;
8095                 else
8096                         bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8097         }
8098 }
8099
8100 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8101 {
8102         if (!stats->hw_stats)
8103                 return;
8104
8105         __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8106                                 stats->hw_masks, stats->len / 8, false);
8107 }
8108
8109 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8110 {
8111         struct bnxt_stats_mem *ring0_stats;
8112         bool ignore_zero = false;
8113         int i;
8114
8115         /* Chip bug.  Counter intermittently becomes 0. */
8116         if (bp->flags & BNXT_FLAG_CHIP_P5)
8117                 ignore_zero = true;
8118
8119         for (i = 0; i < bp->cp_nr_rings; i++) {
8120                 struct bnxt_napi *bnapi = bp->bnapi[i];
8121                 struct bnxt_cp_ring_info *cpr;
8122                 struct bnxt_stats_mem *stats;
8123
8124                 cpr = &bnapi->cp_ring;
8125                 stats = &cpr->stats;
8126                 if (!i)
8127                         ring0_stats = stats;
8128                 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8129                                         ring0_stats->hw_masks,
8130                                         ring0_stats->len / 8, ignore_zero);
8131         }
8132         if (bp->flags & BNXT_FLAG_PORT_STATS) {
8133                 struct bnxt_stats_mem *stats = &bp->port_stats;
8134                 __le64 *hw_stats = stats->hw_stats;
8135                 u64 *sw_stats = stats->sw_stats;
8136                 u64 *masks = stats->hw_masks;
8137                 int cnt;
8138
8139                 cnt = sizeof(struct rx_port_stats) / 8;
8140                 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8141
8142                 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8143                 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8144                 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8145                 cnt = sizeof(struct tx_port_stats) / 8;
8146                 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8147         }
8148         if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8149                 bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8150                 bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8151         }
8152 }
8153
8154 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8155 {
8156         struct hwrm_port_qstats_input *req;
8157         struct bnxt_pf_info *pf = &bp->pf;
8158         int rc;
8159
8160         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8161                 return 0;
8162
8163         if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8164                 return -EOPNOTSUPP;
8165
8166         rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8167         if (rc)
8168                 return rc;
8169
8170         req->flags = flags;
8171         req->port_id = cpu_to_le16(pf->port_id);
8172         req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8173                                             BNXT_TX_PORT_STATS_BYTE_OFFSET);
8174         req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8175         return hwrm_req_send(bp, req);
8176 }
8177
8178 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8179 {
8180         struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8181         struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8182         struct hwrm_port_qstats_ext_output *resp_qs;
8183         struct hwrm_port_qstats_ext_input *req_qs;
8184         struct bnxt_pf_info *pf = &bp->pf;
8185         u32 tx_stat_size;
8186         int rc;
8187
8188         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8189                 return 0;
8190
8191         if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8192                 return -EOPNOTSUPP;
8193
8194         rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8195         if (rc)
8196                 return rc;
8197
8198         req_qs->flags = flags;
8199         req_qs->port_id = cpu_to_le16(pf->port_id);
8200         req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8201         req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8202         tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8203                        sizeof(struct tx_port_stats_ext) : 0;
8204         req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8205         req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8206         resp_qs = hwrm_req_hold(bp, req_qs);
8207         rc = hwrm_req_send(bp, req_qs);
8208         if (!rc) {
8209                 bp->fw_rx_stats_ext_size =
8210                         le16_to_cpu(resp_qs->rx_stat_size) / 8;
8211                 bp->fw_tx_stats_ext_size = tx_stat_size ?
8212                         le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8213         } else {
8214                 bp->fw_rx_stats_ext_size = 0;
8215                 bp->fw_tx_stats_ext_size = 0;
8216         }
8217         hwrm_req_drop(bp, req_qs);
8218
8219         if (flags)
8220                 return rc;
8221
8222         if (bp->fw_tx_stats_ext_size <=
8223             offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8224                 bp->pri2cos_valid = 0;
8225                 return rc;
8226         }
8227
8228         rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8229         if (rc)
8230                 return rc;
8231
8232         req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8233
8234         resp_qc = hwrm_req_hold(bp, req_qc);
8235         rc = hwrm_req_send(bp, req_qc);
8236         if (!rc) {
8237                 u8 *pri2cos;
8238                 int i, j;
8239
8240                 pri2cos = &resp_qc->pri0_cos_queue_id;
8241                 for (i = 0; i < 8; i++) {
8242                         u8 queue_id = pri2cos[i];
8243                         u8 queue_idx;
8244
8245                         /* Per port queue IDs start from 0, 10, 20, etc */
8246                         queue_idx = queue_id % 10;
8247                         if (queue_idx > BNXT_MAX_QUEUE) {
8248                                 bp->pri2cos_valid = false;
8249                                 hwrm_req_drop(bp, req_qc);
8250                                 return rc;
8251                         }
8252                         for (j = 0; j < bp->max_q; j++) {
8253                                 if (bp->q_ids[j] == queue_id)
8254                                         bp->pri2cos_idx[i] = queue_idx;
8255                         }
8256                 }
8257                 bp->pri2cos_valid = true;
8258         }
8259         hwrm_req_drop(bp, req_qc);
8260
8261         return rc;
8262 }
8263
8264 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8265 {
8266         bnxt_hwrm_tunnel_dst_port_free(bp,
8267                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8268         bnxt_hwrm_tunnel_dst_port_free(bp,
8269                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8270 }
8271
8272 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8273 {
8274         int rc, i;
8275         u32 tpa_flags = 0;
8276
8277         if (set_tpa)
8278                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
8279         else if (BNXT_NO_FW_ACCESS(bp))
8280                 return 0;
8281         for (i = 0; i < bp->nr_vnics; i++) {
8282                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8283                 if (rc) {
8284                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8285                                    i, rc);
8286                         return rc;
8287                 }
8288         }
8289         return 0;
8290 }
8291
8292 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8293 {
8294         int i;
8295
8296         for (i = 0; i < bp->nr_vnics; i++)
8297                 bnxt_hwrm_vnic_set_rss(bp, i, false);
8298 }
8299
8300 static void bnxt_clear_vnic(struct bnxt *bp)
8301 {
8302         if (!bp->vnic_info)
8303                 return;
8304
8305         bnxt_hwrm_clear_vnic_filter(bp);
8306         if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8307                 /* clear all RSS setting before free vnic ctx */
8308                 bnxt_hwrm_clear_vnic_rss(bp);
8309                 bnxt_hwrm_vnic_ctx_free(bp);
8310         }
8311         /* before free the vnic, undo the vnic tpa settings */
8312         if (bp->flags & BNXT_FLAG_TPA)
8313                 bnxt_set_tpa(bp, false);
8314         bnxt_hwrm_vnic_free(bp);
8315         if (bp->flags & BNXT_FLAG_CHIP_P5)
8316                 bnxt_hwrm_vnic_ctx_free(bp);
8317 }
8318
8319 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8320                                     bool irq_re_init)
8321 {
8322         bnxt_clear_vnic(bp);
8323         bnxt_hwrm_ring_free(bp, close_path);
8324         bnxt_hwrm_ring_grp_free(bp);
8325         if (irq_re_init) {
8326                 bnxt_hwrm_stat_ctx_free(bp);
8327                 bnxt_hwrm_free_tunnel_ports(bp);
8328         }
8329 }
8330
8331 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8332 {
8333         struct hwrm_func_cfg_input *req;
8334         u8 evb_mode;
8335         int rc;
8336
8337         if (br_mode == BRIDGE_MODE_VEB)
8338                 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8339         else if (br_mode == BRIDGE_MODE_VEPA)
8340                 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8341         else
8342                 return -EINVAL;
8343
8344         rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8345         if (rc)
8346                 return rc;
8347
8348         req->fid = cpu_to_le16(0xffff);
8349         req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8350         req->evb_mode = evb_mode;
8351         return hwrm_req_send(bp, req);
8352 }
8353
8354 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8355 {
8356         struct hwrm_func_cfg_input *req;
8357         int rc;
8358
8359         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8360                 return 0;
8361
8362         rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8363         if (rc)
8364                 return rc;
8365
8366         req->fid = cpu_to_le16(0xffff);
8367         req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8368         req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8369         if (size == 128)
8370                 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8371
8372         return hwrm_req_send(bp, req);
8373 }
8374
8375 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8376 {
8377         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8378         int rc;
8379
8380         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8381                 goto skip_rss_ctx;
8382
8383         /* allocate context for vnic */
8384         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8385         if (rc) {
8386                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8387                            vnic_id, rc);
8388                 goto vnic_setup_err;
8389         }
8390         bp->rsscos_nr_ctxs++;
8391
8392         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8393                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8394                 if (rc) {
8395                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8396                                    vnic_id, rc);
8397                         goto vnic_setup_err;
8398                 }
8399                 bp->rsscos_nr_ctxs++;
8400         }
8401
8402 skip_rss_ctx:
8403         /* configure default vnic, ring grp */
8404         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8405         if (rc) {
8406                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8407                            vnic_id, rc);
8408                 goto vnic_setup_err;
8409         }
8410
8411         /* Enable RSS hashing on vnic */
8412         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8413         if (rc) {
8414                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8415                            vnic_id, rc);
8416                 goto vnic_setup_err;
8417         }
8418
8419         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8420                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8421                 if (rc) {
8422                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8423                                    vnic_id, rc);
8424                 }
8425         }
8426
8427 vnic_setup_err:
8428         return rc;
8429 }
8430
8431 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8432 {
8433         int rc, i, nr_ctxs;
8434
8435         nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8436         for (i = 0; i < nr_ctxs; i++) {
8437                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8438                 if (rc) {
8439                         netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8440                                    vnic_id, i, rc);
8441                         break;
8442                 }
8443                 bp->rsscos_nr_ctxs++;
8444         }
8445         if (i < nr_ctxs)
8446                 return -ENOMEM;
8447
8448         rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8449         if (rc) {
8450                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8451                            vnic_id, rc);
8452                 return rc;
8453         }
8454         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8455         if (rc) {
8456                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8457                            vnic_id, rc);
8458                 return rc;
8459         }
8460         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8461                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8462                 if (rc) {
8463                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8464                                    vnic_id, rc);
8465                 }
8466         }
8467         return rc;
8468 }
8469
8470 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8471 {
8472         if (bp->flags & BNXT_FLAG_CHIP_P5)
8473                 return __bnxt_setup_vnic_p5(bp, vnic_id);
8474         else
8475                 return __bnxt_setup_vnic(bp, vnic_id);
8476 }
8477
8478 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8479 {
8480 #ifdef CONFIG_RFS_ACCEL
8481         int i, rc = 0;
8482
8483         if (bp->flags & BNXT_FLAG_CHIP_P5)
8484                 return 0;
8485
8486         for (i = 0; i < bp->rx_nr_rings; i++) {
8487                 struct bnxt_vnic_info *vnic;
8488                 u16 vnic_id = i + 1;
8489                 u16 ring_id = i;
8490
8491                 if (vnic_id >= bp->nr_vnics)
8492                         break;
8493
8494                 vnic = &bp->vnic_info[vnic_id];
8495                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
8496                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8497                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8498                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8499                 if (rc) {
8500                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8501                                    vnic_id, rc);
8502                         break;
8503                 }
8504                 rc = bnxt_setup_vnic(bp, vnic_id);
8505                 if (rc)
8506                         break;
8507         }
8508         return rc;
8509 #else
8510         return 0;
8511 #endif
8512 }
8513
8514 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8515 static bool bnxt_promisc_ok(struct bnxt *bp)
8516 {
8517 #ifdef CONFIG_BNXT_SRIOV
8518         if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8519                 return false;
8520 #endif
8521         return true;
8522 }
8523
8524 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8525 {
8526         unsigned int rc = 0;
8527
8528         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8529         if (rc) {
8530                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8531                            rc);
8532                 return rc;
8533         }
8534
8535         rc = bnxt_hwrm_vnic_cfg(bp, 1);
8536         if (rc) {
8537                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8538                            rc);
8539                 return rc;
8540         }
8541         return rc;
8542 }
8543
8544 static int bnxt_cfg_rx_mode(struct bnxt *);
8545 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8546
8547 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8548 {
8549         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8550         int rc = 0;
8551         unsigned int rx_nr_rings = bp->rx_nr_rings;
8552
8553         if (irq_re_init) {
8554                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
8555                 if (rc) {
8556                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8557                                    rc);
8558                         goto err_out;
8559                 }
8560         }
8561
8562         rc = bnxt_hwrm_ring_alloc(bp);
8563         if (rc) {
8564                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8565                 goto err_out;
8566         }
8567
8568         rc = bnxt_hwrm_ring_grp_alloc(bp);
8569         if (rc) {
8570                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8571                 goto err_out;
8572         }
8573
8574         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8575                 rx_nr_rings--;
8576
8577         /* default vnic 0 */
8578         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8579         if (rc) {
8580                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8581                 goto err_out;
8582         }
8583
8584         rc = bnxt_setup_vnic(bp, 0);
8585         if (rc)
8586                 goto err_out;
8587
8588         if (bp->flags & BNXT_FLAG_RFS) {
8589                 rc = bnxt_alloc_rfs_vnics(bp);
8590                 if (rc)
8591                         goto err_out;
8592         }
8593
8594         if (bp->flags & BNXT_FLAG_TPA) {
8595                 rc = bnxt_set_tpa(bp, true);
8596                 if (rc)
8597                         goto err_out;
8598         }
8599
8600         if (BNXT_VF(bp))
8601                 bnxt_update_vf_mac(bp);
8602
8603         /* Filter for default vnic 0 */
8604         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8605         if (rc) {
8606                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8607                 goto err_out;
8608         }
8609         vnic->uc_filter_count = 1;
8610
8611         vnic->rx_mask = 0;
8612         if (bp->dev->flags & IFF_BROADCAST)
8613                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8614
8615         if (bp->dev->flags & IFF_PROMISC)
8616                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8617
8618         if (bp->dev->flags & IFF_ALLMULTI) {
8619                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8620                 vnic->mc_list_count = 0;
8621         } else {
8622                 u32 mask = 0;
8623
8624                 bnxt_mc_list_updated(bp, &mask);
8625                 vnic->rx_mask |= mask;
8626         }
8627
8628         rc = bnxt_cfg_rx_mode(bp);
8629         if (rc)
8630                 goto err_out;
8631
8632         rc = bnxt_hwrm_set_coal(bp);
8633         if (rc)
8634                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8635                                 rc);
8636
8637         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8638                 rc = bnxt_setup_nitroa0_vnic(bp);
8639                 if (rc)
8640                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8641                                    rc);
8642         }
8643
8644         if (BNXT_VF(bp)) {
8645                 bnxt_hwrm_func_qcfg(bp);
8646                 netdev_update_features(bp->dev);
8647         }
8648
8649         return 0;
8650
8651 err_out:
8652         bnxt_hwrm_resource_free(bp, 0, true);
8653
8654         return rc;
8655 }
8656
8657 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8658 {
8659         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8660         return 0;
8661 }
8662
8663 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8664 {
8665         bnxt_init_cp_rings(bp);
8666         bnxt_init_rx_rings(bp);
8667         bnxt_init_tx_rings(bp);
8668         bnxt_init_ring_grps(bp, irq_re_init);
8669         bnxt_init_vnics(bp);
8670
8671         return bnxt_init_chip(bp, irq_re_init);
8672 }
8673
8674 static int bnxt_set_real_num_queues(struct bnxt *bp)
8675 {
8676         int rc;
8677         struct net_device *dev = bp->dev;
8678
8679         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8680                                           bp->tx_nr_rings_xdp);
8681         if (rc)
8682                 return rc;
8683
8684         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8685         if (rc)
8686                 return rc;
8687
8688 #ifdef CONFIG_RFS_ACCEL
8689         if (bp->flags & BNXT_FLAG_RFS)
8690                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8691 #endif
8692
8693         return rc;
8694 }
8695
8696 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8697                            bool shared)
8698 {
8699         int _rx = *rx, _tx = *tx;
8700
8701         if (shared) {
8702                 *rx = min_t(int, _rx, max);
8703                 *tx = min_t(int, _tx, max);
8704         } else {
8705                 if (max < 2)
8706                         return -ENOMEM;
8707
8708                 while (_rx + _tx > max) {
8709                         if (_rx > _tx && _rx > 1)
8710                                 _rx--;
8711                         else if (_tx > 1)
8712                                 _tx--;
8713                 }
8714                 *rx = _rx;
8715                 *tx = _tx;
8716         }
8717         return 0;
8718 }
8719
8720 static void bnxt_setup_msix(struct bnxt *bp)
8721 {
8722         const int len = sizeof(bp->irq_tbl[0].name);
8723         struct net_device *dev = bp->dev;
8724         int tcs, i;
8725
8726         tcs = netdev_get_num_tc(dev);
8727         if (tcs) {
8728                 int i, off, count;
8729
8730                 for (i = 0; i < tcs; i++) {
8731                         count = bp->tx_nr_rings_per_tc;
8732                         off = i * count;
8733                         netdev_set_tc_queue(dev, i, count, off);
8734                 }
8735         }
8736
8737         for (i = 0; i < bp->cp_nr_rings; i++) {
8738                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8739                 char *attr;
8740
8741                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8742                         attr = "TxRx";
8743                 else if (i < bp->rx_nr_rings)
8744                         attr = "rx";
8745                 else
8746                         attr = "tx";
8747
8748                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8749                          attr, i);
8750                 bp->irq_tbl[map_idx].handler = bnxt_msix;
8751         }
8752 }
8753
8754 static void bnxt_setup_inta(struct bnxt *bp)
8755 {
8756         const int len = sizeof(bp->irq_tbl[0].name);
8757
8758         if (netdev_get_num_tc(bp->dev))
8759                 netdev_reset_tc(bp->dev);
8760
8761         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8762                  0);
8763         bp->irq_tbl[0].handler = bnxt_inta;
8764 }
8765
8766 static int bnxt_init_int_mode(struct bnxt *bp);
8767
8768 static int bnxt_setup_int_mode(struct bnxt *bp)
8769 {
8770         int rc;
8771
8772         if (!bp->irq_tbl) {
8773                 rc = bnxt_init_int_mode(bp);
8774                 if (rc || !bp->irq_tbl)
8775                         return rc ?: -ENODEV;
8776         }
8777
8778         if (bp->flags & BNXT_FLAG_USING_MSIX)
8779                 bnxt_setup_msix(bp);
8780         else
8781                 bnxt_setup_inta(bp);
8782
8783         rc = bnxt_set_real_num_queues(bp);
8784         return rc;
8785 }
8786
8787 #ifdef CONFIG_RFS_ACCEL
8788 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8789 {
8790         return bp->hw_resc.max_rsscos_ctxs;
8791 }
8792
8793 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8794 {
8795         return bp->hw_resc.max_vnics;
8796 }
8797 #endif
8798
8799 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8800 {
8801         return bp->hw_resc.max_stat_ctxs;
8802 }
8803
8804 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8805 {
8806         return bp->hw_resc.max_cp_rings;
8807 }
8808
8809 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8810 {
8811         unsigned int cp = bp->hw_resc.max_cp_rings;
8812
8813         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8814                 cp -= bnxt_get_ulp_msix_num(bp);
8815
8816         return cp;
8817 }
8818
8819 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8820 {
8821         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8822
8823         if (bp->flags & BNXT_FLAG_CHIP_P5)
8824                 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8825
8826         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8827 }
8828
8829 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8830 {
8831         bp->hw_resc.max_irqs = max_irqs;
8832 }
8833
8834 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8835 {
8836         unsigned int cp;
8837
8838         cp = bnxt_get_max_func_cp_rings_for_en(bp);
8839         if (bp->flags & BNXT_FLAG_CHIP_P5)
8840                 return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8841         else
8842                 return cp - bp->cp_nr_rings;
8843 }
8844
8845 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8846 {
8847         return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8848 }
8849
8850 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8851 {
8852         int max_cp = bnxt_get_max_func_cp_rings(bp);
8853         int max_irq = bnxt_get_max_func_irqs(bp);
8854         int total_req = bp->cp_nr_rings + num;
8855         int max_idx, avail_msix;
8856
8857         max_idx = bp->total_irqs;
8858         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8859                 max_idx = min_t(int, bp->total_irqs, max_cp);
8860         avail_msix = max_idx - bp->cp_nr_rings;
8861         if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8862                 return avail_msix;
8863
8864         if (max_irq < total_req) {
8865                 num = max_irq - bp->cp_nr_rings;
8866                 if (num <= 0)
8867                         return 0;
8868         }
8869         return num;
8870 }
8871
8872 static int bnxt_get_num_msix(struct bnxt *bp)
8873 {
8874         if (!BNXT_NEW_RM(bp))
8875                 return bnxt_get_max_func_irqs(bp);
8876
8877         return bnxt_nq_rings_in_use(bp);
8878 }
8879
8880 static int bnxt_init_msix(struct bnxt *bp)
8881 {
8882         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8883         struct msix_entry *msix_ent;
8884
8885         total_vecs = bnxt_get_num_msix(bp);
8886         max = bnxt_get_max_func_irqs(bp);
8887         if (total_vecs > max)
8888                 total_vecs = max;
8889
8890         if (!total_vecs)
8891                 return 0;
8892
8893         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8894         if (!msix_ent)
8895                 return -ENOMEM;
8896
8897         for (i = 0; i < total_vecs; i++) {
8898                 msix_ent[i].entry = i;
8899                 msix_ent[i].vector = 0;
8900         }
8901
8902         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8903                 min = 2;
8904
8905         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8906         ulp_msix = bnxt_get_ulp_msix_num(bp);
8907         if (total_vecs < 0 || total_vecs < ulp_msix) {
8908                 rc = -ENODEV;
8909                 goto msix_setup_exit;
8910         }
8911
8912         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8913         if (bp->irq_tbl) {
8914                 for (i = 0; i < total_vecs; i++)
8915                         bp->irq_tbl[i].vector = msix_ent[i].vector;
8916
8917                 bp->total_irqs = total_vecs;
8918                 /* Trim rings based upon num of vectors allocated */
8919                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8920                                      total_vecs - ulp_msix, min == 1);
8921                 if (rc)
8922                         goto msix_setup_exit;
8923
8924                 bp->cp_nr_rings = (min == 1) ?
8925                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8926                                   bp->tx_nr_rings + bp->rx_nr_rings;
8927
8928         } else {
8929                 rc = -ENOMEM;
8930                 goto msix_setup_exit;
8931         }
8932         bp->flags |= BNXT_FLAG_USING_MSIX;
8933         kfree(msix_ent);
8934         return 0;
8935
8936 msix_setup_exit:
8937         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8938         kfree(bp->irq_tbl);
8939         bp->irq_tbl = NULL;
8940         pci_disable_msix(bp->pdev);
8941         kfree(msix_ent);
8942         return rc;
8943 }
8944
8945 static int bnxt_init_inta(struct bnxt *bp)
8946 {
8947         bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8948         if (!bp->irq_tbl)
8949                 return -ENOMEM;
8950
8951         bp->total_irqs = 1;
8952         bp->rx_nr_rings = 1;
8953         bp->tx_nr_rings = 1;
8954         bp->cp_nr_rings = 1;
8955         bp->flags |= BNXT_FLAG_SHARED_RINGS;
8956         bp->irq_tbl[0].vector = bp->pdev->irq;
8957         return 0;
8958 }
8959
8960 static int bnxt_init_int_mode(struct bnxt *bp)
8961 {
8962         int rc = -ENODEV;
8963
8964         if (bp->flags & BNXT_FLAG_MSIX_CAP)
8965                 rc = bnxt_init_msix(bp);
8966
8967         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8968                 /* fallback to INTA */
8969                 rc = bnxt_init_inta(bp);
8970         }
8971         return rc;
8972 }
8973
8974 static void bnxt_clear_int_mode(struct bnxt *bp)
8975 {
8976         if (bp->flags & BNXT_FLAG_USING_MSIX)
8977                 pci_disable_msix(bp->pdev);
8978
8979         kfree(bp->irq_tbl);
8980         bp->irq_tbl = NULL;
8981         bp->flags &= ~BNXT_FLAG_USING_MSIX;
8982 }
8983
8984 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8985 {
8986         int tcs = netdev_get_num_tc(bp->dev);
8987         bool irq_cleared = false;
8988         int rc;
8989
8990         if (!bnxt_need_reserve_rings(bp))
8991                 return 0;
8992
8993         if (irq_re_init && BNXT_NEW_RM(bp) &&
8994             bnxt_get_num_msix(bp) != bp->total_irqs) {
8995                 bnxt_ulp_irq_stop(bp);
8996                 bnxt_clear_int_mode(bp);
8997                 irq_cleared = true;
8998         }
8999         rc = __bnxt_reserve_rings(bp);
9000         if (irq_cleared) {
9001                 if (!rc)
9002                         rc = bnxt_init_int_mode(bp);
9003                 bnxt_ulp_irq_restart(bp, rc);
9004         }
9005         if (rc) {
9006                 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9007                 return rc;
9008         }
9009         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9010                 netdev_err(bp->dev, "tx ring reservation failure\n");
9011                 netdev_reset_tc(bp->dev);
9012                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9013                 return -ENOMEM;
9014         }
9015         return 0;
9016 }
9017
9018 static void bnxt_free_irq(struct bnxt *bp)
9019 {
9020         struct bnxt_irq *irq;
9021         int i;
9022
9023 #ifdef CONFIG_RFS_ACCEL
9024         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9025         bp->dev->rx_cpu_rmap = NULL;
9026 #endif
9027         if (!bp->irq_tbl || !bp->bnapi)
9028                 return;
9029
9030         for (i = 0; i < bp->cp_nr_rings; i++) {
9031                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9032
9033                 irq = &bp->irq_tbl[map_idx];
9034                 if (irq->requested) {
9035                         if (irq->have_cpumask) {
9036                                 irq_set_affinity_hint(irq->vector, NULL);
9037                                 free_cpumask_var(irq->cpu_mask);
9038                                 irq->have_cpumask = 0;
9039                         }
9040                         free_irq(irq->vector, bp->bnapi[i]);
9041                 }
9042
9043                 irq->requested = 0;
9044         }
9045 }
9046
9047 static int bnxt_request_irq(struct bnxt *bp)
9048 {
9049         int i, j, rc = 0;
9050         unsigned long flags = 0;
9051 #ifdef CONFIG_RFS_ACCEL
9052         struct cpu_rmap *rmap;
9053 #endif
9054
9055         rc = bnxt_setup_int_mode(bp);
9056         if (rc) {
9057                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9058                            rc);
9059                 return rc;
9060         }
9061 #ifdef CONFIG_RFS_ACCEL
9062         rmap = bp->dev->rx_cpu_rmap;
9063 #endif
9064         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9065                 flags = IRQF_SHARED;
9066
9067         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9068                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9069                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9070
9071 #ifdef CONFIG_RFS_ACCEL
9072                 if (rmap && bp->bnapi[i]->rx_ring) {
9073                         rc = irq_cpu_rmap_add(rmap, irq->vector);
9074                         if (rc)
9075                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9076                                             j);
9077                         j++;
9078                 }
9079 #endif
9080                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9081                                  bp->bnapi[i]);
9082                 if (rc)
9083                         break;
9084
9085                 irq->requested = 1;
9086
9087                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9088                         int numa_node = dev_to_node(&bp->pdev->dev);
9089
9090                         irq->have_cpumask = 1;
9091                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9092                                         irq->cpu_mask);
9093                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9094                         if (rc) {
9095                                 netdev_warn(bp->dev,
9096                                             "Set affinity failed, IRQ = %d\n",
9097                                             irq->vector);
9098                                 break;
9099                         }
9100                 }
9101         }
9102         return rc;
9103 }
9104
9105 static void bnxt_del_napi(struct bnxt *bp)
9106 {
9107         int i;
9108
9109         if (!bp->bnapi)
9110                 return;
9111
9112         for (i = 0; i < bp->cp_nr_rings; i++) {
9113                 struct bnxt_napi *bnapi = bp->bnapi[i];
9114
9115                 __netif_napi_del(&bnapi->napi);
9116         }
9117         /* We called __netif_napi_del(), we need
9118          * to respect an RCU grace period before freeing napi structures.
9119          */
9120         synchronize_net();
9121 }
9122
9123 static void bnxt_init_napi(struct bnxt *bp)
9124 {
9125         int i;
9126         unsigned int cp_nr_rings = bp->cp_nr_rings;
9127         struct bnxt_napi *bnapi;
9128
9129         if (bp->flags & BNXT_FLAG_USING_MSIX) {
9130                 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9131
9132                 if (bp->flags & BNXT_FLAG_CHIP_P5)
9133                         poll_fn = bnxt_poll_p5;
9134                 else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9135                         cp_nr_rings--;
9136                 for (i = 0; i < cp_nr_rings; i++) {
9137                         bnapi = bp->bnapi[i];
9138                         netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9139                 }
9140                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9141                         bnapi = bp->bnapi[cp_nr_rings];
9142                         netif_napi_add(bp->dev, &bnapi->napi,
9143                                        bnxt_poll_nitroa0, 64);
9144                 }
9145         } else {
9146                 bnapi = bp->bnapi[0];
9147                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9148         }
9149 }
9150
9151 static void bnxt_disable_napi(struct bnxt *bp)
9152 {
9153         int i;
9154
9155         if (!bp->bnapi ||
9156             test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9157                 return;
9158
9159         for (i = 0; i < bp->cp_nr_rings; i++) {
9160                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9161
9162                 napi_disable(&bp->bnapi[i]->napi);
9163                 if (bp->bnapi[i]->rx_ring)
9164                         cancel_work_sync(&cpr->dim.work);
9165         }
9166 }
9167
9168 static void bnxt_enable_napi(struct bnxt *bp)
9169 {
9170         int i;
9171
9172         clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9173         for (i = 0; i < bp->cp_nr_rings; i++) {
9174                 struct bnxt_napi *bnapi = bp->bnapi[i];
9175                 struct bnxt_cp_ring_info *cpr;
9176
9177                 cpr = &bnapi->cp_ring;
9178                 if (bnapi->in_reset)
9179                         cpr->sw_stats.rx.rx_resets++;
9180                 bnapi->in_reset = false;
9181
9182                 if (bnapi->rx_ring) {
9183                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9184                         cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9185                 }
9186                 napi_enable(&bnapi->napi);
9187         }
9188 }
9189
9190 void bnxt_tx_disable(struct bnxt *bp)
9191 {
9192         int i;
9193         struct bnxt_tx_ring_info *txr;
9194
9195         if (bp->tx_ring) {
9196                 for (i = 0; i < bp->tx_nr_rings; i++) {
9197                         txr = &bp->tx_ring[i];
9198                         WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9199                 }
9200         }
9201         /* Make sure napi polls see @dev_state change */
9202         synchronize_net();
9203         /* Drop carrier first to prevent TX timeout */
9204         netif_carrier_off(bp->dev);
9205         /* Stop all TX queues */
9206         netif_tx_disable(bp->dev);
9207 }
9208
9209 void bnxt_tx_enable(struct bnxt *bp)
9210 {
9211         int i;
9212         struct bnxt_tx_ring_info *txr;
9213
9214         for (i = 0; i < bp->tx_nr_rings; i++) {
9215                 txr = &bp->tx_ring[i];
9216                 WRITE_ONCE(txr->dev_state, 0);
9217         }
9218         /* Make sure napi polls see @dev_state change */
9219         synchronize_net();
9220         netif_tx_wake_all_queues(bp->dev);
9221         if (bp->link_info.link_up)
9222                 netif_carrier_on(bp->dev);
9223 }
9224
9225 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9226 {
9227         u8 active_fec = link_info->active_fec_sig_mode &
9228                         PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9229
9230         switch (active_fec) {
9231         default:
9232         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9233                 return "None";
9234         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9235                 return "Clause 74 BaseR";
9236         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9237                 return "Clause 91 RS(528,514)";
9238         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9239                 return "Clause 91 RS544_1XN";
9240         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9241                 return "Clause 91 RS(544,514)";
9242         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9243                 return "Clause 91 RS272_1XN";
9244         case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9245                 return "Clause 91 RS(272,257)";
9246         }
9247 }
9248
9249 static void bnxt_report_link(struct bnxt *bp)
9250 {
9251         if (bp->link_info.link_up) {
9252                 const char *signal = "";
9253                 const char *flow_ctrl;
9254                 const char *duplex;
9255                 u32 speed;
9256                 u16 fec;
9257
9258                 netif_carrier_on(bp->dev);
9259                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9260                 if (speed == SPEED_UNKNOWN) {
9261                         netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9262                         return;
9263                 }
9264                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9265                         duplex = "full";
9266                 else
9267                         duplex = "half";
9268                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9269                         flow_ctrl = "ON - receive & transmit";
9270                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9271                         flow_ctrl = "ON - transmit";
9272                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9273                         flow_ctrl = "ON - receive";
9274                 else
9275                         flow_ctrl = "none";
9276                 if (bp->link_info.phy_qcfg_resp.option_flags &
9277                     PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9278                         u8 sig_mode = bp->link_info.active_fec_sig_mode &
9279                                       PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9280                         switch (sig_mode) {
9281                         case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9282                                 signal = "(NRZ) ";
9283                                 break;
9284                         case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9285                                 signal = "(PAM4) ";
9286                                 break;
9287                         default:
9288                                 break;
9289                         }
9290                 }
9291                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9292                             speed, signal, duplex, flow_ctrl);
9293                 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9294                         netdev_info(bp->dev, "EEE is %s\n",
9295                                     bp->eee.eee_active ? "active" :
9296                                                          "not active");
9297                 fec = bp->link_info.fec_cfg;
9298                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9299                         netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9300                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9301                                     bnxt_report_fec(&bp->link_info));
9302         } else {
9303                 netif_carrier_off(bp->dev);
9304                 netdev_err(bp->dev, "NIC Link is Down\n");
9305         }
9306 }
9307
9308 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9309 {
9310         if (!resp->supported_speeds_auto_mode &&
9311             !resp->supported_speeds_force_mode &&
9312             !resp->supported_pam4_speeds_auto_mode &&
9313             !resp->supported_pam4_speeds_force_mode)
9314                 return true;
9315         return false;
9316 }
9317
9318 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9319 {
9320         struct bnxt_link_info *link_info = &bp->link_info;
9321         struct hwrm_port_phy_qcaps_output *resp;
9322         struct hwrm_port_phy_qcaps_input *req;
9323         int rc = 0;
9324
9325         if (bp->hwrm_spec_code < 0x10201)
9326                 return 0;
9327
9328         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9329         if (rc)
9330                 return rc;
9331
9332         resp = hwrm_req_hold(bp, req);
9333         rc = hwrm_req_send(bp, req);
9334         if (rc)
9335                 goto hwrm_phy_qcaps_exit;
9336
9337         bp->phy_flags = resp->flags;
9338         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9339                 struct ethtool_eee *eee = &bp->eee;
9340                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9341
9342                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9343                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9344                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9345                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9346                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9347         }
9348
9349         if (bp->hwrm_spec_code >= 0x10a01) {
9350                 if (bnxt_phy_qcaps_no_speed(resp)) {
9351                         link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9352                         netdev_warn(bp->dev, "Ethernet link disabled\n");
9353                 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9354                         link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9355                         netdev_info(bp->dev, "Ethernet link enabled\n");
9356                         /* Phy re-enabled, reprobe the speeds */
9357                         link_info->support_auto_speeds = 0;
9358                         link_info->support_pam4_auto_speeds = 0;
9359                 }
9360         }
9361         if (resp->supported_speeds_auto_mode)
9362                 link_info->support_auto_speeds =
9363                         le16_to_cpu(resp->supported_speeds_auto_mode);
9364         if (resp->supported_pam4_speeds_auto_mode)
9365                 link_info->support_pam4_auto_speeds =
9366                         le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9367
9368         bp->port_count = resp->port_cnt;
9369
9370 hwrm_phy_qcaps_exit:
9371         hwrm_req_drop(bp, req);
9372         return rc;
9373 }
9374
9375 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9376 {
9377         u16 diff = advertising ^ supported;
9378
9379         return ((supported | diff) != supported);
9380 }
9381
9382 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9383 {
9384         struct bnxt_link_info *link_info = &bp->link_info;
9385         struct hwrm_port_phy_qcfg_output *resp;
9386         struct hwrm_port_phy_qcfg_input *req;
9387         u8 link_up = link_info->link_up;
9388         bool support_changed = false;
9389         int rc;
9390
9391         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9392         if (rc)
9393                 return rc;
9394
9395         resp = hwrm_req_hold(bp, req);
9396         rc = hwrm_req_send(bp, req);
9397         if (rc) {
9398                 hwrm_req_drop(bp, req);
9399                 return rc;
9400         }
9401
9402         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9403         link_info->phy_link_status = resp->link;
9404         link_info->duplex = resp->duplex_cfg;
9405         if (bp->hwrm_spec_code >= 0x10800)
9406                 link_info->duplex = resp->duplex_state;
9407         link_info->pause = resp->pause;
9408         link_info->auto_mode = resp->auto_mode;
9409         link_info->auto_pause_setting = resp->auto_pause;
9410         link_info->lp_pause = resp->link_partner_adv_pause;
9411         link_info->force_pause_setting = resp->force_pause;
9412         link_info->duplex_setting = resp->duplex_cfg;
9413         if (link_info->phy_link_status == BNXT_LINK_LINK)
9414                 link_info->link_speed = le16_to_cpu(resp->link_speed);
9415         else
9416                 link_info->link_speed = 0;
9417         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9418         link_info->force_pam4_link_speed =
9419                 le16_to_cpu(resp->force_pam4_link_speed);
9420         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9421         link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9422         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9423         link_info->auto_pam4_link_speeds =
9424                 le16_to_cpu(resp->auto_pam4_link_speed_mask);
9425         link_info->lp_auto_link_speeds =
9426                 le16_to_cpu(resp->link_partner_adv_speeds);
9427         link_info->lp_auto_pam4_link_speeds =
9428                 resp->link_partner_pam4_adv_speeds;
9429         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9430         link_info->phy_ver[0] = resp->phy_maj;
9431         link_info->phy_ver[1] = resp->phy_min;
9432         link_info->phy_ver[2] = resp->phy_bld;
9433         link_info->media_type = resp->media_type;
9434         link_info->phy_type = resp->phy_type;
9435         link_info->transceiver = resp->xcvr_pkg_type;
9436         link_info->phy_addr = resp->eee_config_phy_addr &
9437                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9438         link_info->module_status = resp->module_status;
9439
9440         if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9441                 struct ethtool_eee *eee = &bp->eee;
9442                 u16 fw_speeds;
9443
9444                 eee->eee_active = 0;
9445                 if (resp->eee_config_phy_addr &
9446                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9447                         eee->eee_active = 1;
9448                         fw_speeds = le16_to_cpu(
9449                                 resp->link_partner_adv_eee_link_speed_mask);
9450                         eee->lp_advertised =
9451                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9452                 }
9453
9454                 /* Pull initial EEE config */
9455                 if (!chng_link_state) {
9456                         if (resp->eee_config_phy_addr &
9457                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9458                                 eee->eee_enabled = 1;
9459
9460                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9461                         eee->advertised =
9462                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9463
9464                         if (resp->eee_config_phy_addr &
9465                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9466                                 __le32 tmr;
9467
9468                                 eee->tx_lpi_enabled = 1;
9469                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9470                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
9471                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9472                         }
9473                 }
9474         }
9475
9476         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9477         if (bp->hwrm_spec_code >= 0x10504) {
9478                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9479                 link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9480         }
9481         /* TODO: need to add more logic to report VF link */
9482         if (chng_link_state) {
9483                 if (link_info->phy_link_status == BNXT_LINK_LINK)
9484                         link_info->link_up = 1;
9485                 else
9486                         link_info->link_up = 0;
9487                 if (link_up != link_info->link_up)
9488                         bnxt_report_link(bp);
9489         } else {
9490                 /* alwasy link down if not require to update link state */
9491                 link_info->link_up = 0;
9492         }
9493         hwrm_req_drop(bp, req);
9494
9495         if (!BNXT_PHY_CFG_ABLE(bp))
9496                 return 0;
9497
9498         /* Check if any advertised speeds are no longer supported. The caller
9499          * holds the link_lock mutex, so we can modify link_info settings.
9500          */
9501         if (bnxt_support_dropped(link_info->advertising,
9502                                  link_info->support_auto_speeds)) {
9503                 link_info->advertising = link_info->support_auto_speeds;
9504                 support_changed = true;
9505         }
9506         if (bnxt_support_dropped(link_info->advertising_pam4,
9507                                  link_info->support_pam4_auto_speeds)) {
9508                 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9509                 support_changed = true;
9510         }
9511         if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9512                 bnxt_hwrm_set_link_setting(bp, true, false);
9513         return 0;
9514 }
9515
9516 static void bnxt_get_port_module_status(struct bnxt *bp)
9517 {
9518         struct bnxt_link_info *link_info = &bp->link_info;
9519         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9520         u8 module_status;
9521
9522         if (bnxt_update_link(bp, true))
9523                 return;
9524
9525         module_status = link_info->module_status;
9526         switch (module_status) {
9527         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9528         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9529         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9530                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9531                             bp->pf.port_id);
9532                 if (bp->hwrm_spec_code >= 0x10201) {
9533                         netdev_warn(bp->dev, "Module part number %s\n",
9534                                     resp->phy_vendor_partnumber);
9535                 }
9536                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9537                         netdev_warn(bp->dev, "TX is disabled\n");
9538                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9539                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9540         }
9541 }
9542
9543 static void
9544 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9545 {
9546         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9547                 if (bp->hwrm_spec_code >= 0x10201)
9548                         req->auto_pause =
9549                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9550                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9551                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9552                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9553                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9554                 req->enables |=
9555                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9556         } else {
9557                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9558                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9559                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9560                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9561                 req->enables |=
9562                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9563                 if (bp->hwrm_spec_code >= 0x10201) {
9564                         req->auto_pause = req->force_pause;
9565                         req->enables |= cpu_to_le32(
9566                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9567                 }
9568         }
9569 }
9570
9571 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9572 {
9573         if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9574                 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9575                 if (bp->link_info.advertising) {
9576                         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9577                         req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9578                 }
9579                 if (bp->link_info.advertising_pam4) {
9580                         req->enables |=
9581                                 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9582                         req->auto_link_pam4_speed_mask =
9583                                 cpu_to_le16(bp->link_info.advertising_pam4);
9584                 }
9585                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9586                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9587         } else {
9588                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9589                 if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9590                         req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9591                         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9592                 } else {
9593                         req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9594                 }
9595         }
9596
9597         /* tell chimp that the setting takes effect immediately */
9598         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9599 }
9600
9601 int bnxt_hwrm_set_pause(struct bnxt *bp)
9602 {
9603         struct hwrm_port_phy_cfg_input *req;
9604         int rc;
9605
9606         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9607         if (rc)
9608                 return rc;
9609
9610         bnxt_hwrm_set_pause_common(bp, req);
9611
9612         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9613             bp->link_info.force_link_chng)
9614                 bnxt_hwrm_set_link_common(bp, req);
9615
9616         rc = hwrm_req_send(bp, req);
9617         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9618                 /* since changing of pause setting doesn't trigger any link
9619                  * change event, the driver needs to update the current pause
9620                  * result upon successfully return of the phy_cfg command
9621                  */
9622                 bp->link_info.pause =
9623                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9624                 bp->link_info.auto_pause_setting = 0;
9625                 if (!bp->link_info.force_link_chng)
9626                         bnxt_report_link(bp);
9627         }
9628         bp->link_info.force_link_chng = false;
9629         return rc;
9630 }
9631
9632 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9633                               struct hwrm_port_phy_cfg_input *req)
9634 {
9635         struct ethtool_eee *eee = &bp->eee;
9636
9637         if (eee->eee_enabled) {
9638                 u16 eee_speeds;
9639                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9640
9641                 if (eee->tx_lpi_enabled)
9642                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9643                 else
9644                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9645
9646                 req->flags |= cpu_to_le32(flags);
9647                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9648                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9649                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9650         } else {
9651                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9652         }
9653 }
9654
9655 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9656 {
9657         struct hwrm_port_phy_cfg_input *req;
9658         int rc;
9659
9660         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9661         if (rc)
9662                 return rc;
9663
9664         if (set_pause)
9665                 bnxt_hwrm_set_pause_common(bp, req);
9666
9667         bnxt_hwrm_set_link_common(bp, req);
9668
9669         if (set_eee)
9670                 bnxt_hwrm_set_eee(bp, req);
9671         return hwrm_req_send(bp, req);
9672 }
9673
9674 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9675 {
9676         struct hwrm_port_phy_cfg_input *req;
9677         int rc;
9678
9679         if (!BNXT_SINGLE_PF(bp))
9680                 return 0;
9681
9682         if (pci_num_vf(bp->pdev) &&
9683             !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9684                 return 0;
9685
9686         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9687         if (rc)
9688                 return rc;
9689
9690         req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9691         return hwrm_req_send(bp, req);
9692 }
9693
9694 static int bnxt_fw_init_one(struct bnxt *bp);
9695
9696 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9697 {
9698 #ifdef CONFIG_TEE_BNXT_FW
9699         int rc = tee_bnxt_fw_load();
9700
9701         if (rc)
9702                 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9703
9704         return rc;
9705 #else
9706         netdev_err(bp->dev, "OP-TEE not supported\n");
9707         return -ENODEV;
9708 #endif
9709 }
9710
9711 static int bnxt_try_recover_fw(struct bnxt *bp)
9712 {
9713         if (bp->fw_health && bp->fw_health->status_reliable) {
9714                 int retry = 0, rc;
9715                 u32 sts;
9716
9717                 do {
9718                         sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9719                         rc = bnxt_hwrm_poll(bp);
9720                         if (!BNXT_FW_IS_BOOTING(sts) &&
9721                             !BNXT_FW_IS_RECOVERING(sts))
9722                                 break;
9723                         retry++;
9724                 } while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9725
9726                 if (!BNXT_FW_IS_HEALTHY(sts)) {
9727                         netdev_err(bp->dev,
9728                                    "Firmware not responding, status: 0x%x\n",
9729                                    sts);
9730                         rc = -ENODEV;
9731                 }
9732                 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9733                         netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9734                         return bnxt_fw_reset_via_optee(bp);
9735                 }
9736                 return rc;
9737         }
9738
9739         return -ENODEV;
9740 }
9741
9742 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9743 {
9744         struct hwrm_func_drv_if_change_output *resp;
9745         struct hwrm_func_drv_if_change_input *req;
9746         bool fw_reset = !bp->irq_tbl;
9747         bool resc_reinit = false;
9748         int rc, retry = 0;
9749         u32 flags = 0;
9750
9751         if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9752                 return 0;
9753
9754         rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
9755         if (rc)
9756                 return rc;
9757
9758         if (up)
9759                 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9760         resp = hwrm_req_hold(bp, req);
9761
9762         hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9763         while (retry < BNXT_FW_IF_RETRY) {
9764                 rc = hwrm_req_send(bp, req);
9765                 if (rc != -EAGAIN)
9766                         break;
9767
9768                 msleep(50);
9769                 retry++;
9770         }
9771
9772         if (rc == -EAGAIN) {
9773                 hwrm_req_drop(bp, req);
9774                 return rc;
9775         } else if (!rc) {
9776                 flags = le32_to_cpu(resp->flags);
9777         } else if (up) {
9778                 rc = bnxt_try_recover_fw(bp);
9779                 fw_reset = true;
9780         }
9781         hwrm_req_drop(bp, req);
9782         if (rc)
9783                 return rc;
9784
9785         if (!up) {
9786                 bnxt_inv_fw_health_reg(bp);
9787                 return 0;
9788         }
9789
9790         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9791                 resc_reinit = true;
9792         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9793                 fw_reset = true;
9794         else if (bp->fw_health && !bp->fw_health->status_reliable)
9795                 bnxt_try_map_fw_health_reg(bp);
9796
9797         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9798                 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9799                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9800                 return -ENODEV;
9801         }
9802         if (resc_reinit || fw_reset) {
9803                 if (fw_reset) {
9804                         set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9805                         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9806                                 bnxt_ulp_stop(bp);
9807                         bnxt_free_ctx_mem(bp);
9808                         kfree(bp->ctx);
9809                         bp->ctx = NULL;
9810                         bnxt_dcb_free(bp);
9811                         rc = bnxt_fw_init_one(bp);
9812                         if (rc) {
9813                                 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9814                                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9815                                 return rc;
9816                         }
9817                         bnxt_clear_int_mode(bp);
9818                         rc = bnxt_init_int_mode(bp);
9819                         if (rc) {
9820                                 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9821                                 netdev_err(bp->dev, "init int mode failed\n");
9822                                 return rc;
9823                         }
9824                 }
9825                 if (BNXT_NEW_RM(bp)) {
9826                         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9827
9828                         rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9829                         if (rc)
9830                                 netdev_err(bp->dev, "resc_qcaps failed\n");
9831
9832                         hw_resc->resv_cp_rings = 0;
9833                         hw_resc->resv_stat_ctxs = 0;
9834                         hw_resc->resv_irqs = 0;
9835                         hw_resc->resv_tx_rings = 0;
9836                         hw_resc->resv_rx_rings = 0;
9837                         hw_resc->resv_hw_ring_grps = 0;
9838                         hw_resc->resv_vnics = 0;
9839                         if (!fw_reset) {
9840                                 bp->tx_nr_rings = 0;
9841                                 bp->rx_nr_rings = 0;
9842                         }
9843                 }
9844         }
9845         return rc;
9846 }
9847
9848 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9849 {
9850         struct hwrm_port_led_qcaps_output *resp;
9851         struct hwrm_port_led_qcaps_input *req;
9852         struct bnxt_pf_info *pf = &bp->pf;
9853         int rc;
9854
9855         bp->num_leds = 0;
9856         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9857                 return 0;
9858
9859         rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
9860         if (rc)
9861                 return rc;
9862
9863         req->port_id = cpu_to_le16(pf->port_id);
9864         resp = hwrm_req_hold(bp, req);
9865         rc = hwrm_req_send(bp, req);
9866         if (rc) {
9867                 hwrm_req_drop(bp, req);
9868                 return rc;
9869         }
9870         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9871                 int i;
9872
9873                 bp->num_leds = resp->num_leds;
9874                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9875                                                  bp->num_leds);
9876                 for (i = 0; i < bp->num_leds; i++) {
9877                         struct bnxt_led_info *led = &bp->leds[i];
9878                         __le16 caps = led->led_state_caps;
9879
9880                         if (!led->led_group_id ||
9881                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
9882                                 bp->num_leds = 0;
9883                                 break;
9884                         }
9885                 }
9886         }
9887         hwrm_req_drop(bp, req);
9888         return 0;
9889 }
9890
9891 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9892 {
9893         struct hwrm_wol_filter_alloc_output *resp;
9894         struct hwrm_wol_filter_alloc_input *req;
9895         int rc;
9896
9897         rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
9898         if (rc)
9899                 return rc;
9900
9901         req->port_id = cpu_to_le16(bp->pf.port_id);
9902         req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9903         req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9904         memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
9905
9906         resp = hwrm_req_hold(bp, req);
9907         rc = hwrm_req_send(bp, req);
9908         if (!rc)
9909                 bp->wol_filter_id = resp->wol_filter_id;
9910         hwrm_req_drop(bp, req);
9911         return rc;
9912 }
9913
9914 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9915 {
9916         struct hwrm_wol_filter_free_input *req;
9917         int rc;
9918
9919         rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
9920         if (rc)
9921                 return rc;
9922
9923         req->port_id = cpu_to_le16(bp->pf.port_id);
9924         req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9925         req->wol_filter_id = bp->wol_filter_id;
9926
9927         return hwrm_req_send(bp, req);
9928 }
9929
9930 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9931 {
9932         struct hwrm_wol_filter_qcfg_output *resp;
9933         struct hwrm_wol_filter_qcfg_input *req;
9934         u16 next_handle = 0;
9935         int rc;
9936
9937         rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
9938         if (rc)
9939                 return rc;
9940
9941         req->port_id = cpu_to_le16(bp->pf.port_id);
9942         req->handle = cpu_to_le16(handle);
9943         resp = hwrm_req_hold(bp, req);
9944         rc = hwrm_req_send(bp, req);
9945         if (!rc) {
9946                 next_handle = le16_to_cpu(resp->next_handle);
9947                 if (next_handle != 0) {
9948                         if (resp->wol_type ==
9949                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9950                                 bp->wol = 1;
9951                                 bp->wol_filter_id = resp->wol_filter_id;
9952                         }
9953                 }
9954         }
9955         hwrm_req_drop(bp, req);
9956         return next_handle;
9957 }
9958
9959 static void bnxt_get_wol_settings(struct bnxt *bp)
9960 {
9961         u16 handle = 0;
9962
9963         bp->wol = 0;
9964         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
9965                 return;
9966
9967         do {
9968                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
9969         } while (handle && handle != 0xffff);
9970 }
9971
9972 #ifdef CONFIG_BNXT_HWMON
9973 static ssize_t bnxt_show_temp(struct device *dev,
9974                               struct device_attribute *devattr, char *buf)
9975 {
9976         struct hwrm_temp_monitor_query_output *resp;
9977         struct hwrm_temp_monitor_query_input *req;
9978         struct bnxt *bp = dev_get_drvdata(dev);
9979         u32 len = 0;
9980         int rc;
9981
9982         rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
9983         if (rc)
9984                 return rc;
9985         resp = hwrm_req_hold(bp, req);
9986         rc = hwrm_req_send(bp, req);
9987         if (!rc)
9988                 len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
9989         hwrm_req_drop(bp, req);
9990         if (rc)
9991                 return rc;
9992         return len;
9993 }
9994 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
9995
9996 static struct attribute *bnxt_attrs[] = {
9997         &sensor_dev_attr_temp1_input.dev_attr.attr,
9998         NULL
9999 };
10000 ATTRIBUTE_GROUPS(bnxt);
10001
10002 static void bnxt_hwmon_close(struct bnxt *bp)
10003 {
10004         if (bp->hwmon_dev) {
10005                 hwmon_device_unregister(bp->hwmon_dev);
10006                 bp->hwmon_dev = NULL;
10007         }
10008 }
10009
10010 static void bnxt_hwmon_open(struct bnxt *bp)
10011 {
10012         struct hwrm_temp_monitor_query_input *req;
10013         struct pci_dev *pdev = bp->pdev;
10014         int rc;
10015
10016         rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10017         if (!rc)
10018                 rc = hwrm_req_send_silent(bp, req);
10019         if (rc == -EACCES || rc == -EOPNOTSUPP) {
10020                 bnxt_hwmon_close(bp);
10021                 return;
10022         }
10023
10024         if (bp->hwmon_dev)
10025                 return;
10026
10027         bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10028                                                           DRV_MODULE_NAME, bp,
10029                                                           bnxt_groups);
10030         if (IS_ERR(bp->hwmon_dev)) {
10031                 bp->hwmon_dev = NULL;
10032                 dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10033         }
10034 }
10035 #else
10036 static void bnxt_hwmon_close(struct bnxt *bp)
10037 {
10038 }
10039
10040 static void bnxt_hwmon_open(struct bnxt *bp)
10041 {
10042 }
10043 #endif
10044
10045 static bool bnxt_eee_config_ok(struct bnxt *bp)
10046 {
10047         struct ethtool_eee *eee = &bp->eee;
10048         struct bnxt_link_info *link_info = &bp->link_info;
10049
10050         if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10051                 return true;
10052
10053         if (eee->eee_enabled) {
10054                 u32 advertising =
10055                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10056
10057                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10058                         eee->eee_enabled = 0;
10059                         return false;
10060                 }
10061                 if (eee->advertised & ~advertising) {
10062                         eee->advertised = advertising & eee->supported;
10063                         return false;
10064                 }
10065         }
10066         return true;
10067 }
10068
10069 static int bnxt_update_phy_setting(struct bnxt *bp)
10070 {
10071         int rc;
10072         bool update_link = false;
10073         bool update_pause = false;
10074         bool update_eee = false;
10075         struct bnxt_link_info *link_info = &bp->link_info;
10076
10077         rc = bnxt_update_link(bp, true);
10078         if (rc) {
10079                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10080                            rc);
10081                 return rc;
10082         }
10083         if (!BNXT_SINGLE_PF(bp))
10084                 return 0;
10085
10086         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10087             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10088             link_info->req_flow_ctrl)
10089                 update_pause = true;
10090         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10091             link_info->force_pause_setting != link_info->req_flow_ctrl)
10092                 update_pause = true;
10093         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10094                 if (BNXT_AUTO_MODE(link_info->auto_mode))
10095                         update_link = true;
10096                 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10097                     link_info->req_link_speed != link_info->force_link_speed)
10098                         update_link = true;
10099                 else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10100                          link_info->req_link_speed != link_info->force_pam4_link_speed)
10101                         update_link = true;
10102                 if (link_info->req_duplex != link_info->duplex_setting)
10103                         update_link = true;
10104         } else {
10105                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10106                         update_link = true;
10107                 if (link_info->advertising != link_info->auto_link_speeds ||
10108                     link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10109                         update_link = true;
10110         }
10111
10112         /* The last close may have shutdown the link, so need to call
10113          * PHY_CFG to bring it back up.
10114          */
10115         if (!bp->link_info.link_up)
10116                 update_link = true;
10117
10118         if (!bnxt_eee_config_ok(bp))
10119                 update_eee = true;
10120
10121         if (update_link)
10122                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10123         else if (update_pause)
10124                 rc = bnxt_hwrm_set_pause(bp);
10125         if (rc) {
10126                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10127                            rc);
10128                 return rc;
10129         }
10130
10131         return rc;
10132 }
10133
10134 /* Common routine to pre-map certain register block to different GRC window.
10135  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10136  * in PF and 3 windows in VF that can be customized to map in different
10137  * register blocks.
10138  */
10139 static void bnxt_preset_reg_win(struct bnxt *bp)
10140 {
10141         if (BNXT_PF(bp)) {
10142                 /* CAG registers map to GRC window #4 */
10143                 writel(BNXT_CAG_REG_BASE,
10144                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10145         }
10146 }
10147
10148 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10149
10150 static int bnxt_reinit_after_abort(struct bnxt *bp)
10151 {
10152         int rc;
10153
10154         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10155                 return -EBUSY;
10156
10157         if (bp->dev->reg_state == NETREG_UNREGISTERED)
10158                 return -ENODEV;
10159
10160         rc = bnxt_fw_init_one(bp);
10161         if (!rc) {
10162                 bnxt_clear_int_mode(bp);
10163                 rc = bnxt_init_int_mode(bp);
10164                 if (!rc) {
10165                         clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10166                         set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10167                 }
10168         }
10169         return rc;
10170 }
10171
10172 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10173 {
10174         int rc = 0;
10175
10176         bnxt_preset_reg_win(bp);
10177         netif_carrier_off(bp->dev);
10178         if (irq_re_init) {
10179                 /* Reserve rings now if none were reserved at driver probe. */
10180                 rc = bnxt_init_dflt_ring_mode(bp);
10181                 if (rc) {
10182                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10183                         return rc;
10184                 }
10185         }
10186         rc = bnxt_reserve_rings(bp, irq_re_init);
10187         if (rc)
10188                 return rc;
10189         if ((bp->flags & BNXT_FLAG_RFS) &&
10190             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10191                 /* disable RFS if falling back to INTA */
10192                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10193                 bp->flags &= ~BNXT_FLAG_RFS;
10194         }
10195
10196         rc = bnxt_alloc_mem(bp, irq_re_init);
10197         if (rc) {
10198                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10199                 goto open_err_free_mem;
10200         }
10201
10202         if (irq_re_init) {
10203                 bnxt_init_napi(bp);
10204                 rc = bnxt_request_irq(bp);
10205                 if (rc) {
10206                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10207                         goto open_err_irq;
10208                 }
10209         }
10210
10211         rc = bnxt_init_nic(bp, irq_re_init);
10212         if (rc) {
10213                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10214                 goto open_err_irq;
10215         }
10216
10217         bnxt_enable_napi(bp);
10218         bnxt_debug_dev_init(bp);
10219
10220         if (link_re_init) {
10221                 mutex_lock(&bp->link_lock);
10222                 rc = bnxt_update_phy_setting(bp);
10223                 mutex_unlock(&bp->link_lock);
10224                 if (rc) {
10225                         netdev_warn(bp->dev, "failed to update phy settings\n");
10226                         if (BNXT_SINGLE_PF(bp)) {
10227                                 bp->link_info.phy_retry = true;
10228                                 bp->link_info.phy_retry_expires =
10229                                         jiffies + 5 * HZ;
10230                         }
10231                 }
10232         }
10233
10234         if (irq_re_init)
10235                 udp_tunnel_nic_reset_ntf(bp->dev);
10236
10237         set_bit(BNXT_STATE_OPEN, &bp->state);
10238         bnxt_enable_int(bp);
10239         /* Enable TX queues */
10240         bnxt_tx_enable(bp);
10241         mod_timer(&bp->timer, jiffies + bp->current_interval);
10242         /* Poll link status and check for SFP+ module status */
10243         mutex_lock(&bp->link_lock);
10244         bnxt_get_port_module_status(bp);
10245         mutex_unlock(&bp->link_lock);
10246
10247         /* VF-reps may need to be re-opened after the PF is re-opened */
10248         if (BNXT_PF(bp))
10249                 bnxt_vf_reps_open(bp);
10250         return 0;
10251
10252 open_err_irq:
10253         bnxt_del_napi(bp);
10254
10255 open_err_free_mem:
10256         bnxt_free_skbs(bp);
10257         bnxt_free_irq(bp);
10258         bnxt_free_mem(bp, true);
10259         return rc;
10260 }
10261
10262 /* rtnl_lock held */
10263 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10264 {
10265         int rc = 0;
10266
10267         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10268                 rc = -EIO;
10269         if (!rc)
10270                 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10271         if (rc) {
10272                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10273                 dev_close(bp->dev);
10274         }
10275         return rc;
10276 }
10277
10278 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10279  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10280  * self tests.
10281  */
10282 int bnxt_half_open_nic(struct bnxt *bp)
10283 {
10284         int rc = 0;
10285
10286         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10287                 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10288                 rc = -ENODEV;
10289                 goto half_open_err;
10290         }
10291
10292         rc = bnxt_alloc_mem(bp, false);
10293         if (rc) {
10294                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10295                 goto half_open_err;
10296         }
10297         rc = bnxt_init_nic(bp, false);
10298         if (rc) {
10299                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10300                 goto half_open_err;
10301         }
10302         return 0;
10303
10304 half_open_err:
10305         bnxt_free_skbs(bp);
10306         bnxt_free_mem(bp, false);
10307         dev_close(bp->dev);
10308         return rc;
10309 }
10310
10311 /* rtnl_lock held, this call can only be made after a previous successful
10312  * call to bnxt_half_open_nic().
10313  */
10314 void bnxt_half_close_nic(struct bnxt *bp)
10315 {
10316         bnxt_hwrm_resource_free(bp, false, false);
10317         bnxt_free_skbs(bp);
10318         bnxt_free_mem(bp, false);
10319 }
10320
10321 static void bnxt_reenable_sriov(struct bnxt *bp)
10322 {
10323         if (BNXT_PF(bp)) {
10324                 struct bnxt_pf_info *pf = &bp->pf;
10325                 int n = pf->active_vfs;
10326
10327                 if (n)
10328                         bnxt_cfg_hw_sriov(bp, &n, true);
10329         }
10330 }
10331
10332 static int bnxt_open(struct net_device *dev)
10333 {
10334         struct bnxt *bp = netdev_priv(dev);
10335         int rc;
10336
10337         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10338                 rc = bnxt_reinit_after_abort(bp);
10339                 if (rc) {
10340                         if (rc == -EBUSY)
10341                                 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10342                         else
10343                                 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10344                         return -ENODEV;
10345                 }
10346         }
10347
10348         rc = bnxt_hwrm_if_change(bp, true);
10349         if (rc)
10350                 return rc;
10351
10352         rc = __bnxt_open_nic(bp, true, true);
10353         if (rc) {
10354                 bnxt_hwrm_if_change(bp, false);
10355         } else {
10356                 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10357                         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10358                                 bnxt_ulp_start(bp, 0);
10359                                 bnxt_reenable_sriov(bp);
10360                         }
10361                 }
10362                 bnxt_hwmon_open(bp);
10363         }
10364
10365         return rc;
10366 }
10367
10368 static bool bnxt_drv_busy(struct bnxt *bp)
10369 {
10370         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10371                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
10372 }
10373
10374 static void bnxt_get_ring_stats(struct bnxt *bp,
10375                                 struct rtnl_link_stats64 *stats);
10376
10377 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10378                              bool link_re_init)
10379 {
10380         /* Close the VF-reps before closing PF */
10381         if (BNXT_PF(bp))
10382                 bnxt_vf_reps_close(bp);
10383
10384         /* Change device state to avoid TX queue wake up's */
10385         bnxt_tx_disable(bp);
10386
10387         clear_bit(BNXT_STATE_OPEN, &bp->state);
10388         smp_mb__after_atomic();
10389         while (bnxt_drv_busy(bp))
10390                 msleep(20);
10391
10392         /* Flush rings and and disable interrupts */
10393         bnxt_shutdown_nic(bp, irq_re_init);
10394
10395         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10396
10397         bnxt_debug_dev_exit(bp);
10398         bnxt_disable_napi(bp);
10399         del_timer_sync(&bp->timer);
10400         bnxt_free_skbs(bp);
10401
10402         /* Save ring stats before shutdown */
10403         if (bp->bnapi && irq_re_init)
10404                 bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10405         if (irq_re_init) {
10406                 bnxt_free_irq(bp);
10407                 bnxt_del_napi(bp);
10408         }
10409         bnxt_free_mem(bp, irq_re_init);
10410 }
10411
10412 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10413 {
10414         int rc = 0;
10415
10416         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10417                 /* If we get here, it means firmware reset is in progress
10418                  * while we are trying to close.  We can safely proceed with
10419                  * the close because we are holding rtnl_lock().  Some firmware
10420                  * messages may fail as we proceed to close.  We set the
10421                  * ABORT_ERR flag here so that the FW reset thread will later
10422                  * abort when it gets the rtnl_lock() and sees the flag.
10423                  */
10424                 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10425                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10426         }
10427
10428 #ifdef CONFIG_BNXT_SRIOV
10429         if (bp->sriov_cfg) {
10430                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10431                                                       !bp->sriov_cfg,
10432                                                       BNXT_SRIOV_CFG_WAIT_TMO);
10433                 if (rc)
10434                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10435         }
10436 #endif
10437         __bnxt_close_nic(bp, irq_re_init, link_re_init);
10438         return rc;
10439 }
10440
10441 static int bnxt_close(struct net_device *dev)
10442 {
10443         struct bnxt *bp = netdev_priv(dev);
10444
10445         bnxt_hwmon_close(bp);
10446         bnxt_close_nic(bp, true, true);
10447         bnxt_hwrm_shutdown_link(bp);
10448         bnxt_hwrm_if_change(bp, false);
10449         return 0;
10450 }
10451
10452 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10453                                    u16 *val)
10454 {
10455         struct hwrm_port_phy_mdio_read_output *resp;
10456         struct hwrm_port_phy_mdio_read_input *req;
10457         int rc;
10458
10459         if (bp->hwrm_spec_code < 0x10a00)
10460                 return -EOPNOTSUPP;
10461
10462         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10463         if (rc)
10464                 return rc;
10465
10466         req->port_id = cpu_to_le16(bp->pf.port_id);
10467         req->phy_addr = phy_addr;
10468         req->reg_addr = cpu_to_le16(reg & 0x1f);
10469         if (mdio_phy_id_is_c45(phy_addr)) {
10470                 req->cl45_mdio = 1;
10471                 req->phy_addr = mdio_phy_id_prtad(phy_addr);
10472                 req->dev_addr = mdio_phy_id_devad(phy_addr);
10473                 req->reg_addr = cpu_to_le16(reg);
10474         }
10475
10476         resp = hwrm_req_hold(bp, req);
10477         rc = hwrm_req_send(bp, req);
10478         if (!rc)
10479                 *val = le16_to_cpu(resp->reg_data);
10480         hwrm_req_drop(bp, req);
10481         return rc;
10482 }
10483
10484 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10485                                     u16 val)
10486 {
10487         struct hwrm_port_phy_mdio_write_input *req;
10488         int rc;
10489
10490         if (bp->hwrm_spec_code < 0x10a00)
10491                 return -EOPNOTSUPP;
10492
10493         rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10494         if (rc)
10495                 return rc;
10496
10497         req->port_id = cpu_to_le16(bp->pf.port_id);
10498         req->phy_addr = phy_addr;
10499         req->reg_addr = cpu_to_le16(reg & 0x1f);
10500         if (mdio_phy_id_is_c45(phy_addr)) {
10501                 req->cl45_mdio = 1;
10502                 req->phy_addr = mdio_phy_id_prtad(phy_addr);
10503                 req->dev_addr = mdio_phy_id_devad(phy_addr);
10504                 req->reg_addr = cpu_to_le16(reg);
10505         }
10506         req->reg_data = cpu_to_le16(val);
10507
10508         return hwrm_req_send(bp, req);
10509 }
10510
10511 /* rtnl_lock held */
10512 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10513 {
10514         struct mii_ioctl_data *mdio = if_mii(ifr);
10515         struct bnxt *bp = netdev_priv(dev);
10516         int rc;
10517
10518         switch (cmd) {
10519         case SIOCGMIIPHY:
10520                 mdio->phy_id = bp->link_info.phy_addr;
10521
10522                 fallthrough;
10523         case SIOCGMIIREG: {
10524                 u16 mii_regval = 0;
10525
10526                 if (!netif_running(dev))
10527                         return -EAGAIN;
10528
10529                 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10530                                              &mii_regval);
10531                 mdio->val_out = mii_regval;
10532                 return rc;
10533         }
10534
10535         case SIOCSMIIREG:
10536                 if (!netif_running(dev))
10537                         return -EAGAIN;
10538
10539                 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10540                                                 mdio->val_in);
10541
10542         case SIOCSHWTSTAMP:
10543                 return bnxt_hwtstamp_set(dev, ifr);
10544
10545         case SIOCGHWTSTAMP:
10546                 return bnxt_hwtstamp_get(dev, ifr);
10547
10548         default:
10549                 /* do nothing */
10550                 break;
10551         }
10552         return -EOPNOTSUPP;
10553 }
10554
10555 static void bnxt_get_ring_stats(struct bnxt *bp,
10556                                 struct rtnl_link_stats64 *stats)
10557 {
10558         int i;
10559
10560         for (i = 0; i < bp->cp_nr_rings; i++) {
10561                 struct bnxt_napi *bnapi = bp->bnapi[i];
10562                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10563                 u64 *sw = cpr->stats.sw_stats;
10564
10565                 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10566                 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10567                 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10568
10569                 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10570                 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10571                 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10572
10573                 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10574                 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10575                 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10576
10577                 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10578                 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10579                 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10580
10581                 stats->rx_missed_errors +=
10582                         BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10583
10584                 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10585
10586                 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10587
10588                 stats->rx_dropped +=
10589                         cpr->sw_stats.rx.rx_netpoll_discards +
10590                         cpr->sw_stats.rx.rx_oom_discards;
10591         }
10592 }
10593
10594 static void bnxt_add_prev_stats(struct bnxt *bp,
10595                                 struct rtnl_link_stats64 *stats)
10596 {
10597         struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10598
10599         stats->rx_packets += prev_stats->rx_packets;
10600         stats->tx_packets += prev_stats->tx_packets;
10601         stats->rx_bytes += prev_stats->rx_bytes;
10602         stats->tx_bytes += prev_stats->tx_bytes;
10603         stats->rx_missed_errors += prev_stats->rx_missed_errors;
10604         stats->multicast += prev_stats->multicast;
10605         stats->rx_dropped += prev_stats->rx_dropped;
10606         stats->tx_dropped += prev_stats->tx_dropped;
10607 }
10608
10609 static void
10610 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10611 {
10612         struct bnxt *bp = netdev_priv(dev);
10613
10614         set_bit(BNXT_STATE_READ_STATS, &bp->state);
10615         /* Make sure bnxt_close_nic() sees that we are reading stats before
10616          * we check the BNXT_STATE_OPEN flag.
10617          */
10618         smp_mb__after_atomic();
10619         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10620                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10621                 *stats = bp->net_stats_prev;
10622                 return;
10623         }
10624
10625         bnxt_get_ring_stats(bp, stats);
10626         bnxt_add_prev_stats(bp, stats);
10627
10628         if (bp->flags & BNXT_FLAG_PORT_STATS) {
10629                 u64 *rx = bp->port_stats.sw_stats;
10630                 u64 *tx = bp->port_stats.sw_stats +
10631                           BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10632
10633                 stats->rx_crc_errors =
10634                         BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10635                 stats->rx_frame_errors =
10636                         BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10637                 stats->rx_length_errors =
10638                         BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10639                         BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10640                         BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10641                 stats->rx_errors =
10642                         BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10643                         BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10644                 stats->collisions =
10645                         BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10646                 stats->tx_fifo_errors =
10647                         BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10648                 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10649         }
10650         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10651 }
10652
10653 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10654 {
10655         struct net_device *dev = bp->dev;
10656         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10657         struct netdev_hw_addr *ha;
10658         u8 *haddr;
10659         int mc_count = 0;
10660         bool update = false;
10661         int off = 0;
10662
10663         netdev_for_each_mc_addr(ha, dev) {
10664                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
10665                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10666                         vnic->mc_list_count = 0;
10667                         return false;
10668                 }
10669                 haddr = ha->addr;
10670                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10671                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10672                         update = true;
10673                 }
10674                 off += ETH_ALEN;
10675                 mc_count++;
10676         }
10677         if (mc_count)
10678                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10679
10680         if (mc_count != vnic->mc_list_count) {
10681                 vnic->mc_list_count = mc_count;
10682                 update = true;
10683         }
10684         return update;
10685 }
10686
10687 static bool bnxt_uc_list_updated(struct bnxt *bp)
10688 {
10689         struct net_device *dev = bp->dev;
10690         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10691         struct netdev_hw_addr *ha;
10692         int off = 0;
10693
10694         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10695                 return true;
10696
10697         netdev_for_each_uc_addr(ha, dev) {
10698                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10699                         return true;
10700
10701                 off += ETH_ALEN;
10702         }
10703         return false;
10704 }
10705
10706 static void bnxt_set_rx_mode(struct net_device *dev)
10707 {
10708         struct bnxt *bp = netdev_priv(dev);
10709         struct bnxt_vnic_info *vnic;
10710         bool mc_update = false;
10711         bool uc_update;
10712         u32 mask;
10713
10714         if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10715                 return;
10716
10717         vnic = &bp->vnic_info[0];
10718         mask = vnic->rx_mask;
10719         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10720                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10721                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10722                   CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10723
10724         if (dev->flags & IFF_PROMISC)
10725                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10726
10727         uc_update = bnxt_uc_list_updated(bp);
10728
10729         if (dev->flags & IFF_BROADCAST)
10730                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10731         if (dev->flags & IFF_ALLMULTI) {
10732                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10733                 vnic->mc_list_count = 0;
10734         } else {
10735                 mc_update = bnxt_mc_list_updated(bp, &mask);
10736         }
10737
10738         if (mask != vnic->rx_mask || uc_update || mc_update) {
10739                 vnic->rx_mask = mask;
10740
10741                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10742                 bnxt_queue_sp_work(bp);
10743         }
10744 }
10745
10746 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10747 {
10748         struct net_device *dev = bp->dev;
10749         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10750         struct hwrm_cfa_l2_filter_free_input *req;
10751         struct netdev_hw_addr *ha;
10752         int i, off = 0, rc;
10753         bool uc_update;
10754
10755         netif_addr_lock_bh(dev);
10756         uc_update = bnxt_uc_list_updated(bp);
10757         netif_addr_unlock_bh(dev);
10758
10759         if (!uc_update)
10760                 goto skip_uc;
10761
10762         rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
10763         if (rc)
10764                 return rc;
10765         hwrm_req_hold(bp, req);
10766         for (i = 1; i < vnic->uc_filter_count; i++) {
10767                 req->l2_filter_id = vnic->fw_l2_filter_id[i];
10768
10769                 rc = hwrm_req_send(bp, req);
10770         }
10771         hwrm_req_drop(bp, req);
10772
10773         vnic->uc_filter_count = 1;
10774
10775         netif_addr_lock_bh(dev);
10776         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10777                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10778         } else {
10779                 netdev_for_each_uc_addr(ha, dev) {
10780                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10781                         off += ETH_ALEN;
10782                         vnic->uc_filter_count++;
10783                 }
10784         }
10785         netif_addr_unlock_bh(dev);
10786
10787         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10788                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10789                 if (rc) {
10790                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
10791                                    rc);
10792                         vnic->uc_filter_count = i;
10793                         return rc;
10794                 }
10795         }
10796
10797 skip_uc:
10798         if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10799             !bnxt_promisc_ok(bp))
10800                 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10801         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10802         if (rc && vnic->mc_list_count) {
10803                 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10804                             rc);
10805                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10806                 vnic->mc_list_count = 0;
10807                 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10808         }
10809         if (rc)
10810                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10811                            rc);
10812
10813         return rc;
10814 }
10815
10816 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10817 {
10818 #ifdef CONFIG_BNXT_SRIOV
10819         if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10820                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10821
10822                 /* No minimum rings were provisioned by the PF.  Don't
10823                  * reserve rings by default when device is down.
10824                  */
10825                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10826                         return true;
10827
10828                 if (!netif_running(bp->dev))
10829                         return false;
10830         }
10831 #endif
10832         return true;
10833 }
10834
10835 /* If the chip and firmware supports RFS */
10836 static bool bnxt_rfs_supported(struct bnxt *bp)
10837 {
10838         if (bp->flags & BNXT_FLAG_CHIP_P5) {
10839                 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10840                         return true;
10841                 return false;
10842         }
10843         /* 212 firmware is broken for aRFS */
10844         if (BNXT_FW_MAJ(bp) == 212)
10845                 return false;
10846         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10847                 return true;
10848         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10849                 return true;
10850         return false;
10851 }
10852
10853 /* If runtime conditions support RFS */
10854 static bool bnxt_rfs_capable(struct bnxt *bp)
10855 {
10856 #ifdef CONFIG_RFS_ACCEL
10857         int vnics, max_vnics, max_rss_ctxs;
10858
10859         if (bp->flags & BNXT_FLAG_CHIP_P5)
10860                 return bnxt_rfs_supported(bp);
10861         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10862                 return false;
10863
10864         vnics = 1 + bp->rx_nr_rings;
10865         max_vnics = bnxt_get_max_func_vnics(bp);
10866         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10867
10868         /* RSS contexts not a limiting factor */
10869         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10870                 max_rss_ctxs = max_vnics;
10871         if (vnics > max_vnics || vnics > max_rss_ctxs) {
10872                 if (bp->rx_nr_rings > 1)
10873                         netdev_warn(bp->dev,
10874                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10875                                     min(max_rss_ctxs - 1, max_vnics - 1));
10876                 return false;
10877         }
10878
10879         if (!BNXT_NEW_RM(bp))
10880                 return true;
10881
10882         if (vnics == bp->hw_resc.resv_vnics)
10883                 return true;
10884
10885         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10886         if (vnics <= bp->hw_resc.resv_vnics)
10887                 return true;
10888
10889         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10890         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10891         return false;
10892 #else
10893         return false;
10894 #endif
10895 }
10896
10897 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10898                                            netdev_features_t features)
10899 {
10900         struct bnxt *bp = netdev_priv(dev);
10901         netdev_features_t vlan_features;
10902
10903         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10904                 features &= ~NETIF_F_NTUPLE;
10905
10906         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10907                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10908
10909         if (!(features & NETIF_F_GRO))
10910                 features &= ~NETIF_F_GRO_HW;
10911
10912         if (features & NETIF_F_GRO_HW)
10913                 features &= ~NETIF_F_LRO;
10914
10915         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
10916          * turned on or off together.
10917          */
10918         vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10919         if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10920                 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10921                         features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10922                 else if (vlan_features)
10923                         features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10924         }
10925 #ifdef CONFIG_BNXT_SRIOV
10926         if (BNXT_VF(bp) && bp->vf.vlan)
10927                 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10928 #endif
10929         return features;
10930 }
10931
10932 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10933 {
10934         struct bnxt *bp = netdev_priv(dev);
10935         u32 flags = bp->flags;
10936         u32 changes;
10937         int rc = 0;
10938         bool re_init = false;
10939         bool update_tpa = false;
10940
10941         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10942         if (features & NETIF_F_GRO_HW)
10943                 flags |= BNXT_FLAG_GRO;
10944         else if (features & NETIF_F_LRO)
10945                 flags |= BNXT_FLAG_LRO;
10946
10947         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10948                 flags &= ~BNXT_FLAG_TPA;
10949
10950         if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10951                 flags |= BNXT_FLAG_STRIP_VLAN;
10952
10953         if (features & NETIF_F_NTUPLE)
10954                 flags |= BNXT_FLAG_RFS;
10955
10956         changes = flags ^ bp->flags;
10957         if (changes & BNXT_FLAG_TPA) {
10958                 update_tpa = true;
10959                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
10960                     (flags & BNXT_FLAG_TPA) == 0 ||
10961                     (bp->flags & BNXT_FLAG_CHIP_P5))
10962                         re_init = true;
10963         }
10964
10965         if (changes & ~BNXT_FLAG_TPA)
10966                 re_init = true;
10967
10968         if (flags != bp->flags) {
10969                 u32 old_flags = bp->flags;
10970
10971                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10972                         bp->flags = flags;
10973                         if (update_tpa)
10974                                 bnxt_set_ring_params(bp);
10975                         return rc;
10976                 }
10977
10978                 if (re_init) {
10979                         bnxt_close_nic(bp, false, false);
10980                         bp->flags = flags;
10981                         if (update_tpa)
10982                                 bnxt_set_ring_params(bp);
10983
10984                         return bnxt_open_nic(bp, false, false);
10985                 }
10986                 if (update_tpa) {
10987                         bp->flags = flags;
10988                         rc = bnxt_set_tpa(bp,
10989                                           (flags & BNXT_FLAG_TPA) ?
10990                                           true : false);
10991                         if (rc)
10992                                 bp->flags = old_flags;
10993                 }
10994         }
10995         return rc;
10996 }
10997
10998 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
10999                               u8 **nextp)
11000 {
11001         struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11002         int hdr_count = 0;
11003         u8 *nexthdr;
11004         int start;
11005
11006         /* Check that there are at most 2 IPv6 extension headers, no
11007          * fragment header, and each is <= 64 bytes.
11008          */
11009         start = nw_off + sizeof(*ip6h);
11010         nexthdr = &ip6h->nexthdr;
11011         while (ipv6_ext_hdr(*nexthdr)) {
11012                 struct ipv6_opt_hdr *hp;
11013                 int hdrlen;
11014
11015                 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11016                     *nexthdr == NEXTHDR_FRAGMENT)
11017                         return false;
11018                 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11019                                           skb_headlen(skb), NULL);
11020                 if (!hp)
11021                         return false;
11022                 if (*nexthdr == NEXTHDR_AUTH)
11023                         hdrlen = ipv6_authlen(hp);
11024                 else
11025                         hdrlen = ipv6_optlen(hp);
11026
11027                 if (hdrlen > 64)
11028                         return false;
11029                 nexthdr = &hp->nexthdr;
11030                 start += hdrlen;
11031                 hdr_count++;
11032         }
11033         if (nextp) {
11034                 /* Caller will check inner protocol */
11035                 if (skb->encapsulation) {
11036                         *nextp = nexthdr;
11037                         return true;
11038                 }
11039                 *nextp = NULL;
11040         }
11041         /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11042         return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11043 }
11044
11045 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11046 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11047 {
11048         struct udphdr *uh = udp_hdr(skb);
11049         __be16 udp_port = uh->dest;
11050
11051         if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11052                 return false;
11053         if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11054                 struct ethhdr *eh = inner_eth_hdr(skb);
11055
11056                 switch (eh->h_proto) {
11057                 case htons(ETH_P_IP):
11058                         return true;
11059                 case htons(ETH_P_IPV6):
11060                         return bnxt_exthdr_check(bp, skb,
11061                                                  skb_inner_network_offset(skb),
11062                                                  NULL);
11063                 }
11064         }
11065         return false;
11066 }
11067
11068 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11069 {
11070         switch (l4_proto) {
11071         case IPPROTO_UDP:
11072                 return bnxt_udp_tunl_check(bp, skb);
11073         case IPPROTO_IPIP:
11074                 return true;
11075         case IPPROTO_GRE: {
11076                 switch (skb->inner_protocol) {
11077                 default:
11078                         return false;
11079                 case htons(ETH_P_IP):
11080                         return true;
11081                 case htons(ETH_P_IPV6):
11082                         fallthrough;
11083                 }
11084         }
11085         case IPPROTO_IPV6:
11086                 /* Check ext headers of inner ipv6 */
11087                 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11088                                          NULL);
11089         }
11090         return false;
11091 }
11092
11093 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11094                                              struct net_device *dev,
11095                                              netdev_features_t features)
11096 {
11097         struct bnxt *bp = netdev_priv(dev);
11098         u8 *l4_proto;
11099
11100         features = vlan_features_check(skb, features);
11101         switch (vlan_get_protocol(skb)) {
11102         case htons(ETH_P_IP):
11103                 if (!skb->encapsulation)
11104                         return features;
11105                 l4_proto = &ip_hdr(skb)->protocol;
11106                 if (bnxt_tunl_check(bp, skb, *l4_proto))
11107                         return features;
11108                 break;
11109         case htons(ETH_P_IPV6):
11110                 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11111                                        &l4_proto))
11112                         break;
11113                 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11114                         return features;
11115                 break;
11116         }
11117         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11118 }
11119
11120 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11121                          u32 *reg_buf)
11122 {
11123         struct hwrm_dbg_read_direct_output *resp;
11124         struct hwrm_dbg_read_direct_input *req;
11125         __le32 *dbg_reg_buf;
11126         dma_addr_t mapping;
11127         int rc, i;
11128
11129         rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11130         if (rc)
11131                 return rc;
11132
11133         dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11134                                          &mapping);
11135         if (!dbg_reg_buf) {
11136                 rc = -ENOMEM;
11137                 goto dbg_rd_reg_exit;
11138         }
11139
11140         req->host_dest_addr = cpu_to_le64(mapping);
11141
11142         resp = hwrm_req_hold(bp, req);
11143         req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11144         req->read_len32 = cpu_to_le32(num_words);
11145
11146         rc = hwrm_req_send(bp, req);
11147         if (rc || resp->error_code) {
11148                 rc = -EIO;
11149                 goto dbg_rd_reg_exit;
11150         }
11151         for (i = 0; i < num_words; i++)
11152                 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11153
11154 dbg_rd_reg_exit:
11155         hwrm_req_drop(bp, req);
11156         return rc;
11157 }
11158
11159 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11160                                        u32 ring_id, u32 *prod, u32 *cons)
11161 {
11162         struct hwrm_dbg_ring_info_get_output *resp;
11163         struct hwrm_dbg_ring_info_get_input *req;
11164         int rc;
11165
11166         rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11167         if (rc)
11168                 return rc;
11169
11170         req->ring_type = ring_type;
11171         req->fw_ring_id = cpu_to_le32(ring_id);
11172         resp = hwrm_req_hold(bp, req);
11173         rc = hwrm_req_send(bp, req);
11174         if (!rc) {
11175                 *prod = le32_to_cpu(resp->producer_index);
11176                 *cons = le32_to_cpu(resp->consumer_index);
11177         }
11178         hwrm_req_drop(bp, req);
11179         return rc;
11180 }
11181
11182 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11183 {
11184         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11185         int i = bnapi->index;
11186
11187         if (!txr)
11188                 return;
11189
11190         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11191                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11192                     txr->tx_cons);
11193 }
11194
11195 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11196 {
11197         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11198         int i = bnapi->index;
11199
11200         if (!rxr)
11201                 return;
11202
11203         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11204                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11205                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11206                     rxr->rx_sw_agg_prod);
11207 }
11208
11209 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11210 {
11211         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11212         int i = bnapi->index;
11213
11214         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11215                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11216 }
11217
11218 static void bnxt_dbg_dump_states(struct bnxt *bp)
11219 {
11220         int i;
11221         struct bnxt_napi *bnapi;
11222
11223         for (i = 0; i < bp->cp_nr_rings; i++) {
11224                 bnapi = bp->bnapi[i];
11225                 if (netif_msg_drv(bp)) {
11226                         bnxt_dump_tx_sw_state(bnapi);
11227                         bnxt_dump_rx_sw_state(bnapi);
11228                         bnxt_dump_cp_sw_state(bnapi);
11229                 }
11230         }
11231 }
11232
11233 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11234 {
11235         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11236         struct hwrm_ring_reset_input *req;
11237         struct bnxt_napi *bnapi = rxr->bnapi;
11238         struct bnxt_cp_ring_info *cpr;
11239         u16 cp_ring_id;
11240         int rc;
11241
11242         rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11243         if (rc)
11244                 return rc;
11245
11246         cpr = &bnapi->cp_ring;
11247         cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11248         req->cmpl_ring = cpu_to_le16(cp_ring_id);
11249         req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11250         req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11251         return hwrm_req_send_silent(bp, req);
11252 }
11253
11254 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11255 {
11256         if (!silent)
11257                 bnxt_dbg_dump_states(bp);
11258         if (netif_running(bp->dev)) {
11259                 int rc;
11260
11261                 if (silent) {
11262                         bnxt_close_nic(bp, false, false);
11263                         bnxt_open_nic(bp, false, false);
11264                 } else {
11265                         bnxt_ulp_stop(bp);
11266                         bnxt_close_nic(bp, true, false);
11267                         rc = bnxt_open_nic(bp, true, false);
11268                         bnxt_ulp_start(bp, rc);
11269                 }
11270         }
11271 }
11272
11273 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11274 {
11275         struct bnxt *bp = netdev_priv(dev);
11276
11277         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11278         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11279         bnxt_queue_sp_work(bp);
11280 }
11281
11282 static void bnxt_fw_health_check(struct bnxt *bp)
11283 {
11284         struct bnxt_fw_health *fw_health = bp->fw_health;
11285         u32 val;
11286
11287         if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11288                 return;
11289
11290         /* Make sure it is enabled before checking the tmr_counter. */
11291         smp_rmb();
11292         if (fw_health->tmr_counter) {
11293                 fw_health->tmr_counter--;
11294                 return;
11295         }
11296
11297         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11298         if (val == fw_health->last_fw_heartbeat)
11299                 goto fw_reset;
11300
11301         fw_health->last_fw_heartbeat = val;
11302
11303         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11304         if (val != fw_health->last_fw_reset_cnt)
11305                 goto fw_reset;
11306
11307         fw_health->tmr_counter = fw_health->tmr_multiplier;
11308         return;
11309
11310 fw_reset:
11311         set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11312         bnxt_queue_sp_work(bp);
11313 }
11314
11315 static void bnxt_timer(struct timer_list *t)
11316 {
11317         struct bnxt *bp = from_timer(bp, t, timer);
11318         struct net_device *dev = bp->dev;
11319
11320         if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11321                 return;
11322
11323         if (atomic_read(&bp->intr_sem) != 0)
11324                 goto bnxt_restart_timer;
11325
11326         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11327                 bnxt_fw_health_check(bp);
11328
11329         if (bp->link_info.link_up && bp->stats_coal_ticks) {
11330                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11331                 bnxt_queue_sp_work(bp);
11332         }
11333
11334         if (bnxt_tc_flower_enabled(bp)) {
11335                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11336                 bnxt_queue_sp_work(bp);
11337         }
11338
11339 #ifdef CONFIG_RFS_ACCEL
11340         if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11341                 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11342                 bnxt_queue_sp_work(bp);
11343         }
11344 #endif /*CONFIG_RFS_ACCEL*/
11345
11346         if (bp->link_info.phy_retry) {
11347                 if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11348                         bp->link_info.phy_retry = false;
11349                         netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11350                 } else {
11351                         set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11352                         bnxt_queue_sp_work(bp);
11353                 }
11354         }
11355
11356         if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11357             netif_carrier_ok(dev)) {
11358                 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11359                 bnxt_queue_sp_work(bp);
11360         }
11361 bnxt_restart_timer:
11362         mod_timer(&bp->timer, jiffies + bp->current_interval);
11363 }
11364
11365 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11366 {
11367         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11368          * set.  If the device is being closed, bnxt_close() may be holding
11369          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11370          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11371          */
11372         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11373         rtnl_lock();
11374 }
11375
11376 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11377 {
11378         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11379         rtnl_unlock();
11380 }
11381
11382 /* Only called from bnxt_sp_task() */
11383 static void bnxt_reset(struct bnxt *bp, bool silent)
11384 {
11385         bnxt_rtnl_lock_sp(bp);
11386         if (test_bit(BNXT_STATE_OPEN, &bp->state))
11387                 bnxt_reset_task(bp, silent);
11388         bnxt_rtnl_unlock_sp(bp);
11389 }
11390
11391 /* Only called from bnxt_sp_task() */
11392 static void bnxt_rx_ring_reset(struct bnxt *bp)
11393 {
11394         int i;
11395
11396         bnxt_rtnl_lock_sp(bp);
11397         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11398                 bnxt_rtnl_unlock_sp(bp);
11399                 return;
11400         }
11401         /* Disable and flush TPA before resetting the RX ring */
11402         if (bp->flags & BNXT_FLAG_TPA)
11403                 bnxt_set_tpa(bp, false);
11404         for (i = 0; i < bp->rx_nr_rings; i++) {
11405                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11406                 struct bnxt_cp_ring_info *cpr;
11407                 int rc;
11408
11409                 if (!rxr->bnapi->in_reset)
11410                         continue;
11411
11412                 rc = bnxt_hwrm_rx_ring_reset(bp, i);
11413                 if (rc) {
11414                         if (rc == -EINVAL || rc == -EOPNOTSUPP)
11415                                 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11416                         else
11417                                 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11418                                             rc);
11419                         bnxt_reset_task(bp, true);
11420                         break;
11421                 }
11422                 bnxt_free_one_rx_ring_skbs(bp, i);
11423                 rxr->rx_prod = 0;
11424                 rxr->rx_agg_prod = 0;
11425                 rxr->rx_sw_agg_prod = 0;
11426                 rxr->rx_next_cons = 0;
11427                 rxr->bnapi->in_reset = false;
11428                 bnxt_alloc_one_rx_ring(bp, i);
11429                 cpr = &rxr->bnapi->cp_ring;
11430                 cpr->sw_stats.rx.rx_resets++;
11431                 if (bp->flags & BNXT_FLAG_AGG_RINGS)
11432                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11433                 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11434         }
11435         if (bp->flags & BNXT_FLAG_TPA)
11436                 bnxt_set_tpa(bp, true);
11437         bnxt_rtnl_unlock_sp(bp);
11438 }
11439
11440 static void bnxt_fw_reset_close(struct bnxt *bp)
11441 {
11442         bnxt_ulp_stop(bp);
11443         /* When firmware is in fatal state, quiesce device and disable
11444          * bus master to prevent any potential bad DMAs before freeing
11445          * kernel memory.
11446          */
11447         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11448                 u16 val = 0;
11449
11450                 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11451                 if (val == 0xffff)
11452                         bp->fw_reset_min_dsecs = 0;
11453                 bnxt_tx_disable(bp);
11454                 bnxt_disable_napi(bp);
11455                 bnxt_disable_int_sync(bp);
11456                 bnxt_free_irq(bp);
11457                 bnxt_clear_int_mode(bp);
11458                 pci_disable_device(bp->pdev);
11459         }
11460         __bnxt_close_nic(bp, true, false);
11461         bnxt_vf_reps_free(bp);
11462         bnxt_clear_int_mode(bp);
11463         bnxt_hwrm_func_drv_unrgtr(bp);
11464         if (pci_is_enabled(bp->pdev))
11465                 pci_disable_device(bp->pdev);
11466         bnxt_free_ctx_mem(bp);
11467         kfree(bp->ctx);
11468         bp->ctx = NULL;
11469 }
11470
11471 static bool is_bnxt_fw_ok(struct bnxt *bp)
11472 {
11473         struct bnxt_fw_health *fw_health = bp->fw_health;
11474         bool no_heartbeat = false, has_reset = false;
11475         u32 val;
11476
11477         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11478         if (val == fw_health->last_fw_heartbeat)
11479                 no_heartbeat = true;
11480
11481         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11482         if (val != fw_health->last_fw_reset_cnt)
11483                 has_reset = true;
11484
11485         if (!no_heartbeat && has_reset)
11486                 return true;
11487
11488         return false;
11489 }
11490
11491 /* rtnl_lock is acquired before calling this function */
11492 static void bnxt_force_fw_reset(struct bnxt *bp)
11493 {
11494         struct bnxt_fw_health *fw_health = bp->fw_health;
11495         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11496         u32 wait_dsecs;
11497
11498         if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11499             test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11500                 return;
11501
11502         if (ptp) {
11503                 spin_lock_bh(&ptp->ptp_lock);
11504                 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11505                 spin_unlock_bh(&ptp->ptp_lock);
11506         } else {
11507                 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11508         }
11509         bnxt_fw_reset_close(bp);
11510         wait_dsecs = fw_health->master_func_wait_dsecs;
11511         if (fw_health->master) {
11512                 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11513                         wait_dsecs = 0;
11514                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11515         } else {
11516                 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11517                 wait_dsecs = fw_health->normal_func_wait_dsecs;
11518                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11519         }
11520
11521         bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11522         bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11523         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11524 }
11525
11526 void bnxt_fw_exception(struct bnxt *bp)
11527 {
11528         netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11529         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11530         bnxt_rtnl_lock_sp(bp);
11531         bnxt_force_fw_reset(bp);
11532         bnxt_rtnl_unlock_sp(bp);
11533 }
11534
11535 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11536  * < 0 on error.
11537  */
11538 static int bnxt_get_registered_vfs(struct bnxt *bp)
11539 {
11540 #ifdef CONFIG_BNXT_SRIOV
11541         int rc;
11542
11543         if (!BNXT_PF(bp))
11544                 return 0;
11545
11546         rc = bnxt_hwrm_func_qcfg(bp);
11547         if (rc) {
11548                 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11549                 return rc;
11550         }
11551         if (bp->pf.registered_vfs)
11552                 return bp->pf.registered_vfs;
11553         if (bp->sriov_cfg)
11554                 return 1;
11555 #endif
11556         return 0;
11557 }
11558
11559 void bnxt_fw_reset(struct bnxt *bp)
11560 {
11561         bnxt_rtnl_lock_sp(bp);
11562         if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11563             !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11564                 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11565                 int n = 0, tmo;
11566
11567                 if (ptp) {
11568                         spin_lock_bh(&ptp->ptp_lock);
11569                         set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11570                         spin_unlock_bh(&ptp->ptp_lock);
11571                 } else {
11572                         set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11573                 }
11574                 if (bp->pf.active_vfs &&
11575                     !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11576                         n = bnxt_get_registered_vfs(bp);
11577                 if (n < 0) {
11578                         netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11579                                    n);
11580                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11581                         dev_close(bp->dev);
11582                         goto fw_reset_exit;
11583                 } else if (n > 0) {
11584                         u16 vf_tmo_dsecs = n * 10;
11585
11586                         if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11587                                 bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11588                         bp->fw_reset_state =
11589                                 BNXT_FW_RESET_STATE_POLL_VF;
11590                         bnxt_queue_fw_reset_work(bp, HZ / 10);
11591                         goto fw_reset_exit;
11592                 }
11593                 bnxt_fw_reset_close(bp);
11594                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11595                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11596                         tmo = HZ / 10;
11597                 } else {
11598                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11599                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
11600                 }
11601                 bnxt_queue_fw_reset_work(bp, tmo);
11602         }
11603 fw_reset_exit:
11604         bnxt_rtnl_unlock_sp(bp);
11605 }
11606
11607 static void bnxt_chk_missed_irq(struct bnxt *bp)
11608 {
11609         int i;
11610
11611         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11612                 return;
11613
11614         for (i = 0; i < bp->cp_nr_rings; i++) {
11615                 struct bnxt_napi *bnapi = bp->bnapi[i];
11616                 struct bnxt_cp_ring_info *cpr;
11617                 u32 fw_ring_id;
11618                 int j;
11619
11620                 if (!bnapi)
11621                         continue;
11622
11623                 cpr = &bnapi->cp_ring;
11624                 for (j = 0; j < 2; j++) {
11625                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11626                         u32 val[2];
11627
11628                         if (!cpr2 || cpr2->has_more_work ||
11629                             !bnxt_has_work(bp, cpr2))
11630                                 continue;
11631
11632                         if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11633                                 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11634                                 continue;
11635                         }
11636                         fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11637                         bnxt_dbg_hwrm_ring_info_get(bp,
11638                                 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11639                                 fw_ring_id, &val[0], &val[1]);
11640                         cpr->sw_stats.cmn.missed_irqs++;
11641                 }
11642         }
11643 }
11644
11645 static void bnxt_cfg_ntp_filters(struct bnxt *);
11646
11647 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11648 {
11649         struct bnxt_link_info *link_info = &bp->link_info;
11650
11651         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11652                 link_info->autoneg = BNXT_AUTONEG_SPEED;
11653                 if (bp->hwrm_spec_code >= 0x10201) {
11654                         if (link_info->auto_pause_setting &
11655                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11656                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11657                 } else {
11658                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11659                 }
11660                 link_info->advertising = link_info->auto_link_speeds;
11661                 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11662         } else {
11663                 link_info->req_link_speed = link_info->force_link_speed;
11664                 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11665                 if (link_info->force_pam4_link_speed) {
11666                         link_info->req_link_speed =
11667                                 link_info->force_pam4_link_speed;
11668                         link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11669                 }
11670                 link_info->req_duplex = link_info->duplex_setting;
11671         }
11672         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11673                 link_info->req_flow_ctrl =
11674                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11675         else
11676                 link_info->req_flow_ctrl = link_info->force_pause_setting;
11677 }
11678
11679 static void bnxt_fw_echo_reply(struct bnxt *bp)
11680 {
11681         struct bnxt_fw_health *fw_health = bp->fw_health;
11682         struct hwrm_func_echo_response_input *req;
11683         int rc;
11684
11685         rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11686         if (rc)
11687                 return;
11688         req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11689         req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11690         hwrm_req_send(bp, req);
11691 }
11692
11693 static void bnxt_sp_task(struct work_struct *work)
11694 {
11695         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11696
11697         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11698         smp_mb__after_atomic();
11699         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11700                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11701                 return;
11702         }
11703
11704         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11705                 bnxt_cfg_rx_mode(bp);
11706
11707         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11708                 bnxt_cfg_ntp_filters(bp);
11709         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11710                 bnxt_hwrm_exec_fwd_req(bp);
11711         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11712                 bnxt_hwrm_port_qstats(bp, 0);
11713                 bnxt_hwrm_port_qstats_ext(bp, 0);
11714                 bnxt_accumulate_all_stats(bp);
11715         }
11716
11717         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11718                 int rc;
11719
11720                 mutex_lock(&bp->link_lock);
11721                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11722                                        &bp->sp_event))
11723                         bnxt_hwrm_phy_qcaps(bp);
11724
11725                 rc = bnxt_update_link(bp, true);
11726                 if (rc)
11727                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11728                                    rc);
11729
11730                 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11731                                        &bp->sp_event))
11732                         bnxt_init_ethtool_link_settings(bp);
11733                 mutex_unlock(&bp->link_lock);
11734         }
11735         if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11736                 int rc;
11737
11738                 mutex_lock(&bp->link_lock);
11739                 rc = bnxt_update_phy_setting(bp);
11740                 mutex_unlock(&bp->link_lock);
11741                 if (rc) {
11742                         netdev_warn(bp->dev, "update phy settings retry failed\n");
11743                 } else {
11744                         bp->link_info.phy_retry = false;
11745                         netdev_info(bp->dev, "update phy settings retry succeeded\n");
11746                 }
11747         }
11748         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11749                 mutex_lock(&bp->link_lock);
11750                 bnxt_get_port_module_status(bp);
11751                 mutex_unlock(&bp->link_lock);
11752         }
11753
11754         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11755                 bnxt_tc_flow_stats_work(bp);
11756
11757         if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11758                 bnxt_chk_missed_irq(bp);
11759
11760         if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11761                 bnxt_fw_echo_reply(bp);
11762
11763         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11764          * must be the last functions to be called before exiting.
11765          */
11766         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11767                 bnxt_reset(bp, false);
11768
11769         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11770                 bnxt_reset(bp, true);
11771
11772         if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11773                 bnxt_rx_ring_reset(bp);
11774
11775         if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
11776                 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
11777
11778         if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11779                 if (!is_bnxt_fw_ok(bp))
11780                         bnxt_devlink_health_report(bp,
11781                                                    BNXT_FW_EXCEPTION_SP_EVENT);
11782         }
11783
11784         smp_mb__before_atomic();
11785         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11786 }
11787
11788 /* Under rtnl_lock */
11789 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11790                      int tx_xdp)
11791 {
11792         int max_rx, max_tx, tx_sets = 1;
11793         int tx_rings_needed, stats;
11794         int rx_rings = rx;
11795         int cp, vnics, rc;
11796
11797         if (tcs)
11798                 tx_sets = tcs;
11799
11800         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11801         if (rc)
11802                 return rc;
11803
11804         if (max_rx < rx)
11805                 return -ENOMEM;
11806
11807         tx_rings_needed = tx * tx_sets + tx_xdp;
11808         if (max_tx < tx_rings_needed)
11809                 return -ENOMEM;
11810
11811         vnics = 1;
11812         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11813                 vnics += rx_rings;
11814
11815         if (bp->flags & BNXT_FLAG_AGG_RINGS)
11816                 rx_rings <<= 1;
11817         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11818         stats = cp;
11819         if (BNXT_NEW_RM(bp)) {
11820                 cp += bnxt_get_ulp_msix_num(bp);
11821                 stats += bnxt_get_ulp_stat_ctxs(bp);
11822         }
11823         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11824                                      stats, vnics);
11825 }
11826
11827 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11828 {
11829         if (bp->bar2) {
11830                 pci_iounmap(pdev, bp->bar2);
11831                 bp->bar2 = NULL;
11832         }
11833
11834         if (bp->bar1) {
11835                 pci_iounmap(pdev, bp->bar1);
11836                 bp->bar1 = NULL;
11837         }
11838
11839         if (bp->bar0) {
11840                 pci_iounmap(pdev, bp->bar0);
11841                 bp->bar0 = NULL;
11842         }
11843 }
11844
11845 static void bnxt_cleanup_pci(struct bnxt *bp)
11846 {
11847         bnxt_unmap_bars(bp, bp->pdev);
11848         pci_release_regions(bp->pdev);
11849         if (pci_is_enabled(bp->pdev))
11850                 pci_disable_device(bp->pdev);
11851 }
11852
11853 static void bnxt_init_dflt_coal(struct bnxt *bp)
11854 {
11855         struct bnxt_coal *coal;
11856
11857         /* Tick values in micro seconds.
11858          * 1 coal_buf x bufs_per_record = 1 completion record.
11859          */
11860         coal = &bp->rx_coal;
11861         coal->coal_ticks = 10;
11862         coal->coal_bufs = 30;
11863         coal->coal_ticks_irq = 1;
11864         coal->coal_bufs_irq = 2;
11865         coal->idle_thresh = 50;
11866         coal->bufs_per_record = 2;
11867         coal->budget = 64;              /* NAPI budget */
11868
11869         coal = &bp->tx_coal;
11870         coal->coal_ticks = 28;
11871         coal->coal_bufs = 30;
11872         coal->coal_ticks_irq = 2;
11873         coal->coal_bufs_irq = 2;
11874         coal->bufs_per_record = 1;
11875
11876         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11877 }
11878
11879 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11880 {
11881         int rc;
11882
11883         bp->fw_cap = 0;
11884         rc = bnxt_hwrm_ver_get(bp);
11885         bnxt_try_map_fw_health_reg(bp);
11886         if (rc) {
11887                 rc = bnxt_try_recover_fw(bp);
11888                 if (rc)
11889                         return rc;
11890                 rc = bnxt_hwrm_ver_get(bp);
11891                 if (rc)
11892                         return rc;
11893         }
11894
11895         bnxt_nvm_cfg_ver_get(bp);
11896
11897         rc = bnxt_hwrm_func_reset(bp);
11898         if (rc)
11899                 return -ENODEV;
11900
11901         bnxt_hwrm_fw_set_time(bp);
11902         return 0;
11903 }
11904
11905 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11906 {
11907         int rc;
11908
11909         /* Get the MAX capabilities for this function */
11910         rc = bnxt_hwrm_func_qcaps(bp);
11911         if (rc) {
11912                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11913                            rc);
11914                 return -ENODEV;
11915         }
11916
11917         rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11918         if (rc)
11919                 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11920                             rc);
11921
11922         if (bnxt_alloc_fw_health(bp)) {
11923                 netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11924         } else {
11925                 rc = bnxt_hwrm_error_recovery_qcfg(bp);
11926                 if (rc)
11927                         netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11928                                     rc);
11929         }
11930
11931         rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
11932         if (rc)
11933                 return -ENODEV;
11934
11935         bnxt_hwrm_func_qcfg(bp);
11936         bnxt_hwrm_vnic_qcaps(bp);
11937         bnxt_hwrm_port_led_qcaps(bp);
11938         bnxt_ethtool_init(bp);
11939         bnxt_dcb_init(bp);
11940         return 0;
11941 }
11942
11943 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
11944 {
11945         bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
11946         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
11947                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
11948                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
11949                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
11950         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
11951                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
11952                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
11953                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
11954         }
11955 }
11956
11957 static void bnxt_set_dflt_rfs(struct bnxt *bp)
11958 {
11959         struct net_device *dev = bp->dev;
11960
11961         dev->hw_features &= ~NETIF_F_NTUPLE;
11962         dev->features &= ~NETIF_F_NTUPLE;
11963         bp->flags &= ~BNXT_FLAG_RFS;
11964         if (bnxt_rfs_supported(bp)) {
11965                 dev->hw_features |= NETIF_F_NTUPLE;
11966                 if (bnxt_rfs_capable(bp)) {
11967                         bp->flags |= BNXT_FLAG_RFS;
11968                         dev->features |= NETIF_F_NTUPLE;
11969                 }
11970         }
11971 }
11972
11973 static void bnxt_fw_init_one_p3(struct bnxt *bp)
11974 {
11975         struct pci_dev *pdev = bp->pdev;
11976
11977         bnxt_set_dflt_rss_hash_type(bp);
11978         bnxt_set_dflt_rfs(bp);
11979
11980         bnxt_get_wol_settings(bp);
11981         if (bp->flags & BNXT_FLAG_WOL_CAP)
11982                 device_set_wakeup_enable(&pdev->dev, bp->wol);
11983         else
11984                 device_set_wakeup_capable(&pdev->dev, false);
11985
11986         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
11987         bnxt_hwrm_coal_params_qcaps(bp);
11988 }
11989
11990 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
11991
11992 static int bnxt_fw_init_one(struct bnxt *bp)
11993 {
11994         int rc;
11995
11996         rc = bnxt_fw_init_one_p1(bp);
11997         if (rc) {
11998                 netdev_err(bp->dev, "Firmware init phase 1 failed\n");
11999                 return rc;
12000         }
12001         rc = bnxt_fw_init_one_p2(bp);
12002         if (rc) {
12003                 netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12004                 return rc;
12005         }
12006         rc = bnxt_probe_phy(bp, false);
12007         if (rc)
12008                 return rc;
12009         rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12010         if (rc)
12011                 return rc;
12012
12013         /* In case fw capabilities have changed, destroy the unneeded
12014          * reporters and create newly capable ones.
12015          */
12016         bnxt_dl_fw_reporters_destroy(bp, false);
12017         bnxt_dl_fw_reporters_create(bp);
12018         bnxt_fw_init_one_p3(bp);
12019         return 0;
12020 }
12021
12022 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12023 {
12024         struct bnxt_fw_health *fw_health = bp->fw_health;
12025         u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12026         u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12027         u32 reg_type, reg_off, delay_msecs;
12028
12029         delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12030         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12031         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12032         switch (reg_type) {
12033         case BNXT_FW_HEALTH_REG_TYPE_CFG:
12034                 pci_write_config_dword(bp->pdev, reg_off, val);
12035                 break;
12036         case BNXT_FW_HEALTH_REG_TYPE_GRC:
12037                 writel(reg_off & BNXT_GRC_BASE_MASK,
12038                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12039                 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12040                 fallthrough;
12041         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12042                 writel(val, bp->bar0 + reg_off);
12043                 break;
12044         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12045                 writel(val, bp->bar1 + reg_off);
12046                 break;
12047         }
12048         if (delay_msecs) {
12049                 pci_read_config_dword(bp->pdev, 0, &val);
12050                 msleep(delay_msecs);
12051         }
12052 }
12053
12054 static void bnxt_reset_all(struct bnxt *bp)
12055 {
12056         struct bnxt_fw_health *fw_health = bp->fw_health;
12057         int i, rc;
12058
12059         if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12060                 bnxt_fw_reset_via_optee(bp);
12061                 bp->fw_reset_timestamp = jiffies;
12062                 return;
12063         }
12064
12065         if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12066                 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12067                         bnxt_fw_reset_writel(bp, i);
12068         } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12069                 struct hwrm_fw_reset_input *req;
12070
12071                 rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12072                 if (!rc) {
12073                         req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12074                         req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12075                         req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12076                         req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12077                         rc = hwrm_req_send(bp, req);
12078                 }
12079                 if (rc != -ENODEV)
12080                         netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12081         }
12082         bp->fw_reset_timestamp = jiffies;
12083 }
12084
12085 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12086 {
12087         return time_after(jiffies, bp->fw_reset_timestamp +
12088                           (bp->fw_reset_max_dsecs * HZ / 10));
12089 }
12090
12091 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12092 {
12093         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12094         if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12095                 bnxt_ulp_start(bp, rc);
12096                 bnxt_dl_health_status_update(bp, false);
12097         }
12098         bp->fw_reset_state = 0;
12099         dev_close(bp->dev);
12100 }
12101
12102 static void bnxt_fw_reset_task(struct work_struct *work)
12103 {
12104         struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12105         int rc = 0;
12106
12107         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12108                 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12109                 return;
12110         }
12111
12112         switch (bp->fw_reset_state) {
12113         case BNXT_FW_RESET_STATE_POLL_VF: {
12114                 int n = bnxt_get_registered_vfs(bp);
12115                 int tmo;
12116
12117                 if (n < 0) {
12118                         netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12119                                    n, jiffies_to_msecs(jiffies -
12120                                    bp->fw_reset_timestamp));
12121                         goto fw_reset_abort;
12122                 } else if (n > 0) {
12123                         if (bnxt_fw_reset_timeout(bp)) {
12124                                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12125                                 bp->fw_reset_state = 0;
12126                                 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12127                                            n);
12128                                 return;
12129                         }
12130                         bnxt_queue_fw_reset_work(bp, HZ / 10);
12131                         return;
12132                 }
12133                 bp->fw_reset_timestamp = jiffies;
12134                 rtnl_lock();
12135                 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12136                         bnxt_fw_reset_abort(bp, rc);
12137                         rtnl_unlock();
12138                         return;
12139                 }
12140                 bnxt_fw_reset_close(bp);
12141                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12142                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12143                         tmo = HZ / 10;
12144                 } else {
12145                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12146                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
12147                 }
12148                 rtnl_unlock();
12149                 bnxt_queue_fw_reset_work(bp, tmo);
12150                 return;
12151         }
12152         case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12153                 u32 val;
12154
12155                 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12156                 if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12157                     !bnxt_fw_reset_timeout(bp)) {
12158                         bnxt_queue_fw_reset_work(bp, HZ / 5);
12159                         return;
12160                 }
12161
12162                 if (!bp->fw_health->master) {
12163                         u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12164
12165                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12166                         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12167                         return;
12168                 }
12169                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12170         }
12171                 fallthrough;
12172         case BNXT_FW_RESET_STATE_RESET_FW:
12173                 bnxt_reset_all(bp);
12174                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12175                 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12176                 return;
12177         case BNXT_FW_RESET_STATE_ENABLE_DEV:
12178                 bnxt_inv_fw_health_reg(bp);
12179                 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12180                     !bp->fw_reset_min_dsecs) {
12181                         u16 val;
12182
12183                         pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12184                         if (val == 0xffff) {
12185                                 if (bnxt_fw_reset_timeout(bp)) {
12186                                         netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12187                                         rc = -ETIMEDOUT;
12188                                         goto fw_reset_abort;
12189                                 }
12190                                 bnxt_queue_fw_reset_work(bp, HZ / 1000);
12191                                 return;
12192                         }
12193                 }
12194                 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12195                 if (pci_enable_device(bp->pdev)) {
12196                         netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12197                         rc = -ENODEV;
12198                         goto fw_reset_abort;
12199                 }
12200                 pci_set_master(bp->pdev);
12201                 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12202                 fallthrough;
12203         case BNXT_FW_RESET_STATE_POLL_FW:
12204                 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12205                 rc = bnxt_hwrm_poll(bp);
12206                 if (rc) {
12207                         if (bnxt_fw_reset_timeout(bp)) {
12208                                 netdev_err(bp->dev, "Firmware reset aborted\n");
12209                                 goto fw_reset_abort_status;
12210                         }
12211                         bnxt_queue_fw_reset_work(bp, HZ / 5);
12212                         return;
12213                 }
12214                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12215                 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12216                 fallthrough;
12217         case BNXT_FW_RESET_STATE_OPENING:
12218                 while (!rtnl_trylock()) {
12219                         bnxt_queue_fw_reset_work(bp, HZ / 10);
12220                         return;
12221                 }
12222                 rc = bnxt_open(bp->dev);
12223                 if (rc) {
12224                         netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12225                         bnxt_fw_reset_abort(bp, rc);
12226                         rtnl_unlock();
12227                         return;
12228                 }
12229
12230                 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12231                     bp->fw_health->enabled) {
12232                         bp->fw_health->last_fw_reset_cnt =
12233                                 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12234                 }
12235                 bp->fw_reset_state = 0;
12236                 /* Make sure fw_reset_state is 0 before clearing the flag */
12237                 smp_mb__before_atomic();
12238                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12239                 bnxt_ulp_start(bp, 0);
12240                 bnxt_reenable_sriov(bp);
12241                 bnxt_vf_reps_alloc(bp);
12242                 bnxt_vf_reps_open(bp);
12243                 bnxt_ptp_reapply_pps(bp);
12244                 bnxt_dl_health_recovery_done(bp);
12245                 bnxt_dl_health_status_update(bp, true);
12246                 rtnl_unlock();
12247                 break;
12248         }
12249         return;
12250
12251 fw_reset_abort_status:
12252         if (bp->fw_health->status_reliable ||
12253             (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12254                 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12255
12256                 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12257         }
12258 fw_reset_abort:
12259         rtnl_lock();
12260         bnxt_fw_reset_abort(bp, rc);
12261         rtnl_unlock();
12262 }
12263
12264 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12265 {
12266         int rc;
12267         struct bnxt *bp = netdev_priv(dev);
12268
12269         SET_NETDEV_DEV(dev, &pdev->dev);
12270
12271         /* enable device (incl. PCI PM wakeup), and bus-mastering */
12272         rc = pci_enable_device(pdev);
12273         if (rc) {
12274                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12275                 goto init_err;
12276         }
12277
12278         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12279                 dev_err(&pdev->dev,
12280                         "Cannot find PCI device base address, aborting\n");
12281                 rc = -ENODEV;
12282                 goto init_err_disable;
12283         }
12284
12285         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12286         if (rc) {
12287                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12288                 goto init_err_disable;
12289         }
12290
12291         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12292             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12293                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12294                 rc = -EIO;
12295                 goto init_err_release;
12296         }
12297
12298         pci_set_master(pdev);
12299
12300         bp->dev = dev;
12301         bp->pdev = pdev;
12302
12303         /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12304          * determines the BAR size.
12305          */
12306         bp->bar0 = pci_ioremap_bar(pdev, 0);
12307         if (!bp->bar0) {
12308                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12309                 rc = -ENOMEM;
12310                 goto init_err_release;
12311         }
12312
12313         bp->bar2 = pci_ioremap_bar(pdev, 4);
12314         if (!bp->bar2) {
12315                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12316                 rc = -ENOMEM;
12317                 goto init_err_release;
12318         }
12319
12320         pci_enable_pcie_error_reporting(pdev);
12321
12322         INIT_WORK(&bp->sp_task, bnxt_sp_task);
12323         INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12324
12325         spin_lock_init(&bp->ntp_fltr_lock);
12326 #if BITS_PER_LONG == 32
12327         spin_lock_init(&bp->db_lock);
12328 #endif
12329
12330         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12331         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12332
12333         bnxt_init_dflt_coal(bp);
12334
12335         timer_setup(&bp->timer, bnxt_timer, 0);
12336         bp->current_interval = BNXT_TIMER_INTERVAL;
12337
12338         bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12339         bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12340
12341         clear_bit(BNXT_STATE_OPEN, &bp->state);
12342         return 0;
12343
12344 init_err_release:
12345         bnxt_unmap_bars(bp, pdev);
12346         pci_release_regions(pdev);
12347
12348 init_err_disable:
12349         pci_disable_device(pdev);
12350
12351 init_err:
12352         return rc;
12353 }
12354
12355 /* rtnl_lock held */
12356 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12357 {
12358         struct sockaddr *addr = p;
12359         struct bnxt *bp = netdev_priv(dev);
12360         int rc = 0;
12361
12362         if (!is_valid_ether_addr(addr->sa_data))
12363                 return -EADDRNOTAVAIL;
12364
12365         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12366                 return 0;
12367
12368         rc = bnxt_approve_mac(bp, addr->sa_data, true);
12369         if (rc)
12370                 return rc;
12371
12372         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
12373         if (netif_running(dev)) {
12374                 bnxt_close_nic(bp, false, false);
12375                 rc = bnxt_open_nic(bp, false, false);
12376         }
12377
12378         return rc;
12379 }
12380
12381 /* rtnl_lock held */
12382 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12383 {
12384         struct bnxt *bp = netdev_priv(dev);
12385
12386         if (netif_running(dev))
12387                 bnxt_close_nic(bp, true, false);
12388
12389         dev->mtu = new_mtu;
12390         bnxt_set_ring_params(bp);
12391
12392         if (netif_running(dev))
12393                 return bnxt_open_nic(bp, true, false);
12394
12395         return 0;
12396 }
12397
12398 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12399 {
12400         struct bnxt *bp = netdev_priv(dev);
12401         bool sh = false;
12402         int rc;
12403
12404         if (tc > bp->max_tc) {
12405                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12406                            tc, bp->max_tc);
12407                 return -EINVAL;
12408         }
12409
12410         if (netdev_get_num_tc(dev) == tc)
12411                 return 0;
12412
12413         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12414                 sh = true;
12415
12416         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12417                               sh, tc, bp->tx_nr_rings_xdp);
12418         if (rc)
12419                 return rc;
12420
12421         /* Needs to close the device and do hw resource re-allocations */
12422         if (netif_running(bp->dev))
12423                 bnxt_close_nic(bp, true, false);
12424
12425         if (tc) {
12426                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12427                 netdev_set_num_tc(dev, tc);
12428         } else {
12429                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12430                 netdev_reset_tc(dev);
12431         }
12432         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12433         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12434                                bp->tx_nr_rings + bp->rx_nr_rings;
12435
12436         if (netif_running(bp->dev))
12437                 return bnxt_open_nic(bp, true, false);
12438
12439         return 0;
12440 }
12441
12442 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12443                                   void *cb_priv)
12444 {
12445         struct bnxt *bp = cb_priv;
12446
12447         if (!bnxt_tc_flower_enabled(bp) ||
12448             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12449                 return -EOPNOTSUPP;
12450
12451         switch (type) {
12452         case TC_SETUP_CLSFLOWER:
12453                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12454         default:
12455                 return -EOPNOTSUPP;
12456         }
12457 }
12458
12459 LIST_HEAD(bnxt_block_cb_list);
12460
12461 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12462                          void *type_data)
12463 {
12464         struct bnxt *bp = netdev_priv(dev);
12465
12466         switch (type) {
12467         case TC_SETUP_BLOCK:
12468                 return flow_block_cb_setup_simple(type_data,
12469                                                   &bnxt_block_cb_list,
12470                                                   bnxt_setup_tc_block_cb,
12471                                                   bp, bp, true);
12472         case TC_SETUP_QDISC_MQPRIO: {
12473                 struct tc_mqprio_qopt *mqprio = type_data;
12474
12475                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12476
12477                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12478         }
12479         default:
12480                 return -EOPNOTSUPP;
12481         }
12482 }
12483
12484 #ifdef CONFIG_RFS_ACCEL
12485 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12486                             struct bnxt_ntuple_filter *f2)
12487 {
12488         struct flow_keys *keys1 = &f1->fkeys;
12489         struct flow_keys *keys2 = &f2->fkeys;
12490
12491         if (keys1->basic.n_proto != keys2->basic.n_proto ||
12492             keys1->basic.ip_proto != keys2->basic.ip_proto)
12493                 return false;
12494
12495         if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12496                 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12497                     keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12498                         return false;
12499         } else {
12500                 if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12501                            sizeof(keys1->addrs.v6addrs.src)) ||
12502                     memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12503                            sizeof(keys1->addrs.v6addrs.dst)))
12504                         return false;
12505         }
12506
12507         if (keys1->ports.ports == keys2->ports.ports &&
12508             keys1->control.flags == keys2->control.flags &&
12509             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12510             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12511                 return true;
12512
12513         return false;
12514 }
12515
12516 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12517                               u16 rxq_index, u32 flow_id)
12518 {
12519         struct bnxt *bp = netdev_priv(dev);
12520         struct bnxt_ntuple_filter *fltr, *new_fltr;
12521         struct flow_keys *fkeys;
12522         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12523         int rc = 0, idx, bit_id, l2_idx = 0;
12524         struct hlist_head *head;
12525         u32 flags;
12526
12527         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12528                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12529                 int off = 0, j;
12530
12531                 netif_addr_lock_bh(dev);
12532                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12533                         if (ether_addr_equal(eth->h_dest,
12534                                              vnic->uc_list + off)) {
12535                                 l2_idx = j + 1;
12536                                 break;
12537                         }
12538                 }
12539                 netif_addr_unlock_bh(dev);
12540                 if (!l2_idx)
12541                         return -EINVAL;
12542         }
12543         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12544         if (!new_fltr)
12545                 return -ENOMEM;
12546
12547         fkeys = &new_fltr->fkeys;
12548         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12549                 rc = -EPROTONOSUPPORT;
12550                 goto err_free;
12551         }
12552
12553         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12554              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12555             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12556              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12557                 rc = -EPROTONOSUPPORT;
12558                 goto err_free;
12559         }
12560         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12561             bp->hwrm_spec_code < 0x10601) {
12562                 rc = -EPROTONOSUPPORT;
12563                 goto err_free;
12564         }
12565         flags = fkeys->control.flags;
12566         if (((flags & FLOW_DIS_ENCAPSULATION) &&
12567              bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12568                 rc = -EPROTONOSUPPORT;
12569                 goto err_free;
12570         }
12571
12572         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12573         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12574
12575         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12576         head = &bp->ntp_fltr_hash_tbl[idx];
12577         rcu_read_lock();
12578         hlist_for_each_entry_rcu(fltr, head, hash) {
12579                 if (bnxt_fltr_match(fltr, new_fltr)) {
12580                         rcu_read_unlock();
12581                         rc = 0;
12582                         goto err_free;
12583                 }
12584         }
12585         rcu_read_unlock();
12586
12587         spin_lock_bh(&bp->ntp_fltr_lock);
12588         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12589                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
12590         if (bit_id < 0) {
12591                 spin_unlock_bh(&bp->ntp_fltr_lock);
12592                 rc = -ENOMEM;
12593                 goto err_free;
12594         }
12595
12596         new_fltr->sw_id = (u16)bit_id;
12597         new_fltr->flow_id = flow_id;
12598         new_fltr->l2_fltr_idx = l2_idx;
12599         new_fltr->rxq = rxq_index;
12600         hlist_add_head_rcu(&new_fltr->hash, head);
12601         bp->ntp_fltr_count++;
12602         spin_unlock_bh(&bp->ntp_fltr_lock);
12603
12604         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12605         bnxt_queue_sp_work(bp);
12606
12607         return new_fltr->sw_id;
12608
12609 err_free:
12610         kfree(new_fltr);
12611         return rc;
12612 }
12613
12614 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12615 {
12616         int i;
12617
12618         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12619                 struct hlist_head *head;
12620                 struct hlist_node *tmp;
12621                 struct bnxt_ntuple_filter *fltr;
12622                 int rc;
12623
12624                 head = &bp->ntp_fltr_hash_tbl[i];
12625                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12626                         bool del = false;
12627
12628                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12629                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
12630                                                         fltr->flow_id,
12631                                                         fltr->sw_id)) {
12632                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
12633                                                                          fltr);
12634                                         del = true;
12635                                 }
12636                         } else {
12637                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12638                                                                        fltr);
12639                                 if (rc)
12640                                         del = true;
12641                                 else
12642                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
12643                         }
12644
12645                         if (del) {
12646                                 spin_lock_bh(&bp->ntp_fltr_lock);
12647                                 hlist_del_rcu(&fltr->hash);
12648                                 bp->ntp_fltr_count--;
12649                                 spin_unlock_bh(&bp->ntp_fltr_lock);
12650                                 synchronize_rcu();
12651                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12652                                 kfree(fltr);
12653                         }
12654                 }
12655         }
12656         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12657                 netdev_info(bp->dev, "Receive PF driver unload event!\n");
12658 }
12659
12660 #else
12661
12662 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12663 {
12664 }
12665
12666 #endif /* CONFIG_RFS_ACCEL */
12667
12668 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12669 {
12670         struct bnxt *bp = netdev_priv(netdev);
12671         struct udp_tunnel_info ti;
12672         unsigned int cmd;
12673
12674         udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12675         if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12676                 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12677         else
12678                 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12679
12680         if (ti.port)
12681                 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12682
12683         return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12684 }
12685
12686 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12687         .sync_table     = bnxt_udp_tunnel_sync,
12688         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12689                           UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12690         .tables         = {
12691                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12692                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12693         },
12694 };
12695
12696 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12697                                struct net_device *dev, u32 filter_mask,
12698                                int nlflags)
12699 {
12700         struct bnxt *bp = netdev_priv(dev);
12701
12702         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12703                                        nlflags, filter_mask, NULL);
12704 }
12705
12706 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12707                                u16 flags, struct netlink_ext_ack *extack)
12708 {
12709         struct bnxt *bp = netdev_priv(dev);
12710         struct nlattr *attr, *br_spec;
12711         int rem, rc = 0;
12712
12713         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12714                 return -EOPNOTSUPP;
12715
12716         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12717         if (!br_spec)
12718                 return -EINVAL;
12719
12720         nla_for_each_nested(attr, br_spec, rem) {
12721                 u16 mode;
12722
12723                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
12724                         continue;
12725
12726                 if (nla_len(attr) < sizeof(mode))
12727                         return -EINVAL;
12728
12729                 mode = nla_get_u16(attr);
12730                 if (mode == bp->br_mode)
12731                         break;
12732
12733                 rc = bnxt_hwrm_set_br_mode(bp, mode);
12734                 if (!rc)
12735                         bp->br_mode = mode;
12736                 break;
12737         }
12738         return rc;
12739 }
12740
12741 int bnxt_get_port_parent_id(struct net_device *dev,
12742                             struct netdev_phys_item_id *ppid)
12743 {
12744         struct bnxt *bp = netdev_priv(dev);
12745
12746         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12747                 return -EOPNOTSUPP;
12748
12749         /* The PF and it's VF-reps only support the switchdev framework */
12750         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12751                 return -EOPNOTSUPP;
12752
12753         ppid->id_len = sizeof(bp->dsn);
12754         memcpy(ppid->id, bp->dsn, ppid->id_len);
12755
12756         return 0;
12757 }
12758
12759 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12760 {
12761         struct bnxt *bp = netdev_priv(dev);
12762
12763         return &bp->dl_port;
12764 }
12765
12766 static const struct net_device_ops bnxt_netdev_ops = {
12767         .ndo_open               = bnxt_open,
12768         .ndo_start_xmit         = bnxt_start_xmit,
12769         .ndo_stop               = bnxt_close,
12770         .ndo_get_stats64        = bnxt_get_stats64,
12771         .ndo_set_rx_mode        = bnxt_set_rx_mode,
12772         .ndo_eth_ioctl          = bnxt_ioctl,
12773         .ndo_validate_addr      = eth_validate_addr,
12774         .ndo_set_mac_address    = bnxt_change_mac_addr,
12775         .ndo_change_mtu         = bnxt_change_mtu,
12776         .ndo_fix_features       = bnxt_fix_features,
12777         .ndo_set_features       = bnxt_set_features,
12778         .ndo_features_check     = bnxt_features_check,
12779         .ndo_tx_timeout         = bnxt_tx_timeout,
12780 #ifdef CONFIG_BNXT_SRIOV
12781         .ndo_get_vf_config      = bnxt_get_vf_config,
12782         .ndo_set_vf_mac         = bnxt_set_vf_mac,
12783         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
12784         .ndo_set_vf_rate        = bnxt_set_vf_bw,
12785         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
12786         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
12787         .ndo_set_vf_trust       = bnxt_set_vf_trust,
12788 #endif
12789         .ndo_setup_tc           = bnxt_setup_tc,
12790 #ifdef CONFIG_RFS_ACCEL
12791         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
12792 #endif
12793         .ndo_bpf                = bnxt_xdp,
12794         .ndo_xdp_xmit           = bnxt_xdp_xmit,
12795         .ndo_bridge_getlink     = bnxt_bridge_getlink,
12796         .ndo_bridge_setlink     = bnxt_bridge_setlink,
12797         .ndo_get_devlink_port   = bnxt_get_devlink_port,
12798 };
12799
12800 static void bnxt_remove_one(struct pci_dev *pdev)
12801 {
12802         struct net_device *dev = pci_get_drvdata(pdev);
12803         struct bnxt *bp = netdev_priv(dev);
12804
12805         if (BNXT_PF(bp))
12806                 bnxt_sriov_disable(bp);
12807
12808         if (BNXT_PF(bp))
12809                 devlink_port_type_clear(&bp->dl_port);
12810
12811         bnxt_ptp_clear(bp);
12812         pci_disable_pcie_error_reporting(pdev);
12813         unregister_netdev(dev);
12814         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12815         /* Flush any pending tasks */
12816         cancel_work_sync(&bp->sp_task);
12817         cancel_delayed_work_sync(&bp->fw_reset_task);
12818         bp->sp_event = 0;
12819
12820         bnxt_dl_fw_reporters_destroy(bp, true);
12821         bnxt_dl_unregister(bp);
12822         bnxt_shutdown_tc(bp);
12823
12824         bnxt_clear_int_mode(bp);
12825         bnxt_hwrm_func_drv_unrgtr(bp);
12826         bnxt_free_hwrm_resources(bp);
12827         bnxt_ethtool_free(bp);
12828         bnxt_dcb_free(bp);
12829         kfree(bp->edev);
12830         bp->edev = NULL;
12831         kfree(bp->ptp_cfg);
12832         bp->ptp_cfg = NULL;
12833         kfree(bp->fw_health);
12834         bp->fw_health = NULL;
12835         bnxt_cleanup_pci(bp);
12836         bnxt_free_ctx_mem(bp);
12837         kfree(bp->ctx);
12838         bp->ctx = NULL;
12839         kfree(bp->rss_indir_tbl);
12840         bp->rss_indir_tbl = NULL;
12841         bnxt_free_port_stats(bp);
12842         free_netdev(dev);
12843 }
12844
12845 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12846 {
12847         int rc = 0;
12848         struct bnxt_link_info *link_info = &bp->link_info;
12849
12850         bp->phy_flags = 0;
12851         rc = bnxt_hwrm_phy_qcaps(bp);
12852         if (rc) {
12853                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12854                            rc);
12855                 return rc;
12856         }
12857         if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
12858                 bp->dev->priv_flags |= IFF_SUPP_NOFCS;
12859         else
12860                 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
12861         if (!fw_dflt)
12862                 return 0;
12863
12864         mutex_lock(&bp->link_lock);
12865         rc = bnxt_update_link(bp, false);
12866         if (rc) {
12867                 mutex_unlock(&bp->link_lock);
12868                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12869                            rc);
12870                 return rc;
12871         }
12872
12873         /* Older firmware does not have supported_auto_speeds, so assume
12874          * that all supported speeds can be autonegotiated.
12875          */
12876         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12877                 link_info->support_auto_speeds = link_info->support_speeds;
12878
12879         bnxt_init_ethtool_link_settings(bp);
12880         mutex_unlock(&bp->link_lock);
12881         return 0;
12882 }
12883
12884 static int bnxt_get_max_irq(struct pci_dev *pdev)
12885 {
12886         u16 ctrl;
12887
12888         if (!pdev->msix_cap)
12889                 return 1;
12890
12891         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12892         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12893 }
12894
12895 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12896                                 int *max_cp)
12897 {
12898         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12899         int max_ring_grps = 0, max_irq;
12900
12901         *max_tx = hw_resc->max_tx_rings;
12902         *max_rx = hw_resc->max_rx_rings;
12903         *max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
12904         max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
12905                         bnxt_get_ulp_msix_num(bp),
12906                         hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
12907         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
12908                 *max_cp = min_t(int, *max_cp, max_irq);
12909         max_ring_grps = hw_resc->max_hw_ring_grps;
12910         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
12911                 *max_cp -= 1;
12912                 *max_rx -= 2;
12913         }
12914         if (bp->flags & BNXT_FLAG_AGG_RINGS)
12915                 *max_rx >>= 1;
12916         if (bp->flags & BNXT_FLAG_CHIP_P5) {
12917                 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
12918                 /* On P5 chips, max_cp output param should be available NQs */
12919                 *max_cp = max_irq;
12920         }
12921         *max_rx = min_t(int, *max_rx, max_ring_grps);
12922 }
12923
12924 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
12925 {
12926         int rx, tx, cp;
12927
12928         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
12929         *max_rx = rx;
12930         *max_tx = tx;
12931         if (!rx || !tx || !cp)
12932                 return -ENOMEM;
12933
12934         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
12935 }
12936
12937 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12938                                bool shared)
12939 {
12940         int rc;
12941
12942         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12943         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
12944                 /* Not enough rings, try disabling agg rings. */
12945                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
12946                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
12947                 if (rc) {
12948                         /* set BNXT_FLAG_AGG_RINGS back for consistency */
12949                         bp->flags |= BNXT_FLAG_AGG_RINGS;
12950                         return rc;
12951                 }
12952                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
12953                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12954                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12955                 bnxt_set_ring_params(bp);
12956         }
12957
12958         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
12959                 int max_cp, max_stat, max_irq;
12960
12961                 /* Reserve minimum resources for RoCE */
12962                 max_cp = bnxt_get_max_func_cp_rings(bp);
12963                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
12964                 max_irq = bnxt_get_max_func_irqs(bp);
12965                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
12966                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
12967                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
12968                         return 0;
12969
12970                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
12971                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
12972                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
12973                 max_cp = min_t(int, max_cp, max_irq);
12974                 max_cp = min_t(int, max_cp, max_stat);
12975                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
12976                 if (rc)
12977                         rc = 0;
12978         }
12979         return rc;
12980 }
12981
12982 /* In initial default shared ring setting, each shared ring must have a
12983  * RX/TX ring pair.
12984  */
12985 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
12986 {
12987         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
12988         bp->rx_nr_rings = bp->cp_nr_rings;
12989         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
12990         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12991 }
12992
12993 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
12994 {
12995         int dflt_rings, max_rx_rings, max_tx_rings, rc;
12996
12997         if (!bnxt_can_reserve_rings(bp))
12998                 return 0;
12999
13000         if (sh)
13001                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
13002         dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13003         /* Reduce default rings on multi-port cards so that total default
13004          * rings do not exceed CPU count.
13005          */
13006         if (bp->port_count > 1) {
13007                 int max_rings =
13008                         max_t(int, num_online_cpus() / bp->port_count, 1);
13009
13010                 dflt_rings = min_t(int, dflt_rings, max_rings);
13011         }
13012         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13013         if (rc)
13014                 return rc;
13015         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13016         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13017         if (sh)
13018                 bnxt_trim_dflt_sh_rings(bp);
13019         else
13020                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13021         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13022
13023         rc = __bnxt_reserve_rings(bp);
13024         if (rc)
13025                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13026         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13027         if (sh)
13028                 bnxt_trim_dflt_sh_rings(bp);
13029
13030         /* Rings may have been trimmed, re-reserve the trimmed rings. */
13031         if (bnxt_need_reserve_rings(bp)) {
13032                 rc = __bnxt_reserve_rings(bp);
13033                 if (rc)
13034                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13035                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13036         }
13037         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13038                 bp->rx_nr_rings++;
13039                 bp->cp_nr_rings++;
13040         }
13041         if (rc) {
13042                 bp->tx_nr_rings = 0;
13043                 bp->rx_nr_rings = 0;
13044         }
13045         return rc;
13046 }
13047
13048 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13049 {
13050         int rc;
13051
13052         if (bp->tx_nr_rings)
13053                 return 0;
13054
13055         bnxt_ulp_irq_stop(bp);
13056         bnxt_clear_int_mode(bp);
13057         rc = bnxt_set_dflt_rings(bp, true);
13058         if (rc) {
13059                 netdev_err(bp->dev, "Not enough rings available.\n");
13060                 goto init_dflt_ring_err;
13061         }
13062         rc = bnxt_init_int_mode(bp);
13063         if (rc)
13064                 goto init_dflt_ring_err;
13065
13066         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13067         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
13068                 bp->flags |= BNXT_FLAG_RFS;
13069                 bp->dev->features |= NETIF_F_NTUPLE;
13070         }
13071 init_dflt_ring_err:
13072         bnxt_ulp_irq_restart(bp, rc);
13073         return rc;
13074 }
13075
13076 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13077 {
13078         int rc;
13079
13080         ASSERT_RTNL();
13081         bnxt_hwrm_func_qcaps(bp);
13082
13083         if (netif_running(bp->dev))
13084                 __bnxt_close_nic(bp, true, false);
13085
13086         bnxt_ulp_irq_stop(bp);
13087         bnxt_clear_int_mode(bp);
13088         rc = bnxt_init_int_mode(bp);
13089         bnxt_ulp_irq_restart(bp, rc);
13090
13091         if (netif_running(bp->dev)) {
13092                 if (rc)
13093                         dev_close(bp->dev);
13094                 else
13095                         rc = bnxt_open_nic(bp, true, false);
13096         }
13097
13098         return rc;
13099 }
13100
13101 static int bnxt_init_mac_addr(struct bnxt *bp)
13102 {
13103         int rc = 0;
13104
13105         if (BNXT_PF(bp)) {
13106                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
13107         } else {
13108 #ifdef CONFIG_BNXT_SRIOV
13109                 struct bnxt_vf_info *vf = &bp->vf;
13110                 bool strict_approval = true;
13111
13112                 if (is_valid_ether_addr(vf->mac_addr)) {
13113                         /* overwrite netdev dev_addr with admin VF MAC */
13114                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
13115                         /* Older PF driver or firmware may not approve this
13116                          * correctly.
13117                          */
13118                         strict_approval = false;
13119                 } else {
13120                         eth_hw_addr_random(bp->dev);
13121                 }
13122                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13123 #endif
13124         }
13125         return rc;
13126 }
13127
13128 static void bnxt_vpd_read_info(struct bnxt *bp)
13129 {
13130         struct pci_dev *pdev = bp->pdev;
13131         unsigned int vpd_size, kw_len;
13132         int pos, size;
13133         u8 *vpd_data;
13134
13135         vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13136         if (IS_ERR(vpd_data)) {
13137                 pci_warn(pdev, "Unable to read VPD\n");
13138                 return;
13139         }
13140
13141         pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13142                                            PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13143         if (pos < 0)
13144                 goto read_sn;
13145
13146         size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13147         memcpy(bp->board_partno, &vpd_data[pos], size);
13148
13149 read_sn:
13150         pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13151                                            PCI_VPD_RO_KEYWORD_SERIALNO,
13152                                            &kw_len);
13153         if (pos < 0)
13154                 goto exit;
13155
13156         size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13157         memcpy(bp->board_serialno, &vpd_data[pos], size);
13158 exit:
13159         kfree(vpd_data);
13160 }
13161
13162 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13163 {
13164         struct pci_dev *pdev = bp->pdev;
13165         u64 qword;
13166
13167         qword = pci_get_dsn(pdev);
13168         if (!qword) {
13169                 netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13170                 return -EOPNOTSUPP;
13171         }
13172
13173         put_unaligned_le64(qword, dsn);
13174
13175         bp->flags |= BNXT_FLAG_DSN_VALID;
13176         return 0;
13177 }
13178
13179 static int bnxt_map_db_bar(struct bnxt *bp)
13180 {
13181         if (!bp->db_size)
13182                 return -ENODEV;
13183         bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13184         if (!bp->bar1)
13185                 return -ENOMEM;
13186         return 0;
13187 }
13188
13189 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13190 {
13191         struct net_device *dev;
13192         struct bnxt *bp;
13193         int rc, max_irqs;
13194
13195         if (pci_is_bridge(pdev))
13196                 return -ENODEV;
13197
13198         /* Clear any pending DMA transactions from crash kernel
13199          * while loading driver in capture kernel.
13200          */
13201         if (is_kdump_kernel()) {
13202                 pci_clear_master(pdev);
13203                 pcie_flr(pdev);
13204         }
13205
13206         max_irqs = bnxt_get_max_irq(pdev);
13207         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13208         if (!dev)
13209                 return -ENOMEM;
13210
13211         bp = netdev_priv(dev);
13212         bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13213         bnxt_set_max_func_irqs(bp, max_irqs);
13214
13215         if (bnxt_vf_pciid(ent->driver_data))
13216                 bp->flags |= BNXT_FLAG_VF;
13217
13218         if (pdev->msix_cap)
13219                 bp->flags |= BNXT_FLAG_MSIX_CAP;
13220
13221         rc = bnxt_init_board(pdev, dev);
13222         if (rc < 0)
13223                 goto init_err_free;
13224
13225         dev->netdev_ops = &bnxt_netdev_ops;
13226         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13227         dev->ethtool_ops = &bnxt_ethtool_ops;
13228         pci_set_drvdata(pdev, dev);
13229
13230         rc = bnxt_alloc_hwrm_resources(bp);
13231         if (rc)
13232                 goto init_err_pci_clean;
13233
13234         mutex_init(&bp->hwrm_cmd_lock);
13235         mutex_init(&bp->link_lock);
13236
13237         rc = bnxt_fw_init_one_p1(bp);
13238         if (rc)
13239                 goto init_err_pci_clean;
13240
13241         if (BNXT_PF(bp))
13242                 bnxt_vpd_read_info(bp);
13243
13244         if (BNXT_CHIP_P5(bp)) {
13245                 bp->flags |= BNXT_FLAG_CHIP_P5;
13246                 if (BNXT_CHIP_SR2(bp))
13247                         bp->flags |= BNXT_FLAG_CHIP_SR2;
13248         }
13249
13250         rc = bnxt_alloc_rss_indir_tbl(bp);
13251         if (rc)
13252                 goto init_err_pci_clean;
13253
13254         rc = bnxt_fw_init_one_p2(bp);
13255         if (rc)
13256                 goto init_err_pci_clean;
13257
13258         rc = bnxt_map_db_bar(bp);
13259         if (rc) {
13260                 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13261                         rc);
13262                 goto init_err_pci_clean;
13263         }
13264
13265         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13266                            NETIF_F_TSO | NETIF_F_TSO6 |
13267                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13268                            NETIF_F_GSO_IPXIP4 |
13269                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13270                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13271                            NETIF_F_RXCSUM | NETIF_F_GRO;
13272
13273         if (BNXT_SUPPORTS_TPA(bp))
13274                 dev->hw_features |= NETIF_F_LRO;
13275
13276         dev->hw_enc_features =
13277                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13278                         NETIF_F_TSO | NETIF_F_TSO6 |
13279                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13280                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13281                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13282         dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13283
13284         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13285                                     NETIF_F_GSO_GRE_CSUM;
13286         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13287         if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13288                 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13289         if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13290                 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13291         if (BNXT_SUPPORTS_TPA(bp))
13292                 dev->hw_features |= NETIF_F_GRO_HW;
13293         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13294         if (dev->features & NETIF_F_GRO_HW)
13295                 dev->features &= ~NETIF_F_LRO;
13296         dev->priv_flags |= IFF_UNICAST_FLT;
13297
13298 #ifdef CONFIG_BNXT_SRIOV
13299         init_waitqueue_head(&bp->sriov_cfg_wait);
13300         mutex_init(&bp->sriov_lock);
13301 #endif
13302         if (BNXT_SUPPORTS_TPA(bp)) {
13303                 bp->gro_func = bnxt_gro_func_5730x;
13304                 if (BNXT_CHIP_P4(bp))
13305                         bp->gro_func = bnxt_gro_func_5731x;
13306                 else if (BNXT_CHIP_P5(bp))
13307                         bp->gro_func = bnxt_gro_func_5750x;
13308         }
13309         if (!BNXT_CHIP_P4_PLUS(bp))
13310                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
13311
13312         rc = bnxt_init_mac_addr(bp);
13313         if (rc) {
13314                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13315                 rc = -EADDRNOTAVAIL;
13316                 goto init_err_pci_clean;
13317         }
13318
13319         if (BNXT_PF(bp)) {
13320                 /* Read the adapter's DSN to use as the eswitch switch_id */
13321                 rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13322         }
13323
13324         /* MTU range: 60 - FW defined max */
13325         dev->min_mtu = ETH_ZLEN;
13326         dev->max_mtu = bp->max_mtu;
13327
13328         rc = bnxt_probe_phy(bp, true);
13329         if (rc)
13330                 goto init_err_pci_clean;
13331
13332         bnxt_set_rx_skb_mode(bp, false);
13333         bnxt_set_tpa_flags(bp);
13334         bnxt_set_ring_params(bp);
13335         rc = bnxt_set_dflt_rings(bp, true);
13336         if (rc) {
13337                 netdev_err(bp->dev, "Not enough rings available.\n");
13338                 rc = -ENOMEM;
13339                 goto init_err_pci_clean;
13340         }
13341
13342         bnxt_fw_init_one_p3(bp);
13343
13344         if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13345                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
13346
13347         rc = bnxt_init_int_mode(bp);
13348         if (rc)
13349                 goto init_err_pci_clean;
13350
13351         /* No TC has been set yet and rings may have been trimmed due to
13352          * limited MSIX, so we re-initialize the TX rings per TC.
13353          */
13354         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13355
13356         if (BNXT_PF(bp)) {
13357                 if (!bnxt_pf_wq) {
13358                         bnxt_pf_wq =
13359                                 create_singlethread_workqueue("bnxt_pf_wq");
13360                         if (!bnxt_pf_wq) {
13361                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
13362                                 rc = -ENOMEM;
13363                                 goto init_err_pci_clean;
13364                         }
13365                 }
13366                 rc = bnxt_init_tc(bp);
13367                 if (rc)
13368                         netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13369                                    rc);
13370         }
13371
13372         bnxt_inv_fw_health_reg(bp);
13373         bnxt_dl_register(bp);
13374
13375         rc = register_netdev(dev);
13376         if (rc)
13377                 goto init_err_cleanup;
13378
13379         if (BNXT_PF(bp))
13380                 devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13381         bnxt_dl_fw_reporters_create(bp);
13382
13383         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
13384                     board_info[ent->driver_data].name,
13385                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
13386         pcie_print_link_status(pdev);
13387
13388         pci_save_state(pdev);
13389         return 0;
13390
13391 init_err_cleanup:
13392         bnxt_dl_unregister(bp);
13393         bnxt_shutdown_tc(bp);
13394         bnxt_clear_int_mode(bp);
13395
13396 init_err_pci_clean:
13397         bnxt_hwrm_func_drv_unrgtr(bp);
13398         bnxt_free_hwrm_resources(bp);
13399         bnxt_ethtool_free(bp);
13400         bnxt_ptp_clear(bp);
13401         kfree(bp->ptp_cfg);
13402         bp->ptp_cfg = NULL;
13403         kfree(bp->fw_health);
13404         bp->fw_health = NULL;
13405         bnxt_cleanup_pci(bp);
13406         bnxt_free_ctx_mem(bp);
13407         kfree(bp->ctx);
13408         bp->ctx = NULL;
13409         kfree(bp->rss_indir_tbl);
13410         bp->rss_indir_tbl = NULL;
13411
13412 init_err_free:
13413         free_netdev(dev);
13414         return rc;
13415 }
13416
13417 static void bnxt_shutdown(struct pci_dev *pdev)
13418 {
13419         struct net_device *dev = pci_get_drvdata(pdev);
13420         struct bnxt *bp;
13421
13422         if (!dev)
13423                 return;
13424
13425         rtnl_lock();
13426         bp = netdev_priv(dev);
13427         if (!bp)
13428                 goto shutdown_exit;
13429
13430         if (netif_running(dev))
13431                 dev_close(dev);
13432
13433         bnxt_ulp_shutdown(bp);
13434         bnxt_clear_int_mode(bp);
13435         pci_disable_device(pdev);
13436
13437         if (system_state == SYSTEM_POWER_OFF) {
13438                 pci_wake_from_d3(pdev, bp->wol);
13439                 pci_set_power_state(pdev, PCI_D3hot);
13440         }
13441
13442 shutdown_exit:
13443         rtnl_unlock();
13444 }
13445
13446 #ifdef CONFIG_PM_SLEEP
13447 static int bnxt_suspend(struct device *device)
13448 {
13449         struct net_device *dev = dev_get_drvdata(device);
13450         struct bnxt *bp = netdev_priv(dev);
13451         int rc = 0;
13452
13453         rtnl_lock();
13454         bnxt_ulp_stop(bp);
13455         if (netif_running(dev)) {
13456                 netif_device_detach(dev);
13457                 rc = bnxt_close(dev);
13458         }
13459         bnxt_hwrm_func_drv_unrgtr(bp);
13460         pci_disable_device(bp->pdev);
13461         bnxt_free_ctx_mem(bp);
13462         kfree(bp->ctx);
13463         bp->ctx = NULL;
13464         rtnl_unlock();
13465         return rc;
13466 }
13467
13468 static int bnxt_resume(struct device *device)
13469 {
13470         struct net_device *dev = dev_get_drvdata(device);
13471         struct bnxt *bp = netdev_priv(dev);
13472         int rc = 0;
13473
13474         rtnl_lock();
13475         rc = pci_enable_device(bp->pdev);
13476         if (rc) {
13477                 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13478                            rc);
13479                 goto resume_exit;
13480         }
13481         pci_set_master(bp->pdev);
13482         if (bnxt_hwrm_ver_get(bp)) {
13483                 rc = -ENODEV;
13484                 goto resume_exit;
13485         }
13486         rc = bnxt_hwrm_func_reset(bp);
13487         if (rc) {
13488                 rc = -EBUSY;
13489                 goto resume_exit;
13490         }
13491
13492         rc = bnxt_hwrm_func_qcaps(bp);
13493         if (rc)
13494                 goto resume_exit;
13495
13496         if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13497                 rc = -ENODEV;
13498                 goto resume_exit;
13499         }
13500
13501         bnxt_get_wol_settings(bp);
13502         if (netif_running(dev)) {
13503                 rc = bnxt_open(dev);
13504                 if (!rc)
13505                         netif_device_attach(dev);
13506         }
13507
13508 resume_exit:
13509         bnxt_ulp_start(bp, rc);
13510         if (!rc)
13511                 bnxt_reenable_sriov(bp);
13512         rtnl_unlock();
13513         return rc;
13514 }
13515
13516 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13517 #define BNXT_PM_OPS (&bnxt_pm_ops)
13518
13519 #else
13520
13521 #define BNXT_PM_OPS NULL
13522
13523 #endif /* CONFIG_PM_SLEEP */
13524
13525 /**
13526  * bnxt_io_error_detected - called when PCI error is detected
13527  * @pdev: Pointer to PCI device
13528  * @state: The current pci connection state
13529  *
13530  * This function is called after a PCI bus error affecting
13531  * this device has been detected.
13532  */
13533 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13534                                                pci_channel_state_t state)
13535 {
13536         struct net_device *netdev = pci_get_drvdata(pdev);
13537         struct bnxt *bp = netdev_priv(netdev);
13538
13539         netdev_info(netdev, "PCI I/O error detected\n");
13540
13541         rtnl_lock();
13542         netif_device_detach(netdev);
13543
13544         bnxt_ulp_stop(bp);
13545
13546         if (state == pci_channel_io_perm_failure) {
13547                 rtnl_unlock();
13548                 return PCI_ERS_RESULT_DISCONNECT;
13549         }
13550
13551         if (state == pci_channel_io_frozen)
13552                 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13553
13554         if (netif_running(netdev))
13555                 bnxt_close(netdev);
13556
13557         if (pci_is_enabled(pdev))
13558                 pci_disable_device(pdev);
13559         bnxt_free_ctx_mem(bp);
13560         kfree(bp->ctx);
13561         bp->ctx = NULL;
13562         rtnl_unlock();
13563
13564         /* Request a slot slot reset. */
13565         return PCI_ERS_RESULT_NEED_RESET;
13566 }
13567
13568 /**
13569  * bnxt_io_slot_reset - called after the pci bus has been reset.
13570  * @pdev: Pointer to PCI device
13571  *
13572  * Restart the card from scratch, as if from a cold-boot.
13573  * At this point, the card has exprienced a hard reset,
13574  * followed by fixups by BIOS, and has its config space
13575  * set up identically to what it was at cold boot.
13576  */
13577 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13578 {
13579         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13580         struct net_device *netdev = pci_get_drvdata(pdev);
13581         struct bnxt *bp = netdev_priv(netdev);
13582         int err = 0, off;
13583
13584         netdev_info(bp->dev, "PCI Slot Reset\n");
13585
13586         rtnl_lock();
13587
13588         if (pci_enable_device(pdev)) {
13589                 dev_err(&pdev->dev,
13590                         "Cannot re-enable PCI device after reset.\n");
13591         } else {
13592                 pci_set_master(pdev);
13593                 /* Upon fatal error, our device internal logic that latches to
13594                  * BAR value is getting reset and will restore only upon
13595                  * rewritting the BARs.
13596                  *
13597                  * As pci_restore_state() does not re-write the BARs if the
13598                  * value is same as saved value earlier, driver needs to
13599                  * write the BARs to 0 to force restore, in case of fatal error.
13600                  */
13601                 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13602                                        &bp->state)) {
13603                         for (off = PCI_BASE_ADDRESS_0;
13604                              off <= PCI_BASE_ADDRESS_5; off += 4)
13605                                 pci_write_config_dword(bp->pdev, off, 0);
13606                 }
13607                 pci_restore_state(pdev);
13608                 pci_save_state(pdev);
13609
13610                 err = bnxt_hwrm_func_reset(bp);
13611                 if (!err)
13612                         result = PCI_ERS_RESULT_RECOVERED;
13613         }
13614
13615         rtnl_unlock();
13616
13617         return result;
13618 }
13619
13620 /**
13621  * bnxt_io_resume - called when traffic can start flowing again.
13622  * @pdev: Pointer to PCI device
13623  *
13624  * This callback is called when the error recovery driver tells
13625  * us that its OK to resume normal operation.
13626  */
13627 static void bnxt_io_resume(struct pci_dev *pdev)
13628 {
13629         struct net_device *netdev = pci_get_drvdata(pdev);
13630         struct bnxt *bp = netdev_priv(netdev);
13631         int err;
13632
13633         netdev_info(bp->dev, "PCI Slot Resume\n");
13634         rtnl_lock();
13635
13636         err = bnxt_hwrm_func_qcaps(bp);
13637         if (!err && netif_running(netdev))
13638                 err = bnxt_open(netdev);
13639
13640         bnxt_ulp_start(bp, err);
13641         if (!err) {
13642                 bnxt_reenable_sriov(bp);
13643                 netif_device_attach(netdev);
13644         }
13645
13646         rtnl_unlock();
13647 }
13648
13649 static const struct pci_error_handlers bnxt_err_handler = {
13650         .error_detected = bnxt_io_error_detected,
13651         .slot_reset     = bnxt_io_slot_reset,
13652         .resume         = bnxt_io_resume
13653 };
13654
13655 static struct pci_driver bnxt_pci_driver = {
13656         .name           = DRV_MODULE_NAME,
13657         .id_table       = bnxt_pci_tbl,
13658         .probe          = bnxt_init_one,
13659         .remove         = bnxt_remove_one,
13660         .shutdown       = bnxt_shutdown,
13661         .driver.pm      = BNXT_PM_OPS,
13662         .err_handler    = &bnxt_err_handler,
13663 #if defined(CONFIG_BNXT_SRIOV)
13664         .sriov_configure = bnxt_sriov_configure,
13665 #endif
13666 };
13667
13668 static int __init bnxt_init(void)
13669 {
13670         bnxt_debug_init();
13671         return pci_register_driver(&bnxt_pci_driver);
13672 }
13673
13674 static void __exit bnxt_exit(void)
13675 {
13676         pci_unregister_driver(&bnxt_pci_driver);
13677         if (bnxt_pf_wq)
13678                 destroy_workqueue(bnxt_pf_wq);
13679         bnxt_debug_exit();
13680 }
13681
13682 module_init(bnxt_init);
13683 module_exit(bnxt_exit);